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ABSTRACT 

CHARACTERIZATION OF THE  

POLY (ADP-RIBOSE) POLYMERASE FAMILY IN THE  

FUSARIUM OXYSPORUM SPECIES COMPLEX 

SEPTEMBER 2022 

Daniel Norment, B.S., UNIVERSITY OF MASSACHUSETTS AMHERST  

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST  

Directed by: Professor Li-Jun Ma  

     

Fusarium oxysporum is a filamentous fungus that is known to invade over a hundred 

different hosts and poses a major threat to the economy and food supply world-wide. Poly 

(Adenosine diphosphate-Ribose) Polymerase (PARP) is a family of regulatory proteins that 

affect change in the cell through transfer of ADP-Ribose moieties onto target molecules. The 

most well-studied PARP protein is the human PARP1, a PARylating nuclear protein that serves 

as our model PARP protein. F. oxysporum was found to contain a large expansion of PARP 

catalytic-domain-containing proteins compared to other filamentous fungi. We utilized in silico 

multiple sequence alignments and domain predictions to identify a human PARP1 homolog 

termed foPARP1 that was conserved within the core chromosomes in all three strains within our 

comparative system. Our in silico predictions also stated that only one strain, an Arabidopsis 

pathogen, Fo5176, contained several other predicted catalytically active PARP homologs within 

the accessory chromosome. To test the effect that foPARP1 knockout would have on DNA 

damage tolerance, we created a foParp1 knockout and found that only strains Fol4287 and 
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Fo5176 had a significant reduction in tolerance upon being plated with methyl methanesulfonate 

(MMS), a DNA alkylating agent. To test how global PARylation trends would be affected by 

foParp1 knockout, we utilized immunodot-blotting with PAR antibodies to assess PARylation in 

total protein extracts. We found that all strains of the comparative system had the capacity to 

catalyze the synthesis of long PAR chains, while only Fo47 and Fo5176 had a significant 

PARylation increase when exposed to MMS, and no samples had a significant increase in 

PARylation within the foParp1 knockouts. Finally, we utilized RNA-Sequencing to determine 

the transcriptional impacts that foParp1 knockout would have and found aberrant DNA repair 

pathways and disruptions in stress responses. Taken together, we conclude that foPARP1 is in 

fact a functional PARP1 homolog and exhibits similar post-transcriptional modification and 

transcriptional impacts as its human counterpart. However, we were not able to correlate PARP 

copy number with DNA stress tolerance, and further research would be needed to assess the full 

function of the PARP expansion.  
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CHAPTER 

1.  INTRODUCTION 

1.1 PARP1 and PARP protein family 

1.1.1 What is PARP? 

Enzymes in the Poly ADP-ribose Polymerase (PARP) family serve as master regulators 

of the cell. PARPs are involved in processes such as DNA repair, apoptosis, cell cycle control, 

and transcriptional regulation (Jubin, T. et al. 2016). The PARP family of proteins is conserved 

in all eukaryotes, except yeasts, and these enzymes share functional and sequence homology 

with exotoxins that can be found in several pathogenic bacteria (Alemasova, E. E. & Lavrik, 

2019, Mikolčević, P., et al. 2021). The PARP family is characterized by a well-conserved 

catalytic domain; however, most PARP proteins contain additional domains such as the zinc 

finger domains of human PARP1 (hPARP1), WGR domain, BRCA1 C-Terminus (BRCT) 

domain and several others. PARPs are known for their ability to catalyze the transfer of ADP-

ribose moieties from NAD+ via the hydrolysis cleavage of the N-glycosidic bond of the ribose 

and nicotinamide units followed by the attachment of ADP-ribose to other proteins, nucleic 

acids, small molecules, or PARPs themselves in a process called Poly(ADP)-ribosylation (or 

PARylation) (Bellocchi, D. et al. 2006). The addition of ADP-ribose can change the structure, 

function, and stability of the target molecule (Gibson, B. A. & Kraus, W. L. 2012). The PARP 

family can be largely classified into two major groups based on the substrates that the enzymes 

utilize: the Mono ADP-ribosylating (MARylating) proteins and the Poly ADP-ribosylating 

(PARylating) polymerases. The addition or transfer of a single ADP-ribose molecule to a protein 

is known as Mono ADP-ribosylation (MARylation) and is carried out by a multitude of PARP 

family members and related bacterial exotoxins, most notably PARP10 in humans and the 
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cholera exotoxin (Vyas, S. et al. 2014, Holbourn, K. P., et al. 2006). The synthesis and addition 

of a chain of ADP-ribose molecules, either in a linear or branched fashion, is referred to as 

PARylation. The best-characterized PARP is the human PARP1. hPARP1 is a PARylating 

nuclear protein which converts NAD+ into Poly ADP-ribose (pADPr or PAR) chains, which are 

then attached to other nuclear proteins, nucleic acids, or the PARP protein itself as a post-

translational modification (Thomas, et al., 2019). The PARylation modifications created by 

PARP activity are quickly degraded in the cell by the protein poly ADP-ribose glycohydrolase 

(PARG) which serves as a PARP antagonist (Kamaletdinova, et al., 2019). The most well-known 

function of the pADPr chains is to signal for the attachment of other nuclear proteins, which are 

involved in a variety of different cellular processes, with DNA repair being the best-understood 

(Chaudhuri, et al., 2017). In its role as a DNA repair protein, PARP1 is responsible for detecting 

DNA damage, including mismatched bases and strand breaks, and attaching to these abnormal 

structures and auto-modifying the PARP BRCT domain, which serves as a scaffold for the 

recruitment of other DNA repair proteins (Thomas, C. et al. 2019, Gibson, B. A. & Kraus, W. L. 

2012). The most similar human PARPs to PARP1 in structure and function are hPARP2 and 

hPARP3. Together with hPARP1, these human PARPs all localize in the nucleus and are the 

only known PARPs to directly bind to DNA damage sites (Amé, et al., 2004; Sousa, et al., 2012). 

Generally, the length of the chain influences the signaling effect of the modification; two 

examples of varying activity based on length are: short chains are catalyzed and automodified 

onto the PARP1 protein in order to signal for DNA repair protein recruitment, while longer and 

branched chains can be attached to histone tails to allow for chromatin remodeling (Thomas, et 

al., 2019). Much of the previous research into PARP1 has focused on the protein’s DNA repair 

activities; however, PARP1 also interacts with several other critical cellular pathways such as 
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glycolysis, transcription, chromatin remodeling, cell cycle progression, messenger RNA 

(mRNA) splicing, and apoptosis, making PARP1 a prime target for investigation to gain insight 

on a multitude of important cellular processes (Thomas, et al., 2019; Chaudhuri, et al., 2017; 

Fouquerel, et al., 2014; Matveeva, et al, 2016). 

 

1.1.2 PARP1 protein structure 

The human PARP1 is a 166 kDa protein that is the most abundant member of the PARP family 

and localizes within the nucleus (Amé, J.-C., et al. 2004). PARP1 consists of several domains, 

most notably the catalytic domain which is conserved in all members of the PARP family from 

bacteria to humans (Jubin, T. et al. 2016, Aravind, L., et al. 2014). While the catalytic domain is 

not well-conserved on an amino acid level, there is a well-conserved secondary structural motif 

in the catalytic domain of all PARPs, known as the catalytic ADP-ribose transferase (ART) loop 

(Cohen, M. S. & Chang, P. 2018). The ART loop is responsible for highly specific NAD+ 

binding and processing and generally consists of two halves of a beta sheet, one antiparallel in 

orientation and one mixed, that encompass at least three strands (Barkauskaite, E., et al. 2015). 

The ART loop functions by binding specifically to NAD+ through its amide group, while putting 

strain on the N-glycosidic bond that connects the nicotinamide molecule to the rest of the NAD+ 

molecule (Cohen, M. S. & Chang, P. 2018). There are two major conserved catalytic amino acid 

sequences within the ART loop which divide the PARP family into two groups, the H-Y-E 

family and R-S-E family (Alemasova, E. E. & Lavrik, 2019, Mikolčević, P., et al. 2021). The 

family that we will focus on contains the eukaryotic PARPs and notable bacterial ADP 

transferases and is characterized by the Histidine-Tyrosine-Glutamate (H-Y-E) motif, which will 

be explained in depth in chapter 1.3.2. Many PARPs contain several other domains, which 
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mainly aid the enzyme in protein-protein interactions or protein-nucleic acid interactions or serve 

a regulatory role. hPARP1 for example contains three other major domain types: the zinc finger 

domains, BRCT domain, and the Trp-Gly-Arg (WGR) domain. The zinc finger domains, labeled 

ZnI, ZnII and ZnIII, are responsible for DNA interaction and intramolecular folding. One 

proposed mechanism is that the zinc fingers I and II act as “legs” which walk along the 

chromatin scanning for lesions within the DNA and once found will bind to the damaged region 

and begin a pADPr response (Thomas, C. et al. 2019). The zinc finger III domain has been 

implicated in intramolecular folding, and along with the WGR domain, aids in reducing the 

distance between the catalytic domain and automodification domain during DNA damage 

response (Jubin, T. et al. 2016). The automodification domain, consisting of the BRCT domain, 

is the location where the pADPr chain is attached and elongated when PARP1 automodifies 

itself; this domain has been shown to facilitate protein-protein interaction (Alemasova, E. E. & 

Lavrik, O. I. 2019, Amé, J.-C., et al. 2004). Other notable domains in PARP1 or other PARP 

family members include the PARP regulatory domain, the Ubiquitin Conjugating (Ubc) domain 

of fungal PARPs, and the WWE motif (Amé, J.-C.,et al. 2004). 

 

1.2 PARP function and related pathways 

1.2.1 Metabolism of NAD+ 

Nicotinamide adenine dinucleotide (NAD+) is an important metabolite and coenzyme whose 

best-known role in the cell is as a redox factor during aerobic respiration in eukaryotes. NAD+ is 

an integral player in oxidative phosphorylation, allowing for the transport of protons which help 

drive the production of adenosine triphosphate (ATP), the energy currency within the cell. 

However, NAD+ can also serve as a substrate for other cellular consumers such as sirtuins and, 
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most importantly for this study, the PARP family of proteins (Rongvaux, A., et al. 2003, Croft, 

T., et al. 2020). NAD+ pools in the cell are tightly regulated and can be created by three major 

pathways, the de novo pathway, the Nicotinamide (NAM) salvage pathway (Figure 1), or the 

Preiss–Handler pathway (Croft, T., et al. 2020, Covarrubias, A. J., et al. 2021). The de novo 

pathway, the most energetically and materially expensive pathway, is generally used when the 

cell is low on NAD+ and converts Tryptophan into NAD+. (Croft, T., et al. 2020, Covarrubias, 

A. J., et al. 2021). The de novo pathway begins with Tryptophan being converted into 

Quinolinate via several enzymatic reactions; then a phosphoribose unit is added, creating a 

nicotinic acid mononucleotide (NaMN) molecule, where an AMP group from ATP is added to 

create nicotinic acid dinucleotide (NaAD), and finally an amide group is added to NaAD to 

create the NAD+ molecule (Croft, T., et al. 2020, Covarrubias, A. J., et al. 2021). The Preiss-

Handler pathway begins with dietary nicotinic acid, which is converted into NaMN, which is 

then transformed into NaAD and finally converted to NAD+ (Croft, T., et al. 2020, Covarrubias, 

A. J., et al. 2021). Finally, the energetically preferred pathway, the NAD+ salvage pathway, 

begins with nicotinamide, a byproduct of NAD+-dependent enzymes that is converted into NMN 

and finally transformed into NAD+ (Croft, T., et al. 2020, Covarrubias, A. J., et al. 2021) 

(Figure 1). Importantly in the context of the PARP family, the byproduct of the PARylation 

reaction, nicotinamide, may serve as a PARP inhibitor at high concentrations, likely to ensure 

that there are sufficient amounts of NAD+ available for the cell to have adequate ATP supply 

(Salech, F., et al. 2020). Overactivity of PARP, generally caused by excessive DNA damage, 

leads to the depletion of NAD+, which is thought to starve the cell of ATP. Overactivity of 

PARP has been linked to the release of apoptosis-inducing factor (AIF) and a cell death pathway 

unique to PARP termed Parthanatos. Two theories as to the cause of AIF release are either that 



 19 

the starvation of NAD+, and thus the starvation of ATP and cellular energy, causes the release of 

AIF from the mitochondria or that PAR polymers help to escort AIF out of the mitochondria and 

into the nucleus (David, K. K. 2009). Maintaining sufficient pools of NAD+ is important to keep 

the cellular energy demands met and allow for PARP-mediated regulation to maintain a properly 

functioning homeostasis. 

 

 

Figure 1: Diagram showing the de novo and salvage pathways of NAD+ metabolism. Figure 

created by Shira Milo Cochavi. 

 

1.2.2 Metabolism and catabolism of poly(ADP-ribose) 
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Adenosine diphosphate (ADP) ribose is a nucleic acid, created by PARP proteins by the cleavage 

of the nicotinamide group belonging to a β-NAD+ molecule (Suskiewicz, M. J., et al. 2021). The 

phosphate backbone of ADP-ribose gives the molecule a bulky size, a large negative charge, and 

the ability to flex and bend, similar to nucleotides. PAR chains of two or more ADP-ribose 

molecules are most commonly connected through the 1’ ribose to 2’ hydroxyl group of the 

adenosine, creating linear pADPr chains, while ribose-to-ribose bonds will create branched 

pADPr chains (Ruf, A., et al. 1998, Leung, A. K. L. 2014). The addition of pADPr onto proteins 

can occur on multiple types of amino acids, including aspartate, glutamate, and lysine (Leung, A. 

K. L. 2014, Burkle, A. 2005). Human PARPs 1-3 have also been shown to be able to add ADP-

riboses to DNA containing single- or double-strand breaks, with PARP10, 11, and 15 being able 

to MARylate single-stranded RNA (Groslambert, J., et al. 2021). MARylation and PARylation 

are reversible modifications, with the removal of pADPr chains primarily being catalyzed by the 

PARG and the removal of single ADP-ribose molecules being performed by ADP-

ribosylhydrolase 3 (ARH3) or macrodomain-containing enzymes such as TARG1 (Leung, A. K. 

L. 2014, Slade, D. 2020, Groslambert, J., et al. 2021). PARG, the primary pADPr regulator of 

the cell, has the ability to cleave the ribose-adenosine bonds that create the pADPr chains, but is 

not able to remove terminal ADP-ribose molecules from their attachment to amino acids (Ahel, I. 

2021). PARG has a high affinity for pADPr chains, so although there is significantly less PARG 

present in a nucleus when compared against PARP1, the catabolism of pADPr is a rapid process 

with most pADPr signals being eliminated minutes after PAR production (Alvarez-Gonzalez, R. 

& Althaus, F. R. P1989). PAR is cleaved into either single ADP-ribose units, or free chains, 

which can then be utilized in ATP-producing pathways (Wright, R. H. G. et al. 2016, McLennan, 

A. G. 2006). The misregulation of ADP-ribose can disrupt a well-concerted signaling cascade 
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and therefore may cause increased sensitivity to DNA damage and alteration to the 

transcriptional program. Thus, a timely and dynamic relationship between the creation and 

removal of ADP-ribose is essential for a properly regulated cell. 

