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ABSTRACT Compressive sensing allows the reconstruction of original signals from a much smaller number
of samples as compared to the Nyquist sampling rate. The effectiveness of compressive sensing motivated
the researchers for its deployment in a variety of application areas. The use of an efficient sampling matrix
for high-performance recovery algorithms improves the performance of the compressive sensing framework
significantly. This paper presents the underlying concepts of compressive sensing as well as previous work
done in targeted domains in accordance with the various application areas. To develop prospects within
the available functional blocks of compressive sensing frameworks, a diverse range of application areas
are investigated. The three fundamental elements of a compressive sensing framework (signal sparsity,
subsampling, and reconstruction) are thoroughly reviewed in this work by becoming acquainted with the key
research gaps previously identified by the research community. Similarly, the basicmathematical formulation
is used to outline some primary performance evaluation metrics for 1D and 2D compressive sensing.

INDEX TERMS Compressed sensing, compressive sampling, reconstruction algorithms, sensing matrix.

I. INTRODUCTION
We have seen an exponential increase in digital data pro-
duction and utilisation since the inception of modern digital
evolution. The available datasets are massive and complex,
necessitating a significant amount of power and communica-
tion bandwidth. Furthermore, current storage capacities have
abandoned the big data problem. As a result, data compres-
sion can be beneficial in addressing the issues and has been
used in a variety of applications. Figure 1 depicts the overall
steps involved in various stages of signal compression.

In conventional data compression techniques, it is clear that
all samples must first be accumulated and then processed to
remove redundant information. As a result, the sampling end
has a higher computational load.
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FIGURE 1. Signal compression stages.

Another method, which takes advantage of sparsity in
natural signals, has been proposed in recent years. Due to its
simultaneous sampling and compression capabilities, this is
known as Compressive Sensing (CS) [1]. It tends to estimate
the original signal from an under-determined set of measure-
ments, resulting in lower sampling costs at the transmitter
end.

There are three key components of a CS framework:

• Measurement Matrix (8).
• Sparse Transformation Basis (9).
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FIGURE 2. Compressive sensing components.

• Reconstruction Technique.
The first two primary components of a CS framework are
shown in Figure 2.

Similarly, the sparse transformation bases can be either
built-in or learned. Some widely used built-in transforms are:
• Discrete Fourier Transform (DFT) [2]
• Discrete Cosine Transform (DCT) [3]
• Discrete Sine Transform (DST) [4]
• Hadamard Transform (HT) [5]
• Lapped Transform (LT) [6]
• Discrete Wavelet Transform (DWT) [7]

Apart from the predefined dictionaries, there are some other
techniques, such as ksvd, that can be used to provide learned
transformation basis.

Using optimization methodologies, recovery algorithms
are employed in compressed sensing to faithfully recover the
original signal from a random and incomplete set of samples.
There are some widely used classes of sparse signal recovery
techniques, which are mentioned below:
• Convex Relaxation Algorithms:
These are the optimization techniques which possess
better reconstruction accuracy, with lower speed, such
as Basis Pursuit (`1-minimization).

• Greedy Iterative Algorithms:
These algorithms have higher reconstruction speed with
approximate solution, it includes Matching Pursuit and
Orthogonal Matching Pursuit (OMP).

• Iterative Algorithms:
Some widely used algorithms in this class are Iterative
Hard Thresholding (IHT), and Iterative Soft Threshold-
ing (IST).

• Bayesian Method:
These techniques are used to reconstruct original signal
by taking into consideration the correlation between the
signal elements.

• Deep Learning Techniques:
Deep learning methods for signal reconstruction are
based on the capabilities of training based deep neural
networks.

Figure 3 illustrates the complete outline of CS frameworks
along with the categories of deployed techniques. The sec-
tions that follow describe each category of the illustrated

figure by going through the current advances listed in the
literature. In this work, the fundamental CS components are
linked to the challenges and future prospects to target the
specific application areas by going through current trends
in CS literature. The fundamental challenges faced by the
conventional CS frameworks are summarized below.
• The availability of sparse transformation basis is of
utmost importance for the CS frameworks. Therefore,
the availability of a feasible basis for the available
datasets is one of the key challenges.

• The redundant and incomplete information projected on
to the transformed domain needs efficient recovery algo-
rithms for signal recovery to restore the information lost
during inefficient sampling process. So computational
models has to be developed by comparing its efficiency
with the existing signal recovery algorithms.

• Efficient signal recovery from the incomplete set of
information is also fundamentally needed. It is also nec-
essary to demonstrate working knowledge of existing
signal recovery techniques as well as to deploy advanced
machine learning models for efficient signal recovery.

• Even when using computationally expensive signal
recovery methods, using random measurement matrices
in the existing compressed sensing domain degrades
performance. Therefore, the development of optimized
and efficient measurement matrix is required, to gather
the samples which carries higher information content.

This paper is organized as follow:
Section II demonstrate all the recent developments and

deployments of sparse signal transformation. Section III illus-
trates the conventionally used random, deterministic, and
data driven sampling matrices and latest trends in developing
training based methods for sampling matrices development.
Section IV is related to CS based reconstruction algorithms,
while section V describes major application areas of CS,
where it is successfully deployed in recent years. The per-
formance evaluation metrics used in CS are explained in
section VI. The last section VII is regarding the major high-
lights of this paper, and concludes it with major takeaways of
this paper.

II. SPARSE SIGNAL REPRESENTATION
Compressed sensing has gained popularity in recent years due
to its data recovery ability from a small subset of samples.
It was proposed by Emmanuel J. Candes in [1] by stating
the possibility of original information retrieval from a rela-
tively small number of sparse data samples. The ability of
CS to recover information from an incomplete set of data
has increased its applicability in diverse range of application
areas. Prior to CS, it was thought that the Nyquist theorem
was the fundamental condition for sampling the available
information. The Nyquist sampling theorem states that a
signal can be accurately recovered from its samples if the
sampling rate is twice or more than the rate of the signal’s
highest frequency component. Before the necessary process-
ing can take place, a signal that is band-unlimited must be
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FIGURE 3. Developed components of a compressive sensing framework.

transformed into a signal that is band-limited. This method
previously required more computing power, transmission
bandwidth, and storage memory, in addition to being prone
to a high number of reconstruction errors. The majority of
available signals possess sparsity and can be reconstructed
with a limited number of data samples if presented in the
appropriate transform basis 9 [1]. This study showed that
data samples with two key characteristics can be precisely
reconstructed from very limited content:

• Sparsity
• Incoherence

Similarly, at the sampling end, the Restricted Isometric Prop-
erty (RIP) [1] ensures that the needed quantity of information
content is present in random signal samples by fine-tuning
the essential performance parameters at the sampling end,
resulting in more information embedding in a fewer number
of samples. As a result, recovery algorithms can achieve
better performance in reconstructing original information.

A. SPARSITY
Sparsity is one of the necessary conditions for accurate signal
reconstruction in CS frameworks. Sparse signal representa-
tion aims to preserve original information by representing
1D signals, images, and videos with a small number of non-
zero coefficients. The primary goal of sparse representation

is to convert the original signal into a set of basis coefficients
with a small number of non-zero coefficients. Because of
the scarcity of information in available sample, processing
time tends to increase while computation resources and trans-
mission bandwidth are reduced. The sparse coefficients of
a signal ’x’ can be expressed as follows in terms of the
basis ’ψ’:

x =
N∑
i=1

αiψi = α9, (1)

where αi denotes a collection of ’N’ transformed coefficients
in the basis 9.

B. SPARSE TRANSFORMATION DICTIONARIES
CS is a subclass of sparse signal representation that acquires
random data samples with the highest signal information
content, combining sampling and compression in a single
step. Sparsity implies that most naturally occurring signals
can be represented with the fewest data elements. As a result,
dictionaries were developed to aid in the representation of
sparse signals.

Signals are not always completely sparse in their original
form. As a result, predefined overcomplete dictionaries are
employed for converting signals into a sparse version. Dis-
crete Cosine Transform (DCT) [8], Discrete Sine Transform

85004 VOLUME 10, 2022



I. Ahmed et al.: Sparse Signal Representation, Sampling, and Recovery in CS Frameworks

FIGURE 4. Speech signal representation in fourier & wavelet domain.

(DST) [9], and Discrete Fourier Transform (DFT) [10] are
some well-known transformation bases that represents 1-D
signals in terms of their sparse coefficients, while Wavelet
Transform (WT) is used for sparse representation of images
and videos [11]. Transform coding is the representation of
natural signals using readily available bases. Modern compu-
tation methods have also aided the development of learned
dictionaries that can provide sparse coefficients for a known
dataset. In the column space of these learned dictionaries,
similar signals are thus represented. [12].

