
University of Massachusetts Amherst University of Massachusetts Amherst

ScholarWorks@UMass Amherst ScholarWorks@UMass Amherst

Masters Theses Dissertations and Theses

October 2022

Formally Verifiable Synthesis Flow In FPGAs Formally Verifiable Synthesis Flow In FPGAs

Anurag V. Muttur
University of Massachusetts Amherst

Follow this and additional works at: https://scholarworks.umass.edu/masters_theses_2

 Part of the VLSI and Circuits, Embedded and Hardware Systems Commons

Recommended Citation Recommended Citation
Muttur, Anurag V., "Formally Verifiable Synthesis Flow In FPGAs" (2022). Masters Theses. 1237.
https://doi.org/10.7275/31043432 https://scholarworks.umass.edu/masters_theses_2/1237

This Open Access Thesis is brought to you for free and open access by the Dissertations and Theses at
ScholarWorks@UMass Amherst. It has been accepted for inclusion in Masters Theses by an authorized
administrator of ScholarWorks@UMass Amherst. For more information, please contact
scholarworks@library.umass.edu.

https://scholarworks.umass.edu/
https://scholarworks.umass.edu/masters_theses_2
https://scholarworks.umass.edu/etds
https://scholarworks.umass.edu/masters_theses_2?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F1237&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/277?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F1237&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.7275/31043432
https://scholarworks.umass.edu/masters_theses_2/1237?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F1237&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

FORMALLY VERIFIABLE SYNTHESIS FLOW IN FPGAs

A Thesis Presented

by

ANURAG MUTTUR

Submitted to the Graduate School of the

University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL AND COMPUTER ENGINEERING

September 2022

© Copyright by Anurag Muttur 2022

All Rights Reserved

FORMALLY VERIFIABLE SYNTHESIS FLOW IN FPGAs

A Thesis Presented

by

ANURAG MUTTUR

Approved as to style and content by:

Russell Tessier, Chair

Wayne Burleson, Member

Neal Anderson, Member

 Christopher V. Hollot, Department Head

 Electrical and Computer Engineering

iv

ACKNOWLEDGMENTS

 I want to express my gratitude to my advisor Professor Russell Tessier, for

his support, guidance, and mentorship throughout my thesis work. It was a great

honor and privilege to work under his guidance. I am extremely grateful for what

he has offered me.

 I would also like to thank my colleagues and good friends Andrew Hartnett,

Tien Li Shen, Dhruv Kansagara, and Shayan Moini for guiding me throughout my

work. Their endless support throughout the research has been immense and I am

thankful for that.

 Finally, I would like to express my profound gratitude to my parents and

brother for encouraging me along the way.

v

ABSTRACT

FORMALLY VERIFIABLE SYNTHESIS FLOW IN FPGAs

SEPTEMBER 2022

ANURAG MUTTUR

 B.Tech., PES UNIVERSITY, BANGALORE

 M.S.E.C.E., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Russell Tessier

 FPGAs are used in a wide variety of digital systems. Due to their ability to support

parallelism and specialization, these devices are becoming more commonplace in fields

such as machine learning. One of the biggest benefits of FPGAs, logic specialization, can

lead to security risks. Prior research has shown that a large variety of malicious circuits

can snoop on sensitive user data, induce circuit faults, or physically damage the FPGA.

These Trojan circuits can easily be crafted and embedded in FPGA designs. Often, these

Trojans are small, consume little power in comparison to the target circuit, and are hard

to detect via simulation or physical inspection.

Computer-aided design (CAD) software in FPGAs has been the subject of

extensive research and development of FPGAs for the past thirty-five years. The current

FPGA software landscape includes vendors that provide widely used software flows to

convert behavioral and register-transfer level (RTL) descriptions to bitstreams needed to

program an FPGA device. Given the complexity of the algorithms needed to perform this

translation, these CAD tool flows are generally structured as black boxes with limited

transparency regarding design conversion steps or the logical equivalence of the generated

design and initial design specification.

vi

This work explores the enhancement of open-source FPGA software, SymbiFlow,

that focuses on FPGA RTL synthesis, place and route and bitstream generation.

SymbiFlow uses Yosys for synthesis, VPR for place and route, and Project X-Ray for

bitstream generation. We focus on synthesis using Yosys and formal verification using the

Cadence Conformal Logic Equivalence Checker (LEC) for Xilinx Artix-7 FPGAs. Yosys

is used to synthesize 160 benchmarks written in Verilog. We implement required code

modifications to Yosys for designs to pass the equivalence checker. For Conformal, this

work involves processing 160 benchmark designs with the equivalence checker.

Parameters can be toggled on or off to obtain results that indicates if a design has passed

formal verification when comparing RTL and synthesized netlists.

vii

TABLE OF CONTENTS

ACKNOWLEDGMENTS .. iv

ABSTRACT .. v

CHAPTER 1 .. 1

INTRODUCTION .. 1

1.1 Yosys ... 2

1.2 Conformal Equivalence Checker (LEC) ... 2

1.3 Xilinx Vivado .. 3

1.4 The Setup... 3

1.5 Thesis Outline ... 4

CHAPTER 2 .. 5

SYNTHESIS WITH YOSYS ... 5

2.1 Internal Yosys Operation .. 5

2.2 Synthesis Flow .. 6

2.3 Source Code Changes in Yosys .. 9

2.3.1 Turning off Optimizations .. 9

2.3.2 Addition of Hint Files for FSM recoding ... 11

2.3.3 Hint Files for Flip Flop Merging .. 12

2.3.4 Renaming Registers .. 12

2.3.5 ABC Script File .. 12

CHAPTER 3 .. 14

FORMAL VERIFICATION USING CADENCE CONFORMAL LEC 14

3.1 Conformal System Modes ... 15

3.2 Key Points and Mapping ... 16

3.3 Comparing and Diagnosing Key Points .. 16

3.4 Commands Used by Conformal .. 17

CHAPTER 4 .. 20

viii

BENCHMARKS USED IN SYNTHESIS AND FORMAL

VERIFICATION .. 20

4.1 Work in Design Verification For 8 Additional Designs ... 20

CHAPTER 5 .. 26

FORMAL VERIFICATION IN YOSYS ... 26

5.1 An Open-Source Formal Verification Tool .. 26

5.2 Verifying Designs in Yosys-SMTBMC .. 27

5.2.1 Files used by Yosys-SMTBMC .. 28

5.3 Verifying Designs Using the Yosys Equivalence Checker 33

CHAPTER 6 .. 36

BUGS AND BUG FIXES IN YOSYS ... 36

6.1 Bug Fixes in Yosys ... 36

6.1.1 Preset-Clear Swapping Bug .. 36

6.1.2 Synthesis Bug in boundtop ... 40

6.2 Modifying the VPR Library .. 41

6.2.1 Syntax Errors in VPR Library .. 43

7.2.2 Addition of Cells to VPR Library ... 44

7.2.3 Formally Verifiable Block RAMs .. 46

CHAPTER 7 .. 51

RESULTS .. 51

CHAPTER 8 .. 55

CONCLUSION ... 55

9.1 Future Work .. 55

9.1.1 Additional Benchmarks .. 55

9.1.2 Protection of Hints Files ... 56

9.1.3 Robust Yosys Equivalence Checker ... 56

APPENDIX .. 57

BIBLIOGRAPHY .. 81

ix

LIST OF TABLES

Table Page

2. 1 Yosys Commands, Passes and Their Functions ... 7

2. 2. Optimizations Toggled in Yosys .. 10

3. 1. Commands in Conformal .. 17

4. 1. Additional designs tested .. 21

5. 1. Design tested in Yosys-SMTBMC ... 27

5. 2. Yosys Equivalence Check commands .. 33

5. 3. Yosys Equivalence Checker Statistics .. 35

7. 1. Logic Design Area Comparison (LUTs and Flip Flops) .. 51

7. 2. Logic Design Area Comparison (BRAMs and DSP Blocks) 53

7. 3. Design Performance Comparison ... 53

7. 4. Arithmetic and Geometric Means of Designs Synthesized in Yosys and Vivado 54

A. 1. All Verilog Benchmarks .. 57

A. 2. Initial 160 Designs Tested.. 63

A. 3. Benchmarks Used In Results Generation... 69

A. 4. Benchmarks That Pass Equivalence Checking Through Yosys in

SymbiFlow .. 71

A. 5. Designs that generate bitstreams in SymbiFlow .. 75

x

LIST OF FIGURES

Figure Page

1. 1. The Formal Verification Environment.. 4

2. 1. Data Flow of Yosys .. 6

3. 1. Conformal LEC Flow .. 15

3. 2. Design Fails Conformal .. 17

3. 3. Design Passes Conformal ... 17

5. 1. The fiedler-cooley design ... 29

5. 2. Condition to check reachability of count_out ... 29

5. 3. The fc.sby file used by fiedler-cooley... 30

5. 4. The fielder-cooley design passes SymbiYosys analysis ... 31

5. 5. Visualization of BMC for fiedler-cooley .. 32

5. 6. Bash script used to execute the Yosys equivalence checker 33

6. 1. Design dffsr2_sub synthesized by Yosys ... 37

6. 2. Design dffsr2_sub synthesized by Conformal .. 37

6. 3. dffsr2_sub module in Verilog ... 37

6. 4. Hierarchy of the if and else statements ... 38

6. 5. Many_async_rules_vector created to keep track of the hierarchy 38

6. 6. Before bug fix in proc_dff.cc .. 39

6. 7. After bug fix in proc_dff.cc .. 39

6. 8. Synthesized dffsr2_sub with the bug .. 40

6. 9. Synthesized dffsr2_sub without the bug after bug fix .. 40

6. 10. Outputs of two flip flops drive the same wire ... 41

6. 11. Added default statement to Boundtop... 41

6. 12. FPGA flow from RTL to bitstream generation in SymbiFlow 42

6. 13. Before the Verilog syntax change ... 44

6. 14. After the Verilog syntax change ... 44

6. 15. LDCE added to cells_sim.v ... 45

xi

6. 16. LDCE added to cells_map.v ... 46

6. 17. RAMB18E1 Xilinx primitiveT ... 47

6. 18. BRAM36 module .. 48

6. 19. clkardclk wire depends on parameter values .. 49

6. 20. Direct connection of clkardclk wire to CLKARDCLK port 50

1

CHAPTER 1

INTRODUCTION

The verification of digital hardware correctness is becoming increasingly important due

to the growing use of custom accelerators using FPGAs. A register transfer level (RTL)

hardware design is generally written in a hardware description language (HDL). An HDL,

such as Verilog or VHDL, is used to describe the structure and behavior of a circuit. A

synthesis tool is a program that takes the specified HDL file and converts it into a netlist

that implements the circuit. Several circuit synthesis tools are available, but most of them

are commercial tools, such as Cadence Genus [30] and Mentor Precision [31]. These

proprietary tools limit the transparency of design conversion steps.

Yosys [1][2][21] is a free and open-source synthesis tool that uses ABC [10] as a

backend for optimizations and technology mapping. The open-source tool allows the user

to make code modifications for extra functionality. This work aims to improve the quality

of synthesis tools and verify the correctness of the design through formal verification. The

synthesis of an RTL design constructs a gate-level netlist by mapping it to a technology

library. Conformal LEC [3], a tool developed by Cadence Design Systems [4][5], is a

formal verification tool that can check whether a design written in RTL (the golden netlist)

and a synthesized circuit (the revised netlist) have equivalent functionality. For this work,

160 benchmarks have been synthesized by Yosys and used by Cadence Conformal to

perform formal verification. These designs of varying complexity are from the Yosys-

simple [14], Yosys-bigsim [15], and VTR-benchmarks [16] benchmark suites. The designs

vary from a simple full-adder to complex designs such as microprocessors and circuits used

in ray tracing. The main goal for our work is to verify that synthesized designs pass

equivalence checking [20]. A failed verification can lead to Trojan detection [48].

Rathmair et al. [48] apply formal methods to circuits to detect hardware Trojans.

Equivalence checking, property checking, and reachability analysis are used to detect

Trojans. Designs are converted into Reduced Ordinary Binary Decision Diagrams

(ROBDDs) in a canonical form, a unique representation of digital logic. During

2

equivalence checking, the functions are compared at different abstraction levels. Negative

equivalence checking indicates that the abstraction level has changed by the insertion of

malicious hardware in the design.

Previous synthesis work on RTL designs [17] examined Yosys, Xilinx Vivado [7][8],

and Intel Quartus Prime [38]. An open-source tool named Verismith [32] generates pseudo-

random, valid, deterministic Verilog designs and feeds each design to a synthesis tool. For

formal verification, Verismith uses an SMT solver or the ABC circuit verification tool to

check that the output is logically equivalent to the input. Bugs were found in multiple

synthesis tools, except Quartus Prime [38]. Our work focuses on Yosys and performs

formal verification using a commercial equivalence checker. The designs tested in this

thesis were created for real-world deployment and were not randomly generated.

Shah et al. [19] showed how Yosys can be used for design synthesis and nextpnr can be

used for place-and-route. This flow targets iCE40 and ECP5 FPGAs from Lattice [33]. In

contrast, our work targets Xilinx Artix-7 FPGAs [34]. Our modified Yosys synthesis tool

does not aim to be competitive with commercial synthesis flows in terms of area or

performance. Our focus is formal verification of synthesized designs.

