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  Construction of a peridynamic model for viscous flow
Jiangming Zhao1, Adam Larios2 and Florin Bobaru1

1Department of Mechanical & Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 
68588-0526, USA
2Department of Mathematics, University of Nebraska-Lincoln, Lincoln, NE 68588-0130, USA

Abstract
We derive the Eulerian formulation for a peridynamic (PD) model of Newtonian viscous flow starting from 
fundamental principles: conservation of mass and momentum. This formulation is different from models 
for viscous flow that utilize the so-called “peridynamic differential operator” with the classical Navier-
Stokes equations. We show that the classical continuity equation is a limiting case of the PD one, assuming 
certain smoothness conditions. The PD model for viscous flow is calibrated to the classical Navier-Stokes 
equations by enforcing linear consistency for the viscous stress term. Couette and Poiseuille flows, and 
incompressible fluid flow past a regular lattice of cylinders are used to verify the new formulation, at least 
at low Reynolds numbers. The constructive approach in deriving the model allows for a seamless coupling 
with peridynamic models for corrosion or fracture for simulating complex fluid-structure interaction 
problems in which solid degradation takes place, such as in erosion-corrosion, hydraulic fracture, etc. 
Moreover, the new formulation sheds light on the relationships between local and nonlocal models.  

Keywords
Peridynamics; Navier-Stokes equations; nonlocal model; viscous fluid; incompressible flow; Poiseuille 
flow.

1. Introduction
Nonlocality plays important roles in many phenomena, including anomalous diffusion [1,2] and turbulence 
in fluid motion [3–5], and effects of microstructure in the deformation and fracture of solid materials [6,7]. 
Classical models based on PDEs have difficulties dealing with problems involving nonlocal effects. 
Fractional calculus is a powerful mathematical tool that can describe nonlocal behavior. However, models 
based on fractional calculus are computationally costly because the integrals in fractional calculus are 
defined over the entire space [8]. The peridynamic (PD) theory, which was introduced as a nonlocal 
extension of the classical continuum mechanics [9], provides an alternative to fractional calculus. It has 
been shown that PD operators converge to corresponding classical and fractional operators as the nonlocal 
size  approaches zero and infinity, respectively [8,10]. Therefore, both classical and fractional operators 𝛿
can be seen as limiting cases of PD operators.  

In addition to describing anomalous phenomena, PD models can be advantageous in simulating 
regular/common but complex physical/chemical problems. For example, classical local models have 
difficulties dealing with problems involving discontinuities or moving boundaries, such as those occurring 
in fracture, corrosion, etc. PD models, however, do not have such issues because they employ integro-
differential equations (IDEs) rather than partial differential equations (PDEs), and thus cracks and other 
forms of damage can initiate and propagate naturally and autonomously [9,11,12]. Classical formulations 
also encounter significant challenges for problems that involve complex interactions between fluids and 
solids, such as erosion corrosion and hydraulic fracture, while PD models, due to their generality/flexibility, 
have the potential to better deal with such problems [13,14].
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While the PD method has been used extensively for mechanical and diffusion-type problems involving 
cracks and damage [15,16], there is very little existing literature on formulations or applications of the PD 
method to fluid mechanics. State-based PD models for fluid flow in porous media are presented in [13,14,17] 
and are coupled with mechanical models to simulate the fluid-driven cracks [13,14]. These models are 
limited to porous flows in which the flow is driven by the pressure gradient. Later, more general models 
for fluid flow based on the Navier-Stokes equations (NSEs) have been developed in the PD framework to 
simulate laminar fluid flows at low Reynold numbers. Some of them use the PD correspondence model 
[18], such as the updated Lagrangian particle hydrodynamics (ULPH) [19,20] and the PD Moving Particle 
Semi-implicit (MPS) model [21]. According to [22,23], the discretized PD correspondence models are 
equivalent to SPH and RKPM under certain conditions, and thus share some common numerical issues such 
as zero-energy modes. We also note the use of the “PD differential operators” [24,25] and the “peridynamic 
D operators” [26] to compute derivatives using integral operators. Integro-differential equations obtained 
in this way are “translations” of classical PDE-based models (like the NSEs), rather than being 
constructions of nonlocal formulations of viscous flow. In other words, the “nonlocality” introduced in the 
translations of PDE-based models to integro-differential ones is merely a computational parameter, whereas 
in true nonlocal formulation, the nonlocal region introduces a length-scale in the model. 

It is worth noting that a PD formulation of the Navier-Stokes equations is perhaps a more natural model for 
fluids. First, we note that it is more general (at least formally), in the sense that it contains the classical 
Navier-Stokes equations as a special case (again, at least formally) by making a special choice of the PD 
kernel. Second, while proving (or disproving) the existence and uniqueness of global strong solutions to 
the classical incompressible 3D Navier-Stokes equations remains a challenging open problem, there is at 
least some hope that for a nonlocal PD formulation, such as the one presented in the present work, will 
allow for a proof of existence and uniqueness, at least for certain kernels. For instance, by analogy, it has 
been proven in [27] that a certain non-local version of the inviscid Burgers equation is globally well-posed, 
even though the classical version develops a singularity in finite time (see also [28] and the references 
therein). Third, on a deeper level, it may be that certain fluid regimes are more accurately described by 
taking into account non-local interactions rather than insisting that a strict local balance be maintained at 
every point in space and time, which in turn necessitates that solutions have at least some degree of 
smoothness (possibly in a weak sense) in order to make sense of the equations. For instance, it was noted 
by Ciprian Foias [29] that since (i) one can prove global well-posedness for the (modified) Navier-Stokes 
equations with higher-order diffusion added, (ii) higher-order diffusion modifications have been used with 
some success in certain ocean models, and (iii) higher-order derivatives have larger stencils (one pictures 
larger horizon sizes), there is some indication that including non-local interactions (in addition to the 
nonlocal effects of the pressure) could perhaps provide a model that more realistically captures the true 
dynamics of the flow.