There are also some transforms which are based on orthog-
onal polynomials similar to DCT and DFT. These transforms
include Discrete Hahn Polynomials (DHPs) which has been
used for efficient feature extraction in image processing.
The work done in [13] addressed some shortcomings and
proposed efficient Hahn orthogonal basis to be deployed for
higher orders. Similarly, other classes of orthogonal poly-
nomial have also shown promising results in representing
higher order signals in orthogonal basis for efficient feature
extraction. These polynomials are Krawtchouk Polynomials
(KPs) [14], Charlier polynomials [15], Meixner orthogonal
polynomials [16], and Tchebichef polynomials [17], [18].

The sparse transformation bases for speech signals are
explored and studied in [19]. Figure 4 demonstrates the effec-
tiveness of DCT and DWT bases in speech signal sparse
transformation.

In addition to the predefined dictionaries, a subclass of
dictionaries are employed to represent signals in sparse
basis [20]. These dictionaries have made significant contri-
butions to the field of sparse signal processing due to their
effectiveness in sparse signal representation [21] at the cost
of more training data and computational resources.

III. SIGNAL SAMPLING
The measurement matrix, also represented by 8 in the lit-
erature, is known as sampling modality and used in the
CS framework for decomposing high-dimensional input data
samples into the low-rank components. The transformation
carried out by 8 can be written as:

8 : Rn
→ Rm

∀ n� m (2)

By capturing informative samples, a well-chosen8 can aid in
the faithful signal reconstruction process. Therefore, efficient

measurement matrix design is critical to the overall perfor-
mance improvement of the sampling and recovery process.
Zaeemzadeh et al. [22] addressed the adaptivity of measure-
ment matrix by proposing the adaptive method for designing
measurement matrices based on a generative approach. The
developed method proposed an adaptive sensing matrix that
samples the signal’s most important features which indicates
whether a specific set of data samples is helpful in signal
reconstruction process or not.

A. RESTRICTED ISOMETRIC PROPERTY
The efficiently designed sensing matrix assists in the recon-
struction process by preserving the significant data elements,
if it satisfies Restricted Isometric Property (RIP) [1], [23].
In CS framework, RIP ensures the information preservation
property of a sensing matrix. RIP states that a matrix ’A’
collects significant data samples of a signal, if it satisfies 3

(1− σS )||b||2 ≤ ||Ab||2 ≤ (1+ σS )||b||2, (3)

where σS is a restricted isometric constant and its value ranges
between 0 and 1.

RIP ensures that a sensing matrix maps two input signals,
a1 and a2, with two distinct output signals, b2 and b2, as:

a1 − a2 ≈ ||8a1 −8a2||22 = ||b1 − b2||
2
2. (4)

The smallest possible number of samples required for exact
signal recovery to satisfy equation 4, is:

m ≥ S log
( n
S

)
. (5)

B. RANDOM AND DETERMINISTIC SAMPLING
The retrieval of higher information content from an incom-
plete set of information samples has been a major focus of
recent work in the fields of signal estimation and statisti-
cal signal processing. Sensing matrix may have pronounced
effects in achieving higher quality reconstructed signal by
having least amount of signal loss at the recovery end. The
importance of efficient signal sampling is illustrated in the
form of Figure 5. It is shown that selecting an inefficient
and limited identity matrix for the sampling matrix yields in
inaccurate signal reconstruction.

The majority of earlier work in CS framework focused on
the development of computationally unrealistic and complex
signal recovery algorithms. Till now, researchers haveworked
and devised techniques for sampling modalities enabling
higher information capturing of the signals [24], [25]. As a
result, the devised mechanism improves recovery perfor-
mance, as well as, reconstruction speed.

Random sampling techniques have been used in a vari-
ety of CS applications owing to its historical usefulness.
In [26], authors demonstrate the efficiency of random sam-
pling techniques and their usage in wireless sensor networks.
In addition, [27] presented a novel gradient projection-based
approach for compressively sensed signal reconstruction with
a different method of initialising measurement matrix. When
compared to other widely used signal sampling strategies, this
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FIGURE 5. Signal loss as a result of inefficient sensing.

strategy outperforms them. However, the trade-offs associ-
ated with learning-based approaches including computational
power and memory storage resources are not addressed.

Another paper [28] showed how CS can be used to analyse
speech signals to preserve their quality. Figure 6 illustrates
the reconstruction performance of various speech signals.

This study concentrated on the sparsity of speech signals in
various transform domains. Random sampling, on the other
hand, is implemented using Gaussian sensing matrix. The
authors investigate the randomly selected signal for recon-
struction using a greedy reconstruction algorithm of Orthog-
onal Matching Pursuit (OMP). DCT is deemed as a better
choice for use as a sparse basis for speech and audio signals
reconstruction, whereas Gaussian random matrix aided in
the efficient and accurate reconstruction resulting in better
performance with OMP. One such similar strategy proposed
in [19] which presented the use of Bernoulli sensing matrix
for an enhanced speech signal sampling than other tech-
niques. Although the paper primarily deals with the signal
recovery algorithms, however it also includes a proposal for
a Bernoulli matrix-based training matrix that performs better
for speech signals.

In this quest, work done in [29] explored a diverse range
of random and deterministic sensing matrices to propose
an efficient matrix. In this work, the experimented matri-
ces were compared on the basis of reconstruction accuracy
and reconstruction time, while DCT is applied as a sparse
transformation basis owing to its efficiency in sparsity of
speech signals [30]. The random matrices have shown better
reconstruction accuracy while on the contrary, deterministic
matrices reconstruction accuracy is of moderate accuracy.
On the other hand, the speed of the `1-norm reconstruction
method for the deterministic samples is higher as compared
to random matrices. The results which we have taken also
discussed that the deterministic matrices can be applied for

real time application because of the enhanced speed of the
reconstruction method at the cost of lower reconstruction
accuracy. In this work, speech signals from TIMIT [31],
Pashto dataset [32] and Urdu dataset [33] corpora were used
for the experimentation.

Despite all the advantages associated with random sensing,
it falls short in terms of fast and computationally feasible sam-
pling for accurate signal recovery. This issue is also discussed
in [34], demonstrating the advantages of using deterministic
sensing. Several deterministic matrices are explored and stud-
ied in [34] showing better performance.

C. LEARNING BASED APPROACHES FOR SENSING
MATRIX DESIGN
Preliminary literature in the CS recorded that 8 has a
non-adaptive nature to ensure better reconstruction perfor-
mance [35]. Therefore, training-based sensing matrix design
methods were presented to include the inherent structure of
a training dataset for CS-based signal sampling [19]. The
offline training approaches for sampling matrix design are
shown to perform efficiently because they preserve the inher-
ent structure of the training dataset. Due to the performance
enhancement across all 1D and 2D signals demonstrates the
adaptive nature of the offline training mechanism. In [36],
a similar learning-based approach was used to account for
the inter-column correlation matrix. As a parent matrix,
a Gaussain random matrix is selected and trained for the
dataset. The results obtained were favourable and a positive
sign for researchers working on learning-based techniques.
Similarly, the limitations of random subsampling can be
mitigated by using structured subsampling, as demonstrated
in [37] and [38]. In order to improve image recovery in the
CS domain, an image dataset is used to train a sampling
matrix and for real time neural signals reconstruction [38].
Using deep Convolutional Neural Networks (CNN) and the
linear reconstruction method, this work adopted the train-
ing mechanism proposed by [37] for real-time applications.
In [39], a similar approach is used to for optimal sensing
matrix for gathering the maximum information. Similarly,
a GA based approach for sensing matrix design is recently
proposed in [40]. In this work, evolutionary mechanism is
deployed to generate the optimized sensing matrix after many
iterations called generations.

An important and a basic question now becomes that which
structured samples should one select and aim for? As a result,
for a given application, the non-zero coefficients are chosen
on the basis of the undersampling ratio. Mathematically,

8̂ = argmax
8:|8|=n

1
m

m∑
j=1

∑
i∈8

|〈9i, xj〉|2, (6)

where9 is the orthonormal sparse basis operator and8 is the
sampling matrix from which 8̂ is learned.

Effective signal sampling is also critical in remote sensing
applications to maintain the quality of image. The remote
station power consumption is crucial and must be considered
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FIGURE 6. Speech samples recovery using Bernouli random matrix, Gaussian random matrix, Hadamard matrix, and Toeplitz matrix from
(a) 10%, (b) 20%, and (c) 30%, (d) 40% of the original signal samples.

for in these applications, and traditional transform coding
methods are not feasible. For signal sampling and reconstruc-
tion, the proposed framework in [41] used CNN. The devised
setup is made up of various layers that are in charge of signal
sampling and reconstruction. The obtained results demon-
strate the efficacy and usefulness of the proposed framework
in the CS domain for effective real-time applications.

IV. SPARSE SIGNAL RECOVERY
After sparse domain sampling, recovering an enhanced qual-
ity original signal from an incomplete set of data becomes
a relatively difficult task at the receiver. The computational
process for recovery is aided by limited statistical parameters
of signal obtained from a small number of samples.

