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ABSTRACT

CHANGES IN GENE EXPRESSION FROM LONG-TERM WARMING REVEALED USING
METATRANSCRIPTOME MAPPING TO FAC-SORTED BACTERIA

SEPTEMBER 2022
CHRISTOPHER COLVIN, B.S., UNIVERSITY OF MASSACHUSETTS AMHERST
M.S., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Jeftrey Blanchard, Ph.D.

Soil microbiomes play pivotal roles to the health of the environment by maintaining
metabolic cycles. One question is how will climate change affect soil bacteria over time and
what could the repercussions be. To answer these questions, the Harvard Forest Long-Term
Warming Experiment was established to mimic predicted climate change by warming plots of
land 5°C above ambient conditions. In 2017, 14 soil core samples were collected from Barre
Woods warming experiment to mark 15 years since the establishment of the soil warming in that
location. These samples underwent traditional metatranscriptomics to generate an mRNA library
as well as a process coined cell-sorted or mini-metagenomics involving the sorting of single
bacterial cells from the environment using FACS. This was followed by pooling into groups of
100 cells for more cost efficient genome recovery. 200 high-quality genomes were compiled, 12
of which were taxonomically identified as Acidobacteria. Acidobacteria are an extremely
abundant and diverse phylum of bacteria that were found to be very well represented in the soil
samples. Due to their abundance in many different soil environments as well as their known
importance in many metabolic cycles, they were chosen as the candidate phylum to further
investigate. Using a reference-based read mapping approach with the 12 Acidobacteria genomes
and metatranscriptomic data, we identified over 3,000 differentially expressed genes within these
organisms as a result of soil warming. Due to the diversity within the phylum itself, many of the
genomes indicated different patterns of expression making it difficult to identify phylum-wide
differential expression trends. However, the sigma70 factor, an important housekeeping gene
used as a transcription regulator, was found to be up-regulated in a majority of the genomes.
Over 30 different glycoside hydrolase encoding genes and glycosyltransferases were also found
to be differentially expressed across the Acidobacteria reference genomes as well as 23
chemotaxis-related genes. Despite identifying four different groups of genes that showed
statistically significant differences in expression levels, there may be more changes occurring in
these soil bacteria and the soil microbiome as a whole due to climate change than previously
measured by read-based analyses of metatranscriptomic data.
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CHAPTER 1
INTRODUCTION

1.1 Diversity in Soil

The diversity found in soil is second to none in the world’s ecosystems with a single
teaspoon of soil containing anywhere from 100 million to one billion bacteria *, the diversity and
life seen below the surface is unmatched '. Of the microorganisms found in soil, bacteria are the
most diverse. Bacteria make contributions to the soil ecosystem in many ways such as nutrient
cycling and disease suppression, but the ways in which they do so varies greatly 2. This can be
attributed to the wide diversity found between bacteria themselves. As not one species reigns
supreme in a given sample and many bacteria vary from one sample to another, the ways in
which these processes occur also diverge. However, understanding the basics of these different
pathways and slowly accruing a deeper knowledge can contribute to a healthy ecosystem. To
first understand the roles of different bacteria, we must first further understand their
environment, that is soil.
1.2 The Soil Organic Layer

Soil is home to billions of organisms and is composed of many dynamic layers. Within
each of these layers, certain microbes reside and perform different biogeochemical processes.
One main component is the top organic layer which houses a majority of microbial diversity and
dictates many of the chemical properties associated with the soil environment *. Due to the high
concentration of terrestrial carbon, as well as serving as the nitrogen reservoir for the soil, this
layer is often studied in relation to microbes behavior *. Due to this high microbial density, the
organic layer is the most dynamic, in that there is constant decomcompostion and building of this

layer from new leaf litter. Within this layer the respiration from soil organisms releases carbon


https://www.zotero.org/google-docs/?broken=tgPHt4

back into the atmosphere. Thus, any changes to the microbiome may have drastic effects in the
composition of the layer itself ° and lead to increase in respiration which in turn increase
atmospheric carbon dioxide levels ®. As the biogeochemistry role of the SOM is pivotal to the

health of the system, changes may impact the role of life above and within the soil.

1.3 Current Climate Change and Impact

Global warming is defined by NASA as the long-term warming of the Earth’s climate
that has been observed since the industrial period ’. Essentially the idea is that the climate, or the
long-term regional/global temperature, is increasing due to the various pollutants emitted into the
atmosphere. Effects of this phenomenon are clearly seen from the higher amounts of carbon in
the atmosphere as well as a four inch increase of global sea levels. Although the increase has
been gradual, the scale and the rate of the increase is becoming more alarming each year. As of
today, we have seen an increase of over 1 “C since 1880 7. However, there are projections of an
increase from 1.1 - 6.4 “C within the next 100 years alone. One of the largest contributors to this
spike in the emission of greenhouse gasses. The main four greenhouse gasses are carbon dioxide,
methane, nitrous oxide and water vapor ®.
1.4 Bacteria Role is Soil Respiration

Bacteria are the most abundant living organisms within soil, with a single gram
containing 1000-1,000,000 different species °. They also inhabit the organic layer of the soil that
contains the reserve of carbon for select environments. As the soil environments act as a reliable
carbon sink by holding thousands of pentagrams (Pg) of carbon, studies on microbial processes
in relation to carbon are becoming of more concern. Previous studies have shown an initial

increase in CO, flux as a result of short term warming '°.There are many possibilities as to why
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this occurs with one reason being that warming leads to an increase in microbial activity,
particularly in regards to cellular soil respiration. Soil respiration is the process of CO2 releasing
into the atmosphere via root respiration and the decomposition of the SOM . Approximately
74% of total soil respiration can be attributed to microbes. Previous short term warming studies
suggest an increase in microbial activity '°. This study conducted by Jerry Mellilo intended to
anticipate the possible impacts of climate change. Using his estimation of an increase of 5
degrees ‘C over the next 100 years, he suggested an observed increase in bacterial activity '°. In
combination with this increase in activity and CO, flux, one may question the impact on soil
respiration rates climate change may have. However, in order to study the question that climate
change may have on bacterial activity, there must be an environment suitable to conduct these

studies.

1.5 The Harvard Forest Warming Plots

In order to study the possible changes to the soil environment as a result of climate
change, the Harvard Forest Warming plots were established. As experts predict that soil warming
may affect carbon storage and other cycles within the biosphere, a location in which the soil is
constantly heated at a controlled temperature was created '°. The Harvard Forest warming
experiment was started in 1991 at Prospect Hill located in Massachusetts. As climate models
predict an increase of temperature anywhere between 2-5 °C, the field warming experiment heats
the soil 5 °C above the ambient temperature '*. This heating mechanism offers scientists

information to study three main goals: Track the measurements of carbon and nitrogen stocks
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and flux over long-term soil warming, observe warming induced feedbacks from short-term
manipulation and study targeted processes that may have been affected '>. Along with the site
located at Prospect Hill, the experiment has expanded into two other sites. The Soil Warming x
Nitrogen Study site was established in 2006 and the Barre Woods site was established in 2002.
Although slightly differing in plot sizes, both sites follow the same principles of heating the soil

5 °C above the ambient temperature.

1.6 Initial Findings From Short Term Warming Experiments

As previously mentioned, Jerry Mellilo made initial short term observations at the 7 year
warming mark at the Prospect Hill plots. Researchers specifically observed the changes in the
carbon flux over a seven year warming period. Plant carbon storage was quantified during tree
growth measurements and SOC was measured via soil respiration rates, fine-root respiration and
fine-root biomass '°. Findings included an initial spike in soil respiration rates after two years of
heating that eventually leveled off and fell below the control. There was also an overall decrease
in carbon flux over this seven year period. The decrease in carbon flux was attributed to woody
tree growth resulting in a decrease of fine-root mass. Fine-root mass was estimated to contribute
roughly 26% of the total respiration rates initially, with the remainder attributed to microbes, but
only 18% after the 7 year warming mark '°. As fine-root mass plays an important role in carbon
turnover and other nutrient cycling, it was chosen as one indicator of total soil respiration levels
13, These findings suggest that short-term soil warming leads to changes in both soil respiration
rates and carbon flux due to changes in fine-root mass. However, how is microbial activity
affected? Initial spikes in respiration rates may indicate changes in microbes that, although not

sustainable, impact their own cellular processes to compensate for the decrease in root
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respiration. Questions of long-term warming impacts also come to mind as these changes were
seen after only a seven year period. Fortunately, the Harvard Forest Warming Project is still
active and since the creation in 1991, long-term warming data is now available.
1.7 Barre Woods Sample Collection

Barre Woods differs from the plot located at Prospect Hill in that it is a single 30 x 30m
plot that is split in half to heated and non-heated sectors. Heating cables are buried 10 cm deep to
heat half the plots '2. Although a combined 15 x 15m space, each of the two plots are divided
into sub plots that are used to denote sample collection sites. In 2017, 14 forest core samples
were taken from the Barre Woods plot to signify the 15 year warming point. These are the
samples that have produced the data used in this study. Seven samples were taken from the
heated plots and seven samples were taken from the control plots. Each of the samples taken
from both conditions were then split into two respective layers: The organic layer and the
mineral layer given a total of 28 different samples °. The samples were denoted by the condition
of warming or control, a number signifying the sublot the sample was taken from , and the soil
layer (O for organic or M for mineral). For all 28 samples, traditional bulk-metatranscriptomics
was conducted to collect mRNA transcript reads for transcriptome analysis. Along with this, four
of the soil core samples underwent bulk-metagenomics and four samples underwent a new
process known as mini-metagenomics. With the goal of generating metagenome-assembled
genomes (MAGs) as references for organisms found in our samples, one method was found to be

more effective than the other.
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1.8 Mini-Metagenomics vs. Metagenomics

Of the 28 samples, four were chosen at random to undergo both traditional metagenomics
and mini-metagenomics °. The four samples consisted of a single sample from each condition:
One heated organic sample, one non-heated (control) sample, one heated mineral sample and one
non-heated mineral sample. Genomics is the study of the complete genetic makeup of an
organism through high-throughput sequencing technology. Metagenomics differs in the fact that
it specifically studies the genome sequences of those organisms found in a specific community,
or soil in this case . As working with soil is difficult due to the diversity within the
environment, traditional metagenomic strategies often lead to metagenome-assembled genomes
(MAGs) that have high contamination. High contamination in this case refers to assembled
genomes that incorporate genomes from multiple different organisms. Due to this difficulty when
working with soil, a new method coined mini-metagenomics was conducted to obtain higher
quality samples. Figure 1 outlines the key differences between traditional metagenomics and the
mini-metagenomic method used. The main differences consist of filtration through a 5 micron
filter to filter out larger eukaryotic organisms and saturate the samples with bacteria and other
smaller microorganisms. Sorting into pools of 100 cells through fluorescent activated cell sorting
(FACs) helps generate samples with less genomic material with the intention of assembling
scaffolds with lower contamination from other genomes °. This is accomplished by staining with
SYBR green which stains the genetic material in the cells to quantify a cell. Traditional
metagenomics consisted of DNA extraction via the DNeasy PowerSoil extraction kit '°. All
library preparations and sequencing were performed at the Joint Genome Institute (JGI) where
Illumina HiSeq was used to generate all reads °.Sets of reads from both methods underwent

trimming and quality checking through computational pipelines.
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Figure 1: Mini-Metagenomics vs. Bulk Metagenomics: The Figure above compares the
methods of Bulk-Metagenomics (Blue) to Mini-Metagenomics (Orange). 4 samples (n=4)
underwent both processes. Mini-Metagenomics consists of treatment with 0.02% tween followed
by cell extraction and filtration through a 5 micron filter. The samples are then stained with
SYBR green to perform fluorescent activated cell sorting into pools containing 100 cells each.
Traditional Bulk Metagenomics consists of standard DNA extraction and purification. In both
methods, the samples are prepared for sequencing and computational pipelines are used for
assembly and binning to obtain MAGs. Figure taken from Complementary Metagenomic
Approaches Improve Reconstruction of Microbial Diversity in a Forest Soil by Aleteio et Al °.