In this work, we construct, for the first time, a PD bond-based model using the Eulerian description for 
viscous flow, starting from fundamental conservation principles, in order to arrive at a PD counterpart of 
the classical Navier-Stokes equation. A similar constructive approach has been used to formulate PD 
diffusion equations [30,31], advection-diffusion equations [32], and elastodynamic equations [33]. We 
investigate the convergence of the terms in the PD continuity equation to their classical counterparts as the 
nonlocal size in PD equations approaches zero. (In forthcoming works, e.g., [34], we will study the 
convergence of solutions of the PD equations to solutions of the classical equations.) We test the PD model 
numerically using examples for which (classical) analytical or numerical solutions are available in the 
literature. This paper is organized as follows: in Section 2 we introduce the constructive approach to arrive 
at the PD formulation for viscous flow; in Section 3 we explain the numerical discretization used; in Section 
4 we verify our model for several problems with classical analytical/SPH solutions; conclusions are given 
in Section 5.
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2. Peridynamic constructive model for viscous flow
In the classical theory of fluid mechanics, the motion of Newtonian fluids, in its Eulerian form, is described 
by the following NSEs [35]:

∂𝜌
∂𝑡 =‒ ∇ ⋅ (𝜌𝒗) (1)

∂(𝜌𝒗)
∂𝑡 = ‒ ∇ ⋅ (𝜌𝒗 ⊗ 𝒗) ‒ ∇𝑝 + 𝜇∇2𝒗 + 𝜌𝒃

(2) 

where  is the density,  is the velocity,  is the pressure,  is the viscosity and  is the body acceleration. 𝜌 𝒗 𝑝 𝜇 𝒃
These equations are derived from conservation principles of mass and momentum [35]. Note that an 
appropriate constitutive law is required to solve the above NSEs (e.g., constant  for incompressible fluids 𝜌
or equation of state for compressible fluids).

In this section, we derive an Eulerian PD model for viscous flow from a general PD continuity equation, 
following a procedure similar to that used in the derivation of the classical Eulerian Navier-Stokes equations.

Consider  or , and let  denote an open bounded subset of . Points in  are denoted by the 𝒹 = 2 3 Ω ℝ𝒹 ℝ𝒹

vectors  or . Functions from , or subsets of , and time  into  or  are denoted by Roman 𝒙 𝒙 Ω Ω 𝑡 ∈ [0,𝑇] ℝ ℝ𝒹

or Greek letters, plain-face italic for scalars and lower-case bold italic for vectors, e.g.,  and . 𝜃(𝒙,𝑡) 𝒗(𝒙,𝑡)
For notation simplicity, in much of the rest of the paper, we omit the spatial and temporal dependencies of 
these functions. For example, we denote  and  for  and , respectively.𝜃 𝜃 𝜃(𝒙,𝑡) 𝜃(𝒙,𝑡)

In PD models, each material point  interacts with other points within its neighborhood , which is 𝒙 ∈ Ω ℋ𝒙
called the horizon region of  and is usually selected to be a disk when  (or sphere when ) 𝒙 𝒹 = 2 𝒹 = 3
centered at . For a modification of this formulation to allow use of non-spherical horizons, please see [36] 𝒙
The radius of  is called the horizon size (or simply “the horizon”) and denoted by . Objects that carry ℋ𝒙 𝛿
the pairwise nonlocal interactions between points are called PD bonds. Figure 1 schematically shows a 
peridynamic body with a generic point , its family and its horizon. 𝒙

Figure 1. A peridynamic body with a generic point  and its horizon . Nonlocal interactions exist 𝒙 ℋ𝒙
through the bond between two points, e.g., point  and an arbitrary point  located in its horizon .𝒙 𝒙 ℋ𝒙

2.1. The peridynamic continuity equation
To construct a bond-based PD model for fluid motion, we first consider an imaginary cylinder in a fluid 
domain with two points  and  located at the top and bottom of the cylinder, respectively, as shown in 𝒙 𝒙
Figure 2. It is assumed that no mass transfer takes place through the cylinder’s side surface. Even if the 
flow velocity has a component perpendicular to the axial direction of the cylinder, it does not participate in 
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the transport of mass through the cylinder. Then, the continuity equation for some integrated property  𝜃
(mass, linear momentum, etc.) associated with the fluid, in the Eulerian form, can be expressed by:

ℎ𝑠
∂𝜃𝑎

∂𝑡 + 𝑠(𝜃𝒗 ‒ 𝜃𝒗) ⋅ 𝒆 = ℎ𝑠𝑟𝑎 (3) 

where  and  are the height and cross-sectional area of the cylinder, respectively;  and  are the average ℎ 𝑠 𝜃𝑎 𝑟𝑎
 and source/sink (taking the source as positive) in the cylinder, respectively;  is the flow velocity of the 𝜃 𝒗

fluid;  is the unit vector . Since , dividing Eq. (3) by both  and  gives us:𝒆
𝒙 ‒ 𝒙

‖𝒙 ‒ 𝒙‖ ℎ = ‖𝒙 ‒ 𝒙‖ ℎ 𝑠

∂𝜃𝑎

∂𝑡 +
𝜃𝒗 ‒ 𝜃𝒗
‖𝒙 ‒ 𝒙‖ ⋅ 𝒆 = 𝑟𝑎. (4) 

By taking  to , we would recover the classical derivation of the conservation equation. Instead, we assume 𝒙 𝒙
the equation to hold for finite distances .‖𝒙 ‒ 𝒙‖

Figure 2. A cylinder in the fluid domain with two points  and  located at the top and bottom. It is 𝒙 𝒙
assumed that nothing can transfer through the cylinder’s side surface.

In the peridynamic framework, each material point  interacts with points located in  through PD 𝒙 ∈ Ω ℋ𝒙
bonds. For each of these PD bonds, we assume that there is only mass transfer between PD points, which 
allows us to use Eq. (4). For the bond connecting  and , we can then write:𝒙 𝒙

∂𝜃𝑎

∂𝑡 + 𝛼
𝜃𝒗 ‒ 𝜃𝒗
‖𝒙 ‒ 𝒙‖ ⋅ 𝒆 = 𝑟𝑎 (5) 

where  is a coefficient which connects the macroscale flow velocity to the bond-level flow velocity. It will 𝛼
be determined later by requiring that the PD equation/solution converges (see Section 2.2) to the classical 
one as  goes to zero. Note that  can be selected as a function of  as well [30], but this is not 𝛿 𝛼 ‖𝒙 ‒ 𝒙‖
considered in this work for simplicity. Integrating Eq. (5) over the horizon of point  we get:𝒙

∫
ℋ𝒙

∂𝜃𝑎

∂𝑡 d𝒙 + 𝛼∫
ℋ𝒙

𝜃𝒗 ‒ 𝜃𝒗
‖𝒙 ‒ 𝒙‖ ⋅ 𝒆d𝒙 = ∫

ℋ𝒙

𝑟𝑎d𝒙 (6) 

We assume the following relation between  at point  and time  and the average  in all the PD bonds 𝜃 𝒙 𝑡 𝜃
connected at :𝒙
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where  is the volume (area in 2D and length in 1D) of the horizon region, a constant in this paper. Then 𝑉ℋ
we can write:

Similarly, we have:

Therefore, Eq. (6) becomes:

which is the general PD continuity equation in Eulerian form.

