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Abstract

Dispersal drives invasion dynamics of nonnative species and pathogens.

Applying knowledge of dispersal to optimize the management of invasions can

mean the difference between a failed and a successful control program and

dramatically improve the return on investment of control efforts. A common

approach to identifying optimal management solutions for invasions is to opti-

mize dynamic spatial models that incorporate dispersal. Optimizing these spa-

tial models can be very challenging because the interaction of time, space, and

uncertainty rapidly amplifies the number of dimensions being considered.

Addressing such problems requires advances in and the integration of tech-

niques from multiple fields, including ecology, decision analysis,

bioeconomics, natural resource management, and optimization. By synthesiz-

ing recent advances from these diverse fields, we provide a workflow for apply-

ing ecological theory to advance optimal management science and highlight

priorities for optimizing the control of invasions. One of the striking gaps we

identify is the extremely limited consideration of dispersal uncertainty in opti-

mal management frameworks, even though dispersal estimates are highly

uncertain and greatly influence invasion outcomes. In addition, optimization
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frameworks rarely consider multiple types of uncertainty (we describe five

major types) and their interrelationships. Thus, feedbacks from management

or other sources that could magnify uncertainty in dispersal are rarely consid-

ered. Incorporating uncertainty is crucial for improving transparency in deci-

sion risks and identifying optimal management strategies. We discuss gaps

and solutions to the challenges of optimization using dynamic spatial models

to increase the practical application of these important tools and improve the

consistency and robustness of management recommendations for invasions.

KEYWORD S
alien species, bioeconomic, decision analysis, disease, dispersal, invasion, invasive species,
management, optimal control, resource allocation, spatial, uncertainty

INTRODUCTION

Globally, invasions of pest species and pathogens
(invaders) impose devastating costs on economic sectors,
natural ecosystems, and human health (Diagne et al., 2021;
Early et al., 2016). Once an invader becomes established,
its elimination or even containment can be extremely
costly and difficult to achieve (Leung et al., 2002). Thus,
answering the question of how resources should be allotted
over time and space to optimize the management of inva-
sions is crucial for control activities to proceed cost-
effectively (Baker, 2017; Chadès et al., 2011; Travis &
Park, 2004) and may determine success or failure
(Moody & Mack, 1988). Optimization with dynamic spatial
models of established invasions can serve this question well
(Baker, 2017, Chadès et al., 2011; Travis & Park, 2004) but
also introduces novel methodological and conceptual chal-
lenges. The addition of space to dynamic optimization
increases the computational complexity dramatically rela-
tive to optimization problems that only consider time. In
addition, invasions are governed by dispersal (rates and
directions that individuals move throughout landscapes),
which is often poorly understood and difficult to measure
(Cayuela et al., 2018), leading to high uncertainty in spatial
predictions. Optimizing dynamic spatial models informed
by dispersal introduces the need to account for additional
sources of uncertainty, adding both conceptual complexity
and data requirements.

Numerous studies have demonstrated the benefits of
using dynamic spatial models to optimize resource alloca-
tion in the management of invasions (Chadès et al., 2011;
Glen et al., 2013; Haydon et al., 2006; Pepin, Smyser,
et al., 2020; Travis & Park, 2004), but recommendations
for managers have been context-specific and lack general-
ized management recommendations across studies
(Büyüktahtakın & Haight, 2018; Appendix S1: Table S1).
Some illustrative examples of the variety of different

recommendations include the following: “target the most
highly connected local populations” when examining a
network of spatially segregated local populations (Perry
et al., 2017) or “target the source” when modeling indi-
viduals as dispersing continuously in space (Baker, 2017).
Using network approaches, Epanchin-Niell and Wilen (2012)
recommended preventing or delaying spread in directions of
high potential for invasion damage. In a different network
analysis, Chadès et al. (2011) recommended prioritizing
the management of (1) upstream local populations in
directional networks, (2) any local population and then
its nearest neighbors in ring structured networks, and
(3) endpoints in networks with bidirectional or linear
dispersal. Even more nuanced recommendations can
emerge under other conditions (Caplat et al., 2014; Chadès
et al., 2011; Travis & Park, 2004). This wide variety of
recommendations for managing invasions demonstrates a
lack of ability to recommend consistent optimal manage-
ment strategies for invasions based on specific system
features (e.g., dispersal direction), making it challenging to
predict optimal management strategies in new contexts or
invasions.

The lack of consistent recommendations also reflects
the context-specific nature of some management prob-
lems and the fact that applications of dynamic spatial
models to invasion management are not yet sufficiently
widespread to allow generalizations of model results.
Furthermore, because optimal management problems are
interdisciplinary, even similar systems are often solved
using different modeling assumptions and optimization
techniques, depending on the quantitative expertise at
hand (Appendix S1: Table S1). This diversity in
approaching management optimization problems means
that existing applications of dynamic spatial models are
rarely comprehensive and often fail to consider important
spatial processes and their potential feedback loops
(Appendix S1: Table S1).
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The purpose of this article is to make optimal manage-
ment methods more accessible to both modelers and man-
agers dealing with invasion management. We address this
aim through the following multistep approach: (1) describ-
ing current gaps, considerations, and challenges for
landscape-level optimization using dynamic spatial models,
(2) providing a workflow (i.e., simple guidelines) for opti-
mizing landscape-level management of invasions, and
(3) providing guidance for choosing the appropriate com-
ponents and methodologies to apply in the workflow. We
focus on spatial processes, especially movement and dis-
persal, that determine the dynamics and optimal manage-
ment of invasions. We begin by describing dispersal. We
then describe components of the workflow, including artic-
ulating the decision context and translating it into a biolog-
ical or bioeconomic model, choosing the appropriate
optimization technique, and incorporating the relevant
sources of uncertainty and their interactions. Our target
audience is newcomers to management optimization prob-
lems and those who have worked on these problems but
have less experience with integrating dynamic spatial
models.

DISPERSAL: THE DRIVER OF
INVASION SPREAD

The spatiotemporal dynamics of any given population
arise from three main ecological processes: birth, death,
and dispersal (including immigration and emigration).
Birth and death rates dictate the number of individuals
that can spread via dispersal. Dispersal is thus the lynch-
pin that enables colonization of new areas, even if the
population might ultimately go extinct in its current loca-
tion. Birth and death processes are well studied, both
empirically and theoretically. Dispersal is more poorly
understood (Beckman et al., 2019; Bullock et al., 2006;
Cayuela et al., 2018) and represents a considerable source
of uncertainty that hampers the identification of optimal
management strategies (Pepin, Smyser, et al., 2020; Shea
et al., 2014; White et al., 2019).