A. COMMONLY USED RECONSTRUCTION TECHNIQUES
Compressed sensing (CS) is commonly used to reconstruct
the original signal using the least possible number of samples.
Some of the optimization-based reconstruction techniques,
including Basis Pursuit (BP) [42], Orthogonal Matching Pur-
suit (OMP) [43], Total Variation (TV) [44], Compressed
Sensing Matching Pursuit (COSAMP) [45], and Iterative
Hard Thresholding (IHT) [46], have started to gain attention
owing to its successful and an enhanced signal reconstruction
at the receiver.

BP is a type of convex relaxation algorithm based on the
the following equation for sparse coefficients recovery.

α̂ = minimize
x∈Rn

||x||1 s.t ||y− Ax||22 ≤ ε, (7)

Here ε is the `2 error controlling term while α̂ is a set of
sparse domain signal coefficients. With the help of (8), ˆalpha
is utilised to locate the original signal ’x’ by minimizing
function.

x = 9∗α̂, (8)

where 9∗ = 9−1 denotes the unitary transformation.
For statistical inference, a modified version of `1 mini-

mization is used for sparse signal recovery. This technique
is called Least Absolute Shrinkage and Selection Operator
(LASSO) [47]. The mathematical formulation of LASSO can
be described as:

α̂ = minimize
x∈Rn

||y−89x||22 + λ||x||1, (9)

Here λ represents regularisation parameter.
The Linear reconstruction method is considered as the

simplest for solving full ranked equations, and it is based on
(10).

x̂ = A−1y. (10)

However, the use of (10) is restricted only to fully ranked
systems. As a result, the system’s least square solution is as

x̂ = argmin
x
||y− Ax||2. (11)

It is notable that the (11) has a solution in vectoral format as
below:

x̂ = (ATA)−1AT y, (12)

where AT is the transpose of matrix A and the expression
(ATA)−1AT is known as pseudo inverse.
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B. MODERN TECHNIQUES FOR CS BASED SIGNAL
RECONSTRUCTION
1) BLOCK COMPRESSED SENSING
A performance comparison of sparse signal reconstruction
techniques was done previously on this area. [24], [48], sam-
pling modality for 1-D signals [49], sampling and recon-
struction of biological and thermal images [50], [51]. The
study is carried out in [52] which presented a CS configu-
ration oqing to the distinctive time-frequency nature of audio
signals. It narrated the representation of speech signals and
compared the performances of widely utilised speech signal
recovery algorithms. As seen earlier, linear signal recon-
struction techniques are also enabled using the data fitting
technique to the original data samples and are based on the
principle of minimization of the norm between the original
dataset and predicted data samples. The speed performance
and efficieny of the system may degrade when employing the
overall data in the optimized model. For this reason, Block
Compressed Sensing (BCS) [53] is utilized to mitigate this
issue a technique by breaking down a large dataset into mini
blocks or batches. A. Shen et al. suggested an approach for
gathering information in the form of blocks and ultimately
recovering the original signal at the receiver using Lapped
Transform (LT) to take the temporal correlation between
various blocks [53]. The results of the recovered signal was
very much interesting and enhanced from other techniques
not deploying LT. It is further demonstrated that `1-norm
minimization, often known as Basis Pursuit (BP), may be
used to successfully recover signals [42]. A close analysis of
the techniques, namely BP, Matching Pursuit (MP), Orthog-
onal MP (OMP), and frames method, showed that the BP
significantly outperformed the rest of methods [42].

2) BAYESIAN TECHNIQUES
Probabilistic techniques have been frequently employed to
reconstruct original signals in signal recovery and estimation
jobs. Bayes’ theorem is used as the foundation of proposed
configurations in a wide range of data recovery applications.
Due to its effectiveness in information synthesis, the posterior
probability distribution has become one of the most preferred
algorithms for signal recovery from a small quantity of data.
A wide range of CS based optimization algorithms for ECG
signal reconstruction are investigated and compared with the
Bayes’ theorem [20]. It demonstrates that Bayesian recovery
outperforms a range of traditional recovery techniques.

According to the Baye’s theorem, the posterior probability
of b is based on some assumed priors and can be written as:

P(b|a; γjXj) = N (µb, 6b) (13)

13 finds the parameter on the basis of type II maximum likeli-
hood estimation. As the posterior probability approaches the
mean of b, Maximum-A-Posteriori (MAP) estimation can be
easily determined. Such framework is called Sparse Bayesian
Learning (SBL).

In the CS literature, efforts are made to build sparse
structured sensing matrices using modern data computing

approaches. The work done in [19] proposed Block Sparse
Bayesian Learning (BSBL) after developing a sparse binary
matrix for speech signal sampling and reconstruction. The
temporal correlation among signal elements is exploited in
BSBL based signal recovery. It demonstrated the use of
Bayesian approach for signal reconstruction in conjunction
with the developed matrix. The performance of proposed and
baseline approaches is evaluated on the basis of Structural
Similarity Index (SSIM). When comparing BSBL with basis
pursuit, BSBL has shown promising results outperforms in
the speech signal recovery task.

ECG, EMG, and EEG reconstruction have all been suc-
cessfully accomplished using CS applications [54], [55].
BSBL has also outperformed in the reconstruction of biomed-
ical signals [54], [56], [57]. The benefits of BSBL in respect
of speed, precision, and durability have also been applied
to EEG imaging [58]. Moreover, the applications of BSBL
for real time montiroing of machine conditions are also
demonstrated in [59]. Chun-Shien Lu et al. [60] also used one
of these strategies to recover image information by taking
advantage of the relationship between image samples. It also
investigated the ability of transformed coefficients to rep-
resent signals on a sparse basis. Compressive Image Sens-
ing (CIS) is the name given to this method, which is inves-
tigated for a variety of 2D and 1D signals and observed to
provide accurate signal reconstruction with improved speed.

In the literature, numerous approaches are studied for origi-
nal information retrieval from subsampled lower-dimensional
data samples. The Bayes theorem is also used in the CS
framework’s signal reconstruction tasks. According to Shan-
non’s sampling theorem, the work in [61] demonstrates
time invariant sampling of information. Partial information
sampling has been shown to save energy while simultane-
ously raising the cost of sampling equipment. The proposed
methodology, on the other hand, employs Bayesian Com-
pressed Sensing (BCS), a technique that allows for the col-
lection of very small yet highly informative data samples.
To analyse the present data and forecast future measurements,
a BCS-based adaptive technique is proposed.

The following steps are executed in this work:
1) At first, a random subset of samples is taken.
2) For these measurements, the posterior mean and vari-

ance are determined.
3) More data is gathered to ensure a large posterior mean

and variance.
4) The measurements with the highest posterior mean and

variation are chosen.
5) To limit the possibility of local optima, the motion

planning algorithm forecasts the next data sample from
a smaller number of measurements. Accurate measure-
ments are predicted using Pi measurements.

As previously indicated, spatial domain is used for signal
sampling, in which image ’x’ of 32 × 32 pixels is used to
retrieve a 5× 5 block. Following that, signal ’y’ is computed
as y = φx and y = φψS, where ’S’ is a 2Dwavelet transform
of a grey scale picture. The rows of φ has 5 × 5 non-zero
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FIGURE 7. Comparison of BSBL with `1 and filtered `1 recovery.

elements. The reconstruction error is calculated using the
following mathematical equation as in [61], which is then
used to evaluate performance:

Error(yrec; y) =
||yrec − y||2
||y|||2

, (14)

where y and yrec denoted the original and reconstructed
signals, respectively. When adaptive and random measuring
methods are compared, adaptive sampling outperforms in
terms of lower reconstruction error.

3) EVOLUTIONARY METHODS
Evolutionary methods are algorithms that are inspired by
nature and are used to iteratively find the optimum answer.
To generate the best offspring, a set number of iterations,
known as generations, is used. Sparse recovery algorithms
based on such tactics have lately been applied in the CS
sector. A Genetic Algorithm (GA) is a form of evolutionary
mechanism that resembles Darwin’s theory of evolution. M.
Heredia et al work ’s in the CS [62], [63] demonstrated the
use of GA rather than `0 or `1 recovery approaches. The
chromosomes created in this study demonstrated a variety of
sparse setups, and the solutions discovered for each time span
are linked to them.

For constructing optimum data-driven models, evolution-
ary techniques such as the Genetic Algorithm (GA) have been
applied. GA offers a wide range of applications that have
showed promise for data recovery. In [63], which uses the
Curvelet Transform (CT) [64] for sparse signal encoding,
a GA-based data recovery is discussed. The sensing matrix
used in this study was a Gaussian matrix, and GA was
employed as a reconstruction technique. The PSNR obtained

by DCT, DWT, and OMP is compared to that obtained by
the proposed technique, and it is demonstrated that the new
framework outperforms the other methods.

