
University of Massachusetts Amherst University of Massachusetts Amherst

ScholarWorks@UMass Amherst ScholarWorks@UMass Amherst

Masters Theses Dissertations and Theses

October 2022

Integration of Digital Signal Processing Block in SymbiFlow FPGA Integration of Digital Signal Processing Block in SymbiFlow FPGA

Toolchain for Artix-7 Devices Toolchain for Artix-7 Devices

Andrew T. Hartnett
University of Massachusetts Amherst

Follow this and additional works at: https://scholarworks.umass.edu/masters_theses_2

 Part of the VLSI and Circuits, Embedded and Hardware Systems Commons

Recommended Citation Recommended Citation
Hartnett, Andrew T., "Integration of Digital Signal Processing Block in SymbiFlow FPGA Toolchain for
Artix-7 Devices" (2022). Masters Theses. 1226.
https://doi.org/10.7275/31161105 https://scholarworks.umass.edu/masters_theses_2/1226

This Open Access Thesis is brought to you for free and open access by the Dissertations and Theses at
ScholarWorks@UMass Amherst. It has been accepted for inclusion in Masters Theses by an authorized
administrator of ScholarWorks@UMass Amherst. For more information, please contact
scholarworks@library.umass.edu.

https://scholarworks.umass.edu/
https://scholarworks.umass.edu/masters_theses_2
https://scholarworks.umass.edu/etds
https://scholarworks.umass.edu/masters_theses_2?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F1226&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/277?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F1226&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.7275/31161105
https://scholarworks.umass.edu/masters_theses_2/1226?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F1226&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

INTEGRATION OF DIGITAL SIGNAL PROCESSING BLOCK IN

SYMBIFLOW FPGA TOOLCHAIN FOR ARTIX-7 DEVICES

A Thesis Presented

by

ANDREW HARTNETT

Submitted to the Graduate School of the

University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL AND COMPUTER ENGINEERING

September 2022

Electrical and Computer Engineering

© Copyright by Andrew Hartnett 2022

All Rights Reserved

INTEGRATION OF DIGITAL SIGNAL PROCESSING BLOCK IN

SYMBIFLOW FPGA TOOLCHAIN FOR ARTIX-7 DEVICES

A Thesis Presented

by

ANDREW HARTNETT

Approved as to style and content by:

Russell Tessier, Chair

Wayne Burleson, Member

Daniel Holcomb, Member

Christopher V. Hollot, Department Head

Electrical and Computer Engineering

iv

ACKNOWLEDGEMENTS

I would like to thank my advisor Professor Russell Tessier for providing me the

opportunity to continue my academic growth. Through learning from him, I believe I have been

impacted for the better in understanding the resolve and determination needed to see a project

through, and for that I am grateful. My appreciation extends to colleagues and friends Anurag

Muttur, Tien Li Shen, and Shayan Moini as well.

Lastly, I am profoundly grateful for the endless support from my family. Without them

and my partner Kelly, this work would not have seen its completion. Thank you.

v

ABSTRACT

INTEGRATION OF DIGITAL SIGNAL PROCESSING BLOCKS IN

SYMBIFLOW FPGA TOOLCHAIN FOR ARTIX-7 DEVICES

SEPTEMBER 2022

ANDREW HARTNETT

B.S., UNIVERSITY OF MASSACHUSETTS AMHERST

M.S.E.C.E., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Russell Tessier

The open-source community is a valuable resource for many hobbyists and researchers

interested in collaborating and contributing towards publicly available tools. In the area of field

programmable gate arrays (FPGAs) this is no exception. Contributors seek to reverse-engineer

the functions of large proprietary FPGA devices. An interesting challenge for open-source FPGA

engineers has been reverse-engineering the operation and bitstreams of digital signal processing

(DSP) blocks located in FPGAs. SymbiFlow is an open-source FPGA toolchain designed as a

free alternative to proprietary computer-aided design tools like Xilinx’s Vivado. For SymbiFlow,

mapping logical multipliers to DSP blocks and generating DSP block bitstreams has been left

unimplemented for the Artix-7 family of FPGAs. This research seeks to rectify this shortcoming

by introducing DSP information for the place and route functions into SymbiFlow. By delving

into the SymbiFlow architecture definitions and creating functioning FPGA assembly code

(FASM) files for Project X-Ray, a bitstream generator for Artix-7, we have been able to

determine the desired output of the open-source Versatile Place & Route tool that will generate a

working DSP bitstream. We diagnose and implement changes needed throughout the SymbiFlow

toolchain, allowing for DSP design bitstreams to be successfully generated with open-source

tools.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS …………………………………………………………………………….. iv

