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Stérk, Kidd, and Frost Attested Distributions Boost Statistical Learning

Abstract: Statistical learning, the ability to extract regularities from input (e.g., in lan-
guage), is likely supported by learners’ prior expectations about how component units
co-occur. In this study, we investigated how adults’ prior experience with sublexical
regularities in their native language influences performance on an empirical language
learning task. Forty German-speaking adults completed a speech repetition task in
which they repeated eight-syllable sequences from two experimental languages: one
containing disyllabic words comprised of frequently occurring German syllable transi-
tions (naturalistic words) and the other containing words made from unattested syllable
transitions (non-naturalistic words). The participants demonstrated learning from both
naturalistic and non-naturalistic stimuli. However, learning was superior for the natu-
ralistic sequences, indicating that the participants had used their existing distributional
knowledge of German to extract the naturalistic words faster and more accurately than
the non-naturalistic words. This finding supports theories of statistical learning as a
form of chunking, whereby frequently co-occurring units become entrenched in long-
term memory.

Keywords statistical learning; serial recall; incremental learning; long-term memory;
entrenchment

Introduction

Humans are exquisitely sensitive to the regularities in their environment. Sta-
tistical learning (SL), the ability to draw on these regularities, is hypothesized
to underlie learning across all sensory domains. Although it is indisputable that
humans are capable of SL (which might rely upon multiple interacting mecha-
nisms, see Frost et al., 2015), the totality of the parameters influencing SL are
still yet to be mapped out. In our study, we examined the degree to which SL
of linguistic stimuli is influenced by prior knowledge of attested syllable tran-
sitions present in natural language. That is, we asked whether and how adults’
prior experience with the sublexical regularities in their native language in the
form of syllable bigrams would permeate into the laboratory, such that it would
enhance the adults’ performance on an empirical language learning task when
the distributional properties of the to-be-learned material aligned with those of
the natural language.

In a canonical auditory SL task using linguistic stimuli, participants listen
to a stream of speech that contains to-be-discovered words that are defined by
statistical regularities (e.g., Saffran et al., 1996). The discovery of the statisti-
cal segmentation effect heralded great promise for non-nativist approaches to
language acquisition because it suggested the existence of a powerful learn-
ing mechanism (or mechanisms) that can induce structure from the input
and thus questioned the need to postulate innately specified language-specific
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knowledge. That even very young infants are capable of SL is not controver-
sial; however, the parameters that influence the process are still not well under-
stood. This is partly due to the fact that much of the research on the topic has
been conducted independently from other fields in cognitive psychology (Frost
et al., 2019), such that connections to older disciplines concerned with learn-
ing and memory have not always been made. Yet, any task concerning learning
of linguistic stimuli should be expected to conform to well-known properties
of verbal memory, with SL being no exception (Isbilen et al., 2020; Vlach &
DeBrock, 2017; Vlach & Sandhofer, 2014).

Since as far back as Ebbinghaus (1885, 1913), researchers have known
that verbal learning is most effective when learners build upon prior experi-
ence. Accordingly, if researchers are to take the results of SL research to be
ecologically valid, they should not expect participants to come into the lab-
oratory without prior implicit assumptions about how linguistic stimuli like
phonemes and syllables are ordered (Dal Ben et al., 2021; Finn & Hudson
Kam, 2008; Mersad & Nazzi, 2011; Siegelman et al., 2018) and should instead
expect participants to learn best when the target language is consistent with
those assumptions. Such historically-contingent and in many instances top-
down influences on performance suggest that the output of SL shapes future
learning.

Background Literature

A growing number of studies have shown that prior knowledge and expecta-
tions derived from a speaker’s native language shape subsequent SL in a num-
ber of ways. This process begins very early. For example, Lew-Williams and
Saffran (2012) found that infants’ statistical segmentation of novel words from
continuous speech was guided by their experience with words of the same ver-
sus a different length in a pretraining phase such that segmentation was only
possible when words were the same length in both exposure phases. Similarly,
research has revealed a significant benefit of starting small during incremental
SL, with learners bootstrapping upon initial experience with simpler structures.
Zettersten et al. (2020) demonstrated that adults’ prior experience with a sim-
plified nonadjacent dependency-learning task boosted later learning of a more
complex instantiation of the same structure (see also Lany & Gémez, 2008,
for similar findings with infants). In related work, Lai and Poletiek (2011)
found that exposure to simple AB dependencies helped subsequent learning of
longer, more complex strings containing center-embeddings. Together, these
findings provide converging evidence that prior experience scaffolds for future
learning of related material.
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Importantly, similar transfer effects have been found to emerge through
experience with natural as well as artificial languages and across different
learning contexts. For instance, Potter et al. (2017) documented a language-
experience effect in novice learners of Mandarin after just two semesters of
study. In Potter et al.’s study, participants completed a SL task in which the
artificial language overlapped with Mandarin insofar as it was tonal in nature
(see also Wang & Saffran, 2014) to see whether participants’ experience with
related material would impact learning. Participants completed the task at two
time points separated by an interim learning period of six months. Although
participants’ performance was initially at chance, there were significant im-
provements at Time 2, with participants achieving accuracy scores of 66% on
a two-alternative forced-choice (2AFC) segmentation test, indicating that par-
ticipants’ SL performance had been critically shaped by their experience with
relevant linguistic input. Non-Mandarin-learning controls exhibited no such
improvements, performing at chance on both occasions.

Other studies have investigated how statistical distributions in naturalistic
language constrain SL in laboratory settings, with a large focus on phonotactic
probabilities (for reviews of how phonotactics impact on early acquisition, see
Johnson, 2016; Jusczyk, 2002). For instance, Finn and Hudson Kam (2008)
showed that participants could only successfully segment statistically defined
novel words from continuous speech when the words contained syllables that
followed phonotactic constraints of English (see also Toro et al., 2011). Mersad
and Nazzi (2011) showed that the presence of words containing high phono-
tactic probability served as anchors that successfully aided segmentation com-
pared to a condition in which all words had a uniform but lower phonotactic
probability. Dal Ben et al. (2021) replicated this latter effect using a more nar-
rowly defined difference in phonotactic probability across experimental con-
ditions. Overall, these studies provide strong evidence for the suggestion that
fine-grained features of natural language, in this case phonotactic probability,
shape participants’ subsequent expectations about how their input is shaped.
This is consistent with results reported by Siegelman et al. (2018), who found
that performance on an auditory SL segmentation task was predicted by post
hoc ratings of how word-like test items and foils were.

