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Abstract

Evaluating the efficacy of management actions to control invasive species is

crucial for maintaining funding and to provide feedback for the continual

improvement of management efforts. However, it is often difficult to assess the

efficacy of control methods due to limited resources for monitoring. Managers

may view effort on monitoring as effort taken away from performing manage-

ment actions. We developed a method to estimate invasive species abundance,

evaluate management effectiveness, and evaluate population growth over time

from a combination of removal activities (e.g., trapping, ground shooting)

using only data collected during removal efforts (method of removal, date,

location, number of animals removed, and effort). This dynamic approach

allows for abundance estimation at discrete time points and the estimation of

population growth between removal periods. To test this approach, we simu-

lated over 1 million conditions, including varying the length of the study, the

size of the area examined, the number of removal events, the capture rates,

and the area impacted by removal efforts. Our estimates were unbiased (within

10% of truth) 81% of the time and were correlated with truth 91% of the time.

This method performs well overall and, in particular, at monitoring trends in

abundances over time. We applied this method to removal data from Mingo

National Wildlife Refuge in Missouri from December 2015 to September 2019,

where the management objective is elimination. Populations of feral swine on

Mingo NWR have fluctuated over time but showed marked declines in the last

3–6 months of the time series corresponding to increased removal pressure.

Our approach allows for the estimation of population growth across time

(from both births and immigration) and therefore, provides a target removal

rate (above that of the population growth) to ensure the population will

decline. In Mingo NWR, the target monthly removal rate is 18% to cause a

population decline. Our method provides advancement over traditional

removal modeling approaches because it can be applied to evaluate manage-

ment programs that use a broad range of removal techniques concurrently and

whose management effort and spatial coverage vary across time.
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INTRODUCTION

Invasive species pose significant threats to native ecosys-
tems, human health, and the global economy (Early
et al., 2016; Paini et al., 2016; Pejchar & Mooney, 2009).
Efficient methods for control of invasive species are criti-
cal to mediate the increasing challenges they present.
However, it is challenging to assess the efficacy of control
methods because of the trade-off in effort aimed at per-
forming management actions and effort aimed at collect-
ing monitoring data to evaluate management; decisions
to divert resources from removal efforts to other activities
such as monitoring may be met with opposition. Yet, reg-
ular evaluation provides evidence of the impact that
resources spent on control activities have on reducing
invasive species and feedback for the continual improve-
ment of efficient management actions.

Population evaluations for wildlife are often con-
ducted using methods that require monitoring data in
addition to records of management actions (mark–recap-
ture, transect sampling, etc.). However, ideally it is possi-
ble to evaluate the effects of management actions on
population abundance using records of removal efforts
and removal models (Zippin, 1958). The benefit of this
approach is that resources would not be diverted from
critical control activities while information for improving
management outcomes could still be gleaned. Removal
models only require simple information that is routinely
collected during management (i.e., number of animals
removed, the effort used to remove the animals, location,
and date/time) and are commonly used for population
evaluation in pest or harvested species of fish and wildlife
(Pollock, 1991; Williams et al., 2002; Zippin, 1958),
including invasive species (Davis et al., 2016; Ramsey
et al., 2009).

Management of invasive species often involves a suite
of management techniques to take advantage of the fact
that some methods perform better in a given habitat than
others, or at different times of year, or involve different
personnel or resource needs. Typically, removal models
only consider removal data from a single removal source.
Therefore, modifications are needed to the standard
removal model to be more broadly applicable to the range
of methods used in invasive species management, and
range of environments where these methods are applied.
Drawing from multi-methods analyses (e.g., Nichols
et al., 2008), it is possible to estimate detection rates

(or capture rates) separately for each monitoring or capture
method while using these distinct sources of data to inform
the overall biological state of the system (Davis, Kirby,
et al., 2019). Applying multi-method analyses to removal
models poses some unique challenges in that multiple
removal events must have the same probability of impacting
all individuals in the population across the removal types.
Given that some removal methods (e.g., trapping, ground
shooting, aerial gunning) are unlikely to impact all individ-
uals in the population similarly due to differences in the
area impacted by a given removal device, adjustments need
to be made on how to incorporate multiple removal
methods.