ABSTRACT ………………………………………………………………………………………………. v

TABLE OF CONTENTS ……………………………………………………………………………….. vi

LIST OF TABLES ……………………………………………………………………………………... viii

LIST OF FIGURES ……………………………………………………………………………………... ix

CHAPTER 1 - INTRODUCTION ………………………………………………………………………. 1

1.1 Xilinx Vivado ………………………………………………………………………………………. 3

1.2 SymbiFlow Toolchain ……………………………………………………………………………... 3

1.3 DSP Blocks …………………………………………………………………………………………. 4

1.4 Thesis Outline …………………………………………………………………………………….... 7

CHAPTER 2 - SYMBIFLOW …………………………………………………………………………... 8

2.1 Yosys ………………………………………………………………………………………………...9

2.2 VPR / Genfasm …………………………………………………………………………………….. 9

2.3 Project X-Ray …………………………………………………………………………………….. 10

2.4 Using SymbiFlow ………………………………………………………………………………….11

2.5 State of DSP Block Usage in SymbiFlow ……………………………………………………….. 13

CHAPTER 3 - ARCHITECTURE DEFINITIONS AND GENFASM …………………………….... 15

3.1 SymbiFlow Architecture Definitions ……………………………………………………………. 15

3.1.1 Architecture Primitives ……………………………………………………………………... 15

3.1.2 Generating Routing Graph and Architecture File …………………………………………17

3.1.3 Developing A Basic DSP48E1 Primitive ………………………………………………….... 17

3.2 2x2 bit Multiplier Design Under Test (DUT) ……………………………………………………19

3.2.1 Symmetric Flow through SymbiFlow and Vivado ……………………………………….... 19

3.2.2 Differences between SymbiFlow and Vivado FASM files ………………………….……... 21

CHAPTER 4 – COMPLETE SYMBIFLOW DSP BITSTREAM …………………………………... 24

4.1 Diagnosing DSP Support Points ……………………………………………………………….... 24

4.2 Investigating the Vivado Routing Resources GUI ……………………………………………... 24

4.3 Yosys DSP Information into VPR ………………………………………………………………. 30

4.4 Developing DSP48E1 Primitive …………………………………………………………………. 32

vii

4.5 Changes to Genfasm ……………………………………………………………………………... 34

4.6 Summary of Modifications ………………………………………………………………………. 35

CHAPTER 5 – EXPANDING DSP FUNCTIONALITY …………………………………………….. 36

5.1 Full 25x18 bit Multiplier ………………………………………………………………………….36

5.2 Partial Pre-adder ………………………………………………………………………………….39

5.3 Pipelined Multiplier ……………………………………………………………………………… 42

CHAPTER 6 – CONCLUSION ………………………………………………………………………... 46

6.1 Future Work ……………………………………………………………………………………… 46

6.1.1 Incorporating C Port for DSP48E1 ……………………………………………………….... 46

6.1.2 Investigating the D Port Congestion Issue …………………………………………………. 47

6.1.3 Allowing Behavioral Modeling of DSP48E1 ……………………………………………….. 47

BIBLIOGRAPHY ………………………………………………………………………………………. 48

viii

LIST OF TABLES

Table Page

1 - STEPS CALLED AND TOOLS USED WITHIN SYMBIFLOW …………………………. 13

2 - DSP48E1 PORTS TIED TO GND NEEDED FOR WORKING 2X2 MULTIPLIER ……... 27

3 - MODE AND INVERTED SIGNALS FOR A*B PORT MULTIPLIER ……………………29

4 - PORTS REMOVED FROM VPR LIBRARIES BASED ON VIVADO GUI ……………... 31

5 - MODE AND INVERTED SIGNALS FOR 25X18 BIT MULTIPLIER …………………… 37

6 - LED OUTPUT COMBINATIONS OF 25X18 BIT DSP MULTIPLIER ………………….. 38

7 - MODE AND INVERTED SIGNALS FOR MULTIPLIER WITH PRE-ADDER ………… 40

8 - LED OUTPUT COMBINATIONS OF MULTIPLIER WITH PRE-ADDER ……………... 42

ix

LIST OF FIGURES

Figure Page

1 - SUPPORTED ARCHITECTURE FOR VARIOUS POPULAR FPGAS …………………… 2

2 - VISUALIZATION OF TOOLS INVOLVED IN SYMBIFLOW TOOLCHAIN …………... 4

3 - INTERNAL ARCHITECTURE OF 7 SERIES DSP48E1 SLICE …………………………... 5

4 - DSP48 MACRO PROVIDED BY VIVADO FOR DSP BLOCK CREATION …………….. 6

5 - DETAILED SYMBIFLOW TOOLCHAIN WITH ARCHITECTURE DEFINITIONS AND

INTERMEDIATE FILES ………………………………………………………………….. 8

6 - COUNTER_TEST.V, PART OF SYMBIFLOW-EXAMPLES ……………………………. 11

7 - COMMON.MK MAKEFILE USED TO CALL STEPS WITH SYMBIFLOW …………… 12

8 - SNAPSHOT OF RAMB18E1.MODEL.XM ……………………………………………….. 16

9 - SNAPSHOT OF BRAM.PB_TYPE.XML SHOWING RAMB18E1 INTERCONNECTS .. 16

10 - PRELIMINARY DSP48E1 PRIMITIVE USED FOR PLACE AND ROUTE …………… 18

11 - CUSTOM 2X2 BIT UNSIGNED MULTIPLIER USING DSP48E1 …………………….. 19

12 - SYMMETRIC FLOW BETWEEN SYMBIFLOW AND VIVADO ……………………... 20

13 - FASM FILE INFORMATION COMPARISON ………………………………………….. 22

14 - ASSISTED WORKING 2X2 BIT MULTIPLIER FLOW THROUGH SYMBIFLOW ….. 24

15 - VIVADO ROUTED FLOORPLAN FOR 2X2 MULTIPLIER …………………………… 25

16 - SWITCHBOX INTERCONNECT FASM FILE WITH GUI …………………………….. 26

17 - ROUTING RESOURCE GUI VIEW OF DSP BLOCK ………………………………….. 28

18 - 2X2 BIT MULTIPLIER RTL CODE WITH PARAMETERS …………………………… 29

19 - PART OF CELLS_MAP.V DEFINITION OF A DSP48E1_VPR CELL ………………... 32

20 - "FASM_PARAMS" SECTION OF DSP48E1 PRIMITIVE ……………………………… 33

21 - RTL ASSIGNMENT OF INPUT SWITCHES ONTO A AND B INPUT SIGNALS …… 38

22 - DSP48E1 INTERNALS WITH PRE-ADDER INTO 25X18 BIT MULTIPLIER ……….. 39

23 - RTL ASSIGNMENT OF INPUT SWITCHES ONTO A, B, AND D INPUT SIGNALS .. 41

24 - PIPELINED REGISTER FLOW WITHIN THE DSP48E1 ……………………………… 43

25 - RTL INSTANTIATION OF A PIPELINED 25X18 BIT MULTIPLIER DSP48E1 ……... 44

26 - CLOCK DIVIDER USED TO DRIVE DSP48E1 ………………………………………… 44

1

CHAPTER 1 - INTRODUCTION

While Application Specific Integrated Circuits (ASICs) have been used as the primary

hardware for digital logic implementation over the past few decades, the recent growth in

popularity of Field Programmable Gate Arrays (FPGAs) now provides them with competition.

FPGAs offer the reconfigurability of hardware post-manufacturing, which leads to more

inexpensive implementation of digital circuitry. This flexibility is provided at the cost of

optimality and efficiency towards a specific task which is a strong benefit of ASICs.

Nevertheless, work has continued with FPGAs to leverage their reprogrammable digital

hardware. Creative new applications for the FPGA include implementing the devices in data

centers [1] and in hybrid-form with CPUs [2]. For data centers, work has been done to

demonstrate the feasibility of allowing users to access portions of the device through the cloud

and dividing the same chip amongst multiple tenants [1]. Further research has been conducted in

combining the FPGA architecture with that of the existing CPU in modern computers. Doing so

would allow for data transfer between the two devices, where FPGA reconfigurability and CPU

efficiency can both be utilized [2].

Currently, popular FPGA vendors include Xilinx (AMD) [3], Altera (Intel) [4], and

Lattice [5], among others. This work focuses on the Xilinx Artix-7 family of FPGAs and its

Vivado Design Suite [6], [7] due to the popularity of the vendor and tools. Vivado offers the

ability to generate bitstreams for their FPGAs from code written in a hardware description

language (HDL). A commonly used HDL for this task is called Verilog. Using Verilog, one can

describe the desired hardware configuration needed at register-transfer level (RTL), and then use

Vivado to conduct the full flow of synthesis, place & route, and bitstream generation. As an

alternative to proprietary tools like Vivado, the open-source synthesis toolchain SymbiFlow [8]

seeks to emulate the same functions of synthesis, place & route, and bitstream generation for a

variety of FPGA families. An important feature present in Vivado yet missing in SymbiFlow at

the time of this writing is the processing of designs that use digital signal processing (DSP)

blocks. These blocks are commonly used for bit multiplication and pattern detection in digital

circuitry meant to emulate analog processes. One example of their use is in applications needing

double-precision floating-point operations, presenting a large step forward in reducing necessary

2

hardware resources [9]. With DSP block support missing in the SymbiFlow toolchain, designs

which could use DSP blocks are not able to successfully generate bitstreams for Artix-7 devices.

The SymbiFlow authors demonstrate this in a table of implemented architectural features, copied

here as Figure 1 [8]. The figure includes information for four different bitstream generation tools,

each focused on FPGAs from a unique vendor. Project Icestorm [10] and Project Trellis [11]

provide bitstream documentation for the Lattice iCE40 and Lattice ECP5 [5] architectures,

respectively. Project X-Ray [12] documents the architecture of Xilinx 7-Series devices and is

used in this work. Lastly, the QuickLogic [13] database documents bitstreams of the EOS-S3 and

QLF-K4N8 FPGAs [14].

Figure 1 - Supported architecture for various popular FPGAs. Project X-Ray

is the bitstream generation tool for the Xilinx Artix-7 family of boards (from [8])

Through this work, we diagnose points within the SymbiFlow toolchain that need

modification to offer DSP block support. Completing these changes allows us to generate the

first DSP design bitstream in SymbiFlow for Artix-7 FPGAs, enhancing the abilities of the open-

source toolchain. From here, we broaden the functionality of the block to include support for the

full 25x18 bit multiplier, a partial pre-adder, and pipelined multiplier support. The continuation

of this introduction will provide a comparison of the Vivado Design Suite and the current state of

3

the SymbiFlow toolchain. Then, an overview of the Artix-7 digital signal processing (DSP)

block, referred to as the DSP48E1, will be provided.

1.1 Xilinx Vivado

Xilinx Vivado [7] is a proprietary computer-aided design tool used in FPGA development

to create bitstreams. Its steps can be broken down into synthesis, implementation, and bitstream

generation. Following synthesis, the user is provided with a gate-level netlist of the input RTL

design along with resource utilization statistics, including the percentage of I/O ports and other

logic gates used by the FPGA. Warnings and errors are shown if design rule checks fail during

this step. The physical design step performs place and route of cells onto the target FPGA

architecture. A visual representation of the routing network is made available via a graphical user

interface (GUI). All mapped cells and the routed logic between them can be seen via this user

interface. Finally, the bitstream generation step creates an FPGA-specific bitstream file that can

be loaded onto an FPGA. Each of these functions provides information to the user in the form of

log files and customization options. However, the proprietary nature of Vivado prevents source-

code-level configurability and access to algorithms used in each step.

1.2 SymbiFlow Toolchain

 The purpose of the SymbiFlow toolchain [8] is to provide a free and open-source

alternative to proprietary tools like Vivado for creating FPGA designs and bitstreams. In

combining tools for synthesis, place & route, and bitstream generation, SymbiFlow allows users

to take an RTL design and generate bitstreams functioning on FPGAs from several vendors.

These FPGA vendors include Xilinx, Lattice, and QuickLogic as well as limited support for

others. The Xilinx 7-series FPGAs are the focus of this study, with particular focus on the Artix-

7 35TCSG324-1 FPGA. For the Artix-7 chip, SymbiFlow presents a flow using the following

tools: Yosys [15] for synthesis, Versatile Place & Route (VPR) [16] for place and route, and

Project X-Ray [12] for bitstream generation. A simplified visual representation of these tools

within the toolchain can be seen in Figure 2. A version of each tool comes provided with

installation of SymbiFlow.

https://www.zotero.org/google-docs/?c91Glv
https://www.zotero.org/google-docs/?36a7gC

4

Figure 2 - Visualization of tools involved in SymbiFlow toolchain

1.3 DSP Blocks

 In FPGAs, DSP blocks are circuits used to implement multiplication, multiply-

accumulate, and similar arithmetic operations. The Arty 35T FPGA used in this work offers 90

of these DSP blocks spread across two columns, while the number available DSPs on larger

Artix-7 chips can rise above 2,500 [7], [17]. The DSP block (also called a slice) native to Xilinx

7 series FPGAs is referred to as a DSP48E1. These cells can be used for a variety of tasks based

on their architecture. Some of the functions provided by Xilinx for the DSP48E1 are multiply,

multiply-accumulate, multiply add, three-input add, barrel shift, wide-bus multiplexing,

magnitude comparator, bitwise logic functions, pattern detect, and wide counter [17].

 Figure 3 shows the internal architecture of the DSP48E1 block from the Xilinx 7 Series

DSP48E1 Slice User Guide [17]. Data can enter the slice through input ports A, B, C, and D,

each of which is wired internally through different logic functions. For instance, to implement

the 25x18 bit multiplier, data can enter through the A and B ports. Alternatively, setting the

“USE_DPORT” parameter to “TRUE” in the RTL design, the multiplier could be configured to

output the function B×D instead. The pre-adder can be included in a similar fashion to produce

the function B×(A+D). The output of the DSP block is directed through the P port. In addition to

the ports shown, reset and clock enable signals exist for the A through D inputs to allow for

pipelining.

5

Figure 3 - Internal architecture of 7 Series DSP48E1 slice (from [17])

To determine the internal routing of signals and function implementation, there are three

important inputs: INMODE, OPMODE, and ALUMODE. These signals are connected to

multiplexers X, Y, and Z found between the logic units in the DSP48E1. INMODE is responsible

for setting the output of the pre-adder, optionally choosing between inputs A and D as the output

to be fed into the 25x18 multiplier. OPMODE controls the signals provided to the secondary

logic unit. Finally, ALUMODE sets the function to be conducted within the secondary logic unit,

taking in the outputs of multiplexers X, Y, and Z. An incorrect initialization of any of these

values will result in unintended behavior of the DSP48E1 slice and are critical towards proper

configuration of the block.

