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ABSTRACT 

 

 

INTEGRATION OF DIGITAL SIGNAL PROCESSING BLOCKS IN 

SYMBIFLOW FPGA TOOLCHAIN FOR ARTIX-7 DEVICES 

 

SEPTEMBER 2022 

 

ANDREW HARTNETT 

B.S., UNIVERSITY OF MASSACHUSETTS AMHERST 

M.S.E.C.E., UNIVERSITY OF MASSACHUSETTS AMHERST 

 

Directed by: Professor Russell Tessier 

 

The open-source community is a valuable resource for many hobbyists and researchers 

interested in collaborating and contributing towards publicly available tools. In the area of field 

programmable gate arrays (FPGAs) this is no exception. Contributors seek to reverse-engineer 

the functions of large proprietary FPGA devices. An interesting challenge for open-source FPGA 

engineers has been reverse-engineering the operation and bitstreams of digital signal processing 

(DSP) blocks located in FPGAs. SymbiFlow is an open-source FPGA toolchain designed as a 

free alternative to proprietary computer-aided design tools like Xilinx’s Vivado. For SymbiFlow, 

mapping logical multipliers to DSP blocks and generating DSP block bitstreams has been left 

unimplemented for the Artix-7 family of FPGAs. This research seeks to rectify this shortcoming 

by introducing DSP information for the place and route functions into SymbiFlow. By delving 

into the SymbiFlow architecture definitions and creating functioning FPGA assembly code 

(FASM) files for Project X-Ray, a bitstream generator for Artix-7, we have been able to 

determine the desired output of the open-source Versatile Place & Route tool that will generate a 

working DSP bitstream. We diagnose and implement changes needed throughout the SymbiFlow 

toolchain, allowing for DSP design bitstreams to be successfully generated with open-source 

tools. 



vi 
 

TABLE OF CONTENTS 

 

 

  

ACKNOWLEDGEMENTS …………………………………………………………………………….. iv 

ABSTRACT ………………………………………………………………………………………………. v 

TABLE OF CONTENTS ……………………………………………………………………………….. vi 

LIST OF TABLES ……………………………………………………………………………………... viii 

LIST OF FIGURES ……………………………………………………………………………………... ix 

CHAPTER 1 - INTRODUCTION ………………………………………………………………………. 1 

1.1 Xilinx Vivado ………………………………………………………………………………………. 3 

1.2 SymbiFlow Toolchain ……………………………………………………………………………... 3 

1.3 DSP Blocks …………………………………………………………………………………………. 4 

1.4 Thesis Outline …………………………………………………………………………………….... 7 

CHAPTER 2 - SYMBIFLOW …………………………………………………………………………... 8 

2.1 Yosys ………………………………………………………………………………………………...9 

2.2 VPR / Genfasm …………………………………………………………………………………….. 9 

2.3 Project X-Ray …………………………………………………………………………………….. 10 

2.4 Using SymbiFlow ………………………………………………………………………………….11 

2.5 State of DSP Block Usage in SymbiFlow ……………………………………………………….. 13 

CHAPTER 3 - ARCHITECTURE DEFINITIONS AND GENFASM …………………………….... 15 

3.1 SymbiFlow Architecture Definitions ……………………………………………………………. 15 

3.1.1 Architecture Primitives ……………………………………………………………………... 15 

3.1.2 Generating Routing Graph and Architecture File …………………………………………17 

3.1.3 Developing A Basic DSP48E1 Primitive ………………………………………………….... 17 

3.2 2x2 bit Multiplier Design Under Test (DUT) ……………………………………………………19 

3.2.1 Symmetric Flow through SymbiFlow and Vivado ……………………………………….... 19 

3.2.2 Differences between SymbiFlow and Vivado FASM files ………………………….……... 21 

CHAPTER 4 – COMPLETE SYMBIFLOW DSP BITSTREAM …………………………………... 24 

4.1 Diagnosing DSP Support Points ……………………………………………………………….... 24 

4.2 Investigating the Vivado Routing Resources GUI ……………………………………………... 24 

4.3 Yosys DSP Information into VPR ………………………………………………………………. 30 

4.4 Developing DSP48E1 Primitive …………………………………………………………………. 32 



vii 
 

4.5 Changes to Genfasm ……………………………………………………………………………... 34 

4.6 Summary of Modifications ………………………………………………………………………. 35 

CHAPTER 5 – EXPANDING DSP FUNCTIONALITY …………………………………………….. 36 

5.1 Full 25x18 bit Multiplier ………………………………………………………………………….36 

5.2 Partial Pre-adder ………………………………………………………………………………….39 

5.3 Pipelined Multiplier ……………………………………………………………………………… 42 

CHAPTER 6 – CONCLUSION ………………………………………………………………………... 46 

6.1 Future Work ……………………………………………………………………………………… 46 

6.1.1 Incorporating C Port for DSP48E1 ……………………………………………………….... 46 

6.1.2 Investigating the D Port Congestion Issue …………………………………………………. 47 

6.1.3 Allowing Behavioral Modeling of DSP48E1 ……………………………………………….. 47 

BIBLIOGRAPHY ………………………………………………………………………………………. 48 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



viii 
 

LIST OF TABLES 

Table               Page 

 

1 - STEPS CALLED AND TOOLS USED WITHIN SYMBIFLOW …………………………. 13 

2 - DSP48E1 PORTS TIED TO GND NEEDED FOR WORKING 2X2 MULTIPLIER ……... 27 

3 - MODE AND INVERTED SIGNALS FOR A*B PORT MULTIPLIER ……………………29 

4 - PORTS REMOVED FROM VPR LIBRARIES BASED ON VIVADO GUI ……………... 31 

5 - MODE AND INVERTED SIGNALS FOR 25X18 BIT MULTIPLIER …………………… 37 

6 - LED OUTPUT COMBINATIONS OF 25X18 BIT DSP MULTIPLIER ………………….. 38 

7 - MODE AND INVERTED SIGNALS FOR MULTIPLIER WITH PRE-ADDER ………… 40 

8 - LED OUTPUT COMBINATIONS OF MULTIPLIER WITH PRE-ADDER ……………... 42 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ix 
 

LIST OF FIGURES 

Figure                          Page 

 

1 - SUPPORTED ARCHITECTURE FOR VARIOUS POPULAR FPGAS …………………… 2 

2 - VISUALIZATION OF TOOLS INVOLVED IN SYMBIFLOW TOOLCHAIN …………... 4 

3 - INTERNAL ARCHITECTURE OF 7 SERIES DSP48E1 SLICE …………………………... 5 

4 - DSP48 MACRO PROVIDED BY VIVADO FOR DSP BLOCK CREATION …………….. 6 

5 - DETAILED SYMBIFLOW TOOLCHAIN WITH ARCHITECTURE DEFINITIONS AND 

INTERMEDIATE FILES ………………………………………………………………….. 8 

6 - COUNTER_TEST.V, PART OF SYMBIFLOW-EXAMPLES ……………………………. 11 

7 - COMMON.MK MAKEFILE USED TO CALL STEPS WITH SYMBIFLOW …………… 12 

8 - SNAPSHOT OF RAMB18E1.MODEL.XM ……………………………………………….. 16 

9 - SNAPSHOT OF BRAM.PB_TYPE.XML SHOWING RAMB18E1 INTERCONNECTS .. 16 

10 - PRELIMINARY DSP48E1 PRIMITIVE USED FOR PLACE AND ROUTE …………… 18 

11 - CUSTOM 2X2 BIT UNSIGNED MULTIPLIER USING DSP48E1 …………………….. 19 

12 - SYMMETRIC FLOW BETWEEN SYMBIFLOW AND VIVADO ……………………... 20 

13 - FASM FILE INFORMATION COMPARISON ………………………………………….. 22 

14 - ASSISTED WORKING 2X2 BIT MULTIPLIER FLOW THROUGH SYMBIFLOW ….. 24 

15 - VIVADO ROUTED FLOORPLAN FOR 2X2 MULTIPLIER …………………………… 25 

16 - SWITCHBOX INTERCONNECT FASM FILE WITH GUI …………………………….. 26 

17 - ROUTING RESOURCE GUI VIEW OF DSP BLOCK ………………………………….. 28 

18 - 2X2 BIT MULTIPLIER RTL CODE WITH PARAMETERS …………………………… 29 

19 - PART OF CELLS_MAP.V DEFINITION OF A DSP48E1_VPR CELL ………………... 32 

20 - "FASM_PARAMS" SECTION OF DSP48E1 PRIMITIVE ……………………………… 33 

21 - RTL ASSIGNMENT OF INPUT SWITCHES ONTO A AND B INPUT SIGNALS …… 38 

22 - DSP48E1 INTERNALS WITH PRE-ADDER INTO 25X18 BIT MULTIPLIER ……….. 39 

23 - RTL ASSIGNMENT OF INPUT SWITCHES ONTO A, B, AND D INPUT SIGNALS .. 41 

24 - PIPELINED REGISTER FLOW WITHIN THE DSP48E1 ……………………………… 43 

25 - RTL INSTANTIATION OF A PIPELINED 25X18 BIT MULTIPLIER DSP48E1 ……... 44 

26 - CLOCK DIVIDER USED TO DRIVE DSP48E1 ………………………………………… 44 

 

 



1 
 

CHAPTER 1 - INTRODUCTION 

 

While Application Specific Integrated Circuits (ASICs) have been used as the primary 

hardware for digital logic implementation over the past few decades, the recent growth in 

popularity of Field Programmable Gate Arrays (FPGAs) now provides them with competition. 