The assembly of the reads into contigs and larger scaffolds was done through the program
SPAdes . Assembled contigs were then binned into the resulting MAGs using MetaBat2, a
binning software that sorts contigs based on tetranucleotide frequency '’. The final step included
a quality assessment of the assembled MAGs to ensure that the MAGs consisted of >50%

completeness of essential hallmark genes, <10% contamination from other genomes and <10%

strain heterogeneity to be considered high-quality for downstream analysis °. This was
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accomplished using the program CheckM '8, After assembly, binning and quality filtration of the
MAGs from both methods, 200 high-quality MAGs were extracted from the mini-metagenomic

samples while only 29 high-quality MAGs were a result from the bulk-metagenomic samples.

1.9 Initial ReadMapping Reveals a Phylum of Interest

With metatranscriptome reads from the 28 samples and the assembled high-quality
MAGs from mini-metagenomics, read mapping was performed using the Burrows-Wheeler
aligner °. Figure 2 shows the resulting data identifying different phylum of bacteria in the
samples. It is important to note that the total reads during this cycle did not filter based on
heating vs non-heating. Figure 2a depicts the total reads as a result from looking at all 28 sets of
transcript reads and the sets of genomic reads regardless of warming. Taxonomic classification
for each of the 200 MAGs was performed and the phylum classification can be depicted by the

key on the right.
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Total Number of Genomic and Transcript Reads to MAGs
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Figure 2a: Number of Genomic and Transcript Reads to MAGs: The plot above was created
in RStudio using ggplot2. Depicted on the x-axis is the scaled total number of genomic reads that
are mapped to high quality MAGs produced through the mini-metagenomics method. Depicted
on the y-axis is the scaled total number of transcript reads that are mapped to those same MAGs.
The key on the right indicates the phylum that each of the MAGs were classified as and is
represented through color on the graph.

Results from Figure 2a are quite interesting. A variety of different bacterial phyla are represented
in the samples and at very different levels. As the genomic and transcript samples are not from
isolates and are obtained from the soil, one would expect to see a wide range of different
organisms in the sample and with lower coverage on average than from an isolated sample. That
is what we see in this case, but more interestingly, a cluster of one phylum in particular can be

seen to have a higher number of reads mapped on average than the other phylum represented in
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the sample. 11 Acidobacteria MAGs are seen to cluster at the top in both directions with 12 total
being present in the sample. 11 of 12 Acidobacteria MAGs have a higher proportion of genomic
reads mapped to them with the exception of two MAGs. A vast majority of MAGs also fall under
the 1ES point. Figure 2a also portrays that 11 of 12 Acidobacteria MAGs also had a higher
number of transcript reads mapped when compared to the other phyla. Figure 2b shows another

depiction of the disproportionate differences represented in the samples.
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Figure 2b: Total Percents of Genomic and Transcript Reads to MAGs: The bar plot above
was constructed in RStudio using ggplot2. The x-axis depicts the phyla represented in the
samples. The y-axis depicts the values in percentages of the proportion of total number of reads
mapped to each phyla against the total number of reads in total. The key on the right depicts the
variable that each color represents; red represents the genomic reads mapped and blue represents
the transcript reads mapped.
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Figure 2b shows a barplot as opposed to the dot plot in Figure 2a that is filled by total genomic
read percentages shown in red and total transcript read percentages in blue. Also, the values are
not represented in relation to the MAG itself, but rather each phylum. Again, a disproportionate
percentage of both the transcript and genomic reads map to the phylum Acidobacteria. Of the
other phyla represented in the samples, none represent even half the proportion of the total reads
in either set that the Acidobacteria population represents. This data tells us a few things. One is
we know that Acidobacteria are well represented in the samples. As a high number of genomic
reads mapped to the sample, one can conclude that not only are Acidobacteria found in the
samples, but they appear to be relatively abundant based on the high number of genomic reads
compared to the other phylum. It can also be seen that 12 different organisms of this phylum are
represented in the sample as seen by the 12 individual points in Figure 2a. As each of these
points represent a high-quality MAG, 12 total different Acidobacteria organisms are present in
the samples. The second main takeaway is that Acidobacteria are also active in the samples as
seen by the total number of transcript reads that mapped to the phylum specifically. Transcripts
represent the precursors to proteins found in the samples. Large number of transcripts mapped
indicate high levels of transcription from the Acidobacteria. This suggests that this phylum in
particular is more active compared to the other bacteria identified. Also, as seen from Figure 2a,
there are varying levels of abundance and activity within the 12 individual organisms
themselves. This would suggest that there is diversity within the phylum itself. However,
although this finding gives a phylum of interest to further study, it also raises more questions. As
the mapping does not differentiate based on heating, we do not know how heating is affecting the
organisms at the genomic and transcriptomic level. We also do not know what if any particular

genes/pathways are impacted from this heating. It appears that further studying the
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Acidobacteria found in the samples taken from Barre Woods may be used to infer impacts of
long-term warming in our samples and bacteria in general. To answer these questions, more
information regarding this phylum of bacteria is necessary.
1.10 What are Acidobacteria

Acidobacteria are gram-negative bacteria that have recently gained a lot of attention due
to their role in soil ecosystems 2°. They are found predominantly in tropical agricultural climates,
but are ubiquitous by nature due to their diversity ?'. Making up close to 50% of total bacterial
population in known soil environments, this phylum has been found to compose up to 20% of the
diversity in these populations ?*. First identified in 1991, the phylum was accordingly named
after being found in acidophilic conditions in Japan *. However, despite being vastly abundant in
soil environments, they are under-represented in science due to the difficulty isolating these
bacteria. In lab environments, it has been very difficult to culture Acidobacteria which accounts
for the lack of representation in past literature. Now with the genomic technology currently
accessible, scientists have been able to identify this large cluster of bacteria as their own phylum.

Acidobacteria were previously grouped taxonomically with Proteobacteria with 87% of
existing phylogenies placing the groups adjacent to each other **. The vast diversity found within
the phylum has become of interest to scientists. Using phylogenetic analysis of 16S rRNA, the
phylum is split into an astonishing 26 subdivisions, but this number is anticipated to climb .
Acidobacteria have often been described as ubiquitous due to their ability to thrive in a plethora

of soil environments with a wide range of temperatures *.
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Figure 3: Phylogeny of 26 Different Acidobacteria Subgroups: The phylogenetic tree above
illustrates the 26 different subgroups the Acidobacteria phylum is split into. The phylogeny
consists of 220 different sequences taken from the Silva database. The circles found on some
branches in the tree represent a bootstrap of more than 75%. Figure taken from The Ecology of
Acidobacteria: Moving beyond Genes and Genomes by Kielak et al .

Figure 3 visually illustrates the diversity within the phylum itself through the analysis of 220
different Acidobacteria organisms. Subdivisions 1 and 3 are aerobic heterotrophs inhabiting
areas of lower pH **. However, you also have subdivisions that prefer more extreme thermophilic
conditions, such as subdivisions 4,8,10 and 23 2. With these vast differences in habitats, it is to
be expected that the different subdivisions also readily express a variety of different genes. For

example, subdivisions 1 and 3 possess a high-affinity for ABC-type transporters which generally

couple the hydrolysis of ATP with translocation of solutes **. Subdivisions 1-6 also have an
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affinity for bd-type oxidases which allow the bacteria to respire oxygen at atmospheric and
sub-atmospheric conditions ». There are many more differences in expression within this large
phylum, but perhaps one of the more interesting traits that differentiate this phylum is difference
in carbohydrate metabolism.

Modern day sequencing of different Acidobacteria organisms have helped give
information to the specific roles they play in their environment. One of significance from
genomic studies is carbohydrate metabolism *. Compared to other groups of bacteria,
Acidobacteria possess a disproportionate number of glycoside hydrolase-encoding genes (GHs).
Specifically, the phylum is placed in the top 5% of bacterial genomes in the carbohydrate
enzyme database **. Glycoside hydrolases are a diverse group of enzymes that are found in all
domains and help break down different carbohydrates *°. Specifically, the diversity within this
gene family can be seen in Acidobacteria within the different subdivisions. For example,
subdivision 1 metabolizes D-glucose, D-xylose and other different oligosaccharides. However, it
lacks the ability to metabolize polysaccharides such as fructose or other disaccharides such as
sucrose *. Subdivisions 3 and 4 do possess the ability to metabolize these two specific sugars,
but at the cost of decreased carbon storage when compared to subgroup 1. Chitin is another
known carbohydrate subdivisions 3 and 4 can utilize *. This wide range in carbohydrate
metabolism genes may account for the diversity and abundance seen in Acidobacteria as it
allows the group to outcompete other bacteria in soil.

With the wide diverse capabilities and survival strategies cited, Acidobacteria appear
well equipped to survive and adapt to many different environments. Vast sources of carbon from
the various metabolic genes they possess as well as the ability to encode their own auxiliary

metabolic genes support why this phylum appears abundant in many soil environments. Because
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of these factors among others such as the phylums role in nitrogen metabolism as well,
Acidobacteria act as a great indicator for environmental changes. A detailed analysis into
genomic changes to Acidobacteria specifically could possibly give an idea to changes occurring
to many different bacteria in these soil environments as a result of climate change. This also
could explain the disproportionate abundance of Acidobacteria in the samples collected from
Barre Woods. For this reason, further research was performed to take a closer look at the
expressional changes occurring in the 12 Acidobacteria organisms found in the samples taken

after 15 years of warming.

RESEARCH QUESTION
The primary research question investigated is does long-term soil warming affect the
expression of given genes in Acidobacteria? In order to answer this question, the
metatranscriptomic data will be used in combination with the 12 assembled Acidobacteria
MAGs to perform a reference-based read mapping approach. All 12 MAGs have gene
annotations as well giving the opportunity to observe changes in gene expression as a result of
the long-term warming. This will be followed by differential expression analysis to discover

statistically significant expressed genes between the heated and control samples.
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SIGNIFICANCE

Global warming is a reality that is becoming more apparent. Much is unknown the
potential impacts climate change will have on all forms of life, including the soil microbiome. As
soil lays the groundwork for a flourishing ecosystem, any changes in soil may also lead to a
downstream effect. As Acidobacteria are found in many different soil climates and play pivotal
roles in important metabolic processes, any changes to important genes seen in Acidobacteria
may reflect changes occurring in other bacteria.

We are also attempting a reference-based read mapping approach within the construct of
soil. Soil contains millions of organisms and it is extremely difficult to obtain isolates or look at
changes within a particular group. However, this method of mini-metagenomics has generated
reference genomes to map back to which have been taxonomically categorized. Typically a read
based approach is used when working with soil samples as reference genomes are not typically
available. By performing this initial step, a reference genome based approach can be explored

and will serve to see how practical this method can be.
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CHAPTER 2
MATERIALS AND METHODS
All raw metagenome and metatranscript sequences can be found on the Joint Genome Institute
(JGI) genome portal along with all related annotation files . Bacterial MAGs are also available

in GenBank under Bioproject accession number PRINA608716 °.