DSP blocks can be processed by Vivado using an intellectual property (IP) module called

the DSP48 Macro [18]. Using the GUI, a user can instantiate the DSP48 Macro with their desired

logic function and I/O signal bit widths. This approach simplifies needing to understand values

for signals INMODE, OPMODE, and ALUMODE, as they are automatically set to implement

the given logic function. A snapshot of the DSP48 Macro is shown in Figure 4. The user’s

defined DSP slice is in a simplified form on the left side of the window. In this example, a B×D

multiplier was selected in the “Instructions” tab and the bit widths for these inputs are being set

6

to three bits wide. This implements a 3x3 bit signed multiplier. Alternatively, if the MSB of each

input is set to 0, a 2x2 bit unsigned multiplier can be implemented.

Figure 4 - DSP48 Macro provided by Vivado for DSP block creation (from [7])

 An important note about IP cores in Vivado is that unlike HDL written by the user,

synthesized IP module information is encrypted post-synthesis. This approach denies the user

access to configurability outside of the DSP48 Macro GUI and in the synthesized netlist. The

need for encryption likely arises due to Xilinx’s ownership of these IP cores; it is meant to

prevent other individuals or companies from stealing their work and becoming a competitor. In

all, Vivado provides support for the DSP48E1 slice with a detailed wizard allowing

implementation of a user’s exact needs.

 At time of this writing, DSP block processing leading to bitstream generation has

remained unimplemented for the Artix-7 SymbiFlow toolchain. The inclusion of DSP

functionality is considered valuable due to the popularity of Artix-7 devices. Proprietary tools are

often inaccessible for open-source contributors and individual researchers, lending to the need

7

for further contributions towards open-source initiatives such as SymbiFlow. Addressing DSP

implementation for the Artix-7 FPGA family offers insight into similar efforts for other FPGA

families in the future.

1.4 Thesis Outline

This document is divided into five chapters, with this introduction serving as the first. An

in-depth view into the tools that make up SymbiFlow, how it is used and its status for DSP block

support for the Artix-7 family of FPGAs is presented in Chapter 2. Chapter 3 details the

SymbiFlow FPGA architecture definitions and FPGA assembly (FASM) file formats used to

generate bitstreams. A method of reverse engineering proper DSP FASM information from

Vivado is presented as well. Chapter 4 breaks down all modifications made within SymbiFlow to

support a basic use of the DSP48E1 block. Finally, Chapter 5 describes how this basic

implementation has been expanded to include functions such as the 25x18 bit multiplier, partial

pre-adder, and pipelining support.

8

CHAPTER 2 - SYMBIFLOW

 The SymbiFlow toolchain can be divided into its three main steps: synthesis, place &

route, and bitstream generation. Figure 5 provides a detailed view of how the tools

accomplishing these tasks are able to communicate with one another by displaying their

intermediate files. Further, it introduces the notion of the architecture file and routing resource

graph. These two files and their importance for the addition of DSP blocks will be the focus of

Chapter 3. In the following sections, each of these tools will be viewed in detail.

Figure 5 - Detailed SymbiFlow toolchain with architecture definitions and intermediate files

9

2.1 Yosys

Yosys [15], [19], is an open-source synthesis tool developed by Claire Wolf. It is built as

a framework around the University of California Berkeley’s ABC [20] sequential synthesis and

verification tool, providing several additional features which support mapping to a variety of

popular FPGA families. For the purposes of this work, we use Yosys to take in Verilog-2005

register-transfer level (RTL) code and produce a synthesized netlist in lookup tables (LUTs),

memory-based truth tables. Yosys is the first of three tools making up the SymbiFlow toolchain

[8]. In SymbiFlow, Yosys synthesis is conducted in two passes to generate an extended BLIF file

(EBLIF), which is subsequently passed into the place and route tool VPR.

Synthesis in Yosys is conducted over several passes, some of which include optimization

of flip-flops or limiting the design to use LUTs in place of block random access memory

(BRAM) modules. It is the subsequent technology mapping and optimizations that lead to the

generation of a synthesized netlist from RTL input. When executing Yosys, there are three main

commands that are commonly used. They are tailored towards the FPGA architecture that is used

within this work. These commands are the following:

● read_verilog

● synth_xilinx

● write_verilog

The “read_verilog” command accepts as input one or more Verilog-2005 RTL files to be

synthesized. The “synth_xilinx” command is the Xilinx family specific synthesis command,

utilizing Xilinx FPGA cell libraries to create a netlist from the RTL input. Lastly,

“write_verilog” instructs Yosys to print out its synthesized netlist for the design.

2.2 VPR / Genfasm

During the second stage of the SymbiFlow toolchain, VPR receives the EBLIF netlist

output of Yosys to conduct three steps: packing, placement, and routing [21], [22]. The packing

step of VPR will use technology mapping to turn the EBLIF netlist into VPR’s own form of

10

netlist [16]. It makes use of the chip’s architecture file to understand the ports and interconnects

going into and from each tile of the FPGA. The next two steps, placement and routing, are

equivalent to the steps in Vivado. The defined logic blocks are then assigned to locations within

the chosen FPGA architecture through the placement step. Locations for instantiation can be

chosen based on factors such as area or power efficiency. Once placed, VPR makes use of its

routing graph to determine the path which signals between logic blocks will take across the

FPGA. These paths are directly written as FASM feature statements at the end of VPR through a

script called Genfasm. Information involving locations of switchboxes being used and which

programmable interconnect points (PIPs) are being activated to route signals are printed to this

file. During its runtime, VPR also outputs intermediary files such as .pack. .place, and .route

files, which describe logic location and routing assignments, and the execution output log from

each VPR step.

VPR generates a FASM file by the end of its execution. Each line of a FASM file is

called a feature, and it specifies either a routing connection or other attribute of a specific tile at a

specific location on the chip.

 Two of the supplemental files needed to run VPR, the routing graph and architecture file

for the FPGA, can be generated separately from the SymbiFlow toolchain. The SymbiFlow

authors provide a repository through GitHub titled SymbiFlow Architecture Definitions, through

which it is possible to contribute information for new families of FPGAs and generate new sets

of these files [14], [23]. These files are necessary resources for incorporating DSP blocks into the

Artix-7 architecture definitions and subsequent toolchain. The SymbiFlow architecture

definitions will be explored further in Chapter 3.

2.3 Project X-Ray

Project X-Ray serves as the final step in the SymbiFlow toolchain [12], [24]. It is

responsible for taking in the FASM file provided by VPR and Genfasm, producing a bitstream

that can be loaded onto the given FPGA. Most of Project X-Ray is a database repository,

containing information on possible connections for all supported FPGA families. The Artix-7

portion of this database contains pin maps for many variations of the chip, including the Xilinx

Artix-7 xc7a35tcsg324-1 that is used for our testing purposes. To generate a bitstream from the

11

FASM file, Project X-Ray will consult its list of segbits files [25]. These are a set of databases

provided by Project X-Ray containing all possible FASM features for a given tile. The segbits

files are necessary to translate FASM features to their appropriate bits in the bitstream. Each

connection combination is associated with a bit in the bitstream that will either be toggled on or

off depending on whether its feature is present in the FASM file. The fixed length bitstream can

then be written by translating the features given to their respective bits from the segbits file

before being uploaded to the FPGA.

2.4 Using SymbiFlow

Along with the Yosys, VPR, and Project X-Ray tools, an example directory titled

“symbiflow-examples” is provided with SymbiFlow [26]. This includes several designs

showcasing how new users can gain familiarity with using the toolchain. One such example is

“counter_test”, the code for which can be found in Figure 6.

Figure 6 - counter_test.v, part of symbiflow-examples (from [26])

12

 The counter_test.v design consists of a clock and buffer with outputs connected to four

LEDs. The design is written to count in binary and display the result on the LEDs every clock

cycle. It is a simple design, but helpful for understanding how SymbiFlow can take a Verilog

RTL file such as counter_test.v and generate a working bitstream for the Artix-7 FPGA.

Figure 7 - common.mk Makefile used to call steps with SymbiFlow (from [26])

 SymbiFlow operates from a Makefile which references the tools in the toolchain with

their respective commands. A snapshot of the call steps within the common.mk Makefile can be

seen in Figure 7. The final target “${BOARD_BUILDIR}/${TOP}.bit” to generate a bitstream

from the FASM file is called first. This step, as well as all others, has a dependency on the

previous step in the flow being completed first. For the “.bit” step, it requires that the “.fasm”

step was run to confirm that there is a FASM file to generate a bitstream from. These

dependencies cascade down the toolchain until Yosys can be executed to create the synthesized

netlist EBLIF file. Table 1 below shows each command found within the file common.mk. In

order, they will take in an RTL input to Yosys and put the synthesized netlist through place and

route in VPR, while ending with bitstream generation with Project X-Ray. While Project X-Ray

has many functions, one of its main tasks is in housing a database of hundreds of FPGA

13

architectures. This tool is used to translate each line of a FASM file to exact bits within a

bitstream, determining which features should be set ON or OFF based on entries in its database.

Table 1 - Steps called and tools used within SymbiFlow

Command Description

symbiflow_synth Calls Yosys to synthesize RTL input into output EBLIF file.

Utilizes synth.tcl script to execute Yosys twice

symbiflow_pack Calls VPR to convert EBLIF into a netlist, determining which

cell blocks should be used to implement design

symbiflow_place Calls VPR to determine optimal placement location of cells in

the netlist

symbiflow_route Calls VPR to route logic between cells in the .place file

symbiflow_write_fasm Calls Genfasm, a tool packaged along with VPR. Takes in the

Yosys EBLIF netlist and .pack, .place, and .route files from

VPR to create a FASM file

symbiflow_write_bitstream Translates FASM file into a bitstream using Project X-Ray

database for the desired FPGA (this project uses the Arty 35T,

or xc7a35tcsg324-1 [27])

For designs in symbiflow-examples, the SymbiFlow structure will create a “build”

directory that contains all intermediate files generated throughout the toolchain.