In the next section, we first show that the classical continuity equation is a limiting case of the PD form in 
Eq. (6). This is achieved by showing that the PD continuity equation converges to that of the classical one 
as .𝛿→0

2.2. Convergence of the peridynamic continuity equation to the classical one
To simplify the writing, we use the following notation for the weight function:

and for the nonlocal gradient and divergence operators:

𝒢𝜔(𝜙)(𝒙) = ∫
ℋ𝒙

𝜔(𝜙(𝒙,𝑡) ‒ 𝜙(𝒙,𝑡))𝒆d𝒙
(12) 

𝒟𝜔(𝝋)(𝒙) = ∫
ℋ𝒙

𝜔(𝝋(𝒙,𝑡) ‒ 𝝋(𝒙,𝑡)) ⋅ 𝒆d𝒙
(13)

where  and  are some arbitrary scalar and vector fields in , respectively. The weighted nonlocal 𝜙 𝝋 𝐿2

operators  and  have been shown (see Section 5.2 in [37]) to converge (in the  norm) to their 𝒢𝜔(𝜙) 𝒟𝜔(𝝋) 𝐿2

differential counterparts  and , respectively, as  ( -convergence), if the weight function ∇𝜙 ∇ ⋅ 𝝋 𝛿→0 𝛿
satisfies the following condition:

    ∫
ℋ𝒙

𝜔‖𝒙 ‒ 𝒙‖d𝒙 = 𝒹 (14) 

in which  is the dimension. Substitute Eq. (11) into Eq. (14) leads to . In Appendix A, as an 𝒹 𝛼 = 𝒹
illustration, we use simple Taylor expansions to show that  converges to  when . For more 𝒢𝜔(𝜙) ∇𝜙 𝛼 = 𝒹

∫
ℋ𝒙

𝜃𝑎d𝒙 = 𝜃𝑉ℋ (7) 

∫
ℋ𝒙

∂𝜃𝑎

∂𝑡 d𝒙 =
∂𝜃
∂𝑡𝑉ℋ (8) 

∫
ℋ𝒙

𝑟𝑎d𝒙 = 𝑟𝑉ℋ (9) 

∂𝜃(𝒙,𝑡)
∂𝑡 =‒

𝛼
𝑉ℋ

∫
ℋ𝒙

𝜃(𝒙,𝑡)𝒗(𝒙,𝑡) ‒ 𝜃(𝒙,𝑡)𝒗(𝒙,𝑡)
‖𝒙 ‒ 𝒙‖ ⋅ 𝒆(𝒙,𝒙)d𝒙 + 𝑟(𝒙,𝑡) (10)

𝜔 = 𝜔(𝒙,𝒙) =
𝛼

𝑉ℋ‖𝒙 ‒ 𝒙‖ (11) 
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detailed proofs of convergence in the  norm for both nonlocal gradient and divergence, the reader is 𝐿2

referred to [37].

Using the nonlocal operators defined in Eqs. (12) and (13), the integral in Eq. (10) can be written as:
𝒟𝜔(𝜃𝒗)

= ∫
ℋ𝒙

𝜔(𝜃𝒗 ‒ 𝜃𝒗) ⋅ 𝒆d𝒙 = ∫
ℋ𝒙

𝜔(𝜃(𝒗 ‒ 𝒗) ‒ 𝜃(𝒗 ‒ 𝒗) + 𝜃(𝒗 ‒ 𝒗) + 𝒗(𝜃 ‒ 𝜃)) ⋅ 𝒆d𝒙 = 𝒗 ⋅ 𝒢𝜔(𝜃)

+ 𝜃𝒟𝜔(𝒗) + 𝒜𝜔(𝜃,𝒗)

(15
) 

in which the last term is

𝒜𝜔(𝜃,𝒗) = ∫
ℋ𝒙

𝜔(𝜃 ‒ 𝜃)(𝒗 ‒ 𝒗) ⋅ 𝒆d𝒙 (16)

Therefore, Eq. (10) can be written as:

We show that  as , as follows:𝒜𝜔(𝜃,𝒗)→0 𝛿→0

𝒜𝜔(𝜃,𝒗) = ∫
ℋ𝒙

𝜔(𝜃 ‒ 𝜃)(𝒗 ‒ 𝒗) ⋅ 𝒆d𝒙

≤ ∫
ℋ𝒙

|𝜔(𝜃 ‒ 𝜃)(𝒗 ‒ 𝒗) ⋅ 𝒆|d𝒙

≤ ∫
ℋ𝒙

|𝜔||(𝜃 ‒ 𝜃)|‖𝒗 ‒ 𝒗‖d𝒙

≤
𝒹

𝑉ℋ
∫

ℋ𝒙

1
‖𝒙 ‒ 𝒙‖|(𝜃 ‒ 𝜃)|‖𝒗 ‒ 𝒗‖d𝒙

(18)

According to Taylor’s theorem and the Cauchy-Schwarz inequality, we have on :ℋ𝒙

|𝜃 ‒ 𝜃|
‖𝒙 ‒ 𝒙‖ ≤ ‖∇𝜃‖ +

1
2

‖∇2𝜃‖‖𝒙 ‒ 𝒙‖ + 𝑂(‖𝒙 ‒ 𝒙‖) ≤ ‖∇𝜃‖ +
𝛿
2

‖∇2𝜃‖ + 𝑂(𝛿) (19) 

and

 ‖𝒗 ‒ 𝒗‖ ≤ ‖𝐷𝒗‖‖𝒙 ‒ 𝒙‖ + 𝑂(‖𝒙 ‒ 𝒙‖) ≤ ‖𝐷𝒗‖𝛿 + 𝑂(𝛿) (20) 

where

𝐷𝒗 =
∂𝑣𝑖

∂𝑥𝑗𝒆𝑖⨂𝒆𝑗
(21) 