 

Figure 2: Model of the reaction of NAD+ into ADP-Ribose and Nicotinamide catalyzed by 

PARP. 

 

1.2.3 The role of PARP1 in DNA repair 

The best-defined role of PARP1 in human cells is its function as a DNA repair protein. Major 

DNA repair pathways in which PARP1 has been implicated are base excision repair (BER), 

nucleotide excision repair (NER), single-strand break repair (SSBR), and double-strand break 

repair (DSBR). SSBR begins with detection of a break, followed by end processing where a 

damaged 3’ or 5’ end is restored to normal, and finishing with gap filling and ligation (Caldecott, 

K. W. 2008). DSBRs proceed by two primary repair pathways, the error-free homologous 

recombination and error-prone nonhomologous end joining (NHEJ) pathways. Homologous 

recombination is the process whereby the repair machinery uses sister chromatids to find DNA 

sequences homologous to the site of the break in order to ensure accurate repair of the DNA 

(Vítor, A. C., et al. 2020, Chatterjee, N. & Walker, G. C. 2017). NHEJ is the most common of 

the DSBR pathways and is performed by ligating the nonhomologous DNA regions around the 

location where the break occurred (Vítor, A. C., et al. 2020, Chatterjee, N. & Walker, G. C. 
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2017). BER is performed for simple base modifications in DNA and does not cause significant 

changes in the structure of the double helix; in this process, a single strand break is caused and 

one base or a small number of bases are excised and replaced (Liu, Y. et al. 2007, Chatterjee, N. 

& Walker, G. C. 2017). NER is performed when bulky adducts are detected in DNA; either GG-

NER is activated for global genome repair, or TC-NER is activated if replication machinery is 

stalled by the bulky adduct (Chatterjee, N. & Walker, G. C. 2017). PARP1 was originally shown 

to be involved in DNA repair due to its increase in expression and activity following DNA lesion 

creation, and DNA-damaging agents are often used to this day to stimulate PARP1 response 

(Semighini, C. P., et al. 2006, Hopp, A.-K. et al. 2021). Basal PAR amounts in the cell are low; 

however, upon DNA damage the activity of PARP1 can increase 10- to 500-fold (D’Amours, D., 

et al. 1999). PARP1 serves as a DNA damage detector with the ability to recruit other DNA 

repair enzymes to begin a variety of single-strand break (SSBR) repair pathways such as base 

excision repair (BER) and global genome nucleotide excision repair (GG-NER) and was shown 

to be involved in double-strand break (DSB) mechanisms such as homologous recombination 

(Ray Chaudhuri, A. & Nussenzweig, 2017, Morales, J. et al. 2014). The zinc fingers I and II 

“scan” the DNA for aberrant structures, such as single-strand breaks or bulky adducts, where the 

zinc fingers will attach to the lesion (Sousa, F. G. et al. 2012). After zinc finger I and II 

attachment, ZnIII’s loop will associate with the DNA-bound ZnI loop to initiate a conformational 

change that will bring the WGR domain in contact with the ZnI and ZnIII domains (Langelier, 

M.-F., et al. 2012). This conformational change will allow for the catalytic domain to come into 

contact with ZnIII close to the site of DNA damage, which will allow for the PARP1 

automodification reaction, creating a chain of pADPr on the BRCT domain (Thomas, C. et al. 

2019). Human PARP1 heavily relies on its zinc finger domains in its detection of DNA lesions; 
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however, not all DNA-binding PARPs have zinc finger domains, and the process by which these 

PARPs interface with DNA is unclear. Many DNA-interacting PARPs contain a WGR domain, a 

well-known DNA interacting domain that is believed to be utilized to interact with nucleotides 

(Huambachano, O., et al. 2011). Other studies suggest that some PARPs may form protein 

complexes with non-PARP proteins to facilitate DNA interaction (Schreiber, V., et al. 2006). 

Once PARP1 has been automodified, the large negative charge intrinsic to pADPr chains will 

begin to disassociate PARP1 from DNA, given that their negative charges will repel, and the 

pADPr chain will serve as a scaffold for the recruitment of other DNA repair proteins. As stated 

earlier, the size and structure of pADPr chains are dictated by the type of DNA lesion or the 

protein with which PARP1 is associated, serving as a “code” for the recruitment of the correct 

protein for the job, based on PAR identification motifs on the attracted protein(s) 

(Kamaletdinova, T., et al. 2019, Teloni, F. & Altmeyer, M. 2016, Leung, A. K. L. 2014). 

 

Figure 3: Simplified model of PARP1’s role in identifying DNA damage and recruitment of 

DNA repair proteins through the autocatalytically added PAR chains of PARP1. 

 

1.2.4 PARP1 function in chromatin remodeling and epigenetics 
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Epigenetics is the study of non-genetic changes that affect a DNA sequence. A notable form of 

epigenetics is the modification of histones, the proteins that compact and organize DNA. 

Directly related to the involvement of PARP1 in DNA repair pathways is its role as a chromatin 

remodeling protein (Morales, J. et al. 2014, Ray Chaudhuri, et al. 2017). PARP1 can indirectly 

affect chromatin structure through the recruitment of other chromatin remodeling proteins such 

as xeroderma pigmentosum group C-complementing protein (XPC), which relaxes chromatin 

structure during the GG-NER pathway (Ray Chaudhuri, et al. 2017). However, PARP1’s 

chromatin remodeling activity is not just limited to the recruitment of other nuclear proteins; 

PARP1 also has the ability to interact with histone subunits to modulate chromatin structure 

(Messner, S. et al. 2010, Kim, M. Y., et al. 2004, Thomas, C. et al. 2019). During DNA damage 

repair, PARP1 has been shown to be able to PARylate lysines in the tail regions of all four core 

histones, causing histone relaxation and allowing for the recruitment of DNA repair proteins 

(Messner, S. et al. 2010). PARP1 is able to interact with the H4 histone subunit through the 

PARP1 BRCT domain contained within the automodification region, which triggers PARP1 

automodification of pADPr chains, causing histone loosening and allowing transcription factors 

to access the gene contained within the nucleosome (Thomas, C. et al. 2019). PARP1 and 

histone 1 (H1) have been shown to competitively bind to the chromatin, with H1-bound 

nucleosomes found to be in a highly condensed state, while PARP1-bound nucleosomes were 

found in a slightly more relaxed conformation (Kim, M. Y., et al. 2004). Interestingly, in 

NAD+-depleted environments, PARP1 bound to the linker region of the nucleosome was shown 

to reduce transcription, but upon the addition of NAD+ and subsequent automodification of 

pADPr chains, PARP1 was released from the linker region and transcriptional activity was 

restored to the nucleosome (Kim, M. Y., et al. 2004). Due to pADPr’s strong negative charge, it 
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has been suggested to outcompete other polynucleotides in associating to positively charged 

nuclear proteins, such as histones, likely explaining the chromatin loosening properties of 

PARylated PARP1 (Leung, A. K. L. 2014, Ummarino, S., et al. 2021).  

 PARPs are able to post-transcriptionally apply mono- and poly-ADP-ribose core and 

linker histones, but this is not the extent of the ability of PARP1 to interact with the epigenome 

(Ummarino, S., et al. 2021). Given that specific amino acids of histones are acceptors of 

multiple different modifications, from methylation to phosphorylation, it stands to reason that 

PARP1 does compete with other epigenetic factors to modify chromatin (Hottiger, M. O. 2015). 

Similarly, PARylation can occur on phosphorylated proteins, but phosphorylation is reduced 

once a protein is PARylated. PARylation can occur on acetylated histones; however, 

hyperacetylation seems to block PAR addition, possibly suggesting competitive binding 

(Hottiger, M. O. 2015). Another NAD+-dependent protein group, Sirtuins (SIRTs), are well-

conserved nuclear deacetylases, raising the possibility that PARPs and SIRTs compete in low-

NAD+ environments. In mice, it has been shown that ADP-ribosylation of H1 in the 

hippocampus releases the histone from promoters involved in memory, suggesting ADP-

ribosylating epigenetics can modulate expression (Hottiger, M. O. 2015). In a more indirect 

fashion, PARP1 PARylation of the lysine-specific demethylase 4D (KDM4D) protein allows for 

the demethylation of histone H3 lysine 9 trimethylation, an epigenetic marker associated with 

compact chromatin, causing a reduction in chromatin compaction and allowing for DNA 

damage response to occur in heterochromatin regions (Ummarino, S., et al. 2021).  

 

1.2.5 PARP1 effects on transcriptional regulation and alternative splicing 
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As stated in the previous subchapter, PARP1 has a role in the regulation of chromatin structure, 

allowing or restricting access to genes; however, this is only part of the role of PARP1 in 

transcriptional regulation (Kim, M. Y., et al. 2004, Thomas, C. et al. 2019). PARP1 functions as 

a recruiter of promoter- and other DNA-binding factors (Kraus, W. L. & Lis, J. T. 2003). In a 

similar fashion to its DNA repair response, PARP1 can serve as a scaffold, attaching to 

promoters and enhancers, allowing nuclear proteins to initially bind to PARP or the PAR chain 

and begin to form the necessary complexes to promote transcription (Kraus, W. L. & Lis, J. T. 

2003). A well-known transcriptional interaction of PARP is its role in the regulation of the 

inflammatory pathway via interactions with the transcription factor Nuclear factor kappa B (NF-

κB) (Kamaletdinova, T., et al. 2019, Burkle, A. 2005). NF-κB is an inflammatory pathway 

protein which activates the transcription of several genes involved in cytokine release (Oliver, F. 

J. 1999). PARP1-knockout mice have been shown to have defective expression of proteins 

downstream of NF-κB, implying that PARP1 is a key regulator of this pathway; however, the 

exact mechanism is not well-understood (Oliver, F. J. et al. 1999, Kamaletdinova, T., et al. 

2019). Another example is that PARP1 has been found to facilitate complex formation of 

Elongation factor of RNA Polymerase II (ELL2) proteins, which are responsible for the 

transcription of important HIV-1 genes, revealing that PARP1 has key roles not only in normal 

transcription but also in the expression of viral proteins within a disease context (Yu, D.,et al. 

2018). Additionally, PARP1 has been found to be recruited to certain promoter regions by 

promoter RNA (pRNA), where PARP1 attaches to the promoter region of a gene and subsequent 

automodification of PARP1 represses transcription, like in the case of ribosomal DNA in 

Drosophila (Hottiger, M. O. 2015). PARP1 has also been observed to directly repress 

transcription by binding to regions upstream of promoters or directly on specific introns, 
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blocking transcription (Kraus, W. L. 2008). Interestingly, catalytic activity is not necessary for 

some transcriptional regulation, as shown in Drosophila by the catalytic-domain-lacking PARP-e 

isoform, which can impact the transcription of fully functional PARPs (Tulin, A., et al. 2002).  

 PARP1 can impact not only the transcription of genes but also the processing and 

maturation of mRNA. RNA splicing is thought to occur simultaneously during transcription and 

greatly improves the diversity of proteins that a eukaryotic cell is able to produce (Matveeva, E. 

et al. 2016). Splicing factors are often impacted by DNA sequences, chromatin formation and 

histone modifications, while splicing itself was suggested to promote stalling of RNA 

polymerization (Ray Chaudhuri, A. & Nussenzweig, A. 2017). PARP1 has been shown to block 

RNA polymerase, either through automodification when bound to DNA or with the PARylation 

of histones in the path of the polymerase (Matveeva, E. A., et al. 2019). PARP1 has also been 

found to bind to pre-mRNA, splicing factors, and histones, suggesting that PARP1 acts as a 

bridge for the recruitment of splicing factors to active transcription sites (Matveeva, E. et al. 

2016, Ray Chaudhuri, A. & Nussenzweig, A. 2017). PARP1 has been shown to indirectly affect 

alternative splicing by modifying splicing proteins through direct protein-protein interaction, 

direct PARylation of the proteins, and interaction between PAR and splicing proteins containing 

PAR-reading domains (Ray Chaudhuri, A. & Nussenzweig, A. 2017). In the processing of pre-

mRNA into mature mRNA, one of the final steps is the creation of the poly-Adenosine tail, 

catalyzed by the poly(A) polymerase (PAP) protein. During heat shock, PARP1 has been shown 

to bind to and PARylate PAP proteins, causing detachment of PAP from the mRNA, leading to 

decreased poly-Adensoination, which ultimately affects the trafficking of the mRNA (Di 

Giammartino, D. C., et al. 2013). PARP1 is thought to affect mRNA stability, as indicated by an 

increased RNA decay in PARP1-knockout Drosophila cell lines; however, the exact mechanism 
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of this interaction is not known (Matveeva, E. A., et al. 2019). Finally, PARP1 has been 

implicated in ribosome synthesis, as during non-stress conditions, 40% of PARP1 is localized 

within the nucleolus, the region where ribosome biosynthesis and tRNA creation occurs (Ray 

Chaudhuri, A. & Nussenzweig, A. 2017). PARP1 likely serves a guardian role to protect 

ribosomal DNA (rDNA) from damage, has roles in interacting with several nucleolar proteins, 

and potentially affects ribosome biosynthesis via its influence on transcription (Meder, V. S., et 

al. 2005, Ray Chaudhuri, A. & Nussenzweig, A. 2017). 

 

1.3 Other PARP family members and related proteins 

1.3.1 Other Human PARPs 

Although PARP1 is the best-studied and understood, 17 other known genes of the PARP family 

exist within the human genome. PARPs 1-5b are currently the most understood, with PARPs 6-

17 being the least; however, there have been recent strides to uncover the function and 

interactome of these PARPs, as well. The human PARPs are generally separated into three 

groups: the PARylators (PARPs 1, 2, 5a, and 5b), the MARylators (PARPs 3, 4, 6-8, 10-12, 14-

16), and the catalytically inactive (9 and 13) (Amé, J.-C., et al. 2004, Vyas, S. et al. 2014). In 

humans, the most similar PARP family member to PARP1, both in conservation of the catalytic 

domain and in function, is PARP2. PARP1 and PARP2 have overlapping, but not redundant, 

functions, as shown by PARP1-deficient mice utilizing PARP2 to compensate for PARP1 loss, 

but PARP2 having exclusive protein binding partners that PARP1 does not share (Perina, D. et 

al. 2014, ). PARP3 has been shown to MARylate substrates, with PARylation predicted but not 

conclusively shown. PARP3 localizes at centrosomes and is thought to impact mitotic 

checkpoints (Amé, J.-C., 2004). PARP4, a MARylator, is involved in the creation of vaults 
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nanoparticles, a ribonuclear complex thought to aid in stress responses (Prawira, A. et al. 2019, 

van Zon, A., et al. 2003,Frascotti, G. et al. 2021). The tankyrase PARPs, PARP5a and PARP5b, 

are both PARylators with overlapping functions and binding partners; these PARPs are involved 

in telomere maintenance, signaling, and vesicle transport (Kim, M. 2018, Amé, J.-C., 2004). 

PARP6 is a MARylator that has been shown to regulate dendrite morphogenesis in the mouse 

hippocampus, likely through interactions with microtubules (Huang, J. Y., et al. 2016, 

Vermehren-Schmaedick, A. et al. 2021). PARP7, a MARylator, has been shown to interact with 

interferons and plays a role in cancer signaling (Gozgit, J. M. et al. 2021, Kamata, T., et al. 