These findings provide converging support for the notion that prior experi-
ence can shape future learning at multiple levels of description, boosting per-
formance when the properties of the input align. Building on this, Elazar et al.
(2022)! investigated the specific hypothesis that entrenched memory traces for
syllable co-occurrences in natural language boost SL. They tested two groups
of Spanish-speaking participants on an auditory SL task. One group listened
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to a Spanish-like speech stream in which transitional probabilities (TPs) of
the experimental words were highly attested in Spanish while the other group
listened to a Spanish-unlike speech stream in which TPs of the experimen-
tal words were rarely attested in Spanish. Participants were tested on a lexical
decision task for experimental words and respective Spanish-like or Spanish-
unlike foils. Elazar et al. found that participants in the Spanish-like condition
were better at accepting words than participants in the Spanish-unlike condi-
tion, indicating that participants’ prior knowledge of Spanish syllable trigrams
facilitated their SL. Furthermore, participants in the Spanish-like condition
were worse at rejecting (Spanish-like) foils than participants in the Spanish-
unlike condition were at rejecting (Spanish-unlike) foils, suggesting that par-
ticipants’ knowledge of Spanish also (mis)led them to accept familiar foils.
Overall, the results suggest that participants indeed entered the experiment
with entrenched memory traces for syllable co-occurrences on which they drew
to process and learn new input.

The Present Study

In our study, on which we worked in parallel to Elazar et al.’s (2022) study, we
tested the almost identical hypothesis that entrenched memory traces for sylla-
ble bigrams in natural language boost SL. However, Elazar et al. (2022) used
a between-participants design following the typical exposure-phase—test-phase
structure, whereas we used a within-participants design using verbal repeti-
tion. This within-participant design allowed for a more stringent test of the
entrenchment hypothesis because differences between conditions could not be
attributed to differences between participants, in addition to allowing us to
track the emergence of learning across the course of the experiment. In us-
ing verbal repetition, we built upon recent developments in the measurement
of SL that have been inspired by the verbal learning literature. Participants’
recall on verbal tests of short-term memory has been shown to be both sen-
sitive to newly learned material (e.g., Majerus et al., 2004) and mediated by
their long-term lexical knowledge (e.g., Kowialiewski & Majerus, 2018; Ma-
jerus et al., 2012; Majerus et al., 2004). In recent work building upon Majerus
et al. (2004), Isbilen et al. (2020) investigated the utility of verbal recall as a
measure of auditory SL in a triplet segmentation task. Isbilen et al. showed
that, after familiarization with continuous speech, adult participants were bet-
ter able to repeat syllable sequences that followed the statistical distribution
of the familiarization stream than they were to repeat random and unattested
syllable sequences (for similar results from children, see Kidd et al., 2020). In
some cases, performance was predicted by distributional statistics derived from
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spoken and written corpora. Isbilen et al. suggested that the results were con-
sistent with chunking models of SL (e.g., Christiansen & Chater, 2016; Jones,
2012; Perruchet & Vinter, 1998; Robinet et al., 2011) in which the repetition
of syllable sequences creates word-like phonological units via their association
strength; specifically, their high TPs.

These processes and their explanation seem functionally equivalent to an-
other effect in the literature—the Hebb repetition effect (Hebb, 1961; see also
Page & Norris, 2009; Smalle et al., 2016; Szmalec et al., 2012). However, the
one difference between auditory SL tasks and Hebbian learning tasks is that,
although SL tasks typically measure the outcome of learning following famil-
iarization, Hebbian learning tasks track learning of sequence regularities across
time. This is an important gap in SL research, with researchers not yet know-
ing how learning proceeds during familiarization. The evidence that exists has
suggested that learners gradually come to recognize structured sequences as
containing higher level chunks over the course of exposure, suggesting that
learners engage in the dual processes of (a) binding/chunking adjacent sylla-
bles together and (b) storing them in long-term memory (Batterink & Paller,
2017).

In our study, we used a sequence-repetition method common in Hebbian
learning studies to also investigate how existing knowledge of sublexical
regularities influences the trajectory of SL over time. Our article makes two
contributions to the literature: (a) we report detailed corpus data on syllable
transitions in German, and (b) we determine how these attested transitions
contribute to SL across the course of learning. Thus, building on previous in-
vestigations of the effect of prior knowledge on SL (e.g., Dal Ben et al., 2021;
Finn & Hudson Kam, 2008; Mersad & Nazzi, 2011; Siegelman et al., 2018;
Toro et al., 2011), we examined how knowledge of the statistical properties
of participants’ native language—focusing on syllable bigrams—influences
subsequent processing and learning of an artificial language that is built with
those properties in mind. We extracted the TPs between syllable pairs in nat-
ural German and used this information to create artificial language sequences
containing words that were either based on the natural German TPs (i.e.,
naturalistic sequences) or not (i.e., non-naturalistic sequences), examining
learning of these sequences relative to scrambled foils.

Under the assumption that SL for language involves the tracking and sub-
sequent long-term registration of distributional information, we hypothesized
that learners would use their existing distributional knowledge of German to
shape their processing of new input. To test this hypothesis, we measured learn-
ing using a speech production task in which the participants repeated either
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unstructured sequences of random syllable combinations (foils) or structured
sequences containing novel words—with these words either adhering to Ger-
man syllable distribution (i.e., naturalistic sequences), or not adhering to Ger-
man syllable distribution (i.e., non-naturalistic sequences). We predicted that,
overall, participants’ repetition (and therefore learning) of the structured se-
quences would be better than their repetition of the foils, but that participants’
repetition of the naturalistic sequences would be better than their repetition of
the non-naturalistic sequences. An advantage of our method was that, in con-
trast to past research measuring learning via 2AFC and repetition after famil-
iarization, it enabled us to track learning across the three conditions across the
course of the experiment. We also predicted that, over time, participants’ repe-
titions would improve for both types of structured sequences. Importantly, we
expected to see the strongest improvements for naturalistic sequences and pre-
dicted that performance would improve more rapidly for naturalistic than for
non-naturalistic sequences because naturalistic sequences better aligned with
German syllable distributions.