2.5 State of DSP Block Usage in SymbiFlow

Prior to this work, designs using DSP blocks targeted to the Artix-7 family of FPGAs

have not been supported in SymbiFlow. While Yosys does offer support for synthesis of DSP

blocks, DSP48E1 information is missing from the architecture file and routing graph used within

14

VPR. The SymbiFlow authors also state that database information for the DSP block has not

been fully documented within Project X-Ray as of yet [8]. Due to missing DSP implementation

in the architecture file and routing graph, the SymbiFlow TCL script used to execute Yosys

includes a “-nodsp” flag throughout to prevent the synthesis of DSP slices during the step. This

forces Yosys to use LUT logic in place of a DSP block for multiplication implementation. The

Yosys execution TCL script and its associated cell libraries avoid instantiating DSP blocks

wherever possible.

In a normal run of SymbiFlow, a second set of cell libraries are used between Yosys

synthesis and VPR place and route. The two files, called cells_sim.v and cells_map.v, are

referred to as the VPR libraries. They are necessary to translate the gate level netlist that is

output from Yosys onto a set of VPR-readable cells that can be packed, placed, and routed onto

the FPGA. The VPR libraries provided with SymbiFlow contain placeholder DSP48E1 cell

definitions taken from Xilinx’s publicly available Xilinx Equivalence Checking Library (xeclib)

[7]. Without architecture and routing information for the DSP48E1 for VPR, the VPR library

definition of the DSP block has nothing to translate onto.

15

CHAPTER 3 - ARCHITECTURE DEFINITIONS AND GENFASM

3.1 SymbiFlow Architecture Definitions

The SymbiFlow Architecture Definitions [14], [23] (also referred to as symbiflow-arch-

defs) are a necessary starting point for incorporating DSP blocks into the Artix-7 flow of

SymbiFlow. The repository provides a framework for defining cell primitives that then can

produce routing graphs and architecture files for a desired FPGA. The routing graph and

architecture file provided with SymbiFlow do not include DSP information at the time of this

writing. In the following sections, we will explain how these primitives are used to generate

these two files. A design under test will also be used to highlight changes that needed to be made

for these architecture definitions to support the DSP48E1 block.

3.1.1 Architecture Primitives

FPGA primitives can be thought of as the building blocks for their target architecture.

The FPGA is divided into many self-contained tiles with wiring between them, with each tile

containing a number of primitives. Current primitives for the Artix-7 family include definitions

for the majority of available hardware such as buffers, clocks, LUTs, most BRAMs, and other

tiles. Despite each of these cells being very different in function, their primitive definitions are

written using the same model. The model involves two files: *.model.xml and *.pb_type.xml. In

place of the star, the name of the primitive is placed. For example, there are several different

forms of BRAM available on the Artix-7 35T FPGA. One of them is the RAMB18E1. For its

primitive definition, its associated files are called ramb18e1.model.xml and

ramb18e1.pb_type.xml. The model.xml file describes the input and output ports for the primitive

as well as their bit widths. An example of the RAMB18E1 model.xml file is shown in Figure 8.

The pb_type.xml file is typically much longer, and this is where interconnects between the tile

and the primitive are defined. For tiles that contain multiple types of primitives (such as the

BRAM cell), this can lead to having multiple pb_type.xml files that reference each other

hierarchically. A look at the interconnects of the RAMB18E1 module can be seen in Figure 9.

16

Figure 8 - Snapshot of ramb18e1.model.xml (from [23])

Figure 9 - Snapshot of bram.pb_type.xml showing RAMB18E1 interconnects (from [23])

17

3.1.2 Generating Routing Graph and Architecture File

The symbiflow-arch-defs repository contains an extensive array of CMake files for

automatic routing graph and architecture file generation. After creating all desired primitive and

tile definitions for the target architecture, the user can run “make env” for the symbiflow-arch-

defs directory. This command will create a new build directory that contains copies of the

primitive and tile definitions, along with the framework for creating routing graphs and

architecture files. By the end of this process, files will have been generated using the primitive

and tile definitions for the Artix-7. The most notable of these files for SymbiFlow are the newly

created routing graph (rr_graph_xc7a50t_test.rr_graph.real.bin) and architecture file

(arch.timing.xml). We found it necessary to convert the routing graph to XML file format using

VPR before it is able to be used in the SymbiFlow toolchain. Upon completion, the routing graph

and architecture file can be used in place of the original versions provided by SymbiFlow.

3.1.3 Developing A Basic DSP48E1 Primitive

The current state of DSP block integration for the architecture definitions and routing

graph provided with SymbiFlow is incomplete. This existing primitive for the DSP48E1 contains

no routing or interconnect information. Due to this, synthesized DSP blocks being passed from

Yosys to VPR cannot be decisively matched with their primitive to conduct place and route,

resulting in an error in SymbiFlow. It is apparent that a simple introductory primitive is needed

to determine other points within the toolchain that require DSP-related modifications. We begin

by creating a new DSP_L tile definition containing DSP48E1 primitives to be included in the

symbiflow-arch-defs automated CMake framework. The DSP48E1 primitive outlines the ports

and interconnects required to use the DSP block as a basic 25x18 bit multiplier. Our first

objective is to define the cell so that VPR can conduct place and route with the tile. We find

success in this, with Figure 10 showing the primitive interconnects for the first DSP48E1 to

achieve this goal.

18

Figure 10 - Preliminary DSP48E1 primitive used for place and route

 This partial primitive definition is successful since VPR conducts routing without

knowledge of the DSP_L tile’s internals. In fact, the only requirement for our limited DSP48E1

definition is that it matches the VPR library cell definition provided in Yosys. This is necessary

for VPR to match the synthesized DSP block to our DSP48E1 primitive. For this design,

however, the DSP48E1 instance is blackboxed through Yosys, preventing synthesis on the

instance. This provides the benefits of a partial DSP48E1 being provided to VPR that matches its

primitive definition. If we were to allow the DSP48E1 to be synthesized in Yosys, full bit widths

and a complete definition of the instance would be inferred based on the tool’s cell libraries.

Synthesizing a full DSP block through Yosys would then prevent us from testing the simple

DSP_L tile architecture definition we have created for VPR. While this work later explores how

we can include Yosys synthesis for the DSP block, blackboxing the instance for now is

beneficial towards designing the DSP48E1 primitive. For the remainder of this chapter, this will

continue to be the case.

19

3.2 2x2 bit Multiplier Design Under Test (DUT)

The benchmark chosen to test successful DSP implementation through SymbiFlow is a

2x2 bit unsigned multiplier controlled by input switches on the Arty 35T board. This section will

further detail this multiplier design as well as its current FASM representation. A symmetric

flow between SymbiFlow and Vivado will be presented to highlight the desired FASM file that

will need to be created to generate a functioning bitstream for the design.

3.2.1 Symmetric Flow through SymbiFlow and Vivado

Figure 11 - Custom 2x2 bit unsigned multiplier using DSP48E1

 To introduce a design under test, we create a simple 2x2 bit unsigned multiplier design

written in Verilog 2005 that makes use of the DSP48E1 slice. The RTL code used as the input to

SymbiFlow is shown in Figure 11. The slice is defined at the chip coordinates X=34, Y=70. The

Arty 35T board contains four switches which have each been assigned to one of the four input

bits. As the DSP48E1 slice defaults to signed multiplication, the MSB for each input was tied to

20

1’b0, or GND. This implements a 3x3 bit signed multiplier that functions the same as a 2x2

unsigned multiplier.

While the DUT can be successfully placed and routed through VPR and create a FASM

file through Genfasm, the FASM file contains incorrect FASM features that create errors in the

bitstream generation step. These errors are a result of having FASM features that are not found in

the segbits database mentioned in Chapter 2.4. This means that the preliminary DSP48E1

primitive creates a faulty FASM file that generates features that are not correctly being mapped

to bits in the bitstream. To solve this, we need to understand what valid DSP_L FASM features

look like. This presents us with a challenge of determining how the completed DSP_L

architecture should be generated before continuing to expand upon its tile primitive.

Figure 12 - Symmetric flow between SymbiFlow and Vivado

for 2x2 multiplier. DSP_L tile information is taken from the Vivado FASM file

and used in the SymbiFlow FASM file for bitstream generation

21

To solve the issue of needing a golden model for the DSP_L FASM information, a

symmetrical FPGA synthesis flow is created between SymbiFlow and Vivado. This can be seen

in Figure 12. Project X-Ray provides a Python script called bit2fasm.py that can convert an

FPGA bitstream into the FASM file that created it. By creating two flows between Vivado and

SymbiFlow with the same input RTL Verilog, we are able to compare the FASM file generated

by SymbiFlow to the reverse engineered FASM file created from the Vivado bitstream and

bit2fasm.py. This gives access to the DSP_L FASM information that we expect to see once the

full DSP_L architecture is implemented. In the meantime, however, we are able to confirm the

Vivado DSP_L FASM information by substituting only these FASM features into the

SymbiFlow FASM file and continue with bitstream generation in Project X-Ray. A functioning

multiplier bitstream can be generated using this approach.

3.2.2 Differences between SymbiFlow and Vivado FASM files

Snapshots of the DSP_L information from the SymbiFlow and Vivado FASM files are

displayed in Figure 13. The SymbiFlow information was generated as a result of our created

DSP_L tile definition, where we see the B and D inputs with two bits each along with the four

bits of multiplier output to port P. While the full DSP_L information is shown for the

SymbiFlow file, only part of the Vivado file is displayed. The Vivado FASM file contains extra

information regarding attributes and parameter values for the DSP block, not currently

represented in the SymbiFlow tile definition. We see that the binary value 1101 is assigned to the

parameter labeled “ZIS_ALUMODE_INVERTED[3:0]”. This, along with two FASM features

later in the file setting ALUMODE2 and ALUMODE3 to GND (or 0), are responsible for the

signal value of ALUMODE that ultimately enters the DSP48E1 primitive. To understand the

final ALUMODE value, it is important to understand this parameter.

