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Abstract

We study the dynamics of solitary waves traveling in a one-dimensional chain of bistable elements

in the presence of a local inhomogeneity (‘defect’). Numerical simulations reveal that depending

upon its initial speed, an incoming solitary wave can get transmitted, captured or reflected upon

interaction with the defect. The dynamics are dominated by energy exchange between the wave and

a breather mode localized at the defect. We derive a reduced-order two degree of freedom Hamilto-

nian model for wave-breather interaction, and analyze it using dynamical systems techniques. Lobe

dynamics analysis reveals the fine structure of phase space that leads to the complicated dynamics

in this system. This work is a step towards developing a rational approach to defect engineering

for manipulating nonlinear waves in mechanical metamaterials.

I. INTRODUCTION

Acoustic metamaterials [1] are (generally) periodic structures assembled using artificially

engineered units, and designed to possess unconventional mechanical wave propagation char-

acteristics. This class of mechanical metamaterials has potential applications in vibration

control [2], energy harvesting [3], mechanical computing [4], precision sensing [5] and cloaking

[6]. The key to realizing the vast promise of such metamaterials lies in developing rational

design and control techniques for manipulating the flow of energy in these systems. Since the

dispersion relation contains all the information about the propagation and growth (or de-

cay) of linear waves, the research in linear acoustic metamaterials has focussed on developing

techniques for tailoring the dispersion relation [7, 8].

For nonlinear metamaterials [9], the design space is vastly less explored due to the in-

creased complexity of the nonlinear dynamics of wave propagation. One of the popular archi-

tectures consists of a one-dimensional chain of bistable elements connected by linear springs

[10–12]. This class of metamaterials supports the propagation of solitary waves [13, 14], i.e.,

large amplitude, spatially localized waves that can travel large distances without distortion.

Depending on the system geometry, continuum approximations of such systems (correspond-

ing to inter-mass distance going to 0) reduce to variants of the canonical nonlinear partial
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differential equations (PDEs) such as the Sine-Gordon and Klein-Gordon equations. This

connection has been exploited in the analysis of 1D and 2D acoustic bistable metamaterial

systems in previous works [11, 12, 15, 16]. The propagation of solitary waves in such non-

linear structures can be tailored by introducing suitable spatial variations in mass or spring

stiffness. In previous works, the effect of introducing inhomogeneity in bistable chains has

been studied analytically in the weakly nonlinear regime for the case of 1D chain with spa-

tially graded stiffness [12], and numerically in the case of 1D or 2D structures with localized

inhomogeneities (‘defects’) in mass and stiffness [11, 15]. The presence of a defect can give

rise to an oscillatory mode (‘breather’) localized at the defect [11, 13, 17].

In this paper, we employ methods of dynamical systems theory to gain a deeper under-

standing of the dynamics of solitary waves in a 1D chain of bistable elements in the presence

of a stiffness defect. Numerical simulations of the discrete chain show that depending on

its speed, an incoming solitary wave can be transmitted, captured or reflected back upon

interaction with the defect. To understand these numerical results, following earlier work on

Sine-Gordon equation with a defect [18], we derive a two degree of freedom (DOF) reduced-

order model for the continuum approximation of this system using the method of collective

coordinates. The two DOFs correspond to the position of the solitary wave, and the ampli-

tude of the breather. This model is shown to capture some qualitative aspects of dynamics.

The analysis of phase space transport in the system reveals the organizing structures that

delineate the sets of initial conditions of solitary waves leading to qualitatively different

outcomes after interaction with the defect.

II. SYSTEM MODEL AND COHERENT STRUCTURES

A. System without a defect

1. N-DOF System

We begin by discussing the defect-free chain of bistable elements studied in [10], and

summarize their main results in the fully nonlinear (large amplitude) regime. The periodic

chain consists of N bistable units connected by (‘intersite’) linear springs of stiffness k2, see

Fig. 1. Each unit consists of two (‘onsite’) identical linear elastic springs with stiffness k1

3
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FIG. 1: An infinite chain of bistable elements with a defect in stiffness of a pair onsite springs. The

distance between neighboring ground joints is â. In the unstressed configuration, L is the horizontal

distance between the mass at site i and the corresponding ground joints. The displacement of the mass at

site i is ui. In the absence of defects, each onsite spring has stiffness k1, and each intersite spring has

stiffness k2. The parameter 0 ≤ γ < 1 controls the size of the defect.

and unstressed length l0, connected to point a mass m in a symmetric fashion. The other

ends of the springs are fixed to the ground via joints that allow rotation. It was shown in [10]

that this system supports stable propagation of solitary waves (displacement ‘kinks’) in the

large amplitude limit. Let ui denote the displacement of the ith mass from the unstressed

configuration. From Fig. 1, we get l20 = L2 + b2. The length of each of the two onsite springs

at site i is l(ui) =
√

(L− ui)2 + b2, and the total force exerted by them on the ith mass is

F (ui) = 2k1(L − ui)
l(ui)− l0
l(ui)

. Following [10], we non-dimensionalize the system using the

relations: ūi =
u

L
, Kr =

k2

k1

, l̄(ūi) =
√

(1− ūi)2 + d2, d =
b

L
, and l̄0 =

√
1 + d2.

The dimensionless equations of motion of the chain are

ūi,t̄t̄ +Kr(−ūi+1 + 2ūi − ūi−1)− F̄ (ūi) = 0, (1)

where F̄ (ūi) = −∂ψ(ūi)

∂ūi
=
F (ūi)

k1L
= 2(1−ūi)(1−

l̄0
l̄(ūi)

). Finally, ψ(ūi) =
[√

(1− ūi)2 + d2 −
√

1 + d2
]2

is the dimensionless nonlinear spring potential.

2. Continuum limit

Let the ith mass be initially located at xi = iâ, and define non-dimensionalized quantities

x̄i =
xi
â
, ∆x̄i = x̄i − x̄i−1 = 1. (2)
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In the continuum limit â→ 0, Taylor expansion yields

ūi±1 = ūi ±
∂ūi
∂x̄

+
1

2

∂2ūi
∂x̄2

+O(3). (3)

Substituting (3) into (1) gives the nonlinear PDE

ū,t̄t̄ −Krū,x̄x̄ − F̄ (ū) = 0. (4)

For the rest of the paper, we drop the overbars for convenience. In the large amplitude limit,

this system supports a solitary wave solution of the form ũk(x, t) = ûk(x − vt) = ûk(z),

where v is the propagation velocity and z = x− vt is a reduced variable. The solitary wave

satisfies the implicit equation in ûk(z),

ln

[
b1(ûk) +

b1(ûk)

b2(ûk)

√
1 + d2

]
+

√
1 + d2

2
ln

[
1− b1(ûk)

1 + b1(ûk)

1− b2(ûk)

1 + b2(ûk)

]
=

√
2

C2
0 − v2

(z − z0),

(5)

where z0 is a constant of integration, C0 =
√
Kr , b1(ûk) = ûk − 1, and b2(ûk) =√

1 + d2(ûk − 1)√
(ûk − 1)2 + d2

.