Removal models work on the premise that, assuming a
closed population and constant capture rate, the ratio of
the number of animals removed in two subsequent
removal events will reflect the ratio of the populations
available to be removed at those two removal events.
Removal models have been applied to populations of fish
(Riley & Fausch, 1992; Rosenberger & Dunham, 2005),
birds (Alldredge et al., 2007; Farnsworth et al., 2002),
mammals (Andrea et al., 2007; Sullivan & Sullivan, 2013),
and particularly wild pigs (Davis, Leland, et al., 2019;
Parkes et al., 2010; Waithman et al., 1999). Classic removal
models are static and estimate abundance only at one
point in time. However, most management for invasive
species is conducted over many months or years and is
conducted continuously. Therefore, a logical advancement
to removal models is to integrate removal data into a
robust design approach that allows for abundance estima-
tion during a period of demographic closure, allowing for
population growth between closed periods (Link
et al., 2018), and estimation of population growth across
time. Knowing the amount of population growth is impor-
tant to ensure removal levels are sufficient to cause
populations to decline and not simply keep pace with pop-
ulation growth (i.e., maintain a constant abundance).

Our goal was to develop a method to estimate abun-
dance of invasive species, and to determine management
intensities necessary for achieving management objec-
tives, using only management data (i.e., without a sepa-
rate monitoring effort). In addition to relying solely on
removal data, we wanted to create a model that would
(1) incorporate all removal methods employed by man-
agers, (2) be able to compare the efficacy of different
removal methods (i.e., evaluate the capture rates of differ-
ent removal methods), (3) evaluate population growth

2 of 12 DAVIS ET AL.



and compare it to removal levels, and (4) provide evalua-
tion of management actions (i.e., determine if manage-
ment efforts are sufficient to address management
objectives).

METHODS

Study areas

Mingo National Wildlife Refuge (NWR) is located in
southeastern Missouri. The refuge comprises roughly
87 km2 of bottomland hardwood forest, cypress-tupelo
swamp, marsh, and upland forest ecosystems.

Data

For our study, we used data on feral swine (Sus scrofa)
removal efforts to demonstrate the efficacy of this ana-
lytical approach. Feral swine are invasive in North
America and are actively managed to reduce human–
wildlife conflict and damage to agriculture, natural
resources, and personal property. As part of the man-
agement program at Mingo NWR, we recorded the
date of management actions, the location (latitude/
longitude), the type of removal event (e.g., aerial gun-
ning, trapping, ground shooting), the number of ani-
mals removed, and the effort involved (e.g., number of
hours in a helicopter, number of trap nights, number
of hours ground shooting). The removal efforts con-
ducted on Mingo NWR from December 2015 to
September 2019 included aerial gunning, trapping, and
ground shooting.

We estimated capture rates for each method sepa-
rately. These rates were allowed to vary depending on the
effort applied by a method at any point in time (similar
to St. Clair et al., 2012; Rout et al., 2014). For example,
during aerial gunning events the number of hours per
flight are recorded and thus an hourly capture rate was
estimated. For trapping, there were multiple nights when
more than one trap was active. Therefore, we used trap
nights (number of active traps on a given night) as the
base capture rate for trapping. Ground-shooting effort
was not easy to calculate since some ground shooting
events are opportunistic and some are intentional. As
capture numbers are generally low for ground shooting
and because ground-shooting events are often under-
taken to find and remove a particular individual, hours
spent searching is not a good measure of effort. Instead,
we estimated the ground shooting capture rate as the
number of independent ground-shooting events that
occur in a single day.