FPGAs offer the reconfigurability of hardware post-manufacturing, which leads to more 

inexpensive implementation of digital circuitry. This flexibility is provided at the cost of 

optimality and efficiency towards a specific task which is a strong benefit of ASICs. 

Nevertheless, work has continued with FPGAs to leverage their reprogrammable digital 

hardware. Creative new applications for the FPGA include implementing the devices in data 

centers [1] and in hybrid-form with CPUs [2]. For data centers, work has been done to 

demonstrate the feasibility of allowing users to access portions of the device through the cloud 

and dividing the same chip amongst multiple tenants [1]. Further research has been conducted in 

combining the FPGA architecture with that of the existing CPU in modern computers. Doing so 

would allow for data transfer between the two devices, where FPGA reconfigurability and CPU 

efficiency can both be utilized [2]. 

Currently, popular FPGA vendors include Xilinx (AMD) [3], Altera (Intel) [4], and 

Lattice [5], among others. This work focuses on the Xilinx Artix-7 family of FPGAs and its 

Vivado Design Suite [6], [7] due to the popularity of the vendor and tools. Vivado offers the 

ability to generate bitstreams for their FPGAs from code written in a hardware description 

language (HDL). A commonly used HDL for this task is called Verilog. Using Verilog, one can 

describe the desired hardware configuration needed at register-transfer level (RTL), and then use 

Vivado to conduct the full flow of synthesis, place & route, and bitstream generation. As an 

alternative to proprietary tools like Vivado, the open-source synthesis toolchain SymbiFlow [8] 

seeks to emulate the same functions of synthesis, place & route, and bitstream generation for a 

variety of FPGA families. An important feature present in Vivado yet missing in SymbiFlow at 

the time of this writing is the processing of designs that use digital signal processing (DSP) 

blocks. These blocks are commonly used for bit multiplication and pattern detection in digital 

circuitry meant to emulate analog processes. One example of their use is in applications needing 

double-precision floating-point operations, presenting a large step forward in reducing necessary 
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hardware resources [9]. With DSP block support missing in the SymbiFlow toolchain, designs 

which could use DSP blocks are not able to successfully generate bitstreams for Artix-7 devices. 

The SymbiFlow authors demonstrate this in a table of implemented architectural features, copied 

here as Figure 1 [8]. The figure includes information for four different bitstream generation tools, 

each focused on FPGAs from a unique vendor. Project Icestorm [10] and Project Trellis [11] 

provide bitstream documentation for the Lattice iCE40 and Lattice ECP5 [5] architectures, 

respectively. Project X-Ray [12] documents the architecture of Xilinx 7-Series devices and is 

used in this work. Lastly, the QuickLogic [13] database documents bitstreams of the EOS-S3 and 

QLF-K4N8 FPGAs [14]. 

 

 
Figure 1 - Supported architecture for various popular FPGAs. Project X-Ray 

is the bitstream generation tool for the Xilinx Artix-7 family of boards (from [8]) 

 

Through this work, we diagnose points within the SymbiFlow toolchain that need 

modification to offer DSP block support. Completing these changes allows us to generate the 

first DSP design bitstream in SymbiFlow for Artix-7 FPGAs, enhancing the abilities of the open-

source toolchain. From here, we broaden the functionality of the block to include support for the 

full 25x18 bit multiplier, a partial pre-adder, and pipelined multiplier support. The continuation 

of this introduction will provide a comparison of the Vivado Design Suite and the current state of 
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the SymbiFlow toolchain. Then, an overview of the Artix-7 digital signal processing (DSP) 

block, referred to as the DSP48E1, will be provided. 

 

1.1 Xilinx Vivado 

Xilinx Vivado [7] is a proprietary computer-aided design tool used in FPGA development 

to create bitstreams. Its steps can be broken down into synthesis, implementation, and bitstream 

generation. Following synthesis, the user is provided with a gate-level netlist of the input RTL 

design along with resource utilization statistics, including the percentage of I/O ports and other 

logic gates used by the FPGA. Warnings and errors are shown if design rule checks fail during 

this step. The physical design step performs place and route of cells onto the target FPGA 

architecture. A visual representation of the routing network is made available via a graphical user 

interface (GUI). All mapped cells and the routed logic between them can be seen via this user 

interface. Finally, the bitstream generation step creates an FPGA-specific bitstream file that can 

be loaded onto an FPGA. Each of these functions provides information to the user in the form of 

log files and customization options. However, the proprietary nature of Vivado prevents source-

code-level configurability and access to algorithms used in each step. 

 

1.2 SymbiFlow Toolchain 

 The purpose of the SymbiFlow toolchain [8] is to provide a free and open-source 

alternative to proprietary tools like Vivado for creating FPGA designs and bitstreams. In 

combining tools for synthesis, place & route, and bitstream generation, SymbiFlow allows users 

to take an RTL design and generate bitstreams functioning on FPGAs from several vendors. 

These FPGA vendors include Xilinx, Lattice, and QuickLogic as well as limited support for 

others. The Xilinx 7-series FPGAs are the focus of this study, with particular focus on the Artix-

7 35TCSG324-1 FPGA. For the Artix-7 chip, SymbiFlow presents a flow using the following 

tools: Yosys [15] for synthesis, Versatile Place & Route (VPR) [16] for place and route, and 

Project X-Ray [12] for bitstream generation. A simplified visual representation of these tools 

within the toolchain can be seen in Figure 2. A version of each tool comes provided with 

installation of SymbiFlow. 

https://www.zotero.org/google-docs/?c91Glv
https://www.zotero.org/google-docs/?36a7gC
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Figure 2 - Visualization of tools involved in SymbiFlow toolchain 

 

1.3 DSP Blocks 

 In FPGAs, DSP blocks are circuits used to implement multiplication, multiply-

accumulate, and similar arithmetic operations. The Arty 35T FPGA used in this work offers 90 

of these DSP blocks spread across two columns, while the number available DSPs on larger 

Artix-7 chips can rise above 2,500 [7], [17]. The DSP block (also called a slice) native to Xilinx 

7 series FPGAs is referred to as a DSP48E1. These cells can be used for a variety of tasks based 

on their architecture. Some of the functions provided by Xilinx for the DSP48E1 are multiply, 

multiply-accumulate, multiply add, three-input add, barrel shift, wide-bus multiplexing, 

magnitude comparator, bitwise logic functions, pattern detect, and wide counter [17]. 

 Figure 3 shows the internal architecture of the DSP48E1 block from the Xilinx 7 Series 

DSP48E1 Slice User Guide [17]. Data can enter the slice through input ports A, B, C, and D, 

each of which is wired internally through different logic functions. For instance, to implement 

the 25x18 bit multiplier, data can enter through the A and B ports. Alternatively, setting the 

“USE_DPORT” parameter to “TRUE” in the RTL design, the multiplier could be configured to 

output the function B×D instead. The pre-adder can be included in a similar fashion to produce 

the function B×(A+D). The output of the DSP block is directed through the P port. In addition to 

the ports shown, reset and clock enable signals exist for the A through D inputs to allow for 

pipelining. 

 

  

 



5 
 

 
Figure 3 - Internal architecture of 7 Series DSP48E1 slice (from [17]) 

 

To determine the internal routing of signals and function implementation, there are three 

important inputs: INMODE, OPMODE, and ALUMODE. These signals are connected to 

multiplexers X, Y, and Z found between the logic units in the DSP48E1. INMODE is responsible 

for setting the output of the pre-adder, optionally choosing between inputs A and D as the output 

to be fed into the 25x18 multiplier.  OPMODE controls the signals provided to the secondary 

logic unit. Finally, ALUMODE sets the function to be conducted within the secondary logic unit, 

taking in the outputs of multiplexers X, Y, and Z. An incorrect initialization of any of these 

values will result in unintended behavior of the DSP48E1 slice and are critical towards proper 

configuration of the block.  

DSP blocks can be processed by Vivado using an intellectual property (IP) module called 

the DSP48 Macro [18]. Using the GUI, a user can instantiate the DSP48 Macro with their desired 

logic function and I/O signal bit widths. This approach simplifies needing to understand values 

for signals INMODE, OPMODE, and ALUMODE, as they are automatically set to implement 

the given logic function. A snapshot of the DSP48 Macro is shown in Figure 4. The user’s 

defined DSP slice is in a simplified form on the left side of the window. In this example, a B×D 

multiplier was selected in the “Instructions” tab and the bit widths for these inputs are being set 
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to three bits wide. This implements a 3x3 bit signed multiplier. Alternatively, if the MSB of each 

input is set to 0, a 2x2 bit unsigned multiplier can be implemented. 

 

 
Figure 4 - DSP48 Macro provided by Vivado for DSP block creation (from [7]) 

 

 An important note about IP cores in Vivado is that unlike HDL written by the user, 

synthesized IP module information is encrypted post-synthesis. This approach denies the user 

access to configurability outside of the DSP48 Macro GUI and in the synthesized netlist. The 

need for encryption likely arises due to Xilinx’s ownership of these IP cores; it is meant to 

prevent other individuals or companies from stealing their work and becoming a competitor. In 

all, Vivado provides support for the DSP48E1 slice with a detailed wizard allowing 

implementation of a user’s exact needs. 