3. Dispersion Relation

The linearization of (4) about u = 0 is

u,tt −Kru,xx + ω2
0u = 0, (6)

where ω2
0 =

2

1 + d2
. By looking for solutions of the form u(x, t) = ũei(qx−ωt), we obtain the

dispersion relation

ωL =
√
ω2

0 +Krq2, (7)

where q ∈ (0,∞) is the (spatial) wavenumber, and ωL is the (temporal) frequency. This

relation shows that there is a bandgap in the system, i.e., the defectless system supports

linear waves limited to the frequency range ωL ∈ (w0,∞).
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B. System with a defect

A localized inhomogeneity is now introduced in the bistable chain by modifying the onsite

spring stiffness to be (1− γ)k1 at the origin. Thus, the new nonlinear and linearized PDEs

are

u,tt −Kru,xx − (1− γδ(x))F (u) = 0, (8)

and

u,tt −Kru,xx + (1− γδ(x))ω2
0u = 0, (9)

respectively, where 0 < γ < 1 is the defect magnitude, and δ(x) is the Dirac delta. Motivated

by previous works [13, 17–22], we explore the possibility that this ‘small’ perturbation of (6)

can support spatially localized coherent structures with frequencies that lie in the bandgap

(0, ω0). Inserting the ansatz u(x, t) = φ(x)eiωt into the linearized equation (9) yields

Krφ,xx + (ω2 − ω2
0)φ = −γδ(x)ω2

0φ. (10)

Let us first solve (10) in the region x ∈ (−∞,−ξ)∪ (ξ,∞), where 0 < ξ � 1. In this region,

(10) reduces to

Krφ,xx + (ω2 − ω2
0)φ = 0. (11)

Putting φ = Ceκx,

Krκ
2φ,xx + (ω2 − ω2

0)φ = 0, (12)

where

κ2 =
ω2

0 − ω2

Kr

. (13)

The above equation implies that κ will be real as long as ω lies in the bandgap, i.e, ω < ω0.

In that case, (12) has the solution of the form

φ(x) = C1e
κx + C2e

−κx. (14)
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Clearly, φ will blow up as x → −∞ unless C2 is zero on (−∞,−ξ). Similarly, C1 must be

zero on (ξ,∞). Thus, the solution has the form:

φ(x) =

 C1e
κx , x < 0,

C2e
−κx , x > 0.

(15)

Continuity of the solution at x = 0 requires C1 = C2, and hence, φ(x) = C1e
−κ|x|. Hence,

the solution is localized in space, and periodic in time, i.e., a breather [20].

To compute the breather frequency ω, we integrate both sides of (10) over the interval

−ξ < x < ξ, yielding

∫ ξ

−ξ
Krφ,xx dx+

∫ ξ

−ξ
(ω2 − ω2

0)φ dx =

∫ ξ

−ξ
−γδ(x)ω2

0φdx, (16)

Kr(φ,x|x=ξ − φ,x|x=−ξ) +

∫ ξ

−ξ
(ω2 − ω2

0)φ dx =

∫ ξ

−ξ
−γδ(x)ω2

0φdx. (17)

Taking the limit ξ → 0, the second term of the left hand side of (17) vanishes since φ is

finite, and we obtain

Kr(−κ C1 e
−κx − κ C1 e

−κx) = −γω2
0φ(0) = −γω2

0C1, (18)

and

κ =
γω2

0

2Kr

. (19)

Substitution of the relation in (19) into (13) yields the relation

ω = ω0

√
1− γ2ω2

0

4Kr

. (20)

Finally, the full breather solution is

ûb(x, t) = C1 cos (ωt+ θ)φ(x) = C1 cos (ωt+ θ)e
−
γω2

0

2Kr

|x|
, (21)

where C1 and θ are constants that depend on the initial conditions. We emphasize that the
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FIG. 2: Space-time plot of an incoming wave transmitting across the defect in the (a) discrete and (b)

continuum models. The breather mode gets ‘activated’ once the wave has passed the defect. The

parameters are d = 1,Kr = 2, and γ = 0.9.
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FIG. 3: Space-time plot of an incoming wave getting captured at the defect in the (a) discrete and (b)

continuum models. The parameters are d = 1,Kr = 2, and γ = 0.9.

breather is an exact solution of the linearized PDE (9). This solution is expected to decay

anomalously slowly in the nonlinear system (8) due to radiation damping effects, rendering

it ‘metastable’ [18, 23].

1. Numerical simulations of the discrete and continuum models for the system with defect

In Figs. 2, 3 and 4, we show the space-time evolution of initial conditions that lead to

transmission, capture, and reflection of an incoming solitary wave, respectively. We perform

numerical computations using both the N-DOF system (1) (suitably modified to include the

defect), as well as a finite difference discretization of the continuum system with defect (8).

Fig. 5 summarizes the input-output behavior of the system with defect. If the initial speed of

an incoming solitary wave, vi, is equal to or below a critical velocity vcr, it is either captured
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FIG. 4: Space-time plot of an incoming wave reflecting from the defect in the (a) discrete and (b)

continuum models. The parameters are d = 1,Kr = 2, and γ = 0.9.
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FIG. 5: Input-output behavior of the system showing transmission, capture and reflection. Here vi is the

velocity of an incoming solitary wave far to the left of the defect, and vf is its final velocity. The

parameters are d = 1,Kr = 2, γ = 0.9. See [40] for a video of the three cases.

at the defect site (vf ≈ 0), or reflected back (vf < 0). For vi > vcr, the wave passes through

the defect. In all our simulations, we use a fully formed solitary wave profile (far to the left

of the defect) as an initial condition to avoid phonon excitation (‘tingling’) in the discrete

system. Reflection and/or trapping of incoming solitary waves has been reported in earlier

studies involving graded stiffness in 1D chains [12], and localized defects in 2D structures

supporting vector solitary waves [15].
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III. REDUCED ORDER MODEL

A. Derivation

To understand the numerical results discussed in the previous section, we derive a reduced

order model for the system using the method of collective coordinates [13], alternatively

known as the reduced Lagrangian approach [24]. In this approach, an ansatz is chosen for

the solution, and the Euler-Lagrange equations are obtained by restricting the principle of

stationary action among the class of solutions representable by that ansatz. Usually, the

known exact or approximate coherent structures are included in the ansatz. Following [18],

we use an ansatz that assumes that the spatial profiles of the solitary wave ûk and the

breather ûb are unaffected by their interaction. Specifically, we pick the ansatz

u(x,X(t), a(t)) = uk(x,X(t)) + ub(x, a(t)), (22)

where X(t) is location of the kink, uk = ûk(x−X(t)), a(t) is the amplitude of the breather,

and ub = a(t)φ(x).