Dispersal is often modeled using continuous functions
(Bullock et al., 2017; Jongejans et al., 2008; Nathan
et al., 2012; Okubo & Levin, 2001; Skellam, 1951). Much of
this work assumes a species-specific dispersal kernel or so-
called dispersal syndromes (Cayuela et al., 2018; Ronce &
Clobert, 2012) represented by a stochastic distribution.
However, in addition to stochasticity, within-species varia-
tion due to sex and age (Truvé & Lemel, 2003), phenotypic
plasticity (Johnson et al., 2019), individual-level variation
(Cayuela et al., 2018; Clobert et al., 2009; Schupp
et al., 2019), or multiple dispersal processes acting on
different scales (Rogers et al., 2019; Shigesada &

Kawasaki, 1997) might also be significant in determining
dispersal outcomes.

It may be common, and perhaps universal, that dis-
persal kernels for invasive species consist of multiple nat-
ural and human-assisted processes (Rogers et al., 2019),
each with an associated level of uncertainty
(Nathan, 2007). These processes may operate at different
spatial scales (Pauchard & Shea, 2006), which have been
called stratified dispersal (Shigesada & Kawasaki, 1997)
or total dispersal kernel (Nathan, 2007), that describe
multiple dispersal pathways for a single species
(Nathan, 2007; Rogers et al., 2019). For example, the
invasive forest-defoliating moth Lymantria dispar spreads
locally when wind-dispersed caterpillars are transported
from tree to tree on silk threads but also accomplishes
long-distance dispersal when egg masses are transported
by humans (Liebhold et al., 1992). Humans may persis-
tently contribute to the intentional or unintentional
expansion of invasive species, including species with very
different biological traits, such as Agrilus planipennis
(Emerald ash borer) (Muirhead et al., 2006; Evans, 2016),
Dreissena polymorpha (zebra mussels) (Chivers et al., 2017),
and Sus scrofa (wild pigs) (Tabak et al., 2017). For example,
humans intentionally relocate wild pigs over long distances
(Hernandez et al., 2018; Tabak et al., 2017) to establish new
hunting opportunities (Bevins et al., 2014). The same holds
for many weeds that are wind-dispersed locally but
moved long distances as unintentional contaminants in
agricultural seed or via the horticulture trade
(e.g., Ambrosia artemisiifolia, common ragweed) (van
Boheemen et al., 2017).

Dispersal is also affected by landscape heterogeneity or
by changing habitats or environments (Nesslage
et al., 2007; Neupane & Powell, 2015; Soons et al., 2004).
Such situations are often modeled by applying the
metapopulation concept (Hanski, 1998), where a landscape
is partitioned into suitable and unsuitable patches and dis-
persal is quantified as the demographic connectivity among
subpopulations. Connectivity is also an important concept
for describing dispersal in populations that are more spa-
tially homogeneous (Baker, 2017). In what follows, we out-
line a workflow and special considerations for optimizing
the management of invasions using dynamic spatial
models that incorporate dispersal or connectivity.

WORKFLOW FOR OPTIMIZING
INVASION MANAGEMENT IN AN
UNCERTAIN WORLD

There are many challenges associated with solving natu-
ral resource management optimization problems in prac-
tice (Büyüktahtakın & Haight, 2018), making the process
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difficult to navigate. First, multiple stakeholders with dif-
ferent resources and objectives can make problem fram-
ing difficult. Second, the choice of models and
optimization techniques often are not ideal for the prob-
lem but instead are chosen based on the available techni-
cal expertise, sometimes with insufficient input from
practitioners and system experts. Finally, several sources
of uncertainty about the system and our inability to
observe it without error can impose multiple dimensions
to the problem that are difficult to capture using optimi-
zation techniques because of the high number of poten-
tial conditions to explore. We describe a general
workflow for optimizing invasion management (Figure 1)
that seeks to assist teams of researchers and practitioners
in navigating these challenges. The general workflow is a
seven-step process: (1) frame the problem (elicit manage-
ment objectives, translate objectives into an objective
function, and specify possible management actions);
(2) develop a bioeconomic model of the invader, includ-
ing ecological, economic, and management processes;
(3) use the model to understand the impacts of uncer-
tainty on identifying the optimal strategy and the value
of reducing specific uncertainties; (4) optimize the objec-
tive function based on the bioeconomic model to identify
the best management strategy(ies); (5) implement the
optimal strategy; (6) prioritize monitoring based on
uncertainty analyses; and (7) update the bioeconomic
model based on current stakeholder input, new monitor-
ing data, and the most recent management outcomes.

These steps are relevant to both spatial and nonspatial
situations.

The special feature of spatial problems is the need to
include movement or dispersal processes (hereafter
referred to as dispersal for simplicity). We therefore high-
light key components of our proposed workflow that are
especially relevant for optimizing spatial problems: char-
acterizing dispersal processes, quantifying uncertainties
in dispersal and their interactions with other uncer-
tainties, and understanding the value of reduced uncer-
tainty in dispersal and other factors or processes that may
feed back on dispersal (Figure 2).

DECISION THEORY:
ARTICULATING THE
MANAGEMENT PROBLEM
FRAMING

Identify and consult stakeholders and
identify their management objectives

The first step in our workflow for determining optimal
management strategies (Figure 1) is to identify the appro-
priate group of stakeholders for consultation. These dis-
cussions should be structured with the goal of eliciting
and formulating management objectives (framing the
problem), which involves understanding the desired
management outcomes, constraints, and alternative

F I GURE 1 General workflow for determining optimal resource allocation strategies highlighting key considerations broken down into

six steps
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actions so that they can be specified mathematically. The
field of decision analysis provides valuable methodology
for engaging stakeholders to specify management objec-
tives (Gregory et al., 2012). Framing the problem correctly
is essential for developing an appropriate bioeconomic
model and conducting optimization in a way that addresses
stakeholder objectives effectively because optimal strategies
may differ depending on the management objectives
(Probert et al., 2016; Shea et al., 2010).

Translate management objectives into an
objective function

Next, stakeholder objectives should be translated into an
objective function. This function will guide choosing the
components of the bioeconomic model and will form
the criterion that is optimized in subsequent steps of the
workflow. The objective function should deliver the out-
comes desired by stakeholders that are affected by

invasion management. Especially in spatial contexts,
there may be multiple desired management outcomes
that are measured on different scales, necessitating opti-
mization methods that can accommodate multiple objec-
tives (Baker, 2017; Salinas et al., 2005). A useful approach
to many multiobjective problems is to express them with
a scalar (one-dimensional) objective function, thereby
simplifying the specification of the bioeconomic model
and its optimization. Specific examples of scalar objective
functions might include minimizing the total costs of
both control and damage from the invader (Carrasco
et al., 2010; Eiswerth & Johnson, 2002; Epanchin-Niell &
Wilen, 2012; Olson & Roy, 2002; Runge et al., 2017), min-
imizing damage caused by invaders over a specified time
period using a fixed annual budget for control costs
(Blackwood et al., 2010), and minimizing the total num-
ber of patches containing the invasive species for a given
total budget for control effort (Giljohann et al., 2011).
The difference between these objective functions is that
the last two are constrained by available funding over

Example results from uncertainty analysis:

Example updates to monitoring based on results:

Example actions from 
optimization results: 

F I GURE 2 Workflow in Figure 1 applied to a management problem (statewide elimination of invasive wild pigs in United States) using

fictitious details

ECOLOGICAL APPLICATIONS 5 of 21



time, whereas the first is not. These can produce different
optimal management strategies (Giljohann et al., 2011;
Moore & Runge, 2012; Pepin, Smyser, et al., 2020).