 At time of this writing, DSP block processing leading to bitstream generation has 

remained unimplemented for the Artix-7 SymbiFlow toolchain. The inclusion of DSP 

functionality is considered valuable due to the popularity of Artix-7 devices. Proprietary tools are 

often inaccessible for open-source contributors and individual researchers, lending to the need 
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for further contributions towards open-source initiatives such as SymbiFlow. Addressing DSP 

implementation for the Artix-7 FPGA family offers insight into similar efforts for other FPGA 

families in the future. 

 

1.4 Thesis Outline 

This document is divided into five chapters, with this introduction serving as the first. An 

in-depth view into the tools that make up SymbiFlow, how it is used and its status for DSP block 

support for the Artix-7 family of FPGAs is presented in Chapter 2. Chapter 3 details the 

SymbiFlow FPGA architecture definitions and FPGA assembly (FASM) file formats used to 

generate bitstreams. A method of reverse engineering proper DSP FASM information from 

Vivado is presented as well. Chapter 4 breaks down all modifications made within SymbiFlow to 

support a basic use of the DSP48E1 block. Finally, Chapter 5 describes how this basic 

implementation has been expanded to include functions such as the 25x18 bit multiplier, partial 

pre-adder, and pipelining support. 
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CHAPTER 2 - SYMBIFLOW 

 

 The SymbiFlow toolchain can be divided into its three main steps: synthesis, place & 

route, and bitstream generation. Figure 5 provides a detailed view of how the tools 

accomplishing these tasks are able to communicate with one another by displaying their 

intermediate files. Further, it introduces the notion of the architecture file and routing resource 

graph. These two files and their importance for the addition of DSP blocks will be the focus of 

Chapter 3. In the following sections, each of these tools will be viewed in detail. 

 

                  

Figure 5 - Detailed SymbiFlow toolchain with architecture definitions and intermediate files  
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2.1 Yosys 

Yosys [15], [19], is an open-source synthesis tool developed by Claire Wolf. It is built as 

a framework around the University of California Berkeley’s ABC [20] sequential synthesis and 

verification tool, providing several additional features which support mapping to a variety of 

popular FPGA families. For the purposes of this work, we use Yosys to take in Verilog-2005 

register-transfer level (RTL) code and produce a synthesized netlist in lookup tables (LUTs), 

memory-based truth tables. Yosys is the first of three tools making up the SymbiFlow toolchain 

[8]. In SymbiFlow, Yosys synthesis is conducted in two passes to generate an extended BLIF file 

(EBLIF), which is subsequently passed into the place and route tool VPR. 

Synthesis in Yosys is conducted over several passes, some of which include optimization 

of flip-flops or limiting the design to use LUTs in place of block random access memory 

(BRAM) modules. It is the subsequent technology mapping and optimizations that lead to the 

generation of a synthesized netlist from RTL input. When executing Yosys, there are three main 

commands that are commonly used. They are tailored towards the FPGA architecture that is used 

within this work. These commands are the following: 

 

● read_verilog 

● synth_xilinx 

● write_verilog 

 

The “read_verilog” command accepts as input one or more Verilog-2005 RTL files to be 

synthesized. The “synth_xilinx” command is the Xilinx family specific synthesis command, 

utilizing Xilinx FPGA cell libraries to create a netlist from the RTL input. Lastly, 

“write_verilog” instructs Yosys to print out its synthesized netlist for the design. 

 

2.2 VPR / Genfasm 

During the second stage of the SymbiFlow toolchain, VPR receives the EBLIF netlist 

output of Yosys to conduct three steps: packing, placement, and routing [21], [22]. The packing 

step of VPR will use technology mapping to turn the EBLIF netlist into VPR’s own form of 
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netlist [16]. It makes use of the chip’s architecture file to understand the ports and interconnects 

going into and from each tile of the FPGA. The next two steps, placement and routing, are 

equivalent to the steps in Vivado. The defined logic blocks are then assigned to locations within 

the chosen FPGA architecture through the placement step. Locations for instantiation can be 

chosen based on factors such as area or power efficiency. Once placed, VPR makes use of its 

routing graph to determine the path which signals between logic blocks will take across the 

FPGA. These paths are directly written as FASM feature statements at the end of VPR through a 

script called Genfasm. Information involving locations of switchboxes being used and which 

programmable interconnect points (PIPs) are being activated to route signals are printed to this 

file. During its runtime, VPR also outputs intermediary files such as .pack. .place, and .route 

files, which describe logic location and routing assignments, and the execution output log from 

each VPR step. 

VPR generates a FASM file by the end of its execution. Each line of a FASM file is 

called a feature, and it specifies either a routing connection or other attribute of a specific tile at a 

specific location on the chip.  

 Two of the supplemental files needed to run VPR, the routing graph and architecture file 

for the FPGA, can be generated separately from the SymbiFlow toolchain. The SymbiFlow 

authors provide a repository through GitHub titled SymbiFlow Architecture Definitions, through 

which it is possible to contribute information for new families of FPGAs and generate new sets 

of these files [14], [23]. These files are necessary resources for incorporating DSP blocks into the 

Artix-7 architecture definitions and subsequent toolchain. The SymbiFlow architecture 

definitions will be explored further in Chapter 3. 

 

2.3 Project X-Ray 

Project X-Ray serves as the final step in the SymbiFlow toolchain [12], [24]. It is 

responsible for taking in the FASM file provided by VPR and Genfasm, producing a bitstream 

that can be loaded onto the given FPGA. Most of Project X-Ray is a database repository, 

containing information on possible connections for all supported FPGA families. The Artix-7 

portion of this database contains pin maps for many variations of the chip, including the Xilinx 

Artix-7 xc7a35tcsg324-1 that is used for our testing purposes. To generate a bitstream from the 
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FASM file, Project X-Ray will consult its list of segbits files [25]. These are a set of databases 

provided by Project X-Ray containing all possible FASM features for a given tile. The segbits 

files are necessary to translate FASM features to their appropriate bits in the bitstream. Each 

connection combination is associated with a bit in the bitstream that will either be toggled on or 

off depending on whether its feature is present in the FASM file. The fixed length bitstream can 

then be written by translating the features given to their respective bits from the segbits file 

before being uploaded to the FPGA. 

 

2.4 Using SymbiFlow 

Along with the Yosys, VPR, and Project X-Ray tools, an example directory titled 

“symbiflow-examples” is provided with SymbiFlow [26]. This includes several designs 

showcasing how new users can gain familiarity with using the toolchain. One such example is 

“counter_test”, the code for which can be found in Figure 6. 

 

 

Figure 6 - counter_test.v, part of symbiflow-examples (from [26]) 
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 The counter_test.v design consists of a clock and buffer with outputs connected to four 

LEDs. The design is written to count in binary and display the result on the LEDs every clock 

cycle. It is a simple design, but helpful for understanding how SymbiFlow can take a Verilog 

RTL file such as counter_test.v and generate a working bitstream for the Artix-7 FPGA. 

 

 

Figure 7 - common.mk Makefile used to call steps with SymbiFlow (from [26]) 

 

 SymbiFlow operates from a Makefile which references the tools in the toolchain with 

their respective commands. A snapshot of the call steps within the common.mk Makefile can be 

seen in Figure 7. The final target “${BOARD_BUILDIR}/${TOP}.bit” to generate a bitstream 

from the FASM file is called first. This step, as well as all others, has a dependency on the 

previous step in the flow being completed first. For the “.bit” step, it requires that the “.fasm” 

step was run to confirm that there is a FASM file to generate a bitstream from. These 

dependencies cascade down the toolchain until Yosys can be executed to create the synthesized 

netlist EBLIF file. Table 1 below shows each command found within the file common.mk. In 

order, they will take in an RTL input to Yosys and put the synthesized netlist through place and 

route in VPR, while ending with bitstream generation with Project X-Ray. While Project X-Ray 

has many functions, one of its main tasks is in housing a database of hundreds of FPGA 
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architectures. This tool is used to translate each line of a FASM file to exact bits within a 

bitstream, determining which features should be set ON or OFF based on entries in its database. 

 

Table 1 - Steps called and tools used within SymbiFlow 

Command Description 

symbiflow_synth Calls Yosys to synthesize RTL input into output EBLIF file. 

Utilizes synth.tcl script to execute Yosys twice 

symbiflow_pack Calls VPR to convert EBLIF into a netlist, determining which 

cell blocks should be used to implement design 

symbiflow_place Calls VPR to determine optimal placement location of cells in 

the netlist 

symbiflow_route Calls VPR to route logic between cells in the .place file 

symbiflow_write_fasm Calls Genfasm, a tool packaged along with VPR. Takes in the 

Yosys EBLIF netlist and .pack, .place, and .route files from 

VPR to create a FASM file 

symbiflow_write_bitstream Translates FASM file into a bitstream using Project X-Ray 

database for the desired FPGA (this project uses the Arty 35T, 

or xc7a35tcsg324-1 [27]) 

 

For designs in symbiflow-examples, the SymbiFlow structure will create a “build” 

directory that contains all intermediate files generated throughout the toolchain.  