Analytical methods

We subdivided our study areas into management units
(sites) that were no larger than 150 km2 including a
2-km buffer (to account for the average maximum dis-
tance moved in a day for feral swine; Kay et al., 2017).
We developed a dynamic removal model that incorpo-
rates multiple removal methods using a Bayesian hier-
archical framework (Figure 1). In keeping with
removal model assumptions (Zippin, 1958), we
assumed the abundance for a primary study period,
which we defined as 1 month (t), within a site (i) was
closed to demographic changes, but allowed demogra-
phy to vary monthly (i.e., assuming an open popula-
tion over the full time frame of the study). Similar to
St. Clair et al. (2012), we estimated site level abun-
dance (n) and capture rate (p) from removal data using
a multinomial distribution

yijtk ¼Multinomial nit,πijkt
� �

: ð1Þ

This format models the number of animals removed (yijkt)
at site i, removal pass j, at time t, and from removal
method k, as a function of the total number of animals in

nit

nit-1λit

β Σ X

yijktπijkt

θijkt

pk

γijkt

gijkt Aijkt

Removal model process Dynamic process

Data

Parameter

F I GURE 1 Directed acyclic graph (DAG) of the dynamic

removal model with multiple removal methods that we applied to

feral swine management data from Mingo National Wildlife

Refuge. The squares represent data inputs, the circles represent

parameters that are estimated in the model. The subscripts denote

the site (i), the removal pass ( j), the removal method (k), and the

month (t). Abundance, nit, at each monsth (t) is estimated using a

removal model where the number of animals removed, yikjt, at site

i, removal pass j, removal method k, in month t is a function of the

conditional capture rate (Equation 3). This is a Malthusian growth

model where the abundance, nit, at time t is dependent on the

abundance at time t � 1, based on the monthly growth rate (λit).
Therefore, we include nit�1 as an input to nit, but show both

abundance estimates (n) as shaded to denote the iterative nature of

this parameter
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the population (nit) at site i and time t, and the probabil-
ity of encounter (πjitk)

πijkt ¼ γijktθijkt
Yj�1

l¼1

1�γilktð Þþγilkt� 1�θilktð Þð Þ: ð2Þ

The probability of encounter as described by
St. Clair et al. (2012), is the probability that an animal
is removed during pass j but not before that period.
One difficulty with including multiple removal
approaches in a single removal modeling framework,
is that the area impacted by different removal methods
is not the same (e.g., the area covered by aerial gun-
ning compared to the area covered by a single trap).
This disconnect would violate the assumption that all
animals are equally catchable in the study area. There-
fore, we applied the concept of availability (Diefenbach
et al., 2007) to address this problem. The availability con-
cept assumes that a portion of the population may not be
available for detection by a surveillance approach. We
equated the proportion of the area impacted by a given
method to the proportion of the population that was
available to be captured by that method (Equation 2;
e.g., Pavlacky et al., 2012; Baker et al., 2018)

γijkt ¼
Aijkt

Ai
: ð3Þ

If availability is not accounted for population estimates
will be biased low. Therefore, we revised the probability
of encounter to be the probability that an animal was
removed and available on pass j but was either not avail-
able or available and not captured prior to pass j within
time t (Equation 3; l in the equation represents values
earlier than the current j). We estimated capture rate per
unit effort per area (baseline capture rate) for removal
method k (pk) and estimated the capture rate accounting
for effort per area (gijk/Aijkt) as the cumulative capture
rate (θijkt) for site i, removal pass j, time t, and method
k (Equation 4)

θijkt ¼ 1� 1�pkð Þgijkt=Aijkt : ð4Þ

The area impacted was different for each removal method.
In our study, there were three removal methods: aerial
gunning, trapping, and ground shooting. Aerial gunning
was assumed to cover the entire study area. For traps, we
used a buffer area around the active traps based on the
area of influence of traps for feral swine calculated by
McRae et al. (2020). For ground shooting, a standard
5-km2 area was used per ground-shooting event.

We modeled the logit of capture rates by method (pk)
using a normal distribution with mean (μp) and variance
(σ2p; Equation 5). To model abundance across time we
used an exponential growth model where the abundance
remaining after removals at time t� 1 is multiplied by the
growth rate at site i and time t (λit; Equation 6). We
modeled the abundance (nit) for site i and time t using a
Poisson distribution (Equation 6). We modeled the growth
rate (λit) as a log-normal distribution (i.e., exponential pop-
ulation growth) with the mean representing a linear com-
bination of covariates (X; Equation 7) with coefficients (β)
modeled as a standard normal distribution (Equation 8).
We allowed growth rate to vary across time using basis
functions (Hefley et al., 2017)