In natural resource optimization problems, be they spa-
tial or nonspatial, there are numerous ways that multiple
objectives can be expressed as a scalar function for optimiza-
tion. For example, a multicriteria objective function can be
formulated as a weighted function of multiple objectives
through a process such as multicriteria decision analysis
(MCDA). This approach allows all of the objectives to be
expressed on their natural scales (Keeney, 1992) and inte-
grated into a single outcome by taking a weighted sum
reflecting stakeholders’ preferences (Jit, 2018). A second
approach is to include either the nonmonetary benefits or
costs as the objective function criterion, which is then opti-
mized subject to the constraint of the other (costs or bene-
fits). This allows benefits and costs to be measured in
different metrics (Boyd et al., 2015; Dodd et al., 2017). For
example, benefits could be measured as the area of unin-
vaded landscape, while costs could be in dollars per square
kilometer of invasion treated. A third approach is to translate
all costs and benefits into common, usually monetary, units
(Hanley & Roberts, 2019; Welsh et al., 2021). The objective
function can then be specified as net benefits, for example,
dollars saved in damages minus those spent on control. With
each of these approaches, when considering spatial manage-
ment of invasions, the various costs and benefits need to be
summed across time and space. This gives rise to another
important consideration: how the future state is valued
(Moore et al., 2008; Polasky, 2010). High discounting rates
on future benefits place lower value on future benefits and
costs, which can result in less intensive control strategies and
discourage active learning (Moore et al., 2008).

Define the action space

Another important step in framing the invasion manage-
ment problem is identifying feasible spatial and temporal
scales of management (Williams & Brown, 2016) and
defining the set of possible management actions that can
be conducted (the action space from which the optimal
solution can be identified) (Hammond et al., 2002;
Williams et al., 2009). Defining the action space is not an
evaluation step. Rather, it is the articulation of the set of
management conditions (e.g., tools, scale of action,
resources) over which evaluation will take place when seek-
ing to optimize the objective function. The action space
arises, first and foremost, from the authority of the decision
maker—What is the range of actions over which the deci-
sion maker has jurisdiction? Second, the action space arises
out of existing methods and technology—What sorts of
actions can be taken that are thought to affect the system of

interest? Third, the action space may be constrained by lim-
itations on equipment, personnel, expertise, budget, and
time. The definition of the action space can be a creative
process that envisions new strategies that might be effective
but need to engage decision makers to ensure that the opti-
mal strategy is feasible within management constraints.
The set of actions might be a simple discrete set of funda-
mentally different action options (e.g., do nothing
vs. monitoring vs. treatment vs. monitoring and treatment)
(e.g., Haight & Polasky, 2010). Or the action space might be
a continuous set of alternatives for a single type of interven-
tion, such as the density of toxic bait application (Pepin,
Snow, et al., 2020). But most often, the action space consists
of complex portfolios of action. In a spatial prioritization
problem, for example, each alternative might be a set of
sites at which to implement eradication (Caplat et al., 2014;
Perry et al., 2017); here the action space is all the myriad
ways of selecting a subset of the available sites and specific
types of actions (e.g., culling, fertility control, monitoring,
movement restrictions, public education). In dynamic spa-
tial models, the action space generally requires specifying
the location or spatial area over which each action is
implemented, which can dramatically increase the number
of possible management strategies for optimization.

SPECIFYING BIOECONOMIC
MODELS

Once the objective function and action space are deter-
mined, spatial bioeconomic models can be developed and
used to forecast how invasion management activities—
including prevention, early detection and management,
and control of established populations—affect costs
and damage over time (Epanchin-Niell, 2017). For
bioeconomic models, the basic components include
ecological (demographic dynamics, including dispersal),
management (surveillance and control actions), and eco-
nomic (cost and benefits) processes. In spatial problems,
dispersal can be a key consideration in both the ecologi-
cal and management components. The model is specified
to predict the impact of management on the ecological
and economic components that determine the objective
function, which may be optimized with an appropriate
optimization algorithm (described in the “Optimization
methods” section).

Bioeconomic models that are developed by ecologists
tend to focus on the details of demographic processes and
their variation while simplifying cost functions, for exam-
ple (Caplat et al., 2014; Shea et al., 2010, 2014), whereas
economists tend to emphasize social context and more
complex valuation of economic components while simpli-
fying ecological processes (Albers et al., 2010; Cacho
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et al., 2008; Epanchin-Niell & Wilen, 2012; Hall
et al., 2018). However, for a decision analyst, the important
consideration is that the bioeconomic model is structured
around the decision context, with the alternative manage-
ment actions as inputs, the objective function shaped by
stakeholder objectives, and an inner structure that reflects
the best available understanding of the system. Given that
all models are necessarily simplified representations of sys-
tems, it is important that represented details of ecological,
economic, and management processes be selected to effec-
tively inform the management objectives (Büyüktahtakın &
Haight, 2018). Otherwise, the predicted optimal control
strategies could be misleading because these processes inter-
act to affect management outcomes (Bevins et al., 2014;
Davis, Leland, et al., 2018; Regan et al., 2011; Rout
et al., 2014; Yokomizo et al., 2009). It may also be important
to specify several different bioeconomic models initially and
use subsequently obtained monitoring data to identify the
best model or subset of models (see the “Tools for reducing
uncertainty” section for guidance on how this can be done)
for predicting the optimal management strategies. In a spa-
tial context, for example, considering several different speci-
fications for the dispersal kernel could be important (Shea
et al., 2014).

OPTIMIZATION METHODS

Optimization of the objective function identifies the spa-
tiotemporal management strategy that best achieves the
specified objective, subject to the constraints, dynamics,
and uncertainty (described in the section “Sources of
uncertainty”) expressed in the bioeconomic model. Opti-
mization algorithms select among potential actions to
identify the set of actions (across time and space) that
best achieve the optimization criteria (i.e., balance among
objectives as specified by the objective function), account-
ing for temporal tradeoffs and spatial interactions speci-
fied in the model.