If and are bounded in , we have:𝐷𝒗 ∇𝜃 Ω

∂𝜃(𝒙,𝑡)
∂𝑡 =‒ 𝒗 ⋅ 𝒢𝜔(𝜃) ‒ 𝜃𝒟𝜔(𝒗) + 𝒜𝜔(𝜃,𝒗) + 𝑟(𝒙,𝑡) (17)
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    𝒜𝜔(𝜃,𝒗) ≤ 𝒹(‖∇𝜃(𝒙)‖ +
𝛿
2‖∇2𝜃(𝒙)‖ + 𝑂(𝛿))(‖𝐷𝒗(𝒙)‖𝛿 + 𝑂(𝛿))→0    as 𝛿→0 (22)

Comparing the PD form of continuity equation in Eq. (17) with its classical form:
∂𝜃
∂𝑡 =‒ 𝒗 ⋅ ∇𝜃 ‒ 𝜃∇ ⋅ 𝒗 + 𝑟, (23)

and considering that  and  in the sense of  , we conclude that the PD 𝒢𝜔(𝜃)→∇𝜃 𝒟𝜔(𝒗)→∇ ⋅ 𝒗 𝐿2 as 𝛿→0
continuity equation converges to the classical version . as 𝛿→0

2.3. The peridynamic formulation for viscous flow
Starting from the general continuity equation given in Eq. (10), we now derive the PD governing equations 
for viscous flow. When the property  in Eq. (10) is mass, by taking , we obtain the PD mass continuity 𝜃 𝑟 = 0
equation without sources/sinks:

∂𝜌
∂𝑡 =‒

𝒹
𝑉ℋ

∫
ℋ𝒙

𝜌𝒗 ‒ 𝜌𝒗
‖𝒙 ‒ 𝒙‖ ⋅ 𝒆d𝒙 (24)

where  is the mass density. When the property  is the linear momentum, we have the following PD 𝜌 𝜃
equation of motion:

∂(𝜌𝒗)
∂𝑡 =‒

𝒹
𝑉ℋ

∫
ℋ𝒙

𝜌𝒗 ⊗ 𝒗 ‒ 𝜌𝒗 ⊗ 𝒗
‖𝒙 ‒ 𝒙‖ ⋅ 𝒆d𝒙 + 𝒓 (25) 

in which the generic momentum source  consists of internal and external forces. The internal forces can 𝒓
be decomposed into pressure and viscous forces. To find the expression for these forces in the PD 
framework, we consider again the cylinder shown in Figure 2. As shown in Figure 3, in a viscous flow, the 
force exerted on the cylinder along its axial direction is:

Figure 3. Velocity decomposition at  and  located at the top and bottom, respectively, for an 𝒙 𝒙
imaginary cylinder in the fluid domain.

𝑠(𝑝 ‒ 𝑝)𝒆 (26) 
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The viscous force, inspired by the shear bond force introduced in PD bond-based mechanical models 
[38,39], can be formulated as the shear force exerted on the cylinder due to the velocity difference between 
the two ends of the cylinder:

𝜇𝑠
(𝐈 ‒ 𝒆 ⊗ 𝒆)(𝒗 ‒ 𝒗)

‖𝒙 ‒ 𝒙‖ (27) 

in which  is the viscosity of the fluid, and  is the portion of velocity difference, between 𝜇 (𝐈 ‒ 𝒆 ⊗ 𝒆)(𝒗 ‒ 𝒗)
the two ends of the cylinder, that is perpendicular to the cylinder’s axial direction . 𝒆

Following a similar procedure used to derive the general PD continuity equation as shown in Section 2.1, 
we have:

𝒓 =‒
𝛼𝑝

𝑉ℋ
∫

ℋ𝒙

𝑝 ‒ 𝑝
‖𝒙 ‒ 𝒙‖ ⋅ 𝒆d𝒙 +

𝜇𝛼𝜇

𝑉ℋ
∫

ℋ𝒙

((𝐈 ‒ 𝒆 ⊗ 𝒆)(𝒗 ‒ 𝒗))
‖𝒙 ‒ 𝒙‖2 d𝒙 + 𝜌𝒃 (28) 

Therefore, the PD governing equations for viscous flow are established as follows:

∂𝜌(𝒙,𝑡)
∂𝑡 =‒

𝒹
𝑉ℋ

∫
ℋ𝒙

𝜌𝒗 ‒ 𝜌(𝒙,𝑡)𝒗(𝒙,𝑡)
‖𝒙 ‒ 𝒙‖ ⋅ 𝒆(𝒙,𝒙)d𝒙 (29) 

∂(𝜌(𝒙,𝑡)𝒗(𝒙,𝑡))
∂𝑡

=‒
𝒹

𝑉ℋ
∫

ℋ𝒙

𝜌(𝒙,𝑡)𝒗(𝒙,𝑡) ⊗ 𝒗(𝒙,𝑡) ‒ 𝜌(𝒙,𝑡)𝒗(𝒙,𝑡) ⊗ 𝒗(𝒙,𝑡)
‖𝒙 ‒ 𝒙‖ ⋅ 𝒆(𝒙,𝒙)d𝒙 ‒

𝛼𝑝

𝑉ℋ

∫
ℋ𝒙

𝑝(𝒙,𝑡) ‒ 𝑝(𝒙,𝑡)
‖𝒙 ‒ 𝒙‖ ⋅ 𝒆(𝒙,𝒙)d𝒙 +

𝜇𝛼𝜇

𝑉ℋ
∫

ℋ𝒙

((𝐈 ‒ 𝒆(𝒙,𝒙) ⊗ 𝒆(𝒙,𝒙))(𝒗(𝒙,𝑡) ‒ 𝒗(𝒙,𝑡)))
‖𝒙 ‒ 𝒙‖2 d𝒙

+ 𝜌(𝒙,𝑡)𝒃(𝒙,𝑡)

(30)

The PD model for viscous flow contains the pressure field which does not have an explicit equation yet. 
For incompressible Newtonian fluids, because directly solving the original incompressible equations 
creates numerical difficulties in terms of accuracy and efficiency, the artificial compressibility method is 
commonly used in the literature to handle the pressure term (see, e.g., [40–42]). This approach treats the 
incompressible fluid as a weakly compressible one and adopts an equation of state to explicitly determine 
the pressure field from the density field [41,43] as follows:

where  is the initial density,  is the predicted density at the current step,  is the material constant 𝜌0 𝜌 ∗ 𝛾
which is 7 for water and  is the sound speed in the initial density. The real sound speed is usually not used 𝑐0
as it would require a significantly small timestep for stability of the numerical model (see Section 3). Instead, 
an artificial, lower sound speed , which ensures sufficiently accurate solution, is preferred. To keep the 𝑐
density variation of fluid to less than 1% of the initial density, the Mach number ( ) must be smaller M = 𝑣/𝑐
than 0.1 [41]. This requires the artificial sound speed to be higher than 10 times of the maximum fluid 
velocity.