logit pkð Þ�N μp,σ
2
p

� �
ð5Þ

nit � Pois λit nit�1�
XK
k¼1

XJ
j¼1

yijkt�1

 ! !
ð6Þ

log λitð Þ�N Xβ,Σð Þ ð7Þ

β�N 0, Ið Þ: ð8Þ

We used R (R Core Team, 2017) to custom code a
Markov chain Monte Carlo (MCMC) to fit the joint poste-
rior distribution of the parameters of interest (joint and
conditional distributions Appendix S1; for custom code
see Davis (2022). We used several Metropolis-Hastings
steps to model conditional distributions that were not
identifiable distributions. Convergence was assessed
graphically by visually assessing the trace plots for
mixing and convergence. Posterior estimates are based
on 50,000 MCMC iterations with the first 25,000 as
burn-in.

Using estimates of the capture rate and the propor-
tion of the population that needs to be removed per
month, we can calculate the effort needed by each
removal method to achieve the observed population
reduction. To calculate the effort needed by each method
we need to account for the estimated capture rate and the
proportion of the total study area that an individual
removal event per method would impact. The entire area
covered by all study areas in Mingo NWR was 311.6 km2.
Therefore, the proportion of the entire area impacted by
each method was 5% for one trap, 13% for 1 h of aerial
gunning, and 2% for one ground-shooting event. By set-
ting the effective capture rate (θk) to the mean instanta-
neous rate of increase (rit = log(λit)) we used Equation 4
to calculate for the effort needed per method (gk) to com-
bat that growth.
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Simulation analysis

We assessed the model’s performance by simulating true
abundance and removal data and evaluating how well
removal-based estimates of abundance recaptured the
simulated (“true”) abundance values. The objective of the
simulation is to determine the conditions under which
the model performs well and when it performs poorly, to
provide guidelines on when this approach could be used
with confidence. We simulated single method approaches
to determine the impact of specific capture rates and per-
centages of area available on the reliability of the esti-
mates. We examined the impact of capture rate, percent
of area available, the number of months in the study, the
number of removal passes by month, and the total area
of the study on model performance. We ran all combina-
tions of model parameters, each combination was
repeated five times. We compared model performance
using three metrics: (1) a relative metric of how close the
estimate is to truth (was the estimate within 10% of true
abundance), (2) a metric evaluating the uncertainty of
the estimate (was true abundance within the 95% credible
interval of the estimated abundance), and (3) a metric
measuring the population trend (what was the correla-
tion between the estimates and truth across time). We
used these metrics to assess how well this model per-
forms in ways that would be understandable by managers
and complement how they would want to use the infor-
mation (e.g., how many individuals are left in the popula-
tion, how management has impacted the population
across time). Our first metric determines if the estimate
was consistently within 10% of the truth, showing how
well we match truth without relying on the amount of
uncertainty in the abundance estimates. The second met-
ric is a binary metric that determines if our estimate cap-
tures truth. However, this approach may over- or
underestimate the performance of the model if the error
around the estimates is particularly narrow or wide.
Therefore, this approach also examines the uncertainty
associated with our estimates. Our third metric looks at
how well we match the overall trend in the population.
In some situations, the model may over- or underesti-
mate the abundance routinely, but it may follow patterns
in abundance well. These three metrics of success give
information of the conditions under which the model
performs well and when it does not, and guidance for
using the estimates in practical settings.

Using these three metrics of success we identify con-
ditions under which the model performs well. We were
interested in criteria that we could determine from the
input data only so the suitability of this approach could
be determined from the data before conducting the analy-
sis. For example, the input data would include the

number of removals, the type of removal, the duration of
the study, and the area of the study; they would not
include the capture rate or the abundance, which are
estimated in the model. As removal models use a pattern
of declining captures in their calculations, we calculated
the trend in removal passes within a month to see if this
pattern would indicate the data are suitable to use this
approach.

RESULTS

Simulation results

We simulated over one million months of removal data
under a variety of conditions. The goal was to determine
the range of conditions under which this method per-
formed well. Therefore, we were particularly interested
in what levels of low quality data might prevent this
approach from providing reasonable estimates. When
there is plenty of high quality data (e.g., high detection
rates, long data series, many removal events) the model
is likely to perform well. We explored conditions that
may result in poor data quality (e.g., lower capture rates,
low availability, fewer removal events) to attempt to find
the boundaries of data needs for this method.