4) MACHINE LEARNING AND DEEP LEARNING
Machine Learning (ML) approaches have demonstrated their
efficacy in classification, regression analysis, data mining,
natural language processing, computer vision, and other areas
in recent years. ML techniques are used in data estima-
tion and recovery jobs because of their data-driven nature.
To execute the needed task, ML models must be trained
with a sufficient amount of data. The usage of Artificial
Neural Networks (ANN) for data recovery was described
in [65]. Training and testing tasks are carried by using data
from a Wireless Sensor Network (WSN). ANN estimates the
original signal using the data samples provided at the input
side and altered weights of different layers. Increasing the
number of layers in an ANN reduces training error, but at the
cost of increased processing power. The performance of the
ANN-based recovery approach was compared to that of IHT
and OMP in another study [65]. While neural networks have
a faster reconstruction speed than IHT and OMP, their recon-
struction accuracy is inferior to that of high-performance con-
vex relaxation techniques, such as `1-norm recovery, which
outperforms other reconstruction techniques [24].Working in
the same domain yielded a more complex ANNwith a greater
number of hidden layers. The network is therefore known as
a Deep Neural Network (DNN), and many efforts are being
made to retrieve high resolution data from a small amount
of input [66]. Since the advent of AI applications, DL has
been used in a variety of applications including signal recon-
struction. In [65], an ANN is presented for reconstructing the
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original signal in the CS framework. In comparison to OMP
and IHT, the proposed ANN-based method has better recov-
ery performance and speed. The work done in [68] and [69]
proposed novel techniques for CS based symbol detection
and image reconstruction tasks. In this work, Convolutional
Autoencoders are deployed for both CS based sensing and
reconstruction. It pioneered the block-wise image sensing
and reconstruction task, which improved a system’s perfor-
mance by up to 0.8 dB PSNR. Similarly, Sparse Autoencoder
based CS framework is also deployed in [70] and has yielded
promising results.

In CS framework, the prudently designed sampling matrix
is able to assist in effective signal recovery task [29]. The pro-
posed work in [71], have used Autoencoder wherein encoder
and decoder are employed as sampling and reconstruction
network, respectively. The proposed network, known as the
Stacked Sparse Denoising Autoencoder Compressed Sensing
(SSDAECS)model, yielded better recovery performance and
speed. A similar setup has been proposed in [72] utilising a
flexible strategy reconstruction of an MR image. Adaptive
learning from training images is the foundation of the pro-
posed technique. When compared to modern reconstruction
algorithms, the experimental results demonstrated the effec-
tiveness of the obtained results.

The recently developedBSBL approach has shown promis-
ing results as compared with the widely used `1-norm mini-
mization technique. The work done in [19] illustrated the use
of BSBL for the reconstruction of speech signals. The deploy-
ment of Wavelet filtering is also checked to enhance the
quality of recovered signals, but BSBL has shown improved
reconstruction performance as shown in Figure 7.

V. OTHER APPLICATION AREAS OF COMPRESSIVE
SENSING
From communication system design to biological data gath-
ering systems, CS can be used in a variety of situations.
Because of power and bandwidth efficiency, data gathering
with a small number of samples is usually emphasised. The
following are some examples of CS applications in various
fields:

A. ANALOG TO DIGITAL CONVERSION
With the emergence of digital signal processing techniques
and technologies, analogue filtering and processing have
been put back by digital hardware. Analogue to digital con-
version is one of the most significant accomplishment due
to its interfacing ability between generated data and digital
hardware. As a result, for a digital system to process data,
it must be in a suitable format. In this context, Analog to Dig-
ital Conversion (ADC) plays an important role in the modern
digital age. ADC refers to a sampling and quantization-based
method. In a traditional ADC system, the Nyquist sampling
theorem is employed for signal sampling, however this is
superseded by CS [73]. The basic phases of demodulation,
filtering, and sampling are replaced by sparse signal transfor-
mation via a conversion matrix (9) and signal information

FIGURE 8. Analog to digital conversion.

to discrete sample conversion matrix (8). The operations of
ADC is depicted in Figure 8.
The following is the system equation based on the dia-

gram [73]:

X [m] =
N∑
i=1

αi

∞∫
−∞

ψi(τ )rq(τ )h(mM − τ )dτ. (15)

The system is known as Analog Information Conversion
(AIC), and it replaces traditional ADC with CS-based trans-
formation and sampling to reap the advantages of CS.

B. INTERNET OF THINGS AND WIRELESS SENSOR
NETWORKS
The capability of sparse and low rank approximation stimu-
lates a wide range of CS frameworks. Another use of CS is in
sensor networks, where the number of sensors can be reduced
in order to obtain higher-dimensional data from these sensors.
Information redundancy in linear measurements wastes a lot
of sensor resources and time in a lot of sensor networks. As a
result, adaptive sensing is utilised in mobile sensor networks
to save money by eliminating static sensing, which is capable
of performing reconstruction based on previously calculated
distributions. The [61] looked for novel techniques to sense
useful information content in the available data. This paper
looked at how a small number of mobile sensors could be
used to reconstruct original data samples in sensor networks.

IoT architectures benefit substantially from compressed
sensing. It helps low-power, low-bandwidth sensors that don’t
have local processing units. As a result, it uses fewer sensors.
Figure 11 depicts the outline of a traditional CS-based IoT.
WSNs used for data collection typically have limited com-
putational and power resources. Higher data rate sampling
and transmission are not only more expensive, but also more
susceptible to bit error. In the sameway, real-time CS applica-
tions in WSN are limited due to higher resources utilisation.
The algorithm of [75] facilitate to send large amount of data
in smaller chunks. Each block is treated as a distinct entity at
the receiver end, and CS is applied to each one. The original
signal reconstruction methods use the blocked samples.

The B2 samples converted from a B×B pixel image block
are transmitted in this work using the mathematical equation
below:

yi = φBxi, (16)
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FIGURE 9. Compressed sensing in health care [67].

FIGURE 10. First stage of non-linear samples reconstruction.

where φB is an Independent and Identically Distributed
(I.I.D) Gaussian matrix. Total φ is a diagonal matrix, where
φB are its diagonal entries.

On the receiver side, an initial solution was obtained using
MMSE-based linear estimation with autocorrelation. Non-
linear signal reconstruction is used in two stages to improve
reconstruction efficiency.

Stage 1: For further improvements, the first stage employs
a linearly reconstructed signal xi. The following procedure is
repeated five times as shown in Figure 10.
where POCS is a term that refers to a projection on a convex

set.
The Lapped transform is used in the block processing

mechanism because it is more computationally efficient than
the Wavelet transform. Gaussian noise is also eliminated
using hard thresholding.

Stage 2: In order to store a block at its position in a sec-
ond stage, a decimated Wavelet transform is used to capture
information of an overall image. The frame is then processed,
block-wise by using the lapped transform, which preserves
local information in the frame.

The above steps are applied to a variety of imaging appli-
cations, and in all scenarios, block-based CS is found to
outperform [75].

C. IMAGE AND VIDEO TRANSMISSION
The CS concepts are also used in the design of error cor-
rection modules in image and video transmission systems.
Deng et al. proposed a codec based on CS that improves
image error resilience [21]. The codec uses a multilevel 2D
Discrete Wavelet Transform (DWT) to make a non-sparse
image signal sparse. Because the coefficients of the low
frequency sub-band contain the most information, it allo-
cated more measurements to the coarser level. This scheme
improves error robustness at high packet loss rates without
relying on an explicit error resilience method, resulting in
better performance with less complexity than current JSCC
schemes. Single Pixel Multi Time (SPMT) and Multi Pixel
Single Time (MPST) imaging cameras are two types of tra-
ditional CMOS or CCD cameras. The majority of cameras
in use today are MPST, which necessitates additional power
and processing resources to do the operation. With the intro-
duction of compressive sensing, it has become increasingly
desired to rebuild the original signal from a small number
of meaningful samples in order to lower a process’s power
consumption. As a result, Rice University researchers created
an SPMT Single Pixel Camera (SPC) to enable it with the
inherent capabilities of CS [76].

SPC can also be used as a night vision camera when
operated in the infrared range. Besides sensing flexibility, the
practical advantages of SPC design stem from the fact that
photodiode quantum efficiency is higher than that of pixel
sensors in a typical CCD or CMOS array. As a result, the fill
factor of a DMD can reach up to 90%, whereas the fill factor
of a CCD/CMOS array is around 50%. Another advantage
to emphasise is that each CS measurement receives approxi-
mately N/2 times more photons than the average pixel sensor,
significantly reducing image distortion from dark noise and
read-out noise [76]. The overall procedure is depicted in
Figure 13.
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FIGURE 11. Internet of things [74].

FIGURE 12. Experimental setup for single pixel camera [76].

D. CS IN DATA ACQUISITION SYSTEMS
In resource-constrained applications, CS has a number of
features that make low-power signal transmission possible.
The research presented in [77] provided an overview of the
sensing, transmission, and recovery of the widely available
CS-based techniques for EEG signals. The shortcomings of
traditional EEG signal sampling and transmission mecha-
nisms are explained and compared to the CS-based tech-
niques.

