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ABSTRACT 
DETERMINING CAMKII VARIANT ACTIVITIES AND THEIR ROLES IN HUMAN 

DISEASE 
SEPTEMBER 2022 

MATTHEW DUNN, B.S., UNIVERISTY OF MASSACHUSETTS AMHERST 
M.S., UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Professor Margaret M. Stratton 
 

Ca2+/calmodulin-dependent protein kinase II (CaMKII) is involved in Ca2+
 signaling throughout 

the body. CaMKII is enriched in the hippocampus and required for learning and memory 

formation. Four highly conserved genes encode CaMKII in vertebrates:  α, β, γ, and δ. All 

CaMKII variants are constituted of a kinase domain, regulatory segment, variable linker, and hub 

domain. These domains comprise an individual subunit which oligomerize together via the hub 

domain to form multimeric holoenzymes. These four genes are most variable in the linker 

domain due to extensive alternative splicing. The variable linker significantly impacts the 

activation of CaMKIIα. Herein, I attempt to develop an in vitro assay which resembles 

physiological activation of CaMKII via Ca2+ oscillations. I provide preliminary data which 

indicate that alternative splicing of the variable linker in CaMKIIα modulates the Ca2+ frequency 

dependent autonomy of these variants. Additionally, neuronal CaMKII variants of CaMKIIα and 

CaMKIIβ decode Ca2+ oscillations into different levels of autonomous activity. Lastly, I assess 

the impacts of three de novo mutations (Q274P, R275H, and F294S) on Ca2+/CaM sensitivity in 

CaMKIIδ by providing data that these 3 mutants increase the sensitivity of CaMKIIδ to 

Ca2+/CaM and that Q274P and F294S mutants display Ca2+/CaM independent activity.  
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CHAPTER 1 

INTRODUCTION 

Memory enables the ability to store information and experiences in the brain for short-term and 

long-term use. Our memories are integral to our self-perception, relationships, decisions, and our 

overall awareness of our environment. However, the molecular basis of memory formation and 

information storage has not been entirely elucidated. Specifically, memories are maintained for 

long periods of time, whereas proteins and other biomolecules turnover within minutes, days, or 

weeks.  

 

In 1984, Francis Crick proposed criteria for a “memory molecule” to address this conundrum. 

Crick argued the molecule must be an oligomeric enzyme that was able to transfer activation 

between subunits; also, post-translation modifications (PTM), such as phosphorylation or 

methylation, must modulate the activation state of the enzyme (Crick, 1984). Together, these 

mechanisms could allow for perpetuation of a molecular signal well past protein turnover and 

explain the molecular mechanism of memory. The following year John Lisman proposed a 

mechanism for the storage of information via a kinase capable of auto-phosphorylation (Lisman, 

1985). Like Crick’s, this model required propagation of a PTM between molecules. An external 

stimulus would activate the primary kinase, whose activity state is controlled by a phosphatase. 

Once activated, the primary kinase could phosphorylate additional kinases within a different 

holoenzyme in trans. Lisman proposed this must occur in the absence of the original stimulus 

leading to a mechanism for memory storage insensitive to molecular turnover.  
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Meanwhile, a calmodulin-dependent protein kinase was discovered at high concentration in 

postsynaptic densities and demonstrated the ability to autophosphorylate (Kennedy et al., 1983a). 

This same protein kinase corresponded to previously identified targets of calcium-calmodulin 

(Ca2+/CaM) dependent phosphorylation from various tissues (Schulman & Greengard, 1978a, 

1978b). Together, these results supported that autophosphorylation is a physiologically relevant 

mechanism (Bennett et al., 1983; Kennedy et al., 1983b). This protein kinase would later become 

known as Ca2+/calmodulin-dependent protein kinase II (CaMKII). CaMKII is now known to be 

essential to long-term potentiation (LTP) which is the model underlying the cellular basis of 

memory and information storage via synaptic plasticity (Herring and Nicoll, 2016).  

 

Long-term potentiation 

Learning and memory are adaptable processes which change with experiences. Synapses, which 

are connections between neurons, could contribute to the maintenance of these processes. Later, 

the discovery of long-term potentiation supported these models; stimulation of hippocampal 

excitatory neurons resulting in a rapid and lasting increase in the strength of the synapses (Bliss 

and Lømo, 1973). LTP induction requires the activation of postsynaptic N-methyl-D-aspartate 

(NMDA) receptors (Collingridge et al., 1983) leading to calcium (Ca2+)influx into the 

postsynaptic neuron. Upon entry through NMDA and α-amino-3-hydroxy-5-methyl-4- 

isoxazolepropionic acid (AMPA) receptors (Bashir et al., 1991; Wollmuth and Sakmann, 1998), 

Ca2+ binds to calmodulin (CaM) which induces an extensive conformational change (Zhang et 

al., 1995). Ca2+/CaM competitively binds to the CaM footprint of the regulatory segment which 

displaces the regulatory segment from the substrate recognition site, enabling kinase activity (Lin 

and Redmond, 2009). Active CaMKII is able to phosphorylate AMPA receptors which 
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translocate to the postsynaptic density (PSD) (Shi et al., 1999) and leads to a rapid increase 

AMPA receptors at the synapse (Patterson et al., 2010). More recently transient inhibition of 

CaMKII at excitatory synapses caused long-term deficits in LTP implicating CaMKII as a 

storage device (Tao et al., 2021). 

 

Additionally, CaMKII is involved with the structural reorganization of dendritic spines during 

LTP. Specifically, CaMKIIβ bundles F-actin, which composes the primary skeleton in the 

dendritic spin (Okamoto et al., 2007). This interaction is independent of kinase activity, and upon 

kinase activation CaMKII detaches from F-actin which allows for reorganization of other 

signaling machinery. Upon deactivation of CaMKII, it is then able to rebind F-actin and stabilize 

the newly remodeled spine structure (Okamoto et al., 2007). Thus, CaMKII plays an essential 

role in the underlying structural mechanisms that strengthen synapses. Taken together this work 

solidifies CaMKII as both necessary and sufficient for the induction of LTP (Lisman et al., 2002; 

Herring and Nicoll, 2016).  