2.1 Acidobacteria MAGs Used
As previously mentioned, 12 different Acidobacteria MAGs were found to be of

high-quality in the samples. These MAGs will serve as the reference genomes for which the
transcript reads will map to and their IDs are listed below:

1. 3300021028.fa.3

2. 3300020651.fa.6

3. 3300020916.fa.5

4. 3300020743.fa.1

5. 3300020780.fa.4

6. 3300020904.fa.1

7. 3300021040.fa.2

8. 3300021013.fa.6

9. 3300020924.fa.1

10. 3300020985.fa.2

11.3300021003.fa.3

12.3300020924.fa.3
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2.2 General Feature Format Files (GFF) and Gene Product Names

For each MAG, there is a General Feature Format (GFF) file with gene annotations. A GFF file

contains information describing different genome features. In this case, each GFF contained a

locus tag and a sequence ID representing a particular gene. All locus tags were identified and

labeled with the gene product name along with its KEGG annotation. Using a python script, all

GFF files used were subset to only contain gene sequences from the corresponding reference

genome. This means that each Acidobacteria MAG has its own corresponding GFF file

containing a locus tag and its corresponding sequence ID. Also, each MAG had its own

corresponding file containing the product name for each locus tag and its KEGG annotation.

2.3 Metatranscript (Read) Files Used

14 soil core samples were taken from 14 different plots resulting in 28 sets of

metatranscript files. 7 files represent samples from the soil organic layer that were not heated, 7

files represent samples from the soil organic layer that were heated, 7 files represent samples

from the soil mineral layer that were not heated and 7 files represent samples from the soil

mineral layer that were not heated. All read files underwent a quality check via FastQC with

adapter sequences trimmed via Trimmomatic ** *°. Below is a table listing these files:

Table 1. MetaTranscript Files Used in Read Mapping Analysis

Organic | Total # of | Mineral | Total # of | Organic [ Total # of [Mineral | Total # of
Control Reads Control | Reads Heated Reads Heated Reads
NatBWC | 154475132 [ NatBWC | 166053322 [ NatBWH | 166167809 | NatBWH | 141756874
120 12M 110 11IM

NatBWC | 199108669 | NatBWC | 180897145 | NatBWH | 150165463 | NatBWH | 176294215
140 14M 170 17M

NatBWC | 174379752 | NatBWC | 178043097 | NatBWH | 189794985 | NatBWH | 168886793
190 19M 260 26M
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NatBWC | 171495589 | NatBWC | 170846067 | NatBWH | 185624288 | NatBWH | 176393643
270 27T™M 280 28M

NatBWC | 193252851 | NatBWC | 187034288 | NatBWH | 176084583 | NatBWH | 192785046
300 30M 20 M

NatBWC | 180562421 [ NatBWC | 137134632 | NatBWH | 159187369 | NatBWH | 136986557
40 4M 320 32M

NatBWC [ 150682690 [ NatBWC [ 172444343 | NatBWH | 131990651 | NatBWH | 181789077
70 ™ 40 4M

2.4 List of Programs/Tools Used for Computational Analysis

As the soil core samples were previously collected and sequenced, the entirety of this

analysis was computational. Below is a list of the programs used to conduct the analysis of the
data along with a short description.

STAR- Spliced Transcript Alignment to a Reference (STAR) is a RNA-seq aligner used to map
the transcript reads to reference genomes and obtain read count dataframes. Although typically
used in eukaryotic mapping due to its splice site awareness, STAR can also be used within
bacterial genomes with small adjustments in the parameters. STAR was chosen due to its higher
mapping speeds and precision when compared to other aligners *°.

DESeq2 - DESeq?2 is a bioconductor package that tests for differential gene expression from
RNA-seq count data. DESeq?2 uses a negative binomial generalized linear model to calculate
logarithmic fold changes and dispersions to help statistically identify differentially expressed
genes ',

OrthoFinder - OrthoFinder is a software that uses proteome inputs to infer orthogroups and
orthologs of genes from input references. Other outputs include rooted species trees, gene

duplication events as well as other comparative statistics *.
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GTDB-Tk - The Genome Taxonomy Database Toolkit (GTDB-Tk) is a software package that
can be used to taxonomically classify bacterial and archeal genomes based on the Genome
Taxonomy Database. GTDB-Tk is also specifically designed to work with MAGs making it a
great tool for this dataset **.

iTOL: The Interactive Tree of Life or iTOL is an online tool that allows for visualization of
phylogenetic tree files. Other features include annotation capabilities of these constructed trees
as well as figure export **.

RStudio - RStudio is an application that creates a virtual environment for R, a programming
language. R is specially designed to be used for statistical analysis and various graphics. RStudio
allows users to download software packages for use. The packages used in RStudio are DESeq2
as mentioned above, ggplot2 which is used for graphic visualization and dplyr which is used for
data manipulation **.

Unity HPC - Unity is a High Performance Computing Cluster (HPC) composed of powerful
computers. This allows users to run software that requires resources beyond the scope of an
everyday laptop/desktop. As some of the programs used require a lot of computing power, jobs
were scheduled on Unity to utilize the powerful resources available to obtain results. The
following programs utilized the Unity HPC for computing power: STAR, GTDB-Tk and
OrthoFinder .

CAZy Database - CAZy is an online database that has information regarding carbohydrate
related enzymes and describes these gene families. Annotations of these gene and gene families
are continuously added to the database to create a domain specific for carbohydrate enzymes.

With a given reference sequence, CAZy can cross the reference sequence with the database and

annotate any predicted carbohydrate enzymes .
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2.5 Read Mapping the Metatranscripts to the 12 Acidobacteria MAGs using STAR

The mapping of reads with the STAR aligner is a two step process. Generating a genome
index of the reference sequence is step one. To do so, the reference genome sequence in a fasta
format is required as well as its corresponding GFF or GTF file. In this case, the Acidobacteria
MAGs were used as the reference genome and its corresponding GFF was also used. The
purpose of indexing a genome is to generate indices of where the aligner should map the reads to
as the transcript reads are being mapped to the reference sequence. This also “places” the gene
annotations along the reference sequence. This also allows the aligner to map at a faster rate
opposed to strictly mapping to the reference sequence. Genome indexing with STAR was done
on the Unity HPC. In order for the code to run successfully the following parameters were used:
—runMode - Direct STAR to run genome indexing
—genomeDir - Specifies path of output directory to store genome index
—genomeFastaFiles - Specifies path to reference genome that is being indexed
—sjdbGTFfile — Specifies path to GFF or GTF file used
—sjdbGTFfeatureExon — Defines element used to identify coding sequences in GFF file
—sjdbOverhang — Used to help create splice junction database (not important for bacterial
genomes)
—genomeSAindexNbases - Scaler used for smaller genomes (STAR will suggest parameter if
necessary based on genome length)

—outFileNamePrefix - Specifies prefix for output files
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An example for the code to generate the genome index for Acidobacteria MAG 3300021040.fa.2
can be seen below:

STAR --runMode genomeGenerate --genomeDir 1040index/ --genomeFastaFiles
RM330021040.fa.2.fa --sjdbGTFfile 1040gff.gft --sjdbGTFfeatureExon CDS --sjdbOverhang
129 --genomeSAindexNbases 9 --outFileNamePrefix 1040index

The resulting output is a directory that acts as a genome index for your reference genome. As
there are 12 Acidobacteria genomes to use as references, 12 separate genome indexes were
generated.

The second step following genome indexing is the read counting. This step takes
considerably longer and requires more computing power in relation to the genome indexing step.
However, the result is the data used for expressional analysis. For the second step, an index of
the reference genome from step one is required, a file containing all the reads that will be
mapped is required and the GFF or GTF file used for the indexing step is needed. Mapping of the
reads to the reference index was all completed on the Unity HPC. In order for the mapping step
to run successfully, the following parameters were used:

—runThreadN - Number of CPU cores utilized

—genomeDir - Name of directory the output will be stored in

—sjdbGTFfile - Path to GFF or GTF file used

—sjdbGTFfeatureExon - Defines element used to identify exons
—sjdbGTFtagExonParentGene - Defines tag name to use for the gene

—alignIntronMax - Defines maximum intron length (Set to 0 when working with bacterial
genomes)

—readFilesIn - Path to file containing all transcript reads
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—readFilesCommand - Defines if files are compressed or not so STAR can read them correctly
—outSAMtype - Defines output alignment type in binary format

—quantMode - Defines quantifying output. As reads per gene is the desired output, GeneCounts is
used

—outFileNamePrefix - Specifies prefix for output files

—sjdbOverhang — Used to help create splice junction database (not important for bacterial

genomes)

An example of the code used for the step can be seen below:

STAR --runThreadN 32 --genomeDir 330021040/1040index/ --sjdbGTFfile
330021040/10404ff.gff --sjdbGTFfeatureExon CDS --sjdbGTFtagExonParentGene locus_tag
—alignintronMax 1 --readFilesIn ~/scratch/NatBWC120_metat.trim.fastq.gz
--readFilesCommand zcat --outSAMtype BAM Unsorted --quantMode GeneCounts

--outFileNamePrefix Controlled/120/ --sjdbOverhang 129

There are a number of results from the following step, but there are two main output files that
will be used for further analysis. The first is a file labeled “ReadsPerGene.out.tab”. This file
contains four columns: Column one is the gene ID, column two is the counts for unstranded
RNA-seq, column three is for strand specific counts for the first read strand aligned with RNA,
and column four is for strand specific counts for the second read strand aligned with RNA.
Strandness for this dataset is not a concern so the second column of counts will be used for
DESeq analysis. The second file of interest is labeled “Log.final.out”. This acts as an overall
summary of the mapping that was performed giving overall statistics. Specifically, the total

number of reads mapped and the percentage of reads that mapped will be used for further
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analysis. If working with eukaryotes, this output also includes information regarding splicing
events, but as this is a bacterial dataset, there is no information to log. The end result was 28
count matrices for each genome along with 28 summary outputs for each genome. Totaling 336

read count files and 336 final log reports.

2.6 Differential Expression Analysis

With the count matrices from the read mapping, the next step was to perform differential
expression analysis to observe if any genes showed statistically significant differences in the
control and heated plots. In order to do so, RStudio was used to subset the data specifically using
the dplyr package *®. For each of the 12 Acidobacteria genomes, two tables were generated using
the read count data. One of the tables contained all the read count data for one of the
Acidobacteria genomes from the 14 organic horizon samples. The second table contained all the
read count data for one of the Acidobacteria genomes from the 14 mineral horizon samples. In
total, 24 read count tables were constructed with 2 being from each genome, one table with all
the read counts from the organic meta transcript samples and one table with all the read counts
from the mineral meta transcript samples. For the final report files, a table was constructed that
contained the total read counts and uniquely mapped reads from the different meta transcript
samples (plots) to each genome. Soil layer was also defined in this table so that the organic and
mineral samples were separated.

The package DESeq2 was used in RStudio to normalize the data to obtain the differential
expression data. The inputs used were the newly created read count tables for each Acidobacteria
genome, along with a table that defined the condition and type for each sample. This would tell

the program which values to compare based on a condition. Table 2 shows what was used when

32



performing DESeq?2 analysis on all the organic samples. Supplemental Table 1 shows what was
used for the same analysis, but using the samples taken from the mineral layer. For each read
count table, the DESeq2 pipeline was followed according to the bioconductor vignette * 4° 3!,
Results are comparing conditions treated (warming) to untreated (no warming). One important
output from DESeq? is log2 fold change which indicates the up or down regulation of values
based on a condition. As we are investigating gene expression as a result of warming, a positive

log2 fold change will be indicative of an up-regulation of gene expression and a negative log2

fold change will be indicative of a down-regulation of expression.