Choosing the appropriate optimization approach
requires consideration of each approach’s ability to han-
dle problem dimensionality and key forms of uncertainty.
In addition, the ease of translating model output into
practical recommendations also varies across approaches.
A common theme of spatial optimization approaches is
the need to simplify representation of the space–time pro-
cesses and uncertainties so that optimization will be trac-
table. Studies have simplified systems in different ways.
Some incorporate a variety of cost functions but use a
simple ecological model (Blackwood et al., 2010;
Epanchin-Niell et al., 2012), whereas others consider
complex ecological models with a limited cost model
(Baker, 2017; Caplat et al., 2014). Another approach is to

concurrently consider a broader set of the important eco-
logical and economic processes and uncertainties but
simpler models of each component, including reduced
dimensionality of space or time (e.g., Chadès et al., 2011).
Each approach can facilitate understanding of how spe-
cific factors might affect optimal control strategies but
may not provide practical guidance if complexity or inter-
actions among the processes that critically affect optimal
control strategies are ignored. Ultimately, selection of
model complexity depends on the management, ecologi-
cal, economic, or uncertainty processes that are most
important for capturing the decision context in a particu-
lar system and that can be feasibly incorporated. A useful
approach is to start by including all the processes and
interactions that are anticipated to be important based on
expert opinion and scientific evidence. Then sensitivity
analyses can be conducted to identify components that
can be dropped (i.e., those that do not have substantial
effects on optimal strategies) and the model pared down
to the minimally sufficient set of features that drive dif-
ferences in optimal management strategies. Alternatively,
one can start with simple models and add complexities
through a similar testing process.

Common optimization approaches (Table 1) typically
involve some tradeoff between the model complexity that
can be accommodated and the optimality of the solution.
Deterministic optimal control problems using partial differ-
ential equations (e.g., Baker, 2017) accommodate high
dimensionality for spatial processes, but spread is modeled
as a diffusion process, making it challenging to examine
management strategies that target spatially distinct, sepa-
rated patches or allow for long-distance spread. Further-
more, these methods can only accommodate uncertainty
through sensitivity analysis (i.e., running the optimization
on different values of the fixed parameters or different
functional forms and evaluating effects on the optimal
strategies). They do not provide a means to deal with
stochasticity or uncertainty in the observation of state vari-
ables through time. In contrast, stochastic models, such as
Markov decision process (MDP) models, solved by stochas-
tic dynamic programming (SDP) allow the incorporation of
stochasticity and management actions in discrete patches
(e.g., Walker et al., 2015), however, they also do not allow
uncertainty in the observation of state variables through
time. Unfortunately, the dimensionality (i.e., number of
patches) that can be considered with these approaches is
limited (Chadès et al., 2011), and they are not suitable to
account for imperfect observation of system states (Regan
et al., 2011).

Alternatively, SDP with a partially observable Markov
decision process (POMDP) provides a powerful tool for
decision-making under multiple types of uncertainty,
especially imperfect observation of system states.
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TAB L E 1 Common techniques to optimize allocation of resources in bioeconomic models

Method Strengths Weaknesses Spatial Uncertainty

Examples

Method Example

Optimal control
theory
applied to
partial
differential
equations

Solves for a large
number of
spatial
coordinates well
beyond the
current
capabilities of
stochastic
dynamic
programming
(SDP)

Movement is modeled
as a diffusion
process—not
amenable to
incorporating
explicit
uncertainty
(besides sensitivity
analysis) or
examining
management
strategies that
divide resources
among spatially
distinct patches

++ No (except through
sensitivity
analysis)

Kamien &
Schwartz
(2012)

Baker (2017)

Markov decision
process
(MDP) solved
using SDP

Allows for modeling
management in
separated
(discrete)
patches; can
account for
random
variation in
ecological or
management
processes

Computationally
prohibitive as the
number of patches
and parameters
increases; cannot
be used to address
observational
uncertainty of
state variables
through time

+ Stochastic growth
and spread

Marescot
et al.
(2013)

Walker et al. (2015)

Partially
observable
Markov
decision
process
(POMDP)
analyzed
using SDP

Can address
observational
uncertainty
because
observed states
are described as
probabilities of
true state given
what is observed;
can account for
uncertainty in
extent of
invasion or
impact of control

Computationally
prohibitive with
more than one
patch (typically
only a single patch
is modeled) and as
number of
different
uncertainties
increases; exact
solutions are
usually intractable
(solutions are
approximated)

� Stochastic,
management, or
observational
uncertainty

Williams
(2009)

Regan et al. (2011),
Rout et al. (2014)
(implemented
with only one
patch)

Factored
partially
observable
Markov
decision
process
(FPOMDP)

Builds on POMDP
to handle more
patches and
account for
spatial
relationships
between patches
by representing
patch structure
using networks
(which reduces
dimensionality
by condensing
patch
information)

Modeling of spatial
relationships is
coarse (network
motifs—does not
handle large
networks),
remains the same
over time, and
assumes spatial
relationships are
perfectly known;
exact solutions are
usually intractable
(solutions are
approximated)

+ Stochastic,
management, or
observational
uncertainty

Poupart
(2005)

Chadès et al. (2011),
Nicol et al.
(2015)

(Continues)
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However, it is computationally prohibitive to examine
many patches because, for each patch, the method stores
information about all other states of all other patches at
each time step, regardless of spatial relationships. Thus,
typically it has been applied to make inference about single
patches when imperfect observation of ecological states is an
important consideration (Fackler & Haight, 2014; Haight &
Polasky, 2010; Regan et al., 2011; Rout et al., 2014), but in
doing so, Rout et al. (2014) gained insight about recommen-
dations for spatially structured management actions. Also,
the method becomes computationally prohibitive as the
number of different uncertainties increases, and the repre-
sentation of states and control actions are necessarily coarse
because they can only take a discrete set of specified values
(e.g., presence/absence). Factored POMDP (FPOMDP) can
address issues of imperfect detection in multiple patches
(e.g., Chadès et al., 2011; Nicol et al., 2015) while also
accounting for spatial relationships among patches by rep-
resenting relationships among patches as network motifs.
FPOMDP and POMDP approaches are typically too complex
to solve exactly, and approximation methods may also be
required to translate the optimal solutions into practical
management recommendations (Dujardin et al., 2017;
Ferrer-Mestres et al., 2021; Poupart et al., 2011). Another
recent method is linear integer programming (LIP) with hid-
den Markov random field (HMRF) (Bonneau et al., 2019).
This approach is more amenable to optimizing the spatial
allocation of control actions in systems with noisy

observations, heterogeneous costs, and a large number of
patches. But in this example, the population is only modeled
as presence/absence, the set of actions is discrete, the num-
ber of dimensions, including both patches and types of
uncertainty, that can be incorporated concurrently is lim-
ited, and the method requires substantial expertise to
implement.