 

CaMKII activation 

CaMKII biochemistry and structure must be well characterized for comprehensive understanding 

of the mechanisms of learning and memory. CaMKII is a serine/threonine oligomeric kinase 

which assembles into holoenzymes of 12-14 subunits. Each subunit consists of a kinase domain, 

regulatory segment, variable linker domain, and hub domain (Stratton et al., 2014). CaMKII is a 

particularly unique kinase due to the mode of autoinhibition and high order oligomeric 

conformations. In its autoinhibited conformation, the regulatory segment occludes the substrate 
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binding site of the kinase domain, preventing substrate binding. Upon Ca2+/CaM binding the 

regulatory segment, the kinase domain undergoes a conformational change, exposing the 

substrate binding site. The kinase domain is then able to phosphorylate additional subunits in 

trans at Threonine 286 leading to CaMKII activation. Thr286 is located within the regulatory 

segment and phosphorylation prevents the regulatory segment from binding to the kinase 

domain, resulting in constitutive CaMKII activity (Giese et al., 1998). Following T286 

phosphorylation, CaMKII is persistently active in the absence of Ca2+/CaM and can continuously 

auto-phosphorylate additional adjacent subunits at Thr286 and Thr305/306. Thr305/306 are 

considered inhibitory phosphorylation sites because phosphorylation of these residues prevents 

binding of Ca2+/CaM (Patton et al., 1990). CaMKII phosphorylation is specifically crucial to 

LTP. Severe memory and spatial learning deficits were observed in transgenic mice with 

mutations at Thr286, and rigid learning was observed in mice with mutated Thr305/306 (Giese et 

al., 1998). More generally, mice deficient in neuronal CaMKIIα and CaMKIIβ display learning 

impairments and have limited long-term memory (Borgesius et al., 2011; Silva et al., 1992) 

suggesting a crucial role for CaMKII in memory and learning. 

 

CaMKII expression and alternative splicing 

In conjunction with activation of CaMKII its expression is equally complex. There are four 

CaMKII paralogs in humans, α, β, γ, and δ, which generate more than 70 CaMKII splice variants 

in the hippocampus via variable splicing primarily in the linker domain (Sloutsky et al., 2020). 

Across the four human CaMKII paralogs, there is high conservation of the kinase and hub 

domains, 90 and 75% minimum pairwise identity, respectively (Sloutsky et al., 2020). On the 

contrary, the linker connecting the kinase and regulatory segment to the hub is highly variable in 
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composition and length due to variable splicing, although some exons are highly conserved 

between genes (Sloutsky and Stratton, 2020; Sloutsky et al., 2020). The α and β paralogs are 

expressed predominantly in neurons, whereas γ and δ are widely distributed throughout the body 

(Tombes et al., 2003).  

 

Previous structural analysis of full-length CaMKII was achieved by Chao et al. (2011); they 

solved a crystal structure of autoinhibited full-length CaMKIIα. The construct contained no 

variable linker region and revealed a compact form where the kinase domains were docked 

against the hub domain. The crystal structure also revealed that the CaM binding sites located 

within the regulatory segment were inaccessible in this conformation. To further understand how 

the linker contributes to CaMKII structure, the researchers conducted small angle x-ray 

scattering (SAXS) reconstructions on several constructs; specifically, they compared a short 

linker (0 aa residue linker) and long linker (30 aa residue linker) construct. In comparison, the 

longer linker SAXS reconstruction revealed an extended conformation in which the kinases were 

not directly contacting the hub domain. To further solidify their data, they carried out 

biochemical assays to determine the EC50 of each construct. These experiments revealed a higher 

sensitivity to Ca2+/CaM for the longer linker variant (12 nM) than the short linker variant (6 μM). 

From this data they proposed a dynamic equilibrium between the more compact form and the 

extended position of the kinase domains, with respect to the hub domains, which is tuned by the 

linker length. Thus, variants with a longer linker will be observed in the extended form more 

often and will be more easily activated due to the easier access to the CaM binding sites. 
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These data revealed an important role for the linker domain in CaMKII activation and activity, 

but it was limited to a small number of possible variants. Sloutsky et al. (2020) sought to test this 

hypothesis on a larger number of variants. They utilized deep sequencing of human hippocampal 

samples to detect more than 70 CaMKII transcripts from all four paralogs. Next, they 

implemented the same assay as Chao et al. (2011) to characterize the Ca2+/CaM sensitivity of 

CaMKIIα and CaMKIIβ variants with a range of linker composition and lengths. Their assays 

revealed that CaMKIIα sensitivity to Ca2+/CaM was tuned by linker length, with longer variants 

being more easily activated or having a lower EC50 than shorter variants (consistent with Chao et 

al. 2011). On the contrary, the CaMKIIβ variants they tested displayed no significant variation in 

their sensitivity to Ca2+/CaM despite variation in linker lengths (0 to 217 aa). Interestingly, the 

CaMKIIβ variant with a 0 aa linker had an EC50 of 21 nM which is similar to the EC50 of 

CaMKIIα with a 30 aa linker (24 nM) but significantly lower than that of CaMKIIα with a 0 aa 

linker (313 nM). Thus, other domains must be contributing to Ca2+/CaM sensitivity. Researchers 

designed chimera constructs of CaMKIIα and CaMKIIβ consisting of α kinase/β hub and β 

kinase/α hub. These chimeras were subjected to the same assay and their results reveal an 

allosteric role for the hub domain in CaMKII activity (Sloutsky et al., 2020). 

 

CaMKII transduces Ca2+ oscillations 

The measurements used by Chao et al. (2011) and Sloutsky et al. (2020) to characterize 

sensitivity to Ca2+/CaM were recorded at equilibrium Ca2+ conditions, but it is known that 

CaMKII activity is dependent on the frequency of Ca2+ oscillations in postsynaptic neurons (De 

Koninck & Schulman, 1998; Bayer et al., 2002; Chao et al., 2011). These bursts of Ca2+ influx 

are due to action potential propagation and timed frequency of these oscillation are believed to 

https://www.zotero.org/google-docs/?058Y4S
https://www.zotero.org/google-docs/?OZYp90
https://www.zotero.org/google-docs/?OZYp90
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encode crucial information to LTP (Brown et al., 2000; De Koninck and Schulman, 1998). 

Additionally, Ca2+ is used throughout the human body as a cellular signal, specifically 

fluctuations intracellular concentrations encode a variety of signals. In neurons, stimulus 

frequency-dependent changes in Ca2+ synapse transmission, such as LTP, involve CaMKII 

suggesting a role in decoding these synaptic inputs (De Koninck & Schulman, 1998).  