Method

All materials, data, analyses, and results (Stérk et al., 2022b) for this article are
openly available via OSF (https://osf.io/4dsmy); the results of the experiment
testing the validity of the stimuli (Stérk et al., 2022c¢) can also be accessed via
OSF (https://osf.io/p9fcm).

Participants

Forty native German-speaking adults (28 self-identified female, 12 self-
identified male; M,z = 23.9 years, SD = 5.58) without any known hearing,
speech, or language disorders participated in the experiment. The participants
registered via the Max Planck Institute’s internal database; we made additional
announcements at Radboud University and on social media, which also al-
lowed participants to register via email. The sample size of 40 participants
was informed by a power analysis conducted in the software R (R Core Team,
2020) using the package simr 1.0.5 (Green & MacLeod, 2016). We based the
simulations on data collected by Isbilen et al. (2017), who had compared two
conditions similar to our non-naturalistic and unstructured foil sequences in
a serial recall task following an exposure phase. Our simulations indicated
that a sample of 16 participants would be sufficient to detect an effect size
of a —0.1 syllable recall difference between naturalistic and non-naturalistic
sequences as well as between non-naturalistic and foil sequences during the
later stages of our experiment, which is comparable to the test phase in Isbilen
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et al.’s study (for more details, see the analysis folder of the project’s OSF page
at https://osf.io/4dsmy). We increased the sample size to 40 because the par-
ticipants in our experiment were exposed to multiple experimental languages
while performing the serial recall task (i.e., without prior exposure phase),
which would decrease the effect and also make the model more complex (be-
cause we included the additional variable block, which was not present in Is-
bilen et al.’s study). We decided to not perform an analysis modeling our entire
experiment (including block) because this would have entailed a considerably
more complex simulation that would have been based purely on our own intu-
itions rather than on previous data.

The study was approved by the Ethical Committee of the Faculty of So-
cial Sciences, Radboud University, and was carried out in accordance with
the World Medical Association Declaration of Helsinki. All participants gave
written informed consent prior to their participation in the study. They were
free to withdraw at any time and were compensated (€8) upon completing the
45-minute session.

Design

We employed a serial repetition task based on studies of the Hebb repetition
effect (Hebb, 1961; Page & Norris, 2009), which required the participants to
repeat sequences of syllables aloud, with these repetitions then being scored
for accuracy. The study had a within-participants design, with all the partici-
pants receiving three different types of sequences: (a) naturalistic sequences,
(b) non-naturalistic sequences, and (c) unstructured foils. The naturalistic and
non-naturalistic sequences were structured, with each containing four disyl-
labic experimental words, whereas foils were unstructured, containing the same
syllables as the structured sequences but in a scrambled order.

Materials

Corpus Analysis

We created the speech stimuli from a pool of 12 German syllables (fa, ge,
gei, mi, mo, nu, pa, sa, su, ti, ver, zu) obtained from a corpus analysis of the
1,000 most frequent German words in the CHILDES database (MacWhinney,
2000),> which corresponded to over three million word tokens. We chose to
draw our materials from child-directed language for two reasons. First, be-
cause words that are highly frequent in child-directed language will also have
an early age-of-acquisition, we logically deduced that these words would have
sublexical transitions (i.e., bigrams) that would have the greatest likelihood of
being entrenched. Second, this study was part of a larger project that tested the

Language Learning 00:0, xxxx 2022, pp. 1-33 8

85U807 SUOWIWOD 3AIIERID 3ol dde au Aq pauob a1e 9L YO ‘SN JO SBINJ Joj ARIq1T BUIIUO AB]IA LD (SUO N IPUOO-PUR-SWIR) LI A8 1M ATed 1 [BUI|UO//:SANL) SUORIPUOD PUe Swie | 8u18eS *[z202/0T/6T] Uo Ariqiaulluo A8 M ‘591 Aq £252T Bue|/TTTT OT/I0pA00 A8 AReIq1jeul juoy/Sdny woj pepeojumod ‘0 ‘Z266297T


https://osf.io/4dsmy

Stérk, Kidd, and Frost Attested Distributions Boost Statistical Learning

Table 1 Syllable frequencies, pair frequencies, and forward and backward transitional
probabilities of the stimuli derived from the corpus analysis

Frequency Transitional probability
Pair Syllable 1 Syllable 2 Pair Forward Backward
mi nu 6,472 454 454 0.070 1.000
pa gei 46,359 368 368 0.008 1.000
Ver su 14,010 344 344 0.025 1.000
ge fa 1,839,597 3,133 1,586 0.001 0.506
Zu sa 14,460 4,670 1,994 0.138 0.427
mo ti 1,748 2,467 525 0.300 0.213

effects under investigation in developmental populations. We chose the sylla-
bles from syllable pairs (i.e., bigrams) occurring with high within-word back-
ward TPs, relying on backward TPs because a corpus analysis of child-directed
speech by Stérk et al. (2022a) showed that backward TPs are significantly more
reliable cues to wordhood than forward TPs in German speech (for a similar
cross-linguistic analysis, see Saksida et al., 2017).