1.1 Yosys

Yosys is a free and open-source tool that performs logic synthesis. Commands in Yosys

are used to perform RTL and logic synthesis. In this work, Yosys generates a synthesized

structural netlist that has Verilog syntax and contains FPGA cells. These designs can be

mapped to a commercial FPGA board [7][8] including an Artix-7 series FPGA [34]. Logic

cells include look up tables (LUTs), flip flops, block RAMs, and digital signal processing

(DSP) blocks [12].

1.2 Conformal Equivalence Checker (LEC)

Simulation can be used to verify a synthesized design’s functionality. However, this

solution may not be feasible for large designs as it requires sizable sets of input vectors to

3

be used with the design, and simulation may be time-consuming [18]. A potentially faster

and more thorough verification approach is formal verification [22][23]. This approach

establishes the functional equivalence of two designs generally represented as models

without performing simulation. Cadence Conformal LEC is a logic equivalence tool that

verifies if the RTL design is equivalent to the synthesized design. A ‘.dofile’ command

script contains the parameters required to direct Cadence Conformal LEC operation.

1.3 Xilinx Vivado

Vivado is a comprehensive FPGA design suite that includes synthesis, place-and-route,

and bitstream generation. Vivado can read a post-synthesis netlist (e.g., one created by

Yosys) for subsequent physical design. The tool includes a simulator that can be used to

verify an RTL or post-synthesis netlist [8]. In this thesis, we contrast results generated with

Vivado for an Artix-7 FPGA against those generated by Yosys. Designs from both flows

are mapped to an Arty-35 board [11].

1.4 The Setup

Figure 1.1 demonstrates the setup of the formal verification environment used in this

work. Synthesis quality can be evaluated in lookup table (LUT) and flip flop count, number

of block RAMs (BRAMs) and number of DSP blocks. Vivado performs place-and-route

without optimizations using the Yosys-synthesized netlist. Post place-and-route

performance and area can be determined by iteratively changing the clock period for each

design until no timing violations are detected. During formal verification, the equivalence

checker (e.g., LEC) should produce a ‘PASS’. Incomplete or non-equivalent results can be

considered a failure [5]. The input library, xeclib [27], is used to support verification.

4

Figure 1. 1. The Formal Verification Environment

1.5 Thesis Outline

This thesis document is divided into the following chapters. Chapter 2 discusses how

Yosys is used and includes changes made to the tool to allow optimization shut off and the

generation of equivalence checking hints. This chapter also discusses Vivado place and

route usage. Chapter 3 discusses Cadence Conformal LEC, and the various switches

supported by the tool. Chapter 4 describes the 160 benchmarks used, of which 144 passed,

and details why some designs may not have passed. Chapter 5 describes the results obtained

when these designs are synthesized with Yosys and placed-and-routed by Vivado. Chapter

7 discusses formal verification with Yosys-SMTBMC [43] and the Yosys equivalence

checker [2]. Chapter 8 discusses bug fixes made in Yosys and support for SymbiFlow.

Chapter 9 concludes the thesis document and offers directions for future work.

5

CHAPTER 2

SYNTHESIS WITH YOSYS

Logic synthesis converts a design specified in an HDL, such as Verilog or VHDL, into

a gate-level netlist. Optimizations can be used by the synthesis tool to simplify a netlist.

Our benchmarks are synthesized by Yosys using a synthesis library provided by Xilinx

referred to as xeclib [27]. Our work uses a modified copy of Yosys version 0.9+4249 and

160 RTL benchmarks. Commands are used to read the design written in RTL, synthesize

and technology map the design to the Xilinx library, and write out the synthesized netlist.

This chapter provides information on how Yosys works and our modifications.

2.1 Internal Yosys Operation

Yosys synthesis steps [24] include the use of a lexer and a parser. The input design is

converted into an Abstract Syntax Tree (AST) [25] and then into Register-to-Transfer

Level Intermediate Language (RTLIL) format. The lexer parses the input Verilog files,

identifies Verilog keywords and tokenizes them. These tokens are used as nodes in an AST.

The Verilog parser then generates an AST data structure using the information about nodes

provided by the lexer. The data structure is then passed directly to the AST frontend where it

is simplified and converted into an RTLIL netlist - an internal format used by Yosys. This

conversion from AST to RTLIL can be done in two steps: simplification and RTLIL

generation. During simplification, keywords present in the AST data structure are

converted to simpler tokens. Once simplified, RTLIL generation is performed by a

recursive process that generates equivalent RTLIL data for the AST data. Finally, the

RTLIL representation is technology mapped using a library. The synthesized netlist is then

written in the file format specified by the user.

6

Figure 2. 1. Data Flow of Yosys [2]

Figure 2.1 shows the simplified data flow in Yosys. The rectangles in the diagram are

program modules and the ellipses are data structures generated by the program modules.

Optimizations and technology mapping are examples of passes used in the Passes module.

The ILANG representation shown in Figure 2.1 is a text representation of the RTLIL

format that can directly be converted into RTLIL without conversion to AST. The ‘other

backends’ module includes netlist output into different formats, such as edif or blif. The

conversion of RTLIL to Verilog is performed when the netlist is written out.

2.2 Synthesis Flow

Our Yosys synthesis flow includes the following commands:

1. read_verilog <design_file.v>

This command parses and reads the Verilog file. The lexer and parser are used to

read the input RTL file provided and converts it into an AST representation.

2. synth_xilinx

7

This command synthesizes the design and performs technology mapping to the

Xilinx library input into Yosys. Synthesis uses the steps noted in Table 2.1.

Table 2. 1 Yosys Commands, Passes and Their Functions

 Command

under

‘synth_xilinx’

Sub-commands/Passes Function

1 begin • read_verilog -lib +/xilinx/cells_sim.v

• read_verilog -lib +/xilinx/cells_xtra.v

• read_verilog -lib +/xilinx/brams_bb.v

• read_verilog -lib +/xilinx/drams_bb.v

• hierarchy -check -top <top>

Read the Xilinx libraries in

Yosys, checks the hierarchy of

the design and sets the top

module accordingly

2 synth -run

coarse

• proc

• opt_expr

• opt_clean

• check

• opt

• wreduce

• alumacc

• share

• opt

• fsm

• opt -fast

• memory -nomap

• opt_clean

Run coarse optimizations

3 bram • memory_bram -rules +/xilinx/brams.txt

• techmap -map +/xilinx/brams_map.v

Technology mapping for block

RAMs.

8

4 dram • memory_bram -rules +/xilinx/drams.txt

• techmap -map +/xilinx/drams_map.v

Technology mapping for

memory (DRAMs).

5 fine • opt -fast -full

• memory_map

• dffsr2dff

• dff2dffe

• opt -full

• techmap -map +/techmap.v -map

+/xilinx/arith_map.v

• opt -fast

Perform fine grain

optimizations.

6 map_luts • abc -luts 2:2,3,6:5,10,20 [-dff]

• clean

Map LUTs to design.

7 map_cells • techmap -map +/xilinx/cells_map.v

• dffinit -ff FDRE Q INIT -ff FDCE Q INIT -ff

FDPE Q INIT

• clean

Map cells to design.

8 check • hierarchy -check

• stat

• check -noinit

Check and display hierarchy of

the design.

The commands shown in Table 2.1 are used on the design RTLIL representation.

3. write_verilog <design_file_synth.v>

The synthesized netlist is written to the current Yosys execution directory unless

the directory of the synthesized file is specified. The synthesized file is usually

appended with a ‘synth’ suffix at the end of the file name, before the ‘.v’ extension.

9

These steps can be automated by creating a text file with the commands and making

a single call to Yosys to call the script. This call will run all steps in one command.

For example, if the commands are stored in a text file named yosys_run.txt, this file

can be executed by calling Yosys along with the switch -s that makes use of the

specified script. The command used would be yosys -s yosys_run.txt to run all the

steps.

2.3 Source Code Changes in Yosys

Initially, over 100 of the 160 designs synthesized by Yosys for a Xilinx Artix-7 FPGA

did not pass LEC equivalence checking with default Yosys optimizations. In some cases,

the optimizations obscured the design function (e.g., removed registers, renamed registers,

recoded state machines) making it impossible for the verification tool to work properly.

Initially, to allow designs with these optimizations to pass equivalence checking, the

optimizations had to be turned off. Yosys provide some switches to disable optimizations,

such as -nobram which forbids the use of block RAMs [36]. However, there were

optimizations (e.g. register removal) that could not be deactivated using standard Yosys

switches. Yosys source code modifications allowed us to add command line switches and

functionality to suppress these optimizations. These additions are noted below.

2.3.1 Turning off Optimizations

The switches used to suppress optimizations are detailed in Table 2.2. These switches

are used during the synth_xilinx step.

10

Table 2. 2. Optimizations Toggled in Yosys

Sl. No. Switch that turns off the

optimization

Function

1 -nofsm Do not extract and optimize finite state

machines in input code

2 -nowreduce Do not attempt word size reduction of

arithmetic operations. For example, if both

input values are 32 bits but only an 8-bit

output is needed, the adder size can be

reduced to 8 bits.

3 -noopt Prevent simple logic optimizations that may

result in the elimination of flip flops.

4 -noopt_dff Do not perform DFF optimization. This

includes the removal of D flip flops that are

driven by constant values and the merging of

flip flops that are logically equivalent.

5 -noopt_muxtree Do not eliminate dead branches in

multiplexer trees.

6 -noopt_reduce Do not simplify large MUXes and AND/OR

gates.

7 -noopt_merge Do not merge logically identical cells,

including flip flops. This optimization is

separate from the optimizations affected by -

noopt_dff

8 -noopt_clean Do not remove unused cells and wires

9 -noopt_expr Do not perform const folding and simple

expression rewriting

10 -noopt_mem Do not perform various optimizations on

memories in the design

11

11 -keepff Keep flip-flop output wires even if the wires

do not affect primary output values.

12 -abc_script <file> Use the specified ABC script file instead of

the default script for logic optimization with

ABC. More information on this optimization

is detailed in Section 2.3.5.

2.3.2 Addition of Hint Files for FSM recoding

During Yosys execution, state machines can be automatically recoded [26]. For

example, binary coded state may be recorded to a one-hot encoding (e.g., a three-bit code

representing states 0….7 would be converted to an 8-bit code with only one bit active at a

time). By default, Conformal expects binary state machine encoding, so Yosys recoding

leads to design mismatches and formal verification failure. To address this issue, Yosys

was modified to write out FSM recoding information in a “hint” file that could be used by

Conformal. For example, the following FSM that uses state registers of 32-bits is converted

to one-hot encoding of 5-bits. The contents of the file is shown below.

.fromstates state_reg[31] state_reg[30] state_reg[29] state_reg[28] state_reg[27]

state_reg[26] state_reg[25] state_reg[24] state_reg[23] state_reg[22] state_reg[21]

state_reg[20] state_reg[19] state_reg[18] state_reg[17] state_reg[16] state_reg[15]

state_reg[14] state_reg[13] state_reg[12] state_reg[11] state_reg[10] state_reg[9]

state_reg[8] state_reg[7] state_reg[6] state_reg[5] state_reg[4] state_reg[3]

state_reg[2] state_reg[1] state_reg[0]

.tostates state_reg[4] state_reg[3] state_reg[2] state_reg[1] state_reg[0]

.begin

00000000000000000000000011001000 00010

00000000000000000000000001100100 00001

00000000000000000000000100101100 00100

00000000000000000000000011010010 01000

00000000000000000000000100110110 10000

.end

12

The switch -fm_set_fsm_file fsm-file-conformal is set during the synth_xilinx step in

Yosys to dump out recoding information into the fsm-file-conformal file. The line read fsm

encoding fsm-file-conformal -Golden is added to the LEC “dofile” command file so that

the file produced by Yosys is read by LEC and used during formal verification.

2.3.3 Hint Files for Flip Flop Merging

During Yosys execution, design flip flops that are logically equivalent (e.g., same input

signals) are identified. Redundant flip flops can be removed. If flip flops named FF1 and

FF2 have the same functionality, the line add instance equivalence FF1 FF2 is written to

a hints file and FF2 is removed from the design. Yosys outputs a file FF_renaming.log

during this optimization which lists the name of the remaining flip flop for removed flip

flops. This hints file can be used by Conformal to aid in formal verification. The line dofile

FF_renaming.log is added to the Conformal LEC “dofile”.

2.3.4 Renaming Registers

The Yosys source code was modified to rename registers so that the names in the

synthesized output file would be consistent with those expected by Conformal. By default,

Conformal expects registers to have a ‘_reg’ suffix to the name of the flip flop or latch

output signal. For example, a DFF with an output signal outputval is renamed to

outputval_reg. Output signals with an index append the suffix before the index. For

example, outputval[0] becomes outputval_reg[0]. This naming convention matches the

flip flop and latch naming used by LEC.

2.3.5 ABC Script File

The addition of an ABC script to perform logic optimization provides more options for

synthesis improvement in Yosys. ABC performs standard optimizations by default. A

command file abc.script that optimizes the design for binary decision diagrams (BDDs)

and performs structural hashing (strash) has been added. BDD optimization identifies XOR

gates for more efficient implementation of arithmetic operations (for example, wide

addition). Structural hashing is performed to minimize logic across RTL logic structures

13

such as chained multiplexers.