2021). PARP8, a MARylator, has had no known studies on its function, but is believed to be an 

oncogene based on its overexpression in colorectal cancer (Yu, Z. L. & Zhu, Z. M. 2022). 

PARPs 9 and 14, the macroDomain-containing PARPs, are involved in macrophage activation 

and inflammatory regulation, often thought to be acting as antagonists against each other (Iwata, 

H. et al. 2016, Hakmé, A., et al. 2008). PARP10 is a MARylator capable of automodification and 

has been implicated in several important pathways such as metabolic regulation, ubiquitin 

transfer, mRNA regulation, and G1 phase progression (Márton, J. et al. 2018, García-Saura, A. 

G. & Schüler, H. 2021, Chou, H.-Y. E., et al. 2006). PARP11, a MARylator, is involved with the 

immune response, primarily through its interactions with interferon receptors (Guo, T. et al. 

2019, Guo, T. et al. 2019). The rest of the human PARP family, PARPs 12, 13, 15, 16, and 17 

are all believed to be MARylators, with the exception of PARP 13, which is hypothesized to be 

catalytically inactive; although great strides have been taken recently to understand the functions 

of these PARPs and their impacts within the cell, these family members are relatively unexplored 

as compared to the previously described PARPs (Vyas, S. et al. 2014). 
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1.3.2 Bacterial ADPRTs and their role in virulence 

The proteins mentioned thus far have been members of the PARP family; however, any protein 

that catalyzes the transfer of ADP-ribose moieties belongs to the larger ART superfamily. 

Although we have focused on human PARPs as a model for ADP-ribose transferases, this 

reaction occurs in both prokaryotes and eukaryotes (Perina, D. et al. 2014). Many notable 

bacterial pathogens, such as Vibrio cholerae and Corynebacterium diphtheriae, utilize the 

hydrolysis and addition of mono-ADP-ribose units to interfere with important host regulatory 

pathways (Holbourn, K. P., et al. 2006). These bacterial weapons, known as ADP-ribosylating 

toxins (ADPRTs), are generally protein-specific MARylators that irreversibly target proteins 

vital to major cellular functions, such as G-protein-coupled receptors, that when MARylated 

cause extensive misregulation that may promote cell death (Holbourn, K. P., et al. 2006, 

Mikolčević, P., et al. 2021). ADPRTs are thought to originate as part of conflict systems, as 

many viruses and bacteria use ADP-ribose-related proteins in pathogen-versus-host combat 

(Mikolčević, P., et al. 2021). Interestingly, no known poly-ADP-ribosylating proteins are present 

in bacteria, so it is believed that this is a uniquely eukaryotic expansion of ADP-ribose 

transferases (Perina, D. et al. 2014). There are two major families of ADPRT toxins, the 

diphtheria toxins (DTXs) and the cholera toxins (CTXs). The DTXs contain a conserved H-Y-E 

catalytic motif that is also found in many eukaryotic PARPs (Mikolčević, P., et al. 2021), while 

the cholera toxins contain a conserved R-S-E catalytic motif (Cohen, M. S. & Chang, P. 2018, 

Mikolčević, P., et al. 2021). In bacterial H-Y-E domains, the histidine forms hydrogen bonds 

with the adenine ribose and nicotinamide amide, the tyrosine engages in pi-pi stacking with the 

nicotinamide ring, and the glutamate is thought to stabilize intermediates (Cohen, M. S. & 

Chang, P. 2018). Within the R-S-E motif, the arginine interacts with the diphosphate backbone, 
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the serine hydrogen bonds with the nicotinamide ribose, and the glutamate plays the same role as 

in the H-Y-E motif. The positioning of NAD+ in the catalytic pocket between these two types of 

ADP-transferases is similar (Cohen, M. S. & Chang, P. 2018). The two major types of ADP-

ribose transferases in eukaryotes, the PARPs and ectoARTS (also referred to as ADP-

ribosyltransferase cholera-toxin-like or ARTCs), are inherited from these two major bacterial 

groups, with PARPs hailing from the H-Y-E motif transferases, and ectoARTs containing the R-

S-E motif (Cohen, M. S. & Chang, P. 2018).  

 

1.3.3 Fungal PARPs 

Although there has been great progress in the understanding of bacterial ART toxins and human 

PARPs, the role of PARPs in fungal species is poorly understood. Fungi represent an interesting 

phylogenetic history with PARP proteins, with one intriguing example that several fungi, mainly 

yeasts, including Saccharomyces cerevisiae, have independently lost their PARP proteins 

(Citarelli, M., et al. 2010). The fungal kingdom does contain some unique PARP-related 

proteins; an example, which will be referred to in this paper as PARP-Ubc, is a protein that 

contains a long segment of amino acids with no known functional domains near the N-terminus, 

a relatively short PARP catalytic domain, and a Ubc domain near the C-terminus shared by F. 

oxysporum, Aspergillus nidulans, Cryphonectria parasitica, and other fungi (Citarelli, M., et al. 

2010). It has been shown that there are conserved PARP1 homologs contained within many 

filamentous fungi, deemed PrpA in Aspergillus nidulans, which was shown to retain many 

functions of the human PARP1 such as DNA repair, apoptosis, and mediating cell cycle 

progression (Semighini, C. P., et al. 2006). There are a multitude of fungal-specific proteins that 

contain the PARP family catalytic domain; however, to the best of our knowledge, no one ever 
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investigated this unique expansion of PARP proteins. In this study, we will be examining the 

PARP family expansion within the Fusarium oxysporum species complex, in order to foster an 

understanding for the role that PARPs play within the fungal kingdom and specifically in a 

fungal plant pathogen. 

 

1.4 Fusarium oxysporum 

1.4.1 Fusarium oxysporum life and disease cycle 

Fusarium oxysporum is a filamentous fungus which acts as a pathogen to a plethora of 

different hosts ranging from bananas and cotton to humans. Fusarium oxysporum is comprised of 

over a hundred host-specific strains, formae speciales, which reproduce asexually, forming three 

different types of spores known as macroconidia, microconidia, and chlamydospores (Gordon, T. 

R. 2017). F. oxysporum is a soil-borne pathogen which begins its colonization of a plant host by 

the germination of a spore into the root tissue (Gordon, T. R. 2017). The germinated spores then 

feed off of nutrients surrounding the plant roots, where the fungus begins the construction of 

sporangial germ tubes or mycelia that will eventually pierce into the cell wall of the plant root 

and begin to invade the root cortex (Gordon, T. R. 2017, G. N. Agrios, 1989). From there, F. 

oxysporum will advance and eventually colonize the xylem, where the fungal cells have greater 

access to nutrients. A mass of hyphae, spores and secreted compounds creates a blockage within 

the xylem that causes severe wilt symptoms and plant death (Gordon, T. R. 2017). The 

remaining F. oxysporum will invade other sections of the dying plant host and often persist in the 

soil, first around the dead host and for many years afterwards (Gordon, T. R. 2017). 

 

1.4.2 Expansion of Parp genes in F. oxysporum 
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The genome of F. oxysporum is compartmentalized, consisting of two different 

chromosome types: core chromosomes and accessory chromosomes (Ma, et al., 2010). The core 

chromosomes harbor housekeeping and basic survival genes, while the accessory chromosomes 

contain a collection of genes that are involved in pathogenicity and host specificity and can be 

horizontally transferred (Ma, et al., 2010, Yang, H., et al. 2020). Accessory chromosomes 

contain different genomic landscapes, unique “lineage-specific” genes, and utilize different 

transposable elements as compared to their core chromosomes (Yang, H., et al. 2020). The core 

and accessory chromosomes have been described as a “two-speed genome” given that segments 

of the accessory chromosome are more prone to mutation and adaptation, likely to keep evolving 

in the arms race between host and pathogen interactions (Wang, Q. et al. 2017).  

Comparative genomic analysis of multiple fungal species revealed that different strains of 

F. oxysporum have a variable number of PARP genes located in both the core and accessory 

chromosomes (Figure 4). For example: the non-pathogenic strain Fo47 contains 3 core PARPs 

and no accessory PARPs, the tomato pathogen Fol4287 contains 3 core PARPs and 3 accessory 

PARPs, the human pathogen MRL8996 contains 3 core PARPs and 6 accessory PARPs, and 

Fo5176, which infects Arabidopsis thaliana, contains 2 core PARPs and 18 accessory PARPs. 

One commonality is that all of these strains contain a copy of a Parp1 homolog, a copy of a Ubc 

Parp and in most cases an additional one Parp gene that encodes a relatively short PARP 

catalytic-domain-containing protein on their core chromosomes.  

 

1.4.3 F. oxysporum as a model to study genomic expansions 

The genus Fusarium contains over 300 phylogenetically closely related species that occupy very 

different ecological niches (Aoki et al., 2014). The Fusarium x graminearum species complex 
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contains airborne species that infect wheat and barley, resulting in destructive agricultural losses 

worldwide (Goswami & Kistler, 2004); the Fusarium oxysporum species complex includes 

common soil-borne pathogens that cause devastating wilt diseases on a wide range of plant crops 

(Michielse & Rep, 2009); and members of the Fusarium fujikuroi species complex cause a 

variety of diseases on hosts such as rice, maize and mango. In addition, several opportunistic 

Fusarium pathogens are common causes of onychomycosis, endophthalmitis, and skin and 

musculoskeletal infections in immunocompromised patients (Mansoory et al., 2003). The 

evolutionary processes, in terms of host specialization and lifestyle, that occurred over time in 

the genus, as well as the highly dynamic nature of the genome in F. oxysporum, are likely to be 

reflected as genomic signatures. Therefore, from an agroecological standpoint, Fusarium 

provides a unique comparative system to study specialized expansions of gene families. One 

example of a protein family expansion within the F. oxysporum species complex is the kinase 

family expansion (DeIulio, G. A. et al. 2018). Similar to PARPs, histidine kinase groups and the 

SPRKL family kinases were found to be largely absent from yeasts but present in high numbers 

in F. oxysporum with some kinases such as the HisKs not found in animals, similar to the fungal-

specific PARP Ubc (DeIulio, G. A. et al. 2018). This expansion as a whole is thought to be 

linked to fungal pathogenicity, given the relatively large expansion and a few identified kinases 

being integral to pathogenicity (DeIulio, G. A. et al. 2018). Exploring gene expansions such as 

those observed for the PARP or kinase families will often lead to a better understanding of the 

functions of these proteins within a specific phylogenetic group and the discovery of potential 

targets that can be exploited for the development of novel antifungals. 
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1.5 Guiding questions for this body of work 

Both the structure and function of PARP proteins have been well-characterized from 

bacteria to humans, with a rapidly growing focus on potential PARP-based therapies in recent 

years (Slade, D. 2020, Holbourn, K. P., et al. 2006). However, there has been virtually no 

comprehensive research on PARP homologues in fungi. The discovery of the unique expansion 

of PARP proteins in F. oxysporum raises many interesting questions about the nature and role of 

the highly conserved, in addition to the lineage-specific, PARP proteins in this species complex. 

Since the number of Parp gene copies varies greatly between different F. oxysporum strains, I 

have decided to utilize a comparative system consisting of three different strains that contain 

distinct numbers of Parp gene copies. 

The very first question that I asked is whether the structure, at the amino acid level, may 

predict ADP-ribosylation activity by way of comparing these expansion proteins to functional 

ADP-ribose polymerases. For this purpose, I have used the human PARP1 protein as a reference 

and model to extract the highly conserved catalytic amino acid motif to conduct a comprehensive 

series of multiple sequence alignments to reveal the conservation level of those amino acids in 

our FO PARP proteins. I then asked if any catalytic similarity between those fungal PARPs and 

ADRT bacterial exotoxins exists and used both multiple sequence alignment and phylogenetic 

trees to answer this question.  

Given that at least some of the copies have shared key catalytic amino acids that are 

predicted to allow for PAR- or MARylation, I asked whether this genomic expansion is 

translated into a functional role within the fungus cell. Quantitative reverse-transcriptase 

polymerase chain reaction (qRT-PCR) was performed to determine gene expression for all Parp 

genes in our comparative system, showing a significant induction of all the highly conserved 
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Parp genes located on the core chromosomes and a mixed transcriptional response of the 

lineage-specific copies. I used the DNA-damaging agent methyl methanesulfonate to assess the 

differences in DNA damage sensitivity during hyphal growth between the strains and quantified 

these differences using two survival assays. 

Next, I used a biochemical approach and developed an immunodot-blot assay to 

specifically semi-quantify the differences in poly-ADP-ribose chain levels between the strains. I 

incorporated Parp1-deficient strains that were generated in the lab into the comparative system 

and used the dot-blot assay to determine the effect of the deletion of Parp1 on ADP-ribose levels 

within the different strains. 

Finally, given the role of hPARP1 in transcription regulation, the last question I posed is 

“What is the impact of the deletion of Parp1 on transcriptional response to DNA damage?”. For 

that, I chose a representative strain, Fol4287, and conducted RNA Sequencing (RNA-Seq) 

analysis of both wild-type and a Parp1 mutant under DNA-damage conditions. 
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CHAPTER 

2. MATERIALS AND METHODS 

2.1 Fungal strains used in this work 

All the strains used in this work are listed in Table 1. The Fusarium oxysporum strains F. 

oxysporum f. sp. lycopersici (Fol4287), Fusox_FO47 (Fo47), and Fox_Fo5176 (Fo5176) were 

chosen for all experiments due to their differential PARP family gene copy numbers. Fo47 

contains 3 core Parp genes with no Parp genes on its accessory chromosomes, Fol4287 contains 

3 core Parp genes with an additional 3 accessory Parps, and Fo5176 contains 2 Parp genes on 

its core chromosomes with 18 additional accessory Parps. These three strains were selected for 

the comparative system as they will provide insight into the role that both the core and accessory 

genes play in DNA-damage response and tolerance, PARylation activity, and transcriptional 

regulation. All three strains share a highly conserved Parp1 homolog and a fungal-specific Ubc-

Parp on their core chromosomes. Fo47 contains no additional accessory Parps but shares one 

additional core Parp copy with Fol4287; therefore, this Fo47 strain is expected to give us insight 

into the function of the core Parp repertoire. Fo5176 contains the Parp1 and Ubc-Parp core 

homologs, while lacking the additional short core Parp shared by Fo47 and Fol4287; however, 

Fo5176 boasts the largest accessory chromosome collection of Parp genes at 18. The Fo5176 

strain will provide insight into the effect that an expansive collection of accessory PARPs will 

have on a variety of phenotypes. Fol4287 acts as a bridge between Fo47 and Fo5176, containing 

the same core Parps as Fo47 and three additional accessory PARPs shared with Fo5176. A total 

of six different strains has been used in this work (Table 1). Parp1-deficient strains were 

obtained using a CRISPR/Cas9 system in which the Parp1 gene was replaced with an 

hygromycin resistance cassette. The mutated strains were validated by PCR and the deletion of 
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Parp1 and the insertion of the Hygromycin B gene were confirmed by Sanger sequencing. 

Mutant generation for all three strains was done in the Ma lab by Cecelia Murphy. 