We then used the syllables to form 12 disyllabic “words”: six words for
each of the two structured sequence types (naturalistic: gefa, minu, moti, pagei,
versu, zusa; non-naturalistic: fazu, geimi, nuver, samo, suge, tipa). As summa-
rized in Table 1, the extracted bigrams yielded the six naturalistic words in
which the two syllables co-occurred with relatively high backward TPs in nat-
ural German speech but importantly were not recognizable alone as words (TP
> .20, Mtp = .69, range = .21-1 .OO).3 To create the non-naturalistic words, we
concatenated the same 12 syllables in a different order, such that their syllable
pairs did not co-occur in natural German (TP = .00). Each syllable occurred
once in each set of words, and we counterbalanced the position of syllables
within words such that, if a syllable appeared word-initially in the naturalistic
set of words, it was word-final in the non-naturalistic set, and vice versa. For
the unstructured foil sequences, we scrambled the syllables, such that these
sequences contained no learnable regularities. We carefully constructed the
foils to avoid inadvertently creating words from both German and the exper-
imental languages. Because all three sequence types comprised the same 12
syllables, the frequencies of the syllables in natural German presented in Ta-
ble 1 applied to all conditions. However, the non-naturalistic words comprised
syllable pairs which did not occur in our corpus sample of natural German
(i.e., their pair frequencies as well as their forward and backward TPs were
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0). Likewise, the unstructured foils did not comprise any patterns found in the
corpus.

Our design involved the explicit assumption that high TPs are more word-
like and, thus, that the participants would require less exposure to chunk adja-
cent syllables into words. The implicit assumption of our sequence repetition
method was that these transitions would thus be easier to repeat. In order to
collect independent evidence in support of the explicit assumption that the
naturalistic words would be more word-like, we conducted a separate exper-
iment in which we asked German-speaking participants to select our natural-
istic or non-naturalistic words for wordiness in comparison to foils in a 2AFC
task without familiarization (i.e., the participants had no prior training on the
words). The participants successfully identified the naturalistic words at above
chance levels in comparison to foils but did not do so for the non-naturalistic
words. These results were consistent with the argument that our naturalistic
words, when presented in isolation, were more identifiable as German-like than
our non-naturalistic words (for full details, see Appendix S1 in the Supporting
Information online).

Stimuli Characteristics

The stimuli were recorded by a female native speaker of German, who recorded
individual unstressed syllables in isolation. We adjusted the syllable recordings
using the sound editing program Audacity (Audacity Team, 2018) to ensure
uniformity in length, resulting in an average syllable duration of 377 ms (range
=352-416).

Within the context of the experiment, each structured sequence type con-
tained perfect within-word TPs (structured sequences: within-word TPs =
1.00, between-word TPs < .25; compared to unstructured sequences where
TPs between all syllables were generally low, with TPs < .125). Note, how-
ever, that participants were tested on all three sequence types. Thus, across
the whole experiment, accounting for the repeated use of syllables across each
type of sequence, within-word TPs for both structured sequences were .33, and
TPs for all other syllable pairs were less than or equal to .125.

Syllables were combined into 72 sequences, 24 of each sequence type.
Each sequence was eight syllables long, which equated to four experimental
words (i.e., bigrams). Within sequences, each syllable was followed by 500
ms of silence, and the final syllable of a sequence was followed by a beep to
indicate the beginning of the repetition portion of the trial. Because the sylla-
bles had an inter-stimulus interval of 500 ms, we emphasize that our study was
not a segmentation task in the classical sense. Rather, our choice of method
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allowed us to determine (a) whether attested syllable bigrams are more nat-
urally grouped during recall and (b) how this attested knowledge influences
learning incrementally across time. In order to track the participants’ incre-
mental learning, we divided the experiment into 12 blocks of six sequences,
with each block containing two sequences of each type. Within each block,
sequences were presented pseudo-randomly, with no direct repetition of a par-
ticular sequence type. Across the whole experiment, each word occurred 16
times in total, with words appearing equally often in each position within a
sequence (for more information on the stimuli and their creation, see the ma-
terials folder on the project’s OSF page at https://osf.io/4dsmy).

Procedure

We sent the participants an informed consent document one day prior to the day
that the study took place. Upon arrival in the laboratory, they were reminded
of the task instructions and were told that the study was to investigate adults’
repetition of language, but no mention was made of the learnable patterns con-
tained within the input. The participants completed the study in isolation in
a sound-attenuated booth, with sequences being played over closed-cup head-
phones using the software Presentation (Neurobehavioral Systems, 2014). The
participants repeated the sequences into a microphone, and these were recorded
by the computer for offline coding.

Before the experiment began, the participants first received three (unstruc-
tured) practice sequences that were six syllables long, comprising a different
scrambled set of syllables (ba, fun, gi, re, se, to). After completing the practice
sequences, the participants proceeded to the main experiment. In each trial, the
participants heard a sequence of eight syllables followed by a beep (see Fig-
ure 1). Upon hearing the beep, they were required to repeat the sequences as
best they could. At the halfway point, the participants were given the opportu-
nity to take an optional break. At the end of the session, they were debriefed
and paid for their time.

Data Preparation

To prepare the data for our analyses, we first transcribed the recordings of the
participants’ verbal responses. All responses were transcribed by the experi-
menter, and two naive coders each transcribed 10% of the recordings (i.e., data
for four participants) for the purpose of performing reliability checks. Inter-
transcriber reliability analyses revealed strong reliability between transcribers
using the more conservative interpretation of the kappa statistic suggested by
McHugh (2012): syllable-level observed agreement = 83.0%, x = .87, 95%
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@ (1) mi nu zu sa pa gei ver su

@ (2) ver mo su zu mi gei ti nu

<

@ (3) fa zu nu ver ti pa su ge

<y

@ @

Figure 1 Three example experimental sequences. On each trial, participants listened to
a sequence and then repeated it. (1) = one naturalistic sequence; (2) = one unstructured
foil sequence; (3) = one non-naturalistic sequence.

CIs [.84, .89]; bigram-level observed agreement = 87.2%, k = .88, 95% CI
[.84, .92].

We coded the accuracy of participants’ responses sequence-by-sequence,
comparing the verbal response against the sequence that the participants had
heard. We computed scores at the syllable level and at the bigram level. At
the syllable level, the participants received 1 point for each syllable repeated
correctly in the correct position (for a maximum of 8 points per sequence). At
the bigram level, the participants received 1 point for each bigram (i.e., sylla-
ble pair) repeated correctly in the correct position (for a maximum of 4 points
per sequence). A bigram denoted an experimental word in the structured se-
quences. The participants’ performance at this level, therefore, provided cru-
cial information about whether they had recalled sequences better because of
learning the experimental words, rather than indirectly assessing the learning
solely at the syllable level. In the unstructured sequences, the four bigrams per
sequence were the random syllable pairs in Positions 1 and 2, 3 and 4, 5 and 6,
and 7 and 8 (with different syllable combinations in each position across each
sequence). Table 2 illustrates how we applied the coding scheme to potential
repetitions by the participants.