As shown in Figure 9, signal acquisition and reconstruction
have a wide range of applications in healthcare, e-commerce,
smart homes, surveillance systems, and a variety of other
areas. By utilising an optimised set of statistical features,
a GA-based model based on the human behaviour and pat-
tern recognition is presented in [78]. Similarly, the use of
artificial intelligence (AI) in the analysis and prediction of
infrastructure damage has been discussed in [79]. This paper

gave an overview of ANN applications mainly for investigat-
ing the concrete structural stiffness. Recent developments on
signal acquisition and recovery applications have been bene-
ficially incorporated in several domains, including identifica-
tion [80], surveillance [81], information clustering [82], auto-
mobile industry [83], and mechanical design analysis [84].

The applications of pertaining to data collection and acqui-
sition have expanded in response to rising trends in intel-
ligent system design and analysis with he emergence of
AI. The data collected by smart sensors is processed to
train data-driven intelligent models, with the goal of enhanc-
ing data sampling for a reliable signal recovery process.
A similar concept has been applied in telemonitoring and
telemedicines to predict and recognise activities with the aid
of smart wearable sensor specifically trained for the pur-
pose [78]. As illustrated in Figure 9, this smart wearable sen-
sor has foundmany applications for remote health monitoring
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FIGURE 13. Single pixel camera.

systems in smart homes. It consists of power-efficient,
portable, and bandwidth-efficient sensors that require the
least amount of computation resources.

In [85], one of these designs is proposed, which uses depth
cameras and Hidden Markov Models (HMM) to monitor,
record, and recognise activities in smart home applications.
Depth cameras were also used as smart sensors for monitor-
ing and data acquisition tasks in the work described in [86].
In this paper, a life logging system is created by combining
several steps, including data collection, feature extraction,
HMM training, and deployment of trained models for health-
care applications.

VI. PERFORMANCE EVALUATION METRICS
To evaluate the performance of the system under consider-
ation, the signal recovery procedure employs a quantitative
measure of similarity between the original and recovered
samples. This section provides an overview of commonly
used performance evaluationmeasures in order to gain a basic
understanding of performance metrics.

In many signal processing and estimation applications,
the Mean Squared Error (MSE) is commonly employed as
a performance metric to quantify the degree of similarity
between signals. The mean squared sum of the differences
between real and measured data samples is known as the
MSE [87]. MSE can be written as

MSE(a, b) =
1
M

M∑
i=1

(a(i)− b(i))2. (17)

There is also another type of MSE which is called the Nor-
malized Mean Squared Error (NMSE) [88]. It is also used
in many signal estimation and recovery task for performance
evaluation of the reconstruction algorithms due to its error

normalization capabilities [89], [90], [91]. Mathematically it
can be written as:

NMSE(a, b) =

∑M
i=1 (a(i)− b(i))

2∑M
i=1 a(i)

2
. (18)

In many scenarios, the reconstruction performances of the
proposedmodels is evaluated on the basis ofMSE and Signal-
to-Noise Ratio (SNR) obtained by comparing original and
reconstructed signals. The mathematical formulation of SNR
is shown as

SNR(a, b) = 20× log10
||ai||2
||ai − bi||2

. (19)

In CS-based applications, the SNR is also utilised as a per-
formance parameter. Aside from that, the RMSE value of the
original and reconstructed signals is also utilised as a statistic.
RMSE between the original signal ’a’ and reconstructed
value ’b’ is

RMSE(a, b) =

√√√√ 1
M

M∑
i=1

(ai − bi)2. (20)

The squared terms in MSE cause many engineering applica-
tions to perceive it as the signal’s energy deviation metric.
When a similarity measure of perceptually important data
(such as speech and images) is to be assessed, MSE has failed
to act as an assessment tool. As a result, the SSIM index
is another qualitative measuring metric utilised in CS [87].
Because of its capacity to gather perceived changes in struc-
tural information, SSIM is utilised instead ofMSE and PSNR.
This qualifies it as a perception-based model.

Mathematically SSIM can be written as:

SSIM (a, b) =
(2µaµb + z1)(2σab + z2)

(µa2 + µb2 + z1)(σa2 + σb2 + z2)
(21)
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The mean values of signal a and b are µa and µb, respec-
tively, and the variances of a and b are σa2 and σb2 in (21). The
correlation between a and b is called σab. The two variables
z1 and z2 are used to stabilise the division with a weak
denominator in a similar way.

The analytical comparison of different performance eval-
uation metrics for a tabular, audio, visual, and other types of
datasets has been made and it is observed that the calculation
of SSIM involves complexity as compared to MSE, RMSE,
SNR, and PSNR, but it better suits the applications where CS
is applied for the sampling and reconstruction of unstructured
data, where perceptual information retrieval is more impor-
tant. Similarly, MSE, RMSE, SNR, and PSNR etc are simple
to implement and pose the numerical difference between
the original and reconstructed data samples. Therefore, these
performance measures can be used in applications where
sampling and reconstruction of structured data is involved.

VII. MAJOR TAKEAWAYS
In this work, we presented the innovations, challenges, and
future prospects of CS based signal sparsity, sampling, and
its reconstruction from the limited number of sampled data.
Based on the recent literature demonstrated in this paper,
the prime conclusions and takeaways of this work are listed
below.

• In signal sparsity, different transform bases are studied
for a variety of signals including 1-D audio signals,
visual images, and tabular data as well. It is shown
that DWT can be efficiently deployed for images sparse
transformation, while for 1-D signals, such as biomed-
ical signals and audio signals, DCT has been shown to
perform effectively. Moreover, training based transfor-
mation bases, e.g., K-SVD, demonstrates better perfor-
mance at the cost of higher training time. Therefore, the
deployment of readily available sparse transformation
bases can be used for fast operations for a specified kind
of datasets. Similarly, ksvd can be used for all datasets
to provide the refined and fixed number of sparse coef-
ficients, and perform better as compared to the readily
available transforms at the cost of more training data and
computation resources.

• Variety of approaches for signal subsampling are dis-
cussed in this paper, which includes random sampling
(Gaussian and Bernoulli matrices), deterministic sam-
pling (Hadamard and Toeplitz matrices), and data-driven
training based sampling (LBCS, GA-LBCS, and GA
trained matrices). The comparative analysis of the
previously deployed sampling techniques has demon-
strated significant improvements in sampling speed and
reconstruction accuracy with the deployment of learn-
ing based techniques i.e., GA-LBCS, LBCS, and GA.
However, the improvement is achieved at the cost of
more training data, training time, and high performance
hardware requirement. The graphical illustrations of
Figure 15 and 14 shows the analytical comparison

FIGURE 14. Sampling performance improvement by using learning based
compressive subsampling.

FIGURE 15. Performance attainment by GA based learning technique.

of customary sampling techniques and training based
mechanisms i.e., LBCS and GA.
In Figure 14, the main concern was to compare the
reconstruction performance of `1-norm minimization
technique when samples were provided by the widely
used random and deterministic sensing matrices as com-
pared to the matrix developed by training-based mech-
anisms. The higher SNR obtained from the samples
provided by learning-based techniques developedmatrix
demonstrates the performance improvement of these
techniques. Although, some random sensing matrices
such as Bernoulli random matrix, has also shown com-
parative results when compared with the developed tech-
nique, yet the computational requirements made offline
learning-based stand apart, at the cost of more training
data and time.
In continuation of the above mentioned work, Figure 15,
the SNR of the reconstructed signals are com-
pared, when samples were provided by the sens-
ing matrices developed by the data-driven offline
learning-based techniques i.e., GA Based Technique,
Learning Based Compressive Subsampling (LBCS),
and the GA based Learning Compressing Subsampling
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FIGURE 16. Improved CS setup by using deep Autoencoders [92].

(GA-LBCS). In this figure, the first group of bars
demonstrate the SNR of the reconstructed signals with
respect to the original signal, when L1-norm mini-
mization technique is deployed for the reconstruction
purposes. The ell1-norm minimization belongs to the
class of convex relaxation algorithms, which exhibits
better reconstruction performance at the cost of recon-
struction speed [40]. Similarly, the second group of
bars is for greedy reconstruction algorithm which is the
Orthogonal Matching Pursuit (OMP). The use of OMP
is preferred where reconstruction speed is crucial as
compared to the reconstruction accuracy. In this figure,
different learning-based sensing matrix design methods
are compared due to their enhanced performance in
facilitating signal reconstruction algorithms for recon-
structing original signal.

• The availability of efficient signal reconstruction tech-
nique can enhance the performance of CS frameworks.
Therefore, we discussed and analyzed the performances
of conventionally used reconstruction methods avail-
able in CS based literature. We studied the accu-
racy and speed improvements achieved by deploying
`1-norm minimization, OMP, Bayesian method, linear
reconstruction, Machine Learning methods, and Deep
Autoencoders for the variety of signals. It is concluded
that the utilization of Deep Autoencoders tends to
enhance the quality of a signal when reconstructed from
the limited number of samples. The simulation results
shown in the form of Figure 16 demonstrates the perfor-
mance enhancement by deploying Deep Autoencoders.