14

CHAPTER 3

FORMAL VERIFICATION USING CADENCE

CONFORMAL LEC

Formal verification uses mathematics to prove that two representations of a design

possess the same behavior [28]. Equivalence checking is a type of formal verification that

takes two designs that may be at the same or different levels of abstraction and determines

if they are logically equivalent. Equivalence checking (e.g., Conformal LEC) can verify

that a synthesized design’s function is the same as an original RTL version [28]. Conformal

uses combinational equivalence to determine if a design matches an original RTL or gate-

level description [29] (e.g. the golden netlist). Verified logic includes complex arithmetic

circuits, datapath circuits, memories, and custom logic. A Conformal ‘PASS’ result

indicates that the synthesized design has passed the equivalence check [5]. Other results

(‘NONEQ’, ‘INCOMPLETE’ or ‘ABORT’) indicate that the design did not pass the

equivalence check successfully. For a design that fails, Conformal provides the number of

non-equivalence points (input or output pins and-flip flops or latches). An INCOMPLETE

status indicates that there are some points in the synthesized netlist that do not exist in the

golden file. An ABORT occurs when some portions of the design are too complex to verify.

In some cases, this issue can be overcome by setting the netlist compare effort to a higher

setting [4]. Designs that do not pass the equivalence check can be assessed by observing

the circuit schematic and noting differences between the RTL and synthesized netlists.

15

Figure 3. 1. Conformal LEC Flow [5]

3.1 Conformal System Modes

Conformal LEC operates in two modes – Setup and LEC [5]. In Setup mode, the RTL

design, the synthesized design and libraries are read into Conformal LEC. The designs are

set as golden and revised respectively. Generally, the revised design is the synthesized

design. Constraints are set in Setup mode, such as whether the design should be flattened.

Once constraints are set, Conformal switches to LEC mode. This mode uses options to

perform equivalence comparison and can be used to report non-equivalent points. A variety

of comparison effort settings can be used. The equivalence result is displayed at the end of

LEC mode. Figure 3.1 gives an overview of the operations that occur in Setup and LEC

modes.

16

3.2 Key Points and Mapping

In Conformal, multiple key points in the golden and revised netlists are compared. Key

points include primary input and primary output pins, D flip flops, D latches, blackboxes,

TIE-Z gates (high impedance signals), TIE-E gates (gates created when a don’t care x-

assignment exists in the revised design) and cut gates (artificial gates that break

combinational loops) [5].

By default, Conformal maps key points by matching names once Setup mode exits.

Name-based mapping is most useful when small changes are made to the logic [4]. A no-

name mapping method for mapping key points is used when designs have completely

different names. Any key point that is not mapped by Conformal is an unmapped point.

Unmapped points are divided into three categories: extra, unreachable and not-mapped

[5]. Extra points in Conformal include the key points that are present in only one of the

designs – either the golden or revised. Unreachable points are key points that do not have

an observable point, such as a primary input. These points can usually be ignored during

debugging of unmapped points. Not-mapped points are key points that are reachable but

do not have a corresponding point in the logic of the corresponding design.

3.3 Comparing and Diagnosing Key Points

Once Conformal has finished executing, it will display a ‘PASS’ or ‘NONEQ’ result.

A ’PASS’ indicates that a design has passed Conformal LEC equivalence checking

successfully. A ‘NONEQ’ indicates that in a design, there exists a cell or cells in the

synthesized netlist that does not correspond to the golden netlist. Examples are shown in

Figures 3.1 and 3.2.

17

Figure 3. 2. Design Fails Conformal

Figure 3. 3. Design Passes Conformal

3.4 Commands Used by Conformal

A ‘dofile’ with the extension ‘.do’ includes the commands executed by Conformal LEC

to perform equivalence checking. Representative commands used by the dofile are

summarized in Table 3.1.

Table 3. 1. Commands in Conformal

Command in Conformal Function of command

read library -Both -Replace -sensitive -Verilog2k

~/FVSF-Benchmark/xeclib/*.v –nooptimize

Reads in the verification library

files for Xilinx 7-series FPGAs

named xeclib [27]. The files are

provided by Xilinx with the

18

Vivado software distribution for

formal verification.

read design <design.v> -Verilog2k -Golden -Replace

-sensitive -continuousassignment Bidirectional -

nokeep_unreach –nosupply

read design <design_synth.v> -Verilog2k -Revised -

Replace -sensitive -continuousassignment

Bidirectional -nokeep_unreach –nosupply

Reads in the golden RTL and

synthesized design files based on

“-Golden” and “-Revised”

switches, respectively

set root module <top_module> –revised Sets the root module name of the

synthesized Verilog design for

analysis

set analyze option -auto Allows LEC to automatically

perform advanced equivalence

checking operations automatically

set flatten model -seq_constant Converts flip flops driven by a

constant data input to a constant

value, eliminating the flip flops

set flatten model -all_seq_merge -golden

Optional line. Merges flip flops

that have the same D and clock

inputs into one flip flop

set system mode lec Switches LEC from Setup to logic

equivalence (LEC) mode

remodel -seq_constant “Try harder” mode for LEC design

mapping with flip flops replaced

by constants

add compared points -all Includes all compared points in the

analysis

compare Performs the logic equivalence

comparison

19

diagnose -noneq Print out information about flip

flops and primary I/Os that did not

pass logic equivalence in the

design

analyze abort -compare Optional line to have LEC perform

additional steps to resolve aborts

which occur for logic structures

that have high combinational

complexity, such as in

combinational multipliers.

report verification -compare_result Report the results as PASS, FAIL,

or ABORT

exit -f Exits Conformal

20

CHAPTER 4

BENCHMARKS USED IN SYNTHESIS AND

FORMAL VERIFICATION

Benchmarks ranging from 134 simple to 26 complex designs are used in this work. Out

of 160 designs tested, 144 designs passed Cadence Conformal evaluation using synthesized

netlists created by Yosys. The other 16 designs have limitations that will be explained in

this chapter. The 160 designs tested are shown in Table A.2. These designs were taken

from yosys-simple [14], yosys-bigsim [15], and VTR [16] benchmark suites. Their

complexities range from simple to complex. There are 119 yosys-simple designs, 8 yosys-

bigsim designs, 15 VTR designs and 2 unit tests which pass equivalence checking. The

designs are written in standard Verilog-2005 format [49], which is supported by synthesis

tools used by all major FPGA vendors (e.g. Xilinx, Intel, and Microsemi). All designs that

pass is displayed in Table A.1. Apart from those designs, additional designs were included

and is discussed in the following subsection.

4.1 Work in Design Verification For 8 Additional Designs

Several additional designs were evaluated with Yosys synthesis for Vivado followed

by LEC logic equivalence. Among them was PicoRV32, a CPU core that implements the

RISC-V RV32IMC instruction set [39]. This design is included in PicoSoC, an SoC, along

with small modules that include memory and a UART interface. The comments about each

design as well as speculation as to their LEC failure are outlined in Table 4.1. The

optimization switch column indicates the optimizations that were turned off to allow the

design to pass equivalence checking. The other additional designs in addition to PicoSoC

includes three designs from yosys-bigsim and four from vtr-benchmarks. The 16 designs

that initially failed in yosys-simple and single-design from 160 benchmarks are revaluated.

In Table 4.1, ‘All’ optimizations include the switches: -nobram, -nolutram, -nosrl, -

nocarry, -nowidelut, -noiopad, -nofsm, -nowreduce, -noopt, -noopt_dff, -noopt_muxtree, -

21

noopt_reduce, -noopt_merge, -noopt_clean, -noopt_expr, and -noopt_mem. ‘None’

indicates that no switches are used and the design passes with all optimizations turned on.

‘Stall’ indicates that the design does not produce an output and is stuck in Conformal LEC

evaluation.

Table 4. 1. Designs tested with optimization switches

Sl.

No.

Benchmark Benchmark

Suite

Pass/Fail Optimization

Switches

Reason For

Failure

1 PicoSoC - Pass -nobram,

-nolutram

-nosrl

-nofsm

-noopt_merge

2 mkSMAdapter vtr-

benchmarks

Pass None

3 mkDelayWorker vtr-

benchmarks

Pass None

4 LU32PEeng vtr-

benchmarks

Pass All

5 mcml vtr-

benchmarks

Fail Stall Takes a significant

amount of time in

Conformal without

producing a result.

6 amber23 yosys-bigsim Fail Stall Takes a significant

amount of time in

Conformal without

producing a result.

7 lm32 yosys-bigsim Pass All

8 bch_verilog yosys-bigsim Fail - Verilog construct

unreadable by

22

Conformal. The line

poly[(nk+1)*M+:M

] = 1; is unreadable

by Conformal.

9 forgen01 simple Pass None

10 const_branch_fin

ish

simple Fail - No input or output

11 hierdefparam simple Pass - Conformal cannot

handle generate and

defparam

statements. Passes

when defparam

statements are

absent.

12 localparam_attr simple Pass - Passes when default

value is more than 1.

The design only

consists of input and

output wires.

13 operators simple Fail - Unsigned binary

division is often

difficult for

synthesis tools,

issue likely stems

from there

14 param_attr simple Pass - With default value,

input and output are

set to 0. Passes

otherwise.

15 string_format simple Fail - Only contains

$display statements

23

16 task_func simple Fail - add(w, <input>)

task is called three

times for separate

inputs, none of

which work as

desired. Conformal

and Yosys both tie

the w[7:0] outputs

to GND

17 undef_eqx_nex Fail - Invalid construct.

Outputs are

assigned to invalid

mathematical

operations (eg. 0/0)

18 wandwor Invalid - FPGAs generally do

not support wired

and (wand)/wired or

(wor). Conformal

cannot handle a mix

of modules and

assign statements

for the same wand

or wor

19 top_bram_n1 - Fail - 21 registers in the

modules under uart

fail. All the

send_divcnt_reg

registers are non-

equivalent, with

other registers such

as send_pattern_reg

24

failing as it is

dependent on

send_divcnt_reg as

a corresponding

support point.

20 top_bram_n2 - Fail - 21 registers in the

modules under uart

fail. All the

send_divcnt_reg

registers are non-

equivalent, with

other registers such

as send_pattern_reg

failing as it is

dependent on

send_divcnt_reg as

a corresponding

support point.

21 top_bram_n3 - Fail - 21 registers in the

modules under uart

fail. All the

send_divcnt_reg

registers are non-

equivalent, with

other registers such

as send_pattern_reg

failing as it is

dependent on

send_divcnt_reg as

a corresponding

support point.

25

Nine out of 21 designs passed Conformal LEC equivalence checking. Of the 12

benchmarks that did not pass, seven were found to be invalid. All designs under test are

shown in Table A.1.

26

CHAPTER 5

FORMAL VERIFICATION IN YOSYS

In this chapter we consider the use of an open-source logic equivalence and a model

checker, Yosys-SMTBMC [35], that are embedded in Yosys.

5.1 An Open-Source Formal Verification Tool

Yosys includes a in-built formal verification tool, Yosys-SMTBMC [35], also called

SymbiYosys [43]. This tool uses a Boolean satisfiability (SAT) solver and assert statements

in Verilog to check if specified conditions are met. Yosys-SMTBMC uses an external

satisfiability modulo theory (SMT) [41] solving tool, either the Z3 Theorem Prover [40] or

Yices [42], to solve SMTs and perform bounded model checking (BMC). SMT determines

if a mathematical formula is satisfiable. SAT solvers determine Boolean satisfiability. SMT

solvers use complex formulae that involve real numbers, integers, or various data structures

such as lists, arrays, bit vectors, and strings [41] to address model checking. The SMT

solver can check if a condition is reachable for a design, including one written in Verilog.

For example, if a Verilog design uses a counter that counts to 10 and reachability is checked

for an output value of 25, a result indicating that the reachability has failed will occur. For

the same design, an output value of 8 is determined to be reachable.

Unlike Conformal LEC, Yosys-SMTBMC only checks reachability for pre-specified

states rather than full equivalence checking. Yosys does provides a way to perform

equivalence checking using equiv statements [2]. These statements can be used for

equivalence checking to compare a design written in RTL against a corresponding

synthesized netlist. In this case, equiv_make statements convert the cells from RTL and

synthesized netlists into corresponding $equiv cells. The command breaks the golden and

synthesized netlists down to cells (eg. Flip flops, LUTs), which constitutes the $equiv cells.

The equiv statements used in Yosys compares the $equiv cells in the RTL and synthesized

netlists and produces an output indicating a pass or failure. Yosys commands that perform

synthesis and technology mapping can be implemented in a script similar to a dofile in

Conformal and can be used as an equivalence checker for smaller designs. For example, a

27

simple gate-level netlist can be produced by Yosys and can be compared to the synthesized

netlist that contains cells using the Xilinx library [27].

5.2 Verifying Designs in Yosys-SMTBMC

Yosys-SMTBMC (also called SymbiYosys) was tested on the following benchmarks:

• 9 demo designs under the smtbmc directory in Yosys

• 10 Yosys-simple designs

• 1 Yosys-bigsim design

• 1 vtr-benchmark

• PicoRV32 CPU Core [39]

These designs use assert statements for to assess reachability. An assert statement in

Verilog checks if a condition is true. An 'assertion error’ is produced if a condition is false.

For example, the statement assert (a == b) will execute normally if the values of a and b

are equal but will throw an assertion error if they are not equal. All designs in Table 5.1

pass reachability analysis using assert statements in Verilog. In the following

subsubsection, we assess the fiedler-cooley design from yosys-simple with Yosys-

SMTBMC.