Of the simulations, 81% of abundance estimates were
within 10% of truth, 8% were biased high, and 11% were
biased low. Only 74% of the true abundances were within
the 95% credible intervals. However, 91% of simulations
had a 90% or greater correlation with truth (see
Appendix S2 for visual depictions of simulation results).
This suggests that under many conditions the population
estimate may be biased either high or low, but under
most conditions this approach consistently does a good
job of tracking trends in abundance across time. Esti-
mates were more likely to be unbiased for studies that
were a year or more in length: 61% of simulations that
were 3 months long resulted in unbiased estimates com-
pared to 86% for 1 year studies, and 93% for 2 year stud-
ies. Five or more removal events within a month
performed better than when only three removal events
were conducted. The size of the study area did not greatly
impact how well the estimates performed, however, very
low sizes (30 km2) and very large sizes (300 km2) were
slightly worse. A larger impact on the reliability of the
estimate was what proportion of the study area was
impacted by the removal methods, in particular, if the
removal methods only impacted 30% or less of the study
area, the estimates were more likely to be biased. The
estimates also performed better as the capture rate
increased. Capture rate is a combination of the ability of
a method to capture animals (per unit capture rate) and

ECOLOGICAL APPLICATIONS 5 of 12



the number of capture devices or amount of time spent
by method (effort). Therefore, even when using a capture
method that has a low individual capture rate (ground
shooting for example), the cumulative capture rate can
be increased by increasing effort.

Similar patterns in model performance were seen for
the proportion of the simulations that were unbiased as
the proportion of the simulations where truth was within
95% CIs of estimates. However, the proportion of simula-
tions that included truth in the 95% CIs was lower than
the proportion that were unbiased. In many cases, these
were due to estimates with narrow credible intervals. In
particular, the credible intervals containing the true
abundance was more influenced by low quality data
(e.g., low capture rates, fewer months, lower availability,
and fewer capture events). This may suggest that the
uncertainty around the estimates under these conditions
may not be reliable, even if the estimates themselves are
more likely to be unbiased or that the correlation with
truth is strong.

Correlation between estimates and truth was high for
the majority of simulated conditions. The only conditions
where the correlation was <0.9 were when all of these
conditions were met: having fewer than 21 animals
removed within a study area in a month, having removal
methods cover <30% of the study area, having a large
study area (150 km2 or larger) and being only a 6 month
or shorter study. These conditions would suggest that the
number of animals removed relative to the abundance is
so small that many combinations of abundance and cap-
ture rates could fit those data and thus the results are not
reliable.

Case study results

We estimated the population abundance of feral swine in
three regions of Mingo NWR from December 2015 to
September 2019. The removal data included 323 trapping
events, seven aerial gunning events, and 144 ground
shooting events. The total number of feral swine removed
across the entire refuge during the 46-month study period
was 2926 (2555 from trapping, 136 from aerial gunning,
and 235 from ground shooting). The number removed
was relatively consistent per year from 2016 to 2018
(523 in 2016, 488 in 2017, and 685 in 2018). The year
2019 saw the most removals, at 1213. Repeated removal
events are needed within a primary time period (month)
to estimate abundance using a removal model. In our
study, in months when removal occurred, there was an
average of 4.9 removal events per month. Population esti-
mates show relatively stable abundance for the majority
of the study period. Only subpopulations 1 and 2 show

declines and they were mostly within the last 6 months
to 1 year of the study (Figure 2).

In our case study, we found that on average the pro-
portion of the population removed each month was 0.12
(95% CI: 0.08, 0.18) but varied by study area and year
(Figure 3). However, monthly growth from births and
immigration was estimated at 1.17 on average, suggesting
that, for the first year, the removals were working to hold
the abundance constant rather than pushing the
populations towards elimination (Figure 3). The
increased removal effort in the last 6 months of the study
period was sufficient to combat the population growth
and correspondingly cause population declines in two of
the subpopulations (Figure 3).