22

Figure 13 – (Top) SymbiFlow FASM information for the DSP_L tile.

(Bottom) Vivado FASM information for the DSP_L tile reverse engineered using bit2fasm.py

 “ZIS_ALUMODE_INVERTED” is a 4-bit wide signal that connects to multiplexers at

the 4-bit ALUMODE input to the DSP48E1. Each bit controls its respective bit’s multiplexer in

ALUMODE, where a value of 1 will pass the incoming ALUMODE signal through the

multiplexer, and a 0 will invert the incoming signal. Therefore, the value

“ZIS_ALUMODE_INVERTED[3:0] = 1101” will invert the signal value coming into

ALUMODE[1], while remaining bits will be maintained. This, along with two features that set

ALUMODE[3:2] to GND, completes the appropriate setup for the ALUMODE signal.

23

Ultimately, the ALUMODE signal is provided a value of 0001 to perform multiplication for the

B and D inputs [17].

While initially seeming redundant, the ”ZIS_ALUMODE_INVERTED[3:0]” parameter

is interestingly provided to solve an issue regarding unrouteable VCC or GND signals. For

instance, it is often the case that many ports will be connected to GND through the same wire

called GFAN in a local switchbox. At times, due to these routed connections becoming

numerous within a single switchbox, a bounce fan (a routing structure in the switchbox) may be

forced to send a VCC and a GND signal due to ports with conflicting values connected to it. The

“INVERTED” parameters allow for signal values to be inverted through multiplexers at the input

to the DSP48E1 primitive instead of within the switchbox. This serves as a way to lessen

congestion of switchbox fan signals.

Not seen in the FASM files from Figure 13, but present in the SymbiFlow and Vivado

FASM files, are INT_L features that reference X and Y locations across the chip. These INT_L

features are used for defining connections within switchboxes across the FPGA used for signal

routing. Unfortunately, the purpose of the INT_L lines in the FASM file was something that was

not outlined explicitly in any documentation. It was not until the discovery of the Routing

Resources GUI in Vivado that we were able to confirm routing information completed by

SymbiFlow. This will be explored further in the following chapter.

With the completion of the basic 2x2 multiplier symmetric flow, we can generate DSP

bitstreams through with the help of Vivado FASM information. We gain a deeper understanding

of the DSP_L tile attributes through what we have observed as differences between the

SymbiFlow and Vivado FASM files. In Chapter 4, we will continue separating the individual

aspects of the toolchain that require changes to fully support DSP blocks with strictly the open-

source tools.

24

CHAPTER 4 – COMPLETE SYMBIFLOW DSP BITSTREAM

4.1 Diagnosing DSP Support Points

 To this point, we have created a version of SymbiFlow that blackboxes a DSP48E1

instance through Yosys to avoid synthesis. The instance is read into VPR using our basic

DSP48E1 primitive and generates a bitstream using the Vivado DSP_L FASM information

substituted in place of our created SymbiFlow DSP_L FASM information. This flow is shown in

Figure 14. This chapter will return to each of the points that require some form of modification

for DSP block support and explain how the change was made. Beginning with RTL, we will

trace along the SymbiFlow toolchain, ending with a complete open-source toolchain that can

support bitstream generation of a DSP block design for Artix-7 devices.

Figure 14 – 2x2 bit multiplier flow through SymbiFlow (top flow). The bottom flow assists in

generating the DSP_L template and is only used once.

*The DSP48E1 is blackboxed through synthesis in order to pass Yosys

4.2 Investigating the Vivado Routing Resources GUI

A structural definition of the DSP48E1 instance is provided to SymbiFlow to ensure that

the symmetric implementation of the DSP block is identical in both SymbiFlow and Vivado.

Using the 2x2 bit multiplier described in Chapter 3.2, we utilize tools within Vivado to

25

determine the value of DSP48E1 parameters and input ports that force the multiplication

behavior we need within the tile.

Vivado provides in-depth information regarding its routing network through the Routing

Resources GUI view. We can view the routed paths from input pins to the DSP block and from

the DSP block to output pins highlighted in green. These represent the logic signals in the design.

Figure 15 shows the GUI for Vivado’s version of the 2x2 multiplier after place and route.

Figure 15 - Vivado Routing Resources GUI for 2x2 multiplier design. Green signals

are for input logic, while orange trace output logic.

 Using the Routing Resources view, we were able to determine that many of the lines in

the FASM file were for tracing signals through switchboxes across the chip. Previously, the

INT_L features had been unknown to us. The Routing Resources GUI allowed us to view

switchbox interconnects that held input and outputs that matched those of the switchboxes.

Figure 16 shows a comparison between a switchbox interconnect line in the FASM file and its

associated connection in the GUI.

26

Figure 16 – (Left) INT_L switchbox interconnect lines in Vivado FASM file.

(Right) Corresponding switchbox pins displayed in the Routing Resources GUI

An important takeaway from consulting the Vivado Routing Resources GUI for this

design was not only the switchbox information, but also the ability to view signals that Vivado

automatically sets for the DSP block. In order to create a functioning DSP block for Vivado, we

used the DSP48 Macro IP Core. IP (Intellectual Property) cores in Vivado are helpful for

defining complex blocks without the need to understand the inner workings. For our purposes,

the method of hiding instantiation of the DSP block became an obstacle that the Routing

Resources GUI allowed us to overcome. This is because the DSP48 Macro ties several of its

reset and mode signals to values that force the block to behave as a 2x2 bit multiplier. Table 2

below lists all DSP48E1 ports added to the new routing graph and architecture file that were

forced to GND as done by Vivado. Pins not included in this table are automatically set to VCC

by SymbiFlow.

27

Table 2 - List of DSP48E1 ports tied to GND needed to produce a working 2x2 multiplier

Pin Name Pin Description (from [17]) Set Externally?

A[2:29] A input to pre-adder Y

B[2:17] B input to 25x18 multiplier Y

D[0:24] D input to pre-adder N

OPMODE[6] X, Y, Z routing multiplexer control N

ALUMODE[2:3] Selects function of main logic unit N

CARRYINSEL[0:1] Selects the carry source Y

INMODE[0],[4] Selects function of pre-adder and multiplier N

CEA1 Clock enable for the first A register Y

CEA2 Clock enable for second A register Y

CEB1 Clock enable for first B register Y

CEB2 Clock enable for second B register Y

CEC Clock enable for C register Y

CED Clock enable for D register N

CEM Clock enable for post-multiply M register Y

CEP Clock enable for P register Y

CEAD Clock enable for pre-adder output AD N

CEALUMODE Clock enable for ALUMODE registers N

CECTRL Clock enable for OPMODE and CARRYINSEL Y

CECARRYIN Clock enable for CARRYIN register Y

CEINMODE Clock enable for INMODE registers N

RSTA Reset for both A registers Y

RSTB Reset for both B registers Y

RSTC Reset for C register Y

RSTD Reset for D register N

RSTM Reset for M register Y

RSTP Reset for P register Y

RSTCTRL Reset for OPMODE and CARRYINSEL Y

RSTALLCARRYIN Reset for internal carry and CARRYIN register Y

RSTALUMODE Reset for ALUMODE registers Y

RSTINMODE Reset for INMODE registers Y

28

The view of the Routing Resources GUI of these signals being tied to ground can be seen below

in Figure 17. Signals highlighted in blue are tied to GND, while red signals are connected to

VCC.

Figure 17 - Routing Resource GUI view of the DSP block with incoming/outgoing signals.

Red signals are VCC, blue are GND. Green represents switches and LEDs (logic)

 Viewing signal values headed into the DSP block also granted us access to necessary

values for INMODE, OPMODE, and ALUMODE. These signals, discussed in Section 1.3, are

critical as their values configure the functionality of the DSP block. The values required to force

the DSP48E1 to behave as a multiplier for the A and B input ports are listed in the final column

of Table 3. Input signal values multiplexed by the “IS_INVERTED” attribute are provided as

well. As a reminder, 0 values in the “IS_INVERTED” attribute will invert the corresponding

input signal bit before being fed into the DSP48E1.

29

Table 3 - Combination of input signals and inverted attributes on INMODE,

OPMODE, and ALUMODE to induce an A*B port multiplier for DSP48E1

 Input Signal “IS_INVERTED” Attribute Value Entering DSP48E1

INMODE 5’b00000 5’b11111 5’b00000

OPMODE 7’b0111111 7’b1000101 7’b0000101

ALUMODE 4’b0011 4’b1101 4’b0001

 The collection of ports that the Vivado DSP48 Macro ties to GND automatically when

defining an A*B DSP multiplier needs to be set manually for SymbiFlow. To do this, we provide

the values set by Vivado in the structural definition of the DSP48E1 in RTL code. This definition

can be seen in Figure 18. The A and B inputs can be seen connected to the A and B inputs of the

DSP48E1 instance, with our discovered values for INMODE, OPMODE, and ALUMODE set

from the Vivado GUI and “IS_INVERTED” values set based on the Vivado FASM file.

Figure 18 - 2x2 bit multiplier RTL code with MODEs and INVERTED parameters

(Images presented in book format for readability)

30

4.3 Yosys DSP Information into VPR

Yosys will infer information left out of RTL design file definitions. For example, when

provided the incomplete DSP48E1 instance in the previous 2x2 multiplier example, Yosys

expands the bit widths of each input to match the full size of their port. The A and B inputs of the

DSP48E1 were used, leading Yosys to define the 2x2 inputs as 25x18 instead. This led to issues

with our testing of a limited DSP block in VPR. We created a DSP48E1 primitive that expects a

2x2 input, which in reality receives a full 25x18 bit input due to Yosys inference. Due to this

issue, VPR cannot associate the Yosys DSP block with our DSP48E1 primitive and outputs an

error. To combat this, we have blackboxed the DSP48E1 instance through Yosys so that it is

provided to VPR in a form that is exactly what we need.