The Lagrangian for (8) is

L =

∫ ∞
−∞

[
1

2
u2
,t −

1

2
Kru

2
,x − (1− γδ(x))ψ(u)

]
dx. (23)

Taking the derivative of (22) with respect to x and t yields

u,x = uk,x + ub,x, u,t = uk,t + ub,t (24)

where

uk,t = −Ẋ uk,z, uk,x = uk,z, ub,x = aφ,x, and ub,t = ȧφ. (25)

We approximate higher powers of the derivatives as follows

u2
,t = (uk,t + ub,t)

2 ≈ u2
k,t + u2

b,t, (26)
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FIG. 6: Exact (solid) and approximate (dashed) shape of the solitary wave. The exact solution is

obtained by numerically solving (5), and has a slope
duk
dz
≈

√
2√

C2
0 − v2

(d−
√

1 + d2) at uk = 1 with

z0 = 25. The approximate solution is given by (29), where C2 is chosen to match the slope of the exact

solution at uk = 1 with X0 = 25. (for d = 1, z0 = 25, v = 1, and Kr = 2)

and

u2
,x = (uk,x + ub,x)

2 ≈ u2
k,x + u2

b,x. (27)

Substituting (22,26,27) into (23) yields

L(X, a, Ẋ, ȧ) =

∫ ∞
−∞

[
1

2
u2
k,t +

1

2
u2
b,t −

1

2
Kru

2
k,x −

1

2
Kru

2
b,x − (1− γδ(x))ψ(uk + ub)

]
dx.

(28)

Since there is no explicit solution of (5) for uk, we will approximate the solitary wave as

uk(x,X) = 1− tanh

(
x−X√

2C2

)
, (29)

where C2 =

√
C2

0 − v2

2(
√

1 + d2 − d)
has been chosen such that the slopes of the approximate and

exact solutions agree at uk = 1, see Fig. 6. Since C0 � v, we use C2 ≈
C0

2(
√

1 + d2 − d)
. The

fifth integral in (28) can be written as

∫ ∞
−∞

(1− γδ(x))ψ(uk + ub) dx =

∫ ∞
−∞

ψ(uk + ub) dx−
∫ ∞
−∞

γδ(x)ψ(uk + ub) dx

=

∫ ∞
−∞

ψ(uk + ub) dx− γψ(uk(0, X) + a). (30)

To calculate the integral in (30), we Taylor expand the nonlinear potential energy term
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ψ(uk + ub) around a = 0, assuming that the excitation of the breather mode is weak. The

rest of the details of computation of the integrals in (28) are relegated to the Appendix.

The effective Lagrangian is computed by substituting (A1-A7) into (28),

Leff (X, a, Ẋ, ȧ) =
A

2
√

2C0

Ẋ2+
1

2κ
ȧ2−C2

0

(
A

2
√

2C0

+
κ

2
a2

)
−C0A

2
√

2
− a2

(1 + d2)κ
+γψ (uk(0, X) + a)

=
A

2
√

2C0

Ẋ2 +
1

2κ
ȧ2 −

(
1

(1 + d2)κ
+
C2

0κ

2

)
a2 − C0A√

2
+ γ (R(a) + F (X, a) +G(X)) ,

(31)

where

F (X, a) = 2

a tanh

(
X√
2 C2

)
−
√

1 + d2

√(
tanh

(
X√
2 C2

)
+ a

)2

+ d2

+ tanh2

(
X√
2 C2

)
− 1

}
, (32)

G(X) = 1− tanh2

(
X√
2 C2

)
, (33)

R(a) = a2 + 2(1 + d2), (34)

and

A = 2
√

1 + d2 − d2 ln

[√
1 + d2 + 1√
1 + d2 − 1

]
. (35)

The above choice of F (X, a) and G(X) is crucial for the perturbation theory arguments

that we employ later in the paper. The equations of the motion derived from the effective

Lagrangian are

A√
2C0

Ẍ − γ
(
∂F

∂X
+
dG

dX

)
= 0, (36)

1

κ
ä+

(
C2

0κ+
2

(1 + d2)κ

)
a2 − γ

(
∂F

∂a
+
dR

da

)
= 0. (37)

The expressions for partial derivatives in the above equations are provided in the Appendix.
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FIG. 7: (a) Input-output behavior of the reduced-order system with γ = 0.9. Here, vf and vi denote final

and initial wave velocities. (b) Capture (bold), reflection (dash) and transmission (dot-dash) of incoming

solitary waves in the reduced-order model with initial velocities (0.171,0.170,0.169), respectively.

The system in (36, 37) is a conservative two degree of freedom system governing the evolution

of the position of the centre of the solitary wave, X, and the breather amplitude, a.

B. Numerical Simulations

In Fig. 7(a), we show the input-output behavior obtained by solving the 4D reduced-order

dynamical system given by (36, 37). To mimic the initial conditions used in simulations of

the full-order models in Section II, the initial conditions (X = −100, a = 0, ȧ = 0) are

kept fixed, and the initial solitary wave speed Ẋ(0) > 0 is varied. Fig. 7(b) shows the

time evolution for three different initial conditions that lead to capture, transmission and

reflection, respectively.

For γ = 0.9, the critical velocity obtained using this model is vcr ≈ 0.19, which is about

35% lower than the critical velocity for full-order models. Contrary to the full-order models,

capture is rarely seen in the reduced model, and there exist several intervals of initial velocity

below vcr that lead to transmission upon interaction with the defect. In the next section, we

interpret these results by analyzing phase space transport in the reduced-order dynamical

system.
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IV. PHASE SPACE ANALYSIS OF THE REDUCED MODEL

Following the approach of [18], we analyze the reduced order model using a perturbative

approach. To do this, we introduce a perturbation parameter µ that is a measure of the

coupling between the solitary wave and the breather dynamics in the system. We use lobe

dynamics and Melnikov theory to understand phase space transport in the 4D dynamical

system in the limit of small (but non-zero) coupling. We show that for µ � 1, there exist

heteroclinic orbits that correspond to solitary waves that transmit across the defect with

vanishing initial and final speeds. In this limit, we prove the existence of chaotic dynamics,

and provide a phase space interpretation of the transmitting and reflecting trajectories, as

well as that of the critical velocity. Finally, we argue that the qualitative picture persists for

the fully coupled case of µ = 1, and compute the corresponding heteroclinic orbits.

A. Hamiltonian Formulation

From the expression of the effective Lagrangian in (31), we obtain the Hamiltonian as

H(X, a, pX , pa) = ẊpX + ȧpa − Leff (38)

where pX and pa are the momentum variables corresponding to the collective coordinates X

and a, respectively. These momenta are computed as follows

pX =
∂Leff

∂Ẋ
=

A√
2C0

Ẋ, (39)

pa =
∂Leff
∂ȧ

=
1

κ
ȧ. (40)

Substituting (31,39,40) into (38) yields

H(X, a, pX , pa) =

√
2C0

2A
P 2
X+

κ

2
P 2
a+

(
1

(1 + d2)κ
+
C2

0κ

2

)
a2−γ (R(a) + F (X, a) +G(X))+

C0A√
2
.