• In this paper, we also reviewed some applica-
tions of CS in variety of fields which include data
acquisition systems, multimedia communication, health
sector, telecommunication, speech processing, and IoTs

etc. These fields are prone to resources scarcity with the
exponential rise in digital data. While the deployment of
CS has resolved many issues, still it has the tendency
in performance improvement with the application of
sophisticated sampling and reconstruction techniques,
which are suggested as a future work in each field of
applications.

VIII. CONCLUSION
A thorough background understanding of CS frameworks is
demonstrated by going through the literature work done in the
field. This work is made up of a comprehensive review of the
literature on all of the processing blocks and mathematical
operations that gave useful understanding of the area for
grasping advanced concepts and technicalities of compressive
sensing. The work given in this paper aims to encourage
the development of novel strategies for efficient signal sam-
pling and recovery in sparse basis. The inherent benefits of
sparse signal modification for sampling and reconstruction
contribute to the range of potential applications of CS, which
is evident in its deployment for a wide range of application
areas. In order to accomplish this, a set of the most widely
used sampling matrices and reconstruction algorithms are
investigated and analysed in terms of reconstruction accuracy
and speed, and then used as baseline approaches. The major-
ity of the existing CS literature is devoted with the devel-
opment of faithful signal reconstruction algorithms. These
efforts culminate in the development of technologies for sig-
nal recovery that are more power-consuming and computa-
tionally infeasible. As a result, this study also examined the
deployment of data-driven, learning-based methods for their
use in addressing the challenges connected with traditional
CS frameworks.

VOLUME 10, 2022 85015



I. Ahmed et al.: Sparse Signal Representation, Sampling, and Recovery in CS Frameworks

REFERENCES
[1] E. J. Candès andM. B.Wakin, ‘‘An introduction to compressive sampling,’’

IEEE Signal Process. Mag., vol. 25, no. 2, pp. 21–30, Mar. 2008.
[2] A. C. Gilbert, P. Indyk, M. Iwen, and L. Schmidt, ‘‘Recent developments

in the sparse Fourier transform: A compressed Fourier transform for big
data,’’ IEEE Signal Process. Mag., vol. 31, no. 5, pp. 91–100, Sep. 2014.

[3] L. Stankovic and M. Brajovic, ‘‘Analysis of the reconstruction of sparse
signals in the DCT domain applied to audio signals,’’ IEEE/ACM
Trans. Audio, Speech, Language Process., vol. 26, no. 7, pp. 1220–1235,
Jul. 2018.

[4] A. Gupta and K. R. Rao, ‘‘A fast recursive algorithm for the discrete sine
transform,’’ IEEE Trans. Acoust., Speech Signal Process., vol. 38, no. 3,
pp. 553–557, Mar. 1990.

[5] R. Scheibler, S. Haghighatshoar, and M. Vetterli, ‘‘A fast Hadamard trans-
form for signals with sublinear sparsity in the transform domain,’’ IEEE
Trans. Inf. Theory, vol. 61, no. 4, pp. 2115–2132, Apr. 2015.

[6] M. E. Davies and L. Daudet, ‘‘Sparse audio representations using the
MCLT,’’ Signal Process., vol. 86, no. 3, pp. 457–470, Mar. 2006.

[7] M. Shensa, ‘‘The discrete wavelet transform: Wedding the a trous
and Mallat algorithms,’’ IEEE Trans. Signal Process., vol. 40, no. 10,
pp. 2464–2482, Oct. 1992.

[8] R. Moreno-Alvarado and M. Martinez-Garcia, ‘‘DCT-compressive sam-
pling of frequency-sparse audio signals,’’ in Proc. World Congr. Eng.,
vol. 2, 2011, pp. 6–8.

[9] C.-Y. Pang, R.-G. Zhou, B.-Q. Hu, W. Hu, and A. El-Rafei, ‘‘Signal and
image compression using quantum discrete cosine transform,’’ Inf. Sci.,
vol. 473, pp. 121–141, Jan. 2019.

[10] A. V. Oppenheim and R. W. Schafer, ‘‘Digital signal processing,’’ in
Research Supported by the Massachusetts Institute of Technology (Bell
Telephone Laboratories, and Guggenheim Foundation). Englewood Cliffs,
NJ, USA: Prentice-Hall, 1975, p. 598.

[11] J.-L. Starck, F. Murtagh, and J. M. Fadili, Sparse Image and Signal Pro-
cessing: Wavelets, Curvelets, Morphological Diversity. Cambridge, U.K.:
Cambridge Univ. Press, 2010.

[12] R. Rubinstein, A. M. Bruckstein, and M. Elad, ‘‘Dictionaries for sparse
representation modeling,’’ Proc. IEEE, vol. 98, no. 6, pp. 1045–1057,
Jun. 2010.

[13] B. M. Mahmmod, S. H. Abdulhussain, T. Suk, and A. Hussain, ‘‘Fast
computation of Hahn polynomials for high order moments,’’ IEEE Access,
vol. 10, pp. 48719–48732, 2022.

[14] K. A. Al-Utaibi, S. H. Abdulhussain, B. M. Mahmmod, M. A. Naser,
M. Alsabah, and S. M. Sait, ‘‘Reliable recurrence algorithm for high-order
Krawtchouk polynomials,’’ Entropy, vol. 23, no. 9, p. 1162, Sep. 2021.

[15] A. Daoui,M. Yamni, O. El Ogri, H. Karmouni,M. Sayyouri, andH. Qjidaa,
‘‘Stable computation of higher order charlier moments for signal and image
reconstruction,’’ Inf. Sci., vol. 521, pp. 251–276, Jun. 2020.

[16] A. J. Durán, ‘‘Exceptional meixner and Laguerre orthogonal polynomials,’’
J. Approximation Theory, vol. 184, pp. 176–208, Aug. 2014.

[17] N. A. Abu, S. Lang Wong, N. S. Herman, and R. Mukundan, ‘‘An efficient
compact tchebichef moment for image compression,’’ in Proc. 10th Int.
Conf. Inf. Sci., Signal Process. Appl. (ISSPA), May 2010, pp. 448–451.

[18] Z. N. Idan, S. H. Abdulhussain, and S. A. R. Al-Haddad, ‘‘A new separable
moments based on tchebichef-krawtchouk polynomials,’’ IEEE Access,
vol. 8, pp. 41013–41025, 2020.

[19] I. Ahmed, A. Khan, N. Ahmad, and H. Ali, ‘‘Speech signal recovery using
block sparse Bayesian learning,’’ Arabian J. Sci. Eng., vol. 45, no. 3,
pp. 1567–1579, Mar. 2020.

[20] Z. Zhang, S. Wei, D. Wei, L. Li, F. Liu, and C. Liu, ‘‘Comparison of four
recovery algorithms used in compressed sensing for ECG signal process-
ing,’’ in Proc. Comput. Cardiol. Conf. (CinC), Sep. 2016, pp. 11–14.

[21] C. Deng, W. Lin, B.-S. Lee, and C. T. Lau, ‘‘Robust image compression
based on compressive sensing,’’ in Proc. IEEE Int. Conf. Multimedia Expo,
Jul. 2010, pp. 462–467.

[22] A. Zaeemzadeh, M. Joneidi, and N. Rahnavard, ‘‘Adaptive non-uniform
compressive sampling for time-varying signals,’’ 2017, arXiv:1703.03340.

[23] E. J. Candès, ‘‘The restricted isometry property and its implications
for compressed sensing,’’ Comp. Rendus Math., vol. 346, nos. 9–10,
pp. 589–592, Feb. 2008.

[24] Y. Arjoune, N. Kaabouch, H. El Ghazi, and A. Tamtaoui, ‘‘Compressive
sensing: Performance comparison of sparse recovery algorithms,’’ in Proc.
IEEE 7th Annu. Comput. Commun. Workshop Conf. (CCWC), Jan. 2017,
pp. 1–7.

[25] K. Luo, Z. Wang, J. Li, R. Yanakieva, and A. Cuschieri, ‘‘Information-
enhanced sparse binary matrix in compressed sensing for ECG,’’ Electron.
Lett., vol. 50, no. 18, pp. 1271–1273, 2014.

[26] M. Yin, K. Yu, and Z. Wang, ‘‘Compressive sensing based sampling and
reconstruction for wireless sensor array network,’’ Math. Problems Eng.,
vol. 2016, Sep. 2016, Art. no. 9641608.

[27] Z. Wei, J. Zhang, Z. Xu, Y. Liu, and K. Okarma, ‘‘Measurement
matrix optimization via mutual coherence minimization for compressively
sensed signals reconstruction,’’Math. Problems Eng., vol. 2020, pp. 1–18,
Sep. 2020.

[28] X. Tang, S. Wu, R. Dong, and G. Xia, ‘‘Application of compressed sensing
theory in the sampling and reconstruction of speech signals,’’ in Proc. 2nd
Int. Forum Manage., Educ. Inf. Technol. Appl. (IFMEITA), 2018.