Table 5. 1. Design tested in Yosys-SMTBMC

Sl. No. Benchmark Benchmark

Suite

Pass/Fail

1 demo1 demo Pass

2 demo2 demo Pass

3 demo3 demo Pass

4 demo4 demo Pass

5 demo5 demo Pass

6 demo6 demo Pass

7 demo7 demo Pass

8 demo8 demo Pass

9 demo9 demo Pass

28

10 fielder-cooley simple Pass

11 aes_kexp128 simple Pass

12 carryadd simple Pass

13 always01 simple Pass

14 subbytes simple Pass

15 rotate simple Pass

16 sincos simple Pass

17 memory simple Pass

18 values simple Pass

19 retime simple Pass

20 softusb_navre yosys-bigsim Pass

21 diffeq1 vtr-benchmarks Pass

22 PicoRV32 single-design Pass

5.2.1 Files used by Yosys-SMTBMC

The fiedler-cooley design is a nine-bit counter that increments by 3 and decrements by

5. The design can store an input data value, count up, count down, remain the same, or set

the output to a don’t care value ‘X’. Operation is dependent on the received ‘up’ and ‘down’

inputs. The fiedler-cooley design is shown in Figure 5.1.

29

Figure 5. 1. The fiedler-cooley design

This design can be modified to check reachability. An `ifdef FORMAL statement

followed by an assert statement is used to check if the output port count_out can hold a

value lower than 512 (Figure 5.2).

Figure 5. 2. Condition to check reachability of count_out

The file must be saved as a SystemVerilog file (fiedler-cooley.sv) as Yosys assert

statements are only supported only in SystemVerilog [47].

30

SymbiYosys files (extension .sby) define all parameters required to execute the design

with constraints applied. The .sby file used to execute fiedler-cooley is shown in Figure

5.3.

Figure 5. 3. The fc.sby file used by fiedler-cooley

The .sby file consists of the ‘option’, the ‘engine’, the ‘scripts’ to be read and the design

SystemVerilog ‘files’.

The ‘options’ section allows the user to perform bounded model checking for a

specified number of cycles or to prove a condition using a k-induction proof. For bounded

model checking, a number of cycles is set for the condition to be proven and reachability

is checked in sequence starting from a reachable state only for the number of steps

provided. K-induction proves that once the design is in a running state, it cannot reach a

failed state. In other words, it starts from an unreachable state and proves that every point

from that state should not be a failed state. The ‘mode prove’ option checks if the condition

uses k-induction with 20 cycles by default. The number of cycles to be provided is not

explicit, and this option proves that the safety properties can be satisfied forever.

The ‘engines’ section specifies the engine to be used. The engines perform the

mathematical proof for the condition specified in the design. If only ‘smtbmc’ is provided

under the section, the tool uses the Yices SMT solver, which is the default. Figure 6.3

shows the use of the Z3 solver.

The ‘script’ section uses Yosys commands to read the input file(s), with the “–formal”

switch enabling support for SystemVerilog assertions. The “prep” command performs a

low-level synthesis of the design. This command is mainly used in the preparation stage of

a verification flow. This command can be used interchangeably with a “synth” command,

31

which performs more optimizations.

The ‘files’ section includes all input design files to be used in Yosys-SMTBMC. In this

case, only the fiedler-cooley.sv file is provided, but if a design uses more than one

SystemVerilog file, all files should be provided.

The design is run using ‘sby’ followed by the .sby file to be used. For example, if the

sby file is named fc.sby and has all file parameters set, the fiedler-cooley design is run by

using the command ‘sby fc.sby’. This will generate an output indicating if the design has

passed or failed, as shown in Figure 5.4.

Figure 5. 4. The fielder-cooley design passes SymbiYosys analysis

Yosys-SMTBMC generates a directory with the name of the .sby file used. This

directory contains the log files produced during execution.

32

Figure 5. 5. Visualization of BMC for fiedler-cooley

If the design fails, an output indicating the design has failed is produced, along with

logs to show at which trace the design failed. In the case of fiedler-cooley, the design would

fail if a value greater than 511 is generated. This result occurs because count_out only

includes nine bits.

Yosys-SMTBMC is helpful in locating design bugs. For example, if memories are set

to initial values in a design, they can be verified by using assert statements to check if the

stored memory block values match with the initial values (e.g, there has been no accidental

memory change during design execution).

All 22 designs (which include 9 demo examples, 10 yosys-simple examples, 1 yosys-

bigsim, 1 vtr-benchmark and the PicoRV32 CPU) have been evaluated for reachability

using Yosys-SMTBMC. All designs passed this check. The simple designs tested include

aes_kexp128, carryadd, always01, subbytes, rotate, sincos, memory, values, and retime.

The yosys-bigsim design tested is softusb_navre and the vtr benchmark tested is diffeq1.

33

5.3 Verifying Designs Using the Yosys Equivalence Checker

A script (Figure 5.6) was used to perform equivalence checking flow, similar to the use

of a dofile in Conformal LEC. The file runs executes Yosys commands to read the design,

perform synthesis, and perform logic equivalence comparisons using equiv statements. An

example bash script for aes_key_expand128 is shown in Figure 5.6.

Figure 5. 6. Bash script used to execute the Yosys equivalence checker

The commands used and their function are described in Table 5.2.

Table 5. 2. Yosys Equivalence Check commands

Sl.

No.

Command Used in Yosys Function of Command

1 read_verilog <design.v> Reads the Verilog file of the design. Can

be golden (RTL netlist) or gate

(synthesized netlist)

2 synth -flatten -top <design_top> Performs synthesis of the RTL design.

Several optimizations are performed and a

netlist with basic cells is produced (AND,

OR, DFF, MUX etc.)

3 design -stash gold Save the current design under the given

34

design -stash gate name and clear the current design. In this

case, the RTL design is saved as gold and

the synthesized netlist is saved as gate.

4 equiv_make Creates modules with equiv cells from two

presumably equivalent modules for the

golden and gate netlists.

5 equiv_induct -seq <N> Uses temporal induction to prove that the

equiv cells are equal. This command is

effective in proving complex sequential

circuits. By default, 4 times steps are used

for this proof, but the number of time steps

can be increased by using the -seq switch.

6 equiv_status -assert Prints status information for all selected

equiv cells and produces an error if any

unproven cell is found.

7 equiv_miter Creates a miter module for further analysis

of equiv cells.

8 splitnets -ports;; Splits multi-bit nets and ports into single-

bit nets and ports.

9 techmap -autoproc -map

+/xilinx/cells_sim.v

Perform technology mapping on the Xilinx

library.

The Yosys logic equivalence checker was evaluated with 144 benchmarks from the

yosys-simple, yosys-bigsim and vtr-benchmark suites. As seen in Table 5.3, 58% of the

benchmarks (84 out of 144) passed logic equivalence using the Yosys equivalence checker.

Designs failed equivalence checking as a result of memory constructs that cannot be

handled properly by the equivalence checker and complex finite state machine usage in

designs.

A total of ~70% of yosys-simple designs pass equivalence checking. None of the more

complex designs from the yosys-bigsim or vtr-benchmark suites passed.

35

Table 5. 3. Yosys Equivalence Checker Statistics

Design Suite Total Number of

Designs / Designs That

Pass Conformal

Number of Designs

That Pass the Yosys

Equivalence

Checker

Percentage

of Designs

That Pass

simple 121 84 69.4%

yosys-bigsim 8 0 0%

vtr-benchmarks 15 0 0%

Total 144 84 58.3%

36

CHAPTER 6

BUGS AND BUG FIXES IN YOSYS

This chapter examines issues encountered with using Yosys, and with using Yosys as

part of the SymbiFlow tool chain. This work required bug fixes and the creation of a new

synthesis library to allow for logic equivalence checking by LEC.

Initially, 127 designs out of 144 tested when compiled by Yosys as part of the

SymbiFlow tool chain did not generate any errors. The errors are produced due to missing

cells in a “VPR library”. The VPR library includes cells used by Yosys to synthesize a

register-transfer level RTL design that is compatible with VPR in SymbiFlow. It constitutes

a modified xeclib [27] that makes minor changes to cells in SymbiFlow, for example,

setting initial values of BRAMs to zeros instead of an unknown ‘x’ value. The issues arise

because of Yosys bugs, or because the target Artix 7 FPGA on the Arty-35 board has

insufficient logic or I/O resources. With appropriate fixes made, this number was increased

to 132 designs. One Yosys bug that is independent of SymbiFlow is the swapping of

‘preset’ and ‘clear’ signals on a D flip flop during synthesis. Other bugs observed during

Yosys synthesis for SymbiFlow are related to the boundtop and bgm designs. As noted

subsequently, these bugs have been fixed.

The section describes modifications to the Yosys synthesis library for 7-series FPGAs

in SymbiFlow to allow the library to also be used by Conformal LEC. Missing cells and

poor Verilog syntax resulted in Conformal LEC not being able to read designs and perform

equivalence checking. We also discuss techniques to support block RAM verification in

LEC.

6.1 Bug Fixes in Yosys

6.1.1 Preset-Clear Swapping Bug

The module dffsr2_sub of design dff_different_styles in the Yosys-simple suite exposes

a Yosys bug. The preset and clear wires are implemented incorrectly in the synthesized

37

design. Figures 6.1 and 6.2 show the incorrect and correct circuit schematics generated by

Yosys and Conformal respectively.

Figure 6. 1. Design dffsr2_sub synthesized by Yosys

Figure 6. 2. Design dffsr2_sub synthesized by Conformal

The issue was resolved by making changes to the proc_dff.cc file in Yosys. The

proc_dff.cc code identifies and processes D flip flops.

Figure 6. 3. dffsr2_sub module in Verilog

38

Figure 6.3 shows the dffsr2_sub design in Verilog. The bug occurs during the ‘always

@’ stage with the clk, preset, and clear signals in the sensitivity list. The hierarchy of the

RTL design depends on the if and else statements. Thus, the hierarchy should be in the

order of preset, clear, and then the default condition. Figure 6.4 shows the hierarchy

changed with the bug and the hierarchy preserved with the bug fix.

Figure 6. 4. Hierarchy of the if and else statements

Yosys prioritizes the clear synchronization signal regardless of how the Verilog RTL

is written because Yosys stores the synchronization rules in a sorted C++ standard map

data structure. This approach gives precedence to the clear signal over the preset during a

sorting operation that occurs in the map structure.

A change is required to make the C++ standard map data structure retain the

synchronization rule hierarchy. A newly created C++ standard vector titled

many_async_rules_vector was declared alongside the already existing many_sync_rules as

shown in Figure 6.5.

Figure 6. 5. Many_async_rules_vector created to keep track of the hierarchy

39

The many_async_rules_vector value receives the same insertion operations as

many_async_rules. It is passed into the gen_dffsr_complex() function in proc_dff.cc that is

used to iterate through the sensitivity list. The newly created vector

many_async_rules_vector is used in gen_dffsr_complex() in place of many_async_rules.

This approach preserves the hierarchy specified in the input RTL design and Yosys does

not give any signal precedence. The code changes in the proc_dff.cc file in the function

proc_dff are shown in Figures 6.6 and 6.7.

Figure 6. 6. Before bug fix in proc_dff.cc

Figure 6. 7. After bug fix in proc_dff.cc

Figures 6.8 and 6.9 shows the dffsr2_sub design synthesized by Yosys before and after

the code change was made in proc_dff.cc respectively.

40

Figure 6. 8. Synthesized dffsr2_sub with the bug

Figure 6. 9. Synthesized dffsr2_sub without the bug after bug fix

6.1.2 Synthesis Bug in boundtop

Boundtop produced an error in the post-Yosys processing file fix_carry_xc7.py file

following synthesis. It was found that two flip flops were inferred that drove the same

output by this code. This result was due to a missing default case in a Verilog switch

statement in the boundcontroller module of boundtop. Figure 6.10 shows two flip flops

driven by the same output, which results in the error.

41

Figure 6. 10. Outputs of two flip flops drive the same wire

This issue was resolved by adding a default statement to the module. The default

statement added sets the output ‘debugcount’ of the module boundcontroller to 0. This

addition to the boundtop RTL prevented the creation of flip flops driven by the same output

and allowed boundtop to generate a bitstream using SymbiFlow. Figure 6.11. shows the

default statement added to boundtop.

Figure 6. 11. Added default statement to Boundtop

6.2 Modifying the VPR Library

The 144 benchmarks that passed equivalence checking for Yosys synthesis for Vivado

were also tested when synthesized for SymbiFlow [6]. Each design include one or more

input Verilog (.v) files and a constraints (.xdc) file for the Arty 35T board. SymbiFlow uses

bash scripts to execute its FPGA toolchain (Yosys, packing, placement, and routing using

42

VPR and bitstream generation using Project X-Ray). Formal verification is performed on

the output of Yosys.

Figure 6. 12. FPGA flow from RTL to bitstream generation in SymbiFlow

Designs are synthesized in SymbiFlow using a modified version of Yosys. The

differences includes the use of a slightly modified xeclib library called the VPR library.

The changes in this library includes minor changes to cells such as connecting ports to

ground so that the cell can pass VPR reliably. Yosys is slightly modified to include an

additional technology mapping stage. It maps the standard gate-level cells to xeclib and

then maps this to the VPR library. It also uses additional post-processing files to clean up

any unused wires, or to resolve carry congestion. A synthesized design that is generated by

the SymbiFlow optimized version of Yosys can be used by Conformal for equivalence

checking. Out of the initial 144 designs that were tested, 123 passed logic equivalence

testing. These designs are shown in Table A.3.