This strict coding scheme was conservative in the sense that it required
the participants to recall elements in the correct position and thus did not give
any credit for syllables recalled in the correct order after only one syllable was
missed or added in the repetition (e.g.,asinthe “BCDEFGHA” and “A X B
C D” cases in Table 2). We also used two further coding schemes, including a
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Table 2 Example scorings of participants’ repetitions of the sequence “ABCDEF G
H” where each letter represents one syllable

Repetition Syllable score Bigram score
ABCDFH- 4(ABCD) 2 (AB CD)
AXBCD- 1(A) 0

AB- 2(AB) 1 (AB)
XYCDXZGH 4(CDGH) 2 (CD GH)
BCDEFGHA 0 0

serial order coding scheme based on Isbilen et al.’s (2017) study, which relaxed
the strict positional requirement and which were thus more lenient and gave
more credit to the participants. However, because all three analyses converged
in the same direction, we have chosen to report only the most conservative
scheme here. The analyses for all three coding schemes can be found in the
analysis folder on the project’s OSF page at https://osf.io/4dsmy.

Results

The aims of our analyses were twofold: (a) to examine performance on each
type of sequence and (b) to examine the time course of learning. We pre-
dicted that the participants would recall naturalistic sequences better than non-
naturalistic sequences and non-naturalistic sequences better than unstructured
foil sequences. We also predicted that the participants would improve faster on
the naturalistic sequences than on the non-naturalistic sequences. To test the
hypotheses regarding the incremental learning throughout the study, we ran
our analyses by experimental block and exposure phase, that is, we combined
blocks to determine early, intermediate, and late exposure phases, respectively.

Analysis by Experimental Block

We analyzed the data with the software R (R Core Team, 2022) using gen-
eralized linear mixed-effects models. We specified a Poisson distribution be-
cause the dependent variables (i.e., syllable and bigram recall) were count data.
The models were computed using the package ImerTest 3.1-3 (Kuznetsova
et al., 2017; based upon Ime4 1.1-28 by Bates et al., 2015). We computed
the same models with syllable recall and bigram recall as the dependent vari-
ables to test overall recall and recall of the experimental words. Models were fit
with a fixed effect of sequence type using sliding contrasts (naturalistic: .5 vs.
non-naturalistic: —.5, and non-naturalistic: .5 vs. foil: —.5) to examine whether
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learning differed across the experimental conditions and with a fixed effect of
block entered as a centered continuous variable to examine learning over the
course of the experiment as well as the interaction of the two variables. We fit
the maximal model supported by the data (Barr et al., 2013; Bates et al., 2018),
controlling for participants and items as random intercepts, with sequence type
and block as random slopes of participants (due to our within-participants de-
sign, with participants being exposed to all sequence types and blocks) but not
as random slopes of items (because sequences differed between sequence types
and blocks).

We checked the models for evidence of singularity in the variance-
covariance matrix and for evidence of overfitting the random effects struc-
ture by conducting a principal component analysis. Models showing evi-
dence of singularity or overfitting were simplified (for the documentation, see
https://osf.io/4dsmy). To determine significance, we used an alpha level of .05.
Furthermore, we have reported bootstrapped 95% confidence intervals for the
beta estimates of the model predictors, based on 1,000 iterations, as well as
the marginal and conditional R? effect sizes of the models as goodness-of-fit
estimates. These R> values denote the proportion of the variance explained by
the model both with (conditional R?) and without (marginal R*) controls for
sources of random variance (Johnson, 2014; Nakagawa et al., 2017; Nakagawa
& Schielzeth, 2013).

Crucially, there was a significant main effect of sequence type at both the
syllable and bigram level, with participants displaying better recall for natu-
ralistic than non-naturalistic sequences (see Table 3), in line with our experi-
mental hypothesis. Recall was also better for non-naturalistic sequences than
for unstructured foil sequences (for a visualization of participants’ syllable and
bigram recall accuracy, see Figure 2 and Figure 3, respectively).

Regarding participants’ performance over time, there was a main effect
of block, with participants improving over the course of the experiment.
Critically, there was also a significant interaction of sequence type and
block, with participants’ recall improving more rapidly over the course of
the experiment for naturalistic sequences than for non-naturalistic sequences.
However, at the bigram level, this did not meet the alpha level that we had
chosen for determining significance. Participants did not improve significantly
over time when recalling the non-naturalistic sequences in comparison to the
unstructured foil sequences; however, participants’ recall of non-naturalistic
sequences numerically improved after the break at the halfway point between
Blocks 6 and 7. The random-effects structure improved the model-fit in both
cases.
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Table 3 Summary of the linear mixed-effects models investigating the influence of
sequence type and block on participants’ syllable and bigram recall

Parameter b 95% CI SE t P
Syllable level

(Intercept) 1.00 [0.87,1.12] 0.06 1590 < .001
Naturalistic vs. Non-naturalistic 0.10 [0.06,0.14] 0.02 4.70 < .001
Non-naturalistic vs. Foils 0.04 [0.00,0.07] 0.02 2.20 .03
Block 0.11 [0.07,0.14] 0.02 6.65 <.001
Naturalistic vs. Non-naturalistic x Block  0.03  [0.01, 0.06] 0.01 2.28 .02
Non-naturalistic vs. Foils x Block 0.03 [-0.01,0.05] 0.02 1.72 .09
Bigram level

(Intercept) -0.12 [-0.29,0.04] 0.09 -1.43 15
Naturalistic vs. Non-naturalistic 0.17 [0.10,0.23] 0.03 497 <.001
Non-naturalistic vs. Foils 0.09 [0.03,0.15] 0.03 3.02 .003
Block 0.14 [0.11,0.18] 0.02 735 <.001
Naturalistic vs. Non-naturalistic x Block  0.04  [0.00, 0.09] 0.02 1.88 .06
Non-naturalistic vs. Foils x Block 0.03 [-0.03,0.08] 0.03 1.11 27