We solve the issue of removing the Yosys blackbox by making modifications to the

DSP48E1_VPR definition in the VPR cell libraries. As mentioned in Chapter 2.5, the two files

critical for this are cells_sim.v and cells_map.v. These libraries are structured such that when

instantiating a DSP48E1 in cells_map.v ̧a call to cells_sim.v is made to instantiate an instance of

the DSP cell found in that file. This is to say that cells_map.v is a wrapper to cells_sim.v.

Provided with SymbiFlow are DSP48E1 definitions taken from the set of Xilinx cell libraries

called xeclib [7]. While this has all the available ports and DRC checks needed for the cell, it

does not match our limited partial definition of the instance found in the DSP48E1 primitive.

This is corrected over several steps.

The first modification needed is to solve the issue of redundant DSP logic definition. The

current set of definitions in cells_map.v and cells_sim.v sees a call to cells_map.v, which creates

the logic of a DSP block and then internally references the DSP definition found within

cells_sim.v, creating a set of logic. This is a result of the placeholder definition for the DSP48E1.

From this, attempting to synthesize a DSP block with the base VPR libraries results in a

DSP48E1 and matching logic in the form of LUTs being instantiated. We are able to edit the

cells_map.v definition to match more closely to other cells within its library by removing

redundant DRC checks and Verilog logic assignment. Doing so prevents the extra set of LUTs

from being instantiated. Also, to remain consistent with other definitions throughout the VPR

libraries, the cell name within the lower cells_sim.v file is changed from “DSP48E1” to

“DSP48E1_VPR”.

31

A second change to the VPR libraries consists of trimming its full definition down to

only the connections we need to implement the 2x2 multiplier DUT. We use this as a starting

point to simplify the flow and demonstrate bitstream generation, with the idea to regrow the

DSP48E1_VPR definition as we introduce more functionality to the block. To decide which

ports can be left undefined, we refer to the ports left unconnected in the Vivado Routing

Resource GUI from the previous section. Table 4 lists all DSP48E1 ports that are removed from

the partial definition used in the VPR libraries.

Table 4 - All ports removed from the VPR libraries based on Routing Resource GUI

Pin Name Pin Description (from [17])

ACIN[0:29] Cascaded data input from ACOUT of previous DSP48E1 slice (muxed with A).

BCIN[0:17] Cascaded data input from BCOUT of previous DSP48E1 slice (muxed with B).

CARRYCASCIN Cascaded carry input from CARRYCASCOUT of previous DSP48E1 slice.

MULTISIGNIN Sign of the multiplied result from previous DSP48E1 slice for MACC extension.

PCIN[0:47] Cascaded data input from PCOUT of previous DSP48E1 slice to adder.

The final important piece of information for the VPR cell libraries is the definition of

parameters. The EBLIF output of Yosys is used further along the toolchain when writing the

FASM features for the DSP_L tile. Within this EBLIF file, we need to ensure that all values for

parameters are being written to prepare for FASM file generation. We have seen in the Vivado

FASM file reverse-engineered using bit2fasm.py the values that these parameters will need to

have, with an example of this being the parameter AREG = 0. Each parameter value is defined of

the type “param integer” instead of the common binary value assigned to other parameters

throughout the VPR libraries. In fact, this difference in type causes an issue later in the flow,

where the 32-bit integer value assigned to each parameter cannot be interpreted by Genfasm,

which expects single bit inputs. The implemented fix for this issue is to allow for values to be

assigned to integers in the upper cells_map.v, while only using their LSB to instantiate the

DSP48E1_VPR found within cells_sim.v. This way, the binary value being assigned to an integer

is returned to binary before being interpreted by Genfasm. While another solution could be to

change all data types from integer to binary, this does not solve the issue for parameters like

32

AREG and BREG that can be assigned to 0, 1, or 2 [17]. These parameters have been broken

into three separate attributes (e.g., AREG_0, AREG_1, AREG_2) each assigned a binary value.

One and only one of these attributes will have the value of 1’b1 at a given time to represent the

three possible values for their combined parameter. Their values are determined using if

statements within the DSP48E1_VPR instance definition of cells_map.v, seen in Figure 19

below.

Figure 19 – Part of cells_map.v definition of a DSP48E1_VPR cell. AREG_0, AREG_1, and

AREG_2 parameters are added to assist with generating FASM parameters with Genfasm

4.4 Developing DSP48E1 Primitive

We know that Yosys has full functionality for synthesizing RTL structures to a DSP48E1

instance. From our previous work, we also have confirmed the DSP_L information required in

the FASM file to generate a successful bitstream. This provides us with an input to VPR and its

desired output, controlled entirely on the DSP48E1 primitive that we use to build our routing

graph and architecture file. We are able to phase out the need for Vivado FASM information for

33

the 2x2 DSP multiplier DUT by defining this primitive correctly. This is achieved by drafting a

new DSP_L tile using our desired input and golden output as the framework for testing.

The preliminary DSP48E1 primitive used for place and route was defined with two input

ports and a single output port. Using what we learned from the Vivado Routing Resource GUI,

we know that we will need to include interconnects for all ports that Vivado implicitly ties to

GND. These port definitions, seen previously in Table 2, are added to form a primitive with only

the information needed for the multiplier DUT. Remaining ports that do not affect the DSP48E1

multiplier functionality are left undefined.

The most important part of the DSP48E1 primitive is including FASM parameter

information, which will translate parameters values defined in the Yosys EBLIF file into FASM.

This requires a section of the primitive to indicate how EBLIF parameters should be translated

into FASM features. Within the primitive, this section is denoted by the metadata

“fasm_params.” The Genfasm and VPR authors provide documentation on how to write custom

metadata for these parameters as well as writing other FASM features [28], [29]. The custom

“fasm_params” section of the DSP48E1 primitive is shown in Figure 20, with the right side of

each assignment being the parameter to look for in EBLIF and the left being what should be

written in FASM if the parameter is to be set.

Figure 20 - "fasm_params" section of DSP48E1 primitive

(Images presented in book format for readability)

34

 These two steps, implementing the limited port definitions and “fasm_params” for the

DSP48E1 primitive, allow SymbiFlow to generate a FASM file with DSP_L features nearly

identical to our golden Vivado FASM file. Previously, the reliance on Vivado was to support an

incomplete architecture definition for the DSP48E1. This successfully separates the open-source

tools from requiring Vivado and the symmetric flow to conduct DSP design bitstream

generation.

4.5 Changes to Genfasm

As it stands, the FASM file generated by SymbiFlow through VPR will define

connections for all ports entering the DSP48E1 through its neighboring switchbox. The Vivado

FASM file, when reverse-engineered, omits any reference to signals routed within this switchbox

that do not connect to either local VCC or GND. In other words, signal values are represented

solely using INT_L or INT_R switchbox features and references to IMUX routing logic is not

included in FASM for the DSP_L tile. The Vivado FASM files for multiple designs have been

used to regenerate a functioning bitstream when sent through Project X-Ray, leading us to

believe that missing signal connections for the local DSP_L switchbox are the default case, or

are inferred. The contrast between this and SymbiFlow defining all of its port connections is that

Project X-Ray will throw an error when specifying one of these connections in FASM for the D

input. Signals attempting to route to any of the D input bits will result in a connection

“DSP_FAN” within the DSP switchbox. These connections are unrecognized in Project X-Ray’s

Artix-7 database, despite being the default value.

 Upon further testing, it is discovered that a functional bitstream can be generated when

manually removing FASM features mentioning “DSP_FAN” connections for the DSP_L tile. We

can easily modify the Genfasm code to only generate FASM features that do not contain this

“DSP_FAN” connection. The configurability of open-source tools is demonstrated in full effect,

as we can rebuild the binary file for the Genfasm tool and have it swapped in place of the old

version provided with SymbiFlow. Doing so, along with implementing all changes detailed in

this chapter, results in a modified SymbiFlow toolchain that can successfully generate a

bitstream for the 2x2 bit DSP multiplier DUT.

35

4.6 Summary of Modifications

 Incorporating DSP block support for Artix-7 devices in SymbiFlow has required

modifications to be made throughout the toolchain. This chapter itemized the tools and changes

needed to support the new architecture. Changes span as far as the input RTL code, where certain

parameter and port values must be specified to emulate the work of Vivado’s DSP48 Macro, to

Genfasm, where “DSP_FAN” features must be blocked from the output FASM file. Changes are

required for Yosys and VPR, where the DSP48E1_VPR cell definition must be limited to match

the partial primitive found within VPR’s architecture file and routing graph pair. We have shown

that enacting these changes allows SymbiFlow to generate a bitstream for the DUT, a 2x2 bit

DSP multiplier, previously not possible for Artix-7 devices with the toolchain.

36

CHAPTER 5 – EXPANDING DSP FUNCTIONALITY

 In the previous chapter, we demonstrate our process for breaking down the larger

toolchain into its sub-tools, then continuing further to investigate where DSP support is needed

within each sub-tool. This process and the subsequent toolchain modifications have led us to an

open-source FPGA toolchain that supports the DSP48E1 instance for usage as a basic 2x2

unsigned multiplier. Chapter 5 uses the development process from the previous chapter to

demonstrate use of more complex functions, such as a full 25x18 bit multiplier, partial use of the

pre-adder, and pipelining support for the DSP block. The following sections explore each

function individually and their unique aspects for integrating support for them within the Artix-7

flow of SymbiFlow.

5.1 Full 25x18 bit Multiplier

 Implementing the full 25x18 bit multiplier (the largest size supported by Artix-7 DSP

blocks) in place of the 2x2 bit does not require any change to the DSP48E1 primitive created

before, with all changes happening in RTL. This is because the interconnects have already been

defined. When working with a smaller multiplier such as the 2x2 bit, the unused upper bits of

each input signal are tied to GND within Yosys when left undefined.