  

Table 1: Strains used in this work 

Strain Genotype 

Fo47 Wild-type Fo47 

Fol4287 Wild-type Fol4287 

Fo5176 Wild-type Fo5176 

Fo47 Parp1∆ Parp1∆-deficient Fo47 

Fol4287 Parp1∆ Parp1∆-deficient Fol4287 

Fo5176 Parp1∆ Parp1∆-deficient Fo5176 

 

2.2. Fungal growth, conditions, and spore collection 

2.2.1 Growth practices and conditions for F. oxysporum 

Asexual spores (microcondia) of all the Fusarium oxysporum strains discussed in this 

work, Fol4287, Fo47, and Fo5176, were grown in liquid KNO3-based medium (1.36 g of yeast 

nitrogen base without amino acids, 24 g of sucrose, 8.08 g of KNO3, and 800 mL of water) on an 

orbital shaker at 200 rpm for 5 days at 28°C. Parp1-deficient strains were supplemented with 

150 µg/mL hygromycin to ensure only the growth of the mutant. 

 

2.2.2 Spore collection and storage 
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The spores were filtered with Miracloth (EMD Millipore, Burlington, MA, USA) and 

centrifuged at 4000 x g for 10 minutes at room temperature, after which the supernatant was 

discarded and the pellet was resuspended in 1mL of sterile water. The resuspended pellet was 

then diluted 10,000-fold, and 10 uL of this dilution was placed on a hemocytometer, where the 

spores were counted. The concentration of the resuspended pellet was calculated using the 

hemocytometer-provided equation with the dilution taken into account. In any case, the 

resuspended pellets were stored at 4°C for no more than 72 hours. 

  

2.3 In silico protein sequence analysis 

2.3.1 Multiple sequence analysis 

All fungal protein sequences were downloaded from the Joint Genome Institute (JGI) 

(https://genome.jgi.doe.gov/portal/) (April 7th, 2022), while all bacterial and human protein 

sequences were downloaded from National Center for Biotechnology Information (NCBI) 

(https://www.ncbi.nlm.nih.gov/gene/) (April 7th, 2022) gene database. Note that Fol4287 PARP 

proteins are labeled “FOXG_#”; this is the NCBI locus tag, while PARPs from Fo47 and Fo5176 

will go by their JGI protein ID number. The catalytic domains of the PARP and PARP-related 

proteins were identified using InterPro (https://www.ebi.ac.uk/interpro/). To receive multiple 

sequence analysis, Multiple Alignment using Fast Fourier Transform (MAFFT) 

(https://www.ebi.ac.uk/Tools/msa/mafft/) was used with amino acid sequences as the input; the 

output format was ClustalW with character counts and the results were viewed using MView 

(https://www.ebi.ac.uk/Tools/msa/mview/).  

 

2.3.2. Identification of conserved domains and amino acids 

https://genome.jgi.doe.gov/portal/
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To predict the conserved domains within the F. oxysporum PARP-like proteins, we 

utilized InterPro to generate domain predictions for the amino acid sequences obtained from JGI. 

Based on Alemasova, E. E. & Lavrik, 2019, hPARP1 was used as the primary protein for 

alignment of the F. oxysporum PARP homologs, utilizing the known key catalytic residues, 

histidine 826, tyrosine 907, and glutamic acid 988 of the hPARP1, to gain insight into the 

catalytic capacity of the PARP homologs. 

2.4 In vitro survival assays 

2.4.1 Experimental design and conditions 

To assess the differences in survival rate between the wild-type strains, spores of three 

independent biological replicates were plated on PDA (DB Difco, Sparks, MD, USA) plates 

supplemented with 0.001% methyl methanesulfonate (MMS) (EMD Millipore, India) in three 

different concentrations (104, 103, and 102 spores/mL) and were allowed to grow in the dark for 

48 hours at 28°C. PDA plates with no additional supplements served as controls. Following 48 

hours of incubation, the plates were scanned and imaged for a visual representation of the 

growth. For colony rescue, 500 spores of each strain were plated on control PDA plates and PDA 

plates supplemented with 0.0012% MMS and were allowed to grow in the dark for 48 hours at 

28°C. Colony-forming units (CFUs) were counted and percentage of survival was calculated for 

each strain based on the ratio of MMS/PDA CFU number. Survival rates were plotted using the 

R statistical software (version 4.1.2) in RStudio (version 2022.02.3 Build 492) using the ggplot2 

package (version 3.3.6) and p-values were calculated using the stat_compare_means() function 

with ‘method’ parameter set on ‘t.test’. 

2.5 Immunodot-blot assay 

2.5.1 Experimental design and conditions 
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In order to ensure maximum PARylation for dot-blot detection, 2x108 spores of each 

strain were incubated in 10 mL of Potato Dextrose Broth (PDB) (BD Difco, Sparks, MD, USA) 

medium (19.2 g of Potato Dextrose Broth, 800 mL of water) in an orbital shaker at 200 rpm at 

28°C for 3 hours. Following this, samples were removed from the orbital shaker and were split 

into two groups of samples: a control group with no added supplements and a group where 0.1% 

MMS, 2 µM of ADP-HPD (Sigma-Aldrich, St. Louis, MO, USA), and 1 mM of NAD+ (Sigma-

Aldrich, St. Louis, MO, USA) were added. All samples were reinserted into the orbital shaker at 

the same rpm and temperature; both of the sample groups were collected after 20 minutes of 

additional incubation. Collected samples were centrifuged at 4000 x g at 4°C for 10 minutes, 

after which the supernatant was discarded.  

 

2.5.2 Protein extraction and quantification 

The pellets generated in the previous section were flash-frozen under liquid nitrogen and 

allowed to thaw in room temperature conditions. Once the pellets were beginning to thaw, they 

were vortexed with 125 µL of lysis buffer [40 mM potassium phosphate buffer, pH 7.0, 5 mM 

Ethylenediaminetetraacetic acid (EDTA), 0.1% Triton X-100, 20% glycogen, 1 ug of 

Dichlorodiphenyltrichloroethane (DDT), and 10 uL of plant protease inhibitor (Sigma-Aldrich, 

St. Louis, MO, USA) per mL]. Following lysis, the samples are sonicated using a Heat Systems 

W-385 Sonicator Ultrasonic Processor at 50% duty cycle for 1 second 5 times; samples were 

then shaken at 50 rpm on an orbital shaker for 15 minutes to allow for mixing of the extraction 

buffer solution with spores, and finally the samples were transferred to 1.5 mL Eppendorf tubes, 

where they were centrifuged at 13000 x g at room temperature for 10 minutes. The supernatant 

of the centrifuged samples are transferred to another 1.5 mL tube while the pellet was discarded. 
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Total protein extracts were quantified using the Bradford method with Bio-Rad Protein Assay 

Dye Reagent Concentrate (Bio-Rad Laboratories, Hercules, CA, USA) and Bovine Serum 

Album (Pierce Biotechnology, Rockford, IL, USA) serving as the standard for generating a 

standard curve; absorbance was measured at 595 nm wavelength. The total protein extracts were 

then stored at -20℃.  

 

2.5.3 Immunodot-blot assay and signal quantification 

Samples were thawed on ice and then diluted to a concentration of 10 µg/mL. Amersham 

Hybond-N Membranes (GE Healthcare Limited, Buckingshire, England) were cut into the shape 

of Bio-Rad Bio-Dot/Bio-Dot SF Filter Paper (Bio-Rad, USA), and two filter papers were stacked 

onto the membrane and submerged in TBS (Tris-Buffered Saline, pH 7.4, Thermo Fisher, 

Ottawa, ON, Canada) for 10 minutes. The Dot-Blot Apparatus was assembled using two soaked 

filter papers with the nylon membrane on top. Next, 225 µL of each sample was blotted onto the 

membrane while 225 µL of PBST (Phosphate-Buffered Saline, pH 7.4, Ottawa, ON, Canada 

with 0.1% Tween20, Fair Lawn, NJ, USA) was added into any slots where samples were not 

added. A light vacuum was applied until all of the samples had been vacuumed through the 

membrane, when an additional 225 µL of PBST was added to all wells. After all wells had been 

vacuumed empty, the Dot-Blot apparatus was opened and the membrane was removed and 

placed between two new filter papers, where it was then dried using a Model 583 Gel Dryer 

(Bio-Rad, USA) for 90 minutes at 80℃. Once the membrane was dried, the membrane was 

rehydrated in TBST (Tris-Buffered Saline, pH 7.5, with 0.1% Tween20) for 5 minutes. The 

membrane was then incubated in 10% formaldehyde solution for 20 minutes at 37℃. The 

membrane was then washed on an orbital shaker with TBS twice for two minutes. Next, the 
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membrane was placed between two filter papers and dried on a gel dryer for an additional hour at 

80℃. The membrane was rehydrated with PBST for 5 minutes. From here, all washing and 

incubation steps were performed on an orbital shaker at 60 rpm. The membrane was then 

incubated with a blocking solution (5% Difco Skim Milk, Sparks, MD, USA, in PBST) for one 

hour. Following the incubation, the membrane was washed three times for 20 minutes each with 

PBST. Next, the membrane was incubated with the primary antibody solution [1:1000 

Poly(ADP-ribose) monoclonal antibody (10H) (Enzo Biochem Inc., New York, NY, USA) in 

Blocking Solution] overnight at 4℃. The following morning, the membrane was washed three 

times for 20 minutes each with PBST. The membrane was then incubated with the secondary 

antibody solution [1:1000 Goat Anti-Mouse IgG Antibody, (H+L) HRP conjugate (EMD 

Millipore, St. Louis, Missouri, USA) in blocking solution] for one hour. The membrane was 

washed four times for 30 minutes in PBST. Next, 2.5 mL of Enhanced chemiluminescence 

(ECL) (Life Technology Corporation, Ottawa, ON, Canada) reagent 1 and 2 were mixed in a 1:1 

ratio and pipetted evenly onto the membrane and allowed to incubate while covered for 2 

minutes. The membrane was gently dried with filter paper and taken, covered, to a BioRad 

ChemiDoc Imaging System (Bio-Rad, USA) and imaged for chemiluminescence.  

 

2.5.4 ImageJ Quantification and Statistical Significance 

Once the membrane was imaged by the ChemiDoc, the image display was inverted and 

opened with ImageJ (version 1.53k). In ImageJ, the circle shape tool was used to draw a circle 

around the dots within the membrane and measure the signal intensity. A circle of the same size 

was used for all the analyzed dots. Signal intensity was also measured in at least four locations 

on the membrane image to allow for an average of the background signal. These data points were 
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entered into an Excel spreadsheet, where the mean background signal was calculated and 

subtracted from each of the sample measurements. The mean signal value of technical replicates 

was calculated and used for data points in further analysis. To test the statistical significance of 

these data points, a two way t-test was used to compare the differences between strains. 

2.6 RNA-Seq analysis 

2.6.1 Experimental design and conditions 

To gain insight into the transcriptional impact that knockout of the core PARP1 homolog 

would have on Fusarium oxysporum, both wild-type and knockout mutant samples were created 

from the Fol4287 strain. Fol4287 was chosen as the candidate strain to undergo RNA sequencing 

because it contains the most well-characterized and annotated genome of the three strains and in 

preliminary dot-blot results exhibited a substantial increase in PARylation upon the addition of 

MMS. Fol4287 also serves as the “bridge” between the number of PARP accessory genes 

between Fo47 and Fo5176, containing all three core PARPs of Fo47 and sharing three of the 

accessory PARPs with Fo5176. 

 

2.6.2 RNA extraction, quality control and quantification 

For the creation of samples to be used in RNA sequencing, 2x108 spores of both the wild-

type and the PARP1 homolog knockout mutant, containing three biological replicates of each, 

were incubated in 10 mL of PDB media (19.2 g of Potato Dextrose Broth, 800 mL of water) in 

an orbital shaker at 200 rpm at 28℃ for 3 hours. Following this, samples were removed from the 

orbital shaker, and three groups of samples were created: a control group with no additional 

added reagents, and two groups with 0.1% MMS added. All samples were reinserted into the 

orbital shaker at the same rpm and temperature; one group of MMS-containing samples was 
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collected after 20 minutes of additional incubation, and the final MMS group and the control 

group were collected after 1 hour of additional incubation. Collected samples were centrifuged at 

4000 x g at 4°C for 10 minutes, after which the supernatant was discarded. At this point the 

samples were flash-frozen with liquid nitrogen and stored at -80℃ overnight. The following 

morning, the samples were allowed to thaw on ice; once thawed, the spores were ground using 

Red RINO lysis kit tubes (Next Advance, Troy, NY, USA) for 1 minute x 5 times. The QIAGEN 

RNeasy Plant Mini Kit was used for total RNA extraction, after which the RNA samples were 

stored at -80℃. Quality control was performed on the RNA samples by using a Qubit 3.0 

Fluorometer (Life Technologies Holdings Pte Ltd, Singapore) with an Invitrogen™ Qubit™ 

RNA High Sensitivity (HS) Assay Kit to insure sufficiently concentrated RNA; the Agilent 2100 

Bioanalyzer RNA 6000 Nano assay was performed to ensure sufficient quality of RNA. 18S and 

28S were identified at the desired peaks and a RIN score for each sample was calculated based 

on the quality of the sample.  

 

2.6.3 Library construction and sequencing 

RNA samples were shipped to the Microbial Genome Sequencing Center (MiGS) (now 

referred to as SeqCenter, https://www.seqcenter.com/) to perform 25 million PolyA enrichment 

RNA reads on each sample. Services rendered on samples were DNAse treatment, mRNA 

(PolyA) enrichment, stranded library prep and sequencing. 2 x 51-bp double-stranded reads were 

received from MiGS in the form of fastq.gz files. 

 

2.6.4 Quality control of raw data and read alignments 
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Fastq.gz condensed files were unzipped and passed through FASTQC to confirm that the 

files received were of high quality and uniform length and contained no adaptor sequence. A 

genome index of an annotated Fol4287 genome (GenBank ID GCA_003315725, 2018) was 

taken from the Joint Genome Institute (JGI). Mapping of raw data against the Fol4287 genome 

reference was performed using HISAT2 (version 2.0.5), with the original forward and reverse 

read fastq.gz files as input and SAM files as the output. Following alignment, unmapped reads 

were filtered out using the samtools (version 1.9) program view -F 4 commands with a BAM file 

as the output. Samtools was used again to sort the BAM files, followed by a flagging of duplicate 

reads using Picard (version 2.23.3) using the MarkDuplicates and “-

REMOVE_SEQUENCING_DUPLICATES true” commands. Finally, the duplicate reads once 

flagged were removed with the samtools -rmdup command, and the final BAM files were 

indexed using the samtools command -index. 

 

2.6.5 Read count 

Raw reads were counted using the Python-based htseq-count program with the following 

parameters: --idattr parameter set to ‘Parent’, --mode parameter set to ‘intersection-nonempty’, 

and --stranded set to ‘reverse’. 

 

2.6.6 Read count normalization and differential expression analysis 

Normalization of raw read count and differential expression (DE) analysis were done 

using the R statistical software (version 4.1.2) in RStudio (version 2022.02.3 Build 492) using 

the DESeq2 package (version 1.34.0). MA plots of differentially expressed genes (DEGs) were 

generated using the plotMA function. Volcano plots of DEGs were generated using the 
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EnhancedVolcano package (version 1.12.0). Principal Component Analysis (PCA) plots were 

generated using the function plotPCA of the ggplot2 package (version 3.3.6).  