[29] I. Ahmed, A. Khan, A. Khan, K. Mujahid, and N. Khan, ‘‘Efficient
measurement matrix for speech compressive sampling,’’Multimedia Tools
Appl., vol. 80, no. 13, pp. 20327–20343, May 2021.

[30] S. Bala and M. Arif, ‘‘Effect of sparsity on speech compressed sensing,’’
in Proc. Int. Conf. Signal Process., Comput. Control (ISPCC), Sep. 2015,
pp. 81–86.

[31] V. Zue, S. Seneff, and J. Glass, ‘‘Speech database development at MIT:
Timit and beyond,’’ Speech Commun., vol. 9, no. 4, pp. 351–356, 1990.

[32] I. Ahmed, H. Ali, N. Ahmad, and G. Ahmad, ‘‘The development of isolated
words corpus of pashto for the automatic speech recognition research,’’ in
Proc. Int. Conf. Robot. Artif. Intell., Oct. 2012, pp. 139–143.

[33] H. Ali, N. Ahmad, and A. Hafeez, ‘‘Urdu speech corpus and preliminary
results on speech recognition,’’ in Proc. Int. Conf. Eng. Appl. Neural Netw.
Springer, 2016, pp. 317–325.

[34] T. L. N. Nguyen and Y. Shin, ‘‘Deterministic sensing matrices in
compressive sensing: A survey,’’ Sci. World J., vol. 2013, Nov. 2013,
Art. no. 192795.

[35] R. Baraniuk, ‘‘An introduction to compressive sensing,’’ in Connexions
e-Textbook. 2011, pp. 24–76.

[36] M. Parchami, H. Amindavar, and W. Zhu, ‘‘Learning-based design of
random measurement matrix for compressed sensing with inter-column
correlation using copula function,’’ IET Signal Process., vol. 14, no. 6,
pp. 385–395, 2020.

[37] L. Baldassarre, Y.-H. Li, J. Scarlett, B. Gozcu, I. Bogunovic, andV. Cevher,
‘‘Learning-based compressive subsampling,’’ IEEE J. Sel. Topics Signal
Process., vol. 10, no. 4, pp. 809–822, Jun. 2016.

[38] R. K.Mahabadi, C. Aprile, and V. Cevher, ‘‘Real-time DCT learning-based
reconstruction of neural signals,’’ in Proc. 26th Eur. Signal Process. Conf.
(EUSIPCO), Sep. 2018, pp. 1925–1929.

[39] T. Hong, X. Li, Z. Zhu, and Q. Li, ‘‘Optimized structured sparse sensing
matrices for compressive sensing,’’ Signal Process., vol. 159, pp. 119–129,
Jun. 2019.

[40] I. Ahmed andA. Khan, ‘‘Genetic algorithm based framework for optimized
sensing matrix design in compressed sensing,’’Multimedia Tools Appl., to
be published.

[41] A. Mirrashid and A. A. Beheshti, ‘‘Compressed remote sensing by using
deep learning,’’ in Proc. 9th Int. Symp. Telecommun. (IST), Dec. 2018,
pp. 549–552.

[42] S. S. Chen, D. L. Donoho, and M. A. Saunders, ‘‘Atomic decomposition
by basis pursuit,’’ SIAM Rev., vol. 43, no. 1, pp. 129–159, 2001.

[43] J. A. Tropp and A. C. Gilbert, ‘‘Signal recovery from random measure-
ments via orthogonal matching pursuit,’’ IEEE Trans. Inf. Theory, vol. 53,
no. 12, pp. 4655–4666, Dec. 2007.

[44] Y. Wang, J. Yang, W. Yin, and Y. Zhang, ‘‘A new alternating minimization
algorithm for total variation image reconstruction,’’ SIAM J. Imag. Sci.,
vol. 1, no. 3, pp. 248–272, 2008.

[45] D. Needell and J. Tropp, ‘‘CoSaMP: Iterative signal recovery from incom-
plete and inaccurate samples,’’ Appl. Comput. Harmon. Anal., vol. 26,
no. 3, pp. 301–321, Jul. 2009.

[46] T. Blumensath and M. E. Davies, ‘‘Iterative hard thresholding for
compressed sensing,’’ Appl. Comput. Harmon. Anal., vol. 27, no. 3,
pp. 265–274, Nov. 2009.

[47] R. Tibshirani, ‘‘Regression shrinkage and selection via the lasso,’’ J. Roy.
Stat. Soc., B (Methodol.), vol. 58, no. 1, pp. 267–288, Jan. 1996.

[48] H. Haider, J. A. Shah, and U. Ali, ‘‘Comparative analysis of sparse signal
recovery algorithms based on minimization norms,’’ in Proc. World Congr.
Sustain. Technol. (WCST), Dec. 2014, pp. 72–76.

[49] Y. Arjoune, N. Kaabouch, H. El Ghazi, and A. Tamtaoui, ‘‘A performance
comparison ofmeasurementmatrices in compressive sensing,’’ Int. J. Com-
mun. Syst., vol. 31, no. 10, Jul. 2018, e3576.

85016 VOLUME 10, 2022



I. Ahmed et al.: Sparse Signal Representation, Sampling, and Recovery in CS Frameworks

[50] U. Dias and M. E. Rane, ‘‘Comparative analysis of sensing matrices for
compressed sensed thermal images,’’ in Proc. Int. Mutli-Conf. Autom.,
Comput., Commun., Control Compressed Sens. (iMac4s), Mar. 2013,
pp. 265–270.

[51] S. Salan and K. B. Muralidharan, ‘‘Image reconstruction based on com-
pressive sensing using optimized sensing matrix,’’ in Proc. Int. Conf. Intell.
Comput., Instrum. Control Technol. (ICICICT), Jul. 2017, pp. 252–256.

[52] P. V. Pearlsy and D. Sankar, ‘‘Implementation of compressive sensing for
speech signals,’’ in Proc. 8th Int. Symp. Embedded Comput. Syst. Design
(ISED), Dec. 2018, pp. 162–166.

[53] H. Shen, ‘‘Compressed sensing on terahertz imaging,’’ Ph.D. thesis, 2012.
[54] Z. Zhang and B. D. Rao, ‘‘Extension of SBL algorithms for the recovery

of block sparse signals with intra-block correlation,’’ IEEE Trans. Signal
Process., vol. 61, no. 8, pp. 2009–2015, Apr. 2013.

[55] M. A. Qureshi and M. Deriche, ‘‘A new wavelet based efficient image
compression algorithm using compressive sensing,’’ Multimedia Tools
Appl., vol. 75, no. 12, pp. 6737–6754, Jun. 2016.

[56] Z. Zhang, T.-P. Jung, S. Makeig, and B. D. Rao, ‘‘Compressed sensing of
EEG for wireless telemonitoring with low energy consumption and inex-
pensive hardware,’’ IEEE Trans. Biomed. Eng., vol. 60, no. 1, pp. 221–224,
Jan. 2013.

[57] H. Mahrous and R. Ward, ‘‘Block sparse compressed sensing of electroen-
cephalogram (EEG) signals by exploiting linear and non-linear dependen-
cies,’’ Sensors, vol. 16, no. 2, p. 201, Feb. 2016.

[58] A. Ojeda, K. Kreutz-Delgado, and T. Mullen, ‘‘Fast and robust block-
sparse Bayesian learning for EEG source imaging,’’ NeuroImage, vol. 174,
pp. 449–462, Jul. 2018.

[59] J. Sun, Y. Yu, and J. Wen, ‘‘Compressed-sensing reconstruction based on
block sparse Bayesian learning in bearing-condition monitoring,’’ Sensors,
vol. 17, no. 6, p. 1454, Jun. 2017.

[60] C.-S. Lu and H.-W. Chen, ‘‘Compressive image sensing for fast recovery
from limited samples: A variation on compressive sensing,’’ Inf. Sci.,
vol. 325, pp. 33–47, Dec. 2015.

[61] S. Huang and J. Tan, ‘‘Adaptive sampling using mobile robotic sensors,’’ in
Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., Sep. 2011, pp. 1668–1673.

[62] M. H. Conde andO. Loffeld, ‘‘A genetic algorithm for compressive sensing
sparse recovery,’’ in Proc. IEEE Int. Symp. Signal Process. Inf. Technol.
(ISSPIT), Dec. 2017, pp. 106–111.

[63] Z. Lin, ‘‘Image adaptive recovery based on compressive sensing and
genetic algorithm,’’ in Proc. IEEE Int. Conf. Comput. Sci. Automat. Eng.
(CSAE), vol. 2, May 2012, pp. 346–349.

[64] J. Ma and G. Plonka, ‘‘The curvelet transform,’’ IEEE Signal Process.
Mag., vol. 27, no. 2, pp. 118–133, Mar. 2010.

[65] L. Tian, G. Li, and C. Wang, ‘‘A data reconstruction algorithm based on
neural network for compressed sensing,’’ in Proc. 5th Int. Conf. Adv. Cloud
Big Data (CBD), Aug. 2017, pp. 291–295.