 

2.5 State of DSP Block Usage in SymbiFlow 

Prior to this work, designs using DSP blocks targeted to the Artix-7 family of FPGAs 

have not been supported in SymbiFlow. While Yosys does offer support for synthesis of DSP 

blocks, DSP48E1 information is missing from the architecture file and routing graph used within 
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VPR. The SymbiFlow authors also state that database information for the DSP block has not 

been fully documented within Project X-Ray as of yet [8]. Due to missing DSP implementation 

in the architecture file and routing graph, the SymbiFlow TCL script used to execute Yosys 

includes a “-nodsp” flag throughout to prevent the synthesis of DSP slices during the step. This 

forces Yosys to use LUT logic in place of a DSP block for multiplication implementation. The 

Yosys execution TCL script and its associated cell libraries avoid instantiating DSP blocks 

wherever possible. 

In a normal run of SymbiFlow, a second set of cell libraries are used between Yosys 

synthesis and VPR place and route. The two files, called cells_sim.v and cells_map.v, are 

referred to as the VPR libraries. They are necessary to translate the gate level netlist that is 

output from Yosys onto a set of VPR-readable cells that can be packed, placed, and routed onto 

the FPGA. The VPR libraries provided with SymbiFlow contain placeholder DSP48E1 cell 

definitions taken from Xilinx’s publicly available Xilinx Equivalence Checking Library (xeclib) 

[7]. Without architecture and routing information for the DSP48E1 for VPR, the VPR library 

definition of the DSP block has nothing to translate onto. 
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CHAPTER 3 - ARCHITECTURE DEFINITIONS AND GENFASM 

3.1 SymbiFlow Architecture Definitions 

The SymbiFlow Architecture Definitions [14], [23] (also referred to as symbiflow-arch-

defs) are a necessary starting point for incorporating DSP blocks into the Artix-7 flow of 

SymbiFlow. The repository provides a framework for defining cell primitives that then can 

produce routing graphs and architecture files for a desired FPGA. The routing graph and 

architecture file provided with SymbiFlow do not include DSP information at the time of this 

writing. In the following sections, we will explain how these primitives are used to generate 

these two files. A design under test will also be used to highlight changes that needed to be made 

for these architecture definitions to support the DSP48E1 block. 

 

3.1.1 Architecture Primitives 

FPGA primitives can be thought of as the building blocks for their target architecture. 

The FPGA is divided into many self-contained tiles with wiring between them, with each tile 

containing a number of primitives. Current primitives for the Artix-7 family include definitions 

for the majority of available hardware such as buffers, clocks, LUTs, most BRAMs, and other 

tiles. Despite each of these cells being very different in function, their primitive definitions are 

written using the same model. The model involves two files: *.model.xml and *.pb_type.xml. In 

place of the star, the name of the primitive is placed. For example, there are several different 

forms of BRAM available on the Artix-7 35T FPGA. One of them is the RAMB18E1. For its 

primitive definition, its associated files are called ramb18e1.model.xml and 

ramb18e1.pb_type.xml. The model.xml file describes the input and output ports for the primitive 

as well as their bit widths. An example of the RAMB18E1 model.xml file is shown in Figure 8. 

The pb_type.xml file is typically much longer, and this is where interconnects between the tile 

and the primitive are defined. For tiles that contain multiple types of primitives (such as the 

BRAM cell), this can lead to having multiple pb_type.xml files that reference each other 

hierarchically. A look at the interconnects of the RAMB18E1 module can be seen in Figure 9. 
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Figure 8 - Snapshot of ramb18e1.model.xml (from [23]) 

 

 

 
Figure 9 - Snapshot of bram.pb_type.xml showing RAMB18E1 interconnects (from [23]) 
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3.1.2 Generating Routing Graph and Architecture File 

The symbiflow-arch-defs repository contains an extensive array of CMake files for 

automatic routing graph and architecture file generation. After creating all desired primitive and 

tile definitions for the target architecture, the user can run “make env” for the symbiflow-arch-

defs directory. This command will create a new build directory that contains copies of the 

primitive and tile definitions, along with the framework for creating routing graphs and 

architecture files. By the end of this process, files will have been generated using the primitive 

and tile definitions for the Artix-7. The most notable of these files for SymbiFlow are the newly 

created routing graph (rr_graph_xc7a50t_test.rr_graph.real.bin) and architecture file 

(arch.timing.xml). We found it necessary to convert the routing graph to XML file format using 

VPR before it is able to be used in the SymbiFlow toolchain. Upon completion, the routing graph 

and architecture file can be used in place of the original versions provided by SymbiFlow. 

 

3.1.3 Developing A Basic DSP48E1 Primitive 

The current state of DSP block integration for the architecture definitions and routing 

graph provided with SymbiFlow is incomplete. This existing primitive for the DSP48E1 contains 

no routing or interconnect information. Due to this, synthesized DSP blocks being passed from 

Yosys to VPR cannot be decisively matched with their primitive to conduct place and route, 

resulting in an error in SymbiFlow. It is apparent that a simple introductory primitive is needed 

to determine other points within the toolchain that require DSP-related modifications. We begin 

by creating a new DSP_L tile definition containing DSP48E1 primitives to be included in the 

symbiflow-arch-defs automated CMake framework. The DSP48E1 primitive outlines the ports 

and interconnects required to use the DSP block as a basic 25x18 bit multiplier. Our first 

objective is to define the cell so that VPR can conduct place and route with the tile. We find 

success in this, with Figure 10 showing the primitive interconnects for the first DSP48E1 to 

achieve this goal. 
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Figure 10 - Preliminary DSP48E1 primitive used for place and route 

 

 This partial primitive definition is successful since VPR conducts routing without 

knowledge of the DSP_L tile’s internals. In fact, the only requirement for our limited DSP48E1 

definition is that it matches the VPR library cell definition provided in Yosys. This is necessary 

for VPR to match the synthesized DSP block to our DSP48E1 primitive. For this design, 

however, the DSP48E1 instance is blackboxed through Yosys, preventing synthesis on the 

instance. This provides the benefits of a partial DSP48E1 being provided to VPR that matches its 

primitive definition. If we were to allow the DSP48E1 to be synthesized in Yosys, full bit widths 

and a complete definition of the instance would be inferred based on the tool’s cell libraries. 

Synthesizing a full DSP block through Yosys would then prevent us from testing the simple 

DSP_L tile architecture definition we have created for VPR. While this work later explores how 

we can include Yosys synthesis for the DSP block, blackboxing the instance for now is 

beneficial towards designing the DSP48E1 primitive. For the remainder of this chapter, this will 

continue to be the case. 
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3.2 2x2 bit Multiplier Design Under Test (DUT) 

The benchmark chosen to test successful DSP implementation through SymbiFlow is a 

2x2 bit unsigned multiplier controlled by input switches on the Arty 35T board. This section will 

further detail this multiplier design as well as its current FASM representation. A symmetric 

flow between SymbiFlow and Vivado will be presented to highlight the desired FASM file that 

will need to be created to generate a functioning bitstream for the design. 

3.2.1 Symmetric Flow through SymbiFlow and Vivado 

 

 

Figure 11 - Custom 2x2 bit unsigned multiplier using DSP48E1 

 

 To introduce a design under test, we create a simple 2x2 bit unsigned multiplier design 

written in Verilog 2005 that makes use of the DSP48E1 slice. The RTL code used as the input to 

SymbiFlow is shown in Figure 11. The slice is defined at the chip coordinates X=34, Y=70. The 

Arty 35T board contains four switches which have each been assigned to one of the four input 

bits. As the DSP48E1 slice defaults to signed multiplication, the MSB for each input was tied to 
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1’b0, or GND. This implements a 3x3 bit signed multiplier that functions the same as a 2x2 

unsigned multiplier. 

While the DUT can be successfully placed and routed through VPR and create a FASM 

file through Genfasm, the FASM file contains incorrect FASM features that create errors in the 

bitstream generation step. These errors are a result of having FASM features that are not found in 

the segbits database mentioned in Chapter 2.4. This means that the preliminary DSP48E1 

primitive creates a faulty FASM file that generates features that are not correctly being mapped 

to bits in the bitstream. To solve this, we need to understand what valid DSP_L FASM features 

look like. This presents us with a challenge of determining how the completed DSP_L 

architecture should be generated before continuing to expand upon its tile primitive. 

 

 

Figure 12 - Symmetric flow between SymbiFlow and Vivado 

for 2x2 multiplier. DSP_L tile information is taken from the Vivado FASM file 

and used in the SymbiFlow FASM file for bitstream generation 
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To solve the issue of needing a golden model for the DSP_L FASM information, a 

symmetrical FPGA synthesis flow is created between SymbiFlow and Vivado. This can be seen 

in Figure 12. Project X-Ray provides a Python script called bit2fasm.py that can convert an 

FPGA bitstream into the FASM file that created it. By creating two flows between Vivado and 

SymbiFlow with the same input RTL Verilog, we are able to compare the FASM file generated 

by SymbiFlow to the reverse engineered FASM file created from the Vivado bitstream and 

bit2fasm.py. This gives access to the DSP_L FASM information that we expect to see once the 

full DSP_L architecture is implemented. In the meantime, however, we are able to confirm the 

Vivado DSP_L FASM information by substituting only these FASM features into the 

SymbiFlow FASM file and continue with bitstream generation in Project X-Ray. A functioning 

multiplier bitstream can be generated using this approach. 