 

To understand this role, De Koninck and Schulman immobilized CaMKII via an HA 

tag/antibody. They used pressurized perfusion chambers to pulse the immobilized CaMKII with 

Ca2+, CaM, and ATP followed by EGTA. Autophosphorylation at Thr286 requires binding of 

CaM to subunits in trans. As a result, submaximal activation of CaMKII by a single Ca2+ spike 

may fail to result in autophosphorylation, but repeated spikes may lead to accumulation of 

autonomous activity. Therefore, they measured phosphorylation at Thr286 following pulsing as an 

indication of autonomy. Their results indicated that higher frequencies resulted in higher levels 

of autonomy (Thr286 phosphorylation) (De Koninck & Schulman, 1998). Bayer et al. conducted a 

similar experiment, with three CaMKIIβ variants. Their results also indicated an increase in 

autonomous levels with the frequency of Ca2+ oscillations. Differences in the kinase position, 

relative to the hub domain, due to the variable linker allows for nuanced differences in activation 

and variable expression in hippocampal neurons provide a mechanism to modulate neuron 

sensitivity to Ca2+ oscillations (Bayer et al., 2002). Lastly, Chao et al. demonstrated variable 

responses to Ca2+ oscillations between different CaMKIIα variants. Using a similar experimental 

setup, they exposed CaMKIIα 0 aa linker and CaMKIIα 30 aa linker to Ca2+ oscillations. They 

observed similar patterns between autonomy and frequency of Ca2+ oscillations and 

https://www.zotero.org/google-docs/?tZeV2E
https://www.zotero.org/google-docs/?MklJWZ
https://www.zotero.org/google-docs/?u4rdzr
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demonstrated that CaMKIIα 0 aa linker required higher frequencies to reach the same percent 

autonomy as CaMKIIα 30 aa linker (Chao et al., 2011).  

 

The role of CaMKII in human disease 

Historically CaMKIIα and CaMKIIβ have been the focus of many neurological studies, as they 

represent 2% of the total hippocampal protein (Erondu and Kennedy, 1985). However, more 

recently, CaMKIIγ and CaMKIIδ missense mutations have been associated with numerous 

neurological disabilities indicating an essential role for all CaMKII paralogs in neurological 

development and function (Küry et al., 2017; Onori et al., 2018). Aberrant synaptic plasticity is 

an underlying mechanism which causes multiple neurological and psychiatric disorders (Bliss et 

al., 2014). Specifically, dysfunctional ionotropic glutamate receptors, α-amino-3-hydroxy-5-

methyl-4-isoxazole propionic acid receptors (AMPAR) and N-methyl-D-aspartate receptor 

(NMDAR), are the cause of many neurological disorders (Barkus et al., 2014; Lau and Zukin, 

2007; Zhang and Abdullah, 2013). CaMKII had not been associated with neurological disorders 

historically. However, with the advent of new sequencing technologies many missense mutations 

in all four genes have been found to impact CaMKII activity, autonomy, and localization within 

neurons, suggesting a causative role for a range of neurological disorders (Chia et al., 2018; Küry 

et al., 2017; Robison, 2014; Stephenson et al., 2017). In some cases, causative links have been 

established (Küry et al., 2017; Onori et al., 2018; Stephenson et al., 2017), but it is not 

understood how mutant CaMKII alleles exert dominance over wild-type CaMKII alleles causing 

neuronal dysfunction in heterozygous individuals. 

 

https://www.zotero.org/google-docs/?TeRub9
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This thesis aims to further characterize two biochemical properties of CaMKII which are crucial 

to our understanding of its role in learning and memory. First, how does alternative splicing 

within the variable linker region impact the ability of CaMKII to decode Ca2+ oscillations? 

Previous work demonstrates that the linker length tunes the levels of autonomous activity in 

response to these Ca2+ oscillations. I hope to extend this model to a wider range of hippocampal 

CaMKII variants and develop a method to measure in vitro CaMKII activation under more 

relevant conditions. Second, I hope to extend research focused on de novo CaMKII mutations.  
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CHAPTER II 

HIPPOCAMPAL CaMKII VARIANTS DIFFERETIALLY DECODE CA2+ 
OSCILLATIONS 

 

Matthew J. Dunn1, Margaret M. Stratton2 

Department of Molecular and Cellular Biology1 
Department of Biochemistry and Molecular Biology2 

 
 
Abstract 

Calcium/calmodulin-dependent protein kinase II (CaMKII) plays an integral role in 

Ca2+ signaling throughout the body. CaMKII is required for long term potentiation (LTP), the 

molecular mechanism which underlies memory and learning. In vertebrates there are four 

CaMKII paralogs: CaMKIIα, CaMKIIβ, CaMKIIγ, and CaMKIIδ. Each gene encodes a kinase 

domain, a regulatory segment, a variable linker, and a hub domain. All four CaMKII genes are 

highly conserved, and the variable linker region has conserved exon boundaries which undergo 

extensive alternative splicing. These splice variants have been shown to change CaMKII 

sensitivity to Ca2+ which is responsible for CaMKII activation in vivo. CaMKII activation and 

autonomy through T286 phosphorylation lead to long-lived changes in dendritic spine structure 

and gene expression. I show that in vitro CaMKIIα splice variants demonstrate variable levels of 

Ca2+ frequency-dependent autonomous activity depending on the length of the variable linker 

region, and CaMKIIα and CaMKIIβ decode these oscillations into different levels of autonomy. 

Therefore, variable splicing modulates the autonomous activity of CaMKII in vitro, which has 

meaningful implications about the specificity of CaMKII activation by Ca2+ oscillations and may 

further explain its essential role in synaptic plasticity and LTP.   
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Introduction 

Calcium (Ca2+) is a ubiquitous secondary messenger and Ca2+ signaling is pervasive throughout 

cellular signal transduction pathways (Catterall, 2011). In neurons, changes in intracellular Ca2+ 

concentration occur as spikes or oscillations which transmit the depolarization signal and impact 

synaptic activity. Additional information may be communicated by the amplitude, frequency, 

and duration of Ca2+ oscillations (De Koninck and Schulman, 1998). Ca2+ frequency-stimulated 

changes in synaptic activity, such as long-term potentiation (LTP) and long-term depression 

(LTD), require activation of Ca2+/calmodulin-dependent protein kinase II (CaMKII) (Lisman et 

al., 2012). CaMKII activity is particularly unique because it can decode cellular information 

transduced by Ca2+ oscillations which may be crucial to its role in LTP induction at the synapse 

(De Koninck and Schulman, 1998; Chao et al., 2011; Bayer et al., 2002). 

