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SUPPLEMENTARY NOTE 1: ADDITIONAL EXPERIMENTAL DETAILS, PIEZOELECTRIC
CHARACTERIZATION

A. PFM testing of the longitudinal piezoelectric coefficient in La:HfO2 capacitors

The PFM amplitude signal, A, is proportional to the longitudinal piezoelectric coefficient, d33,eff , as:

A = d33,effV0Q (1)

where V0 is the driving ac voltage amplitude and Q is the quality factor associated with the cantilever dynamics at
resonance [1]. The calibration procedure used to evaluate the quality factor and to quantify d33,eff is described in
section C.

The PFM phase signal, on the other hand, is related to the sign of the piezoelectric coefficient. PFM measures the
sample contraction or expansion via the converse piezoelectric effect, where the strain developed in the out-of-plane
direction, η3, due to the applied electric field in this direction, E3, is given by Eq. 2:

η3 = d33E3 (2)

d33 = 2ε0εrQ33Ps (3)

where ε0 and εr are vacuum permitivity and the relative permitivity of the sample, Q33 is the electrostriction coefficient
and Ps is the spontaneous polarization [2]. As illustrated In Supplementary Figure 1, in a material with a positive
d33,eff , such as PZT [3], the sample will expand (contract) when the applied field and the polarization are in the
same (opposite) direction. In PFM, a small ac driving voltage is used to probe the sample expansion and contraction
using the lock-in amplifier technique. For a material with positive d33, when the polarization is oriented downward,
the sample will expand during the positive half-cycle and contract during the negative half-cycle, thus the sample
deformation and the driving ac signal are in phase (top panel in Supplementary Figure 1(a)), while for the upward
polarization, there is an 180◦ phase difference between the driving ac and the sample deformation (bottom panel
in Supplementary Figure 1(a)). This scenario was observed in the PZT capacitors (Figure 2(a) in the main text).
Following a similar argument, the phase signal will be opposite in a material with a negative d33,eff –the sample
oscillations and the driving field will be in-phase when the polarization is oriented upward and 180◦ out of phase
for the downward polarization (Supplementary Figure 1 (b))–. This scenario is relevant to the PFM phase signal
measured in the PVDF film, a well-known negative piezoelectric material [4, 5] (Figure 2(b) in the main text). Under
the same measurement conditions, a similar PFM phase signal behavior was observed in the 20-nm-thick La:HfO2

capacitors (Figure 2(c) in the main text), from which it can be inferred that the sign of the d33,eff is negative. This
behavior was reproducibly observed in multiple capacitors while using different types of cantilevers.

B. Identification of the phase offset and determining the correct PFM phase

During the PFM hysteresis measurement, there could be an uncontrollable instrument-related parasitic phase offset
contributing to the measured PFM phase signal, which is typically constant for the same AFM tip and measurement
parameters. To identify this phase offset and find out the actual PFM phase related to the piezoelectric deformation
of the sample, we have adopted two different approaches: the first one uses a reference sample with a known d33 value,
while the second approach uses the electrostatic signal from the differential signal between the bias-on and bias-off
PFM loops.
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In the first approach, a reference sample, a PZT capacitor, is used to obtain the PFM hysteresis loop in the bias-off
mode. In general, a measured raw piezoresponse (PR) signal can be represented as

PR = cos(ϕ−∆ϕ) (4)

where A and ϕ are the amplitude and phase signals due to the genuine piezoelectric response, respectively, and ∆ϕ
is a parasitic phase offset. For PZT, which has a positive d33 coefficient, the PR signal is in phase with the ac
modulation signal for the downward polarization (or out of phase for the upward polarization), so that ϕ should be
equal to zero at the far positive dc bias of the PFM hysteresis loop corresponding to the downward polarization. The
parasitic phase offset ∆ϕ can be found from the actually measured PFM phase signal ϕ−∆ϕ and then deduced from
all subsequent measurements carried out with the same AFM tip and the same measurement parameters.