[66] M. Iliadis, L. Spinoulas, and A. K. Katsaggelos, ‘‘Deep fully-connected
networks for video compressive sensing,’’ Digit. Signal Process., vol. 72,
pp. 9–18, Jan. 2018.

[67] UCLA Technology Development Group. (2018). Scalable Parameter-
ized VLSI Architecture for Compressive Sensing Sparse Approxima-
tion. Accessed: Sep. 18, 2018. [Online]. Available: https://techtransfer.
universityofcalifornia.edu/NCD/24229.html

[68] J.-H. Park and Y. Kim, ‘‘Convolutional autoencoder for compressive sym-
bol detection,’’ in Proc. Int. Conf. Inf. Commun. Technol. Converg. (ICTC),
Oct. 2018, pp. 986–988.

[69] H. Wu, Z. Zheng, Y. Li, W. Dai, and H. Xiong, ‘‘Compressed sensing via
a deep convolutional auto-encoder,’’ in Proc. IEEE Vis. Commun. Image
Process. (VCIP), Dec. 2018, pp. 1–4.

[70] P. Shi, X. Guo, D. Han, and R. Fu, ‘‘A sparse auto-encoder method based
on compressed sensing and wavelet packet energy entropy for rolling
bearing intelligent fault diagnosis,’’ J. Mech. Sci. Technol., vol. 34, no. 4,
pp. 1445–1458, 2020.

[71] Z. Zhang, Y. Wu, C. Gan, and Q. Zhu, ‘‘The optimally designed autoen-
coder network for compressed sensing,’’ EURASIP J. Image Video Pro-
cess., vol. 2019, no. 1, pp. 1–12, Dec. 2019.

[72] A. Majumdar, ‘‘An autoencoder based formulation for compressed sensing
reconstruction,’’Magn. Reson. Imag., vol. 52, pp. 62–68, Oct. 2018.

[73] J. N. Laska, S. Kirolos, M. F. Duarte, T. S. Ragheb, R. G. Baraniuk, and
Y. Massoud, ‘‘Theory and implementation of an analog-to-information
converter using random demodulation,’’ in Proc. IEEE Int. Symp. Circuits
Syst., May 2007, pp. 1959–1962.

[74] H. Djelouat, A. Amira, and F. Bensaali, ‘‘Compressive sensing-based IoT
applications: A review,’’ J. Sensor Actuator Netw., vol. 7, no. 4, p. 45,
Oct. 2018.

[75] L. Gan, ‘‘Block compressed sensing of natural images,’’ in Proc. 15th Int.
Conf. Digit. Signal Process., Jul. 2007, pp. 403–406.

[76] M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly,
and R. G. Baraniuk, ‘‘Single-pixel imaging via compressive sampling,’’
IEEE Signal Process. Mag., vol. 25, no. 2, pp. 83–91, Mar. 2008.

[77] T. B.-F. Dharmendra Gurve, D. Delisle-Rodriguez, and S. Krishnan,
‘‘Trends in compressive sensing for EEG signal processing applications,’’
Sensors, vol. 20, no. 13, p. 3703, 2020.

[78] M. A. K. Quaid and A. Jalal, ‘‘Wearable sensors based human behav-
ioral pattern recognition using statistical features and reweighted genetic
algorithm,’’ Multimedia Tools Appl., vol. 79, nos. 9–10, pp. 6061–6083,
Mar. 2020.

[79] S. Manouchehr and T. TavakoliKian, ‘‘A review on the artificial neural
network approach to analysis and prediction of seismic damage in infras-
tructure,’’ Int. J. Hydromechtron., vol. 2, no. 4, pp. 178–196, Aug. 2019.

[80] S. Susan, P. Agrawal, M. Mittal, and S. Bansal, ‘‘New shape descriptor in
the context of edge continuity,’’ CAAI Trans. Intell. Technol., vol. 4, no. 2,
pp. 101–109, Jun. 2019.

[81] Y. Tingting, W. Junqian, W. Lintai, and X. Yong, ‘‘Three-stage network for
age estimation,’’ CAAI Trans. Intell. Technol., vol. 4, no. 2, pp. 122–126,
2019.

[82] C. Zhu and D. Miao, ‘‘Influence of kernel clustering on an RBFN,’’ CAAI
Trans. Intell. Technol., vol. 4, no. 4, pp. 255–260, Dec. 2019.

[83] T. Wiens, ‘‘Engine speed reduction for hydraulic machinery using predic-
tive algorithms,’’ Int. J. Hydromechtron., vol. 2, no. 1, pp. 16–31, 2019.

[84] S. Osterland and J. Weber, ‘‘Analytical analysis of single-stage pressure
relief valves,’’ Int. J. Hydromechtron., vol. 2, no. 1, pp. 32–53, 2019.

[85] K. Kim, A. Jalal, and M. Mahmood, ‘‘Vision-based human activity recog-
nition system using depth silhouettes: A smart home system for monitoring
the residents,’’ J. Electr. Eng. Technol., vol. 14, no. 6, pp. 2567–2573,
Nov. 2019.

[86] A. Jalal, J. T. Kim, and T.-S. Kim, ‘‘Development of a life logging system
via depth imaging-based human activity recognition for smart homes,’’ in
Proc. Int. Symp. Sustain. Healthy Buildings, Seoul, South Korea, vol. 19,
2012.

[87] Z. Wang and A. C. Bovik, ‘‘Mean squared error: Love it or leave it? A new
look at signal fidelitymeasures,’’ IEEE Signal Process.Mag., vol. 26, no. 1,
pp. 98–117, Jan. 2009.

[88] A. A. Poli and M. C. Cirillo, ‘‘On the use of the normalized mean square
error in evaluating dispersion model performance,’’ Atmos. Environ., A,
General Topics, vol. 27, no. 15, pp. 2427–2434, Oct. 1993.

[89] P. N. Jayanthi and S. Ravishankar, ‘‘Sparse channel estimation for MIMO-
OFDM systems using compressed sensing,’’ in Proc. IEEE Int. Conf.
Recent Trends Electron., Inf. Commun. Technol. (RTEICT), May 2016,
pp. 1060–1064.

[90] J. Pęksiński and G. Mikołajczak, ‘‘The synchronization of the images
based on normalized mean square error algorithm,’’ in Advances in Mul-
timedia and Network Information System Technologies. Springer, 2010,
pp. 15–25.

[91] S. Aviyente, ‘‘Compressed sensing framework for EEG compression,’’
in Proc. IEEE/SP 14th Workshop Stat. Signal Process., Aug. 2007,
pp. 181–184.

[92] Z. Zhang, Y. Wu, C. Gan, and Q. Zhu, ‘‘The optimally designed autoen-
coder network for compressed sensing,’’ EURASIP J. Image Video Pro-
cess., vol. 2019, no. 1, pp. 1–12, Dec. 2019.

IRFAN AHMED received the B.Sc. and M.Sc.
degrees in electrical engineering and the Ph.D.
degree in computer systems engineering from
the University of Engineering & Technology
Peshawar. He is currently employed as a full-time
Lecturer with the Department of Electrical Engi-
neering, University of Engineering and Technol-
ogy Peshawar, Jalozai Campus, Pakistan. During
this time, he developed a deep interest in signal and
image processing research. His research interests

include the application of deep learning, machine learning, and data science
to super resolution reconstruction.

VOLUME 10, 2022 85017



I. Ahmed et al.: Sparse Signal Representation, Sampling, and Recovery in CS Frameworks

AMAAD KHALIL received the B.Sc., M.Sc.,
and Ph.D. degrees in computer engineering from
the University of Engineering and Technology
Peshawar, Peshawar, Pakistan, in 2010 and 2013,
respectively. He is currently working as a Lec-
turer with the Department of Computer Sys-
tems Engineering, University of Engineering
and Technology Peshawar. His research inter-
ests include embedded systems, error correction
codes, and low-bit-rate video coding for wireless
communications.

ISHTIAQUE AHMED received the B.Sc. degree
in electrical engineering with specialization in
telecommunication from COMSATS University
Islamabad, Pakistan, in 2018. He is currently
working as a Research Assistant with the National
Center of Big Data and Cloud Computing, Uni-
versity of Engineering and Technology Peshawar
(NCBC-UETP), Pakistan. His research interests
include wireless communications, channel coding,
low-bit-rate video encoding, multimedia stream-

ing, distributed generation, and smart grids management and privacy.

JAROSLAV FRNDA (Senior Member, IEEE)
was born in Slovakia, in 1989. He received the
M.Sc. and Ph.D. degrees from the Department
of Telecommunications, VSB–Technical Univer-
sity of Ostrava, in 2013 and 2018, respectively.
He currently works as an Assistant Professor at
the University of Žilina, Slovakia. He has authored
or coauthored 12 SCI-E and nine ESCI papers
in WoS. His research interests include quality of
multimedia services in IP networks, data analysis,

and machine learning algorithms.

85018 VOLUME 10, 2022