 

Historically, EC50 has been used as a metric to quantify differences in the concentration of 

Ca2+/CaM required for activation of CaMKII splice variants (Chao et al., 2011; Sloutsky et al., 

2020). A CaMKIIα variant with a 30-residue linker requires significantly less Ca2+/CaM to 

achieve maximal activity than a CaMKIIα variant with a 0-residue linker (Chao et al., 2011; 

Sloutsky et al., 2020). On the other hand, a CaMKIIβ variant with a 217-residue linker requires 

approximately the same Ca2+/CaM to reach maximal activity as a CaMKIIβ variant without a 

linker (Sloutsky et al., 2020), yet CaMKIIβ variants have demonstrated differential levels of 

autonomy due to Ca2+ oscillations (Bayer et al., 2002). The difference in these activation 

properties reveal an important distinction between CaMKII activation due to Ca2+ oscillations 

compared with steady-state Ca2+ conditions. However, intracellular Ca2+ concentrations fluctuate 

with calcium channel activity (Catterall, 2011). Ca2+ influx is mainly dependent upon membrane 
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potential and presynaptic neurotransmitter release, whereas homeostasis of intracellular Ca2+ 

concentrations are controlled by the mitochondria and endoplasmic reticulum (Gleichmann and 

Mattson, 2011). Thus, activation properties of CaMKII variants may be better understood by 

stimulating these Ca2+ oscillations in vitro. Although previous experiments (Bayer et al., 2002; 

Chao et al., 2011) have assessed the differential activation of some CaMKII splice variants due 

to Ca2+ oscillations, by conducting similar experiments to these with the full array of CaMKIIα 

and CaMKIIβ splice variants detected using RNA-seq (Sloutsky et al., 2020) we will be able to 

develop a more accurate model of how the linker affects physiological meaningful CaMKII 

activation. Specifically, in these experiments we measure the levels of autonomous CaMKII 

autonomous activity following exposure to various Ca2+ oscillations. Significant differences 

between splice variants in autonomous activity following Ca2+ oscillations could allow for 

specific tuning of synaptic plasticity and CaMKII activity crucial to LTP. 

 

Methods and Materials 

Plasmid Construction 

A gene fragment (IDT) containing AviTag (Beckett et al., 1999) followed by a C-terminal 

flexible linker (aa: GASAGSAGS) were subcloned into preexisting pET CaMKII vectors 

containing N-terminal 6xHIS followed by a SUMO tag (Sloutsky et al., 2020). The AviTag 

insert was positioned immediately after a Ulp1 cleavage site and positioned at the N-terminus of 

each CaMKII gene. These vectors were assembled using Gibson assembly and confirmed via 

Sanger Sequencing (GeneWiz). 

 

CaMKII Expression and Purification 
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A previously established bacterial expression system (Choa et al., 2010) for CaMKII by 

coexpression with Lambda Phosphatase was utilized. We expressed CaMKII in Escherichia coli 

by coexpressing with λ phosphatase (from Kuriyan Lab) in Rosetta (DE3)pLysS competent cells 

(Novagen). λ phosphatase was expressed via a pCDFDuet1 vector and N-terminally clones 

6xHis AviTag CaMKII was expressed in a pET287 vector. Cells were grown to an O.D. (595 

nm) of 0.6 and induced with 1 mM isopropyl β-D-1-thiogalactopyranoside (IPTG; GoldBio). 

Cells were grown for 16 hours at 18 °C and resuspended in buffer A [25 mM tris-HCl (pH 8.5), 

150 mM KCl, 50 mM imidazole, 10% glycerol; Sigma] with 25 mM magnesium chloride, 

containing a cocktail of protease inhibitors and deoxyribonuclease (DNase) [0.2 mM 4 

benzenesulfonyl fluoride hydrochloride (AEBSF), 5.0 µM leupeptin, pepstatin (1 µg/ml), 

aprotinin (1 µg/ml), trypsin inhibitor (0.1 mg/ml), 0.5 mM benzamidine, DNase (1 µg/ml)] 

(Sigma). Resuspended cells were flash frozen until used.  

 

Cells were lysed via a French press and clarified cell lysate was aspirated from cell debris 

following centrifugation (18,000 rpm; 4 °C; 60 min). All subsequent purification steps were 

performed with an ÄKTA pure chromatography system (Cytiva Life Sciences) at 4 °C. Clarified 

cell lysate was loaded onto 2 5-mL HisTrap FF NiNTA Sepharose columns (Cytiva Life 

Sciences) and eluted with a combination of 50% buffer A and 50% buffer B [25 mM tris-HCl 

(pH 8.5), 150 mM KCl, 1 M imidazole, 10% glycerol] for a final concentration of 0.5 M 

imidazole. The eluate was desalted of residual imidazole with a HiPrep 26/10 Desalting column, 

and His SUMO tags were cleaved with Ulp1 protease overnight at 4°C in buffer C [25 mM tris-

HCl (pH 8.5), 150 mM KCl, 2 mM tris(2-carboxyethyl)phosphine (TCEP) (GoldBio), 50 mM 

imidazole, 10% glycerol]. Cleaved tags were removed by a subtractive NiNTA step. 
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Subsequently, and anion exchange step was performed with 2 5-mL HiTrap Q-FF (Cytiva Life 

Sciences) and protein was eluted with a KCl gradient. Eluted proteins were visualized via SDS-

PAGE and select fractions were concentration and further purified in gel filtration buffer [25 mM 

tris-HCl (pH 8.0), 150 mM KCl, 1 mM TCEP, 10% glycerol] using a Superose 6 Increase 10/300 

size exclusion column (Cytiva Life Sciences). Fractions were visualized by SDS-PAGE, and 

pure fractions were pooled, concentrated, aliquoted, flash-frozen in liquid nitrogen, and stored at 

-80 °C until used. Protein concentration was calculated using absorbance (280 nm).  

 

Calmodulin Purification 

Calmodulin (Gallus gallus) was recombinantly expressed from a pET-15b vector (a gift from A. 

Nairn, Yale School of Medicine) in BL21(DE3) cells (Millipore). Cells were grown to an O.D. 

(595 nm) of 0.6 and induced with 1 mM isopropyl β-D-1-thiogalactopyranoside (IPTG; 

GoldBio). Cells were grown for 16 hours at 18 °C and resuspended in cell lysis buffer [40 mM 

tris-HCl (pH 8.0), 100 mM KCl, 10 mM EDTA]. Resuspended cells were flash frozen until used. 