In the second approach, PFM hysteresis loops in the bias-on (measured when dc bias is present) and bias-off
(measured when dc bias is not present) regimes are measured simultaneously for the sample under investigation.
Typically, the AFM cantilever arm is held outside of the top electrode during the measurement, a strong electrostatic
interaction between the cantilever arm and the sample will be contributing to the bias-on PFM loop, where the raw
piezoresponse bias-on signal (PRon) is a sum of the bias-off PR signal (PRoff) and the electrostatic signal, i.e.,

PRon = PRoff +
1

k

dC

dz
VdcV0 = Aon cos(ϕon −∆ϕ) (5)

where k is the AFM cantilever spring constant, dC/dz the cantilever-sample capacitance gradient, Vdc the dc voltage,
and V0 the ac amplitude. The term that has a linear dependence on Vdc is due to the electrostatic interaction when
dc voltage is on, which gives rise to a negative slope versus Vdc due to the negative sign of dC/dz. The ∆ϕ is chosen
to satisfy either ϕon − ∆ϕ = 0, or ϕon − ∆ϕ = 180◦ on the far negative Vdc side of the hysteresis loop, whichever
gives a negative slope for the differential signal (PRon − PRoff), i.e., take the phase offset to be the bias-on phase
at the far negative Vdc side, and use Eqs. 4 and 5 to calculate the PRon and PRoff signal. If the differential signal
(PRon − PRoff) results in a negative slope, this would be the correct phase offset. Otherwise, take ϕon −∆ϕ = 180◦

(use the bias-on phase at the far negative Vdc side), which would then introduce a negative sign for the (PRon−PRoff)
signal. This phase offset ∆ϕ is then subtracted from the raw PFM phase to obtain the actual PFM phase signal.

Supplementary Figure 2 shows an example of the bias-on (Supplementary Figure 2(a)) and bias-off (Supplementary
Figure 2(b)) PFM hysteresis loops obtained on the 20-nm La:HfO2 capacitors. The raw PR signal is then calculated
and shown in Supplementary Figure 2(c), together with the differential signal (PRon − PRoff) that has a linear
dependence versus Vdc with a negative slope. Removal of a linear slope to the bias-on signal usually leads to the PFM
loops very similar to those obtained in the bias-off regime (Supplementary Figure 2(d)).

Both of the two approaches to figure out the correct PFM phase worked well and gave consistent results during our
measurements.

C. Calibration procedure for evaluation of the piezoelectric coefficient

The PFM amplitude signal is proportional to the d33,eff (Eq. 1). An order of magnitude estimate of the d33,eff

for an unknown material can be obtained by comparing the PFM amplitude of the unknown material with that of a
reference material [6]. Here, we use the PZT capacitor as a reference sample to calibrate the piezoelectric coefficient of
La:HfO2 in the quasi-static regime, i.e. at a frequency much lower than that used in the dynamic PFM measurements.
First, the quasi-static strain loops were measured in the IrO2/PZT/Pt capacitors by monitoring the deflection signal
of the AFM cantilever during application of a triangular voltage sweep at 1 Hz (Supplementary Figure 3(a)). The
deflection signal was then converted to the actual displacement of the cantilever through calibration of the optical
lever sensitivity using the force-distance curves. From the slope of the quasi-static strain loops, the d33,eff for the
IrO2/PZT/Pt capacitor was calculated to be 48 pm V−1, which agrees well with values reported in literature [7]. This
value is then used to obtain the quality factor of the cantilever using Eq. 1. This allowed us to obtain the calibrated
piezoresponse PR loops or the d33,eff -voltage loops for the IrO2/PZT/Pt capacitors (Supplementary Figure 3(b)).
The same cantilever was then used to measure the PFM hysteresis loops in the TiN/La:HfO2/TiN capacitors. The
d33,eff is calculated from Eq. 1 using the obtained quality factor for the specific AFM tip. The obtained d33,eff value
of 2−5 pm V−1 in the TiN/La:HfO2/TiN capacitors (Supplementary Figure 3(c)) matches the reported d33,eff values
obtained by means of the interferometric techniques [8–10] and PFM [6].

In addition, the piezoresponse loops will have anti-clockwise rotation in the material with positive d33,eff (similar
to the polarization-voltage loops), while it will exhibit a clockwise rotation in a negative d33,eff . Supplementary
Figure 3(c) shows that the PR loop in the TiN/La:HfO2/TiN capacitors corresponds to a negative d33,eff coefficient.
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SUPPLEMENTARY NOTE 2: LINEAR-RESPONSE FORMALISM

Here we mainly follow the formalism for the response properties of a material introduced in Ref. [11]. Let us consider
a reference structure of an insulating crystal with cell volume Ω0 that is in equilibrium at vanishing macroscopic
electric field. We can expand the energy per unit cell volume E(u,η,E) as a function of atomic displacements um,
homogeneous strain ηj , and applied electric field Eα around the reference state as follows:

E(u,η,E) = E0 +Aumum +AEmEm +Aηmηm +
1

2
Buumnumun+

1

2
BEEmnEmEn +

1

2
Bηηmnηmηn +BuEmnumEn +Buηmnumηn

+BEηmnEmηn + terms of higher order , (6)

where E0 is the energy density of the reference structure. In this equation the first-order coefficients Aum, AEm and
Aηm correspond to the forces (Fm = −Ω0A

u
m); polarizations (Pm = −AEm) and stresses (σm = Aηm), respectively. We

assume the atomic coordinates and strains are fully relaxed in the reference system. Hence, the coefficients Au and
AE are zero. The second order coefficients are defined as follows. The force constant matrix:

Φmn = Buumn = Ω0
∂2E

∂um∂un

∣∣∣∣
E,η

. (7)

The purely-electronic elastic tensor:

C̄mn = Bηηmn =
∂2E

∂ηm∂ηn

∣∣∣∣
u,E

, (8)

the Born effective charges:

Zmn = BuEmn = −Ω0
∂2E

∂um∂En

∣∣∣∣
η

, (9)

the force-response internal strain tensor:

Λmn = Buηmn = −Ω0
∂2E

∂um∂ηn

∣∣∣∣
E
, (10)

and the purely-electronic piezoelectric tensor:

ēmn = BEηmn =
∂2E

∂Em∂ηn

∣∣∣∣
u

. (11)

The barred quantities C̄mn and ēmn represent the purely-electronic response, and are computed with ionic coordinates
to their values at the reference state.

Relaxed-ion tensors

To obtain the physical static response properties one must consider the contribution due to ionic relaxations. We
compute such relaxed-ion quantities by introducing the functional

Ẽ(E,η) = minuE(u,E,η) , (12)

obtained from Eq. 6 by setting ∂E/∂un = 0. For details on the full derivation see Ref. [11].
Defining

Cjk =
∂2Ẽ

∂ηj∂ηk

∣∣∣∣
E

(13)

and

eαj = − ∂2Ẽ

∂Eα∂ηj

∣∣∣∣
u

, (14)
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we get the physical elastic and piezoelectric tensors by using Eqs. (7)–(11)

Cjk = C̄jk − Ω−1
0 Λmj(Φ

−1)mnΛnk , (15)

eαj = ēαj + Ω−1
0 Zmα(Φ−1)mnΛnj . (16)

In Eq. (16), eαj is also known as the piezoelectric stress coefficient which is defined under the conditions of controlled
E and η. The piezoelectric strain coefficient (dαj) is defined under the conditions of controlled E and σ, and is
typically what is directly accessible in experiments. dαj is defined as

dαj =
∂Pα
∂σj

∣∣∣∣
E

(17)

and is related to eαj as follows:

dαj = S
(E)
jk eαk , (18)

where Sjk (= C−1
jk ) is the compliance tensor.



5

HfO2 a = 5.21 Å, b = 5.00 Å, c = 5.03 Å
Atom Wyckoff Pos. x y z
Hf 4a 0.466 0.232 0.751
OI 4a 0.631 0.573 0.888
OII 4a 0.236 −0.041 0.500

Supplementary Table 1. Computed lattice parameters and atomic Wyckoff positions in HfO2 (Pca21).

Index C̄ C S̄ S
11 465.3 413.6 2.65 2.99
12 181.3 162.3 −0.78 −0.99
13 151.7 123.4 −0.61 −0.60
22 485.0 407.8 2.59 3.08
23 165.6 132.8 −0.69 −0.73
33 445.7 394.6 2.71 2.97
44 127.0 94.4 7.87 10.59
55 116.7 98.0 8.56 10.20
66 169.3 140.4 5.90 7.12

Supplementary Table 2. Computed elastic (C, in GPa) and compliance (S, in TPa−1) tensors of the ferroelectric phase of
HfO2. We show the total and frozen-ion (barred) effects. Indices in Voigt notation.

Index C̄ C S̄ S
11 288.3 251.3 4.62 6.93
12 122.5 103.2 −1.41 0.19
13 118.5 74.5 −1.35 −10.24
33 281.7 51.8 4.69 48.72
44 85.7 58.6 11.66 17.05
66 100.2 100.2 9.98 9.98

Supplementary Table 3. Computed purely-electronic C̄ (GPa), relaxed-ion C (GPa) elastic tensors and corresponding compli-
ance tensors (S̄ and S) (TPa−1) of PbTiO3.