The VPR library includes cells used by Yosys to synthesize a register-transfer level

RTL design that is compatible with VPR in SymbiFlow. Gate-level designs synthesized by

43

Yosys with the library can be used in VPR for logic packing into LUTs as part of

SymbiFlow. The list of files in the library includes the following.

The cells_sim.v library maps cells from the Xilinx technology library files present in

Yosys to a Xilinx 7-series VPR technology library. The design is initially mapped to cells

from the Xilinx library (xeclib) [27], and then is processed with a second mapping pass

using the VPR library. These steps are performed since some cells in the Xilinx library are

not compatible with VPR. Cells in this VPR library make changes to the cells to allow

them to pass VPR without errors.

The cells_map.v file includes cells used in a simple technology mapping pass in which

unused ports on cells are removed. Most of these cells include flip flops such as the cells

FDRE, FDSE, FDCE, FDPE and the newly added LDCE (transparent data latch with

asynchronous clear and gate enable). This library file also includes lookup tables (LUT1,

LUT2, LUT3, LUT4, LUT5 and LUT6) and distributed RAMs (RAM128X1S,

RAM128X1D, RAM256X1S, RAM32X1D, RAM32M, RAM32X2S, RAM32X1S,

RAM64M, RAM64X1D and RAM64X1S). Block RAMs (RAMB18E1 and RAMB36E1)

and DSP block instance DSP48E1 are also included. The carry_map.v file converts some

CARRY4 outputs to LUTs to resolve carry congestion. This action is required because

VPR cannot reliably resolve SLICEL or SLICEM output usage when both Out (O) and

Carry Out (CO) outputs are used. If both O and CO outputs are used, the CO output is

computed using a LUT. The clean_carry_map.v file contains modules used by

carry_map.v. The retarget.v file includes cells to remap specific D flip flops (FD) into

reset-enabled D flip flops (FDRE). The unmap.v file unmaps the ‘CARRY_COUT’ cell

specified in carry_map.v and maps it to a standard ‘CARRY’ cell instead.

Cell modifications were made in cells_sim.v and cells_map.v.

6.2.1 Syntax Errors in VPR Library

The updates made to cells_sim.v and cells_map.v included Verilog coding

implementation updates. The files were originally not written using Verilog-2005

standards, but Yosys could parse the Verilog files and automatically make syntax

corrections. Since Conformal LEC is unable to make such corrections, portions of the

libraries were rewritten to meet Verilog-2005 standards. Numerous missing brackets and

44

punctuation (e.g., missing comma at the end of a module declaration) in the original library

files were corrected. Figures 6.13 and 6.14 shows the FDRE flip flop before and after the

syntax changes made to cells_map.v.

Figure 6. 13. Before the Verilog syntax change

Figure 6. 14. After the Verilog syntax change

The ‘(‘ bracket between ‘!’ and ‘|’ in ‘INIT’ is included to make it syntactically correct.

The cells that were changed to include the syntax that could be read by Conformal LEC

are FDRE, FDSE, FDCE, and FDPE.

6.2.2 Addition of Cells to VPR Library

The LDCE cell is a D latch with clear and enable signals. The LDCE cell was added to

both the cells_sim.v and cells_map.v library files. Figures 6.15 and 6.16 shows the addition

of the LDCE library to cells_sim.v and cells_map.v respectively. The LDCE_1 denotes the

inverted LDCE that is included in cells_map.v. LDCE was added in the same format as flip

flops FDRE and FDSE in the VPR library.

45

Figure 6. 15. LDCE added to cells_sim.v

46

Figure 6. 16. LDCE added to cells_map.v

Cells for 2:1 multiplexers named MUXF6, MUXF7, and MUXF8 were added to

cells_sim.v. Multiplexers MUXF6, MUXF7, MUXF8 and MUXF9 were copied from the

xeclib library [27] to cells_sim.v.

6.2.3 Formally Verifiable Block RAMs

The VPR library was modified to support block RAMs for LEC logic equivalence

testing. Block RAMs [45] (BRAMs) are bulk data storage resources located in FPGAs. In

47

Xilinx Artix-7 FPGAs, BRAMs contain 36 or 18 Kbits of storage (RAMB36 or RAMB18).

Although Yosys can infer BRAMs from RTL code, Conformal LEC cannot directly verify

these inferred BRAMs since it is unaware how Yosys has mapped memory to BRAMs. To

support logic equivalence testing, a user must assign memory structures to BRAMs prior

to Yosys synthesis, effectively creating a golden register-transfer level (RTL) memory file

for use by both Yosys and LEC. The VPR library was modified to allow Artix-7 block

RAMs to be formally verifiable by LEC both 36 and 18 Kbit cells were added to the library.

Example ports for an 18 Kbit BRAM are shown in Figure 6.17.

Figure 6. 17. RAMB18E1 Xilinx primitiveT

A BRAM36 module that instantiates a Xilinx RAMB primitive of 36-bit width and 512

words deep is shown in Figure 6.18. The parameter statement sets the bit width and word

size of the module. The ports of a BRAM that is typically inferred by the synthesis tool

and mapped to a Xilinx primitive of a BRAM are assigned in the module.

48

Figure 6. 18. BRAM36 module

READ_WIDTH_A and READ_WIDTH_B are parameters in the cells_map.v file that

decide whether an 18K or a 36K BRAM should be used based on the bit size. The library

consists of if-conditions that checks whether the bit width is greater than 18 bits. If it is, an

error is produced. A 36-bit wide and 512-word deep BRAM can use an 18K BRAM, but

an error is thrown by SymbiFlow during synthesis. The cells_map.v VPR library file was

modified to increase the limit of the width parameter to 36 bits. A similar fix was performed

49

with the 36K BRAMs to support a width of 72 bits.

In some cases, BRAMs are given initial values during instantiation. SymbiFlow uses

`define statements and parameters to initialize values in 36 Kbit BRAMs. The `define

statements create an INIT_BLOCK that initializes values. Each line of the BRAM is

initialized to 0 using these statements. This block, however, crashes Conformal LEC.

BRAMs usually have initial values set to ‘X’ or unknown values by default. Thus,

removing this block allows the design to go through Conformal without crashing.

In BRAMs, the clock is connected to ports CLKARDCLK (read clock) and

CLKBWRCLK (write clock) in a single port RAM. In a dual port RAM, they can act as

clocks for two ports: the A port and the B port. The VPR library sets a condition for the

CLKARDCLK and CLKBWRCLK based on the parameters

_TECHMAP_CONSTMSK_CLKARDCLK and

_TECHMAP_CONSTVAL_CLKARDCLK_. The parameter

_TECHMAP_CONSTMSK_CLKARDCLK_ is set to 0 by default and is used to check if

an error is generated during synthesis. The _TECHMAP_CONSTVAL_CLKARDCLK_

parameter checks if the signal is a constant value, and if the condition evaluates to 0,

CLKARDCLK is set to 1. The if-statement to connect the clock to the CLKARDCLK port

is shown in Figure 6.19.

Figure 6. 19. clkardclk wire depends on parameter values

This statement indicates that the _TECHMAP_CONSTMSK_CLKARDCLK_ and

_TECHMAP_CONSTVAL_CLKARDCLK_ should be 0 and 1 respectively for the

connection to be made to CLKARDCLK. Yosys can infer this statement in the VPR library

correctly but Conformal cannot. Conformal does not connect the clock to the

CLKARDCLK port. Our fix directly connects the wire clkardclk to the BRAM port

CLKARDCLK. This fix allows Conformal to make the appropriate connections. Figure

6.20 shows the change made to the VPR library.

50

Figure 6. 20. Direct connection of clkardclk wire to CLKARDCLK port

The similar fix was performed for the CLKBWRCLK port for both 18K and 36K

BRAMs in the VPR library.

Using the three fixes, BRAMs can be formally verified in Conformal LEC. Logical

memories of various bit and word sizes were tested, from 1-bit, 32768 words to 72-bit,

16384 words.

51

CHAPTER 7

RESULTS

In this chapter we compare Yosys synthesis results for designs with optimizations

turned on and turned off. These results are compared to Vivado synthesis results with

optimizations. Place-and-route without design logic optimization is performed by Xilinx

Vivado. All designs were mapped to the Xilinx Artix-7 FPGA architecture. Timing

constraints were not used for any synthesis activities.

Table 7.1 shows the results of synthesizing five designs. Not surprisingly, benchmarks

synthesized with optimizations yielded smaller designs. This result shows area

improvement due to optimizations such as FSM recoding and register merging. All

synthesized designs shown in the table pass LEC equivalence checking.

Table 7. 1. Logic Design Area Comparison (LUTs and Flip Flops)

Design Name

and

optimizations

turned off

Area Metrics

(Lower is better)

 Number of LUTs Number of Flip Flops

 Yosys

without

optimizations

Yosys with

optimizations

Xilinx

Vivado

Yosys

without

optimizations

Yosys with

optimizations

Xilinx

Vivado

softusb_navre

(-nofsm)

1018 1105 877 340 353 340

blob_merge

(-nofsm

-nowreduce

-noopt_dff

-noopt_merge

-keepff)

3461 3659 5457 552 575 575

stereovision0 10396 3611 3359 13258 9069 8081

52

(-nobram

 -nolutram

-nosrl

-nofsm

-nowreduce

-noopt_dff

-noopt_merge

-keepff)

ch_intrinsic

(-nobram

-nolutram

-nofsm

-nowreduce

-noopt_dff

-noopt_merge

-keepff)

209 92 29 496 211 82

sha

(-nofsm

-nowreduce

-noopt_dff

-noopt_merge

-keepff)

1400 1479 1245 910 893 903

mkPktMerge

(-nobram

-nolutram

-nosrl

-nofsm

-nowreduce

-noopt_dff

-noopt_merge

-keepff)

10371 609 121 7926 495 171

The BRAMs and DSP blocks for designs that generate them is shown in Table 7.2.

53

Table 7. 2. Logic Design Area Comparison (BRAMs and DSP Blocks)

Design Name

and

optimizations

turned off

Area Metrics

(Lower is better)

 Number of BRAMs Number of DSP Blocks

 Yosys

without

optimizations

Yosys with

optimizations

Xilinx

Vivado

Yosys

without

optimizations

Yosys with

optimizations

Xilinx

Vivado

ch_intrinsic 0 0 1 0 0 0

mkPktMerge 0 0 5 0 0 0

Table 7. 3. Design Performance Comparison

Design Name Performance Metrics

(Higher is Better)

 Clock Speed (MHz)

 Yosys without

optimizations

(Formally

Verifiable)

Yosys with

optimizations

(Formally

Verifiable)

Xilinx Vivado

(Not Formally

Verifiable)

softusb_navre 73.56 80.45 92.91

blob_merge 48.48 49.04 69.74

stereovision0 129.05 200.80 221.43

ch_intrinsic 265.25 270.70 360.23

sha 122.02 120.29 128.65

In addition to the five designs shown in Table 7.1, 55 designs were subjected to the same

experiments. Following synthesis, each design was subjected to Vivado place and route to

determine performance. The timing constraints used includes setting an initial clock

frequency to 1 GHz and reducing the clock speed until a positive skew is generated to

obtain maximum frequency. The average clock speed of the fifty-five designs synthesized

by Yosys with optimizations is 311.3 MHz and the average clock speed of the designs

synthesized by Vivado is 344.8 MHz - a 10% difference. The fifty-five designs are used as

54

several designs from yosys-simple are combinational logic and do not have clocks set in

their design. Several submodules were also included as benchmarks, but these designs did

not have clocks. Thus, the submodules were not considered in the results. Some designs

from yosys-bigsim and vtr-benchmarks had too many I/Os or resources for the Arty-35

board, therefore place-and-route could not be performed. All synthesized designs passed

equivalence checking.

Table 7. 4. Arithmetic and Geometric Means of Designs Synthesized in Yosys and

Vivado

 Average of 55 Synthesized Designs in Yosys Average of 55 Synthesized Designs in Vivado

 LUT Flip

Flop

BRAM DSP Clock

Frequency

LUT Flip

Flop

BRAM DSP Clock

Frequency

Arithmetic

Mean

1468.20 887.76 0 12.53 311.29 862.18 716.76 0.02 4.96 344.80

Geometric

Mean

26.56 10.61 0 1.36 240.80 20.98 8.75 0 1.19 287.25

55

CHAPTER 8

CONCLUSION

In this thesis document, we presented a robust synthesis flow for formal verification of

designs synthesized with an open-source tool, Yosys. Over 144 benchmarks ranging from

simple to complex designs were put through Yosys to create synthesized netlists. The

designs pass equivalence checking using Conformal LEC. Several complex benchmarks

passed equivalence checking following source code modifications within Yosys to allow

for the ability to turn off optimization passes. The performance of designs synthesized with

Yosys was compared to the results obtained by Vivado, which does not produce formally

verifiable netlists but allows for improved area and improved performance. We evaluated

open-source tools for formal verification that includes bounded model checking and

equivalence checking. We found that all 13 designs tested for bounded model checking

passed, and 58% of designs pass the open-source equivalence checker.

In this work, we fixed several Yosys bugs that affected synthesis for SymbiFlow, an

open-source FPGA toolchain. The fixes allow designs to successfully complete bitstream

generation using other SymbiFlow tools. Additions were made to a LEC verification library

to fix Verilog syntax errors and add cells needed for verification. SymbiFlow Block RAM

formal verification support was added to Conformal through modifications to the VPR

library. Support for 72-bit wide BRAMs is now available.