Note. Model fit syllable level: AIC = 10,975; BIC = 11,052; Rzmargiml = .079;
R onditionast = -091; model fit bigram level: AIC = 7,047; BIC = 7,125; R?uginal =
058: chonditional =.313.
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Figure 2 Mean recall of syllables (out of eight per sequence) for the three sequence
types given by experimental Blocks 1-12. The three sequence types were naturalistic,
non-naturalistic, and unstructured foils. Error bars indicate 41 standard error.
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Figure 3 Mean recall of bigrams (out of four per sequence) for the three sequence
types given by experimental Blocks 1-12. The three sequence types were naturalistic,
non-naturalistic, and unstructured foils. Error bars indicate 4-1 standard error.

Analysis by Exposure Phase

Although the above results depicted the participants’ overall improvement
throughout the entire experiment, they did not reveal at which point learning
began to emerge within the task. To unpack this, we divided the experiment
into three phases (early exposure: Blocks 1-4; intermediate exposure: Blocks
5-8; late exposure: Blocks 9-12), testing the hypothesis that learning in the
naturalistic condition would be faster than in the non-naturalistic condition.
The variable exposure phase was added as a fixed effect into a new analysis
instead of block. We fit the maximal model supported by the data (Barr et al.,
2013; Bates et al., 2018) with sequence type (sliding contrast: naturalistic: .5
vs. non-naturalistic: —.5, and non-naturalistic: .5 vs. foil: —.5) and exposure
phase (sliding contrast: early exposure: —.5 vs. intermediate exposure: .5, and
intermediate exposure: —5 vs. late exposure: .5) as well as their interaction
as fixed effects, and random intercepts and slopes for participants and items,
where appropriate (as described previously).

In addition to a significant main effect of sequence type, there was a main
effect of exposure phase, with the participants improving between the early and
intermediate exposure phase (see Table 4 for the analysis at the syllable level
and Table 5 for the analysis at the bigram level; for figures illustrating the sylla-
ble and bigram recall accuracy over the three phases see the analysis folder on
the project’s OSF page at https://osf.io/4dsmy). The participants also improved
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numerically between the intermediate and late exposure phase, but this did not
meet the level that we had set for significance. Importantly, the interaction of
sequence type and exposure phase was significant, with greater improvements
on naturalistic relative to non-naturalistic sequences between the early and in-
termediate exposure phase. There was no difference in improvement between
naturalistic and non-naturalistic sequences between the intermediate and late
exposure phase. Improvement in recall of the non-naturalistic sequences did
not differ from the improvement in recall of unstructured foil sequences, either
between the early and intermediate exposure phase or between the intermediate
and late exposure phase.

Discussion

Prior Knowledge of Syllable Co-Occurrences Facilitates Statistical
Learning

SL is assumed to underlie learning across many fundamental domains of cog-
nition, most prominently language (e.g., Christiansen & Chater, 2016; Lidz &
Gagliardi, 2015; Saffran & Kirkham, 2018; Saffran et al., 1996). Although the
existence of a human capacity for SL is clear, precisely how SL both depends
and builds upon existing knowledge is still unclear (but see Elazar et al., 2022).
Past research has shown that phonotactic probability constrains SL (Dal Ben
et al., 2021; Finn & Hudson Kam, 2008; Mersad & Nazzi, 2011; Toro et al.,
2011). In our study, we asked whether participants would draw on their prior
knowledge of statistical distributions of syllables to inform their learning and
processing of new linguistic input. We created two experimental languages for
our native German-speaking participants; one informed by the naturally oc-
curring TPs in German, as extracted from corpora, and another that was com-
pletely devoid of attested TPs. Breaking away from the classic format of SL
paradigms that typically comprise separable training and testing phases, we
presented these languages using a sequence-repetition speech-production task
and tracked learning across the experiment. We hypothesized that the partici-
pants’ repetitions would be more accurate and would improve more rapidly for
naturalistic than for non-naturalistic sequences.

As we had predicted, recall accuracy was higher for naturalistic than non-
naturalistic sequences, suggesting that the participants had drawn on their prior
distributional knowledge of German to process the new experimental input.
Additionally, the participants’ prior experience boosted further learning of the
naturalistic words in the initial stages of the experiment, increasing the recall
advantage of the naturalistic sequences compared to the non-naturalistic se-
quences between the early and intermediate exposure phases. These findings
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are consistent with the idea that learners not only track the TPs between syl-
lables but that they also draw on this knowledge when processing subsequent
input (Elazar et al., 2022; Siegelman et al., 2018), which in our study led to
accelerated learning of naturalistic sequences from the beginning of the exper-
iment. Thus, what we observed could be described as a kind of Matthew effect
for SL concerning syllable transitions (Merton, 1968; for similar arguments re-
garding literacy, see Stanovich, 1986), where those bigrams that were attested
in the participants’ native language provided an advantage for future learning.
This interpretation is consistent with older claims from the verbal learning lit-
erature, which has long argued that learning is a historically-contingent process
that builds upon past experience (Ebbinghaus, 1885, 1913).