The capture rates represent the proportion of the pop-
ulation removed for one unit of effort (effort depends on
the method, 1 h in a helicopter, one night for trapping)
within the area impacted by the removal method. The
estimated capture rates for: one trap within a 15-km2 area
was 0.43 (95% CI: 0.37, 0.51), 1 h of aerial gunning in a
40-km2 area was 0.18 (95% CI: 0.12, 0.31), and one
ground-shooting event in a 5-km2 area was 0.65 (95% CI:
0.56, 0.77). The entire area covered by all study areas in
Mingo NWR was 311.6 km2. Therefore, the proportion of
the entire population removed (available and captured)
by each method was 0.02, 0.023, and 0.010 for trapping,
aerial gunning, and ground-shooting, respectively. To
counteract the population growth, we needed to remove
at least 18% of the entire population each month. Based
on the estimated average captured rates, this means that,
for each month, either nine trap nights, 7.2 h of aerial
gunning, or 17 ground-shooting events would be needed
to maintain a population decrease across all of Mingo
NWR. Growth rates did vary in our study over time and
as growth rates increase the proportion of the population
that must be removed to ensure a population decline will
also need to increase.

DISCUSSION

A primary challenge with invasive species management
is balancing the need to monitor change in abundance
with the fundamental goal of reducing or eliminating
invasive species. Invasive species management incorpo-
rates a variety of management removal actions and may
be conducted over several months or years, if not perpet-
ually. Currently, no method exists that monitors abun-
dance while accommodating the diversity and intricacies
of data from management of invasive animals. We devel-
oped a method to estimate changes in abundance over
time using only data collected by management removal
actions. The method allows for multiple removal
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methods, occurring non-systematically over a large spa-
tial area and over time. Each monthly abundance esti-
mate is the abundance prior to removal events. By
subtraction, we can get the remaining abundance at the
end of the removals and calculate the proportion of the
population removed at each time point (Davis et al.,
2019), thus providing a method for evaluating the impact
of management actions on populations over time.

By incorporating multiple removal methods (e.g., aerial
gunning, trapping, ground shooting) in our framework, we
increase the applicability of removal models to more diverse

types of removal data. Management of invasive species
involves continually working to improve population sup-
pression methods and therefore, often results in a suite of
management approaches being used concurrently to com-
bat a single invasive species (see examples in Clout &
Williams, 2009; Pepin et al., 2019). Methods that incorpo-
rate multiple types of monitoring data not only give more
power to estimate ecological states of interest, but also allow
managers to learn about the relative value of different data
streams (Davis, Kirby, et al., 2019). In addition to broaden-
ing the utility of removal models, the incorporation of

F I GURE 2 Feral swine abundance estimates (solid black line) and 95% credible interval (dashed line) for three study areas of Mingo

National Wildlife Refuge. The number of animals removed by month are shown as bars, colors indicate the method of removal (yellow for

aerial gunning, red for ground shooting, and cyan for trapping)
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multiple removal methods can be used to compare the effi-
cacy of different methods (Bailey et al., 2004; O’Connell Jr
et al., 2006). While the intent of our analysis was to use
multiple removal approaches to estimate abundance, we
can also use these analyses to compare their efficacy. Aerial
gunning was the most efficient method at removing feral
swine in terms of time, for example, an hour in a helicopter
was similar to 1.14 trap nights or 2.24 ground-shooting
events. However, the costs associated with conducting aerial
gunning are considerably higher than running a trap for a
night or conducting two ground-shooting events and there-
fore, incorporating costs into these analyses will give a bet-
ter overall understanding of the cost effectiveness of
different methods. It is also important to consider that the
efficacy of different removal methods will vary by habitat,
accessibility, time of year, and personnel experience (Davis,
Leland, et al., 2019). Therefore, the cost effectiveness of dif-
ferent methods may depend on these factors. Additionally,
in this analysis, we assumed baseline capture rates were
constant within method, but using covariate data from local
conditions to inform capture rate parameters would allow
us to examine how capture rates within methods vary
potentially by time, by habitat, or by personnel (Davis,
Leland, et al., 2019).