𝑝 =
𝜌0𝑐2

0

𝛾 ((𝜌 ∗

𝜌0 )
𝛾

‒ 1) (31) 
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The PD equations for viscous flow still require determination of the unknown parameters in the weight 
functions. We already know that  from Section 2.2. Since  in Eq. (30) is also a constant coefficient 𝛼 = 𝒹 𝛼𝑝
in the PD gradient operator, we have . We find  by calibration for a simple flow problem, that 𝛼𝑝 = 𝛼 = 𝒹 𝛼𝜇
ensures linear consistency of the formulation [31,32]. Consider a steady-state shear-driven fluid flow 
parallel to the -axis and with a linear distribution of velocity magnitude, i.e., . According to 𝑥 𝑣 = 𝑣0𝑦
Newton’s law of viscosity, we have . The counterpart of  in PD can be formulated as 𝜏𝑥𝑥 = 𝜇𝑣0 𝜏𝑥𝑥 𝜏PD

𝑥𝑥 =

 for 3D and  for 2D. The detailed derivation of  is provided in Appendix A. By letting 
𝛼𝜇𝜇𝑣0

10 𝜏PD
𝑥𝑥 =

3
16𝛼𝜇𝜇𝑣0 𝜏PD

𝑥𝑥

, it leads to  for 3D and  for 2D.𝜏PD
𝑥𝑥 = 𝜏𝑥𝑥 𝛼𝜇 = 10 𝛼𝜇 =

16
3

2.4. Boundary conditions
Unlike classical local methods, “boundary conditions” in peridynamics are “volume constraints”, acting 
through a finite layer under the surface of a body. However, in practice, measurements are normally 
achievable only at the surfaces of a body, thus the normal local representation of boundary conditions. For 
these reasons, imposing local-type boundary conditions in peridynamic models is usually desired/needed. 
Various methods to impose local boundary conditions in PD models have been investigated in [37,44,45]. 
One such method is the fictitious nodes method (FNM) [44–46]. In FNM for peridynamics, certain 
constraints are specified on the fictitious region  (the “collar” outside of Ω = {𝒙 ∉ Ω│distance(𝒙, ∂Ω) < 𝛿}
the solution domain  shown in Figure 4), so that desired local boundary conditions imposed at  are  Ω ∂Ω
satisfied or approximately satisfied. Figure 4 schematically shows the solution domain , its boundary , Ω ∂Ω
and the fictitious region, . Ω

Figure 4. Schematic of a peridynamic domain ( ), its boundary ( ), and its fictitious region, .Ω ∂Ω Ω

In fluid dynamics, there are a number of different boundaries conditions, such as inlet/outlet, free and solid 
wall boundaries [47]. Various treatments are required for each of these types. In this work, we only consider 
no-slip solid wall boundaries. The corresponding boundary conditions then are:

𝒗 ⋅ 𝒏 = 0

𝒗 ⋅ 𝒕 = 0 (32) 

where  and  are vectors normal and tangential to the boundary, respectively. We use the naïve-type FNM 𝒏 𝒕
(because of its ease of implementation, see [48]) to enforce the above boundary conditions, i.e., the velocity 
assigned to the fictitious points  are the same as that of the solid wall: 𝒙 ∈ Ω

𝒗(𝒙) = 𝒗wall = 𝟎 (33) 

3. Numerical implementation
For the spatial discretization, we discretize the domain uniformly [49] into cells with nodes in the center of 
those cells. Figure 5 shows a 2D uniform discretization with grid spacing  around a node . Non-uniform  Δ𝑥  𝒙𝑖
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grids are also possible [50–52], and very useful when having to conform to round boundaries [7][53], but 
this is not pursued in this work. 

To discretize the peridynamic integro-differential equations, we use a meshfree method with one-point 
Gaussian quadrature [49] for the approximation of the integral term. For the time integration we select the 
forward-Euler method for simplicity.

Figure 5. Uniform discretization for the 2D PD model. The circular region is the horizon region of node
. 𝒙𝑖

The discretized PD equations for viscous flow (Eqs. (29) and (30)) are as follows:

𝜌𝑛 + 1
𝑖 = 𝜌𝑛

𝑖 ‒
𝒹Δ𝑡
𝜋𝛿2 ∑

𝑗 ∈ ℋ𝑖
𝑗 ≠ 𝑖

(𝜌𝑛
𝑗𝒗𝑛

𝑗 ‒ 𝜌𝑛
𝑖𝒗𝑛

𝑖

𝜉𝑖𝑗
⋅

x𝑗 ‒ 𝒙𝑖

𝜉𝑖𝑗
𝑉𝑖𝑗) (34

)

𝒗𝑛 + 1
𝑖

= 𝒗𝑛
𝑖 +

Δ𝑡
𝜌𝑛

𝑖[ ‒
𝒹

𝑉ℋ( ∑
𝑗 ∈ ℋ𝑖
𝑗 ≠ 𝑖

(𝜌𝑛
𝑗𝒗𝑛

𝑗 ⊗ 𝒗𝑛
𝑗 ‒ 𝜌𝑛

𝑖𝒗𝑛
𝑖 ⊗ 𝒗𝑛

𝑖)
𝜉𝑖𝑗

⋅ 𝝃𝑖𝑗𝑉𝑖𝑗) ‒
𝒹

𝑉ℋ
∑

𝑗 ∈ ℋ𝑖
𝑗 ≠ 𝑖

((𝑝𝑛
𝑗 ‒ 𝑝𝑛

𝑖)𝝃𝑖𝑗

𝜉𝑖𝑗
2 𝑉𝑖𝑗) +

𝜇𝛼𝜇

𝑉ℋ

∑
𝑗 ∈ ℋ𝑖
𝑗 ≠ 𝑖

1

𝜉𝑖𝑗
2(𝐈 ‒

𝝃𝑖𝑗 ⊗ 𝝃𝑖𝑗

𝜉𝑖𝑗
2 ) ⋅ (𝒗𝑛

𝑗 ‒ 𝒗𝑛
𝑖)𝑉𝑖𝑗 + 𝜌𝑛

𝑖𝒃𝑛
𝑖]