Overall, the results support the suggestion that participants draw upon their
rich repository of existing knowledge during learning (Bertels et al., 2015; Finn
& Hudson Kam, 2008; Lew-Williams et al., 2011; Lew-Williams & Saffran,
2012; Mersad & Nazzi, 2011; Onnis & Thiessen, 2013; Potter et al., 2017). An
important issue concerns exactly how this existing knowledge is both repre-
sented and how it subsequently aids learning. Although many details are still
to be ironed out, SL for language logically involves the discovery and registra-
tion of perceptual regularities that are then redescribed into higher level rep-
resentations based on existing knowledge and generalization processes. Thus,
in classic domains of enquiry like speech segmentation, TPs act as initial local
cues alongside others like stress to help the listener bootstrap into the language
(Cutler, 2012; Mattys & Bortfeld, 2016), after which lexical knowledge pro-
vides crucial anchors and top-down expectations about new to-be-learned ma-
terial (e.g., Bortfeld et al., 2005; Lew-Williams et al., 2011; Mersad & Nazzi,
2012; for further evidence of top-down influence on the learning of adjacent
dependencies, see Wang et al., 2020). We did not study segmentation per se,
although we have no reason to postulate a different learning mechanism to ex-
plain our results. Accordingly, we suggest that the advantage that we observed
for attested bigrams derived from this existing well-entrenched lexical knowl-
edge providing expectations about how the input is structured, acting as local
attractors through which the participants could chunk the stimuli better than
when they had no, or indeed incorrectly biasing, expectations such as in the
non-naturalistic condition (comparable to the bias for Spanish-like foils ob-
served by Elazar et al., 2022).

Accordingly, we suggest that the results provide support for the idea that
syllable co-occurrences are tracked and become more entrenched with each
encounter (Isbilen et al., 2017, 2020; Jost & Christiansen, 2017; Siegelman
et al., 2018). Such entrenchment can be seen as a form of chunking that
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facilitates subsequent processing and production because participants can draw
on stored chunks instead of individual syllables (e.g., Christiansen & Chater,
2016; Jones, 2012; Jones et al., 2021; Perruchet & Vinter, 1998; Robinet et al.,
2011). The learning advantage seen for the sequences comprising attested TPs
exemplified this further, with higher accuracy and faster learning seen for
sequences that adhered to a distribution that should already have been well-
entrenched within the participants due to their prior experience with German.
This is in line with previous studies showing that participants drew on their
long-term lexical knowledge to guide recall in short-term memory tasks (e.g.,
Jones & Macken, 2018; Kowialiewski & Majerus, 2018; Majerus et al., 2012;
for neuroimaging evidence, see Tremblay et al., 2016). Together with Elazar
et al.’s (2022) study, our study demonstrated that long-term linguistic knowl-
edge guides future learning at the level of syllable transitions, thus comple-
menting work on phonotactic probability (e.g., Dal Ben et al., 2021; Finn &
Hudson Kam, 2008; Mersad & Nazzi, 2011).

There are potential parallels between our data and those from electroen-
cephalogram (EEG) studies that have tracked SL across familiarization. No-
tably, Batterink and colleagues have demonstrated that SL is a gradual, two-
staged process of chunking adjacent syllables and storing them in long-term
memory (Batterink, 2020; Batterink & Paller, 2017). The properties of the
EEG signal suggested that participants initially treated the speech signal as
a stream of syllables. However, across familiarization participants entrained to
higher levels of linguistic organization as the syllables in the stream became
more familiar to them, that is, participants were able to identify that some
adjacent syllables frequently co-occurred and treated them as word-like, stor-
ing these frequently co-occurring syllable combinations in long-term memory.
With this in mind, one interpretation of our data is that our participants were
building upon their attested knowledge of German syllabic regularities to im-
plicitly treat naturalistic syllable pairs as word-like sooner than they did in the
non-naturalistic condition, thus accounting for the difference in learning rate
during the early and intermediate exposure phases of the experiment. Acquir-
ing word-like representations of the non-naturalistic sequences compared to
the foil sequences was more difficult for the participants and did not interact
with the exposure phase. There are two likely reasons for this. First, the non-
naturalistic sequences contained unattested TPs, and so, given the assumption
that these matter, the participants were starting from the lowest of bases. Sec-
ond, the non-naturalistic sequences contained the same syllables as the natu-
ralistic sequences, which means that there could have been some interference
from long-term knowledge of German.
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Related to this latter point, the comparative difficulty that the participants
experienced with learning the non-naturalistic sequences might have been due
to the difficulty of simultaneously learning multiple languages, especially with
the same syllables occurring in multiple words across sequence types. This
is consistent with work by Page et al. (2013), who have shown that Hebbian
learning is slower when structured sequences have item overlap (see also
Antovich & Graf Estes, 2018, for evidence that bilingual but not monolingual
infants can extract words from multiple experimental languages when these
languages are presented interleaved). In previous studies of SL, adults learned
only the first of two subsequently presented artificial languages, unless (a)
there were contextual cues indicating the change between languages or (b)
the exposure to the second language was either tripled or initiated before a
certain level of entrenchment was reached for the words of the first language
(Bulgarelli & Weiss, 2016; Gebhart et al., 2009). In our study, this level of
entrenchment had presumably already been reached for the naturalistic words
when the participants entered the experiment, such that participants’ predispo-
sition for (and enhanced learning of) the naturalistic words might have biased
learning in favor of the naturalistic sequences at the expense of the others.
Ultimately, however, there was significant evidence that the participants did
learn in the non-naturalistic condition compared to the foil condition, and so
acquiring multiple syllable transitions across different sequence types, even
when the sequence types were drawn from the same syllable inventory, was
not impossible in the context of the task.

The Serial Recall Task As a Window Into Statistical Learning

On a methodological note, this study offers an alternative behavioral method
to track SL in real time, with participants’ training and testing being critically
intertwined. This method builds on the classic Hebbian repetition paradigm
(Hebb, 1961; see also Page & Norris, 2009; Smalle et al., 2016; Szmalec et al.,
2012), as well as on more recent studies that have used recall tasks to examine
learning after a period of exposure to a new artificial language (Isbilen et al.,
2018, 2020; Kidd et al., 2020; Majerus et al., 2004). Here, we have shown that
recall tasks of this nature, in the absence of an initial exposure phase, can serve
as an insightful window onto learning and may be an advantageous method for
future studies of SL. Accordingly, we believe that the task can serve as a valu-
able addition to the toolkit of methods used to study SL. One advantage of
the task that we have already discussed is the ability to use it to track learning
across the course of an experiment. Another notable benefit of the repetition
paradigm is that it is, in the words of Christiansen (2019), a processing-based
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measure of learning. This contrasts with reflection-based measures of SL, such
as traditionally used measures of SL like the 2AFC task. The difference be-
tween the two is that processing-based tasks require less meta-cognitive effort
because, unlike reflection-based measures, they do not ask participants to re-
flect upon and choose between two possible candidate words. Although 2AFC
tasks have their advantages, there are circumstances under which they are not
always optimal, including when testing auditory SL in developmental popula-
tions and when the aim is to measure individual differences (see Arnon, 2019;
Isbilen et al., 2020, 2022; Kidd et al., 2020). Our suggestion is that verbal
repetition may be particularly useful in circumstances where researchers are
interested in the course of learning or when reflection-based measures such as
2AFC do not yield reliable results.