Animals may not be available for detection due to
their behavioral characteristics (e.g., female birds that do
not sing during breeding bird auditory surveys;
Diefenbach et al., 2007) or they may be temporarily
unavailable spatially (e.g., submerged whales are unable
to be detected by breach surveys even when they are in
the study area; Givens et al., 2016). We incorporated
availability by considering that an animal may be in the

study area but may not be available to a given removal
method based on the spatial coverage of that method.
The area over which a removal method searches or
attracts animals (“area of influence” of a method)
depends on the method. We used the location informa-
tion associated with the removal method (e.g., flight track
logs, latitude/longitude of trap locations), number of
removal events, and information on trap area of influ-
ence to estimate the availability by method. We set the
area of influence as constant based on previous studies
(Davis et al., 2017; McRae et al., 2020), but variation in
the area of influence could be included to account for cir-
cumstances (McRae et al., 2020; e.g., duration of baiting,
time of year, habitat; Snow & VerCauteren, 2019). Addi-
tional information can also be used to inform the area of
impact of a particular removal method. For instance, if
there is site-specific information on animal movement
available (e.g., GPS or radio-collared animals), it can be
used to modify the area of impact of a trap by using the
mean maximum distance moved metric or similar
(Karanth & Nichols, 1998). Future extensions may bene-
fit by examining how availability may be influenced by
factors such as movement, habitat, time of year, or dura-
tion of baiting.

In addition to incorporating multiple removal
methods, our approach allows for abundance to vary with
open population demographics (i.e., births, deaths, immi-
gration, and emigration), and for population estimation
at discrete periods across time, in line with how invasive
species management is often conducted. This advance,
similar to Link et al. (2018) and Stevens et al. (2020), lets
us match the monitoring method with the management
method, and continually track population changes in
time. The standard removal model would need to be run
separately for different removal periods that do not have
demographic closure. For a single removal study, it is
possible to estimate the abundance pre- and post-removal
events and calculate the proportion of the population
removed. This is critical information for the monitoring
and evaluation of removal activities. By tracking removal
events and populations across time, we can monitor
populations across time, identify the efficacy of removal
efforts, and determine if the ultimate goals of population
reduction are being achieved by estimating what the pop-
ulation growth rates are over time.

In our case study, we found that populations of feral
swine in Mingo NWR had growth rates that varied over
the study period but on average intrinsic monthly growth
rates (λ) were 1.17. This growth was related to a combina-
tion of births and immigration. This growth rate is higher
than expected based on estimates of annual growth rate
of feral swine from births alone (Mellish et al., 2014;
Timmons et al., 2012). However, these are local-level
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estimates of population growth that may include immi-
gration within the overall refuge and surrounding areas
in response to removal efforts. Depopulating an area can
potentially cause a vacuum effect where animals will
immigrate into an area where animals were recently
removed especially if that area contains desirable habitat
(Killian et al., 2007). Removal efforts need to be able to
remove more animals than those produced by births and
immigration to ensure the population is going to decline.
Based on the estimates of monthly population growth,
�18% of the population in Mingo NWR should be
removed monthly to counteract population growth and
see a population decline over time. However, as these
rates of population growth change over time, the effort
needed to control the population will change as well.
Therefore, continued monitoring using this approach is
recommended. If these high levels of growth are due in
part to the vacuum effect, then immigration rates may
decline after initial pulses of immigration and thus the
growth rate within the refuge will decrease. This reflects
what we observed in Mingo NWR, as there was a sharp
increase in growth in response in intensive removal
efforts but with sustained removal efforts the growth
rates fell considerably near the end of the study.