9.1 Future Work

9.1.1 Additional Benchmarks

As this work was limited to around 160 benchmarks, there is potential to add more

benchmarks for synthesis and formal verification. The work can also be extended to

additional designs synthesized for SymbiFlow.

56

9.1.2 Protection of Hints Files

The generation of hints files in Yosys such as during FSM recoding and flip flop

merging helps logic equivalence testing. These hints files should be protected so they

cannot be examined by malicious attackers. This action can be accomplished by file

encryption after synthesis. A logic equivalence tool could decrypt the files during formal

verification.

9.1.3 Robust Yosys Equivalence Checker

Currently, only simple designs pass the Yosys equivalence checker while more

complex designs generally fail. The checker could be modified to support memories and

more complex logic. The current tool splits a design into cells and checks equivalence

using SAT solvers. A Conformal-based approach could be implemented in which a

Boolean expression is generated for the golden and revised netlists and compared.

57

APPENDIX

Table A. 1. All Verilog Benchmarks

Sl. No. Design Name Top Module Benchmark

Suite
Pass/Fail

1 aes_kexp128 aes_key_expand_128 simple Pass

2 always01 uut_always01 simple Pass

3 always02 uut_always02 simple Pass

4 always03 uut_always03 simple Pass

5 arraycells array_test001 simple Pass

6 arraycells aoi12 simple Pass

7 arrays01 uut_arrays01 simple Pass

8 attrib01_module bar simple Pass

9 attrib01_module foo simple Pass

10 attrib02_port_decl bar simple Pass

11 attrib02_port_decl foo simple Pass

12 attrib03_parameter foo simple Pass

13 attrib04_net_var bar simple Pass

14 attrib04_net_var foo simple Pass

15 attrib06_operator_suff

ix bar

simple Pass

16 attrib06_operator_suff

ix foo

simple Pass

17 attrib08_mod_inst bar simple Pass

18 attrib08_mod_inst foo simple Pass

19 attrib09_case bar simple Pass

20 attrib09_case foo simple Pass

21 carryadd carryadd simple Pass

22 constmuldivmod constmuldivmod simple Pass

23 dff_different_styles dff simple Pass

58

24 dff_different_styles dffa simple Pass

25 dff_different_styles dffa1 simple Pass

26 dff_different_styles dffa2 simple Pass

27 dff_different_styles dffa4 simple Pass

28 dff_different_styles dffsr1 simple Pass

29 dff_different_styles dffsr2 simple Pass

30 dff_different_styles dffsr2_sub simple Pass

31 dff_init dff0_test simple Pass

32 dff_init dff1_test simple Pass

33 dff_init dff0a_test simple Pass

34 dff_init dff1a_test simple Pass

35 dff_init dff_test_997 simple Pass

36 dynslice dynslice simple Pass

37 fiedler-cooley up3down5 simple Pass

38 forgen02 uut_forgen02 simple Pass

39 forloops forloops01 simple Pass

40 forloops forloops02 simple Pass

41 fsm fsm_test simple Pass

42 generate gen_test1 simple Pass

43 generate gen_test2 simple Pass

44 generate gen_test3 simple Pass

45 generate gen_test4 simple Pass

46 generate gen_test5 simple Pass

47 generate gen_test6 simple Pass

48 graphtest graphtest simple Pass

49 hierarchy top simple Pass

50 hierdefparam hierdefparam_a simple Pass

51 hierdefparam hierdefparam_b simple Pass

52 i2c_master_tests i2c_test01 simple Pass

53 i2c_master_tests i2c_test02 simple Pass

59

54 implicit_ports alu simple Pass

55 implicit_ports named_ports simple Pass

56 loops aes simple Pass

57 macros test_def simple Pass

58 macros test_ifdef simple Pass

59

macros

test_comment_in_mac

ro

simple Pass

60 mem2reg mem2reg_test1 simple Pass

61 mem2reg mem2reg_test2 simple Pass

62 mem2reg mem2reg_test3 simple Pass

63 mem2reg mem2reg_test4 simple Pass

64 mem2reg mem2reg_test5 simple Pass

65 mem2reg mem2reg_test6 simple Pass

66 mem_arst MyMem simple Pass

67 memory memtest00 simple Pass

68 memory memtest01 simple Pass

69 memory memtest03 simple Pass

70 memory memtest04 simple Pass

71 memory memtest05 simple Pass

72 memory memtest10 simple Pass

73 memory memtest11 simple Pass

74 memory memtest12 simple Pass

75 memory memtest13 simple Pass

76 multiplier Multiplier_flat simple Pass

77 multiplier Multiplier_2D simple Pass

78 multiplier FullAdder simple Pass

79 muxtree usb_tx_phy simple Pass

80 muxtree default_cases simple Pass

81 muxtree select_leaves simple Pass

82 omsp_dbg_uart omsp_dbg_uart simple Pass

60

83 paramods pm_test1 simple Pass

84 paramods pm_test2 simple Pass

85 paramods pm_test3 simple Pass

86 partsel partsel_test001 simple Pass

87 partsel partsel_test002 simple Pass

88 partsel partsel_test003 simple Pass

89 partsel partsel_test004 simple Pass

90 partsel partsel_test005 simple Pass

91 partsel partsel_test006 simple Pass

92 partsel partsel_test007 simple Pass

93 process blocking_cond simple Pass

94 process uut simple Pass

95 process uart simple Pass

96 realexpr demo_001 simple Pass

97 realexpr demo_004 simple Pass

98 repwhile repwhile_test001 simple Pass

99 retime retime_test simple Pass

100

rotate

a23_barrel_shift_fpga

_rotate

simple Pass

101 scopes scopes_test_01 simple Pass

102 signedexpr signed_test01 simple Pass

103 sincos d simple Pass

104 subbytes subbytes_00 simple Pass

105 task_func task_func_test03 simple Pass

106 task_func task_func_test04 simple Pass

107 task_func task_func_test05 simple Pass

108 usb_phy_tests usb_phy_test01 simple Pass

109 values test_signed simple Pass

110 values test_const simple Pass

111 vloghammer test01 simple Pass

61

112 vloghammer test02 simple Pass

113 vloghammer test03 simple Pass

114 vloghammer test04 simple Pass

115 vloghammer test07 simple Pass

116 vloghammer test08 simple Pass

117 vloghammer test09 simple Pass

118 vloghammer test10 simple Pass

119 wreduce wreduce_test0 simple Pass

120 wreduce wreduce_test1 simple Pass

121 xilinxip xilinxIP single-design Pass

122 counter_bram counter_bram single-design Pass

123 aes_5cycle_2stage aes_top yosys-bigsim Pass

124 bch_encode bch_encode yosys-bigsim Pass

125 openmsp430 openMSP430 yosys-bigsim Pass

126 reed_solomon_decode

r RS_dec

yosys-bigsim Pass

127 softusb_navre softusb_navre yosys-bigsim Pass

128 verilog-pong top yosys-bigsim Pass

129 scripts RAM256X8 yosys-bigsim Pass

130 elliptic_curve_group point_scalar_mult yosys-bigsim Pass

131 bgm bgm vtr-benchmarks Pass

132 blob_merge RLE_BlobMerging vtr-benchmarks Pass

133

boundtop

paj_boundtop_hierarc

hy_no_mem

vtr-benchmarks Pass

134

raygentop

paj_raygentop_hierarc

hy_no_mem

vtr-benchmarks Pass

135 ch_intrinsics memset vtr-benchmarks Pass

136 diffeq1 diffeq_paj_convert vtr-benchmarks Pass

137 diffeq2 diffeq_f_systemC vtr-benchmarks Pass

138 mkPktMerge mkPktMerge vtr-benchmarks Pass

62

139 LU8PEeng LU8PEEng vtr-benchmarks Pass

140

stereovision0

sv_chip0_hierarchy_n

o_mem

vtr-benchmarks Pass

141

stereovision1

sv_chip1_hierarchy_n

o_mem

vtr-benchmarks Pass

142

stereovision2

sv_chip2_hierarchy_n

o_mem

vtr-benchmarks Pass

143

stereovision3

sv_chip3_hierarchy_n

o_mem

vtr-benchmarks Pass

144 or1200 or1200_flat vtr-benchmarks Pass

145 sha sha1 vtr-benchmarks Pass

146 PicoSoC top single-design Pass

147 mkSMAdapter mkSMAdapter4B vtr-benchmarks Pass

148 mkDelayWorker mkDelayWorker32B vtr-benchmarks Pass

149 LU32PEeng LU32PEEng vtr-benchmarks Pass

150 mcml mcml vtr-benchmarks Fail

151 amber23 a23_core yosys-bigsim Fail

152 lm32 lm32_top yosys-bigsim Pass

153 bch_verilog bch_decode yosys-bigsim Fail

154 forgen01 uut_forgen01 simple Pass

155

cons_branch_finish

case_branch_finish_to

p

simple Fail

156 hierdefparam hierdefparam_top simple Pass

157 localparams_attr uut_localparam_attr simple Pass

158 operators optest simple Fail

159 param_attr uut_param_attr simple Pass

160 string_format string_format_top simple Fail

161 task_func_test01 task_func_test01 simple Fail

162 task_func_test02 task_func_test02 simple Fail

163 undef_eqx_nex undef_eqx_nex simple Fail

63

164 wandwor wandwor_test0 simple Fail

165 wandwor wandwor_test1 simple Fail

166 top_bram_n1 top single-design Fail

167 top_bram_n2 top single-design Fail

168 top_bram_n3 top single-design Fail

Table A. 2. Initial 160 Designs Tested

Sl. No. Design Name Top Module Benchmark

Suite

1 aes_kexp128 aes_key_expand_128 simple

2 always01 uut_always01 simple

3 always02 uut_always02 simple

4 always03 uut_always03 simple

5 arraycells array_test001 simple

6 arraycells aoi12 simple

7 arrays01 uut_arrays01 simple

8 attrib01_module bar simple

9 attrib01_module foo simple

10 attrib02_port_decl bar simple

11 attrib02_port_decl foo simple

12 attrib03_parameter foo simple

13 attrib04_net_var bar simple

14 attrib04_net_var foo simple

15 attrib06_operator_suff

ix bar

simple

16 attrib06_operator_suff

ix foo

simple

17 attrib08_mod_inst bar simple

18 attrib08_mod_inst foo simple

64

19 attrib09_case bar simple

20 attrib09_case foo simple

21 carryadd carryadd simple

22 constmuldivmod constmuldivmod simple

23 dff_different_styles dff simple

24 dff_different_styles dffa simple

25 dff_different_styles dffa1 simple

26 dff_different_styles dffa2 simple

27 dff_different_styles dffa4 simple

28 dff_different_styles dffsr1 simple

29 dff_different_styles dffsr2 simple

30 dff_different_styles dffsr2_sub simple

31 dff_init dff0_test simple

32 dff_init dff1_test simple

33 dff_init dff0a_test simple

34 dff_init dff1a_test simple

35 dff_init dff_test_997 simple

36 dynslice dynslice simple

37 fiedler-cooley up3down5 simple

38 forgen02 uut_forgen02 simple

39 forloops forloops01 simple

40 forloops forloops02 simple

41 fsm fsm_test simple

42 generate gen_test1 simple

43 generate gen_test2 simple

44 generate gen_test3 simple

45 generate gen_test4 simple

46 generate gen_test5 simple

47 generate gen_test6 simple

48 graphtest graphtest simple

65

49 hierarchy top simple

50 hierdefparam hierdefparam_a simple

51 hierdefparam hierdefparam_b simple

52 i2c_master_tests i2c_test01 simple

53 i2c_master_tests i2c_test02 simple

54 implicit_ports alu simple

55 implicit_ports named_ports simple

56 loops aes simple

57 macros test_def simple

58 macros test_ifdef simple

59

macros

test_comment_in_mac

ro

simple

60 mem2reg mem2reg_test1 simple

61 mem2reg mem2reg_test2 simple

62 mem2reg mem2reg_test3 simple

63 mem2reg mem2reg_test4 simple

64 mem2reg mem2reg_test5 simple

65 mem2reg mem2reg_test6 simple

66 mem_arst MyMem simple

67 memory memtest00 simple

68 memory memtest01 simple

69 memory memtest03 simple

70 memory memtest04 simple

71 memory memtest05 simple

72 memory memtest10 simple

73 memory memtest11 simple

74 memory memtest12 simple

75 memory memtest13 simple

76 multiplier Multiplier_flat simple

77 multiplier Multiplier_2D simple

66

78 multiplier FullAdder simple

79 muxtree usb_tx_phy simple

80 muxtree default_cases simple

81 muxtree select_leaves simple

82 omsp_dbg_uart omsp_dbg_uart simple

83 paramods pm_test1 simple

84 paramods pm_test2 simple

85 paramods pm_test3 simple

86 partsel partsel_test001 simple

87 partsel partsel_test002 simple

88 partsel partsel_test003 simple

89 partsel partsel_test004 simple

90 partsel partsel_test005 simple

91 partsel partsel_test006 simple

92 partsel partsel_test007 simple

93 process blocking_cond simple

94 process uut simple

95 process uart simple

96 realexpr demo_001 simple

97 realexpr demo_004 simple

98 repwhile repwhile_test001 simple

99 retime retime_test simple

100

rotate

a23_barrel_shift_fpga

_rotate

simple

101 scopes scopes_test_01 simple

102 signedexpr signed_test01 simple

103 sincos d simple

104 subbytes subbytes_00 simple

105 task_func task_func_test03 simple