3.2.2 Differences between SymbiFlow and Vivado FASM files 

Snapshots of the DSP_L information from the SymbiFlow and Vivado FASM files are 

displayed in Figure 13. The SymbiFlow information was generated as a result of our created 

DSP_L tile definition, where we see the B and D inputs with two bits each along with the four 

bits of multiplier output to port P. While the full DSP_L information is shown for the 

SymbiFlow file, only part of the Vivado file is displayed. The Vivado FASM file contains extra 

information regarding attributes and parameter values for the DSP block, not currently 

represented in the SymbiFlow tile definition. We see that the binary value 1101 is assigned to the 

parameter labeled “ZIS_ALUMODE_INVERTED[3:0]”. This, along with two FASM features 

later in the file setting ALUMODE2 and ALUMODE3 to GND (or 0), are responsible for the 

signal value of ALUMODE that ultimately enters the DSP48E1 primitive. To understand the 

final ALUMODE value, it is important to understand this parameter. 
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Figure 13 – (Top) SymbiFlow FASM information for the DSP_L tile. 

(Bottom) Vivado FASM information for the DSP_L tile reverse engineered using bit2fasm.py 

 

 “ZIS_ALUMODE_INVERTED” is a 4-bit wide signal that connects to multiplexers at 

the 4-bit ALUMODE input to the DSP48E1. Each bit controls its respective bit’s multiplexer in 

ALUMODE, where a value of 1 will pass the incoming ALUMODE signal through the 

multiplexer, and a 0 will invert the incoming signal. Therefore, the value 

“ZIS_ALUMODE_INVERTED[3:0] = 1101” will invert the signal value coming into 

ALUMODE[1], while remaining bits will be maintained. This, along with two features that set 

ALUMODE[3:2] to GND, completes the appropriate setup for the ALUMODE signal. 
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Ultimately, the ALUMODE signal is provided a value of 0001 to perform multiplication for the 

B and D inputs [17]. 

While initially seeming redundant, the ”ZIS_ALUMODE_INVERTED[3:0]” parameter 

is interestingly provided to solve an issue regarding unrouteable VCC or GND signals. For 

instance, it is often the case that many ports will be connected to GND through the same wire 

called GFAN in a local switchbox. At times, due to these routed connections becoming 

numerous within a single switchbox, a bounce fan (a routing structure in the switchbox) may be 

forced to send a VCC and a GND signal due to ports with conflicting values connected to it. The 

“INVERTED” parameters allow for signal values to be inverted through multiplexers at the input 

to the DSP48E1 primitive instead of within the switchbox. This serves as a way to lessen 

congestion of switchbox fan signals.  

Not seen in the FASM files from Figure 13, but present in the SymbiFlow and Vivado 

FASM files, are INT_L features that reference X and Y locations across the chip. These INT_L 

features are used for defining connections within switchboxes across the FPGA used for signal 

routing. Unfortunately, the purpose of the INT_L lines in the FASM file was something that was 

not outlined explicitly in any documentation. It was not until the discovery of the Routing 

Resources GUI in Vivado that we were able to confirm routing information completed by 

SymbiFlow. This will be explored further in the following chapter. 

With the completion of the basic 2x2 multiplier symmetric flow, we can generate DSP 

bitstreams through with the help of Vivado FASM information. We gain a deeper understanding 

of the DSP_L tile attributes through what we have observed as differences between the 

SymbiFlow and Vivado FASM files. In Chapter 4, we will continue separating the individual 

aspects of the toolchain that require changes to fully support DSP blocks with strictly the open-

source tools. 
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CHAPTER 4 – COMPLETE SYMBIFLOW DSP BITSTREAM 

4.1 Diagnosing DSP Support Points 

 To this point, we have created a version of SymbiFlow that blackboxes a DSP48E1 

instance through Yosys to avoid synthesis. The instance is read into VPR using our basic 

DSP48E1 primitive and generates a bitstream using the Vivado DSP_L FASM information 

substituted in place of our created SymbiFlow DSP_L FASM information. This flow is shown in 

Figure 14. This chapter will return to each of the points that require some form of modification 

for DSP block support and explain how the change was made. Beginning with RTL, we will 

trace along the SymbiFlow toolchain, ending with a complete open-source toolchain that can 

support bitstream generation of a DSP block design for Artix-7 devices. 

 

 

Figure 14 – 2x2 bit multiplier flow through SymbiFlow (top flow). The bottom flow assists in 

generating the DSP_L template and is only used once.  

*The DSP48E1 is blackboxed through synthesis in order to pass Yosys 

 

4.2 Investigating the Vivado Routing Resources GUI 

A structural definition of the DSP48E1 instance is provided to SymbiFlow to ensure that 

the symmetric implementation of the DSP block is identical in both SymbiFlow and Vivado. 

Using the 2x2 bit multiplier described in Chapter 3.2, we utilize tools within Vivado to 
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determine the value of DSP48E1 parameters and input ports that force the multiplication 

behavior we need within the tile. 

Vivado provides in-depth information regarding its routing network through the Routing 

Resources GUI view. We can view the routed paths from input pins to the DSP block and from 

the DSP block to output pins highlighted in green. These represent the logic signals in the design. 

Figure 15 shows the GUI for Vivado’s version of the 2x2 multiplier after place and route. 

 

 

Figure 15 - Vivado Routing Resources GUI for 2x2 multiplier design. Green signals 

are for input logic, while orange trace output logic. 

 

 Using the Routing Resources view, we were able to determine that many of the lines in 

the FASM file were for tracing signals through switchboxes across the chip. Previously, the 

INT_L features had been unknown to us. The Routing Resources GUI allowed us to view 

switchbox interconnects that held input and outputs that matched those of the switchboxes. 

Figure 16 shows a comparison between a switchbox interconnect line in the FASM file and its 

associated connection in the GUI. 
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Figure 16 – (Left) INT_L switchbox interconnect lines in Vivado FASM file. 

(Right) Corresponding switchbox pins displayed in the Routing Resources GUI 

 

An important takeaway from consulting the Vivado Routing Resources GUI for this 

design was not only the switchbox information, but also the ability to view signals that Vivado 

automatically sets for the DSP block. In order to create a functioning DSP block for Vivado, we 

used the DSP48 Macro IP Core. IP (Intellectual Property) cores in Vivado are helpful for 

defining complex blocks without the need to understand the inner workings. For our purposes, 

the method of hiding instantiation of the DSP block became an obstacle that the Routing 

Resources GUI allowed us to overcome. This is because the DSP48 Macro ties several of its 

reset and mode signals to values that force the block to behave as a 2x2 bit multiplier. Table 2 

below lists all DSP48E1 ports added to the new routing graph and architecture file that were 

forced to GND as done by Vivado. Pins not included in this table are automatically set to VCC 

by SymbiFlow. 
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Table 2 - List of DSP48E1 ports tied to GND needed to produce a working 2x2 multiplier 

Pin Name Pin Description (from [17]) Set Externally? 

A[2:29] A input to pre-adder Y 

B[2:17] B input to 25x18 multiplier Y 

D[0:24] D input to pre-adder N 

OPMODE[6] X, Y, Z routing multiplexer control N 

ALUMODE[2:3] Selects function of main logic unit N 

CARRYINSEL[0:1] Selects the carry source  Y 

INMODE[0],[4] Selects function of pre-adder and multiplier N 

CEA1 Clock enable for the first A register Y 

CEA2 Clock enable for second A register Y 

CEB1 Clock enable for first B register Y 

CEB2 Clock enable for second B register Y 

CEC Clock enable for C register Y 

CED Clock enable for D register N 

CEM Clock enable for post-multiply M register Y 

CEP Clock enable for P register Y 

CEAD Clock enable for pre-adder output AD N 

CEALUMODE Clock enable for ALUMODE registers N 

CECTRL Clock enable for OPMODE and CARRYINSEL Y 

CECARRYIN Clock enable for CARRYIN register Y 

CEINMODE Clock enable for INMODE registers N 

RSTA Reset for both A registers Y 

RSTB Reset for both B registers Y 

RSTC Reset for C register Y 

RSTD Reset for D register N 

RSTM Reset for M register Y 

RSTP Reset for P register Y 

RSTCTRL Reset for OPMODE and CARRYINSEL Y 

RSTALLCARRYIN Reset for internal carry and CARRYIN register Y 

RSTALUMODE Reset for ALUMODE registers Y 

RSTINMODE Reset for INMODE registers Y 
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The view of the Routing Resources GUI of these signals being tied to ground can be seen below 

in Figure 17. Signals highlighted in blue are tied to GND, while red signals are connected to 

VCC. 

 

 

Figure 17 - Routing Resource GUI view of the DSP block with incoming/outgoing signals. 