Methods that are designed to handle the high dimen-
sionality of dynamic spatial models have, until now,
mostly been used in engineering and finance contexts.
One example is approximate dynamic programming
(ADP)—a modeling framework that offers strategies for
tackling the problems of dimensionality in large,
multiperiod, stochastic optimization problems (Powell
et al., 2012). Its essence is to replace the true value function
that is maximized in SDP or the policy function with a statis-
tical approximation (Powell, 2011). Another promising
approach is artificial intelligence (AI), which has enabled the
exploration of simplified methods, such as surrogate-based
optimization (Queipo et al., 2005; Simpson et al., 2008), and
replaces computationally intensive functional evaluations
with less intensive ones. The approximation models can be
built for the objective and state function(s) by randomly sam-
pling data from the design space. One can then optimize the
much simpler surrogate models, and a Monte Carlo
approach can be used to quantify uncertainty and obtain out-
put statistics (Rumpfkeil, 2013). As with ADP, surrogate-
based optimization techniques have been used mostly in

TAB L E 1 (Continued)

Method Strengths Weaknesses Spatial Uncertainty

Examples

Method Example

Scenario
optimization
(forward
simulation
with
stochastic
models and
identifying
strategies
that best
meet
management
objectives)

Highly flexible for
addressing
spatial processes
and a variety of
uncertainties at
any desired
spatial or
temporal scale;
particularly well
suited for
problems where
practical
constraints only
allow a limited
number of
management
actions

Does not guarantee
true optimality
because only a
predefined set of
possibilities is
examined (i.e.,
does not fully
explore all
theoretical
possibilities)

++ Any type of
uncertainty

Higgins et al. (2000),
Wadsworth et al.
(2000),
Grevstad (2005),
Pepin, Smyser,
et al. (2020)

Note: The spatial column indicates the ability of the method to handle large spatial extents (++, can handle large spatial areas or numbers of patches;
+, can handle small numbers of spatially distinct patches; �, does not represent space explicitly or handle large numbers of spatial patches). Note that
here we contrast optimization methods that are commonly applied to spatial optimization problems. The uncertainty column highlights the types of
uncertainty that can be accommodated within the optimization methods (i.e., aside from sensitivity analysis of functional forms or fixed parameters).
For a more comprehensive review of optimization methods in general with more nuanced methodological explanations, see Chadès et al. (2017).
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engineering. They offer a promising approach to dealing with
the space, time, and uncertainty dimensions that are com-
mon in invasive species management.

Simulation-based methods provide additional
options. For example, the dimensionality of dynamic
spatial models of management can be reduced by
predefining the set of conditions of interest and analyz-
ing simulation output (e.g., scenario optimization)
(Table 1). Another approach that addresses dimension-
ality reduction while conducting optimization is to treat
the simulation of the ecological processes and optimiza-
tion of management actions separately and sequentially,
rather than together (Onal et al., 2020). Simulation-
based methods can be especially useful in systems
where the scope of management strategies is heavily
constrained.

RECOMMENDING PRACTICAL
MANAGEMENT ACTIONS

Optimization of the bioeconomic model provides recom-
mendations for management. However, optimization
approaches can provide extremely nuanced recommenda-
tions based on the spatial and temporal resolution, for
example, “apply a control effort of 33% in Week 1 in
Patch X, then 45% in Week 2 in Patch Y.” These types of
answers are usually impractical for managers because
management techniques may be constrained to applica-
tions over coarser spatial and temporal scales, it may not
be possible to be sufficiently precise with effort alloca-
tion, or the infrastructure may not allow frequent shifts
in resources. In other words, the true optimal control
strategy may not be achievable in practice. This practical
constraint can be addressed by (1) constraining the bio-
economic model and optimization approach to only con-
sider feasible management actions that were defined by
managers during the problem forming phase (see our
“Decision theory” section) or (2) conducting optimization
with more flexible management constraints but followed
by a post hoc summary of optimization results that
delivers recommendations on a scale that matches the
management constraints (e.g., Chadès et al., 2011; Moore
et al., 2017). It can be useful to take the latter approach
when there is potential for management constraints to
change over time.

MONITORING AND EVALUATION

An important step to conduct in concert with manage-
ment is monitoring of both the management actions that
were implemented and of the state of the system that

informs the success of the management objectives. In
spatial optimization, it is crucial that monitoring include
not just overall population abundance but a measure of
where individuals occur in space (i.e., distribution or
movement). Moreover, the spatial design of monitoring
the state of the system over time needs to be compatible
for evaluating the spatial optimal management strategies
predicted by the bioeconomic model and management
objectives (Nichols et al., 2021). For managers, monitor-
ing can be a tough sell because it requires resources that
could be used on control (Bogich et al., 2008; Epanchin-
Niell et al., 2012). Thus, it is important to establish the
value of monitoring to the management objectives, which
can be accomplished using uncertainty analysis and eval-
uating the optimization criteria under different levels of
uncertainty. A complementary approach is to develop
monitoring techniques that impose little burden on man-
agers (e.g., Davis, Leland, et al., 2018; Davis et al., 2022;
Moore et al., 2017). As an example, controlling gray sal-
low invasion into alpine bogs in Australia demonstrated
the importance of investing time in developing less bur-
densome monitoring techniques—in this case moving
from paper-based data recording to automated GPS
tracking—to decrease the costs of monitoring and
improve the quality of the monitoring data for model
evaluation and analysis (Moore et al., 2017). Uncertainty
analysis (described in what follows) is useful to guide the
monitoring design, especially when optimization shows
that reduction of key uncertainties leads to better man-
agement solutions based on the optimization function.
When using dynamic spatial models in optimization, this
sensitivity analysis approach can be used to determine
the benefit of expending monitoring resources on reduc-
ing uncertainty in dispersal and for identifying where
and how much sampling could reveal the most informa-
tive data on species abundance/distribution/dispersal for
the management objectives.

SOURCES OF UNCERTAINTY AND
WHY WE NEED TO ACCOUNT
FOR THEM

Failing to consider uncertainties can result in suboptimal
or even detrimental control strategies (Pepin, Smyser,
et al., 2020; Regan et al., 2011) and obscure decision risk.
Building on Williams et al. (2009), we describe five differ-
ent types of uncertainty that are likely to influence opti-
mal spatial management strategies and show how their
effects are not independent (Figure 2). Uncertainty can
be reducible, by coupling the previously described tech-
niques with model-guided data collection, or irreducible,
due to stochastic variation. Although irreducible,
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stochastic variation should be incorporated into analysis
where possible because it embeds risk analysis into the
optimization and provides for more robust and transpar-
ent predictions of the optimal strategy.

In what follows, we focus on uncertainties that are
especially important for managing invasions and that can
be reduced using our workflow. Specifically, we consider
uncertainties that (1) are critically important for identifying
optimal management solutions correctly in management
applications, (2) are generally neglected in invasion man-
agement, and (3) may magnify uncertainty in dispersal, the
fundamental process of invasions. We describe why these
uncertainties are important, tools for reducing them, and
how they can be incorporated into the workflow to opti-
mize management of invasions (Figure 1).