Table 2: Condition Table for Organic DESeq2 Analysis

Plot Condition Type

Control120 untreated organic
Control140 untreated organic
Control70 untreated organic
Control300 untreated organic
Control190 untreated organic
Control270 untreated organic
Control40 untreated organic
Heated20 treated organic
Heated40 treated organic
Heated110 treated organic
Heated170 treated organic
Heated260 treated organic
Heated280 treated organic
Heated320 treated organic
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2.7 CAZy and Gene Product Annotation

For each read count table, annotations from the CAZy database and gene product
annotations were added. To obtain CAZy annotations, the fasta sequences for each Acidobacteria
MAG was uploaded to the dbCAN meta server which takes nucleotide inputs of metagenomes
and automatically annotates the sequences using the CAZy database *'. The outputs include the
fasta tags from the nucleotide sequences along with its corresponding HMMER annotation from
the CAZy database if there is any. From here, a table join was conducted in RStudio to include
CAZy annotations to the locus tags in the read count tables. Gene product annotations were also
accomplished in the same manner by using a table join operator in RStudio. Annotations for the
gene products of each locus tag was done by the Joint Genome Institute and the file containing
the annotations for each reference MAG can be found on their genome portal. These annotations
were downloaded for all 12 MAGs and added to the read count tables along with the KEGG
annotations.
2.8 GTDB-Tk Analysis

To generate a phylogenetic tree of the 12 Acidobacteria MAGs in relation to other
references, the GTDB-Tk was used. GTDB-Tk consists of three steps: Gene Calling
(identification), aligning of the genomes with the identified markers from step one, and
classifying the reference genomes to generate a reference tree from other genomes in the GTDB.
The only necessary input files were the fasta sequences of the 12 Acidobacteria MAGs. The

pipeline followed can be found on the github page for the GTDB-Tk **. GTDB-Tk was run on
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the Unity HPC by using a bioconda install to generate a conda environment containing the

GTDB-Tk packages necessary.

2.9 iTOL Visualization

Using the .tree output from GTDB-Tk, visualization of the phylogeny was accomplished
using iTOL?**. The original tree contained a total of 53,134 genome IDs from the GTDB. Using
the pruning function, the phylogenetic tree was trimmed to contain only 62 genome identifiers,
12 of which were the Acidobacteria reference MAGs. Colored annotations were applied using
the annotate feature found in iTOL. With the node ID provided for each leaf, the taxonomic
classifications of each ID were searched using the GTDB and annotated according to its Order

classification 4.

2.10 OrthoFinder Analysis

OrthoFinder was used to identify orthologous genes among the 12 Acidobacteria
genomes. The pipeline used can be found on the github page for OrthoFinder *. Inputs for
OrthoFinder include peptide sequences for the reference genomes which were previously
translated from the Acidobacteria reference sequences. A bioconda install for OrthoFinder was

completed on the Unity HPC to create a conda environment with all the required packages.
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CHAPTER 3
RESULTS
3.1 Acidobacteria Phylogeny
Acidobacteria is a highly diverse phylum with its 26 subdivisions. With that, it was
assumed that there would be diversity among the 12 reference Acidobacteria used. Figure 4
shows a phylogenetic tree of the 12 Acidobacteria MAGs highlighted in yellow in comparison to
other Acidobacteria genomes uploaded to GTDB. Of the nodes included in Figure 4, the
Acidobacteria references fell into 3 different orders. These orders being Acidobacteriales,
Acidoferrales and Bryobacterales. As our reference MAGs used were only classified by phylum,
they were not categorized into any of these orders specifically and were instead annotated with a
different color. 7 of the 12 Acidobacteria MAGs fell into clades with members classified as
Acidobacteriales. 1 of the 12 fell into a clade with Bryobacterales and the remaining 4 were
grouped into clades with Acidoferrales. As phylogenies display relationships between organisms
based on evolutionary background, it can be assumed that organisms within the same clade share
a more recent common ancestor *. Because of this, organisms that have a more recent common
ancestor are often perceived as more genetically similar to organisms that branch off earlier or
reside in different clades. This is why a separation can be seen in Figure 4 with the 3 different
Orders occupying different sectors of the tree. Based on the tree, it appears that MAGs

33000780.fa.4 and 3300020743.fa.1 are the most evolutionarily similar.
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Figure 4: Phylogenetic Tree of Acidobacteria MAGs: The phylogenetic tree above was
generated from the GTDB-Tk using the 12 Acidobacteria reference MAGs from Barre Woods.
Originally containing 53,134 leaves, the tree was pruned to 62 leaves. All the organisms found
on the tree are classified in the phylum Acidobacteria. Using the GTDB and the node IDs, each
leaf was categorized based on order and color coded based on the key shown to the right of the
phylogeny. Acidoferrales were labeled green, Acidobacteriales were labeled red, Bryobacterales
were labeled blue and the Acidobacteria MAGs used in this study were labeled yellow.
Visualization and annotation of the tree were accomplished using iTOL.
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3.2 Expressional Differences in the Acidobacteria MAGs

Due to the diversity seen in the phylogeny, we wanted to observe expressional differences

among the Acidobacteria MAGs as a whole. In order to do so, a graph was generated using the

total percentage of uniquely mapped reads and number of reads from each soil sample to each

Acidobacteria MAG. Figure 5 shows a boxplot of the findings.
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Figure 5: Expressional Differences Between 12 Acidobacteria Reference MAGs

(A)5a shows the percentage of uniquely mapped reads to each Acidobacteria MAG from each
sample. The x-axis displays the genome ID for each Acidobacteria MAG and is colored
according to the Order identified in Figure 4.. The y-axis displays the percentage of uniquely
mapped reads from each sample to the reference MAG. Treatment refers to samples that were
heated (red) and those that were not (blue). Samples were also split by layer with the percent of
reads mapped from the mineral samples on the left and the percent of reads mapped from the
organic samples shown on the right. Ggplot2 was used to generate the boxplot seen above using
RStudio (B) 5b shows the same graphic as 5a, but the y-axis was changed to show the total
number of reads that mapped.

The boxplot seen in 5a shows the percentage of uniquely mapped reads from each plot to each
reference MAG. Only uniquely mapped read percentages were used as multimap reads can often
lead to complications in downstream expressional analysis *. Split into Organic and Mineral
layers as well as condition, the box itself represents percentages from the STAR mapping
summary of each sample. This means that each box is composed of 7 different percentages as
there were 7 samples for each condition (organic heated, organic control, mineral heated and
minter control). Within both layers, a lower percentage of reads mapped to MAG
3300020651.fa.6 can be seen regardless of treatment. Both MAGs 3300020780.fa.4 and
3300020924.fa.3 had very similar expressional patterns with having a noticeable higher
percentage of reads mapped despite being classified into different Orders. In the mineral layer, a
higher mean in percentage of total reads mapped between the plots can be seen in the heated
samples opposed to the control. This is indicated by the dash within the boxes. However in the
organic layer, the opposite phenomenon can be seen with a higher average percentage in the
control plots opposed to the heated. The average percentage of reads mapped for the genome in
the mineral layer range from >0% to <3% in the heated samples and 0<3% in the control

samples. Average percentage of reads mapped for the genome in the organic layer range from

>0% to <4% in the heated samples and >0% to <~6% in the control samples. Figure 5b indicates
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the same findings are 5a, however it used to help show the overall number of reads mapped. This
is because the low percentages of reads mapped seen would indicate poor mapping percentages.
In this case, it is known that there is contamination of other organisms in the transcript reads.
Because of this, the read files contain over 100 million reads. The average number of reads
mapped in the mineral layer range from >0 to < ~5million reads in the heated samples and >0 to
< 3 million reads in the control samples. The average number of reads in the organic layer range
from >0 to <~8 million reads in the heated samples and >0 to <~10 million reads in the control
samples. Again, reference MAGs 3300020780.fa.4 and 3300020924.fa.3 had the highest
averages and the control plots had a higher number of reads map to each genome on average
opposed to the heated plots. Since a majority of bacteria reside in the organic layer and there
appears to be less variance in this layer opposed to the mineral layer, we decided to focus the
study on the differences of the gene expression in the organic layer specifically.
3.3 Number of Differentially Expressed Genes

With an idea of the overall expressional patterns of the genomes, we wanted to look at the
genes that were differentially expressed. The results below only depict data from samples taken
from the organic horizon. The R package DESeq2 was used to statistically test the difference in
expressional data of specific genes based on the condition of soil warming. DESeq2 outputs from
all reference MAGs were combined into a single table to observe any patterns across the
genomes. Using three different statistical cut offs, Figure 5 shows the number of differentially
expressed genes observed. The condition set was to test statistical significance differences
between heated and controlled samples. All 12 reference MAGs indicated statistically significant
differences in expression data at the gene level. Genome 3300020916.fa.5 indicated the highest

number of differentially expressed genes at all three cut offs. 3300020916.fa.5 had 442 genes
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with a p-value lower than 0.05, 45 genes with a p-adjusted value below 0.1 and 31 genes with a

p-adjusted value below 0.05. The p-value comes from the Wald t-test equations and the
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Figure 6: Total Number of Differentially Expressed Genes From Organic Samples

Figure 6 shows a grouped bar plot indicating the total number of differentially expressed genes at
different cut offs. The x-axis shows the reference MAG genomes colored according to Order.
The y-axis indicates the number of genes. The condition represents three different statistical cut
offs. A Wald t-test p-value with a cut off at 0.05 is shown in red. A Benjamini and Hochberg
method adjusted p-value with a cut off at .1 is shown in blue and a cut off at 0.05 is shown in
green. DESeq2 was used to obtain p-values and R packages dplyr and tidyverse were used to
combine data. Ggplot2 was used to generate the bar plot using RStudio

value comes from the Benjamini and Hochberg method. Based on the algorithm, it is to be
expected that a decrease in the number of differentially expressed genes will be seen when
adjusted. For the other 11 genomes, we see a similar pattern of the number of differentially

expressed genes decreasing with a more strict cut off, but all showing at least some genes passing
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each cut off. Again, this number varies from genome to genome, but most of the genomes show
between ~200 to ~300 genes passing a cut oft of 0.05, a statistical cut off that is typically used to
discern significance in science. For an adjusted cutoff of 0.1, a range of 10-45 genes is seen
passing this cut off and a range of 3-31 genes pass an adjusted cut off of 0.05. 3300021003.fa.3
had the lowest number of differentially expressed genes at the 0.05 p-value cut off with 169 total
genes. 3300020780.fa.4 had the lowest number of genes differentially expressed at an adjusted
cut off of 0.1 with 10 and the lowest with only 3 genes passing an adjusted cut off of 0.05
(3300020651.fa.6 also had 3 genes pass this threshold). Despite having a noticeable difference in
reads mapped, 3300020651.fa.6 still showed a number of differentially expressed genes as well.
Seeing a statistical difference in expression at the genic level gives evidence of changes
occurring in all 12 Acidobacteria MAGs from long-term warming. However, the processes that
are being affected cannot be discerned from looking at the number of genes itself. It is also
important to note that the direction of expression cannot be discerned by only looking at the
p-value. By looking at the product of the genes that are differentially expressed, some inferences
can be made about the different cellular mechanisms affected and we can look to see if the genes
that are differentially expressed are so at the phylum level. Using the log2 fold change value
from DESeq2 will also indicate the directionality of the genes to determine whether a given gene

was up or down regulated in the heated samples.