(41)
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B. Perturbation Analysis

We introduce a coupling parameter 0 ≤ µ ≤ 1 to apply perturbation theoretic arguments.

The new Hamiltonian is taken to be

H(X, a, pX , pa) =

√
2C0

2A
p2
X+

κ

2
p2
a+

(
1

(1 + d2)κ
+
C2

0κ

2

)
a2−γ (R(a) + µF (X, a) +G(X))+

C0A√
2
.

(42)

1. Uncoupled Case (µ = 0)

For µ = 0, the X and a dynamics are uncoupled, and the Hamiltonian can be written as

(ignoring constant terms)

H = HX +Ha, (43)

where

HX =

√
2C0

2A
p2
X − γG(X), (44)

Ha =
κ

2
p2
a +

(
1

(1 + d2)κ
+
C2

0κ

2

)
a2 − γR(a). (45)

Using Hamilton’s equations, we get from (44)

Ẋ =
∂HX

∂pX
=

√
2C0

A
pX , (46)

˙pX = −∂H
X

∂X
= γ

dG

dX
= −
√

2γ

C2

sech2

(
X√
2 C2

)
tanh

(
X√
2 C2

)
. (47)

Hence, the solitary wave dynamics are that of a particle moving under a potential V (X) ∝
−γG(X) = γ

(
tanh2

(
X√
2 C2

)
− 1
)

that has a single minima at the origin, and goes to

zero as x → ±∞. The system of equations (46, 47) has three fixed points (X∗, p∗X): a

nonlinear center (0, 0), and two parabolic points (±∞, 0). There exist two heteroclinic orbits

connecting the fixed points at X = ±∞, see Fig. 8. The phase space is divided into three

disjoint regions (R1, R2, R3), corresponding to trajectories that are right moving, travelling

on closed curves about the origin, and left moving, respectively.
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FIG. 8: The X dynamics in the uncoupled case (µ = 0). (a) Potential Energy. (b) The two heteroclinic

orbits connecting the fixed points at X = ±∞, with parameters d = 1, Kr = 2,and γ = 0.9. The region R2

is enclosed by these two orbits. Also shown are typical trajectories in the three regions R1, R2, R3.

From Eqs. (46,47), we get

Ẍ = −2γ C0

A C2

sech2

(
X√
2 C2

)
tanh

(
X√
2 C2

)
, (48)

which can be integrated to obtain the equation of the heteroclinics:

X0
± = ±

√
2 C2 sinh−1

 1

C2

√√
2 γ C0

A
(t− t0)

 , (49)

where we have assumed that the two trajectories reach the origin at t = t0. From (45), the

governing equations for the breather are

ȧ =
∂Ha

∂pa
= κpa, (50)

ṗa = −∂H
a

∂a
= −(C2

0κ+
2

(1 + d2)κ
− 2γ)a, (51)

which yields ä + (C2
0κ

2 +
2

(1 + d2)
− 2κγ)a = 0. We pick parameters such that C2

0κ
2 +

2

(1 + d2)
−2κγ > 0, and hence the breather mode is a linear oscillator in the uncoupled case,

see the Appendix for more details.
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2. Coupled Case (µ > 0)

For µ > 0, the Hamiltonian is given by (42). The Hamilton’s equations are

Ẋ =
∂H

∂pX
=

√
2C0

A
pX , (52)

˙pX = −∂H
∂X

= γ

(
dG

dX
+ µ

∂F

∂X

)
, (53)

ȧ =
∂H

∂pa
= κpa, (54)

ṗa = −∂H
∂a

= −(C2
0κ+

2

(1 + d2)κ
− 2γ)a+ γµ

∂F

∂a
. (55)

This 4D coupled system has three fixed points (X∗, p∗X , a
∗, p∗a): the origin (0, 0, 0, 0), and

(±∞, 0, 0, 0). For µ = 0, the origin is clearly a fixed point of the type centre × center. In

the Appendix, we provide conditions on parameters C0 and d such that the origin continues

to be a centre × center fixed point for all 0 ≤ µ ≤ 1. This is important to ensure the validity

of perturbation theory arguments that follow.

For total energy slightly above that of the fixed points at X = ±∞, there exist periodic

orbits around them. This is because in the limit (X → ±∞, pX = 0), the X and a dynamics

decouple, and the pair (a = 0, pa = 0) is a nonlinear center of the system given by (54, 55).

3. Poincaré Map and Action-Angle Coordinates

We transform the the collective coordinate pair (a − pa) into action-angle coordinates

(I − θ) via

a = S
√
ωI cos(θ), and pa =

√
2 ωI

κ
sin(θ), (56)

where ω is the breather frequency defined in (20), and S =

√√√√ 2κ

C2
0κ

2 +
2

(1 + d2)
− 2κγ

. The

Hamiltonian in the transformed variables is

H(X, pX , I, θ) = HX(X, pX) + ωI + µ H1(X, I, θ) + C3, (57)
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where HX is given by (43), C3 = C0A√
2
− 2γ(1 + d2) and

H1(X, I, θ) = −γF (X, I, θ) = −2γ

(
S
√
ωI cos(θ) tanh

(
X√
2 C2

)
+ tanh2

(
X√
2 C2

)
− 1

−
√

1 + d2

√(
tanh

(
X√
2 C2

)
+ S
√
ωI cos(θ)

)2

+ d2

 . (58)

Thus, the Hamilton’s equations are

Ẋ =
∂H

∂pX
=

√
2C0

A
pX , (59)

˙pX = −∂H
∂X

= γ
dG

dX
+ µγ

∂F

∂X
, (60)

θ̇ =
∂H

∂I
= ω − µγ∂F

∂I
, (61)

İ = −∂H
∂θ

= µγ
∂F

∂θ
. (62)

The uncoupled (µ = 0) equations have a family of orbits

İ = 0 ⇒ I(t) = I0, (63)

θ̇ = ω ⇒ θ(t) = ωt+ θ0. (64)

The four dimensional phase space of the coupled system is foliated by three-dimensional

constant energy manifolds. Consider the manifold defined by

H(X, pX , θ, I) = h0, (65)

where h0 is a constant. On this manifold, we define a Poincarè Map Pθ0 on the two di-

mensional section Σθ0 = {(X, pX); θ = θ0, H = h0}. This map is globally well-defined as

long as
∂H

∂I
> 0 along the trajectories, since in that case one can invert (65) to obtain

I = I(X, pX , θ0;h0) using the implicit function theorem. From (61), we conclude that this

will hold for small enough values of the coupling µ.
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4. Melnikov analysis and existence of chaotic dynamics for small µ