UNCERTAINTY THAT IS KNOWN TO
BE IMPORTANT

Observational uncertainty of distribution
or abundance

If management is to be optimized based on the current status
of species distribution or abundance, accurate estimates of
these parameters are needed (Rout et al., 2017). For
established invasions it may be more important to quantify
abundance or distribution for the evaluation of management
objectives (Davis, McCreary, et al., 2018), whereas when a
population is near elimination, the critical population metric
is the probability of absence given no detections (Anderson
et al., 2013). Uncertainty in our ability to observe system
states and processes accurately can reduce the efficiency of
control and monitoring strategies (Bonneau et al., 2019;
Kendall & Moore, 2012) by misrepresenting the true state of
the system, leading to incorrect predictions of population via-
bility (Meir & Fagan, 2000), ineffective management actions
(Harwood & Stokes, 2003), or unnecessary economic costs
(Mastin et al., 2019).

Hauser et al. (2016) demonstrated a method for opti-
mizing the discovery of infestations beyond the known
population boundary to improve prioritization decisions
for resource allocation toward control in Hieracium
praealtum (King Devil Hawkweed). Limited resources
were allocated optimally by focusing control on areas
where presence was more certain and conducting surveil-
lance in areas where presence was less certain. The
importance of accounting for observational uncertainty
in presence/abundance for determining optimal manage-
ment strategies accurately (Rout et al., 2017) emphasizes
that this source of uncertainty should be included in
workflows for spatial optimization as well. Observational
uncertainties vary depending on the sampling design,

population metric used, and the true underlying abun-
dance, affecting accuracy or precision of estimates. Guid-
ance for choosing among population metrics and their
potential implications on accuracy and precision are
described in Appendix S1: Section S1 and Appendix S1:
Table S2.

UNCERTAINTY THAT IS
GENERALLY NEGLECTED

Though some types of uncertainty are relatively well
understood and accounted for in optimal management
frameworks, others that are also likely important have
been generally neglected (Figure 3) (Büyüktahtakın &
Haight, 2018) and present priorities for investigation in
optimal management applications.

Uncertainty in dispersal

Observational uncertainty in dispersal has been largely
neglected to date, partly because dispersal is challenging to
measure, but recent advances in estimating dispersal pro-
vide an opportunity to improve management optimization
using dispersal estimates and dynamic spatial models.
However, even state-of-the-art methods can produce highly
uncertain dispersal metrics (Baguette et al., 2012; Cayuela
et al., 2018; Lowe & Allendorf, 2010), and these uncer-
tainties need to be considered alongside other uncertainties
relevant to the system and objective function. Most
methods of measuring dispersal directly either track indi-
viduals (Lagrangian methods) or document the density of
individuals in space (Eulerian approaches), and they may
produce different estimates (Skarpaas et al., 2011) and,
thus, optimal management strategies. Another approach is
to estimate demographic connectivity among patches or
subpopulations (Baguette et al., 2012) using methods that
link individual movement data to landscape features, for
example, least-cost path (Etherington & Perry, 2016) or cir-
cuit theory (McRae et al., 2008). These inference
approaches are clearly useful for modeling dispersal in dif-
ferent landscapes, but their accuracy for inferring realized
connectivity remains unclear and is, thus, an important
topic for improving optimal management strategies that
rely on accurate measures of connectivity.

The use of genetic tools to infer patterns of dispersal
throughout landscapes has emerged as a complement or,
in some cases, alternative (e.g., Browett et al., 2020;
Carroll et al., 2014) to more direct measures of connectiv-
ity. By sampling across a landscape, genetic patterns can
be used to infer both patterns and rates of connectivity
among populations. However, unique genetic processes
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that accompany an invasion can also make such infer-
ences challenging. For example, estimates of genetic con-
nectivity derived from pairwise estimates of genetic
distances for populations assumed to be in migration–
drift equilibrium are often not applicable to populations
along an invasion front (Faubet et al., 2007; Fitzpatrick
et al., 2012; Lowe & Allendorf, 2010; Meirmans, 2014).
Similarly, founder effects may serve to reduce genetic
diversity in invasive species, reducing genetic differentia-
tion between populations and making it difficult to iden-
tify movement among populations (Tsutsui et al., 2000).
Nonetheless, even with high genetic similarities among
invasive populations, the increasing availability of high-
resolution molecular tools (ranging from RADseq to
whole-genome resequencing) are providing sufficient
power to identify movement between closely related
populations across small spatial scales (see Appendix S1:
Section S2 for strategies to improve genetic-based esti-
mates of dispersal). As these genomic-scale approaches
replace more traditional data streams and their associ-
ated uncertainties are reduced, decision makers may
have an opportunity to use these population genomic
estimates of dispersal more easily in the near future.

Uncertainty about dispersal can also be structural.
We refer to a lack of knowledge of the form of the dis-
persal kernel as uncertainty in the ecological process in
Figure 3. When the spread of invaders is determined by
multiple modes of movement, each of the underlying dis-
persal processes must be identified and adequately
described for optimal management. Incorrect or incom-
plete representation of this total dispersal kernel can lead
to biased predictions about spatial spreading rates and
directions across landscapes. Shea et al. (2014) demon-
strated the benefit of considering multiple evidence-based
dispersal kernels that predict different spread rates and
outbreak sizes for foot-and-mouth disease virus, thereby
improving predictions of optimal control strategies by
incorporating uncertainty in the disease dispersal kernel.

Uncertainty in management due to social
processes

Uncertainty in management may occur when decision
makers rely on the public to implement a control mea-
sure (e.g., mask wearing to control COVID-19 or the need

F I GURE 3 Schematic illustrating how interrelating sources of uncertainty affect knowledge of system states (light green rectangles)

through management processes (light orange rounded rectangles). The relationships for just a single time point are shown but would be

similar for each point in time t. Five major sources of uncertainty are numbered and given in light blue rectangles. Light blue arrows show

where each uncertainty affects the system. We highlight uncertainties that are most commonly important (blue text), those that are generally

neglected (red text), and those that are likely to feed back on uncertainty in dispersal (bronze text). Definitions of the five sources of

uncertainty are (1) observational (occurrence/abundance or dispersal): imperfect observation of true state of ecological system; (2) ecological

process (birth/death or dispersal): limitations in knowledge about true ecological processes being managed; (3) environmental:

environmental variation over space and time affecting underlying demographic processes; (4) management: (a) when implementation of

management differs from planned actions or (b) when consequences of a management policy are different from expectation (social

reactions); (5) cost: limitations in knowledge of costs/benefits of management and damage, including relationship between costs and invader

abundance
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to conduct control on private lands). For example, wild
pigs are widespread across public and private lands.
While some landowners welcome lethal control of wild
pigs, others value their presence and prevent access of
managers to their land (Carlisle et al., 2020), which could
prevent achieving planned management actions. Addi-
tionally, the consequences of management actions can be
uncertain, despite strong knowledge of ecological pro-
cesses because systems act differently in the presence of
perturbations from management (e.g., behavioral
responses in humans during the COVID-19 pandemic
under evolving public health recommendations and per-
ceived infection risk). Reducing management uncertainty
can be especially important when control budgets are
tight (Li et al., 2019) and may be achieved through socio-
logical studies that determine where and what proportion
of the public support control. When optimizing manage-
ment using spatial models, accounting for spatial varia-
tion in management uncertainty is important because
optimal strategies could vary substantially from location
to location (e.g., the optimal amount of resources spent
on control vs. public education or treatment incentives
may vary spatially depending on spatial differences in
management uncertainty).