3.4 An Up-Regulation is Found in the Sigma 70 Gene
We next wanted to look for any patterns in the expression of genes across the phylum as a
whole. Specifically, we were looking for families of genes that were differentially expressed

across the phylum or groups of genes that showed the same directionality due to the stress of
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warming. To do so, all the genes with a p-value of less than 0.05 were put into a single table.
Although an adjusted cut off of 0.1 is typically appropriate for larger genomic studies, there
tends to be more variation in ecological research. Because of this, data will not always pass
Bonferroni or Benjamini and Hochberg corrections. As this is a test to see if using MAGs for a
reference based expressional analysis is viable in ecological research, we decided to include
genes that pass the standard 0.05 p-value cut off. Supplemental Figure 1 is a heatmap that was
used to identify genes of interest across the Acidobacteria. Due to difficulties visualizing all
3000+ plus genes with a 0.05 p-value cut off, the heatmap only portrays genes that passed an
adjusted cut off of 0.1. If any hits were found, we then filtered out related genes within the table
containing all the differentially expressed genes and continued from there. Unfortunately, we did
see hits across the phylum for genes with unidentified product names. These were labeled as
“hypothetical proteins”. However, one interesting gene found to be differentially expressed
across a majority of the MAGs was a Sigma 70 gene.

Sigma 70 falls under the category of sigma factor which are small subunits that aid RNA
polymerases in bacterial organisms and help regulate transcription *°. In total, 21 RNA
polymerase sigma-70 factor genes (ECF subfamily) were found to pass a cutoff of 0.05. These
genes were found to be differentially expressed in 11 of the 12 reference MAGs. Figure 7 shows
a dot plot of these findings. The reference genomes can be found on the x-axis to signify what
genome the gene was found to be differentially expressed in. In Figure 7, each dot represents a
single gene. Although each dot represents a different gene, all the genes shown in the figure have
predicted products of a Sigma 70 factor gene in the ECF subfamily with the same KEGG
annotation. As condition set in DESeq2 analysis was generate to compare the warming condition

to the control, a positive fold change corresponds to a higher number of reads mapped
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(up-regulation) and a negative fold change corresponds to a lower number of reads mapped to

that locus in the heated samples (down-regulation).
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Figure 7: Expressional Data of Sigma70 (ECF subfamily) in Acidobacteria MAGs

Figure 7 illustrates the expression data of the Sigma70 gene found to be differentially expressed.
Each dot on the graph represents a gene that passed a p-value cut off of 0.05. The x-axis
represents the Acidobacteria genome that the gene was found to be differentially expressed in
and is colored by Order. The y-axis represents the log2 Fold Change of the gene signifying the
up or down regulation of the gene in the heated samples compared to the control. The figure
above was created using ggplot2 with output data from the DESeq2 in RStudio.

Variation is seen among the Acidobacteria within this gene. In terms of numbers,
3300021040.fa.2 and 3300021013.fa.6 had three total sigma 70 genes found to be differentially
expressed in the samples. All three genes had a positive fold change in the 3300021040.fa.2
MAG, while only one gene had a positive fold change in 3300021013.fa.6. 3300020904.fa.1 and

3300020924.fa.1 both only had one sigma 70 gene found to be differentially expressed.
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3300020904.fa.1 only indicates an up-regulation in the heated conditions and 3300020924 .fa.1
only indicates a down regulation. In general, the overall expressional pattern of the sigma 70
gene clusters to the top of the graph indicating a positive fold change. This is the general pattern
seen among the reference genomes for this gene in particular. Besides 3300020924.fa.1 and
3300021003.fa.3, every reference shows indication of at least one sigma 70 gene being
up-regulated. 6 of the 11 only show an upregulation of sigma 70, while 4 of the remaining 5
showed at least one sigma 70 gene being affected in both directions by the warming. The highest
degree of log2 fold change is seen in 3300020916.fa.5 with ~-1. Besides this point, most of the
other genes cluster close to 0.5 or -0.5 depending on directionality. As there could be multiple
sigma 70 genes, we also wanted to include information gathered from OrthoFinder to see if we
could further categorize these sigma70 genes. Supplemental Table 2 lists all the summary
statistics and orthogroups from OrthoFinder. OrthoFinder sorted the 20 genes into 14 different
orthogroups. Only two of the groups contained more than one of the genes being orthogroup
0G0000008 and OG0001439. 5 sigma70 genes grouped into OG0000008 with three of genes
up-regulated in the warming samples and two of them down-regulated. OG0001439 contained 2
genes, both of which were up-regulated in the warmed samples. In the two closely related
genomes seen in Figure 4, both 3300020780.fa.4 and 3300020743.fa.1 exhibit an upregulated
sigma 70 gene. However, 3300020780.fa.4 also shows one gene being down-regulated while
3300020743.fa.1 does not. Overall, there was variation found within the differentially expressed
sigma 70 genes. However, seeing this one gene found in 11 of the 12 references with a general

up-regulated trend is very interesting.
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3.5 Exploration of Differentially Expressed Carbohydrate Active Enzymes

Carbohydrate metabolism was a category of interest when exploring these Acidobacteria
genomes due to the high variation of metabolism among the phylum. Annotations from the
CAZy database were used to classify the categories of these carbohydrate active enzymes as well
as to identify the genes. If the genes had a CAZy annotation, they were filtered out and put into a
separate table for further analysis. Again, only genes with a p-value below 0.05 were used for
further analysis. Figure 8 shows a complete list of all the differentially expressed genes with

CAZy annotations and there calculated log2 fold change. All information regarding
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Figure 8: Differentially Expressed Carbohydrate Metabolizing Enzymes in Acidobacteria
MAGs

Above is a heatmap showing a list of all differentially expressed genes with annotations in the
CAZy database. On the x-axis is the HMMR annotation from the CAZy database that categorizes
the type of enzyme each gene product falls under. “AA” refers to Auxiliary Activities, “CBM”
refers to non-catalytic Carbohydrate Binding Molecules, “CE” refers to Carbohydrate Esterases,
“GH” refers to Glycoside Hydrolases, and “GT” refers to Glycosyltranferases. The y-axis refers
to the genome that gene was found to be differentially expressed in. The fill gradient corresponds
to the log2 fold change with a darker shade of red corresponding to a positive fold change and a
lighter shade of red/white color corresponding to a negative fold change. The heatmap was
created using ggplot2 in RStudio with output data from DESeq2 and the CAZy database

Of the enzyme categories found on the CAZy database, 5 categories of carbohydrate-related
metabolizing enzymes were found. 5 total genes fell into the Auxiliary Activity (AA) category,
three of which had a positive fold change and two of which had a negative fold change. 4 total
genes fell into the non-catalytic Carbohydrate Binding Molecule (CMB), three of which had a
positive fold change. 7 total genes fell into the Carbohydrate Esterase (CE) category with 4 genes
having a positive fold change, but 3 having a negative fold change. 36 total genes fell into the
Glycoside Hydrolase category (GH), 18 of which show a positive fold change and 18 showing a
negative fold change. Finally, 36 total genes fell into the Glycosyltransferase (GT) category, 16
of which have a positive fold change and 20 that have a negative fold change. In all, 81 total
genes with CAZy annotations were found to be differentially expressed. Among the reference
genomes, all 12 Acidobacteria had carbohydrate active genes differentially expressed. As to be
expected, many glycoside hydrolase encoding genes were found across the Acidobacteria, but
also surprising was the number of glycosyltransferases that were found to be differentially
expressed. Among these categories, there was essentially an even split between the number of up

and down regulated genes. However, given that Acidobacteria are known to have a high
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percentage of GH genes and the fact that a high number of GT genes were differentially
expressed, we decided to take a closer look at those categories specifically.

Figure 9a shows a barplot of the 36 Glycosyltransferase Genes. Specifically, the
HMMER annotations were used as the fill to more easily identify the different

glycosyltransferases with the fold change as the y-axis.
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Figure 9: Differentially Expressed GT and GH Genes in Reference MAGs

(A) A grouped bar plot showing Glycosyltransferase genes that were found to be differentially
expressed in the Acidobacteria MAGs. The x-axis represents the reference MAG with each
MAG having its own boxed out section that is also colored by Order according to Figure 4. The
y-axis represents the log2 fold change value from DESeq for each corresponding gene. Each bar
represents a gene and the color corresponds to its HMMR annotation from the CAZy database.
The plot was created using ggplot2 in RStudio with data from DESeq2.(B) A grouped bar plot
showing Glycoside Hydrolase encoding genes that were found to be differentially expressed in
the Acidobacteria MAGs. All the parameters are the same as in 9a other than the genes
represented. The plot was created using ggplot2 in RStudio with data from DESeq?2.

The diversity of expression can more easily be seen in GT genes from Figure 9a. There does not
appear to be an overall pattern of expression as there appears to be an even distribution of up and
down regulated genes. However, there are a few genes that mostly follow the same direction.
GT83 is up-regulated in the warming plots in four different genomes: 3300021040.fa.3,
3300021003.fa.3, 3300020924 .fa.1 and 3300020924.fa.3. According to the CAZy database and
the gene product annotation from JGI, GT83 is a 4-amino-4 deoxy- L-arabinosyltransferase *.
The enzyme is an integral membrane protein that modifies arabinose to generate a precursor for
polymyxin resistance **. GT21 is another glycosyltransferase that is only found to be
up-regulated in the heated samples in three different Acidobacteria. GT21 is a ceramide
beta-glucosyltranferase that catalyzes the transfer of glucose to ceramide to produce GlcCer *.
Only a few genes are found to only be down-regulated, such as GT28, but only 2 of the reference
genomes exhibit down-regulation of this gene. Two specific glycosyltransferases also stand out,
but are expressed bi-directional in the same genome and across genomes. These two genes are

GT2 and GT4. 11 total GT2 genes were found to be differentially expressed with 7 being

down-regulated. However, it also appears bi-directional in three different genomes. GT2 is a
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cellulose synthase that is involved in cell wall synthesis *°. 8 total GT4 genes were found to be
differentially expressed with 5 being down-regulated. GT4 also was predicted to be involved in
cell wall biosynthesis according to the product annotation, but is also classified as a sucrose
synthase °'. It also is bi-directional in two different reference genomes, both which are different
from the two that exhibited this pattern with GT2.