With this in mind, one obvious question concerns exactly how verbal recall
relates to other measures of SL and to the bigger question of how it relates to
the mechanism underlying SL (or the multiple interacting mechanisms under-
lying it, see Frost et al., 2015). These questions are not mutually exclusive, and
we cannot hope to provide a compelling answer to them here. What is clear is
that there are many different measures of SL, going from verbal repetition to
sequence reproduction (e.g., Conway et al., 2010) to 2AFC following famil-
iarization (e.g., Saffran et al., 1996) to reaction times to structured sequences,
as in the serial reaction time task (Nissen & Bullemer, 1987). It is interesting
that, although all the measures capture learning of probabilistic distributions
and thus are billed as measures of SL, performances on these tasks are often
unrelated (e.g., Siegelman & Frost, 2015). There are likely to be many reasons
for this. One obvious methodological reason is that any mode of measurement
is an imperfect way of tapping a psychological concept, and so any one task
will have nonoverlapping measurement error that it does not share with other
tasks. More interestingly, the processes underlying SL have been argued to be
complex and multi-componential (Arciuli, 2017; Frost et al., 2015), and thus
different tasks may differentially implicate different components. This lack of
understanding of these individual components limits the understanding of the
mechanism(s) underlying SL.

What we see as the value of verbal sequence repetition is in its potential for
elucidating the role of SL in language learning. Repetition has had a long his-
tory of use in the verbal learning literature beginning with Hebb (1961) and has
also been used to measure linguistic proficiency. For instance, non-word repeti-
tion is highly sensitive to speakers’ distributional knowledge of their language
(e.g., Jones et al., 2007, 2014; Szewczyk et al., 2018), and sentence repetition
reliably taps grammatical parsing procedures underlying sentence production
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and comprehension (Acheson & MacDonald, 2009; Potter & Lombardi, 1990).
Thus, verbal sequence repetition appears to be a relatively direct way of ob-
serving both (a) existing knowledge and, as we have shown here, (b) how that
knowledge may result in different learning trajectories across time. Studying
verbal repetition in a learning paradigm, as we have done in our study (see also
Isbilen et al., 2020), is one way to study the dynamics of SL across time (see
also Batterink, 2020; Batterink & Paller, 2017).

Limitations and Future Directions

Our results, alongside those of Elazar et al. (2022), reveal positive evidence
in favor of the argument that humans identify frequently occurring linguistic
units and encode them as long-term memory representations that are subse-
quently used for future learning. A key promise of this effect is that it captures
what is assumed to be the output of SL; participants are better at learning
naturalistic distributions because they have prior experience with them, distri-
butions that they have presumably discovered via SL. However, as with most
laboratory-based studies of SL, we have only tested the learning of simple sta-
tistical computations. How this scales up to the acquisition of language proper,
with all of its complexities, is unclear. Domain-general processes like chunking
no doubt play an important role in acquisition and in processing (e.g., Bannard
& Matthews, 2008; Christiansen & Chater, 2016; Jones et al., 2021; Lieven
et al., 1997). Indeed, Isbilen et al. (2022) have recently shown that adults’
chunking of syllables in verbal repetition is related to their recall of highly
frequent sequences of words, suggesting a partially shared basis for learning
and processing across the different linguistic levels. However, it is important
to be mindful of the limits of such effects as they relate to the entirety of lan-
guage. In particular, because studies of SL typically limit themselves to formal
aspects of language (i.e., relationships between linguistic elements devoid of
meaning), how a process like SL works within the maelstrom of natural lan-
guage and how it works in concert with other key learning mechanisms is still
very much an open question and thus a matter for future research.

Conclusion

To conclude, in this study, we demonstrated that adult participants’ prior
knowledge of TPs derived from their native language forms a robust foun-
dation upon which subsequent learning and processing occur. Our data
thus lend further support to the notion that prior knowledge can have a
critical impact on future learning (Bertels et al., 2015; Dal Ben et al.,
2021; Ebbinghaus, 1885, 1913; Finn & Hudson Kam, 2008; Lew-Williams
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et al., 2011; Lew-Williams & Saffran, 2012; Mersad & Nazzi, 2011; On-
nis & Thiessen, 2013; Potter et al., 2017), providing further evidence that
laboratory-based learning is shaped by the (mis/)alignment between the
properties of the input and participants’ prior expectations. Implementing a
sequence repetition task in the absence of a familiarization phase provided
a rich real-time behavioral assessment of SL (though see Batterink, 2020,
and Batterink & Paller, 2017, for related online assessments using EEG).
We suggest that dynamic speech-production measures may serve as a useful
vehicle for further exploring the nature and time course of SL in future
research.
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Notes

1 Elazar et al.’s (2022) paper was published during our review process.

2 We included the following corpora from the CHILDES database (MacWhinney,
2000) in our analysis: Caroline (Von Stutterheim, 2010), Grimm (Grimm, 2006,
2007), Leo (Behrens, 2006), Manuela (Wagner, 2006), Miller (Miller, 1979), Rigol
(Rigol, 2007), Stuttgart (Lintfert, 2010), TAKI (Lintfert, 2010), and Wagner
(Wagner, 1974, 1985).

3 In an analysis of TPs in child-directed speech across nine languages, Saksida et al.
(2017) reported a mean between-word TP of .11, compared to a mean within-word
TP of .25, whereas for German, Stirk et al. (2022a) reported a mean between-word
TP of .11 and a mean within-word TP of .33. Thus, our naturalistic words were, on
average, more indicative of word-like units than between-word transitions.
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