Cells were lysed via a French press and clarified cell lysate was aspirated from cell debris 

following centrifugation (18,000 rpm; 4 °C; 60 min). All subsequent purification steps were 

performed with an ÄKTA pure chromatography system (Cytiva Life Sciences) at 4 °C. Clarified 

cell lysate was loaded onto 2 5-mL HiTrap Phenyl FF (Low Sub) columns (Cytiva Life 

Sciences). Column flow through was collected and CaCl2 was added to the flow through (final 

concentration 20 mM CaCl2). The flow through was applied to a different pair of 5-mL HiTrap 

Phenyl FF (Low Sub) columns (Cytiva Life Sciences) with buffer A [50 mM tris-HCl (pH 7.5), 

1mM CaCl2]. The column was washed sequentially with buffer A, buffer B [50 mM tris-HCl (pH 

7.5), 500 mM NaCl, 1 mM CaCl2], and buffer A. Calmodulin was eluted with buffer C [50 mM 
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tris-HCl (pH 7.5), 2 mM EDTA]. Purity was assessed via SDS-PAGE and clean eluate fractions 

were pooled and concentrated. To quantify calmodulin concentration, we used circular dichroism 

on a Jasco J-1500 spectrophotometer to make a measurement in triplicate for our purified sample 

scanning a wavelength spectrum between 250 and 215 nm to measure the characteristic 

wavelength of 222 nm as previously described (Harmat et al., 2000). We calculated the 

calmodulin concentration as follows: 

[𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐](𝑛𝑛𝑛𝑛) =
1000 × (𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

222 𝑛𝑛𝑛𝑛 − 𝐶𝐶𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏222 𝑛𝑛𝑛𝑛)
𝛩𝛩 × 𝑙𝑙 × 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 

where the circular dichroism at 222 nm (CD222nm) is expressed in mdeg, Θ is the molar 

ellipticity, and l is the path length in cm. 

 

Frequency Experiment 

Dyanbeads MyOne Sptetavidin C1 (ThermoFisher Scientific) are used to bind purified CaMKII. 

Beads are suspended with 10X volume of frequency buffer [25 mM tris-HCl (pH 7.5), 150 mM 

KCl] and concentrated with magnet. Supernatant is removed and the wash is repeated 3 times. 

CaMKII (2.5 µM final concentration) is incubated with beads in frequency buffer and 1 mM 

TCEP (GoldBio) for 90 minutes at 4 °C while rotating at 25 rpm in a microcentrifuge tube. 

Following incubation, the beads are concentrated and the wash is repeated 3 times. Protein-

bound beads are resuspended in 10.1X volume of frequency buffer.  

 

For control of the pulsing, an automate perfusion system is used; the pulses are controlled by a 

Valve Bank II (Automate Scientific). Each program consists of 60 activating pulses, each one is 
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100 ms long with activation buffer [25 mM tris-HCl (pH 7.5), 150 mM KCl, 8 µM CaM, 500 

µM CaCl2, 10 mM MgCl2, 250 µM ATP] for a total exposure of 6 s. Each activating pulse is 

followed immediately by a 50 ms EGTA pulse with chelating buffer [25 mM tris-HCl (pH 8.0), 

1.2 mM EGTA] for a total exposure of 3 s. The frequency of the activating and EGTA pulse 

determine the frequency. Following all 60 pulses, the program ends with a 400 ms pulse of 

chelating buffer. All buffers are maintained at room temperature (24.8-26.7 ℃) and the pressure 

of the perfusion system is maintained at 6 PSI for all pulses. Prior to the beginning of each 

experiment, the output tubing was secured to a magnet with tape. The tubing was filled with 

frequency buffer. Next 100 µL of protein-bound beads were loaded into the tubing and washed 

with 400 µL of frequency buffer. The program was run and following completion of each 

program 3, 300 ms pulses of frequency buffer were used to wash the beads (see Fig. 1 for set up). 

The tubing was removed from the magnet and flicked to mechanically detach the protein-bounds 

beads from the tubing. Another 300 ms pulse of frequency buffer was used to remove the protein 

from the tubing into a microcentrifuge tube. The beads were concentrated with the magnet and 

resuspended in 35 µL of frequency buffer.  

 

Activity was measured with the ADP Hunter Plus Assay (DiscoveRx). Each well of the plate 

contained master mix composed of the following (all concentrations listed as final, working 

concentrations): 75 mM tris-HCl (pH 7.5), 15 mM MgCl2, 100 µM ATP, 300 µM Syntide. For 

each pulse experiment, 6 reactions were run; 2 of these reactions contained 10 µM CaM and 4 of 

these reactions contained no calmodulin (25 mM tris-HCl (pH 7.5) was used instead. In addition, 

each time a frequency experiment was conducted, 3 reactions of reagents only were run as a 

minimum fluorescent value. The order of addition to each well was 4 µL master mix, 1 µL 
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CaM/Tris, and the reaction was initiated with 5 µL of protein-bound beads. Following 5 minutes 

at room temperature 2 µL of stop solution [ 8.3 mM EDTA, 0.3 mM EGTA] was added to the 

reaction. Next, 5 µL of Solution A (DiscoveRx) and 10 µL of Solution B (DiscoveRx) were 

added to each well immediately after the other. The reactions incubated for 15 minutes at room 

temperature. The fluorescence (590 nm) was measured with a Synergy H1 microplate reader 

(BioTek). For each pulse experiment, the percent autonomy was calculated using the equation 

below: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =  
𝑅𝑅𝑅𝑅𝑅𝑅𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑛𝑛𝑐𝑐𝑐𝑐����������������� − 𝑅𝑅𝑅𝑅𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚����������
𝑅𝑅𝑅𝑅𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚����������� − 𝑅𝑅𝑅𝑅𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚����������  

The average fluorescence of the reagent only reactions (RFUmin) was subtracted from both the 

average fluorescence of the +CaM reactions (RFUmax) and the tris reactions (RFUfrequency). 

Autonomy was calculated by dividing the adjusted average of RFUfrequency by that of RFUmax. 

This allowed for normalization of protein concentration within each pulse experiment.  

 

Mass Spectrometry 

Biotinylation of N-terminal AviTag CaMKII occurred during bacterial expression and was 

confirmed with MALDI-TOF MS (IALS MS Core Facility).  

 

SDS-PAGE Densitometry Analysis 

Protein samples of unknown concentration were diluted 1:10 and 1:5. 8 µL of each sample were 

loaded onto a 12% bis-acrylamide (GoldBio) SDS-gel. A standard (CaMKIIα 0 aa linker with a 

N-terminal AviTag) of known concentration (50.4 µM) underwent the same dilutions. The gel 

was run at 230 mV for 40 minutes. The gel was stained with Coomassie Blue (GoldBio) and 
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imaged using. The image was processed with imageJ. Each band corresponding to CaMKII was 

quantified and normalized to the intensity of the standard. The normalized value was multiplied 

by the rates gathered from correlating kinase assays to account for differences in protein 

concentration.   