Cost uncertainty

The objective function for the optimization of control
strategies often involves minimizing damage and control
costs based on constraints. Each damage or control cost
is defined as the cost per unit of density, abundance, or
presence of invaders (Olson & Roy, 2008). Uncertainty in
the occupancy or abundance of the target species can
compound uncertainty in these costs (Welsh et al., 2021).
The typical management cost function assumes that it
becomes increasingly costly to locate and remove the
remaining individuals as density/abundance decreases
(Fischer et al., 2020; Olson & Roy, 2008). Parameters of
this relationship can have substantial impacts on
predicting the outcome of control strategies and identify-
ing the optimal control strategy (Pepin, Smyser,
et al., 2020), although uncertainty in cost functions is
rarely considered in optimization applications (both spa-
tial and nonspatial). In spatial contexts, there may be
additional considerations for the parameterization of
management cost functions. For example, Pepin, Snow,
et al. (2020) considered the case where control was con-
ducted using bait sites. In such cases, it is more costly to
conduct baiting at sites that are farther apart relative to
conducting baiting at the same number of bait sites
placed closer together because of the driving time
between sites. Thus, it can be important to invoke a more

complex cost function that varies based on the spatial
arrangement of the intervention being conducted.

Characterizing damage costs is challenging because
some types of damage are difficult to value (e.g., damage to
natural resources) (Pejchar & Mooney, 2009; Bagstad
et al., 2013), but lack of information about the shape of the
damage function can generate large uncertainty in the opti-
mal management strategy (Davis, Leland, et al., 2018;
Hornberg, 2001; Jackson et al., 2015; Yokomizo et al., 2009).
Management will typically be too little, too late for invaders
that cause high impact at low density, whereas ignorance of
the density–impact curve can lead to overinvestment in
management with little reduction in impact for species that
are only problematic at high density (Davis, Leland,
et al., 2018; Hornberg, 2001; Jackson et al., 2015; Yokomizo
et al., 2009). A consideration for spatial contexts is that both
the type and amount of damage can vary regionally such
that it is often important to allow the damage function to
vary accordingly (although data to parameterize any damage
function is rare and represents a major knowledge gap).

UNCERTAINTY IN DISPERSAL IS
MAGNIFIED BY OTHER
UNCERTAINTIES

Several of the uncertainties listed in Figure 3 could affect
dispersal, potentially amplifying its uncertainty. Because
dispersal rates are typically driven by new births, inter-
or intraspecific interactions, and environmental condi-
tions, uncertainty in both the ecological processes and
environmental conditions (Figure 3) can increase varia-
tion in dispersal, potentially affecting the optimal control
strategy. If, for example, the relationship between dis-
persal and environmental variation is poorly understood,
spatial predictions of invader presence or abundance
could fail under some environmental conditions, biasing
predictions of optimal resource allocation strategies. Sim-
ilarly, management uncertainty has been shown to feed
back on dispersal uncertainty when the management
action changes the characteristics of dispersal. One exam-
ple is boat inspection stations for reducing the spread of
invasive zebra mussels among lakes. If boat inspection
stations charge a fee, then boaters may shift behavior by
recreating at uncontrolled water bodies to avoid the
inspection cost (Chivers et al., 2017), which can lead to
the unanticipated contamination of other lakes (altered
dispersal). Similarly, the introduction of hunting reward
(bounty) programs in Tennessee and California as a pol-
icy for controlling wild pigs was accompanied by the ille-
gal transport and release of wild pigs to new areas to
create locally accessible hunting opportunities (Bevins
et al., 2014). These examples illustrate how social and
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fiscal reactions to management policies (management
uncertainty) can have unintended, but predictable, feed-
backs on dispersal uncertainty, including a dramatic
expansion and establishment of new populations rather
than local population reduction. These knowledge gaps
could be reduced through sociological studies to under-
stand predictors of behavioral responses to interventions
and ecological studies that estimate management effects
on dispersal, allowing for more accurate recommenda-
tions of optimal control strategies.

Reducing management uncertainty in spatial optimi-
zation applications also requires understanding the spa-
tial context of social reactions relative to the dispersal
kernel of the species (Coutts et al., 2013). If the benefits
of invasive species control far outweigh the costs, multi-
ple adjacent landowners may work cooperatively to
achieve socially desirable control (Coutts et al., 2013;
Epanchin-Niell & Wilen, 2015). However, when there is
substantial long-distance dispersal of the invasive species,
even a small number of recalcitrant landowners can
allow invasive species to persist at a broad spatial scale
despite the success of cooperative localized control
(Coutts et al., 2013). Reducing this type of management
uncertainty requires understanding the incentive basis of
specific landowners and how the arrangement of their
lands might influence dispersal and the effectiveness of
different management strategies. This understanding pro-
vides a platform for investigating strategies that include
social pressure on those landowners who may have the
severest consequences on the control or dispersal of the
invader.

TOOLS FOR REDUCING
UNCERTAINTY

Though the first step is to recognize and understand the
sources of uncertainty that have the largest potential impact
on optimal management of spatially structured populations,
the next is to reduce the most influential sources of uncer-
tainty (using the workflow described in Figure 1). Uncer-
tainty analysis tools facilitate the identification of
components of uncertainty that are most valuable to reduce
(Li et al., 2019; Runge et al., 2011; Shea et al., 2014) and can
be applied to any model structure or optimization approach.
Tools such as sensitivity analysis and value-of-information
analysis provide systematic approaches for evaluating the
consequences of different sources of uncertainty on deci-
sions (Moore & Runge, 2012).

Sensitivity analysis examines uncertainty in parameter
values or functions and how ranges on these components
affect uncertainty in the output variables (Moore &
Runge, 2012). Components that have the greatest impact on

management objectives are the factors to which the system
is most “sensitive”—that is, uncertainties whose reduction
would most improve the robustness of prediction of the
optimal management strategies. Value-of-information ana-
lyses, in contrast, identify the uncertainties that most affect
the choice of action (Runge et al., 2011) by calculating the
difference between the expected value of an optimal deci-
sion when information is perfect and the expected value of
the optimal decision in the presence of the current level of
uncertainty. Thus, value-of-information analyses provide
guidance on which types of research or monitoring data
might best improve the outcome of management decisions.
Under extreme uncertainties, techniques such as minimax
and information-gap theory (reviewed in Epanchin-
Niell, 2017) can evaluate worst-case scenarios that could
arise from different types of uncertainty. Similarly, robust
optimization techniques (Yemshanov et al., 2017) can be
used to optimize surveillance and management at the outset
in a system where very little is known. The utility of value-
of-information analysis (and similar techniques) to identify
the most important information gaps has been applied in
conservation only recently (Canessa et al., 2015; Nicol
et al., 2019) and remains underutilized in invasive species
management (Moore & Runge, 2012).