(35
)

where  and . The superscript  means  load step. The subscripts  and  denote 𝝃𝑖𝑗 = x𝑗 ‒ 𝒙𝑖 𝜉𝑖𝑗 = ||𝝃𝑖𝑗|| 𝑛 𝑛th 𝑖 𝑗
the current node  and its family node  respectively, in the discretized domain.  is the horizon region 𝒙𝑖 𝒙𝑗 ℋ𝑖
of node ,  includes all the nodes covered by  (fully or partially),  is the area of node  covered 𝒙𝑖 𝑗 ∈ ℋ𝑖 ℋ𝑖 𝑉𝑖𝑗 𝒙𝑗
by . Note that the partial volume integration, which was first proposed in [54] and then further discussed ℋ𝑖
in [55,56], is used to approximate .𝑉𝑖𝑗

For stability of the time-integrator, the time step needs to satisfy several criteria. Here we use similar criteria 
as those in SPH models [42], including a CFL condition [57], the additional constraints due to the magnitude 
of nodal accelerations  [58] and the viscous diffusion, as follows:𝑎

∆𝑡 ≤ 0.25
Δ𝑥
𝑐 (36) 

∆𝑡 ≤ 0.25(Δ𝑥
𝑎 )

1
2

(37) 
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∆𝑡 ≤ 0.125
𝜌Δ𝑥2

𝜇 (38) 

where the value of each right-hand side is the minimum over all nodes.

A detailed study of the stability, consistency, and convergence of the numerical scheme, and higher-order 
schemes, as well as simulations in the higher Reynolds number case, will be the subject of forthcoming 
work. Our purpose here is just to demonstrate that a straight-forward implementation agrees with some 
standard benchmark cases to a reasonable level of accuracy—a first step toward validation of the model.

4. Computational validation
In this section, we first verify our PD model for viscous flow using the Couette and Poiseuille flow problems. 
We test whether the PD solution converges, in the limit of horizon going to zero, to the classical analytical 
solutions. We also study the flow through a periodic array of cylinders to test the wall boundary condition 
for curved geometries and compare with an SPH solution (of the corresponding classical model) from the 
literature. 

4.1. Couette flow 
Consider two infinite, parallel plates separated by a distance . The top one, moves with a constant velocity ℎ

 in its own plane. This generates a unidirectional fluid motion, called Couette flow. The series solution 𝑣0
for the classical model of this problem, in terms of the velocity in the horizontal direction, is given by [42]:

𝑣𝑥(𝑦,𝑡) =
𝑣0

ℎ 𝑦 +
∞

∑
𝑛 = 1

2𝑣0

𝑛𝜋 ( ‒ 1)𝑛sin (𝑛𝜋
ℎ 𝑦)exp ( ‒

𝜇
𝜌

𝑛2𝜋2

ℎ2 𝑡) (39) 

In our PD simulation of this Couette flow problem, we choose , ,  𝑣0 = 10 μm/s ℎ = 1 mm 𝜌 = 103 kg/m3

and . We make the domain periodic in the  direction to mimic the infinite domain 𝜇 = 10 ‒ 3 kg ⋅ m ‒ 1 ⋅ s ‒ 1 𝑥
(see Fig. 16 in [59] for an illustration of how this can be achieved).  Figure 6 shows the comparison of the 
velocity profile along -axis between the PD solution (for  and ) and the analytical series 𝑦 𝛿 = 40 μm 𝑚 = 4
solution of the classical model at different times. A -convergence study is then performed, and results are 𝛿
shown in Table 1. Note that the convergence rate of -convergence is linear because we use the naïve FNM 𝛿
to impose the local boundary condition [48]. Higher convergence rate should be possible with the mirror-
based FNM, for example, but this is not pursued here.  
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Figure 6. Comparison of PD solutions (for  and ) and series solutions of the 𝛿 = 40 μm 𝑚 = 4
corresponding classical model (using the first 50 terms in the series) for Couette flow.

Table 1. -convergence study for the PD solution of Couette flow.𝛿

𝑡 = 0.1 s 𝛿 = 80 μm 𝛿 = 40 μm 𝛿 = 20 μm
𝜀𝑟 0.0419 0.0184 0.0075

where , and n is the total number of nodes used in the computation.𝜀𝑟 =
∑𝑛

𝑖 = 1(𝑢classical
𝑖 ‒ 𝑢PD

𝑖 )2

∑𝑛
𝑖 = 1(𝑢classical

𝑖 )2

4.2. Poiseuille flow 
The second test case is Poiseuille flow between stationary infinite plates at  and . The fluid is 𝑦 = 0 𝑦 = ℎ
initially at rest and is driven by an applied body force  parallel to the -axis for . The series solution 𝑏𝑥 𝑥 𝑡 ≥ 0
of the classical model for this problem give the velocity in the horizontal direction as [42]:

We choose , ,  and . Again, the PD ℎ = 1 mm 𝜌 = 103 kg/m3 𝜇 = 10 ‒ 3 kg ⋅ m ‒ 1 ⋅ s ‒ 1 𝑏𝑥 = 1 × 10 ‒ 4 m/s2

solution matches the series solution very well, as shown in Figure 7.

𝑣𝑥(𝑦,𝑡) =
𝜌𝑏𝑥

2𝜇 𝑦(ℎ ‒ 𝑦) +
∞

∑
𝑛 = 0

4𝜌𝑏𝑥ℎ2

𝜇𝜋3(2𝑛 + 1)3sin (𝜋𝑦
ℎ (2𝑛 + 1))exp ( ‒

(2𝑛 + 1)2𝜋2𝜇
𝜌ℎ2 𝑡) (40) 
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
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Figure 7. Comparison of PD solutions (for  and ) and series solutions of the 𝛿 = 40 μm 𝑚 = 4
corresponding classical model (using the first 50 terms in the series) for Poiseuille flow. Note that 𝑣∞

𝑥

.= 𝑣𝑥(ℎ
2,∞) =

𝜌𝑏𝑥ℎ2

8𝜇

4.3. Flow through a Periodic Lattice of Cylinders 
The previous examples have shown the performance of our method for fluid flow confined by straight 
channel walls. Now we verify the model for flow through a periodic array of disks/cylinders [42] (see 
Figure 8), to test the wall boundary condition for curved geometries. For implementing periodic BCs in PD 
models, please see [59]. The parameters used in this example are given in Table 2. Figure 9 shows the 
comparison for the velocity magnitude and velocity contour lines at steady state between PD results (

 discretization nodes) and SPH results (  particles, plus extra particles placed on the 100 × 100 50 × 50
circular disk to conform better to the actual geometry) from [60]. In spite of using a uniform discretization 
grid that does not conform with the circular disk geometry, the PD results track the SPH solution very well. 
As mentioned in Section 3, PD can also be implemented on non-uniform, conforming grids (see, e.g., [53]), 
but this is not pursued here for simplicity.