 
Figure 1. Perfusion System experimental set up. The CaMKII bound beads are injected into tubing 
secured to the magnet with tape. Meanwhile the system is pressurized to 6 PSI and the channels 
are filled with buffer according to the labels. Pulsing is controlled by the valve bank controller. 
All programs contain 6s of total exposure to Ca2+/CaM; the number of EGTA pulses is equal to 
the number of Ca2+/CaM pulses and remains 50 ms through all the programs.  Frequency 
programs contain 100 ms Ca2+/CaM pulses and range from 0.5 to 6 Hz (120 to 10s, respectively). 
Pulse duration programs are all at 1 Hz and contain Ca2+/CaM pulses ranging from 50 ms to 200 
ms (120 pulses to 30 pulses, respectively). Following pulse experiment and 400 ms EGTA pulse, 
beads are removed from tubing by 300 ms pulse with Tris KCl. 

 

Results 

The transduction of Ca2+ signaling by CaMKII is dependent on the amplitude, frequency, and 

duration of Ca2+ oscillations which are decoded into specific levels of CaMKII autonomy via 

phosphorylation of T286 (De Koninck and Schulman, 1998). Previous work extended this model 
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to some CaMKIIα (Chao et al., 2011) and CaMKIIβ splice variants (Bayer et al., 2002). In both 

cases, it was observed that the alternative linker tuned CaMKII autonomy in response to Ca2+ 

oscillations. I attempted to extend this work to fully characterize hippocampal CaMKII variants, 

but first it was crucial to establish and develop the procedure for these measurements. A system 

like that described by Chao et al. (2011) was used as a starting point. The largest immediate 

difference being the relocation of a C-terminal biotynlation sequence (AviTag) to the N-

terminus. The tag was moved away from the hub domain at the C-terminus to reduce any impact 

on oligomerization. The addition of the tag at the N-terminus initially appeared to decrease the  

activity of CaMKIIα hippocampal variants (Fig. 2). However, when the samples were analyzed 

via SDS-PAGE it was determined there were variable protein concentrations and when kinetic 

rates were normalized to protein concentrations the addition of the N-terminal AviTag did not 

affect CaMKII activation (Fig. 2, Fig. S1, Fig. S2, Fig. S3). 

 

Figure 2. Addition of N-terminal AviTag does not impact CaMKIIα sensitivity to Ca2+/CaM.  12% 
SDS-PAGE gel of purified CaMKII N-AviTag constructs stained with Coomassie Brilliant Blue. AviTag 
constructs had high DNA contamination, so CaMKIIα-0 was used as a loading control. Densitometry was 
analyzed using imageJ and the approxiamate concentrations were normalized to that of  CaMKIIα-0. Kinase 
Assays were completed as described above. Plotted in red is the variant without a tag. Plotted in black is the 
raw data for the variants containing N-terminal AviTags. Plotted in blue is the kinase assay data adjusted 
using the determined concentrations from densitomery analysis of the SDS-PAGE. 
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Next, I assessed the ADP Hunter Plus Assay (DiscoveRx) for measuring CaMKII autonomy. To 

ensure that any change in fluorescence was a result of only CaMKII activity several controls 

were performed which ruled out fluorescence changes from the addition of other reagents such as 

the magnetic beads or CaM (Fig. 3A). Taken together these data demonstrated that CaM and 

beads did not impact the efficacy of the assay to detect changes in ADP concentration through 

fluorescence. Additionally, an ADP titration (Fig. S4) and CaMKII titration (Fig. S5) confirmed 

a linear relationship between both conditions and fluorescence. Further, I performed a continuous 

reading of the fluorescent values produced by the ADP Hunter reactions over the course of 1 

hour (maximum incubation recommended by DiscoveRx) and found no significant change in the 

fluorescence of autonomous activity following 15 minutes of incubation.  

 

Following systematic dissection of the fluorescent assay I turned my attention towards the 

perfusion system. The CaM and EGTA concentrations, 8 µM and 1 mM respectively, were taken 

from the experimental design described by Chao et al. (2011). In addition, a four-way connection 

was used to combine the different solutions of the perfusion system (Fig. 1). Lastly, the perfusion 

system was pressurized to 6 PSI (personal communication with Dr. Meg Stratton) as previously 

used I began conducting pulse experiments but was unable to obtain consistent results from day-

to-day indicating something uncontrolled within the perfusion system (data not shown). It was 

determined that the 4-way connector was decreasing the flow rate of the solutions and creating  
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Figure 3. Optimizing conditions to obtain reproducible data from the perfusion system. A) Controls 
with CaMKIIα-30 bound to beads. CaMKII was not pulsed in these controls otherwise concentrations and 
conditions are consistent with described method. B) Frequency experiment data of CaMKIIΒ-30 using 8 µM 
CaM and 1.2 mM EGA. C) EGTA titration, 2 and 6 Hz frequency programs with 8 µM CaM and varying 
levels of CaM.  

inconsistent consumption of reagents. I replaced this connector with a Y-connector (Fig. S6) 

which remedied this problem. With the perfusion system seemingly working I conducted a full 

set of pulse experiments with CaMKIIβ (14-16-18, 30 aa) and found high levels of autonomy at 

low frequencies with decreasing trend that fit to an inhibitory curve (Fig. 3B).  To attempt and 

understand this trend, I performed an EGTA titration with CaMKIIβ-30 by conducting multiple 

pulse experiments at the same frequency (2 and 6 Hz) with differing concentrations of EGTA 

and found a sharp inhibitory response to increasing EGTA concentration (Fig. 3C). From these 

data, I moved forward with an EGTA concentration of 1.2 mM. However, upon repeating 
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frequency experiments with 1.2 mM EGTA a similar trend was observed. Thus, I moved forward 

with pulse duration experiments. In these experiments the frequency of the pulses remains 

constant, but the duration of the activation pulses changes between experiments (Fig. S7).  

 

The pulse duration experiments produced reproduceable results. Interestingly, the variable linker 

increased the autophosphorylation of CaMKIIα with CaMKIIα-30 and -41 reaching higher 

levels of autonomy than CaMKIIα-0 (Fig. 4, S10). In addition, the variable linker increased the 

autophosphorylation of CaMKIIβ with CaMKIIβ-30 reaching 70% autonomous activity in 

comparison to 60% for CaMKIIβ-0 (Fig. 4; S10). 

 

Figure 4. CaMKII decodes Ca2+ pulse duration into different levels of autonomous activity. Pulse 
experiments at 1 Hz ranging from 50 ms to 170 ms. Total exposure time to Ca2+/CaM is consistent 
throughout all programs. The programs range from 120 pulses to 35 pulses. Each activating pulse is 
followed by a 50 ms EGTA (1.2 mM) pulse, despite the length of the activating pulses. Autonomy 
determined within each replicate. Single replicate data is fitted to EC50 equation despite being endpoint 
readings; fit only for ease of visualization no values from fit are used for analysis. Raw values plotted as bar 
graph in Figure S10. 