This dynamic removal model that incorporates multi-
ple removal methods is more broadly applicable to man-
agement conditions than static or single-method
approaches. However, management data are not designed
for population estimation and therefore often do not
meet the assumptions necessary to apply abundance esti-
mation methods. Model requirements include population
closure during sampling (here 1 month), all animals are
equally catchable, capture rates are constant with respect
to effort, and that sampling periods are short relative to
the open intervals (Pollock, 1982; Zippin, 1958). As man-
agement removals are conducted based on personnel and
resource availability and often not according to a system-
atic design, we specified a sampling period as the dura-
tion from the first removal event to the last removal
event within a given month, and the open period was the
time from the last removal event in 1 month to the first
removal event in the next. This means that the open
period may range from 1 day to over 30 days. We
adjusted the growth rate calculations to adapt to this vari-
able time period. However, the periods of closure may be
violated if they are closer to a month in length than a
week. Kendall (1999) found that violations of closure did
not bias estimates if movement on and off the study area
is random for capture–recapture abundance estimates.
He also found that if movement was only on or only off
of the study area the abundance estimates were unbiased
relative to the superpopulation (Kendall, 1999).
Kendall (1999) did find that bias was introduced if

movement was Markovian (based on the status in the
previous time period). The impacts on removal estimates
may be different from capture–recapture estimates, but
in general, violations of closure assumptions lead to over-
estimation of abundances. Although we would like to be
accurate in our abundance estimation, for invasive spe-
cies, it can be more beneficial to overestimate
populations as underestimation could lead to a decline in
management effort that may allow the population to
rebound.

In acknowledgement that management data are not
designed for population estimation and therefore often
do not meet the assumptions necessary to apply abun-
dance estimation methods, we tested the robustness of
this removal approach to violations of these assumptions
with extensive simulations. Even in situations when the
population estimates were biased high or low, the model
still captured the general pattern of population change
well, suggesting that trends in population can be moni-
tored using this approach. Auxiliary studies may be
needed if the conditions for unbiased estimates outlined
above are not met. These simulations help provide guide-
lines on when this dynamic removal approach would be
appropriate to use on management data. Additionally,
removal models are known to perform poorly when the
number of animals removed per pass is small either due
to low abundance or capture probabilities (Davis
et al., 2016; Seber & Whale, 1970). Therefore, this method
is better applied to populations in reduction phases and
not for populations nearing elimination. This approach
can be used in an adaptive management framework that
allows the monitoring data to inform when abundance
estimation should be used and when analyses should
switch to occupancy modeling (i.e., estimating the proba-
bility of presence rather than abundance).

Objectives associated with invasive species manage-
ment may range from elimination of the invasive species,
to maintaining a low acceptable level of the invasive spe-
cies, or to focus on damage reduction of the invasive spe-
cies. For any of these objectives some form of monitoring
needs to be conducted to evaluate if the resources being
spent are achieving the desired objective. By using the
approach we developed, managers can evaluate their
control actions without diverting resources from addi-
tional control activities and show evidence of the impact
of their actions for stakeholders. Additionally, our
approach can be used to evaluate the effectiveness of
management actions and be combined with economic
approaches to determine the cost effectiveness of differ-
ent management actions and optimal control strategies
(Pepin et al., 2020).

Here we describe the application of this dynamic
multi-method removal approach to estimate abundance
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of and management impacts on feral swine. However,
this approach can be used for a variety of other species
including plants and animals. This approach requires
data from multiple removal events within a period of
assumed demographic closure, but that can occur over
many months or years. Data should be aggregated to a
period of closure where the effects of birth/death or
immigration/emigration would be negligible on popula-
tion abundance based on the biology of the species of
interest (we used 1 month for feral swine). The data col-
lected during removal activities that are needed include:
the removal method, the date, the number of individuals
removed, the effort, and the location of removal. Addi-
tional information needed to inform the model are the
maximum area of impact for one unit of effort for each
removal method used. By having the area of impact by
method information provided by the researcher, this
method is flexible and is not limited to the methods and
species described in this manuscript. Even the simulation
results can be applied to other systems. Only the area of
the study and the duration of the primary sampling
period (i.e., 1 month) are species specific. The area of the
study was not influential to the model performance, and
the primary sampling period results can be rescaled to
match a different system without changing the results on
model performance. Code and step-by-step instructions
on how to apply this method are provided in Zenodo
(Davis, 2022). Future extensions of this work may include
incorporating this approach into an integrated population
model to allow for other sources of monitoring informa-
tion to be included when available (e.g., population sur-
veys, demographic studies). For now, this method is a
tool to monitor population change and evaluate manage-
ment impacts on populations while only collecting man-
agement removal information.
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