Figure 8. Schematic of fluid flow driven by a body force around a disk. The cell is repeated by 
symmetry to represent flow around a periodic array of disks.

Table 2.Parameters for flow through periodic lattice of disks.

Parameters Value Parameters Value
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𝐿 0.1 m 𝑎 4 × 10 ‒ 2 m

𝜇 10 ‒ 3 kg ⋅ m ‒ 1 ⋅ s ‒ 1 𝑓 1.5 × 10 ‒ 7 m ⋅ s ‒ 2

𝜌 1 kg ⋅ m ‒ 3 𝑐 5.77 × 10 ‒ 4 m ⋅ s ‒ 1

(a) (b)

Figure 9. Contour plots of velocity magnitude by (a) PD model (for  and ); (b) SPH 𝛿 = 40 μm 𝑚 = 4
model [60] (contour lines are labeled in units of ).10 ‒ 4 m/s

5. Conclusions
In this paper, we constructed a peridynamic (PD) alternative of the classical Navier-Stokes equations (in 
Eulerian formulation) from fundamental conservation principles. The formulation is different from “re-
casting” of the classical Navier-Stokes equations using the so-called “PD differential operator” found in the 
literature. The classical continuity equation is shown to be a limiting case of the PD one with selected 
weight functions. The viscous force was formulated based on the PD shear bond forces. The weight function 
present in the viscous force was determined by enforcing linear consistency of the viscous stress provided 
by a PD model with that from a corresponding classical model. The model was verified against analytical 
solutions of the classical model for Couette and Poiseuille flows, as well as against an SPH approximation 
of the classical model for incompressible flow past a regular lattice of cylinders at low Reynolds numbers. 
The new model can be used to solve fluid-structure interaction problems involving damage and degradation, 
such as erosion, erosion-corrosion and hydraulic fracture, by coupling with existing PD models for 
corrosion and fracture.
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Appendix A. Convergence of the PD gradient operator to its classical 

counterpart
To show the convergence of PD gradient operator  to the classical one , we follow a procedure 𝒢𝜔(𝑢) ∇𝑢
similar to the one used in [61]. Consider an incompressible Newtonian fluid motion in which  is 𝜃
sufficiently smooth in , one can write, for any  and  that:Ω 𝒙 ∈ Ω 𝒙 ∈ ℋ𝒙

    𝑢 ‒ 𝑢 = 𝜉𝑖𝑢,𝑖 +
1
2𝜉𝑖𝜉𝑗𝑢,𝑖𝑗 +

1
3!𝜉𝑖𝜉𝑗𝜉𝑘𝑢,𝑖𝑗𝑘 + …                                  𝑖,𝑗,𝑘 ∈ [1,𝒹] (41)

where  and  is the space dimension. Substitute Eq. (41), without the remaining 𝝃 = (𝒙 ‒ 𝒙) = 𝜉𝒆 = 𝜉𝑖𝒆𝑖 𝒹
terms, into  and consider symmetry of , we get:𝒢𝜔(𝑢) ℋ𝒙

𝒢𝜔(𝑢)

= ∫
ℋ𝒙

𝜔(𝑢 ‒ 𝑢)𝒆d𝒙 =
𝛼

𝑉ℋ
∫

ℋ𝒙

1
𝜉{𝜉𝑖𝑢,𝑖 +

1
3!𝜉𝑖𝜉𝑗𝜉𝑘𝑢,𝑖𝑗𝑘} 𝒆d𝒙 =

𝛼
𝑉ℋ

∫
ℋ𝒙

𝜉𝑖

𝜉 𝑢,𝑖𝒆d𝒙 +
𝛼

6𝑉ℋ

∫
ℋ𝒙

𝜉𝑖

𝜉
𝜉𝑗

𝜉
𝜉𝑘

𝜉 𝑢,𝑖𝑗𝑘𝒆𝜉2d𝒙

(42
) 

If , we have𝒹 = 2
𝒢𝜔(𝑢) 

=
𝛼

𝑉ℋ
∫

ℋ𝒙

𝜉𝑖

𝜉 𝑢,𝑖𝒆d𝒙 +
𝛼

6𝑉ℋ
∫

ℋ𝒙

𝜉𝑖

𝜉
𝜉𝑗

𝜉
𝜉𝑘

𝜉 𝑢,𝑖𝑗𝑘𝒆𝜉2d𝒙 =
𝛼

𝜋𝛿2

∫2𝜋

0
∫𝛿

0
(cos 𝜃

∂𝑢
∂𝑥(𝒙) + sin 𝜃

∂𝑢
∂𝑦(𝒙))[cos 𝜃

sin 𝜃]𝑟d𝑟d𝜃 +
𝛼

6𝜋𝛿2∫
2𝜋

0
∫𝛿

0
(cos3 𝜃

∂3𝑢
∂𝑥3(𝒙) + 3cos2

𝜃sin 𝜃
∂3𝑢

∂𝑥2∂𝑦 
(𝒙) + 3cos 𝜃sin2 𝜃

∂3𝑢
∂𝑥∂𝑦2 

(𝒙) + sin3 𝜃
∂3𝑢
∂𝑦3(𝒙))[cos 𝜃

sin 𝜃]𝑟3d𝑟d𝜃

=
𝛼

𝜋𝛿2

𝜋𝛿2

2  ∇𝜌(𝒙) + 𝑂( 𝛿2) =
𝛼
2 ∇𝜌(𝒙) + 𝑂( 𝛿2)

(43
) 

Similarly, for , we can show that𝒹 = 3

𝒢𝜔(𝑢) =
𝛼
3 ∇𝜌(𝒙) + 𝑂( 𝛿2) (44) 