Figure 9b shows a wide diversity in the expression of different glycoside hydrolase
enzymes. Higher differences in expression between the two conditions are also seen within the
GH genes. Genome 3300021028.fa.3 possess two different differentially expressed GH genes
that are at either extreme: the most up-regulated hydrolase and the most down-regulated
hydrolase. With a log2 fold change of over 1, GH31 is up-regulated in the heated samples and is
also found to be up-regulated in one other genome. According to annotations, GH31 is
alpha-glucosidase which essentially breaks down starches and other disaccharides to glucose *2.
The gene found in 3300021028.fa.3 particularly was further classified as a xylohydrolase. GH20
showed the opposite expressional pattern of being highly down-regulated in the heated sample in
the same genome. With a log2 fold change of -1.95, GH20 is classified as a
N-acetyl-beta-hexosaminidase and they act to cleave hexosamine residues into
N-acetyl-beta-D-hexosaminides **. There are little to no consistencies found among the glycoside
hydrolases within the reference genomes. 330021028.fa.3 which showed the highest number of
differentially expressed GH genes indicates 5 of 6 glycoside hydrolases down-regulated. Only 11
of 12 Acidobacteria genomes contained any glycoside hydrolase encoding genes differentially

expressed.
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3.6 Preliminary Results for Differentially Expressed Chemotaxis Related Genes

Chemotaxis was one gene family of interest as previous results from the data set
hypothesized expressional changes in the gene family. The Chemotaxis gene family encodes
proteins vital for motility in bacteria. Acidobacteria use flagellar proteins for locomotion and
members of the chemotaxis gene family are crucial for the regulation of many flagellar-like
proteins **. Figure 10 illustrates a barplot of all differentially expressed chemotaxis-related genes

discovered. More information regarding these genes can be found in Supplemental Table 3.
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Figure 10: Differentially Expressed Chemotaxis-Related Genes in Reference MAGs:

A grouped barplot is seen above displaying all chemotaxis-related genes found to be
differentially expressed. The x-axis portrays the genome in which the genes were differentially
expressed in. The y-axis represents the log2 fold change inferring the up or down-regulation
under heated conditions. Each box represents a single gene and is filled as a color reflecting the
predicted gene product. The figure was created using ggplot2 in RStudio in combination of data
from DESeq?2.
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Figure 10 shows 23 total differentially expressed genes. 10 of 12 of the reference Acidobacteria
contained at least one differentially expressed chemotaxis-related gene. The only two genomes
that did not were 3300021013.fa.6 and 3300020916.fa.5. 3300020780.fa.4 possessed the highest
number of genes found to be differentially expressed at 4 total and 3300020904.fa.1 had the
fewest of the 10 with only one gene up-regulated in the heated environment. In total, 10 of the 23
genes were found to have a positive log2 fold change. The most common differentially expressed
gene in this pool was the CheY-like chemotaxis protein which appears 7 times in Figure 10. Of
the 7 times it appeared, 4 of these genes showed an up-regulation and 3 showed a
down-regulation. Also related was a signal transduction histidine CheY-like gene that appeared 2
times and was down-regulated in two different genomes being 3300020780.fa.4 and
3300020743.fa.1. The gene with the predicted Chey-like chemotaxis protein was also found to be
down-regulated in these two genomes. Purine binding chemotaxis protein CheW was found in
only two genomes, but appeared in the same direction in both with a negative fold change.
Finally, one last discernable pattern within the chemotaxis gene family involved Chemotaxis
MotB. This protein was found in three different Acidobacteria genomes and was found to be
down-regulated in all three. It not only has the highest difference in expression levels between
the two conditions with a log2 fold change value of -1.49 in genome 3300021040.fa.2, but the
MotB gene in 3300021040.fa.2 had the lowest p-value of all the chemotaxis related genes at
1.51E-7 making it one of three genes with an adjusted p-value below 0.1. Other chemotaxis
protein coding genes are seen to be differentially expressed throughout, however it varies across

the genomes.
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CHAPTER 4
DISCUSSION AND FUTURE DIRECTIONS
4.1 A Reference Based Approach to Read Mapping in Acidobacteria is Possible

As shown, read mapping and differential expression analysis does appear to be possible
and viable in ecological research. Overcoming the challenges of working within a soil
environment can be difficult. MAGs are becoming increasingly more common in the ecological
sphere of genomics as pipelines are becoming increasingly accurate and advanced *°. Although
isolates are almost always preferred when possible and available, working with MAGs can
provide information. With that being said, there are shortcomings when working with MAGs.
One is the contamination of the reference sequences generated. Although programs such as
CheckM are used to preliminary check the quality of the assembled genomes, it is expected that
there will be contamination from other organisms in MAGs. This may lead to lower mapping
percentages or the exclusion of data due to errors in the binning process. However, the method is
viable and offers results to explore as can be seen by the research conducted.

Acidobacteria were chosen as the reference phylum to be used due to the high
representation in the samples shown in Figure 2a and 2b. By choosing only mapping to those 12
high quality MAGs, it was to be expected that only a percentage of the total transcript reads
would actually map to these 12 genomes. That is because the mRNA reads extracted came from
all the organisms present in the samples. This explains why in Figure 5a, we see such a small
percentage of total reads mapped. However, because the read files were so large containing 150+
million reads, the percentages can be deceiving. That is why 5b shows the total number of reads
to indicate that read mapping was successful. From initial mapping data in Figure 2, it was to be

assumed that different expressional levels would be observed as whole between the 12 reference
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genomes. That is exactly what we see. Acidobacteria as a whole are a very diverse phylum with
26 different subgroups so we expected to see diversity within our small sample size as well.
Figure 4 justifies that even at the Order level, there were evolutionary differences among the
references. Figure 5 shows the difference in transcripts that mapped to each of the genomes.
Genomes 3300020924.fa.3 and 3300020780.fa.4 had similar expression levels despite being
classified in different Orders. Beyond that, most of the genomes displayed similar average
expression levels to each other with each genome following the same trend depending on the
condition and soil layer. There was one outlier being genome 3300020651.fa.6 that had a
noticeably lower percentage of reads mapped. We did expect one of the 12 genomes to exhibit
this behavior according to the preliminary results from Figure 2 and that is what we see. The
overall differences seen may very well be attributed to diversity in the Acidobacteria phylum. It
is known that the phylum is extremely diverse and ubiquitous so it is to be expected that different
expressional patterns would be seen. However, it was a little surprising that those that were more
evolutionarily similar did share more similar expression patterns as a whole. This may also be
due to the environment. Although all samples taken are from the same large plot in Barre Woods,
it is possible that there are ecological differences in the subplots. Some plots may be closer to
larger trees or outside vegetation, while other plots may have a larger population of wildlife that
changes the dynamic of the SOM.

Differences in the total number of reads mapped is seen based on the condition of soil
warming. Perhaps more interesting is that the averages of the reads mapped in the heated and
non-heated samples flips based on the sample layer. In the organic layer, the average number of
reads mapped between all the samples is higher in the control plots compared to the heated plots.

The general take away from this is that the stress of warming is causing changes in transcription
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levels as a whole in the Acidobacteria. The result of this lower levels of transcription is that
phylum of bacteria results in fewer reads mapped. However, as Acidobacteria often adapt to their
environment, the stress of 5 “C is not too drastic so the changes in overall transcription, although
lower, is not too different from the control. In the mineral layer, the opposite is true. On average,
a higher number of reads mapped to the reference genomes in the long-term warming samples
opposed to the control (Figure 4). Although surprising to see initially, this can be explained by
increased mixing of the layers due to warming. Bacteria populations are known to be
concentrated in the organic horizon as this is where a majority of the necessary nutrients are >°.
That is why the overall averages of reads mapped in each genome is higher in the organic
samples opposed to the mineral samples, regardless of warming. Prior research in the lab has
suggested that the organic and mineral layers tend to mix after warming. This mixing can be
caused by a multitude of factors such as movement of larger eukaryotes causing a dispersion
between the layer or other chemical weathering forcing soil mixing in the heated environment *’.
Regardless of how it happened, this theory of layers mixing in the warmed plots would explain
the pattern seen in the mineral layer. If a lower percentage of bacteria live in the mineral layer,
and this layer becomes mixed with the organic layer which harbors a higher population of
bacteria, it would explain the increase of reads mapped. This would hypothetically cause an
increase in the overall Acidobacteria population within the layer which would equate to a higher
levels of transcription and mRNA in the mineral samples.
4.2 A Number of Differentially Expressed Genes are Found in Acidobacteria Due to Soil
Warming

To gain a better understanding of changes brought about by long-term warming, we

wanted to not only look at the overall expression, but also the number of differentially expressed
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genes. Figure 6 displays the total number of differentially expressed genes. In all, 3271 genes
were found to be differentially expressed if using a 0.05 Wald T-test p-value cut off. Although
one cannot completely attribute these changes to long-term warming, it is reasonable to believe
that the stressor of warming contributes to the differences seen. The Harvard Forest warming
experiment was created to observe potential changes brought about by climate change. By being
in the same general location, the overall climate and ecosystem between the plots is relatively
similar. The only controlled difference is the 5 ‘C change in the soil temperature. Lab
environments will always be more controlled than a natural field experiment by eliminating
confounding variables, but considering the goal is to gain a better understanding of climate
change, the Harvard Forest Warming plots are complemable. With that being said, we have
determined that long-term warming is having an affect on the overall gene expression. Only
looking at Acidobacteria extremely limits the scope of what is occurring in the entire microbial
community. However, due to the abundance and cellular activity of this phylum in the samples,
general conclusions about other bacterial members may be inferred.

When further investigating the gene products of the differentially expressed genes, we
used the standard 0.05 p-value as the cut off. However, in biological multi omic studies, there are
issues with this. First is that there are biases when using p-values from a standard t-test.
Although DESeq?2 uses an algorithm to normalize the read count and obtain p-values from these
normalized and filtered count data, using arbitrary cut offs such as 0.05 can generate biases for
false hits 3. This is not to say that a 0.05 p-value cut off should not be used as it does suggest a
strong correlation between the data and the condition, but it is important to recognize and address
the biases. Another issue is quantifying the p-value for multiple testing scenarios. Although all

variables except soil warming were controlled as best they could, it is reasonable to assume that
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multiple variables can be accounting for the differences resulting in false positives. This is
pertinent in multi omic studies with large biological datasets *®. To account for this, corrections
are made to generate an adjusted p-value such as Bonferroni corrections, or the Benjamini and
Hochberg method which is a slightly adjusted algorithm from Bonferroni that DESeq?2 uses.
When analyzing the differential expression data, all these ideas were taken into consideration
along with the high number of samples (genes) tested. To initially identify candidate gene
families to further investigate, an adjusted p-value of 0.1 was used to look for any patterns seen
across the phylum as whole. Although some related genes were identified with a 0.1 adjusted
cut-off, it was difficult to discern consistencies across the phylum. One answer to this could be
the vast diversity in Acidobacteria. As abundant as they were in the samples, each individual
species identified is filling different niches in its environment and expressing different gene
patterns. Just because they all fall into the same phylum does not mean a specific up or down
regulation of a gene family will be seen, especially considering the diversity found in
Acidobacteria specifically. Another reasonable explanation is the issues when working within an
ecologic study. Field experiments and ecological studies do not always pass standard Bonferroni
correction criteria due to the variability. In controlled lab environments, correcting for multiple
independent variables makes sense as most variables are controlled. In this case, proximity was
used to control for all variables except soil warming. Unfortunately, the weather conditions and
nature can be extremely erratic, and the Barre Woods plots are no exception. Because of this, we
made sure to take adjusted p-values into account when investigating the data set, but the cut off
of 0.05 for the standard p-value was used. We believe that using this as a cut off was reasonable
considering the source of the genomic and transcriptomic data. All p-values and adjusted

p-values of genes identified in Figures 7-10 are also provided to maintain full transparency.
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4.3 Up-regulation of Sigma70 May Explain High Abundance of Acidobacteria in Our Samples
One of the genes found to be differentially expressed across 11 of the 12 genomes was a
sigma 70 ECF subfamily gene. Sigma 70 is an important housekeeping sigma factor that helps
regulate transcription. Members of this family specifically direct RNA polymerase 10 to 35 base
pairs upstream of the initiation site for a gene. In 10 of the 12 genomes, there was at least one
instance of a sigma 70 gene being upregulated *°. Due to the importance of sigma 70, it was
interesting to see this gene differentially expressed. Of note is that there are many different sigma
70 genes in a genome that account for different housekeeping genes. Because of this, some may
be more conserved than others. One method used to identify if there were differences among the
sigma 70 genes was to organize them into orthogroups. The idea was that sigma 70 factors that
regulated similar cellular processes would be orthologous to one another across genomes.
Although five of the genes were found to be orthologous to one another, that particular gene was
found to be both up and down regulated depending on the genome. Again, this can be attributed
to the diversity seen between Acidobacteria as they may implore different survival strategies.
Sigma factors are also known to be used as stress regulators in bacteria *°. Due to their properties
of controlling important pathways for survival, levels of sigma factors have been shown to
change due to various stressors. For example, sigma 32 is a known heat shock protein found in E.
coli that regulates a heat shock response to allow the organisms to acclimate to the stress of
warming . Studies identified that sigma 32 shares many similarities in binding affinity with
sigma 70 ®'. With all this in mind, we hypothesize that this up-regulation of sigma 70 genes may
explain the high representation of Acidobacteria in our samples. Sigma 70 does not only play
important roles in the regulation of key cellular processes, but it shares similarities with other

sigma factors that have shown to be up-regulated as a stress response to heat. Also, initial read
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mapping data from Figure 2 indicates a high number of genomic reads mapping to the
Acidobacteria phylum. Although this mapping did not separate heated and non-heated reads, it is
reasonable to assume that these bacteria would have to be well represented in both sets to cluster
at the top and appear to have such a disproportionately high number of genomic reads map. If
sigma 70 is up-regulated in a majority of the genomes, then this suggests that Acidobacteria are
adapting to the heated stress and able to continue reproducing and thrive despite warming.
However, as this is only at the transcriptomic level, further proteomic studies would need to be

conducted to confirm this hypothesis.