Red signals are VCC, blue are GND. Green represents switches and LEDs (logic) 

 

 Viewing signal values headed into the DSP block also granted us access to necessary 

values for INMODE, OPMODE, and ALUMODE. These signals, discussed in Section 1.3, are 

critical as their values configure the functionality of the DSP block. The values required to force 

the DSP48E1 to behave as a multiplier for the A and B input ports are listed in the final column 

of Table 3. Input signal values multiplexed by the “IS_INVERTED” attribute are provided as 

well. As a reminder, 0 values in the “IS_INVERTED” attribute will invert the corresponding 

input signal bit before being fed into the DSP48E1. 
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Table 3 - Combination of input signals and inverted attributes on INMODE, 

OPMODE, and ALUMODE to induce an A*B port multiplier for DSP48E1 

 Input Signal “IS_INVERTED” Attribute Value Entering DSP48E1 

INMODE 5’b00000 5’b11111 5’b00000 

OPMODE 7’b0111111 7’b1000101 7’b0000101 

ALUMODE 4’b0011 4’b1101 4’b0001 

 

 The collection of ports that the Vivado DSP48 Macro ties to GND automatically when 

defining an A*B DSP multiplier needs to be set manually for SymbiFlow. To do this, we provide 

the values set by Vivado in the structural definition of the DSP48E1 in RTL code. This definition 

can be seen in Figure 18. The A and B inputs can be seen connected to the A and B inputs of the 

DSP48E1 instance, with our discovered values for INMODE, OPMODE, and ALUMODE set 

from the Vivado GUI and “IS_INVERTED” values set based on the Vivado FASM file. 

 

 

Figure 18 - 2x2 bit multiplier RTL code with MODEs and INVERTED parameters  

(Images presented in book format for readability) 
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4.3 Yosys DSP Information into VPR 

Yosys will infer information left out of RTL design file definitions. For example, when 

provided the incomplete DSP48E1 instance in the previous 2x2 multiplier example, Yosys 

expands the bit widths of each input to match the full size of their port. The A and B inputs of the 

DSP48E1 were used, leading Yosys to define the 2x2 inputs as 25x18 instead. This led to issues 

with our testing of a limited DSP block in VPR. We created a DSP48E1 primitive that expects a 

2x2 input, which in reality receives a full 25x18 bit input due to Yosys inference. Due to this 

issue, VPR cannot associate the Yosys DSP block with our DSP48E1 primitive and outputs an 

error. To combat this, we have blackboxed the DSP48E1 instance through Yosys so that it is 

provided to VPR in a form that is exactly what we need. 

We solve the issue of removing the Yosys blackbox by making modifications to the 

DSP48E1_VPR definition in the VPR cell libraries. As mentioned in Chapter 2.5, the two files 

critical for this are cells_sim.v and cells_map.v. These libraries are structured such that when 

instantiating a DSP48E1 in cells_map.v  ̧a call to cells_sim.v is made to instantiate an instance of 

the DSP cell found in that file. This is to say that cells_map.v is a wrapper to cells_sim.v. 

Provided with SymbiFlow are DSP48E1 definitions taken from the set of Xilinx cell libraries 

called xeclib [7]. While this has all the available ports and DRC checks needed for the cell, it 

does not match our limited partial definition of the instance found in the DSP48E1 primitive. 

This is corrected over several steps. 

The first modification needed is to solve the issue of redundant DSP logic definition. The 

current set of definitions in cells_map.v and cells_sim.v sees a call to cells_map.v, which creates 

the logic of a DSP block and then internally references the DSP definition found within 

cells_sim.v, creating a set of logic. This is a result of the placeholder definition for the DSP48E1. 

From this, attempting to synthesize a DSP block with the base VPR libraries results in a 

DSP48E1 and matching logic in the form of LUTs being instantiated. We are able to edit the 

cells_map.v definition to match more closely to other cells within its library by removing 

redundant DRC checks and Verilog logic assignment. Doing so prevents the extra set of LUTs 

from being instantiated. Also, to remain consistent with other definitions throughout the VPR 

libraries, the cell name within the lower cells_sim.v file is changed from “DSP48E1” to 

“DSP48E1_VPR”. 
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A second change to the VPR libraries consists of trimming its full definition down to 

only the connections we need to implement the 2x2 multiplier DUT. We use this as a starting 

point to simplify the flow and demonstrate bitstream generation, with the idea to regrow the 

DSP48E1_VPR definition as we introduce more functionality to the block. To decide which 

ports can be left undefined, we refer to the ports left unconnected in the Vivado Routing 

Resource GUI from the previous section. Table 4 lists all DSP48E1 ports that are removed from 

the partial definition used in the VPR libraries. 

 

Table 4 - All ports removed from the VPR libraries based on Routing Resource GUI 

Pin Name Pin Description (from [17]) 

ACIN[0:29] Cascaded data input from ACOUT of previous DSP48E1 slice (muxed with A). 

BCIN[0:17] Cascaded data input from BCOUT of previous DSP48E1 slice (muxed with B). 

CARRYCASCIN Cascaded carry input from CARRYCASCOUT of previous DSP48E1 slice. 

MULTISIGNIN Sign of the multiplied result from previous DSP48E1 slice for MACC extension. 

PCIN[0:47] Cascaded data input from PCOUT of previous DSP48E1 slice to adder. 

 

 

The final important piece of information for the VPR cell libraries is the definition of 

parameters. The EBLIF output of Yosys is used further along the toolchain when writing the 

FASM features for the DSP_L tile. Within this EBLIF file, we need to ensure that all values for 

parameters are being written to prepare for FASM file generation. We have seen in the Vivado 

FASM file reverse-engineered using bit2fasm.py the values that these parameters will need to 

have, with an example of this being the parameter AREG = 0. Each parameter value is defined of 

the type “param integer” instead of the common binary value assigned to other parameters 

throughout the VPR libraries. In fact, this difference in type causes an issue later in the flow, 

where the 32-bit integer value assigned to each parameter cannot be interpreted by Genfasm, 

which expects single bit inputs. The implemented fix for this issue is to allow for values to be 

assigned to integers in the upper cells_map.v, while only using their LSB to instantiate the 

DSP48E1_VPR found within cells_sim.v. This way, the binary value being assigned to an integer 

is returned to binary before being interpreted by Genfasm. While another solution could be to 

change all data types from integer to binary, this does not solve the issue for parameters like 
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AREG and BREG that can be assigned to 0, 1, or 2 [17]. These parameters have been broken 

into three separate attributes (e.g., AREG_0, AREG_1, AREG_2) each assigned a binary value. 

One and only one of these attributes will have the value of 1’b1 at a given time to represent the 

three possible values for their combined parameter. Their values are determined using if 

statements within the DSP48E1_VPR instance definition of cells_map.v, seen in Figure 19 

below. 

 

 

Figure 19 – Part of cells_map.v definition of a DSP48E1_VPR cell. AREG_0, AREG_1, and 

AREG_2 parameters are added to assist with generating FASM parameters with Genfasm 

 

4.4 Developing DSP48E1 Primitive 

We know that Yosys has full functionality for synthesizing RTL structures to a DSP48E1 

instance. From our previous work, we also have confirmed the DSP_L information required in 

the FASM file to generate a successful bitstream. This provides us with an input to VPR and its 

desired output, controlled entirely on the DSP48E1 primitive that we use to build our routing 

graph and architecture file. We are able to phase out the need for Vivado FASM information for 
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the 2x2 DSP multiplier DUT by defining this primitive correctly. This is achieved by drafting a 

new DSP_L tile using our desired input and golden output as the framework for testing. 

The preliminary DSP48E1 primitive used for place and route was defined with two input 

ports and a single output port. Using what we learned from the Vivado Routing Resource GUI, 

we know that we will need to include interconnects for all ports that Vivado implicitly ties to 

GND. These port definitions, seen previously in Table 2, are added to form a primitive with only 

the information needed for the multiplier DUT. Remaining ports that do not affect the DSP48E1 

multiplier functionality are left undefined. 

The most important part of the DSP48E1 primitive is including FASM parameter 

information, which will translate parameters values defined in the Yosys EBLIF file into FASM. 

This requires a section of the primitive to indicate how EBLIF parameters should be translated 

into FASM features. Within the primitive, this section is denoted by the metadata 

“fasm_params.” The Genfasm and VPR authors provide documentation on how to write custom 

metadata for these parameters as well as writing other FASM features [28], [29]. The custom 

“fasm_params” section of the DSP48E1 primitive is shown in Figure 20, with the right side of 

each assignment being the parameter to look for in EBLIF and the left being what should be 

written in FASM if the parameter is to be set. 

 

 

Figure 20 - "fasm_params" section of DSP48E1 primitive  

(Images presented in book format for readability) 
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 These two steps, implementing the limited port definitions and “fasm_params” for the 

DSP48E1 primitive, allow SymbiFlow to generate a FASM file with DSP_L features nearly 

identical to our golden Vivado FASM file. Previously, the reliance on Vivado was to support an 

incomplete architecture definition for the DSP48E1. This successfully separates the open-source 

tools from requiring Vivado and the symmetric flow to conduct DSP design bitstream 

generation. 