Therefore, if we set , the PD operator will converge to the classical one pointwise as . For more 𝛼 = 𝒹 𝛿→0
details, and a proof of convergence in the  norm, the reader is referred to [37].𝐿2

Note that boundary effects are not considered here. For those PD points near the boundary which do not 
have a complete horizon region, the above convergence does not stand unless special treatments are 
provided (e.g., fictitious nodes methods [46,48]). 
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Appendix B. Computing PD stress component from bond force 

densities
To compute the shear stress at an arbitrary point  in the PD model, we first consider a plane intersecting 𝒑

 and normal to the -axis and a thin cylinder below  with cross-sectional area  and length , where  𝒑 𝑦 𝒑 𝑑𝐴 𝛿 𝛿
is the horizon of the PD model. Force through the plane on the cylinder is carried through the bonds that 
have one end in the cylinder and the other end on the other side of the plane. A typical point  in the cylinder 𝒙
is located a distance  to the bottom of the plane, with . The force density (per unit volume 𝑧 0 <  𝑧 ≤  𝛿
square) in a typical bond connecting this point to the other side of the plane is given by . Using a 𝒇(𝒙, 𝒙)
spherical coordinate system in which  is the angle from the -axis, and  is the bond length, the total force 𝜙 𝑦 𝜉
on the cylinder is then (in 3D) [12]:

d𝑭 = d𝐴∫2𝜋

0

𝛿

∫
0

𝜉

∫
0

cos ‒ 1 (𝑧
𝜉)

∫
0

𝒇(𝜉,𝜙,𝜃)𝜉2sin 𝜙d𝜙d𝑧d𝜉d𝜃 (45) 

Figure 10. Computation of force per unit area, at a generic point , from bond force densities (redrawn 𝒑
from [12]).

The shear stress component at  is then given by:𝒑

𝜏𝑃𝐷
𝑥𝑥 =

d𝐹𝑥

d𝐴 = ∫2𝜋

0

𝛿

∫
0

𝜉

∫
0

cos ‒ 1 (𝑧
𝜉)

∫
0

𝑓𝑥(𝜉,𝜙,𝜃)𝜉2sin 𝜙d𝜙d𝑧d𝜉d𝜃 (46) 

From Section 2.3, we know that:
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𝒇 =
𝜇𝛼𝜇

𝑉ℋ

((𝐈 ‒ 𝒆 ⊗ 𝒆)(𝒗 ‒ 𝒗))
‖𝒙 ‒ 𝒙‖2 (47) 

For the fluid flow parallel to the -axis and with a magnitude of , we have𝑥 𝑣0𝑦

𝑓𝑥 =
𝜇𝛼𝜇

𝑉ℋ

(1 ‒ sin2 𝜃)
‖𝒙 ‒ 𝒙‖2 𝑣0 (𝑦 ‒ 𝑦) (48) 

Therefore, we can compute the PD shear stress (flux) from the PD bond density of shear force as follows: 

𝜏PD
𝑥𝑥

=
𝜇𝛼𝜇

𝑉ℋ
∫2𝜋

0

𝛿

∫
0

𝜉

∫
0

cos ‒ 1 (𝑧
𝜉)

∫
0

1
𝜉2(1 ‒ sin2 𝜃)𝑣0 (𝑦 ‒ 𝑦)𝜉2sin 𝜙d𝜙d𝑧d𝜉d𝜃 ==‒

3𝛼𝜇𝜇𝑣0

2𝛿3

𝛿

∫
0

𝜉

∫
0

cos ‒ 1 (𝑧
𝜉)

∫
0

𝜉cos3 𝜙dcos 𝜙d𝑧d𝜉 =‒
3𝛼𝜇𝜇𝑣0

8𝛿3

𝛿

∫
0

𝜉
𝜉

∫
0

(𝑧4

𝜉4 ‒ 1)d𝑧d𝜉 =
3𝛼𝜇𝜇𝑣0

10𝛿3

𝛿

∫
0

𝜉2d𝜉

=
𝛼𝜇𝜇𝑣0

10

(49
) 

Similarly, for 2D, we have:

𝜏PD
𝑥𝑥

=
𝛿

∫
0

𝜉

∫
0

cos ‒ 1 (𝑧
𝜉)

∫
0

𝑓𝑥𝜉d𝜃d𝑧d𝜉 =
𝜇𝛼𝜇

𝑉ℋ

𝛿

∫
0

𝜉

∫
0

cos ‒ 1 (𝑧
𝜉)

∫
0

1
𝜉2(1 ‒ sin2 𝜃)𝑣0 (𝑦 ‒ 𝑦)𝜉d𝜃d𝑧d𝜉 =

𝛼𝜇𝜇𝑣0

𝜋𝛿2

𝛿

∫
0

𝜉

∫
0

cos ‒ 1 (𝑧
𝜉)

∫
0

cos3 𝜃d𝜃d𝑧d𝜉 =
𝛼𝜇𝜇𝑣0

𝜋𝛿2

𝛿

∫
0

𝜉

∫
0

((1
3sin 𝜃(2 + cos2 𝜃))│cos ‒ 1 (𝑧

𝜉)
0 )d𝜃d𝑧d𝜉

=
2𝛼𝜇𝜇𝑣0

𝜋𝛿2

𝛿

∫
0

𝜉

∫
0

(1
3 1 ‒ (𝑧

𝜉)2(2 + (𝑧
𝜉)2))d𝑧d𝜉 =

2𝛼𝜇𝜇𝑣0

𝜋𝛿2

𝛿

∫
0

𝜉
1

∫
0

(1
3 1 ‒ 𝑥2(2 + 𝑥2))d𝑥d𝜉

=
2𝛼𝜇𝜇𝑣0

𝜋𝛿2

𝛿

∫
0

𝜉

𝜋
2

∫
0

(cos2 𝛼
3

(2 + sin2 𝛼))d𝛼d𝜉 =
2𝛼𝜇𝜇𝑣0

3𝜋𝛿2

𝛿

∫
0

𝜉

𝜋
2

∫
0

(cos2 𝛼(3 ‒ cos2 𝛼))d𝛼d𝜉

=
𝛼𝜇𝜇𝑣0

3𝜋𝛿2

9
16𝜋

𝛿

∫
0

𝜉d𝜉 =
2𝛼𝜇𝜇𝑣0

3𝜋𝛿2

9
16𝜋

1
2𝛿2 =

3
16𝛼𝜇𝜇𝑣0

(50
) 
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