 

Discussion 
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These data add addressing the ability of CaMKII to decode Ca2+ oscillations may raise more 

questions than they answer. First, the results raise many questions about the perfusion system. 

The reduction in autonomy observed when conducting a frequency titration on CaMKIIβ-30 

(Fig. 3B) is completely contradicting previous results (Bayer et al., 2002; De Koninck and 

Schulman, 1998; Dupont et al., 2003) and intuitions. Because the total exposure time to 

Ca2+/CaM must remain the same between pulse experiments, as the pulse duration or frequency 

increases, the total length of the program decreases (Fig. S7). Therefore, it seems that the EGTA 

pulses were not effectively chelating Ca2+ from the activating pulses and the decrease in 

autonomy could be explained by a reduction in the exposure time to Ca2+/CaM i.e., the length of 

each program. However, when conducting a pulse experiment at 6 Hz without EGTA, 40% 

autonomy was measured (Fig. 3C) suggesting that this is not what is occurring. To address these 

confounding data, an EGTA titration was conducted at 6 Hz and 2 Hz which revealed an 

extremely tight gap in EGTA concentration where the autonomy was between the relative 

maximum and minimum. As a result 1.2 mM EGTA was implemented from the 1 mM 

previously used (Chao et al., 2011). However, I was still unsure about the kinetics controlling the 

data retrieved from the frequency experiments, so it was determined to move in another 

direction. 

 

To salvage the experimental set-up, the pulse experiments were changed. Instead of increasing 

the frequency of pulses, the duration of activating pulses would be increased at a given 

frequency. Previously this provided a sigmoidal curve indicating cooperative binding of CaM 

and cooperative CaMKII autonomous activity (De Koninck and Schulman, 1998; Dupont et al., 

2003) which is congruous with the results obtained herein. Interestingly, between CaMKIIα-30 
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and CaMKIIα-41 there was no significant difference between the autonomy levels (Fig. 4). 

Consistent with observations at saturating Ca2+ conditions (Sloutsky et al., 2020), we observed 

higher levels of autonomous activity in CaMKIIα-30 and CaMKIIα-41 than CaMKIIα-0 at 

similar pulse durations. This indicates that CaMKIIα-0 is less sensitive to the tested Ca2+ 

oscillations than CaMKIIα-30 and CaMKIIα-41. This result is consistent with the hypothesis that 

the variable linker domain tunes the activation properties of CaMKIIα (Chao et al., 2011; 

Sloutsky et al., 2020). However, in the context of CaMKIIβ we observed no difference in the 

sensitivity to pulse duration, which was unexpected but consistent with previous results 

(Sloutsky et al., 2020). However, there was a difference in the maximal autonomy reached at 1 

Hz. CaMKIIβ-0 reached lower levels of autonomy at saturating pulse durations than CaMKIIβ-

30 (Fig. 4). Although pulse duration was not explicitly tested for specific CaMKIIβ variants 

previously, the difference in autonomy observed at 1 Hz is consistent with previous results 

(Bayer et al., 2002). 

 

These results allow for speculation about the rates of autophosphorylation between CaMKII 

variants. Because the total exposure time to Ca2+/CaM is consistent with different pulse durations 

at 1 Hz, differences in the levels of autonomous activity at high pulse duration indicate a sort of 

saturation at certain frequencies. Thus, specific CaMKII variants can decode Ca2+ oscillations 

into specific levels of autonomy, although it would be required to replicate these initial assays 

and extend these experiments to more frequencies. However, it is difficult to be confident if this 

assay is measuring only autonomous activity because of T286 phosphorylation. Compared to 

previous work (Bayer et al., 2002; De Koninck and Schulman, 1998; Dupont et al., 2003) this 

assay yielded much higher levels of  autonomous activity. Additionally, phospho-mimetic 
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mutation T286(D) yields only about 40% CaMKII activity in the absence of Ca2+/CaM (Özden, 

personal communication).Therefore, it would seem the activity measured by this assay is not 

entirely autonomous, and CaM remains bound to CaMKII due to an increased affinity for the 

regulatory segment following T286 phosphorylation (Meyer et al., 1992). This result is still 

interesting and suggests CaMKII variants and genes differentially trap specific levels of CaM 

through phosphorylation of T286.  In addition, when comparing these results to the Vmax 

recorded by Sloutsky et al. (2020) a similar trend is observed (Fig. S8). In general, CaMKIIα 

variants displayed higher Vmax than the tested CaMKIIβ variants. Additionally, the chimeric 

proteins displayed similar Vmax to CaMKIIα variants. While Vmax is very dependent upon the 

enzyme concentration the kcat of the CaMKII kinases are unknown and may provide valuable 

information to understand the observed differences between CaMKIIα and CaMKIIβ activation. 

 

The results obtain from the perfusion system are confusing and inconsistent, and there are 

several possibilities which may explain the results. The first issue is that the system is too large 

(by volume), so a single pulse does not travel all the way to the sample. Over the course of the 

program the pulses will reach the sample, but the amount of time between these events depends 

both on the frequency and the pulse duration. As a result, there is an arbitrary amount of mixing 

between Ca2+/CaM and EGTA resulting in likely inconsistent levels of Ca2+. The pulse duration 

experiments yielded high quality data from single replicates, but I believe this is likely due to 

saturation of the 50 ms EGTA (1.2 mM) pulse. The amount of Ca2+/CaM released with each 

pulse corresponds linearly to the duration of the pulse. Thus, by increasing the Ca2+/CaM without 

increasing EGTA, the chelating ability acts as an arbitrary threshold after which CaMKII activity 

will be recorded. To remedy this the volume of the system must be reduced, but the smallest 
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system volume is limited by fittings and necessary tube lengths. Additionally, increasing the 

pressure of the system above 6 PSI may fix these issues. However, increasing the pressure will 

also increase the reagent volume required by these experiments, which are already extremely 

expensive with respect to their CaM usage. Further, the increase in pressure may result in 

decreased recovery of CaMKII/beads which increases the noise within the kinase assay and 

fluorescent measurements. Therefore, this experimental design may not be the most effective 

way to assess the transphosphorylation rates of different CaMKII variants and their ability to 

decode Ca2+ oscillations. 

 

Nonetheless, there are several controls which should be conducted to verify these results. 