4.4 Carbohydrate Active Enzymes are Found to Differentially Expressed in Some Ways
Acidobacteria have a large number of glycoside hydrolase encoding genes. They are also
divided into many subgroups due to the diversity among the phylum in carbohydrate metabolism.
As one major question regarding soil bacteria with climate change is differences among carbon
recycling and thus impacts on metabolic pathways, we knew we wanted to explore these genes
particularly. Using the CAZy database, a number of carbohydrate active genes were identified
(Figure 8). As expected, we saw a number of genes both up and down regulated in the heated
samples. In Figure 9a, an even split of 18 glycosyltransferase genes were found to be up and
down regulated. As one of the driving characteristics that separate the phylum into subgroups is
the substrates for carbohydrate metabolism, a lot of diversity was expected and that is what is
seen. Based on the categories and directionality of the glycosyltransferases, a lot of different
strategies in response to the soil warming can be seen. Ultimately, there were no specific

glycosyltransferases that were differentially expressed across all 12 genomes. The most
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frequently appearing glycosyltransferase was categorized as a GT2 and the synthesized gene
product is a cellulose synthase. Three different genomes expressed two different
GT2-categorized genes bi-directionality. Of the three genomes, two of them were
3300020743.fa.1 and 3300020780.fa.4 which are the most evolutionary similar according to the
phylogeny in Figure 4. Due to this, one assumption made is that these two genomes may implore
similar survival strategies at the carbohydrate metabolizing level. Unfortunately, only one
similarity is not enough to make any conclusions regarding this. Generally, we do not see many
other consistencies among the phylum. 4-amino-4 deoxy - L-arinonlytransferase encoding genes
was found to be up-regulated in four different genomes. This is believed to be a general stress
response to the warming as the protein product catalyzes reactions to form intermediates
important for polymyxin resistance. Polymyxin is a polypeptide with antibiotic effects 2. We
hypothesize that the overall warming conditions are causing a general stress response in these
bacteria. One defense mechanism is to up-regulate genes that increase resistance to certain
harmful chemicals. Although polymyxin levels are not elevated in the soil samples, the
Acidobacteria are responding to the stress of heating by increasing general resistance.

Figure 9b explores the opposite end of the carbohydrate metabolizing enzymes,
specifically the glycoside hydrolases. From a general perspective, we do see that long-term
warming has an impact on these types of genes. Again, due to the broad spectrum of the phylum
and the diversity specifically in GH encoding genes in Acidobacteria, a lot of differences are
seen among our small sample of references. Even among genomes 3300020743.fa.1 and
3300020780.fa.4, only one glycoside hydrolase was expressed in the same direction. Given that
we know different subfamilies tend to be more involved in carbohydrate metabolism than others,

it is not surprising that we see a discrepancy among the number of differentially expressed GH
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genes as well. The takeaways from Figure 9b are that soil warming is affecting the transcription
of these carbohydrate metabolizing enzymes to some degree. This may in turn affect the overall
metabolizing of carbohydrates as whole, depending on the Acidobacteria. Unfortunately, without
further classification into the subdivisions of the phylum, it is difficult to make any inferences on
the data that is seen. For example if, it is known that genome 3300020924.fa.1 falls into a
subdivision that can only metabolize specific beta-D-glucosides then it would make sense to see
an up-regulation of a GH31 gene in order to outcompete for the carbon source. Further
classifications of the Acidobacteria would provide more insight regarding these enzymes. One
interesting observation is the pattern seen in genome 3300021028.fa.3. Specifically 6 different
glycoside hydrolases were found to be differentially expressed, 5 of which are down-regulated.
Also, it was the only reference genome not to show any differentially expressed
glycosyltransferases. Another possibility as to no phylum wide associations can be seen is that
these genes are highly conserved. Carbon is an essential component to life. Any genetic changes
to carbon metabolizing enzymes may not be tolerated and thus we do not see a difference in
expression patterning from warming. Ultimately, further research into these genes specifically is
necessary.
4.5 Changes in Chemotaxis Related Genes Suggest Drying of Soil

Genes of the chemotaxis family are essential for proper locomotion in bacteria. We saw a
number of chemotaxis related genes differentially expressed in the Acidobacteria after different
degrees. However, these differences in expression levels were some of the most statistically
significant seen. Although the gene encoding for chemotaxis protein MotB was only seen in 3 of
the 12 genomes, it was vastly down regulated in the warmed samples and with high significance.

The MotB protein is an outer membrane chemotaxis protein . In E. coli, the MotB protein was
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found to be one of eight torque generators in the flagellar motor and more specifically may help
anchor the machinery to the cell wall of the organism *. Interestingly, in the three genomes that
MotB was down-regulated in, genes of the GT4 family involved in cell wall synthesis were also
down-regulated in those genomes. It is possible that the down regulation of the GT4
carbohydrate enzymes may have an impact on the production of the MotB protein due to
mechanical discrepancies in cell wall synthesis and anchoring. A gene encoding for a CheY-like
chemotaxis protein was also found to be differentially expressed a number of times. Although it
appeared in both directions, CheY proteins are important signaling proteins for directional
movement of flagellar proteins %. A number of these signaling proteins also are differentially
expressed in the heated samples being CheX, CheA, CheW and ChB, but CheY has the highest
frequency. Coordination of the flagellar proteins are important for these bacteria to move around
in their environment. Preliminary results of the chemotaxis gene family do indicate changes
occurring at the transcription level in response to warming temperatures. The Che-like signal
proteins appearing in both directions does suggest that Acidobacteria are responding differently
to the stressor, but changes are occurring. Genomes 3300020780.fa.4 and 3300020743.fa.1 were
shown to be the most evolutionary similar of the reference genomes. Between these two
genomes, we do see the CheY-like protein encoding gene down-regulated. Due to CheY’s
importance in the functionality of the flagella, it is possible that these two organisms are showing
decreased levels of movement. Again, there are no trends other than MotB that are consistent
across the phylum. However, one assumption made is that these two organisms are more closely
related than the others so they would initiate similar responses. That is not to say that the other
Acidobacteria found in our sample are not showing changes in their levels of movement, but

further investigation is required. There was a fairly even split in terms of directionality among
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the chemotaxis-related genes, but 13 of the 23 were down-regulated. Although the split is
essentially evenly distributed, one possibility as to why we see a down-regulation of these genes
is due to drying of the soil in the heated conditions. With soil warming, the temperature is not the
only aspect being affected as the moisture of the soil may have been affected. Higher
temperatures could lead to less moisture in the soil. This would make it more difficult for
bacteria to propel through the environment. Due to this, one survival strategy may be to conserve
resources and down-regulate important proteins for locomotion as the energy expenditure is too
great. Again, this is a hypothesis and cannot be stated as fact by a transcriptomic study. Further
proteomic and field work to test soil moisture would be required.
4.6 Future Directions

Ultimately, we can conclude that there are changes at the transcription level due to
long-term warming. However, there is still much work to be done. Further classification of the
12 Acidobacteria MAGs into their subfamilies would allow for deeper analysis of the
differentially expressed genes, especially those involved in carbohydrate metabolism. The study
conducted was necessary to make initial observations. Due to constraints, only broad conclusions
can be drawn without more knowledge. The phylum of Acidobacteria is very broad. Although
the widespread nature makes them good candidates to study for generalizations, the diversity can
make it difficult to come to specific conclusions. Classifications of the subfamilies should be the
next taken for the continuation of the study.

Making phylum wide conclusions may also not be as effective. Although a standard in
ecological prokaryotic research, phylum-wide generalizations may not be the best route.
Acidobacteria could be an exception to this practice as the diversity is uncanny compared to

other phyla, but it is something to consider. One possible solution would be to follow a similar
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pipeline with a different phylum represented in the samples. For example, Bacteroidetes were the
second most abundant phylum found within the samples. A reference based approach using
Bacteroidetes would not only give insight to effectiveness of these methods in the ecological
sphere of soil biology, but also help confirm conclusions drawn from Acidobacteria. Another
possible avenue to take is to increase the sample size. Only 12 Acidobacteria MAGs were used
as only 12 MAGs were generated from the mini-metagenomics process. However,
bulk-metagenomics did produce a number of high-quality MAGs, abet far less than the
mini-metagenomics pipeline. Some of these MAGs were identified as Acidobacteria. If these
MAGs were incorporated into this study, more generalizations and conclusions may be apparent.
Using isolates would be the ideal route to take as it would eliminate the possibility of
contamination and incompletion when using MAGs. Unfortunately this is very difficult to

accomplish when working with soil and even more difficult when working with Acidobacteria.
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APPENDIX
SUPPLEMENTARY MATERIAL

Supplemental Table 1: Condition Table for Mineral Layer DESeq2 Analysis

Plot condition type

Control12M untreated mineral
Control14M untreated mineral
Control7M untreated mineral
Control30M untreated mineral
Control19M untreated mineral
Control27M untreated mineral
Control4M untreated mineral
Heated2M treated mineral
Heated4M treated mineral
Heated11M treated mineral
Heated17M treated mineral
Heated26M treated mineral
Heated28M treated mineral
Heated32M treated mineral
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log2FoldChango.

Supplemental Figure 1: Heatmap of Differentially Expressed Genes at Padjusted 0.1 Cutoff
The heatmap above displays all the genes found to be differentially expressed in the 12 reference
MAGs that passed an adjusted cut-off of 0.1. The x-axis displays the predicted gene product for
each gene. These annotations can be found on the JGI Genome Portal. The y-axis represents the
Acidobacteria genome that each gene was found in. Each colored box represents a single gene
and the gradient is representative of its log2 fold change. A positive fold change is indicated by a
darker red and a negative value is indicated by a lighter white. The plot above was made using
ggplot2 in RStudio.