The following example illustrates steps for reducing
uncertainty in a real-world management context to improve
the robustness of optimal management recommendations.
Moore and Runge (2012) worked with managers to define
the management objectives and evaluation metrics of inter-
est for control of Salix cinerea (invasive willow) populations.
They then specified an appropriate demographic model for
prediction using expert knowledge and field data to define
ranges for parameter values that captured their uncertainty
about the values. They represented parameters as distribu-
tions and used sensitivity analyses to identify which param-
eters had the largest influence on management outcomes
and value-of-information analysis to determine the effect of
uncertainty on decisions. This allowed them to identify
robust long-term strategies for managing willow invasions
while accounting for parametric uncertainty. Their work
demonstrates a transparent framework for explicitly includ-
ing parametric uncertainty in decision-making and avoiding
the pitfalls of ignoring it (Milner-Gulland & Shea, 2017).
These strategies can be applied similarly to reduce uncer-
tainty in dispersal estimates (Shea et al., 2014) and other
uncertainties that might affect those estimates.

Another approach to addressing ecological process
uncertainty is to consider multiple models concurrently
as a so-called ensemble and use model aggregation
methods to combine predictions of different models to
reduce prediction bias (Shea et al., 2020; Yamana
et al., 2016) or to use bias and convergence weighting to
evaluate management strategies in a structured decision-
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making framework (Webb et al., 2017). The choice of
models to include in the ensemble will affect prediction,
and it may be useful to consider a suite of models that
are balanced with respect to differences in predicted out-
comes. Value-of-information analyses applied to a bal-
anced set of models can help reveal which approach
(starting ensemble vs. a single or smaller set of models) is
best for identifying the optimal control strategy (Li
et al., 2019). Dispersal processes can also have some sto-
chastic uncertainty that is irreducible but important to
consider for accurate assessments of decision risks.

KEY PRIORITIES IN SCIENCE AND
PRACTICE OF OPTIMIZING
INVASION MANAGEMENT

We have synthesized persistent knowledge gaps and chal-
lenges in using dynamic spatial models to optimize the
management of invasions and described approaches that
would bridge current gaps. Our synthesis of system
uncertainties highlights the following priorities for
improving invasion management.

Addressing uncertainty in dispersal/
connectivity

Dispersal estimates can have substantial uncertainty in
rates, direction, and functional form. Sometimes only a
single value of the mean dispersal distance is all the
information available for an entire species at the outset of
management optimization. A critical gap is failing to con-
sider variation and uncertainty in dispersal—both in
terms of the factors that drive dispersal and the quantifi-
cation of dispersal kernels. For example, if the optimal
solution is to control the source (Baker, 2017), uncer-
tainty in identifying the real source and rates of dispersal
from it is needed to determine the optimal solution and
provide transparency in decision risk for managers. Dis-
persal has been challenging to measure, but advances in
both measurement and estimation have made it possible
to estimate dispersal rates more accurately and better
quantify its uncertainty.

Evaluating processes that influence
dispersal and its uncertainty

Dispersal can be influenced by ecological, management, or
environmental processes. These feedback loops can mag-
nify uncertainty in dispersal, thereby demanding attention
in planning the optimal management of invasions. A

common challenge is that there may be very little informa-
tion to account for feedback of important processes on dis-
persal. Sensitivity and value-of-information analyses
spanning realistic parameter values from the management
system would be a useful first step in identifying and
understanding the most important uncertainties affecting
dispersal and associated optimal management solution.
Eliciting expert opinion or using values from previous stud-
ies is a useful starting point for parameterizing these ana-
lyses, which in turn help guide which data are most
important to collect to better understand potential feed-
backs of uncertainties on dispersal (Buckley et al., 2005).
This kind of holistic approach to understanding dispersal
drivers and uncertainties is an important direction for opti-
mizing the management of invasions because it reduces
the risk of focusing on local optimality outcomes that may
fail in the longer term.

Understanding how the spatial aspects of
management uncertainty affect outcomes

In all management optimization problems, management
uncertainty, which arises from variation in human behav-
ior, is less well studied than ecological or observational
uncertainty. However, in managing invasions, the spatial
heterogeneity and distribution of stakeholder attitudes and
responses can matter more than overall attitudes. For
example, if we estimate that 80% of landowners would
allow control on their parcels but do not account for where
those landowners are relative to the parcels that need con-
trol according to the optimal strategy, then the optimal
strategy may well fail. Accounting for spatial heterogeneity
in uncertainty in management responses across the man-
agement zone is a key consideration for optimizing the
management of invasions.

Incorporating multiple sources of
uncertainty

Incorporating multiple sources of uncertainty is techni-
cally challenging and has rarely been attempted in spatial
or nonspatial management optimization problems of
invasions. When uncertainty is incorporated, it has
focused primarily on species presence or abundance
uncertainty. Accounting for multiple uncertainties con-
currently is a crucial gap because there are usually multi-
ple types of uncertainty that underlie predictions of
optimal management strategies (Figure 3), and optimiza-
tion approaches are limited to the parameter space given
as inputs. As a result, approaches that neglect key uncer-
tainties can wrongly identify globally optimal solutions
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and misrepresent the risk associated with different man-
agement decisions. For better transparency of decision
risks and more accurate identification of optimal strate-
gies, uncertainties need to be modeled jointly so their
interaction can be accounted for and appropriate propa-
gation of uncertainties can occur.

CONCLUSION

A key challenge with determining optimal management
solutions using dynamic spatial models is their increased
dimensionality relative to nonspatial problems. This
explains why solutions for spatial resource allocation
problems have lagged behind nonspatial approaches,
including joint modeling of multiple sources of uncer-
tainty. Utilizing tools from decision analysis to identify
the uncertainties that have the most significant impact
on correctly identifying spatial resource allocation strate-
gies can help to focus on those dimensions that will most
effectively inform optimal solutions. Advances in estimat-
ing dispersal processes provide a platform for improving
the management guidance that can be gleaned from
knowledge of dispersal and methods for including dis-
persal uncertainty in optimal management solutions.
Optimization practitioners have recently developed
promising new methods for handling high-dimensional
problems, such as optimization under multiple sources of
uncertainty, where many patches and sources of uncer-
tainty can be considered concurrently, and feedback
loops on sources of uncertainty and their effects on opti-
mal solutions can be considered. These complex optimi-
zation techniques are attractive tools for tackling
multidimensional ecological problems, but they require
substantial expertise to implement, which can be
achieved through increased investment by institutions in
collaboration with specialists from optimization, ecology,
economics, sociology, and decision theory.
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