 To ensure that no change must happen to the parameter values within RTL, we

reimplement the symmetric flow between SymbiFlow and Vivado. Using the Vivado Routing

Resource GUI, we were able to determine values for the various input MODE signals that handle

routing of data within the DSP48E1. These three signals, INMODE, OPMODE, and

ALUMODE, have their values set to those found in Table 4. In a similar way, this same

multiplier RTL was put through the Vivado bitstream generation flow and reverse engineered

into FASM representation using the script bit2fasm.py. This FASM file gives us the

“IS_INVERTED” attributes also found in Table 5. The current support for the DSP48E1 block

requires that the instance be defined structurally, meaning these values must be set in the RTL

input to SymbiFlow. We can compare these values to those found for the 2x2 multiplier and

confirm that there has not been a change.

37

Table 5 - MODE signals and their INVERTED parameters needed to use

the DSP48E1 as 25x18 bit multiplier

 Input Signal “IS_INVERTED” Attribute Value Entering DSP48E1

INMODE 5’b00000 5’b11111 5’b00000

OPMODE 7’b0111111 7’b1000101 7’b0000101

ALUMODE 4’b0011 4’b1101 4’b0001

 A change made within the Verilog RTL is to expand bit widths of the A and B inputs to

25 bits and 18 bits, respectively. To properly test this in hardware, we include constraints file

definitions for the four green LEDs and four RGB LEDs found on the Arty 35T FPGA. Each

green LED can represent 1 bit due to it either being ON or OFF, while each RGB LED can

represent 3 bits with each bit controlling either red, green, or blue. In total, this allows us to

confirm the 16 least significant bits of the multiplier output in hardware. This configuration does

not allow us to test the entire output of the multiplier, however the LEDs can easily be reassigned

and separate bits can be tested with the regenerated bitstream.

 The Arty 35T FPGA board includes four input switches that are used to control the input

bits to the multiplier. Due to hardware restrictions, it is not possible to assign each bit of the

25x18 bit multiplier to a unique input switch. This is solved by randomly assigning input A bits

to either the switch 0 or switch 1 signals, and input B bits to either the switch 2 or switch 3

signals. We account for 16 possible input combinations with this method and the ability to

reconfigure the switch signals in RTL to be retested in hardware. Figure 21 shows the RTL files

used for the 25x18 bit multiplier test, with the following Table 6 listing the LED outputs for all

input switch combinations. For the output of RGB LEDs, the first letter of the colors is shown.

38

Figure 21 - RTL assignment of input switches onto A and B input signal bits

Table 6 - LED output combinations of 25x18 bit DSP multiplier. RBG values: OFF (000), Blue

(001), Green (010), Cyan (011), Red (100), Purple (101), Yellow (110), White (111)

sw[3] sw[2] sw[1] sw[0] led[3] led[2] led[1] led[0] RGB

led[3]

RGB

led[2]

RGB

led[1]

RGB

led[0]

0 0 0 0 0 0 0 0 OFF OFF OFF OFF

0 0 0 1 0 0 0 0 OFF OFF OFF OFF

0 0 1 0 0 0 0 0 OFF OFF OFF OFF

0 0 1 1 0 0 0 0 OFF OFF OFF OFF

0 1 0 0 0 0 0 0 OFF OFF OFF OFF

0 1 0 1 1 1 0 1 R Y Y G

0 1 1 0 1 1 1 0 R OFF G G

0 1 1 1 1 0 1 1 OFF Y OFF P

1 0 0 0 0 0 0 0 OFF OFF OFF OFF

1 0 0 1 1 0 1 0 G OFF C Y

1 0 1 0 1 1 0 0 G OFF C C

1 0 1 1 0 1 1 0 Y OFF W G

1 1 0 0 0 0 0 0 OFF OFF OFF OFF

1 1 0 1 0 1 1 1 OFF B G Y

1 1 1 0 1 0 1 0 Y OFF P Y

1 1 1 1 0 0 0 1 OFF OFF OFF OFF

39

5.2 Partial Pre-adder

 The pre-adder function for the DSP48E1 is located before the 25x18 bit multiplier

between the A and D input signals, as seen in Figure 22. The A input signal is 30 bits wide and

the D input signal is 25 bits wide, with the output of the pre-adder being a 25-bit wide signal that

is fed directly into the 25x18 bit multiplier. In previous experiments with the 25x18 bit

multiplier, the value of the INMODE routing signal was set to pass the A input signal through

the pre-adder without conducting any addition. We change this by providing a value through the

D input and setting INMODE such that the signals will be summed before reaching the

multiplier.

Figure 22 - Visualization of DSP48E1 internals showing inputs signals A and D

entering the pre-adder before reaching the 25x18 bit multiplier (from [17])

Similar to the multiplier, the MODE signal values were determined using the Vivado

Routing Resource GUI and a FASM file generated by bit2fasm.py. The values are listed in Table

6 and must be reflected in the input Verilog RTL definition of the DSP48E1. Introducing pre-

adder support requires further change to the VPR libraries to facilitate inclusion of the D port.

The attribute “USE_DPORT” must be listed as a FASM feature, as shown in the reverse

engineered Vivado FASM file. The VPR libraries include this parameter in its default state as a

string value assigned to “FALSE”. This is not readable by Genfasm and can be corrected within

the cells_map.v VPR library file. In the DSP48E1_VPR instantiation with this file, if the

40

“USE_DPORT” parameter is set to “TRUE”, it is assigned a binary value of 1’b1, otherwise it is

assigned a binary value of 1’b0. Doing so allows for translation to FASM using DSP48E1

primitive “fasm_params” statements.

Table 7 - MODE signals and their INVERTED parameters needed to use

the DSP48E1 as a 25x18 bit multiplier with pre-adder

 Input Signal “IS_INVERTED” Attribute Value Entering DSP48E1

INMODE 5’b00100 5’b11111 5’b00100

OPMODE 7’b0111111 7’b1000101 7’b0000101

ALUMODE 4’0011 4’1101 4’0001

Despite these adjustments and structurally defining all signal values in RTL, VPR place

and route still generated an error for a fully defined D port. When the upper 11 bits of the 25 bit

D input are connected to a non-static value, like VCC or GND, VPR is not able to successfully

conduct design place and route.

We explain this VPR behavior by analyzing switchbox fan bounces. VPR routes signals

throughout the FPGA and to the DSP block through switchboxes. A fan bounce is a switchbox

node that is used to reroute a signal along a path not initially reachable by its switchbox entry

node. They are commonly used to provide wide access to local GND connections, increasing the

flexibility of signal routing available within the switchbox. We have observed that when using

the 11 most significant bits of the D port for pre-adder implementation, fan bounces within the

switchbox local to the DSP block are assigned to different signals simultaneously. In other

words, nodes that are often used as connections to GND are double assigned to incoming switch

signal values. The reason for this issue requires further investigation. Here, we only demonstrate

using bits 0 through 13 of the D port for a partial pre-adder in successful bitstream generation.

 The partial pre-adder implementation for our experiment is created with random switch

signals assigned to the first 14 bits of the D input. The Verilog RTL used can be found in Figure

23, with the LED pre-adder and multiplier outputs found in Table 8. The bitstream generated

using this configuration was found to operate properly on an Arty 35T board.

41

Figure 23 - RTL assignment of input switches onto A, B, and D input signal bits

42

Table 8 - LED output combinations of 25x18 bit DSP multiplier with pre-adder

sw[3] sw[2] sw[1] sw[0] led[3] led[2] led[1] led[0] RGB

led[3]

RGB

led[2]

RGB

led[1]

RGB

led[0]

0 0 0 0 0 0 0 0 OFF OFF OFF OFF

0 0 0 1 0 0 0 0 OFF OFF OFF OFF

0 0 1 0 0 0 0 0 OFF OFF OFF OFF

0 0 1 1 0 0 0 0 OFF OFF OFF OFF

0 1 0 0 0 0 0 0 OFF OFF OFF OFF

0 1 0 1 1 1 0 1 R Y Y G

0 1 1 0 1 1 1 0 R OFF G G

0 1 1 1 1 0 1 1 OFF Y OFF P

1 0 0 0 0 0 0 0 OFF OFF OFF OFF

1 0 0 1 1 0 1 0 Y OFF C G

1 0 1 0 1 1 0 0 G OFF C C

1 0 1 1 0 1 1 0 Y OFF W G

1 1 0 0 0 0 0 0 OFF OFF OFF OFF

1 1 0 1 0 1 1 1 OFF Y G B

1 1 1 0 1 0 1 0 Y OFF P Y

1 1 1 1 0 0 0 1 OFF OFF OFF OFF

5.3 Pipelined Multiplier

 The DSP48E1 includes registers and routing logic to implement pipelining within the

block. Pipelining creates many benefits for a system, including efficiency in timing and power

consumption. In hardware, pipelining is implemented through a series of registers between the

internal functions of the block, allowing multiple data operations to occur during one clock

cycle.

 Enabling pipeline support for the DSP48E1 requires several changes to parameter and

input signal values not used for either the 25x18 bit multiplier or pre-adder. The MREG and

PREG features in the reverse engineered FASM file are removed, indicating that each MREG

and PREG should each be assigned one pipeline register. Two additional parameters, AREG and

BREG, are set to 2 instead of the default of 1, increasing the number of pipeline registers for the

inputs [17], [28]. AREG and BREG values of 2 allow for the use of two input registers. For

example, the A input is passed in series through two pipeline registers named A1 and A2. These

changes instantiate four stages of pipeline registers through the block. In stages one and two,

43

inputs A and B and loaded into their respective A1/A2 and B1/B2 registers. Stage three saves the

output of the multiplier in the M register, which is passed directly to the P register, where is

saved once again before output at stage four. This pipelined flow is shown in Figure 24.