106 task_func task_func_test04 simple

67

107 task_func task_func_test05 simple

108 usb_phy_tests usb_phy_test01 simple

109 values test_signed simple

110 values test_const simple

111 vloghammer test01 simple

112 vloghammer test02 simple

113 vloghammer test03 simple

114 vloghammer test04 simple

115 vloghammer test07 simple

116 vloghammer test08 simple

117 vloghammer test09 simple

118 vloghammer test10 simple

119 wreduce wreduce_test0 simple

120 wreduce wreduce_test1 simple

121 xilinxip xilinxIP single-design

122 counter_bram counter_bram single-design

123 aes_5cycle_2stage aes_top yosys-bigsim

124 bch_encode bch_encode yosys-bigsim

125 openmsp430 openMSP430 yosys-bigsim

126 reed_solomon_decode

r RS_dec

yosys-bigsim

127 softusb_navre softusb_navre yosys-bigsim

128 verilog-pong top yosys-bigsim

129 scripts RAM256X8 yosys-bigsim

130 elliptic_curve_group point_scalar_mult yosys-bigsim

131 bgm bgm vtr-benchmarks

132 blob_merge RLE_BlobMerging vtr-benchmarks

133

boundtop

paj_boundtop_hierarc

hy_no_mem

vtr-benchmarks

134 raygentop paj_raygentop_hierarc vtr-benchmarks

68

hy_no_mem

135 ch_intrinsics memset vtr-benchmarks

136 diffeq1 diffeq_paj_convert vtr-benchmarks

137 diffeq2 diffeq_f_systemC vtr-benchmarks

138 mkPktMerge mkPktMerge vtr-benchmarks

139 LU8PEeng LU8PEEng vtr-benchmarks

140

stereovision0

sv_chip0_hierarchy_n

o_mem

vtr-benchmarks

141

stereovision1

sv_chip1_hierarchy_n

o_mem

vtr-benchmarks

142

stereovision2

sv_chip2_hierarchy_n

o_mem

vtr-benchmarks

143

stereovision3

sv_chip3_hierarchy_n

o_mem

vtr-benchmarks

144 or1200 or1200_flat vtr-benchmarks

145 sha sha1 vtr-benchmarks

146 forgen01 uut_forgen01 simple

147

cons_branch_finish

case_branch_finish_to

p

simple

148 hierdefparam hierdefparam_top simple

149 localparams_attr uut_localparam_attr simple

150 operators optest simple

151 param_attr uut_param_attr simple

152 string_format string_format_top simple

153 task_func_test01 task_func_test01 simple

154 task_func_test02 task_func_test02 simple

155 undef_eqx_nex undef_eqx_nex simple

156 wandwor wandwor_test0 simple

157 wandwor wandwor_test1 simple

158 top_bram_n1 top single-design

69

159 top_bram_n2 top single-design

160 top_bram_n3 top single-design

Table A. 3. Benchmarks Used In Results Generation

Sl. No. Design Name Top Module Benchmark Suite

1 aes_kexp128 aes_key_expand_128 simple

2 attrib01_module foo simple

3 attrib02_port_decl foo simple

4 attrib03_parameter foo simple

5 attrib04_net_var foo simple

6 attrib06_operator_suffix foo simple

7 attrib08_mod_inst foo simple

8 attrib09_case foo simple

9 dff_different_styles dff simple

10 dff_different_styles dffa simple

11 dff_different_styles dffa1 simple

12 dff_different_styles dffa2 simple

13 dff_different_styles dffa4 simple

14 dff_different_styles dffsr1 simple

15 dff_different_styles dffsr2 simple

16 dff_init dff0_test simple

17 dff_init dff1_test simple

18 dff_init dff0a_test simple

19 dff_init dff1a_test simple

20 dff_init dff_test_997 simple

21 dynslice dynslice simple

22 fiedler-cooley up3down5 simple

24 forloops forloops02 simple

25 fsm fsm_test simple

26 generate gen_test6 simple

70

27 i2c_master_tests i2c_test01 simple

28 i2c_master_tests i2c_test02 simple

29 memory memtest00 simple

30 memory memtest01 simple

31 memory memtest03 simple

32 memory memtest04 simple

33 memory memtest12 simple

34 memory memtest13 simple

35 retime retime_test simple

36 subbytes subbytes_00 simple

37 usb_phy_tests usb_phy_test01 simple

38 aes_5cycle_2stage aes_top yosys-bigsim

39 bch_encode bch_encode yosys-bigsim

40 openmsp430 openMSP430 yosys-bigsim

41 reed_solomon_decoder RS_dec yosys-bigsim

42 softusb_navre softusb_navre yosys-bigsim

43 verilog-pong top yosys-bigsim

44 bgm bgm vtr-benchmarks

45 blob_merge RLE_BlobMerging vtr-benchmarks

46 ch_intrinsics memtest vtr-benchmarks

47 mkPktMerge mkPktMerge vtr-benchmarks

48

stereovision0

sv_chip0_hierarchy_no_

mem

vtr-benchmarks

49

stereovision1

sv_chip1_hierarchy_no_

mem

vtr-benchmarks

50

stereovision2

sv_chip2_hierarchy_no_

mem

vtr-benchmarks

51

stereovision3

sv_chip3_hierarchy_no_

mem

vtr-benchmarks

52 sha sha1 vtr-benchmarks

71

53 diffeq1 diffeq_paj_convert vtr-benchmarks

54 diffeq2 diffeq_f_systemC vtr-benchmarks

55 xilinxip xilinxIP single-design

Table A. 4. Benchmarks That Pass Equivalence Checking Through Yosys in

SymbiFlow

Sl. No. Design Name Top Module Benchmark

Suite

1 aes_kexp128 aes_key_expand_128 simple

2 always01 uut_always01 simple

3 always02 uut_always02 simple

4 always03 uut_always03 simple

5 arraycells array_test001 simple

6 arraycells aoi12 simple

7 arrays01 uut_arrays01 simple

8 attrib01_module bar simple

9 attrib01_module foo simple

10 attrib02_port_decl bar simple

11 attrib02_port_decl foo simple

12 attrib03_parameter foo simple

13 attrib04_net_var bar simple

14 attrib04_net_var foo simple

15 attrib06_operator_suff

ix bar

simple

16 attrib06_operator_suff

ix foo

simple

17 attrib08_mod_inst bar simple

18 attrib08_mod_inst foo simple

19 attrib09_case bar simple

72

20 attrib09_case foo simple

21 carryadd carryadd simple

22 constmuldivmod constmuldivmod simple

23 dff_different_styles dff simple

24 dff_different_styles dffa simple

25 dff_different_styles dffa1 simple

26 dff_different_styles dffa2 simple

27 dff_different_styles dffa4 simple

28 dff_different_styles dffsr1 simple

29 dff_init dff0_test simple

30 dff_init dff1_test simple

31 dff_init dff0a_test simple

32 dff_init dff1a_test simple

33 dff_init dff_test_997 simple

34 dynslice dynslice simple

35 fiedler-cooley up3down5 simple

36 forgen02 uut_forgen02 simple

37 forloops forloops01 simple

38 forloops forloops02 simple

39 fsm fsm_test simple

40 generate gen_test1 simple

41 generate gen_test2 simple

42 generate gen_test3 simple

43 generate gen_test5 simple

44 generate gen_test6 simple

45 graphtest graphtest simple

46 hierarchy top simple

47 hierdefparam hierdefparam_a simple

48 hierdefparam hierdefparam_b simple

49 i2c_master_tests i2c_test01 simple

73

50 i2c_master_tests i2c_test02 simple

51 implicit_ports alu simple

52 implicit_ports named_ports simple

53 loops aes simple

54 macros test_def simple

55 macros test_ifdef simple

56

macros

test_comment_in_mac

ro

simple

57 mem2reg mem2reg_test1 simple

58 mem2reg mem2reg_test2 simple

59 mem2reg mem2reg_test3 simple

60 mem2reg mem2reg_test4 simple

61 mem2reg mem2reg_test5 simple

62 mem2reg mem2reg_test6 simple

63 mem_arst MyMem simple

64 memory memtest00 simple

65 memory memtest01 simple

66 memory memtest03 simple

67 memory memtest04 simple

68 memory memtest05 simple

69 memory memtest10 simple

70 memory memtest11 simple

71 memory memtest12 simple

72 memory memtest13 simple

73 multiplier Multiplier_flat simple

74 multiplier Multiplier_2D simple

75 multiplier FullAdder simple

76 muxtree usb_tx_phy simple

77 muxtree default_cases simple

78 muxtree select_leaves simple

74

79 omsp_dbg_uart omsp_dbg_uart simple

80 paramods pm_test1 simple

81 paramods pm_test2 simple

82 paramods pm_test3 simple

83 partsel partsel_test001 simple

84 partsel partsel_test002 simple

85 partsel partsel_test003 simple

86 partsel partsel_test004 simple

87 partsel partsel_test005 simple

88 partsel partsel_test006 simple

89 partsel partsel_test007 simple

90 process blocking_cond simple

91 process uut simple

92 process uart simple

93 realexpr demo_001 simple

94 realexpr demo_004 simple

95 retime retime_test simple

96

rotate

a23_barrel_shift_fpga

_rotate

simple

97 scopes scopes_test_01 simple

98 signedexpr signed_test01 simple

99 sincos d simple

100 subbytes subbytes_00 simple

101 task_func task_func_test03 simple

102 task_func task_func_test04 simple

103 usb_phy_tests usb_phy_test01 simple

104 values test_signed simple

105 values test_const simple

106 vloghammer test01 simple

107 vloghammer test02 simple

75

108 vloghammer test03 simple

109 vloghammer test04 simple

110 vloghammer test07 simple

111 vloghammer test08 simple

112 vloghammer test09 simple

113 vloghammer test10 simple

114 wreduce wreduce_test0 simple

115 wreduce wreduce_test1 simple

116 xilinxip xilinxIP single-design

117 counter_bram counter_bram single-design

118 aes_5cycle_2stage aes_top yosys-bigsim

119 bch_encode bch_encode yosys-bigsim

120 softusb_navre softusb_navre yosys-bigsim

121 blob_merge RLE_BlobMerging vtr-benchmarks

122 diffeq2 diffeq_f_systemC vtr-benchmarks

123 sha sha1 vtr-benchmarks

Table A. 5. Designs that generate bitstreams in SymbiFlow

Sl. No. Design Name Top Module Benchmark Suite

1 aes_kexp128 aes_key_expand_128 simple

2 always01 uut_always01 simple

3 always02 uut_always02 simple

4 always03 uut_always03 simple

5 arraycells array_test001 simple

6 arraycells aoi12 simple

7 arrays01 uut_arrays01 simple

8 attrib01_module bar simple

9 attrib01_module foo simple

10 attrib02_port_decl bar simple

11 attrib02_port_decl foo simple

76

12 attrib03_parameter foo simple

13 attrib04_net_var bar simple

14 attrib04_net_var foo simple

15 attrib06_operator_suffix bar simple

16 attrib06_operator_suffix foo simple

17 attrib08_mod_inst bar simple

18 attrib08_mod_inst foo simple

19 attrib09_case bar simple

20 attrib09_case foo simple

21 carryadd carryadd simple

22 constmuldivmod constmuldivmod simple

23 dff_different_styles dff simple

24 dff_different_styles dffa simple

25 dff_different_styles dffa1 simple

26 dff_different_styles dffa2 simple

27 dff_different_styles dffa4 simple

28 dff_different_styles dffsr1 simple

29 dff_different_styles dffsr2 simple

30 dff_different_styles dffsr2_sub simple

31 dff_init dff0_test simple

32 dff_init dff1_test simple

33 dff_init dff0a_test simple

34 dff_init dff1a_test simple

35 dff_init dff_test_997 simple

36 dynslice dynslice simple

37 fiedler-cooley up3down5 simple

38 forgen02 uut_forgen02 simple

39 forloops forloops01 simple

40 forloops forloops02 simple

41 fsm fsm_test simple

77

42 generate gen_test1 simple

43 generate gen_test2 simple

44 generate gen_test3 simple

45 generate gen_test4 simple

46 generate gen_test6 simple

47 graphtest graphtest simple

48 hierarchy top simple

49 hierdefparam hierdefparam_a simple

50 hierdefparam hierdefparam_b simple

51 i2c_master_tests i2c_test01 simple

52 i2c_master_tests i2c_test02 simple

53 implicit_ports alu simple

54 implicit_ports named_ports simple

55 loops aes simple

56 macros test_def simple

57 macros test_ifdef simple

58 macros test_comment_in_macro simple

59 mem2reg mem2reg_test1 simple

60 mem2reg mem2reg_test2 simple

61 mem2reg mem2reg_test3 simple

62 mem2reg mem2reg_test4 simple

63 mem2reg mem2reg_test5 simple

64 mem2reg mem2reg_test6 simple

65 mem_arst MyMem simple

66 memory memtest00 simple

67 memory memtest01 simple

68 memory memtest03 simple

69 memory memtest04 simple

70 memory memtest05 simple

71 memory memtest10 simple

78

72 memory memtest11 simple

73 memory memtest12 simple

74 memory memtest13 simple

75 multiplier Multiplier_flat simple

76 multiplier Multiplier_2D simple

77 multiplier FullAdder simple

78 muxtree usb_tx_phy simple

79 muxtree default_cases simple

80 muxtree select_leaves simple

81 omsp_dbg_uart omsp_dbg_uart simple

82 paramods pm_test1 simple

83 paramods pm_test2 simple

84 paramods pm_test3 simple

85 partsel partsel_test001 simple

86 partsel partsel_test003 simple

87 partsel partsel_test004 simple

88 partsel partsel_test005 simple

89 partsel partsel_test006 simple

90 partsel partsel_test007 simple

91 process blocking_cond simple