When µ� 1, we can transform the coupled two degree of freedom system given by (59-62)

into a single degree of freedom periodically forced system in (X, pX) [18, 25]. In that case,

we can use Melnikov’s theorem to establish transversal intersection of stable and unstable

manifolds of fixed points of the Poincarè map defined above. The Melnikov function is

M(θ0, t0) =

∫ ∞
−∞
{HX , H1}(X0, p0

X , t+ θ0, I
0)dt =

∫ ∞
−∞

(
∂HX

∂X

∂H1

∂pX
− ∂HX

∂pX

∂H1

∂X

)
dt, (66)

where (X0, p0
X) is the coordinate-momentum pair corresponding to the heteroclinic trajectory

of the unperturbed system given by (49). This yields

M(θ0, t0) =
2γ

C2

√√
2γ C0

A

∫ ∞
−∞

sech3

(
X0

√
2 C2

){
S
√
ωI0cos(t+ θ0) + 2 tanh

(
X0

√
2 C2

)

−
√

1 + d2
(
S
√
ωI0cos(t+ θ0) + tanh

(
X0
√

2 C2

))
√
d2 +

(
S
√
ωI0cos(t+ θ0) + tanh

(
X√
2C2

))2

}
dt. (67)

From (49), sech

(
X0

√
2 C2

)
=

1√
1 +N2(t− t0)2

, and tanh

(
X0

√
2 C2

)
=

N(t− t0)√
1 +N2(t− t0)2

,

where N = 1
C2

√√
2C0 γ
A

. Inserting these expressions into (67), we get

M(θ0, t0) =
2γ

C2

√√
2γ C0

A

∫ ∞
−∞

1

(1 +N2(t− t0)2)
√

1 +N2(t− t0)2
×{

S
√
ωI0cos(t+ θ0) + 2

N(t− t0)√
1 +N2(t− t0)2

−

√
1 + d2

(
S
√
ωI0cos(t+ θ0) + N(t−t0)√

1+N2(t−t0)2

)
√
d2 +

(
S
√
ωI0cos(t+ θ0) + N(t−t0)√

1+N2(t−t0)2

)2

}
dt. (68)

Assuming t0 = 0, the Melnikov function can be written as

M(θ0) =
2γ

C2

√√
2γ C0

A

∫ ∞
−∞

Q(t)[M1(t, θ0) +M2(t)−M3(t, θ0)]dt, (69)
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where Q(t) =
1

(1 +N2t2)
√

1 +N2t2
,M1(t, θ0) = S

√
ωI0cos(t + θ0),M2(t) = 2

Nt√
1 +N2t2

,

and M3(t, θ0) =

√
1 + d2

(
S
√
ωI0cos(t+ θ0) +

Nt√
1 +N2t2

)
√
d2 +

(
S
√
ωI0cos(t+ θ0) +

Nt√
1 +N2t2

)2
.

We claim that the Melnikov function M(θ0) vanishes at θ0 = ±π
2
. To prove this, we

compute

M1(t,
π

2
) = −S

√
ωI0 sin(t), and (70)

M3(t,
π

2
) =

√
1 + d2

(
−S
√
ωI0 sin(t) + Nt√

1+N2t2

)
√
d2 +

(
−S
√
ωI0 sin(t) + Nt√

1+N2t2

)2
. (71)

Note that Q(t) is an even function of time, while M1(t, π
2
), M2(t),and M3(t, π

2
) are odd

functions of time. It follows from (D1) that all the three terms of the integral vanish for

θ0 = π
2
, since each integrand is a product of an even and an odd function. Hence, we have

proved that M(
π

2
) = 0. Melnikov’s theorem further requires that

π

2
be a simple zero of M ,

i.e.,
dM(θ0)

dθ0

|θ0=π
2
6= 0. We provide a proof of this statement in the Appendix. The preceding

analysis establishes the existence of heteroclinic tangles and chaotic dynamics in the system

for small values of µ. It also implies that there exist orbits heteroclinic to the periodic orbits

at X = ±∞ in the corresponding 4D phase space of (42).

5. Lobe dynamics and phase space transport for small µ

We use the theory of lobe dynamics [18, 26] to interpret the orbits of solitary waves in this

chaotic system. This theory states that phase space transport can be understood in terms

of forward and backward mapping of parcels (called ‘lobes’) bounded by segments of stable

(W s
p̂i

) and unstable (W u
p̂i

) manifolds of the two fixed points, p̂1 = (−∞, 0) and p̂2 = (∞, 0),

of the map Pθ0 .

The phase space is again divided into three disjoint regions R1, R2, R3, corresponding to

solitary waves that are travelling right, (temporarily) captured at the defect, and traveling

left, respectively. This division of phase space is performed by selecting the appropriate
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FIG. 9: The stable and unstable manifolds of the fixed points at X = ±∞ for the Poincarè map P at the

section θ0 = π/2. The region R2 is bounded by bold segments. The lobe L1,2(1) is the set that is mapped

from R1 into R2 in one iteration of P . This lobe and its three forward iterates are shown in red. The lobe

L2,1(1) is the set that is mapped from R2 into R1 in one iteration. This lobe and its one forward as well as

two backward iterates are shown in black. Note that the lobe P 3(L1,2(1)) intersects the lobe P−2(L2,1(1)),

implying that trajectories can travel from R1 to R2 and then back to R1. The parameters are h0 = 0.5,

µ = 0.5, and γ = 0.9.

primary intersection points (‘pips’). A point q̂i belonging to the intersection of W u
p̂j

and W s
p̂k

is a pip if the segment U [p̂j, q̂i] on W u
p̂j

connecting p̂j to q̂i, and the segment S[q̂i, p̂k] on W s
p̂k

connecting q̂i to p̂k, intersect only at q̂i. We denote the pip formed by intersection of W u
p̂1

and

W s
p̂2

at X = 0 as q̂1, while the pip at the intersection of W u
p̂2

and W s
p̂1

at X = 0 is denoted

as q̂2.

Once these primary intersections points are picked, the boundaries between regions Ri can

be demarcated using the associated invariant manifolds, as shown in Fig. 9. The region R2

is enclosed by U [p̂1, q̂1], S[q̂1, p̂2], U [p̂2, q̂2] and S[q̂2, p̂1]. The regions R1 and R3 are defined

as R1 = [(x, y)|(x, y > 0) /∈ R2], and R3 = [(x, y)|(x, y < 0) /∈ R2], respectively.

