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Abstract: 

A novel metasurface is proposed that aims to generate underwater acoustic waves with 

various functions by only one actuator. Each metasurface unit consists of an air cavity 

sandwiched on one side by a vibration plate and connecting rubber supports. By properly 

selecting the ratio of the plate to  unit lengths, a phase shift of π can be attained to constitute 

a binary coding metasurface. Three demonstrations, including focusing, branching and 

self-bending waves, are chosen to validate the functionality of the design. The design is 

also shown to work over a wide frequency range through changing the ratio. In addition, 

the design is extremely compact, with the thickness only about 1/100 of the target 

wavelength. Compared with commonly used phased array transducers that are utilized to 

generate underwater acoustic waves, this design offers has the advantage of needing only 

a single actuator as opposed to needing a lumped electrical control system.

I.  Introduction
Acoustic metasurfaces, characterized by subwavelength thickness and 

functionally comparable to metamaterials [1-6], have shown astonishing 

abilities in controlling acoustic waves, abilities which cannot be found in 

natural materials [7-11]. These include, but are not limited to, providing 

asymmetric transmission [12-14], broadband operating ranges [15], cloaking 

[16-19] and high-efficiency manipulation [20-23]. Up to now, nearly all 

efforts in this area has put the metasurface as a passive interface in water, air 

or solids, including refractive, reflective or absorptive type[24-27]. This 

leaves the study of metasurfaces as an actuating part to be a barely developed 
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field. On the other hand, the most popular way to currently generate 

underwater acoustic waves is the use of phased array transducer, which need 

multiple actuators and an electrical control system to coordinate them. This 

makes the systems complex and the design cumbersome.

Most metasurfaces require continuous 2π phase shift coverage to allow 

controlling the wave at will, which is not easy to obtain. An alternate is coding 

metasurfaces, which have attracted recent attention [28-35]. For instance, a 

one bit metasurface, or a binary metasurface, only needs 0 and π phase shifts, 

making it much easier to use when designing a structure. An ultrathin binary 

coding metasurface, nearly 1/100 of the target wavelength, is proposed here, 

which allows one to obtain underwater wave with phase shift of π by 

modifying the geometry of the metasurface. Three functions of the proposed 

metasuface are demonstrated. These include focusing, branching and self-

bending wave generation, which are demonstrated through numerical 

simulation. In addition, the design allows tuning the function over wide 

operating frequency through slightly changing the geometry. This novel 

design opens a new avenue in metasurface research that has broad potential 

use in underwater wave applications.

II.  Design
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Figure 1.(a) Material and structure of the designed type “0” and “1” metasurface unit. (b) 

Acoustic fields of type “0” and “1” metasurface units under vertical displacement 

excitation at the bottom of 600Hz.

The material and structure of designed type “0” and “1” metasurface 

units is displayed in Fig.1a. A steel vibration plate of width w is connected to 

two steel supports by rubber spacers that hold the plate above an air cavity. 

The cavity provides space for the plate to vibrate. The metasurface functions 

when the bottom is excited by vertical displacement control to cause the plate 

to vibrate. Similar to the mechanism seen in membrane type metasurfaces, the 

wave phase in the water can be altered by changing the stiffness of the 

metasurface unit. The ratio r, which is equal to the ratio of the width w of the 

vibrating plate to the entire unit width a, is the chosen parameter used to 

modulate the phase. 

Commercial finite element software Comsol Multiphysics is used to 

calculate the response of the unit. The Acoustic-Solid Interaction Module is 
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utilized in the analysis. Periodic boundary conditions are imposed on the left 

and right sides. A Perfect Matched Layer is added to the top of the water 

region (not shown). The properties of steel and rubber are as follows. The 

associated Young’s moduli are 205 GPa and 0.05 GPa, the associate densities 

are 7850 kg/m3 and 1100 kg/m3, and the associated Poisson’s ratios are 0.28 

and 0.4, respectively. The dimensions used in the design are: a = 0.2 m, 

t=0.008m, h=0.01m and l = 0.024 m, which are very compact compared to the 

target wavelength λ of 2.47 m. An input displacement excitation of 1×10-6 m 

at a frequency of 600 Hz is used on the bottom of the metasurface. It was 

found that selecting r = 0.19 and 0.44 resulted in identical transmitted 

amplitudes and a phase shift difference of π, as illustrated in Fig1.b. This 

indicates that the design produces the objective binary coding metasurface. 

III.  Demonstrations
To demonstrate the versatility of the design to generate underwater 

waves, three applications were considered. The first is acoustic wave focusing. 