 

2.6.7 Gene ontology term analysis 

DEGs were used as input for gene ontology (GO) term analysis using the R statistical 

software (version 4.1.2) in RStudio (version 2022.02.3 Build 492) using the gprofiler2 package 

(version 0.2.1) with the correction_method parameter set to ‘g_SCS’. Results were plotted using 

the ggplot2 package (version 3.3.6). 
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CHAPTER 

3. RESULTS 

3.1 In silico prediction of conserved PARP motifs and domains 

3.1.1 PARP family expansion in Fusarium oxysporum 

Within the F. oxysporum species complex, there is a vast difference in the number of 

genes encoding PARP-like proteins on the accessory chromosomes, as well as slight differences 

in the number of Parp genes located on the core chromosomes (Figure 4). Our comparative 

system consists of three strains that were chosen for the variable number of PARP-like genes 

found within their genomes and their different phytopathological contexts (Figure 4). The Fo47 

strain, a nonpathogenic endophyte, contains only 3 core PARP-like proteins with no accessory 

PARPs. Fol4287, a tomato pathogen, contains 3 core PARP-like genes and 3 accessory PARPs. 

Fo5176, an Arabidopsis pathogen, contains 2 core PARPs and 18 accessory PARPs (Figure 4).  
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Figure 4: PARP expansion in the F. oxysporum species complex. Along the x-axis are several 

strains which belong to the F. oxysporum species complex, with the number of Parp gene copies 

represented in the y-axis. The distribution of Parp genes found within the core and accessory 

chromosomes are shown in the orange and purple bars respectively. Figure and analysis 

performed by Shira Milo Cochavi. 

 

3.1.2 Structures of PARP homologs within the comparative system 

After the identification of the unique PARP expansion in the F. oxysporum complex, 

efforts were undertaken to identify the protein motifs found within each of the PARP catalytic-

domain-containing proteins, to gain insight into their structure and function. Amino acid 

sequences were downloaded from JGI and used as a query in NCBI 

(https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi) and InterPro 

(https://www.ebi.ac.uk/interpro/) conserved domain analysis to begin in silico predictions for the 
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PARP proteins. The first protein characterized in this way was the F. oxysporum PARP1 

homolog (denoted foPARP1 when referring to the protein and foParp1 when referring to the 

gene), which was found to contain the BRCT protein-protein interacting domain, the WGR 

protein-DNA interacting domain, a PARP family regulatory domain, and finally a PARP 

catalytic domain located on the C-terminus (Figure 5). Full-protein and catalytic-domain 

multiple sequence alignments of foPARP1 against hPARP1 revealed that foPARP1 shares a 

44.1% percent identity (PID) with hPARP1 (Figure 7). Given foPARP1’s similarity to hPARP1 

and the low PID of the other core PARPs to foPARP1 (Figure 6), it was predicted that foPARP1 

was the only core chromosome PARP homolog predicted to share function with hPARP1. Of 

note is the protein titled PARP Ubc, which through BLAST and literature review was found to 

be a fungal-specific PARP (Citarelli, M., et al. 2010). This PARP has a long region near the N-

terminus containing no known domains, plus a small PARP catalytic domain (54 amino acids as 

compared to the 234-amino-acid-long foPARP1 catalytic domain) and a Ubc domain near the C-

terminus that is highly conserved within the F. oxysporum species complex and other 

filamentous fungi included in our dataset. The 274843 (JGI protein ID) of Fo47 and 

FOXG_20370 of Fol4287 are relatively small PARP homologs located on a core chromosome 

harboring only a PARP catalytic domain on the C-terminus of the protein. Although the gene 

encoding this protein is found on the core chromosomes of Fo47 and Fol4287 with a 97.9 PID, 

Fo5176 does not contain a homolog of this gene on either its core or accessory chromosomes 

(Figure 6). Within the accessory chromosomes of Fol4287 are two genes encoding nearly 

identical proteins containing the PARP family regulatory domain along with a C-terminal 

catalytic domain and an additional gene for a relatively smaller protein that consists entirely of 

the PARP catalytic domain. Within the Fo5176 accessory chromosomes were 18 genes encoding 
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proteins predicted to contain the PARP family catalytic domain, most notably 525699, which 

appears to be a duplication of foPARP1 and genes for two seemingly identical proteins 

containing the WGR protein-DNA interacting domain and a C-terminal catalytic domain (Figure 

5). From this analysis, it was hypothesized that Fo47 and Fol4287 contained one copy of a 

protein similar to the DNA-interacting PARPs from humans, foPARP1, while Fo5176 contained 

two copies of foPARP, along with two PARP catalytic-domain proteins that included protein-

DNA interacting domains. To gain further insight into these PARP catalytic-domain-containing 

proteins, we obtained the sequence of each PARP catalytic domain and generated multiple 

sequence alignments against the well-defined hPARP1, in order to predict the catalytic capacities 

of these proteins. Analysis and figure creation for the F. oxysporum PARP domain expansion 

was performed by Shira Milo Cochavi and Cecelia Murphy. 
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Figure 5: Structural motifs found within the Fusarium oxysporum PARP expansion. All core and 

accessory proteins that contain either the PARP catalytic domain were subjected to NCB, and 

InterPro conserved domain analysis. The predicted domains were used to create the images in 

which the domains correspond with their length and position on the hypothetical proteins. 

Multiple sequence alignments were created using EMBL-EBI MAFFT and were used to generate 

phylogenetic trees using the Qtree program to show relationships between the hypothetical 

proteins. Figure and analysis created by Shira Milo Cochavi and Cecelia Murphy. 
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3.2 Identification of conserved motifs 

3.2.1 MSA + sequence homology of F. oxysporum PARPs 

In order to begin to characterize the PARP-like proteins, we aligned all of the shared core 

chromosome PARP catalytic domains to observe any differences in catalytic capacity that the 

core chromosome PARPs could have (Figure 6A). We began by comparing the catalytic domains 

of the conserved foPARP1 protein and found that Fo47 and Fol4287 share an identical catalytic 

domain sequence, while Fo5176’s foPARP1 only contained one amino acid variation, resulting 

in 99.6% identity with the two other foPARP1s (Figure 6A). Next we aligned the catalytic 

domains of the shared PARP Ubc proteins between the comparative system strains and found no 

amino acid variation in any strains, showing a perfectly conserved catalytic domain amino acid 

sequence between all three strains (Figure 6A). Finally, we aligned the third core PARP shared 

between Fo47 and Fol4287 and found 97.9% identity between the two proteins (Figure 6A). 

Given these alignments, we can conclude that, for the purposes of our catalytic domain analysis, 

the foPARP1 and PARP Ubc shared between the strains are effectively identical to each other 

and can be used interchangeably throughout further analysis (Figure 6A). This also applies to the 

third core PARP shared between Fo47 and Fol4287; given their high PID, they will be 

considered essentially identical throughout the analysis (Figure 6A). Next, we aligned the PARPs 

encoded by genes belonging to the accessory chromosomes of Fol4287 and Fo5176 against their 

respective foPARP1, in order to gauge their similarity to the best-characterized foPARP1 and to 

confirm the InterPro prediction that these proteins contain PARP catalytic domains. In our 

alignments, we used the general rule of thumb in sequence alignment analysis that a percent 

identity >30% points to the two proteins sharing homology, thus strengthening our prediction of 

their catalytic capacity (Pearson, W. R. 2013). foPARP1 was chosen as the protein with which to 



 54 

align the other PARP-like proteins as it contained the highest percent identity to the hPARP1 

protein, at a PID of 44.1% (Figure 7A), which we could in turn use as our connection between 

the well-characterized hPARP1 and the F. oxysporum PARP catalytic-domain-containing 

proteins. In our alignments shown in Figure 6B, nearly every accessory PARP is shown to have a 

percent identity greater than 30%, which serves to strengthen our hypothesis that these proteins 

likely contain a PARP catalytic domain; the exception is Fo5176 268816, which only shared a 

11.4% identity with foPARP1’s catalytic domain (Figure 6B). Fo5176 268816 did initially 

appear to share the conserved PARP catalytic domain in JGI domain-based analysis; however, 

further analysis at the amino acid level using both InterPro and NCBI Conserved Domain Search 

showed no predicted conserved domains, probably due to the short length of this sequence 

(Figure 5). Due to Fo5176 268816’s low percent identity and lack of predicted domains in 

conserved domain searches, this protein was excluded from further analysis. Finally, the core 

chromosome PARP catalytic domains were aligned against each other, utilizing Fol4287 as the 

representative for the comparative system; this alignment surprisingly indicated a 10.4% 

similarity between foPARP1 and PARP Ubc, and a 16.8% similarity between foPARP1 and the 

third core PARP 20370 (Figure 6C). Given that PARP Ubc is a fungal-specific protein found 

within multiple other fungal species, it remained within the analysis despite lower sequence 

similarity (Citarelli, M., et al. 2010). The third core PARP (20370) was shown to have a 

relatively low PID of 16.8% with foPARP1, but given that both InterPro and NCBI Conserved 

Domain Search predict that 20370 contains a PARP catalytic domain, we also kept this protein in 

our analysis. Taken together, foPARP1 is our best candidate to bridge the gap between human 

and F. oxysporum PARPs, given its high percent identity to hPARP1 (Figure 7A) and 

conservation across all strains of the comparative system. The results of aligning the accessory 
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PARPs to foPARP1 strengthened the predictions of a catalytic domain residing in our identified 

accessory PARPs, and further analysis was performed to evaluate potential catalytic function 

based on conserved catalytic residues experimentally observed in hPARP1 (Marsischky, G. T., et 

al. 1995, Alemasova, E. E. & Lavrik. 2019). 

 

 

Figure 6: Multiple sequence alignment of Fo47, Fol4287, Fo5176 core and accessory PARP 

catalytic domains against the foPARP1 catalytic domain. Cov represents the percent of coverage 

that a protein was able to align with the top-most protein, and PID refers to percent identity. A) 

Alignments of the foPARP1 in all three strains, UBC in all strains, and Fo47 274843 and 

Fol4287 20370 B) Alignments of foPARP1 to the respective accessory PARP proteins C) 

Catalytic domain alignment of Fol4287 foPARP1 to Ubc and 20370 core PARP 3. 

 

3.2.2 Identification of conserved amino acids that indicate catalytic activity 

For human poly ADP-ribose polymerase catalytic activity, a three-amino-acid motif has 

been discovered to be essential in the transformation of NAD+ to ADP-ribose and elongation of 
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PAR chains. The H-Y-E triad in the human PARP1 protein, Histidine 826, Tyrosine 907, and 

glutamine acid 988 (Alemasova, E. E. & Lavrik, 2019), is conserved in all of the “bona fide” 

poly ADP ribosylation proteins (human PARP1-5b) (Alemasova, E. E. & Lavrik, 2019). Other 

human PARP catalytic motifs, such as the H-Y-I, H-Y-L, and H-Y-Y motifs of PARP 6-12, 

PARP 14-15, and PARP16 respectively were searched for, but no F. oxysporum PARP homologs 

were found to contain these motifs (Figure 7) (Vyas, S. et al. 2014). Based on our analysis, 

within the Fo47 and Fol4287 strains, there is only one PARP-like protein encoded by a gene 

located on the core chromosome that contains the key H-Y-E motif, foPARP1, as shown by a 

multiple sequence alignment between Human PARP1, Fo47, and Fol4287 (Figure 7B). 

Interestingly, within Fo5176, there appear to be two additional PARP-like proteins encoded by 

genes located on the accessory chromosomes that contain the H-Y-E motif, while there are two 

other PARP-like accessory genes that encode proteins that contain a H-Y-V motif (Figure 7). 

From these results we can predict that Fo47 and Fol4287 have only one PARP-like protein that 

could conceivably catalyze the formation of PAR polymers, while Fo5176 contains up to three 

proteins that can possibly catalyze the synthesis of PAR polymers. However, this leaves the vast 

majority of PARP catalytic-domain-containing proteins lacking the conserved H-Y-E sequence 

derived from the ancient DTX family of exotoxins (from which modern PARPs were derived), 

so in an effort to identify catalytically important sequences within these PARP-like proteins, we 

investigated whether any of these proteins contained the CTX family catalytic R-S-E triad 

(Mikolčević, P., et al. 2021). 
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Figure 7: Multiple sequence alignments of the catalytic domains of hPARP1 against all 

focPARP1 and of hPARP1 against all accessory PARP homologs. All alignments are centered 

around the conserved amino acid marked with an asterisk above; cov represents the percent of 

coverage that a protein was able to align with the top-most protein, and pid refers to percent 

identity. A) hPARP1 was aligned against the focPARP1 protein sequences of Fo47, Fol4287, and 

Fo5176. B) hPARP1 was aligned against all PARP catalytic-domain-containing proteins encoded 

within the Fol4287 accessory chromosomes. C) hPARP1 was aligned against all accessory 

PARP-like proteins within the Fo5176 genome. 

 

3.2.3 Sequence similarity to bacterial ADRTs 
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After finding that only a few of the F. oxysporum PARP proteins contain the conserved 

H-Y-E catalytic motif found within the human PARPs, and given that F. oxysporum acts as a 

pathogen to a variety of different host species, we decided to investigate whether any of the 

PARP proteins in F. oxysporum shares catalytic similarities with the bacterial ART exotoxins. 

The cholera toxin was chosen as a model for bacterial exotoxins as it remains one of the best-

characterized ART toxins and has the R-S-E amino acid motif identified (Mikolčević, P., et al. 

2021). Fol4287’s core PARP proteins serve as a stand-in for the three Fo47 core PARPs and the 

Fo5176 two core PARPs due to the nearly identical sequence identity that the strains’ core 

PARPs share (Figure 6A). Sequences were aligned against the cholera toxin to assess whether 

the MARylating R-S-E motif would be found within the PARP expansion. None of the Fol4287 

PARP-like proteins encoded on the core or accessory chromosomes shared the R-S-E motif in its 

entirety, although proteins 9548 and 13741 did align with R5 and E110 of the cholera toxin 

catalytic domain; the S61 was aligned with an alanine, but given that these amino acids have 

differing polarity, it is unlikely that the catalytic activity of this amino acid is conserved (Figure 

8A). The accessory PARP-like proteins of Fo5176 were also aligned against the cholera toxin 

and, as was the case for Fol4287, no individual PARP proteins were shown to share all three of 

the CTX catalytic motif residues (Figure 8B). Given these findings, it can be concluded that none 

of the PARP catalytic-domain-containing proteins within any of the comparative complexes 

shares a catalytic motif with the CTX. Taken together from the domain predictions and multiple 

sequence alignment results, it was predicted that Fo47 and Fol4287 shared only one PARP-like 

protein that could perform PARylation, foPARP1, while Fo5176 contained three (Figure 6 and 

7). No PARP-like proteins within the comparative system were found to share the catalytic 

domain motif of the CTX family of exotoxins (Figure 8). 
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Figure 8: Multiple sequence alignment of cholera toxin against all Fol4287 and Fo5176 PARP 

homologs, focusing on catalytic domains. All alignments are centered around the conserved 

amino acid marked with an asterisk above; cov represents the percent of coverage that a protein 

was able to align with the top-most protein, and pid refers to percent identity. A) The catalytic 

domains of all Fol4287 core and accessory PARP proteins were aligned against the catalytic 

domain of the cholera toxin; the alignments were performed in groups of three to maximize 

coverage. B) The catalytic domains of all Fo5176 accessory proteins and focPARP1 were 

aligned with the cholera toxin. 
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3.2 In vitro Phenotyping 

To begin to observe the phenotypic effects that foPARP1 would have in response to 

DNA-damage stress, we employed MMS to induce alkylating DNA damage. MMS has been 

previously used, as reported in the literature, to assess PARylation in mammals and to observe 

changes in DNA repair responses in F. oxysporum (Semighini, C. P., et al. 2006, Hopp, A.-K. et 

al. 2021, Milo-Cochavi, S. et al. 2019). The next step was to create foParp1 knockout mutants in 

all of the comparative system strains to assess the changes in phenotype that would occur upon 

MMS-mediated DNA damage. foParp1 mutants were generated using a CRISPR/Cas9 system 

that utilized a hygromycin cassette inserted into the foParp1 gene to knockout its function. 