A lobe is an area enclosed by segments U [q̂i, q̂j] and S[q̂j, q̂i] for any neighboring pair of

pips q̂i and q̂j. Lobes are mapped onto each other by forward and backward iterations of

the map Pθ0 . The lobe Li,j(k) is the set of all points that are mapped from Ri to Rj after k

iterations of Pθ0 . Furthermore, any point in Ri that eventually enters Rj must pass through

Li,j(1). Fig. 9 also shows a few forward and backward iterates of L1,2(1) and L2,1(1).
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FIG. 10: (a) Phase space evolution of a solitary wave transmitting across the defect. The trajectory

begins in R1, and enters R2 via the lobe L1,2(1) bounded by W s
+∞ (purple) and Wu

−∞ (blue). It is mapped

onto P−2(L2,1(1)) after three iterations inside R2, leading to its re-entry into R1 after the sixth iteration.

(b) Phase space evolution of a solitary wave reflecting back from the defect. The trajectory begins in R1,

and enters R2 via L1,2(1). After the first iteration inside R2, it is mapped onto L2,3(1), a lobe bounded by

Wu
+∞ (orange) and W s

−∞ (green), leading to its entry into R3 after the second iteration. The parameters

are h0 = 0.5, µ = 0.5, and γ = 0.9.
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For a right-moving solitary wave to transmit across the defect, it must either stay in R1

for all times, or transit from R1 to R2, and then back to R1. Fig. 10(a) shows a trajectory

doing the latter. Once this trajectory enters R2, it is mapped onto a pre-image of L2,1(1),

and eventually gets ejected back to R1. Analogously, for a right moving solitary wave to get

reflected back from the defect, it must transit from R1 to R2 and then from R2 to R3. Fig.

10(b) shows such a trajectory. Once this trajectory R2, it is mapped onto a pre-image of

L2,3(1), and eventually gets ejected into R3.

Since the Poincarè map Pθ0 is area preserving, by arguments similar to those in [18], the

set of points that are captured by the defect for all times has measure zero. As a result,

capture is observed only for isolated values of incoming velocities in the reduced order model

(see Fig. 7). This is in contrast to the full-order model results in Fig. 5 that show existence

of finite intervals of initial velocities that lead to permanent capture of incoming waves. This

however does not rule out the existence of trajectories that are captured for arbitrarily long

times by the defect in the reduced order model. In fact, the existence of horsehoes [27] in the

system leads us to conjecture that for each positive integer n, there exists an initial condition

such that a trajectory coming into R2 from R1 performs n clockwise ‘revolutions’ around the

origin, before exiting to either R1 or R3.

6. Lobe dynamics interpretation of critical velocity

For a given total energy level h, the maximum height of the sequence of lobes P−n(L1,2(1))

for (n = 1, 2, 3, . . . ) reaches an asymptote p−∞ as n → ∞. If the initial momentum of an

incoming solitary wave (at X → −∞) is higher than p−∞, then the trajectory will travel

above the lobes, staying in region R1 and transmitting across the defect. On the other hand,

if the initial momentum of an incoming solitary wave is lower than or equal to p−∞, its

fate will be decided by the lobe dynamics discussed previously, and all three outcomes of

transmission, capture and reflection are possible. For fixed h, an incoming solitary wave

with maximum allowable velocity vmax corresponds to an initial condition with no energy

in the breather. Hence, vmax can be obtained by putting (X → −∞, a = 0, pa = 0) in the

Hamiltonian (57), and inverting the equation H = h. Similarly, an incoming solitary wave

with minimum allowable velocity vmin = 0 corresponds to an initial condition with all the
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R3

FIG. 11: Poincarè section for h = −0.4 > hcr = −0.72 with µ = 0.5, and γ = 0.9. The trajectory in black

has incoming velocity vi ≈ vmax > v−∞, and transmits across the defect while travelling above the lobes.

The trajectory in red has vi ≈ v−∞, while the one in blue has vi < v−∞. Here v−∞ is the velocity

corresponding to the momentum p−∞. The evolution of both red and blue trajectories is governed by the

lobe dynamics.

energy in the breather.

Recall that we defined the critical velocity vcr to be the velocity above which an incoming

solitary wave (with zero initial energy in breather) will always transmit across the defect.

Let the corresponding energy level be denoted by hcr. Our lobe dynamics computations

reveal that for any fixed energy level h > hcr, the maximum allowable incoming momentum

(pmax =
A√
2C0

vmax) is higher than the corresponding p−∞, as shown in Fig. 11 for h = −0.4,

with hcr = −0.72. Hence for each h > hcr, incoming waves with vi ∈ (

√
2C0

A
p−∞, vmax] will

always transmit, while those with vi ∈ (0,

√
2C0

A
p−∞] will be governed by the lobe dynamics.

Fig. 11 shows three trajectories (all at h = −0.4) with incoming velocity greater than,

equal to and less than v−∞, respectively. On the other hand, we find that for each h ≤ hcr,

pmax = p−∞, and hence, the fate of all possible incoming trajectories with vi ∈ (0, vmax] will

be governed by lobe dynamics. Fig. 12 shows such a case with h ≈ hcr = −0.72.

To summarize, let Ω1 be set of initial conditions (at X → −∞) that lie above the
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FIG. 12: Poincarè section for h ≈ hcr = −0.72 with µ = 0.5, and γ = 0.9. In this case, p−∞ ≈ pmax, and

v−∞ ≈ vmax. The trajectory in black has incoming velocity vi ≈ vmax, while the trajectory in red has

vi < vmax. The evolution of both black and red trajectories is governed by the lobe dynamics.

pX = p−∞ line, where p−∞ depends on the energy level of the given initial condition. We

find that all trajectories originating in Ω1 travel above the lobes and always transmit across

the defect. Let Ω2 be the set of initial conditions with all energy in the incoming solitary

wave. Then the intersection Ω = Ω1∩Ω2 turns out to be precisely the set of initial conditions

with vi > vcr.

C. Heteroclinic orbits for µ = 1

Recall that we recover the original reduced order Hamiltonian system (41) by putting

µ = 1 in (42). To compute orbits heteroclinic to the periodic orbits at X = ±∞ for this

case, we use the fact that the stable manifolds in Fig. 9 can be obtained by reflecting the

unstable manifolds across the pX axis. This is a consequence of the invariance of the system

under the transformation:

(−X, pX , a, pa, t)→ (X, pX ,−a, pa,−t), (72)
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where a = 0 for the Poincarè section of Fig. 9. Hence, if the unstable manifold of the

periodic orbit at X = −∞ intersects the X = 0 surface at a = 0, then the intersection also

belongs to the stable manifold of the periodic orbit at X = +∞.