 

4.5 Changes to Genfasm 

As it stands, the FASM file generated by SymbiFlow through VPR will define 

connections for all ports entering the DSP48E1 through its neighboring switchbox. The Vivado 

FASM file, when reverse-engineered, omits any reference to signals routed within this switchbox 

that do not connect to either local VCC or GND. In other words, signal values are represented 

solely using INT_L or INT_R switchbox features and references to IMUX routing logic is not 

included in FASM for the DSP_L tile. The Vivado FASM files for multiple designs have been 

used to regenerate a functioning bitstream when sent through Project X-Ray, leading us to 

believe that missing signal connections for the local DSP_L switchbox are the default case, or 

are inferred. The contrast between this and SymbiFlow defining all of its port connections is that 

Project X-Ray will throw an error when specifying one of these connections in FASM for the D 

input. Signals attempting to route to any of the D input bits will result in a connection 

“DSP_FAN” within the DSP switchbox. These connections are unrecognized in Project X-Ray’s 

Artix-7 database, despite being the default value. 

 Upon further testing, it is discovered that a functional bitstream can be generated when 

manually removing FASM features mentioning “DSP_FAN” connections for the DSP_L tile. We 

can easily modify the Genfasm code to only generate FASM features that do not contain this 

“DSP_FAN” connection. The configurability of open-source tools is demonstrated in full effect, 

as we can rebuild the binary file for the Genfasm tool and have it swapped in place of the old 

version provided with SymbiFlow. Doing so, along with implementing all changes detailed in 

this chapter, results in a modified SymbiFlow toolchain that can successfully generate a 

bitstream for the 2x2 bit DSP multiplier DUT. 
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4.6 Summary of Modifications 

 Incorporating DSP block support for Artix-7 devices in SymbiFlow has required 

modifications to be made throughout the toolchain. This chapter itemized the tools and changes 

needed to support the new architecture. Changes span as far as the input RTL code, where certain 

parameter and port values must be specified to emulate the work of Vivado’s DSP48 Macro, to 

Genfasm, where “DSP_FAN” features must be blocked from the output FASM file. Changes are 

required for Yosys and VPR, where the DSP48E1_VPR cell definition must be limited to match 

the partial primitive found within VPR’s architecture file and routing graph pair. We have shown 

that enacting these changes allows SymbiFlow to generate a bitstream for the DUT, a 2x2 bit 

DSP multiplier, previously not possible for Artix-7 devices with the toolchain. 
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CHAPTER 5 – EXPANDING DSP FUNCTIONALITY 

 

 In the previous chapter, we demonstrate our process for breaking down the larger 

toolchain into its sub-tools, then continuing further to investigate where DSP support is needed 

within each sub-tool. This process and the subsequent toolchain modifications have led us to an 

open-source FPGA toolchain that supports the DSP48E1 instance for usage as a basic 2x2 

unsigned multiplier. Chapter 5 uses the development process from the previous chapter to 

demonstrate use of more complex functions, such as a full 25x18 bit multiplier, partial use of the 

pre-adder, and pipelining support for the DSP block. The following sections explore each 

function individually and their unique aspects for integrating support for them within the Artix-7 

flow of SymbiFlow. 

 

5.1 Full 25x18 bit Multiplier 

 Implementing the full 25x18 bit multiplier (the largest size supported by Artix-7 DSP 

blocks) in place of the 2x2 bit does not require any change to the DSP48E1 primitive created 

before, with all changes happening in RTL. This is because the interconnects have already been 

defined. When working with a smaller multiplier such as the 2x2 bit, the unused upper bits of 

each input signal are tied to GND within Yosys when left undefined. 

 To ensure that no change must happen to the parameter values within RTL, we 

reimplement the symmetric flow between SymbiFlow and Vivado. Using the Vivado Routing 

Resource GUI, we were able to determine values for the various input MODE signals that handle 

routing of data within the DSP48E1. These three signals, INMODE, OPMODE, and 

ALUMODE, have their values set to those found in Table 4. In a similar way, this same 

multiplier RTL was put through the Vivado bitstream generation flow and reverse engineered 

into FASM representation using the script bit2fasm.py. This FASM file gives us the 

“IS_INVERTED” attributes also found in Table 5. The current support for the DSP48E1 block 

requires that the instance be defined structurally, meaning these values must be set in the RTL 

input to SymbiFlow. We can compare these values to those found for the 2x2 multiplier and 

confirm that there has not been a change. 



37 
 

Table 5 - MODE signals and their INVERTED parameters needed to use  

the DSP48E1 as 25x18 bit multiplier 

 Input Signal “IS_INVERTED” Attribute Value Entering DSP48E1 

INMODE 5’b00000 5’b11111 5’b00000 

OPMODE 7’b0111111 7’b1000101 7’b0000101 

ALUMODE 4’b0011 4’b1101 4’b0001 

 

 A change made within the Verilog RTL is to expand bit widths of the A and B inputs to 

25 bits and 18 bits, respectively. To properly test this in hardware, we include constraints file 

definitions for the four green LEDs and four RGB LEDs found on the Arty 35T FPGA. Each 

green LED can represent 1 bit due to it either being ON or OFF, while each RGB LED can 

represent 3 bits with each bit controlling either red, green, or blue. In total, this allows us to 

confirm the 16 least significant bits of the multiplier output in hardware. This configuration does 

not allow us to test the entire output of the multiplier, however the LEDs can easily be reassigned 

and separate bits can be tested with the regenerated bitstream. 

 The Arty 35T FPGA board includes four input switches that are used to control the input 

bits to the multiplier. Due to hardware restrictions, it is not possible to assign each bit of the 

25x18 bit multiplier to a unique input switch. This is solved by randomly assigning input A bits 

to either the switch 0 or switch 1 signals, and input B bits to either the switch 2 or switch 3 

signals. We account for 16 possible input combinations with this method and the ability to 

reconfigure the switch signals in RTL to be retested in hardware. Figure 21 shows the RTL files 

used for the 25x18 bit multiplier test, with the following Table 6 listing the LED outputs for all 

input switch combinations. For the output of RGB LEDs, the first letter of the colors is shown. 
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Figure 21 - RTL assignment of input switches onto A and B input signal bits 

 

Table 6 - LED output combinations of 25x18 bit DSP multiplier. RBG values: OFF (000), Blue 

(001), Green (010), Cyan (011), Red (100), Purple (101), Yellow (110), White (111) 

sw[3] sw[2] sw[1] sw[0] led[3] led[2] led[1] led[0] RGB 

led[3] 

RGB 

led[2] 

RGB 

led[1] 

RGB 

led[0] 

0 0 0 0 0 0 0 0 OFF OFF OFF OFF 

0 0 0 1 0 0 0 0 OFF OFF OFF OFF 

0 0 1 0 0 0 0 0 OFF OFF OFF OFF 

0 0 1 1 0 0 0 0 OFF OFF OFF OFF 

0 1 0 0 0 0 0 0 OFF OFF OFF OFF 

0 1 0 1 1 1 0 1 R Y Y G 

0 1 1 0 1 1 1 0 R OFF G G 

0 1 1 1 1 0 1 1 OFF Y OFF P 

1 0 0 0 0 0 0 0 OFF OFF OFF OFF 

1 0 0 1 1 0 1 0 G OFF C Y 

1 0 1 0 1 1 0 0 G OFF C C 

1 0 1 1 0 1 1 0 Y OFF W G 

1 1 0 0 0 0 0 0 OFF OFF OFF OFF 

1 1 0 1 0 1 1 1 OFF B G Y 

1 1 1 0 1 0 1 0 Y OFF P Y 

1 1 1 1 0 0 0 1 OFF OFF OFF OFF 
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5.2 Partial Pre-adder 

 The pre-adder function for the DSP48E1 is located before the 25x18 bit multiplier 

between the A and D input signals, as seen in Figure 22. The A input signal is 30 bits wide and 

the D input signal is 25 bits wide, with the output of the pre-adder being a 25-bit wide signal that 

is fed directly into the 25x18 bit multiplier. In previous experiments with the 25x18 bit 

multiplier, the value of the INMODE routing signal was set to pass the A input signal through 

the pre-adder without conducting any addition. We change this by providing a value through the 

D input and setting INMODE such that the signals will be summed before reaching the 

multiplier. 

 

 

Figure 22 - Visualization of DSP48E1 internals showing inputs signals A and D  

entering the pre-adder before reaching the 25x18 bit multiplier (from [17]) 

 

Similar to the multiplier, the MODE signal values were determined using the Vivado 

Routing Resource GUI and a FASM file generated by bit2fasm.py. The values are listed in Table 

6 and must be reflected in the input Verilog RTL definition of the DSP48E1. Introducing pre-

adder support requires further change to the VPR libraries to facilitate inclusion of the D port. 

The attribute “USE_DPORT” must be listed as a FASM feature, as shown in the reverse 

engineered Vivado FASM file. The VPR libraries include this parameter in its default state as a 

string value assigned to “FALSE”. This is not readable by Genfasm and can be corrected within 

the cells_map.v VPR library file. In the DSP48E1_VPR instantiation with this file, if the 
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“USE_DPORT” parameter is set to “TRUE”, it is assigned a binary value of 1’b1, otherwise it is 

assigned a binary value of 1’b0. Doing so allows for translation to FASM using DSP48E1 

primitive “fasm_params” statements. 