Hf

 5.17 −0.01 0.04
−0.36 5.46 0.15
−0.04 0.23 4.99



OI

 −2.50 −0.96 0.31
−0.76 −2.94 −0.68

0.32 −0.63 −2.48



OII

 −2.68 −0.15 0.25
−0.09 −2.51 0.16

0.29 0.12 −2.50


Supplementary Table 4. Computed Born effective charges of HfO2 (in units of electronic charge).
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Pb

 3.76 0 0
0 3.76 0
0 0 3.46



Ti

 6.20 0 0
0 6.20 0
0 0 5.24



OI

 −2.13 0 0
0 −2.13 0
0 0 −4.43



OII

 −5.18 0 0
0 −2.64 0
0 0 −2.14


Supplementary Table 5. Computed Born effective charges of PbTiO3 (in units of electronic charge).

Pb

 0 0 0 0 3.34 0
0 0 0 3.15 0 0

6.89 6.89 5.01 0 0 0



Ti

 0 0 0 0 −0.51 0
0 0 0 0.50 0 0

−3.18 −3.18 30.76 0 0 0



OI

 0 0 0 0 −0.44 0
0 0 0 −0.69 0 0

−5.19 −5.19 −34.26 0 0 0



OII

 0 0 0 0 −2.94 0
0 0 0 −0.12 0 0

−2.04 3.55 −0.81 0 0 0


Supplementary Table 6. Λ tensors for the symmetry-inequivalent atoms of the ferroelectric phase of PbTiO3 (in eV Å−1). The
3 rows correspond, respectively, to the 3 spatial directions; the 6 columns correspond, respectively, to the 6 strain indices in
Voigt notation.
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Supplementary Figure 1. Relationship between the applied ac field and the sample oscillation due to the piezoelectric defor-
mation for materials with positive d33 (a) and negative d33 (b). (a) In a material with positive d33, the sample oscillations and
the applied field are in-phase (180º out of phase) when the polarization is pointing downward (upward). (b) In a material with
negative d33, the sample oscillations and the applied ac field are in-phase (180º out of phase) when the polarization is pointing
upward (downward). The black cuboids indicate the un-deformed state of the domains when no external field is applied, while
the red dashed cuboids indicate the deformed state of the domains under an external field due to the converse piezoelectric
effect. The blue arrows denote the direction of the applied field, E, and the black arrows denote the direction of the spontaneous
polarization, Ps.

Supplementary Figure 2. Identification of the instrumental phase offset. (a,b) Bias-on (a) and bias-off (b) PFM hysteresis loops
in Ti/Pt/TiN/La:HfO2 (20 nm)/TiN capacitors. (c) Piezoresponse loops constructed from the convolution of the amplitude
signal with the cosine of the phase signal for the bias-on (black), bias off (red) and the difference between the bias on and the
bias off piezoresponse (blue). The differential signal (blue plot) gives a linear contribution with a negative slope, which can be
attributed to electrostatics. (d) Comparison of the bias-on and bias-off PR loops after the linear contribution was subtracted
from the bias-on signal.
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Supplementary Figure 3. Quasi-static strain loop (a) and piezoresponse loop (b) in IrO2/PZT/Pt capacitors. (c) Piezoresponse
loop in TiN/La:HfO2/TiN capacitors. The red arrows indicate the sense of rotation.
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Supplementary Figure 4. Computed c-lattice parameter as a function of epitaxial strain in HfO2.
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Supplementary Figure 5. (a) Sketch of the FE phase of HfO2. We highlight one OII-type atom and its three nearest-neighbouring
Hf cations. (b) Bond lengths Hf(1)–OII(1), Hf(2)–OII(1), and Hf(3)–OII(1) as a function of epitaxial strain.
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Supplementary Figure 6. Computed polarization as a function of epitaxial strain in HfO2. The obtained increase of P3 upon
epitaxial compression may seem at odds with the negative value of e33: an epitaxial compression (η1 = η2 = ηepi < 0) leads to
an out-of-plane lattice expansion (η3 > 0), which yields a positive change of P3 because e33 < 0. Note, however, that the total
change in P3 also depends on η1 and η2, on account of the (also negative) e13 and e12 coefficients. Indeed, these transversal
piezoelectric effects are responsible for the observed increase of P3 upon epitaxial compression.
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