Let φt(X, pX , a, pa) denote the time-t flow map for (42). Using Matlab’s BVP4C [28], we

solve the following multi-point boundary value problem (BVP) for a trajectory beginning

at (−X∗, pX−, a−, pa−) at t = 0, reaching (X0, pX0, a0, pa0) at t = T/2, and terminating at

(X∗, pX+ = pX−, a+ = −a−, pa+ = pa−) at t = T :

φT/2(−X∗, pX−, a−, pa−) = (X0, pX0, a0, pa0), (73)

φ−T/2(X∗, pX−,−a−, pa−) = (X0, pX0, a0, pa0). (74)

To make the problem well-posed, we fix X∗ ≈ 10. The BVP consists of eight equations

corresponding to the eight unknowns (pX−, a−, pa−, X0, a0, pX0, pa0, T ). The initial guesses

are obtained from heteroclinic trajectories obtained for µ < 1 using Poincarè sections, as

discussed in the previous section. Once one solution to the BVP is found, we find other

distinct solutions by solving the BVP with different initial guesses for a− and pa−, while

keeping the energy equal to the first solution.

Fig. 13 shows the projections of two such heteroclinic orbits on the (X−a) and (X−PX)

planes. Each right-moving heteroclinic orbit corresponds to a solitary wave that arrives from

the periodic orbit at (X → −∞) with pX ≈ 0+ and all the energy initially in the breather. As

this wave approaches the defect, it absorbs energy from the breather and accelerates. Once

past the defect, the same amount of energy is gradually transferred back to the breather,

and the wave approaches X → ∞ with vanishing speed. The situation is analogous for a

left-moving heteroclinic orbit.

V. DISCUSSION AND CONCLUDING REMARKS

In this paper, we have derived a reduced-order dynamical model of an infinite chain

of bistable mechanical elements with a localized defect, and analyzed it using methods of

dynamical systems theory. Focusing on the interactions between solitary waves and the

breather mode that arises due to the defect, this two degree of freedom Hamiltonian model
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FIG. 13: Two distinct orbits heteroclinic to the two periodic orbits at X = ±∞, with µ = 1, and γ = 0.9,

projected on (a) X − a, and (b) X − pX planes.

captures some qualitative aspects of the system dynamics. The study of phase space trans-

port in the reduced-order model via lobe dynamics elucidates the mechanisms via which an

incoming solitary wave may get transmitted, captured, or reflected upon reaching the defect.

Both the full-order and reduced-order models predict that there is a critical initial velocity

(with no energy initially in the breather) above which an incoming solitary wave will always

pass through the defect. However, there are a number of disagreements between the models,

including the value of the critical velocity itself. While the reduced-order model predicts

strong sensitivity to initial conditions below the critical velocity, the full-order models pre-

dict that an incoming wave will always be captured in that regime, except for isolated initial

conditions that lead to reflection.

These discrepancies can primarily be attributed to three factors. First, it is known that

solitary wave-defect interactions lead to ‘leaking’ of energy into the infinite dimensional

subspace of linear waves (‘phonons’), even in the continuum setting. Our reduced-order

model can potentially be made more accurate by including this radiation damping [18]. It

is a challenging task to derive an accurate analytical description of the damping terms to

be appended to the Hamiltonian equations, since it involves a careful study of resonances

between modes corresponding to the discrete and continuous spectra [23]. Recent advances

in data-driven sparse learning of governing equations [29] may provide an alternative way

to obtain the dominant damping terms. Once a dynamical model is available, the current

framework can potentially be extended to understand the damped dynamics, since lobe

dynamics and other related phase space transport methods have been used to study non-
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conservative systems [26, 30].

Second, prior numerical studies of solitary wave-defect interaction in the closely related

φ4 model have pointed out the importance of an ‘internal mode’ in the dynamics [19, 31].

This internal mode is a spatially localized eigenfunction of the system linearized about the

solitary wave solution. Our computations confirm that a similar internal mode exists in the

system considered in this study. It corresponds to shape change of the solitary wave profile,

and it can potentially exchange energy with the solitary wave. Hence, it is plausible that

including this mode into the reduced-order model could lead to a better qualitative and

quantitative agreement with the results of the full-order model.

Finally, our current reduced-order model does not take into account the effect of phonon

excitation that occurs purely due to discreteness of the system. In discrete bistable systems

such as those considered in this study, transition waves are accompanied by oscillatory tails

[11] that vanish when discreteness parameter goes to 0. These tails consist of phonons

primarily at a single frequency, and mechanisms have been proposed recently to harvest

this energy by inclusion of defects [11, 32]. Incorporating this energy exchange into the

reduced-order models is another topic for future study.

Our work is a step towards a rational approach to defect engineering in mechanical meta-

materials, based on a fully nonlinear dynamical systems approach. This approach can po-

tentially be extended to spatially extended defects, and three-DOF reduced-order models,

as demonstrated in photonic metamaterials [21, 33]. Another promising extension is active

modulation of the defect strength (i.e., onsite spring stiffness), or the breather oscillations,

in an open-loop or feedback fashion for designing active mechanical metamaterials [34–39].

Appendix A: Details of derivation of the reduced order model

The first and third integrals are

∫ ∞
−∞

1

2
u2
k,t dx = −

∫ 2

0

1

2
Ẋ2u2

k,z du =
Ẋ2

2
√

2Kr

(2
√

1 + d2 − d2 ln[

√
1 + d2 + 1√
1 + d2 − 1

]), (A1)∫ ∞
−∞

1

2
u2
k,x dx = −

∫ 2

0

1

2
u2
k,z du =

1

2
√

2Kr

(2
√

1 + d2 − d2 ln[

√
1 + d2 + 1√
1 + d2 − 1

]), (A2)
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while the second and fourth integrals are

∫ ∞
−∞

1

2
u2
b,t dx =

∫ ∞
−∞

1

2
ȧ2e−2κ|x| dx =

1

2κ
ȧ2, (A3)∫ ∞

−∞

1

2
u2
b,x dx =

∫ ∞
−∞

1

2
(a(−κ)e−κ|x| sgn(x))2 dx =

κ

2
a2. (A4)

The fifth integral is

∫ ∞
−∞

(1− γδ(x))ψ(uk + ub) dx =

∫ ∞
−∞

ψ(uk + ub) dx− γψ(uk(0, X) + a). (A5)

Expanding ψ(uk + ub) via Taylor series around a = 0, we get

ψ(uk + ub) ≈ ψ(uk)−
2(1− uk)(

√
(1− uk)2 + d2 −

√
1 + d2)√

(1− uk)2 + d2
ub +

(
(1− uk)2

(1− uk)2 + d2

+
d2(
√

(1− uk)2 + d2 −
√

1 + d2)

((1− uk)2 + d2)
√

(1− uk)2 + d2

)
u2
b +O(a3). (A6)

Using (21,22,29), we write (A6) as

ψ(uk + ub) ≈ ψ(uk)−
2 tanh

(
x−X√

2C2

)
(

√
tanh2

(
x−X√

2C2

)
+ d2 −

√
1 + d2)√

tanh2
(
x−X√

2C2

)
+ d2

ae−κ |x|

︸ ︷︷ ︸
T1

+

 tanh2
(
x−X√

2C2

)
tanh2

(
x−X√

2C2

)
+ d2

+

d2

(√
(tanh2

(
x−X√

2C2

)
) + d2 −

√
1 + d2

)
(tanh2

(
x−X√

2C2

)
+ d2)

√
tanh2

(
x−X√

2C2

)
+ d2

 a2e−2κ |x|

︸ ︷︷ ︸
T2

+O(a3). (A7)

The numerator of T1 is a product of two terms. For |x−X| � 1, the first term is small

while the second term remains bounded. For |x − X| � 1, the second term is small while

the first term remains bounded. Hence we assume T1 ≈ 0.