Figure 24 - Pipelined register flow within the DSP48E1. Two pipelined registers take inputs A

and B before storing their multiplied output into register M. Output of register M is stored in

register P, then output from the DSP block P port. Red dashed lines indicate pipeline stages

The second asynchronous 25x18 bit multiplier change is to enable the clock inputs to the

newly added pipeline registers. These signals, denoted by the prefix “CE”, exist for each of the

pipeline registers and are set within the DSP48E1 definition with a value of 1’b1. The modified

definition with clock enable signals can be seen in Figure 25. For testing, we added a simple

clock divider to the system that divides the main clock frequency by 225. This allowed us to

visually see the delay in DSP output during testing using the Arty 35T hardware. For on board

testing, the previous assignments of switches to the A and B input bits from the 25x18 bit

multiplier described earlier in this chapter were used. With a system clock of 100 MHz and a 225

times divider, a 3 Hz clock was created to drive the DSP48E1, resulting in several seconds of

delay. The clock divider RTL code can be found in Figure 26.

44

Figure 25 - RTL instantiation of a pipelined 25x18 bit multiplier DSP48E1

Figure 26 - Clock divider used to drive DSP48E1. 100 MHz system clock "clk" is brought down

to a 3 Hz clock signal when “counter[24]” rises from 1'b0 to 1'b1 during counting

45

The pipelined 25x18 multiplier generated the expected outputs with roughly a single

second delay between when the switches change to when an output is shown on the LEDs. It was

possible to make multiple changes to the switches before seeing an output change. This was

expected due to the 3 Hz clock driving the DSP48E1, which successfully slows down the

pipelining to a human visible speed. The 3 Hz signal operating over four stages allows an output

to be displayed in roughly 1.3 seconds. Pipelining can be incorporated with the multiplier and

partial pre-adder design through the addition of pipelined registers in REG parameters and the

setting of clock enable register signals.

46

CHAPTER 6 – CONCLUSION

In this thesis document, we presented our modifications to the open-source FPGA

bitstream generation toolchain SymbiFlow that allow for basic implementation of a DSP48E1

digital signal processing block in the bitstream of a Xilinx Artix-7 FPGA. SymbiFlow was used

to conduct synthesis, place and route, and bitstream generation. Our background work

highlighted missing DSP block support in the flow. Code modifications were made in RTL

designs, VPR libraries, the DSP48E1 primitive, and the Genfasm tool to support DSP block

bitstream generation for an Artix-7 35T FPGA.

The Vivado Routing Resources GUI was used to determine input signal values set within

the DSP48 Macro IP core, information that is intentionally obscured in the development

environment. These values were then included to form a full structural definition in RTL.

Modifications were made to the VPR libraries, where undefined ports were removed to simplify

the cell. This limited definition of the DSP block was made to match the newly created DSP48E1

primitive and to match the DSP48E1_VPR library definition used for place and route. The

Genfasm tool was lightly modified to allow for DSP bitstreams to be generated for a simple 2x2

bit unsigned multiplier.

Through expansion of the VPR libraries and primitives, a full 25x18 bit multiplier, partial

pre-adder, and pipelining are now supported for Artix-7 DSP blocks in SymbiFlow. Designs that

use each of these constructs were successfully tested on a Digilent Arty A7 35T board.

6.1 Future Work

 It is our hope that this work contributes towards future innovation with open-source

FPGA tools. In the following subsections, we will describe ways in which this work can be

extended towards achieving this overall goal.

6.1.1 Incorporating C Port for DSP48E1

Additional SymbiFlow functionality is still needed to support all DSP48E1 block

functionality in bitstream generation. With additional edits to the cells_sim.v and cells_map.v

(VPR library files) and the DSP48E1 primitive, SymbiFlow could support C port operations such

as pattern detection, 3-input multiplication, or 2-input multiplication with addition [17]. A

47

symmetric flow, similar to the one described in Section 3.2.1, would be a good approach for

debugging and testing needed changes.

6.1.2 Investigating the D Port Congestion Issue

As discussed in Section 5.3, bits 14 through 25 of the D input port to the DSP48E1 are

currently unusable by VPR. The issue may be related to the way the VPR tool routes signals

through the neighboring DSP_L tile switchbox. At times, we have noticed that input signal

values will overlap with VCC or GND inputs, causing switchbox congestion and leading to the

assignment of different values simultaneously to programming pips. Future work should

investigate and address this issue.

6.1.3 Allowing Behavioral Modeling of DSP48E1

At present writing, DSP blocks created within SymbiFlow must be defined structurally

within RTL code to accurately set their parameter values and handle the tying off of control

signals to GND and VCC. Yosys and VPR libraries could be expanded to allow for the

behavioral modeling of DSP48E1 instances while maintaining necessary parameter values and

GND/VCC connections. With this change, Yosys synthesis could map a DSP block with all

needed parameters with RTL input such as “A*B”, creating a functioning multiplier without

explicitly setting port inputs, outputs, and parameters.

48

BIBLIOGRAPHY

[1] J. M. Mbongue, A. Shuping, P. Bhowmik, and C. Bobda, “Architecture Support for FPGA

Multi-tenancy in the Cloud,” in 2020 IEEE 31st International Conference on Application-

specific Systems, Architectures and Processors (ASAP), Jul. 2020, pp. 125–132. doi:

10.1109/ASAP49362.2020.00030.

[2] D. Andrews et al., “Programming models for hybrid FPGA-cpu computational components:

a missing link,” IEEE Micro, vol. 24, no. 4, pp. 42–53, Jul. 2004, doi:

10.1109/MM.2004.36.

[3] “Xilinx - Adaptable. Intelligent.,” Xilinx. https://www.xilinx.com/

[4] “Intel® FPGA Products - FPGA and SoC FPGA Devices and Solutions,” Intel.

https://www.intel.com/content/www/us/en/products/details/fpga.html

[5] “Lattice Semiconductor | The Low Power FPGA Leader.” https://www.latticesemi.com/en

[6] “Artix-7 FPGA Family,” Xilinx. https://www.xilinx.com/products/silicon-

devices/fpga/artix-7.html

[7] Xilinx Corporation, “Xilinx Vivado,” Xilinx. https://www.xilinx.com/products/design-

tools/vivado.html

[8] F4PGA, “F4PGA - the GCC of FPGAs,” 2022. https://f4pga.org/

[9] J. J. Rodríguez-Andina, M. D. Valdés-Peña, and M. J. Moure, “Advanced Features and

Industrial Applications of FPGAs—A Review,” IEEE Transactions on Industrial

Informatics, vol. 11, no. 4, pp. 853–864, Aug. 2015, doi: 10.1109/TII.2015.2431223.

[10] “Project IceStorm.” http://bygone.clairexen.net/icestorm/

[11] “Welcome to Project Trellis — Project Trellis documentation.”

https://prjtrellis.readthedocs.io/en/latest/

[12] “Project X-Ray.” F4PGA, Apr. 29, 2022. [Online]. Available:

https://github.com/f4pga/prjxray

[13] “QuickLogic - Low Power MCUs, FPGAs and eFPGA IP, & 100% open source tools,”

QuickLogic Corporation. https://www.quicklogic.com/company/company-overview/

[14] “F4PGA Architecture Definitions documentation.”

https://f4pga.readthedocs.io/projects/arch-defs/en/latest/

[15] Claire Wolf, “Yosys Open SYnthesis Suite.” SymbiFlow, Jan. 18, 2022. [Online].

Available: https://yosyshq.net/yosys/

49

[16] V. Betz and J. Rose, “VPR: a new packing, placement and routing tool for FPGA research,”

in Field-Programmable Logic and Applications, 1997, pp. 213–222. doi: 10.1007/3-540-

63465-7_226.

[17] Xilinx Corporation, “7 Series DSP48E1 Slice User Guide (UG479),” Mar. 2018, [Online].

Available: https://docs.xilinx.com/v/u/en-US/ug479_7Series_DSP48E1

[18] “Vivado Design Suite User: Guide Designing with IP,” p. 114, 2021.

[19] Claire Wolf, “Yosys Open SYnthesis Suite :: Documentation.”

https://yosyshq.net/yosys/documentation.html

[20] University of California Berkeley, “ABC: A System for Sequential Synthesis and

Verification.” https://people.eecs.berkeley.edu/~alanmi/abc/

[21] “Verilog to Routing (VTR).” Verilog to Routing, Apr. 29, 2022. [Online]. Available:

https://github.com/verilog-to-routing/vtr-verilog-to-routing

[22] “VTR — Verilog-to-Routing 8.1.0-dev documentation.”

https://docs.verilogtorouting.org/en/latest/vtr/

[23] “F4PGA Architecture Definitions.” SymbiFlow, Apr. 26, 2022. [Online]. Available:

https://github.com/SymbiFlow/f4pga-arch-defs

[24] “Project X-Ray 0.0-3575-g3a0602f4 documentation.”

https://f4pga.readthedocs.io/projects/prjxray/en/latest/

[25] “segbits files — Project X-Ray 0.0-3587-g9733e8a6 documentation.”

https://f4pga.readthedocs.io/projects/prjxray/en/latest/dev_database/common/segbits.html

[26] “Welcome to F4PGA examples! — F4PGA examples documentation.” https://symbiflow-

examples.readthedocs.io/en/latest/

[27] “Artix-7 35T Arty FPGA Evaluation Kit,” Xilinx. https://www.xilinx.com/products/boards-

and-kits/arty.html

[28] “FPGA Assembly (FASM) — FPGA Assembly (FASM) 0.0.2-98-g9a73d70

documentation.” https://fasm.readthedocs.io/en/latest/

[29] “FPGA Assembly (FASM) Output Support — Verilog-to-Routing 8.1.0-dev

documentation.” https://docs.verilogtorouting.org/en/latest/utils/fasm/

	Integration of Digital Signal Processing Block in SymbiFlow FPGA Toolchain for Artix-7 Devices
	Recommended Citation

	tmp.1663615686.pdf.DghnF