66



Supplemental Table 2: List of All Differentially Expressed Sigma70 Genes

Genome | Locus_Tag

3300020651.fa Ga0206911_13
3300020743.fa Ga0207044_1C
3300020743.fa Ga0207044_10
3300020780.fa Ga0206956_11
3300020780.fa Ga0206956_11
3300020904.fa Ga0207088_14
3300020916.fa Ga0207021_1C
3300020916.fa Ga0207021_10
3300020924.fa Ga0207015_1C
3300020924.fa Ga0207015_11
3300020924.fa Ga0207015_10
3300020985.fa Ga0206813_10
3300020985.fa Ga0206813_10
3300021013.fa Ga0206831_14
3300021013.fa Ga0206831_1C
3300021013.fa Ga0206831_12
3300021028.fa Ga0206863_10
3300021040.fa Ga0206819_10
3300021040.fa Ga0206819_10
3300021040.fa Ga0206819_10

baseMean

44.83402
49.28705
41.5749
64.92007
48.49522
137.1845
210.16957
52.48678
30.28053
64.7007
40.57755
70.16876
53.5392
56.00661
64.48872
66.08124
43.23856
78.12383
49.49674
66.29

log2FoldChang IfcSE

0.6853957
0.6160554
0.4470006
-0.4489006
0.6394682
0.4347811
-0.9745782
0.6778102
-0.5817399
0.5682898
0.3871949
-0.5290554
0.7535095
-0.5110628
-0.4639221
0.3462988
0.7945087
0.7707349
0.3841296
0.7154742

0.2499494
0.2781822
0.2272366
0.2104061
0.3074985
0.1974738
0.2327328

0.34021
0.2210525
0.1609373
0.1949673
0.1582303
0.2704282
0.1846712
0.2242403
0.1729853
0.2587468
0.2056513
0.1694733
0.3416834

stat
2.742138
2.214576
1.967115
-2.133496
2.079582
2.201715
-4.187542
1.992329
-2.631683
3.531125
1.985948
-3.343578
2.786357
-2.76742
-2.068861
2.001897
3.070603
3.747775
2.266609
2.093968

pvalue padj Gene KEGG HMMR Orthogroup
0.006104063  0.31910066 RNA polymeras KO:K03088 NA 0G0000722
0.026789214 0.50223799 RNA polymeras KO:K03088 NA 0G0000168
0.049169909  0.60290947 RNA polymeras KO:K03088 NA 0G0002253
0.032884031  0.65479913 RNA polymeras KO:K03088 NA 0G0003260
0.037563908  0.65939461 RNA polymeras KO:K03088 NA 0G0001807
0.027685422  0.56080844 RNA polymeras KO:K03088 NA NA
2.82E-05  0.01825741 RNA polymeras KO:K03088 NA 0G0000008
0.046335015 0.6716272 RNA polymeras KO:K03088 NA 0G0001439
0.008496316 NA RNA polymeras KO:K03088 NA 0G0001857
0.000413796 0.04753781 RNA polymeras KO:K03088 NA 0G0004513
0.047039094 NA RNA polymeras KO:K03088 NA 0G0000009
0.000827054  0.13525178 RNA polymeras KO:K03088 NA 0G0000008
0.005330413  0.29395006 RNA polymeras KO:K03088 NA 0G0000008
0.005650187 0.2951096 RNA polymeras KO:K03088 NA 0G0000169
0.038559104  0.56199605 RNA polymeras KO:K03088 NA 0G0000468
0.045295813  0.58958089 RNA polymeras KO:K03088 NA 0G0000008
0.002136268  0.18675728 RNA polymeras KO:K03088 NA 0G0001915
0.00017841  0.06597615 RNA polymeras KO:K03088 NA 0G0001501
0.023414137  0.53690679 RNA polymeras KO:K03088 NA 0G0001439
0.036262788  0.57346368 RNA polymeras KO:K03088 NA 0G0000008

Supplemental Table 3: List of All Differentially Expressed Chemotaxis-Related Genes

Genome Locus_Tag

3300021040.fa Ga0206819_1(C
3300021028.fa Ga0206863_1(
3300020924 .fa Ga0207015_1:2
3300020780.fa Ga0206956_12
3300020985.fa Ga0206813_1(C
3300020743.fa Ga0207044_1(
3300021040.fa Ga0206819_1(C
3300020780.fa Ga0206956_1(
3300020743.fa Ga0207044_1(C
3300021003.fa Ga0206966_11
3300021040.fa Ga0206819_1(
3300020904.fa Ga0207088_1¢
3300021003.fa Ga0206966_11
3300020985.fa Ga0206813_12
3300021028.fa Ga0206863_1(
3300020651.fa Ga0206911_11
3300020780.fa Ga0206956_1(
3300020651.fa Ga0206911_1C
3300020780.fa Ga0206956_1(
3300020924 .fa Ga0207015_1<
3300020924.fa Ga0207015_1(C
3300020924.fa Ga0207015_1(
3300020743.fa Ga0207044_1(

baseMean

124.65767
92.26957
133.64663
36.47249
29.05863
39.85465
35.01451
302.04505
346.77788
91.55202
71.31832
49.38546
41.34524
38.95439
23.22235
105.92109
57.18623
119.02198
205.07414
34.57761
41.28845
50.12058
25.14581

log2FoldChang IfcSE

-1.4911356
0.6443414
1.1436143
-0.787305

-0.7827674
0.6320509

-0.5474555
-0.584793

-0.4432887
0.3746239
0.3949947
0.4194366
0.4115965

-0.5153258

-0.5389377

-0.5119165

-0.3525201

-0.3492074

0.303675
-0.8746483
0.632679
0.4816927
-0.602941

stat

0.283923
0.1776072
0.3496594
0.2658971
0.2768519
0.2347294
0.2084956
0.2218694
0.1798838
0.1732176
0.1712537
0.1844185
0.2083876

0.259554
0.2739074
0.2460983
0.1736721
0.1734819
0.1543804
0.2233475
0.2374175
0.2259182
0.3073058

pvalu
-5.251901
3.627902
3.270652
-2.960939
-2.827387
2.692679
-2.625741
-2.635753
-2.464306
2.162736
2.306489
2.274373
1.975149
-1.985428
-1.967591
-2.08013
-2.029803
-2.012933
1.967057
-3.916087
2.664837
2.132155
-1.962023
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e
1.51E-07
2.86E-04
1.07E-03
3.07E-03
4.69E-03
7.09E-03
8.65E-03
8.40E-03
1.37E-02
3.06E-02
2.11E-02
2.29E-02
4.83E-02
4.71E-02
4.91E-02
3.75E-02
4.24E-02
4.41E-02
4.92E-02
9.00E-05
7.70E-03
3.30E-02
4.98E-02

padj

0.373756721

0.6032541

0.684695191
0.686222781

Gene

0.000556686 chemotaxis protein MotB

0.072937249 methyl-accepting chemotaxis protein

0.094570142 two-component system chemotaxis response regulator CheB
0.273207663 CheY-like chemotaxis protein

0.288889706 two-component system chemotaxis response regulator CheY
0.304037988 two-component system chemotaxis response regulator CheY

purine-binding chemotaxis protein CheW

0.383152965 signal transduction histidine kinase/CheY-like chemotaxis protein/DNA-binding 1
0.394243697 signal transduction histidine kinase/CheY-like chemotaxis protein/DNA-binding 1
0.458062509 CheY-like chemotaxis protein
0.523412497 CheY-like chemotaxis protein
0.533204499 chemotaxis protein CheX

0.54625215 chemotaxis signal transduction protein

two-component system chemotaxis response regulator CheB

0.640702472 CheY-like chemotaxis protein
0.670066432 chemotaxis protein MotB
0.67030257 chemotaxis protein MotB

two-component system chemotaxis sensor kinase CheA

signal transduction histidine kinase/chemotaxis protein histidine kinase CheA
purine-binding chemotaxis protein CheW

CheY-like chemotaxis protein

CheY-like chemotaxis protein

CheY-like chemotaxis protein



Supplemental Table 4: List of All Differentially Expressed CAZy Genes

Genome .Locus_Tag

3300021040.fa Ga0206819_1C
3300020916.fa Ga0207021_1C
3300021028.fa Ga0206863_14
3300020916.fa Ga0207021_1C
3300020904.fa Ga0207088_11
3300020916.fa Ga0207021_10
3300020916.fa Ga0207021_10
3300021013.fa Ga0206831_11
3300020651.fa Ga0206911_12
3300021013.fa Ga0206831_1C
3300021003.fa Ga0206966_1C
3300020985.fa Ga0206813_11
3300020916.fa Ga0207021_1C
3300020651.fa Ga0206911_1C
3300020916.fa Ga0207021_10
3300020916.fa Ga0207021_10
3300020916.fa Ga0207021_13
3300020651.fa Ga0206911_10
3300021013.fa Ga0206831_12
3300021040.fa Ga0206819_10
3300020904.fa Ga0207088_15
3300021028.fa Ga0206863_1C
3300020916.fa Ga0207021_1C
3300020985.fa Ga0206813_10
3300021013.fa Ga0206831_1C
3300020924.fa Ga0207015_10
3300021003.fa Ga0206966_1C
3300021013.fa Ga0206831_1C
3300020985.fa Ga0206813_10
3300021040.fa Ga0206819_10
3300020743.fa Ga0207044_10
3300020743.fa Ga0207044_10
3300021003.fa Ga0206966_1C
3300021013.fa Ga0206831_11
3300020651.fa Ga0206911_1C
3300020924.fa Ga0207015_1C
3300020916.fa Ga0207021_1C
3300020985.fa Ga0206813_10
3300021040.fa Ga0206819_1C
3300020743.fa Ga0207044_10
3300020651.fa Ga0206911_1C
3300021013.fa Ga0206831_11
3300021040.fa Ga0206819_1C
3300021040.fa Ga0206819_1C
3300020924.fa Ga0207015_1C
3300020916.fa Ga0207021_1C
3300020904.fa Ga0207088_10
3300020916.fa Ga0207021_12
3300020985.fa Ga0206813_10
3300020743.fa Ga0207044_10
3300021013.fa Ga0206831_10
3300021003.fa Ga0206966_10
3300020924.fa Ga0207015_10
3300020924.fa Ga0207015_10
3300021040.fa Ga0206819_1C
3300020916.fa Ga0207021_10
3300020924.fa Ga0207015_1C
3300020780.fa Ga0206956_1C
3300020780.fa Ga0206956_14
3300020780.fa Ga0206956_10
3300020780.fa Ga0206956_1C
3300020780.fa Ga0206956_1C
3300020780.fa Ga0206956_11
3300020780.fa Ga0206956_11

baseMean
137.914891
48.210168
121.330325
49.318569
170.285917
131.017012
61.971771
384.656441
529.464139
147.133852
268.544633
120.372116
81.958741
84.163744
18.937189
40.830783
68.657673
80.620157
60.810868
122.418064
296.84535
173.016463
44.106866
122.909326
255.637934
60.386389
111.791993
83.170031
64.738344
74.689851
159.830915
92.778947
200.789649
43.750374
67.041426
118.518667
66.230766
122.146631
94.752713
104.453844
410.066545
80.800555
66.544311
90.168181
56.746054
248.173913
136.695834
43.862152
208.035872
90.711657
90.932271
806.965002
177.748411
87.976336
62.543945
457.629401
125.314852
55.079854
35.631881
100.030401
170.242227
121.68225
80.362894
34.272406

log2FoldChang: IfcSE

-0.3957849
0.3666728
-0.4013043
0.7336857
0.3253642
0.3636983
0.3551735
-0.5576787
0.8645862
-0.3871433
0.4688378
-1.4558707
0.3472349
0.4155946
-0.5289919
0.3245092
-0.4591409
-0.3171103
-0.3932721
-0.490905
-0.4710538
-0.7328097
0.6005588
-0.3204805
0.8155364
-0.3284873
-0.3257924
-0.578617
0.3533913
-0.632607
-0.4679969
0.4327021
0.9418018
-0.4501686
-0.6986842
0.3741534
0.6383122
0.5942013
-0.4625048
-0.3847814
-0.4890078
-0.4447977
0.6463159
-0.2856591
-0.4405937
0.7393402
-0.2436375
-0.7946121
0.2784859
0.2967069
-0.3651039
0.4242664
0.2257694
0.343895
0.7320442
-0.6469806
-0.9942513
-0.3948613
0.5336023
0.2984699
0.4150498
-0.2884993
0.5277622
-0.6940023

0.17978242
0.17595394
0.17171918
0.32144021
0.15529989
0.14754804
0.15500911
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