Finally, T2 is a sum of two terms. We only keep the contribution for the case when |x−
X| � 1, and assume that the solitary wave-defect interaction is captured by the the δ func-
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tion term in Eq. (A5). With these approximations, the fifth integral is
∫∞
−∞

[
ψ(uk) +

(
e−2κ |x|

1 + d2

)
a2

]
dx−

γψ(uk(0, X) + a)

=

√
Kr

2
√

2

(
2
√

1 + d2 − d2 ln

[√
1 + d2 + 1√
1 + d2 − 1

])
+

1

(1 + d2)κ
a2 − γψ (uk(0, X) + a) .

Appendix B: Derivatives of F , G and R

The (partial) derivatives of G(X), F (X, a), and R(a) are

dG

dX
=
−
√

2

C2

sech2

(
X√
2C2

)
tanh

(
X√
2C2

)
, (B1)

∂F

∂X
=

√
2

C2

sech2

(
X√
2C2

)a+ 2 tanh

(
X√
2C2

)
−
√

1 + d2
(

tanh
(

X√
2C2

)
+ a
)

√(
tanh

(
X√
2C2

)
+ a
)2

+ d2

 , (B2)

∂F

∂a
= 2

tanh

(
X√
2C2

)
−
√

1 + d2
(

tanh
(

X√
2C2

)
+ a
)

√(
tanh

(
X√
2C2

)
+ a
)2

+ d2

 , (B3)

dR

da
= 2a. (B4)

Appendix C: Fixed point analysis

In this section, we find conditions on parameters C0 and d such that the fixed point

(X∗ = 0, p∗X = 0, a∗ = 0, p∗a = 0) is always of type centre × center for all 0 ≤ µ ≤ 1 and

0 ≤ γ ≤ 1. This requires that (X∗, a∗) should be a minimum of the potential energy

V (X, a) =

(
1

(1 + d2)κ
+
C2

0κ

2

)
a2 − γ (R(a) + µF (X, a) +G(X)) +

C0A√
2
. (C1)

30



This condition is satisfied if the the Hessian of V (X, a) is positive definite at (X∗, a∗). This

requires that both the eigenvalues of the Hessian are positive. The eigenvalues are given by

λH =
1

2

[
(V,XX + V,aa)±

√
(V,XX + V,aa)2 − 4(V,XXV,aa − V 2

,Xa).
]

(C2)

The following three inequalities guarantee the positivity of both eigenvalues:

V,XX > 0, V,aa > 0, and V,XXV,aa − V 2
,Xa > 0, (C3)

where for the fixed point at the origin (X∗ = 0, a∗ = 0) :

V,XX =
γ

C2
2

[
1 + µ

(√
1 + d2 − 2d

d

)]
, (C4)

V,aa = 2γ

(√
1 + d2

d
µ− 1

)
+

(
2

(1 + d2)κ
+ κ C2

0

)
, (C5)

and V,Xa =
√

2
γµ

C2

(√
1 + d2

d
− 1

)
. (C6)

To show that VXX > 0, we note that

(√
1 + d2 − 2d

d

)
> −1 for all d > 0. Since 0 ≤ µ ≤ 1,

the result follows.

Next, we show that V,aa > 0 for C0 > γ

√
1− ω2

0

4
. Squaring both sides, and using the

relations ω2
0 = 2

1+d2
, and κ =

γω2
0

2Kr

, we get

C2
0 > γ2 − γ2ω

2
0

4
=⇒ C2

0κ+
2

(1 + d2)κ
− 2γ > 0 (C7)

Since 0 ≤ µ ≤ 1, the result follows.

Finally, one can verify by direct substitution that we can also ensure V,XXV,aa− V 2
,Xa > 0

if we choose C0 = γm

√
1− ω2

0

4
, where

m > max


√√√√√2(µ− 1)2 − 1

1+d2

[
1 +

(√
1+d2

d
− 2
)
µ
]

2
(

1− 2µ+
√

1+d2

d
µ
)(

1− 1
2(1+d2)

) , 1

. (C8)
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Appendix D: Omitted details of Melnikov analysis

To finish the Melnikov analysis, and confirm the existence of heteroclinic tangles in the

system, we need to further prove that
dM(θ0)

dθ0

|θ0=π/2 6= 0, where

M(θ0) =
2γ

C2

√√
2γ C0

A

∫ ∞
−∞

Q(t)[M1(t, θ0) +M2(t)−M3(t, θ0)]dt, (D1)

Q(t) =
1

(1 +N2t2)
√

(1 +N2t2)
,M1(t, θ0) = S

√
ωI0cos(t+ θ0),M2(t) = 2

Nt√
(1 +N2t2)

, and

M3(t, θ0) =

√
1 + d2

(
S
√
ωI0cos(t+ θ0) +

Nt√
(1 +N2t2)

)
√√√√d2 +

(
S
√
ωI0cos(t+ θ0) +

Nt√
(1 +N2t2)

)2
.

From above, we obtain
dM(θ0)

dθ0

|θ0=π/2 = Q
′
1−Q

′
3, whereQ

′
1 = −

∫∞
−∞

S
√
ωI0

(1 +N2t2)
√

(1 +N2t2)
cos(t)dt,

and

Q
′

3 =

∫ ∞
−∞

√
1 + d2S

√
ωI0 cos t

(1 +N2t2)
√

(1 +N2t2)

√
d2 +

(
nt√

1 + n2t2
− S
√
ωI0 sin t

)2
×


(

Nt√
1 +N2t2

− S
√
ωI0 sin t

)2

d2 +

(
Nt√

1 +N2t2
− S
√
ωI0 sin t

)2 − 1

 dt. (D2)

Q′1 can be analytically computed to yield

Q
′

1 = −2
S
√
ωI0K1(

1

N
)

N2
, (D3)

where K1 is the modified Bessel function of the second kind. Since the second integral could

not be computed analytically, we show the numerical results in Fig. 14. This computation

confirms that
dM(θ0)

dθ0

|θ0=π/2 > 0 for the parameters relevant to this study.

32



0 1 2 3 4 5
I0

0

0.1

0.2

0.3

Q
0 1
!

Q
0 3

FIG. 14:
dM(θ0)

dθ0
|θ0=π/2 as a function of the size of the periodic orbit in the unperturbed system.
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