92 process uut simple

93 process uart simple

94 realexpr demo_001 simple

95 realexpr demo_004 simple

96 repwhile repwhile_test001 simple

97 retime retime_test simple

98

rotate

a23_barrel_shift_fpga_rota

te

simple

99 scopes scopes_test_01 simple

100 signedexpr signed_test01 simple

79

101 sincos d simple

102 subbytes subbytes_00 simple

103 task_func task_func_test03 simple

104 task_func task_func_test04 simple

105 task_func task_func_test05 simple

106 usb_phy_tests usb_phy_test01 simple

107 values test_signed simple

108 values test_const simple

109 vloghammer test01 simple

110 vloghammer test02 simple

111 vloghammer test03 simple

112 vloghammer test04 simple

113 vloghammer test07 simple

114 vloghammer test08 simple

115 vloghammer test09 simple

116 vloghammer test10 simple

117 wreduce wreduce_test0 simple

118 wreduce wreduce_test1 simple

119 xilinxip xilinxIP single-design

120 counter_bram counter_bram single-design

121 bch_encode bch_encode yosys-bigsim

122 reed_solomon_decoder RS_dec yosys-bigsim

123 softusb_navre softusb_navre yosys-bigsim

124 verilog-pong top yosys-bigsim

125 scripts RAM256X8 yosys-bigsim

126 bgm bgm vtr-benchmarks

127 blob_merge RLE_BlobMerging vtr-benchmarks

128

boundtop

paj_boundtop_hierarchy_n

o_mem

vtr-benchmarks

129 ch_intrinsics memset vtr-benchmarks

80

130 diffeq1 diffeq_paj_convert vtr-benchmarks

131 diffeq2 diffeq_f_systemC vtr-benchmarks

132

stereovision3

sv_chip3_hierarchy_no_m

em

vtr-benchmarks

133 sha sha1 vtr-benchmarks

81

BIBLIOGRAPHY

[1] C. Wolf, Yosys Open SYnthesis Suite, http://www.clifford.at/yosys/, 2020.

https://github.com/YosysHQ/yosys-bench

[2] C. Wolf, Yosys Manual, http://www.clifford.at/yosys/files/yosys_manual.pdf, 2020.

[3] Cadence Encounter Conformal. Cadence Design Systems. Available:

https://www.cadence.com/en_US/home/tools/digital-design-and

signoff/conformal-overview.html

[4] Conformal Equivalence Checking Command Reference, Cadence Design

Systems, Product version 21.1, May 2021

[5] Conformal Equivalence Checking User Guide, Cadence Design Systems,

Product version 21.1, May 2021

[6] SymbiFlow open-source FPGA tooling Available:

https://SymbiFlow.github.io/

[7] Xilinx Vivado. Xilinx Corporation. Available:

https://www.xilinx.com/products/design-tools/vivado.html

[8] Xilinx Vivado – Design Flows Overview. Xilinx Corporation. Available:

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_2/u

g892-vivado-design-flows-overview.pdf

[9] Versatile Place and Route. Available:

https://docs.verilogtorouting.org/en/latest/vpr/

[10] ABC: A System for Sequential Synthesis and Verification,

https://people.eecs.berkeley.edu/~alanmi/abc/

[11] Arty 35T website, Digilent. Available :

https://digilent.com/reference/programmable-logic/arty-a7/start

[12] Xilinx, 7 Series FPGAs Data Sheet Overview. Available:

https://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_

Overview.pdf

https://github.com/YosysHQ/yosys-bench
https://www.cadence.com/en_US/home/tools/digital-design-and%20signoff/conformal-overview.html
https://www.cadence.com/en_US/home/tools/digital-design-and%20signoff/conformal-overview.html
https://symbiflow.github.io/
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_2/ug892-vivado-design-flows-overview.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_2/ug892-vivado-design-flows-overview.pdf
https://docs.verilogtorouting.org/en/latest/vpr/
https://digilent.com/reference/programmable-logic/arty-a7/start
https://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf

82

[13] Project X-Ray. Available:

https://SymbiFlow.readthedocs.io/projects/prjxray/en/latest/index.html

[14] Yosys-simple benchmarks Available: https://github.com/YosysHQ/yosys-

bench

[15] Yosys-bigsim benchmarks Available: https://github.com/YosysHQ/yosys-

bigsim

[16] VTR-benchmarks documentation page Available:

http://docs.verilogtorouting.org/en/latest/vtr/benchmarks/

[17] Herklotz, Y., Wickerson, J. Finding and Understanding Bugs in FPGA

Synthesis Tools. In Proceedings of the 2020 ACM/SIGDA International

Symposium on Field-Programmable Gate Arrays (FPGA '20) (2020). pp.

277–287. DOI:https://doi.org/10.1145/3373087.3375310.

[18] M. Girish, G. Gopakumar and D. S. Divya, "Formal and Simulation

Verification: Comparing and Contrasting the two Verification Approaches,"

2021 2nd International Conference on Advances in Computing,

Communication, Embedded and Secure Systems (ACCESS), 2021, pp. 41-

44, doi: 10.1109/ACCESS51619.2021.9563305.

[19] D. Shah, E. Hung, C. Wolf, Serge Bazanaski, “Yosys+nextpnr: an Open

Source Framework from Verilog to Bitstream for Commercial FPGAs,”

IEEE FCCM 2019, 2019.

[20] Grimm T, Lettnin D, Hübner M, “A Survey on Formal Verification

Techniques for Safety-Critical Systems-on-Chip,” Electronics. 2018;

7(6):81. https://doi.org/10.3390/electronics7060081

[21] Wolf, Clifford, Johann Glaser and Johannes Kepler. “Yosys-A Free Verilog

Synthesis Suite.” (2013).

[22] M. Aagaard and M. Leeser, "A formally verified system for logic

synthesis," [1991 Proceedings] IEEE International Conference on

Computer Design: VLSI in Computers and Processors, 1991, pp. 346-350,

doi: 10.1109/ICCD.1991.139915.

https://symbiflow.readthedocs.io/projects/prjxray/en/latest/index.html
https://github.com/YosysHQ/yosys-bench
https://github.com/YosysHQ/yosys-bench
https://github.com/YosysHQ/yosys-bigsim
https://github.com/YosysHQ/yosys-bigsim
http://docs.verilogtorouting.org/en/latest/vtr/benchmarks/
https://doi.org/10.3390/electronics7060081

83

[23] M. Girish, G. Gopakumar and D. S. Divya, "Formal and Simulation

Verification: Comparing and Contrasting the two Verification Approaches,"

2021 2nd International Conference on Advances in Computing,

Communication, Embedded and Secure Systems (ACCESS), 2021, pp. 41-

44, doi: 10.1109/ACCESS51619.2021.9563305.

[24] Syme, Don & Granicz, Adam & Cisternino, Antonio, “Lexing and Parsing,”

2017, 10.1007/978-1-4302-0285-1_16.

[25] Yan Zhang, Xinyu Gao, Ce Bian, Ding Ma and Baojiang Cui, "Homologous

detection based on text, Token and abstract syntax tree comparison," 2010

IEEE International Conference on Information Theory and Information

Security, 2010, pp. 70-75, doi: 10.1109/ICITIS.2010.5689624.

[26] L. Titarenko, O. Hebda and A. Barkalov, "Design of Moore finite state

machine with coding space stretching," 2014 7th International Conference

on Human System Interactions (HSI), 2014, pp. 238-242, doi:

10.1109/HSI.2014.6860482.

[27] Xilinx Vivado Design Suite 7 Series FPGA Libraries Guide Available:

https://www.xilinx.com/content/dam/xilinx/support/documentation/sw_man

uals/xilinx2021_2/ug953-vivado-7series-libraries.pdf

[28] Synopsis Equivalence Checking Available:

https://www.synopsys.com/glossary/what-is-equivalence-checking.html

[29] V. N. Possani, A. Mishchenko, R. P. Ribas and A. I. Reis, "Parallel

Combinational Equivalence Checking," in IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, vol. 39, no. 10, pp. 3081-

3092, Oct. 2020, doi: 10.1109/TCAD.2019.2946254.

[30] Genus Synthesis Solution. Cadence Design Systems. Available :

https://www.cadence.com/en_US/home/tools/digital-design-and-

signoff/synthesis/genus-synthesis-solution.html

[31] Precision FPGA Synthesis. Siemens EDA Software. Available :

https://eda.sw.siemens.com/en-US/ic/precision/

https://www.xilinx.com/content/dam/xilinx/support/documentation/sw_manuals/xilinx2021_2/ug953-vivado-7series-libraries.pdf
https://www.xilinx.com/content/dam/xilinx/support/documentation/sw_manuals/xilinx2021_2/ug953-vivado-7series-libraries.pdf
https://www.synopsys.com/glossary/what-is-equivalence-checking.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/synthesis/genus-synthesis-solution.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/synthesis/genus-synthesis-solution.html
https://eda.sw.siemens.com/en-US/ic/precision/

84

[32] Verismith., Y. Herklotz, J. Wickerson. Imperial College London. Available:

https://github.com/ymherklotz/verismith

[33] Lattice Semiconductor. Available: https://www.latticesemi.com/

[34] Xilinx Artix-7 FPGAs. Available :

https://www.xilinx.com/products/silicon-devices/fpga/artix-7.html

[35] Yosys-SMTBMC. Available :

https://github.com/YosysHQ/yosys/blob/master/backends/smt2/smtbmc.py

[36] Xilinx Vivado. Xilinx Corporation. Available:

https://www.xilinx.com/support/documentation/user_guides/ug473_7Series

_Memory_Resources.pdf

[37] 7 Series DSP48E1 Slice User Guide (UG479) – Xilinx, Available:

https://www.xilinx.com/support/documentation/user_guides/ug479_7Series

_DSP48E1.pdf

[38] Intel Quartus Prime Software Suite. Available :

https://www.intel.com/content/www/us/en/software/programmable/quartus-

prime/overview.html

[39] PicoRV32: A Size-Optimized RISC-V CPU. Available:

https://github.com/YosysHQ/picorv32

[40] Z3 Theorem Prover. Available : https://github.com/Z3Prover/z3

[41] Satisfiability Modulo Theories. Available :

https://en.wikipedia.org/wiki/Satisfiability_modulo_theories

[42] Yices SMT Solver. Available: https://yices.csl.sri.com/

[43] SymbiYosys. Available:

https://symbiyosys.readthedocs.io/en/latest/index.html

[44] Xilinx Artix-7 FPGA AC701 Evaluation Kit. Available:

https://www.xilinx.com/products/boards-and-kits/ek-a7-ac701-g.html

[45] 7 Series FPGAs Memory Resources User Guide – Xilinx. Available:

https://docs.xilinx.com/v/u/en-US/ug473_7Series_Memory_Resources

https://github.com/ymherklotz/verismith
https://www.latticesemi.com/
https://www.xilinx.com/products/silicon-devices/fpga/artix-7.html
https://github.com/YosysHQ/yosys/blob/master/backends/smt2/smtbmc.py
https://www.xilinx.com/support/documentation/user_guides/ug473_7Series_Memory_Resources.pdf
https://www.xilinx.com/support/documentation/user_guides/ug473_7Series_Memory_Resources.pdf
https://www.xilinx.com/support/documentation/user_guides/ug479_7Series_DSP48E1.pdf
https://www.xilinx.com/support/documentation/user_guides/ug479_7Series_DSP48E1.pdf
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/overview.html
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/overview.html
https://github.com/YosysHQ/picorv32
https://github.com/Z3Prover/z3
https://en.wikipedia.org/wiki/Satisfiability_modulo_theories
https://yices.csl.sri.com/
https://symbiyosys.readthedocs.io/en/latest/index.html
https://www.xilinx.com/products/boards-and-kits/ek-a7-ac701-g.html
https://docs.xilinx.com/v/u/en-US/ug473_7Series_Memory_Resources

85

[46] Nexys Video Artix-7 FPGA: Trainer Board for Multimedia Applications.

Available: https://digilent.com/shop/nexys-video-artix-7-fpga-trainer-board-

for-multimedia-applications/

[47] Using SystemVerilog Assertions in RTL. Available: https://www.design-

reuse.com/articles/10907/using-systemverilog-assertions-in-rtl-code.html

[48] M. Rathmair, F. Schupfer and C. Krieg, "Applied formal methods for

hardware Trojan detection," 2014 IEEE International Symposium on Circuits and

Systems (ISCAS), 2014, pp. 169-172, doi: 10.1109/ISCAS.2014.6865092.

[49] IEEE Computer Society, “IEEE Standard for Verilog Hardware Description

Language”, IEEE 1364-2005, 2006.

https://digilent.com/shop/nexys-video-artix-7-fpga-trainer-board-for-multimedia-applications/
https://digilent.com/shop/nexys-video-artix-7-fpga-trainer-board-for-multimedia-applications/
https://www.design-reuse.com/articles/10907/using-systemverilog-assertions-in-rtl-code.html
https://www.design-reuse.com/articles/10907/using-systemverilog-assertions-in-rtl-code.html

	Formally Verifiable Synthesis Flow In FPGAs
	Recommended Citation

	tmp.1663141151.pdf.JsGen