Insertions were confirmed by both PCR and Sanger sequencing. Mutant creation and 

confirmation were performed by Cecelia Murphy within the Ma lab. First, the WT strains were 

grown in both control PDA plates and in PDA plates containing 0.01% MMS to induce chronic 

DNA damage for 48 hours. The plates were then imaged using a plate scanner, and the colony 

sizes were measured using ImageJ. The ImageJ measurements were used to determine the ratio 

of colony size between the MMS-treated and control colonies. This ratio was used to observe 

differences in each strain’s ability to tolerate the MMS-induced stress. Finally, R Studio was 

used to create figures and calculate p-values of the differences in tolerance between the strains. 

Fo47 showed the highest growth inhibition in the presence of MMS, followed by Fol4287, and 

Fo5176 showed the best tolerance to MMS-mediated DNA damage (Figure 9). Using this 

method, the differences in colony size ratios between Fo47 and Fol4287, as well as the 

differences between Fol4287 and Fo5176 were not statistically significant, with p-values of 0.08 

and 0.064 respectively (Figure 9). The differences between Fo47 and Fo5176 were significant 

with a p-value of 0.022 (Figure 9).  
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Figure 9: WT phenotyping in control and MMS-stress conditions. A) Images of colony growth 

on PDA control and 0.01% MMS plates after incubation for 48 hours. Dilutions of F. oxysporum 

strains were plated in 104, 103, and 102 spores/mL concentrations with three biological replicates. 

B) The ratios of MMS colony growth size to PDA control colony growth size for all strains were 

calculated for all three biological replicates and graphed along with p-values indicating the 

statistical significance of the observed differences between growth ratios of the tested strains. 

The statistical significance between samples was calculated using two way t-tests. 

 

After the WT phenotypes had been established, the foParp1 mutants were subjected to 

the same experiment and analysis (Figure 10A). The Fol4287 foParp1 mutant showed the 

highest growth inhibition with the lowest MMS/PDA size ratio, followed by Fo47Δ, while 

Fo5176Δ exhibited the best tolerance to MMS-mediated DNA damage (Figure 10B). The 

differences in colony size ratio between Fo47 and Fol4287, as well as the ratios between Fo47 

and Fo5176 mutants, were not statistically significant, with p-values of 0.14 and 0.42, 

respectively (Figure 10B). The ratios of MMS/PDA colony sizes were significantly different 

when comparing the Fol4287 and Fo5176 strains, with a p-value of 0.034 (Figure 10B).  
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Figure 10: foParp1 mutant phenotyping in control and MMS-stress conditions. A) Images of 

colony growth on PDA control and 0.01% MMS plates after 48 hours of incubation. Dilutions of 

mutant F. oxysporum strains were plated in 104, 103, and 102 spores/mL concentrations with 

three biological replicates. B) The ratios of MMS colony growth size to PDA control colony 

growth size for all strains were calculated and graphed along with p-values from two way t-tests 

indicating the statistical significance of observed differences between the growth ratios of the 

tested strains. 

 

To determine the differences in MMS tolerance between the wild-type and mutant 

strains, the data gathered from the previous two phenotyping exercises were used to compare the 

ratios of colony size between the WT and mutant strains. The WT and mutant plates were grown 

in parallel for the same amount of time and under the same conditions. The analysis showed that 

the changes in MMS/PDA ratios between the WT and mutant strains of Fol4287 and Fo5176 

were statistically significant, with p-values of 0.021 and 0.015 (Figure 11). The differences in 

colony size ratios between the WT and mutant Fo47 strains were found to be not statistically 

significant, with a p-value of 0.087 (Figure 11). Fo5176 was shown to have the largest reduction 
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in MMS tolerance, with an averaged 38% drop in colony size ratio across all data points; 

Fol4287 was shown to have the second-largest reduction in colony size in the mutant, with a 

decrease of 32%; and Fo47 did not contain a statistically significant ratio decrease between the 

WT and foParp1 mutant (Figure 11).  

 

Figure 11: Comparison of ratio of colony size between MMS-induced and PDA control growth 

for WT and foParp1 knockout in all three strains. 
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3.3 DNA damage-induced expression of Parp genes in F. oxysporum 

RT-qPCR experiments were performed to reveal which of the Parp1 gene copies in each 

strain in our comparative system are active upon MMS exposure (Figure 12). Fo47 had the 

largest increase in foParp1 expression upon the exposure to MMS (Figure 12A), while Fo5176 

exhibited the least increase in foParp1 transcriptional activation (Figure 12C). All three copies of 

the core Parp genes showed increased transcriptional activation in Fol4287 under MMS 

conditions, including the largest increase in the third core Parp copy (gene 6509) (Figure 12B). 

Fo5176 had the least amount of foParp1 transcriptional activation, with none of the H-Y-E or H-

Y-V containing Parp homologs showing significant transcriptional upregulation (Figure 12C). 

However, the uncharacterized 269416 Parp homolog, which contains a H-S-E catalytic motif, 

displayed significant upregulation similar to that of Parp-Ubc (Figure 7C). All RT-qPCR 

experiments were performed at the Ma lab by Shira Milo Cochavi. 
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Figure 12: RT-qPCR detection of PARP homolog expression in response to MMS-mediated 

DNA damage. Parp genes shown with solid black bars are located within the core chromosomes 

while Parp genes shown with white bars are located within the accessory chromosomes. A) 

Fo47. B) Fol4287. C) Fo5176. Experiment and figure performed by Shira Milo Cochavi. 

 

3.4 Development of the immunoblot assay 

The comprehensive sequence analysis described in Chapter 3 revealed Fo5176 to contain 

more copies of genes encoding PARP proteins that are predicted to have PARylation activity 

than in the other two members of our comparative system. The correlation between PARP copy 

number and DNA damage tolerance was indicated within the phenotyping of Chapter 3.2. 

Therefore, our next step was to gain in vitro insight into the changes in global PARylation upon 

DNA damage. An immunoblot was chosen to obtain semi-quantitative data on global 

PARylation, as it allows for a highly specific binding and detection of PAR chains in up to 96 
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individual samples per membrane. The dot-blot was chosen over other forms of antibody-

mediated detection, such as Western blot, as our approach would benefit most from large sample 

sizes containing multiple biological and technical replicates, to account for high variability in 

data points. Dot-blot experiments have been performed on PAR in other model organisms, such 

as mice and human cell lines, but to our knowledge, a protocol to perform an immunoblot for the 

detection of ADP-ribose has not been performed in any filamentous fungus. Thus, we adapted 

and optimized the procedure described by Kudo, Y. et al. (2018) for the development of a dot-

blot protocol for the detection of ADP-ribose in F. oxysporum. Notability, antibodies used and 

concentrations, as well as the addition of the gel-drying and formaldehyde cross-linking steps 

used within the Kudo, Y. et al. 2018 paper were implemented in our protocol to ensure the 

maximum retention and binding of PAR polymers on the membrane. However, several steps, 

including protein extraction and purification methods, wash buffers used in each step and 

incubation/washing times, were adjusted while calibrating the protocol to achieve the optimal 

PAR detection for our organism. An important insight from the Kudo, Y. et al. 2018 paper is that 

the 10H monoclonal PAR antibody used in their and our experiments is only able to detect 

“large” PAR polymers of 20 pADPr units or greater and is not able to significantly detect PAR 

chains less than 20 pADPr units long or single ADP-ribose molecules. 

The immunodot-blot assay was used to assess the impact the DNA damage would have 

on both WT and foParp1Δ strains and served as a point of comparison between the three strains, 

specifically, how much PARylation occurs under normal growth conditions and how PARylation 

is impacted by DNA damage caused by the DNA alkylating agent MMS. In addition, the dot-blot 

technique can provide insight into the impact of Parp1 deletion and the differences in terms of 

cellular PARylation between the WT and foParp1Δ strains.  
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3.4.1 Assessing PARylation levels in Wild-Type strains using immunodot-blot assay 

To quantify global PARylation in the three strains of the comparative system, a novel 

immunodot-blot assay protocol was developed. To observe the differences in PARylation in 

basal and DNA-damage conditions, we utilized a control sample group grown only in PDB 

media and a MMS-treated sample group. Within the MMS-treated groups we added: the PARG 

inhibitor Adenosine 5ʹ-diphosphate (Hydroxymethyl) pyrrolidinediol NH₄ (ADP-HPD), excess 

β-NAD+, and MMS. While MMS was used in order to induce DNA damage to increase 

PARylation, we sought to prevent PAR degradation using the PARG inhibitor and to avoid 

NAD+ bottlenecking that would prevent PARylation by supplementing with NAD+. The 

additions to the MMS-treated samples should result in maximum PAR signal detection. There 

was a visibly clear increase in the detection of PAR within the MMS-treated group as compared 

to the control (Figure 13A). To assess the significance of the difference between control and 

MMS-treated samples, the antibody signal intensity values obtained from the ImageJ analysis in 

each sample were subjected to two way t-tests. Both Fo47 and Fo5176 were shown to have a 

statistically significant increase of PARylation upon the addition of MMS, with p-values of 

0.003 and 0.04 respectively, while Fol4287 did not have significant increase in PARylation, with 

a p-value of 0.14 (Figure 13B). Fo47 and Fo5176 appeared to be similar to each other in the 

detected basal and stress-induced PARylation activity, while Fol4287 exhibited the least amount 

of basal and stress-induced PARylation (Figure 13B). 
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Figure 13: Immunoblot performed on FO Wild-Type strains. A) ECL detection signals from 

ChemiDoc chemiluminescence imaging of control and MMS-treated Fo47, Fol4287, and Fo5176 

wild-type samples. All sample types were blotted using three biological replicates along with two 

technical replicates.  B) The signal intensity of the chemiluminescence imaging was measured 

using ImageJ, and the background signal was subtracted to allow for comparison between the 

strains. Note that the maximum signal intensity for this method is 255. 

 

3.4.2 Assessing PARylation levels in Parp1-deficient strains using immunodot-blot assay 

To assess the impact that foParp1 knockout has on global PARylation within the 

comparative system, the same sample groups as in the WT blots were created from the foParp1Δ 

strains: a control group incubated in PDB and a group treated with MMS, excess NAD+, and a 

PARGi grown in PDB. The most noticeable result gained from the dot-blotting of the mutant 

strains is the large decrease in PARylation detection in both control and MMS-treated groups 

within the Fol4287 Parp1-deficient strain as compared to the other strains. It was also found that 
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there was no significant difference in the PARylation between control and MMS-treated samples 

in Fol4287 mutants (Figure 14A). Both the Fo47 and Fo5176 mutant exhibited no significant 

changes in PARylation between the control and MMS-treated samples and exhibited roughly 

similar amounts of PARylation at basal levels (Figure 14B). 

 

Figure 14: Immunoblot performed on foPARP1 knockout mutants. A) ECL detection signals 

from ChemiDoc chemiluminescence imaging of control and MMS-treated Fo47Δ, Fol4287Δ, 

and Fo5176Δ samples. All sample types were blotted using three biological replicates along with 

two technical replicates. B) The signal intensity of the chemiluminescence imaging was 

measured using ImageJ, and the background signal was subtracted to allow for comparison 

between the strains. Note that the maximum signal intensity for this method is 255. 

 

3.4.3 Comparison between WT and mutant 

The findings listed above were generated on two separate blots, one containing all of the 

WT samples and another containing the mutant samples, due to restrictions in the size of the 
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membrane. This prevents us from directly comparing the data points gained from each blot; 

however, we utilized the fold change of MMS-treated and control samples as a point of 

comparison between the two blots. From this comparison, we can assess that Fo47 and Fo5176 

have roughly the same amount of PARylation induction when treated with MMS, while Fol4287 

has the largest induction of PARylation upon DNA-damage stress and also the greatest variation 

(Figure 15). Notably, within all strains there is a significant difference in the fold change in 

PARylation between the WT and mutant strains (Figure 15). 

 

 

Figure 15: Fold change of the MMS vs control PARylation signal averages for both WT and mutant 

strains in Fo47, Fol4287, and Fo5176. 
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3.5 RNA-Seq of WT and foParp1 mutants under MMS-mediated stress 

3.5.1 Using RNA-Seq to reveal the impact of Parp1 deletion on transcriptional regulation in 

Fol4287 

Thus far we have gained insight into the predicted catalytic domains of the PARP protein 

family in F. oxysporum, assessed tolerance to DNA damage, and utilized immunoblotting to 

observe PARylation trends under untreated control and DNA-damage conditions for both WT 

and foParp1 knockout strains. We ventured to uncover the transcriptional impacts that foPARP1 

has by conducting RNA-Seq on WT and foParp1 mutants under control and MMS-induced 

DNA-damage conditions. RNA-Seq is a powerful approach that gives insight into the entire 

transcriptome, yielding a better understanding of how the cell responds at the transcriptional 

level. The data produced in such experiments can be used as a starting point for the development 

and investigation of testable hypotheses. Given the role of hPARP1 in chromatin remodeling and 

transcriptional regulation, we hypothesized that the knockout of foParp1 would change the 

transcriptome of the cell, especially under DNA-damage conditions. For our RNA-Seq 

experiment, Fol4287 was chosen as the candidate, given that it has the best-annotated genome 

and no predicted PARylating PARP proteins outside of foPARP1. Two sample groups were 

prepared, one control group incubated in PDB media, and one group treated with 0.05% MMS to 

induce DNA alkylation damage. Two time points were used, with 20-minute and 1-hour 

incubation times, in order to give insight into the “fast” and “longer-term” response that MMS 

exposure would trigger in the transcriptome. The RNA samples were validated for sufficient 

quantity and integrity before being shipped for sequencing (Supplementary Table 1 and 

Supplementary Figure 2). 

 

3.5.2 Transcriptome-wide differential expression 
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To begin our analysis of the global trends found in our RNA-Seq data, we identified 

transcriptome-wide differential expression trends directly between control and MMS-treatment 

groups and compared the number of differentially expressed genes between wild-type and 

mutant samples at each time point. The comparisons between control groups and 60 minutes of 

MMS exposure exhibited larger transcriptional impacts than the comparison between control and 

20 minutes of MMS exposure, as depicted in Table 2. Overall, the greater the amount of time the 

samples were exposed to MMS resulted in a larger number of differentially expressed genes 

(DEGs), likely in response to the ongoing DNA-damage stress the cells underwent, such as the 

1027 downregulated genes in the WT control vs MMS20 comparison against the 2539 

downregulated genes in the WT control vs MM60 comparison (Table 2). The mutant samples 

when compared to wild-type showed an overall downregulation of genes, which is especially 

apparent when directly comparing the WT and mutant DEGs at the same time point (Table 2). 