With the help of the Airy function, the non-diffraction solution of the time-

harmonic paraxial wave equation, Efremidis and Christodoulides [36] have 

achieved the focusing by setting the pressure along the metasurface as:
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𝑝0(𝑥) = 𝐴𝑖(𝑥0 ‒ 𝑥
𝛽 )𝑒

(𝛼
𝑥0 ‒ 𝑥

𝛽 )

where x is the position of the metasurface unit, x0 is half-width of the 

metasurface, β and α are scaling factors, and  Ai(•) is the Airy function. Jiang 

et al. [37] have recently shown a coding metasurface that successfully 

demonstrates focusing of acoustic waves by discretizing the Airy function in 

a binary manner. Here we discretize the function by selecting the units of the 

metasurface in the following manner. Along the length of the metasurface, a 

type “0” unit was selected when the Airy function was positive, and a type 

“1” unit was selected otherwise. The input excitation, as described in the 

design, is applied at the bottom surface and had a displacement amplitude of 

1×10-6 m at a frequency of 600 Hz. Here β and α are chosen as 0.6 times the 

target wave length and 0.05, respectively. To discretize the signal, 144 

metasurface units were used resulting in the intensity magnitude displayed in 

Fig.2a, which clearly indicates the focusing effect. To further validate this 

function, the intensity magnitude along the vertical and horizontal dash line 

in Fig.2a is plotted in Fig.2b and c. The full width at half maximum (FWHM), 

D, a scalar parameter used to describe the focusing extent, is also calculated 

and displayed in Fig.2c. In this case, D = 0.69λ, indicating that the uniform 

vertical motion of the solid structure under the metasurface is transformed and 
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focused in the water by the coding metasurface. 

Figure 2. Focusing:(a) intensity magnitude distribution of the proposed metasurface under 

vertical displacement excitation. (b) and (c) intensity magnitude along the vertical and 

horizontal white dashed lines in (a). D is the full width at half maximum (FWHM). 

The second demonstration is branching wave generation. By the 

Huygens principle, each metasurface unit can be treated as a line source and 

the acoustic field can be constructed by the superposition of all the units. 

Assume there are nt units used and n1 of them are type “1.” Fang et al. [38] 

show that the pressure in the far field, written in a cylindrical coordinate 

system, is described by:

p(𝑟,𝜃) =
𝐴

𝑘𝛿 𝑟
𝑒 ‒ 𝑗𝑘(𝛿 + 𝑟)[sin (𝑘𝑛𝑡𝛿) ‒ 2sin (𝑘𝑛1𝛿)]

where  is half the acoustic path of adjacent units and A stands for δ = 𝑎sin 𝜃 2

the pressure generated by a line source at one unit distance. Here we choose 

nt =20 and n1 =10. Then directivity, D(θ) , defined as square of the pressure at 
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a constant radius over the square of the maximum pressure along all directions, 

is calculated and plotted in Fig.3a. The response of the proposed design is 

simulated and the result is displayed in Fig.3b. At a sufficient distance from 

the metasurface located at the bottom center of the figure, two branches of 

waves are found (i.e., in the far field) to closely match the theoretical 

prediction in Fig3.a, implying the possibility to use the proposed metasurface 

for branching wave applications.

Figure 3. Branching: (a) theoretical value of directivity D(θ) with nt =20 and n1 =10, (b) 

simulated pressure distribution of the corresponding metasurface.

Acoustic waves can be useful in underwater communication, since it is 

difficult for electromagnetic wave to propagate in water. Self-bending wave 

passing around obstacles may provide a pathway for communication when 

obstacles exist between the source and target. Here we show how our design 

can be used to easily form self-bending waves. As shown by Li et al. [39], a 

circular bending beam with radius R can be achieved by producing the 
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following phase shift:

φ(𝑥) =‒ 𝑘(𝑥 ‒ 2𝑅𝑘
𝑥
𝑅)

where k is the wave number and x is the position of the metasurface unit. For 

the demonstration R is chosen to be 6λ. The aforementioned binary 

discretization method is applied using 144 metasurface units. The pressure 

amplitude pattern for this metasurface is shown in Fig.4. We can see an 

obvious bending beam, and therefore our design for self-bending wave is 

verified.

Figure 4. Self-bending: pressure distribution of the designed coding metasurface under 

vertical displacement excitation.

Although the working frequency of all the aforementioned 

demonstrations is 600 Hz, the design can be useful in a wide frequency band 
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by altering the parameter r.  Phase shift of one metasurface unit under different 

frequencies with r sweeping from 0.5 to 0.9 is calculated and plotted in Fig.5. 

By increasing the frequency from 300 Hz to 900 Hz, the phase shift function 

is moving but the difference of the two plateau of the same function is always 

close to π. This allows tuning of the metasurface to any frequency excitation 

from 300 Hz to 900 Hz by selecting the parameter r.

Figure 3. Phase shift of the designed metasurface unit under different frequencies with r 

from 0.5 to 0.9 in increment of 0.01.

IV.  Conclusion
The work proposes an ultrathin metasurface which can create 

underwater acoustic wave with a controllable phase shift. The metasurface is 

made from steel and rubber units that should not be complicated to fabricate. 
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Wave focusing, branching and self-bending are demonstrated using solid-

fluid coupled finite element analysis that show some of the functions the 

design can be used for. Also it is shown that the operating frequency can be 

switched over a large range by selecting the design parameter. This work has 

potential use in underwater acoustic wave generation and communication. 
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