 

Table 7 - MODE signals and their INVERTED parameters needed to use  

the DSP48E1 as a 25x18 bit multiplier with pre-adder 

 Input Signal “IS_INVERTED” Attribute Value Entering DSP48E1 

INMODE 5’b00100 5’b11111 5’b00100 

OPMODE 7’b0111111 7’b1000101 7’b0000101 

ALUMODE 4’0011 4’1101 4’0001 

 

Despite these adjustments  and structurally defining all signal values in RTL, VPR place 

and route still generated an error for a fully defined D port. When the upper 11 bits of the 25 bit 

D input are connected to a non-static value, like VCC or GND, VPR is not able to successfully 

conduct design place and route.  

We explain this VPR behavior by analyzing switchbox fan bounces. VPR routes signals 

throughout the FPGA and to the DSP block through switchboxes. A fan bounce is a switchbox 

node that is used to reroute a signal along a path not initially reachable by its switchbox entry 

node. They are commonly used to provide wide access to local GND connections, increasing the 

flexibility of signal routing available within the switchbox. We have observed that when using 

the 11 most significant bits of the D port for pre-adder implementation, fan bounces within the 

switchbox local to the DSP block are assigned to different signals simultaneously. In other 

words, nodes that are often used as connections to GND are double assigned to incoming switch 

signal values. The reason for this issue requires further investigation. Here, we only demonstrate 

using bits 0 through 13 of the D port for a partial pre-adder in successful bitstream generation. 

 The partial pre-adder implementation for our experiment is created with random switch 

signals assigned to the first 14 bits of the D input. The Verilog RTL used can be found in Figure 

23, with the LED pre-adder and multiplier outputs found in Table 8. The bitstream generated 

using this configuration was found to operate properly on an Arty 35T board. 
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Figure 23 - RTL assignment of input switches onto A, B, and D input signal bits 
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Table 8 - LED output combinations of 25x18 bit DSP multiplier with pre-adder 

sw[3] sw[2] sw[1] sw[0] led[3] led[2] led[1] led[0] RGB 

led[3] 

RGB 

led[2] 

RGB 

led[1] 

RGB 

led[0] 

0 0 0 0 0 0 0 0 OFF OFF OFF OFF 

0 0 0 1 0 0 0 0 OFF OFF OFF OFF 

0 0 1 0 0 0 0 0 OFF OFF OFF OFF 

0 0 1 1 0 0 0 0 OFF OFF OFF OFF 

0 1 0 0 0 0 0 0 OFF OFF OFF OFF 

0 1 0 1 1 1 0 1 R Y Y G 

0 1 1 0 1 1 1 0 R OFF G G 

0 1 1 1 1 0 1 1 OFF Y OFF P 

1 0 0 0 0 0 0 0 OFF OFF OFF OFF 

1 0 0 1 1 0 1 0 Y OFF C G 

1 0 1 0 1 1 0 0 G OFF C C 

1 0 1 1 0 1 1 0 Y OFF W G 

1 1 0 0 0 0 0 0 OFF OFF OFF OFF 

1 1 0 1 0 1 1 1 OFF Y G B 

1 1 1 0 1 0 1 0 Y OFF P Y 

1 1 1 1 0 0 0 1 OFF OFF OFF OFF 

 

 

5.3 Pipelined Multiplier 

 The DSP48E1 includes registers and routing logic to implement pipelining within the 

block. Pipelining creates many benefits for a system, including efficiency in timing and power 

consumption. In hardware, pipelining is implemented through a series of registers between the 

internal functions of the block, allowing multiple data operations to occur during one clock 

cycle. 

 Enabling pipeline support for the DSP48E1 requires several changes to parameter and 

input signal values not used for either the 25x18 bit multiplier or pre-adder. The MREG and 

PREG features in the reverse engineered FASM file are removed, indicating that each MREG 

and PREG should each be assigned one pipeline register. Two additional parameters, AREG and 

BREG, are set to 2 instead of the default of 1, increasing the number of pipeline registers for the 

inputs [17], [28]. AREG and BREG values of 2 allow for the use of two input registers. For 

example, the A input is passed in series through two pipeline registers named A1 and A2. These 

changes instantiate four stages of pipeline registers through the block. In stages one and two, 
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inputs A and B and loaded into their respective A1/A2 and B1/B2 registers. Stage three saves the 

output of the multiplier in the M register, which is passed directly to the P register, where is 

saved once again before output at stage four. This pipelined flow is shown in Figure 24. 

  

 

Figure 24 - Pipelined register flow within the DSP48E1. Two pipelined registers take inputs A 

and B before storing their multiplied output into register M. Output of register M is stored in 

register P, then output from the DSP block P port. Red dashed lines indicate pipeline stages 

  

The second asynchronous 25x18 bit multiplier change is to enable the clock inputs to the 

newly added pipeline registers. These signals, denoted by the prefix “CE”, exist for each of the 

pipeline registers and are set within the DSP48E1 definition with a value of 1’b1. The modified 

definition with clock enable signals can be seen in Figure 25. For testing, we added a simple 

clock divider to the system that divides the main clock frequency by 225. This allowed us to 

visually see the delay in DSP output during testing using the Arty 35T hardware. For on board 

testing, the previous assignments of switches to the A and B input bits from the 25x18 bit 

multiplier described earlier in this chapter were used. With a system clock of 100 MHz and a 225 

times divider, a 3 Hz clock was created to drive the DSP48E1, resulting in several seconds of 

delay. The clock divider RTL code can be found in Figure 26. 
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Figure 25 - RTL instantiation of a pipelined 25x18 bit multiplier DSP48E1 

 

 

 

Figure 26 - Clock divider used to drive DSP48E1. 100 MHz system clock "clk" is brought down 

to a 3 Hz clock signal when “counter[24]” rises from 1'b0 to 1'b1 during counting 
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The pipelined 25x18 multiplier generated the expected outputs with roughly a single 

second delay between when the switches change to when an output is shown on the LEDs. It was 

possible to make multiple changes to the switches before seeing an output change. This was 

expected due to the 3 Hz clock driving the DSP48E1, which successfully slows down the 

pipelining to a human visible speed. The 3 Hz signal operating over four stages allows an output 

to be displayed in roughly 1.3 seconds. Pipelining can be incorporated with the multiplier and 

partial pre-adder design through the addition of pipelined registers in REG parameters and the 

setting of clock enable register signals. 
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CHAPTER 6 – CONCLUSION 

 

In this thesis document, we presented our modifications to the open-source FPGA 

bitstream generation toolchain SymbiFlow that allow for basic implementation of a DSP48E1 

digital signal processing block in the bitstream of a Xilinx Artix-7 FPGA. SymbiFlow was used 

to conduct synthesis, place and route, and bitstream generation. Our background work 

highlighted missing DSP block support in the flow. Code modifications were made in RTL 

designs, VPR libraries, the DSP48E1 primitive, and the Genfasm tool to support DSP block 

bitstream generation for an Artix-7 35T FPGA.  

The Vivado Routing Resources GUI was used to determine input signal values set within 

the DSP48 Macro IP core, information that is intentionally obscured in the development 

environment. These values were then included to form a full structural definition in RTL. 

Modifications were made to the VPR libraries, where undefined ports were removed to simplify 

the cell. This limited definition of the DSP block was made to match the newly created DSP48E1 

primitive and to match the DSP48E1_VPR library definition used for place and route.  The 

Genfasm tool was lightly modified to allow for DSP bitstreams to be generated for a simple 2x2 

bit unsigned multiplier.  

Through expansion of the VPR libraries and primitives, a full 25x18 bit multiplier, partial 

pre-adder, and pipelining are now supported for Artix-7 DSP blocks in SymbiFlow. Designs that 

use each of these constructs were successfully tested on a Digilent Arty A7 35T board.  

6.1 Future Work 

 It is our hope that this work contributes towards future innovation with open-source 

FPGA tools. In the following subsections, we will describe ways in which this work can be 

extended towards achieving this overall goal. 

6.1.1 Incorporating C Port for DSP48E1 

Additional SymbiFlow functionality is still needed to support all DSP48E1 block 

functionality in bitstream generation. With additional edits to the cells_sim.v and cells_map.v 

(VPR library files) and the DSP48E1 primitive, SymbiFlow could support C port operations such 

as pattern detection, 3-input multiplication, or 2-input multiplication with addition [17]. A 
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symmetric flow, similar to the one described in Section 3.2.1, would be a good approach for 

debugging and testing needed changes. 

6.1.2 Investigating the D Port Congestion Issue 

As discussed in Section 5.3, bits 14 through 25 of the D input port to the DSP48E1 are 

currently unusable by VPR. The issue may be related to the way the VPR tool routes signals 

through the neighboring DSP_L tile switchbox. At times, we have noticed that input signal 

values will overlap with VCC or GND inputs, causing switchbox congestion and leading to the 

assignment of different values simultaneously to programming pips. Future work should 

investigate and address this issue. 

6.1.3 Allowing Behavioral Modeling of DSP48E1 

At present writing, DSP blocks created within SymbiFlow must be defined structurally 

within RTL code to accurately set their parameter values and handle the tying off of control 

signals to GND and VCC. Yosys and VPR libraries could be expanded to allow for the 

behavioral modeling of DSP48E1 instances while maintaining necessary parameter values and 

GND/VCC connections. With this change, Yosys synthesis could map a DSP block with all 

needed parameters with RTL input such as “A*B”, creating a functioning multiplier without 

explicitly setting port inputs, outputs, and parameters. 
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