This overall downregulation of genes is clearly shown in Figure 16A-C, where the 

downregulation of genes can be observed as being more frequent than upregulated genes, 

exhibiting larger log2 fold changes; in addition, the differences have more statistical significance 

as shown by the larger -log10 P values (Figure 16A). The RNA-Seq results provide another level 

of confirmation that the foParp1 gene (shown as FOXG_07574) was not expressed at all within 

the mutant samples, confirming that the mutant lacks the ability to express Parp1 (Figure 16B-

C). To assess whether foPARP1 has transcriptional regulation responsibilities over the other core 

and accessory PARPs, the differential expression patterns of these PARPs were extracted from 

the comparisons of each sample group and time point (Table 4). The only PARP gene to have 

significant transcriptional changes in the foParp1 mutant was the fungal-specific Parp-Ubc, 

which was found to be upregulated sooner in WT samples in the control versus 20-minute 
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comparison, and more abundantly in WT samples in the control versus 60-minute MMS 

comparison (Table 4). The third core Parp, FOXG_20370, was not significantly impacted in its 

transcript abundance, and none of the accessory Parps were found to be expressed within any 

sample group (Table 4). Differential expression data were able to give us the global 

transcriptional response trends to these conditions; however, to gain more insight into the 

specific pathways affected by MMS exposure in the WT and mutant, we conducted a functional 

annotation of the differentially expressed genes using the Gene Ontology database to allow us to 

observe significant enrichment of biological pathways( Zhao, Y. et al. 2020). 

 

Table 2: Number of differentially expressed genes 

DE Statistics  

Upregulated 

genes 

Downregulated 

genes 

Total 

differential 

expression 

WT ctrl vs mms20 1818 1027 2845 

Mut ctrl vs mms20 1665 912 2577 

WT ctrl vs mms60 2839 2539 5378 

Mut ctrl vs mms60 2512 2138 4650 

WT ctrl vs Mut_ctrl 141 769 910 

WT mms20 vs Mut mms20 408 1048 1456 
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WT mms60 vs Mut mms60 486 1038 1524 

 

Table 3: Differentially expressed genes with intersect labeled 

Differentially Expressed Genes Wild-Type foParp1 Δ Intersect 

ctrl_vs_mms20_down 1027 912 588 

ctrl_vs_mms20_up 1818 1665 1350 

ctrl_vs_mms60_down 2539 2138 1842 

ctrl_vs_mms60_up 2839 2512 2219 

mms20_vs_mms60_down 1565 1175 893 

mms20_vs_mms60_up 1501 1202 832 
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Figure 16: Global differential expression comparison between WT and focPARP1 mutant. A) 

Volcano plots of differentially expressed genes between the WT vs Mutant samples plotted 

against the log2 fold change and -log10 P values within the control, 20-minute MMS exposure, 

and 60-minute MMS exposure sample types B) DE of WT control vs WT 20-minute MMS and 

Mutant (Mut) control vs Mut 20-minute MMS samples C) DE of WT control vs WT 60-minute 

MMS and Mut control vs Mut 60-minute MMS samples. 



 76 

 

Table 4: Differential expression of PARP-like transcripts. Note that + represents upregulation, 

NS stands for non-significant and NA stands for not available. 

  PARP-UBC FOXG_20370 9548 13741 9589 

WT Control vs 20-minute 

MMS +4.28377612 NS NA NA NA 

WT Control vs 60-minute 

MMS +8.38759649 NS NA NA NA 

Mutant Control vs 20-minute 

MMS NS NA NA NA NA 

Mutant Control vs 60-minute 

MMS +6.26004907 NA NA NA NA 

 

 

3.5.3 Gene Ontology Term Analysis 

Analysis for the enrichment of GO terms of DEGs in DNA-damage conditions compared 

to the untreated control was expected to shed light on the pathways affected by loss of Parp1 in 

F. oxysporum. Focusing on the number of DEGs in the Table 3, where although we do not see a 

vast difference in differentially expressed genes between the WT and mutant samples, we do see 

a significant difference in the number of genes that are uniquely expressed in each strain in 

response to MMS, suggesting that there is a transcriptional change upon the knockout of 
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foParp1. For example, one of the largest differences is found within the downregulated genes in 

the control vs MMS20 comparison; WT samples have 1027 DEGs, while the mutants have 913 

DEGs, but interestingly only 588 of those DEGs are shared between the WT and mutant (Table 

3). Comparing the upregulated genes in controls vs MMS 20, we find largely the same trends 

between both the WT and mutant samples: an increase in amino acid and protein synthesis 

pathways and autophagy response (Figure 17A). With the downregulation of genes between 

these same time points, we find much larger pathway differences; one notable change is that in 

both WT and mutant there is a decrease in transcripts for cell cycle and nuclear division genes 

(Figure 17B). However, the mutant GO terms also describe decreases in expression of genes 

related to DNA replication and metabolism and cellular detection and response to stress stimuli, 

which are changes unique to the mutant (Figure 18B). The WT and mutant responses to 60-

minute exposure to MMS compared to control samples are largely similar, primarily consisting 

of changes in transcripts associated with vesicle-mediated protein trafficking and protein 

catabolism (Figure 19A). Direct comparisons between upregulated pathways in MMS60 minutes 

did provide significant results, showing that the WT samples in this condition had a more robust 

expression of ribosome biogenesis, gene expression and RNA processing, translation, and 

methylation-related genes as compared to the mutant (Figure 19B). In regard to the 

downregulation response in control vs 60-minute MMS, we found that the WT and mutant have 

similar responses in downregulating ribosome biosynthesis, gene transcription and RNA 

processing, translation, methylation and nucleotide metabolism (Figure 19A-B). Differences in 

control vs MMS60 between WT and mutant are the WT’s decrease in ATP synthesis and the 

mutant’s decrease in nuclear division pathways (Figure 19). GO term comparisons were also 

performed between the MMS20 and MMS60 samples to reveal how the DNA-damage response 
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shifts over time, with similarities between WT and mutants mainly being upregulation of genes 

associated with proteolysis. The differences in upregulation between WT and mutant between 

these time points were striking, with WT upregulating nucleotide-excision repair, while mutants 

continued their upregulation of vesicle-mediated transport and began upregulation of double-

strand break repair (Figure 20A). For the downregulated pathways in MMS20 vs MMS60 

treatments, similarities included the regulation of ribosome biogenesis, RNA processing, amino 

acid synthesis, and methylation. Differences in the downregulated genes primarily occurred 

within the WT samples and included down regulation of translational and transcriptional 

pathways (Figure 20B). Taken together, we can conclude that foParp1 knockout did have a 

significant impact on transcriptional profiles following exposure to a DNA-damaging agent: 

namely, the mutant’s initial decrease in transcripts associated with DNA replication and cellular 

stress responses upon MMS exposure, the WT’s use of the NER pathway from MMS20-MMS60 

as opposed to the mutant’s use of DSBR pathways, and the WT’s increased expression of 

translation- and transcription-related genes at the 60-minute MMS timepoint.  

 



 79 

 

 

 



 80 

 

 

Figure 17: GO term analysis comparison between the WT and mutant Fol4287 strains under 

control conditions and 20 minutes of MMS exposure. A) The upregulated differentially 

expressed pathways found between the wild-type and mutant control and 20-minute MMS 
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exposure samples are shown. B) The downregulated differentially expressed pathways found 

between the wild-type and mutant control and 20-minute MMS exposure samples are shown. 
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Figure 18: Comparison between the GO terms of genes upregulated between WT and mutant in 

control groups and 60 minutes of MMS exposure. A) Bar graphs showing the differentially 

expressed pathways between wild-type and mutant control versus 60-minute MMS exposure 

samples. The y-axis represents the multiplicative inverse of the p-value.B) Bar graph showing 

the differentially expressed pathways between wild-type and mutant 60-minute MMS exposure 

samples. The y-axis represents the multiplicative inverse of the p-value. 
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Figure 19: Comparison of the GO terms of genes downregulated? between WT and mutant in 

control groups and after 60 minutes of MMS exposure. A) Bar chart of the down regulated 

differentially expressed genes between the wild-type control and 60-minute MMS exposure 

samples. The y-axis displays the multiplicative inverse of the p-values. B) Bar chart of the down 

regulated differentially expressed genes between the mutant control and 60-minute MMS 

exposure samples. The y-axis displays the multiplicative inverse of the p-values. 
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Figure 20: Comparison of GO terms between MMS 20 and MMS 60 in WT and Mutant. A) 

Upregulated pathways between 20 minutes of MMS exposure and 60 minutes of MMS exposure 
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in WT and mutant B) Downregulated pathways between 20 minutes of MMS exposure and 60 

minutes of MMS exposure and 60 minutes of MMS exposure in WT and mutant. 
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CHAPTER 

4. DISCUSSION 

4.1 foPARP1 is predicted to have PARylating catalytic ability 

To the best of our knowledge, to date, only one paper has experimentally characterized a 

PARylating enzyme within a filamentous fungus, i.e. in Aspergillus nidulans (Semighini, C. P., 

et al. 2006). Our identified PARylating candidate, foPARP1, contains a highly conserved 

catalytic domain and shares an H-Y-E catalytic triad with the well-characterized hPARP1 

(Figure 7A). Given the high sequence similarity and the presence of the H-Y-E motif in all 

human PARylating proteins, it can be hypothesized that foPARP1 will have PARylating capacity 

(Vyas, S. et al. 2014). foPARP1 was found to be encoded by one gene copy located on the core 

chromosomes of all three strains comprising our comparative system (Figure 6). Fo47 does not 

contain any PARP catalytic-domain-containing proteins on its accessory chromosome (Figure 4), 

and multiple sequence alignments of Fol4287’s accessory chromosome PARP proteins revealed 

no other F. oxysporum PARPs that contain either the H-Y-E or R-S-E conserved ART motifs 

(Figure 7 and 8). Interestingly, Fo5176 contains a foParp1 homolog, 525699, within its 

accessory chromosome; this gene is predicted to encode a protein which has all of the protein 

domains characteristic of a PARP, aligns with the H-Y-E motif of hPARP1, and shares a similar 

percent identity as foPARP1 with hPARP1’s catalytic domain, 44.1% and 43.5% for foPARP1 

and 525699, respectively (Figure 5, 6, and 7). Fo5176 also contains another hypothetical PARP 

protein, 525060, which contains the H-Y-E motif and shares the same percent identity to 

hPARP1 as 525699 does (Figure 6). Fo5176 also contains two PARP proteins with a H-Y-V 

conserved amino acid triad; to our knowledge, no characterized ART transferase is known to 

contain this motif. However, hPARP 6-12 and hPARP 14-15 contain H-Y-I or H-Y-L motifs, 
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and given valine’s similar nonpolar properties to both isoleucine and leucine, it is possible that 

these hypothetical PARP proteins could share MARyaltion activity similar to these known 

hPARPs (Vyas, S. et al. 2014, Figure 6). In our alignments, no other predicted PARP proteins 

contain conserved catalytic motifs of H-Y-E, H-Y-I, H-Y-L, Q-Y-T, or Y-Y-V found in the 

PARylating, MARylating, and catalytically inactive hPARPs, nor the R-S-E motif found in the 

CTX family of exotoxins (Figure 6 and G, Vyas, S. et al. 2014). Taken together, we predicted 

that Fo47 and Fol4287 each contains only one functional PARylating protein, foPARP1, while 

Fo5176 contains three predicted PARylating proteins, foPARP1, 525699, and 525060 and 

several predicted MARylating/ADP-transferase proteins. 

Although multiple sequence alignments can be a powerful predictive tool, this is only 

part of the story in the characterization of the function of a given protein. The alignment against 

well-characterized catalytic residues can give insight into the possible catalytic function of an 

enzyme; this approach is, however, limited by the fact that we are comparing fungal and human 

proteins, which are from phylogenetically distant species. Also, the fungal PARPs are not well-

studied, meaning that there are possible unique fungal catalytic motifs that have not yet been 

elucidated and therefore cannot be taken into account upon the writing of this document. Finally, 

percent identity is not a perfect measure of homology; although the 30% identity for homology is 

a good rule of thumb, it is not confirmation; proteins can have a small percent identity and still 

be functional homologs or show a higher than 30% identity but have distinct structures and 

functions. In these cases, generally three-dimensional structures are needed to confirm whether 

the two compared proteins share conserved secondary and tertiary structures to determine 

homology. Additional in silico analysis that could shed insight into the function of the non-H-Y-

E-containing PARP-like proteins could be done with predictive three-dimensional structures, 
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such as those provided by Robertta, AlphaFold or SwissProt. Analysis on whether the 

uncharacterized PARP-like proteins share conserved structures of the ART family such as the 

ART fold, Acceptor and/or Donor Loops could also provide insight into the function of these 

proteins. 

 

4.2 The number of PARP genes is positively correlated with MMS-induced DNA-damage 

tolerance. 

From the phenotyping data generated for MMS-induced stress, we can conclude that 

MMS does impact the growth of all strains within the comparative system. We can also conclude 

that for the pathogenic strains, Fol4287 and Fo5176, the knockout of foParp1 does in fact have a 

significant effect on the strain’s ability to tolerate MMS damage. Notably, the nonpathogenic 

endophyte Fo47 did not display significant changes in MMS tolerance after the knockout of 

foParp1. Fo5176 was shown to have the highest tolerance to MMS-mediated stress in both the 

WT and foParp1 mutants. Fo47 was shown to have the least tolerance in WT tests to MMS 

stress, while Fol4287 showed the least tolerance to MMS stress within the foParp1 mutant 

experiments. Within the WT conditions, although the differences in MMS versus control ratios 

were not statistically significant between Fo47 and Fol4287 and between Fol4287 and Fo5176, 

the difference between Fo47 and Fo5176 ratios was statistically significant. This may support a 

connection between Parp copy number and alkylating DNA-damage tolerance in the WT strains; 

however, further testing encompassing additional replicates and possibly other strains should be 

conducted to make a strong conclusion on whether the Parp copy number or other factors are 

responsible for this difference in MMS tolerance. Within the mutant phenotyping, the only 

significant difference in MMS tolerance was between the Fol4287 and Fo5176 mutants, while 
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the deletion-strain differences between Fo47 and Fol4287 and between Fo47 and Fo5176 were 

nonsignificant. The mutant strains overall had a smaller difference in MMS tolerance and an 

overall lowered tolerance as compared to the WT strains. Given that the foParp1 knockout has 

been shown to reduce two out of the three strain’s ability to tolerate DNA alkylating damage, 

this finding adds experimental evidence that foPARP1 is in fact a hPARP1 homolog, as one of 

hPARP1’s best-characterized functions is that of a DNA repair protein.  

 

4.3 Basal cellular and MMS-induced PARylation levels in F. oxysporum can be detected 

using PAR-specific antibodies.  

From the WT dot-blot, we can confirm that each of the strains within the comparative 

system has the capacity to catalyze the production of pADPr chains equal to or greater than 20 

ADP-ribose units in length (Figure 12, Kudo, Y. et al. 2018). The significance of this novel 

finding serves to confirm that strains within the F. oxysporum complex do contain PARP-like 

proteins, as we predicted in our in silico analysis. Using the assay we optimized for F. 

oxysporum, it was shown that with the addition of MMS, PARG inhibitor, and excess NAD+, 

Fo47 and Fo5176 had significant increases in PARylation (Figure 12).  

 The results of the mutant dot-blot reviewed in this section are in agreement with the in 

silico analysis and in vitro phenotyping, in that knockout of the predicted PARylating PARP1-

like gene resulted in a disruption of the capacity to synthesize long pADPr chains, as shown by 

the decrease in PAR detected in both Fo47 and Fo5176 mutants (Figure 13). It should be noted 

that the protocols for each of the immunoblots were identical, and that overall the ECL signal 

detection was lower for the mutant blots as compared to the WT, even with both membranes 

having been loaded with an identical protein concentration of 10 µg/mL per sample and treated 
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with the same amount of antibody and ECL solution. This suggests an overall lower 

concentration of PAR chains detected and thus lower PARylation; however, to confirm this 

finding, an additional immunoblot would need to be performed containing samples from both the 

WT and mutant strains. Nevertheless, the mutants exhibit a lower induction of PARylation in 

response to MMS, confirming that foPARP1 does impact the creation of MMS-induced PAR 

chains (Figure 14). Longer pADPr chains (such as those greater than 20 units) have been 

associated with chromatin remodeling (Thomas, C. et al.2019), suggesting that the mutants will 

have an impacted transcriptional activity when compared to wild-type during MMS-mediated 

DNA stress, which will be discussed further in the next section. Contrary to our hypotheses from 

the in silico and phenotyping section, the Fo47 foParp1 mutant does retain the capacity to 

produce long pADPr chains, despite Fo47 being predicted to have only one protein capable of 

catalyzing the synthesis of PAR chains, foPARP1 (Figure 7 and 13). Our catalytic-domain-

prediction software pointed to only three core chromosome proteins that contain the conserved 

PARP catalytic domain, foPARP1, PARP-Ubc, and the third core PARP 275451, while our 

multiple sequence alignment programs indicated that only one core chromosome protein, 

foPARP1, contained a conserved catalytic motif that would be capable of catalyzing the 

PARylation reaction (Figure 7). We predicted that Fo47 and Fol4287 would completely lose the 

capacity to produce long PAR chains due to neither strain containing a PARP-like protein that 

has the H-Y-E catalytic domain; however, this was shown to not be the case, as both strains 

retain some capacity to produce PAR chains (Figure 14). This suggests that another core 

chromosome PARP or an undetected protein has the capacity to catalyze the formation of PAR 

chains of a length of 20 or more ADP-ribose moieties. PAR retention should not be affected by 

additional PARG proteins, as all three strains contain one conserved PARG gene, and DNA-
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damage samples were all treated with equal amounts of PARG inhibitors. It is also unlikely that 

Fo47Δ and Fol4287Δ’s maintained ability to catalyze the synthesis of long pADPr chains was 

due to a failure of our CRISPR knockout system, given that the deletion of Parp1, as well as the 

insertion of the Hygromycin B gene into the foParp1 open reading frame, was confirmed by both 

PCR and Sanger sequencing (Supplementary Figure 1). This leaves an open question: how are 

Fo47Δ and Fol4287Δ able to retain their ability to synthesize long pADPr chains? Possibilities 

could range from undiscovered PARP-like genes that reside within the core or accessory 

chromosomes, an ability of the other two core PARP-like proteins to form complexes by 

oligermizing with other proteins to gain PARylation activity, the binding of the primary antibody 

to a molecule similar to PAR, or a previously undiscovered pathway capable of synthesizing 

poly-ADP-ribose chains without PARP proteins. The retained ability for Fo5176Δ to form long 

pADPr chains was observed in the mutant dot-blot as hypothesized in earlier sections, likely due 

to the additional PARP gene copies located within the accessory chromosomes that shared a high 

percent identity of their catalytic domains with hPARP1 and the presence of the conserved H-Y-

E motif also found within human PARylating PARPs (Figure 7, Vyas, S. et al. 2014). However, 

given the ability of FO47Δ to synthesize or preserve pADPr chains by some unknown 

mechanism, it cannot be concluded that the reason for FO5176Δ’s retained PARylating ability is 

solely caused by the additional H-Y-E-containing proteins. Overall, we can conclude that all 

strains do have the capacity to produce PAR chains and that foPARP1 does have an influence on 

the production of these PAR chains. 

The results of the dot-blot open exciting avenues of continued research into the PARP 

expansion within F. oxysporum. One avenue of investigation would be to expand the 

immunoblotting approach from a dot-blot to a Western blot; the data generated thus would be 
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able to separate pADPr-bound proteins by size; this coupled with insights from further RNA-Seq 

analysis could serve to identity proteins involved in the foPARP1 interactome. Additionally, 

utilizing the protocol generated for the dot-blot, the MARylating capacities of the PARP 

expansion could be explored, as well as investigations into shorter pADPr chains (<20 ADP-

ribose units in length). The mechanism behind Fo47Δ and Fol4287Δ retaining their ability to 

make long pADPr chains would provide great insight into the PARP expansion and the roles of 

related proteins.  

 

4.4 Transcriptome analysis of Parp1-deficient strains reveals attenuated transcriptional 

response to MMS-induced DNA damage in F. oxysporum.  

From the results shown above, it can be concluded that foParp1 is involved in 

transcriptional regulation under DNA-damage conditions as shown by the changes in gene 

expression impacting a variety of biological pathways in Fol4287Δ (Figures 16-19). The first 

analysis performed after receiving the DE data was to ensure that the knockout of foParp1 within 

the mutant samples was successful, which was confirmed by no expression of Parp1 in the 

mutant (Figure 16). Global differential expression trends were recorded and observed, with the 

most noticeable trend being an overall decrease in the differential expression of genes within 

Fol4287Δ when compared to WT (Table 2). Within the global DE data, there were also 

significant transcriptional differences between the mutant and WT with regard to the number of 

differentially expressed genes, generally varying by the thousands in each sample type (Table 2). 

hPARP1 is known to competitively bind with H1 and to associate with RNA polymerase II, 

which could serve as a possible explanation for the global decreases we saw in transcriptional 

activity within our comparative system (Yu, D., et al. 2018, Kim, M. Y., et al. 2004, Schiewer, 
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M. J. & Knudsen, 2014). We also noted that – except for foParp1 itself – only the expression of 

Parp-Ubc, the fungal-specific PARP, had its expression changed significantly within the 

foParp1 mutant, with all other Parp genes showing either no significant change or no transcript 

detected by our sequencing (Table 4). This finding lays the foundation that foPARP1 has a 

possible transcriptional impact on Parp-Ubc and may be involved in the regulation of this gene 

during the response to alkylating DNA damage. Taken together, it can be concluded that Parp-

Ubc is involved in the alkylating DNA repair response, as seen by its significant upregulation in 

both the RNA-Seq and RT-qPCR data (Figure 12 and Table 4). However, the picture is less clear 

in regards to the accessory and FOXG_20370 core PARPs, which were shown by qRT-PCR to 

be differentially expressed in response to MMS-mediated stress (Figure 12). These apparent 

contradictions could be explained by the accessory PARPs having low transcript levels which 

might not be detected during RNA-Seq, but could be detected upon amplification with PARP-

specific primers in qRT-PCR. More experimentation would be needed to confirm if foPARP1 

does or does not have a direct or indirect impact on the other PARPs’ expression, such as a 

repeated qRT-PCR experiment using the WT and mutant strains.  

With these transcriptional differences between the WT and mutant samples, we 

proceeded to tag differentially expressed genes to Gene Ontology terms, allowing for pathway-

level analysis of the transcriptional changes. Comparing the GO term results of the different 

sample conditions between the same sample types gave us evidence of the effects that foParp1 

knockout had on the mutant. Where the GO analysis yielded the most striking results was in the 

comparisons between control and 20-minute exposure to MMS, 20-minute exposure to MMS 

and 60-minute exposure to MMS, and WT and mutant expression during the 60-minute MMS 

treatment samples. The mutant and wild-type samples shared a similar response to the 20 
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minutes of MMS exposure, upregulating genes associated with amino acid and protein synthesis 

and shutting down cellular division; however, foParp1Δ mutants did show a unique reduction in 

transcripts linked to DNA replication and cellular stress response pathways, including several 

DNA-damage pathways during this period of stress (Figure 19B.). This finding suggests an 

increased cell cycle arrest, possibly caused by the loss of function of the classically defined DNA 

repair activities of PARP1 and its ability to regulate chromatin structures when encountering 

DNA damage (Ray Chaudhuri, A. & Nussenzweig, 2017). In comparing 20 minutes of MMS 

exposure to 60 minutes of exposure, one of the most striking differences in expression was the 

upregulation of the expression of NER-related genes in the WT samples, while in the mutants, 

genes involved in double-strand-break response were induced (Figure 20A). This finding 

suggests that foPARP1 has a role in the regulation of NER pathway genes. The observation that 

mutant samples expressed genes contained within the double-strand-break-repair pathway, as 

opposed to the NER pathway of the WT samples, may suggest that more SSB damage is 

accumulating in the mutants that, when not efficiently repaired, transforms into DSBs and 

therefore induces DSB-repair mechanisms. MMS has been shown in previous work to induce the 

expression of NER-related genes; the decrease in NER gene expression within our mutant RNA-

Seq data suggests that foParp1 is involved in regulating the expression of these genes (Milo-

Cochavi, S. et al. 2019). Within the direct comparison of WT and mutant samples after 60 

minute of MMS exposure, the WT samples in this condition had a more robust expression of 

ribosome synthesis, gene expression and RNA processing, translation, and methylation-related 

genes as compared to the mutant, even though many of these genes were being downregulated 

when comparing the wild-type response in 20 minutes of MMS exposure to 60 minutes of 

exposure (Figures 18B and 19). These findings, along with the downregulation of stress-response 
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genes in the control vs 20-minute mutants, suggest a larger role of foParp1 (Figures 17, 18). The 

loss of foParp1 appears to contribute to creating a transcriptome less responsive to the stress 

stimuli affecting the cell, slowing down the transcriptional response to the changing conditions 

caused by a prolonged exposure to DNA stress agents (Figures 17, 19, and 20).  

Although the Differential Expression and Gene Ontology analysis give insight into the 

global changes in the transcriptome that are caused by DNA damage and foParp1 knockout, 

these forms of analysis are broad and require further analysis to determine direct causes for the 

changes viewed in the transcriptome. Our approach thus far does not focus on any one gene, 

outside of the Parp genes themselves, and further investigations into the dataset that we 

generated could provide insight into the global changes we have outlined and may elucidate 

interaction partners of foPARP1, which could serve to expand our knowledge of the foPARP1 

interactome. 

4.5 Conclusion 

Taken together, we can be confident in concluding that all strains of our comparative 

system have a hPARP1 homolog in a core chromosome, encoding a PARP-like protein, 

foPARP1. The presence of a conserved H-Y-E catalytic motif, the reduction in tolerance to DNA 

damage seen in the growth assays, the decrease in PARylation induction seen in the immunodot-

blot, and the transcriptional impact caused by foParp1 knockout, all serve to show that foPARP1 

shares many similar functions to hPARP1 and can be thought of as a hPARP1 homolog. From 

the immunoblot results received from the foParp1 knockouts in Fo47 and Fol4287, it appears 

that some level of PARylation is present in the cell even in the absence of foPARP1, an 

observation that was not predicted within our in silico analysis. From the in vitro phenotyping 

and immunoblotting results, we were able to show the contribution of PARP1 to DNA damage 
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tolerance and cellular PARylation. However, at this point, we were not able to definitively 

determine if the PARP copy number had a significant impact on the tolerance to DNA damage 

across our three-strain comparative system. The impact that any of the PARP-like proteins have 

on infection or invasion of a host was also outside the purview of the study, so the exact adaptive 

pressures that spurred the expansion of PARP genes within the F. oxysporum species complex 

remain unknown. Still, our initial characterization of this gene family in F. oxysporum provides a 

foundation for further studies into the effect that this unique expansion has within the species 

complex. 
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SUPPLEMENTARY FIGURES 

 

Supplementary Figure 1: PCR results from all three strains showing size difference between WT 

foParp1 genes and the foParp1 genes with a hygromycin-resistance cassette inserted. A 1 kb 

ladder was used with the 2000 base pair band marked. The foParp1 gene was detected using a 

primer whose product would result in a fragment 1.9-kb in size. A 1.1-kb fragment was deleted 

from the Parp1 gene, and a 2.1-kb hygromycin-resistance gene was inserted in its place for a 

total length of ~3 kb as seen in lane #2 (Fo47, Fo5176) and 3 (Fol4287) in the gel images. Lane 

#1 shows a WT Parp1 PCR product, with the length of 2.1 kb, for each strain. Mutants and 

figures created by Cecelia Murphy. 

 

 

Supplementary Table 1: Qubit RNA concentrations of WT and mutant samples sent for RNA-

Sequencing. 

Sample Name Sample Number Concentration (ng/µL) 

WT 4287 Control 1 1 148 
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WT 4287 Control 2 2 244 

WT 4287 Control 3 3 186 

WT 4287 20 minutes MMS 1 4 63 

WT 4287 20 minutes MMS 2 5 83.8 

WT 4287 20 minutes MMS 3 6 69 

WT 4287 1 hour MMS 1 7 71.6 

WT 4287 1 hour MMS 2 8 141 

WT 4287 1 hour MMS 3 9 120 

Mutant 4287 Control 1 10 242 

Mutant 4287 Control 2 11 197 

Mutant 4287 Control 3 12 224 

Mutant 4287 20 minutes MMS 1 13 150 

Mutant 4287 20 minutes MMS 2 14 95.8 

Mutant 4287 20 minutes MMS 3 15 108 

Mutant 4287 1 hour MMS 1 16 185 

Mutant 4287 1 hour MMS 2 17 137 

Mutant 4287 1 hour MMS 3 18 194 
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Supplementary Figure 2: Bioanalyzer results from the 18 samples sent for RNA-Sequencing. A) 

The first 12 samples from Supplemental Table 1 were tested for lack of RNA degradation, as 

seen as peaks around 18 and 28 nt which signify the presence of intact 18S and 28S ribosomal 

RNAs. B) Sample 9 from the first batch of Bioanalyzer results was retested as sample 1, while 

samples 2-7 correlate to samples 13-18 in Supplemental Table 1. 
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Supplementary Table 2: Total read numbers from all RNA-Seq samples 

Sample Name Total Read Pairs Total Reads (R1 + R2) 

WT Control 1 30915251 61830502 

WT Control 2 26483457 52966914 

WT Control 3 23763760 47527520 

WT 20 min MMS 1 24138981 48277962 

WT 20 min MMS 2 24236150 48472300 

WT 20 min MMS 3 21727171 43454342 

WT 60 min MMS 1 26410685 52821370 

WT 60 min MMS 2 30366278 60732556 

WT 60 min MMS 3 27283204 54566408 

Mut Control 1 30342154 60684308 

Mut Control 2 31076963 62153926 

Mut Control 3 33493748 66987496 

Mut 20 min MMS 1 30370227 60740454 

Mut 20 min MMS 2 28963917 57927834 

Mut 20 min MMS 3 23236428 46472856 

Mut 60 min MMS 1 25734765 51469530 

Mut 60 min MMS 2 25501195 51002390 

Mut 60 min MMS 3 24933538 49867076 

 

 



 104 

 

Supplementary Figure 3: PCA plots of WT and mutant RNA-Seq groups. PCA plots were 

created using the raw read data of each sample type. 
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