Specifically, the levels of autonomy are calculated by treating a pulsed sample with Ca2+/CaM 

and assuming this is the maximum activity of this sample. However, phosphorylation at 

T305/306 prevent CaM binding (Hanson and Schulman, 1992). Thus, if any phosphorylation of 

T305/306 occurred during a pulse experiment it would artificially increase the percent autonomy 

calculated by reducing the fluorescence of the maximally activated kinase reactions. It is unlikely 

this is what is occurring during the pulse experiments because there is no decreasing trend in 

fluorescent values for the maximally activated samples as pulse duration increases. However, it 

is a necessary control to run the same procedure with a T305/306V mutant to ensure 

autophosphorylation at these sites is not interfering with the calculations. T286D pulse 

experiments would also provide a good indication of whether the measurements are indicative of 

autonomy only or Ca2+/CaM dependent activity. In addition, it is obvious that this data needs to 

be replicated an extended for more CaMKIIβ variants., especially those previously explored by 

Bayer et al. (2002). Lastly, although some in vitro analysis of Ca2+ transduction by CaMKII has 
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been conducted (Chang et al., 2017). Extending this analysis to specific splice variants, using 

conditional knockouts, may allow for dissection of the contributions of specific splice variants to 

long term potentiation in neurons. 
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Abstract 

Ca2+-calmodulin dependent protein kinase II (CaMKII) plays an integral role in Ca2+ signaling 

throughout the body. CaMKII is encoded by four highly conserved genes:  α, β, γ, and δ which 

are differentially expressed in an array of tissues. As a result, dysregulation of expressed 

CaMKII variants can lead to a variety of human diseases. Specifically in the hippocampus, 

CaMKII is essential for learning and memory. Historically, only mutations within CaMKIIα and 

CaMKIIβ have been implicated with neurological disorders. However, with the inception of new 

sequencing technologies a number of mutations in all four genes have been associated with 

severe neurological disorders. Although expression levels of CaMKIIγ and CaMKIIδ are lower 

than CaMKIIα and CaMKIIβ in adult human brain it seems they are crucial for 

neurodevelopment. Several de novo mutations in CAMK2D were detected in individuals with 

severe disability. Most of these mutations are located within the kinase and regulatory domains. 

In collaboration with Geeske van Woerden we aimed to characterize the impacts of three 

mutations (Q274P, R275H, F294S) on the sensitivity of CaMKIIδ to Ca2+/CaM. We 

demonstrated that all three mutations increase the sensitivity of CaMKIIδ to Ca2+/CaM. 

Additionally, we demonstrated that Q274P and F294S demonstrate kinase activity in the absence 

of Ca2+/CaM. The characterization of these mutations is essential for our understanding of the 

role CaMKII plays in human disease and neurological development.  
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Introduction 

CaMKIIα and CaMKIIβ are essential for spatial learning and memory (Silva et al., 1992; 

Borgesius et al., 2011). De novo mutations within CaMKIIα and CaMKIIβ cause intellectual 

disability in humans (Küry et al., 2017). Many of these mutations are associated with aberrant 

protein stability, T286 phosphorylation, and migration within neurons and can act as dominant 

negative mutants (Küry et al., 2017; Stephenson et al., 2017). Due to its ability to form high 

order multimeric holoenzymes CaMKII is particularly susceptible to dominant negative effects 

(Bergendahl et al., 2019). Further, the exchange of subunits between active CaMKII 

holoenzymes allows for Ca2+ independent activation of subunits (Bhattacharyya et al., 2016 ; 

Stratton et al., 2014). However, this mechanism likely contributes further to the dominant 

negative effects associated with these mutants. Specifically, CaMKIIα E183V, a disease-

associated mutation, is able to subunit exchange with wild-type CaMKIIα (Stephenson et al., 

2017). The combination of a destabilized mutant CaMKIIα encoded by one allele with wild-type 

CaMKIIα encoded by another allele may result in destabilization of the entire holoenzyme 

leading to these dominant negative phenotypes.  

 

On the other hand, the role of CaMKIIδ and CaMKIIγ in neuronal function and development are 

not well established, and until recently, mutations within these genes were not believed to affect 

neurodevelopment (Onori et al., 2018). Specifically, Onori et al. (2018) revealed that CaMKIIγ 

R292P acts as a pathogenic gain-of-function mutation causing inappropriate neuronal maturation 

and arborization. More recently, CaMKIIδ mutations (Q274P, R275H, and F294S) have been 

detected in patients with a variety of disabilities (van Woerden, personal communication). When 

overexpressing these mutants in induced pluripotent stem cell (iPSC) derived neurons (Küry et 
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al., 2017) there was no reduction in the levels of expression compared to wild-type CaMKIIδ-62 

(van Woerden, personal communication). When comparing the levels of Thr286 phosphorylation 

from iIPSC-derived neurons, Q274P was associated with increased autophosphorylation, 

whereas R275H and F294S did not present drastic variations from wild-type. Q274P and R275H 

did not affect CaMKIIδ neuronal migration, but F294S caused a severe migration deficit. 

Additional interrogation of these mutants is required because R275H did not impact these assays 

but was detected in three unrelated patients, suggesting pathogenicity. Also, F294S revealed no 

drastic changes in stability or Thr286 phosphorylation but drastically impacted migration in 

neurons (van Woerden, personal communication). Lastly, Q274P demonstrated gain of function 

(van Woerden, personal communication) which has been previously associated with CaMKII 

pathogenicity (Onori et al., 2018). 

 

Mutagenesis-based characterization of CaMKII activation allows for interrogation of the 

molecular basis of disease-causing mutations within all four CAMK2 genes. A metric which is 

often used to quantify CaMKII activity is EC50, (Chao et al., 2011; Sloutsky et al., 2020) the 

concentration of Ca2+/CaM required for half-maximal activation. The aim of this study to 

characterize the impacts of de novo CaMKIIδ mutations associated with severe disability on 

CaMKIIδ activity in vitro. Following completion of these assays additional experiments intend to 

describe the impacts of these mutations on CaMKII holoenzyme stability. Thereby, we will 

better understand the role of CaMKIIδ in human disease and how disease-associated mutants 

impact CaMKIIδ function in the brain. 
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Methods and Materials 

Plasmid construction 

Constructs built utilizing exon gene blocks (IDT) and pre-existing pSMT3 vectors containing N-

terminal 6xHis followed by a SUMO tag and full-length CaMKII variants via Gibson Assembly. 

Mutants cloned via site-directed mutagenesis and confirmed via Sanger sequencing (GeneWiz). 

 

Dual Expression System Cloning 

Constructs built by inserting gene blocks (IDT) corresponding to Glutathione S-transferase 

(GST) Tag and PreScission protease site and Strep II – SUMO fusion tag with Ulp1 protease site 

into multiple cloning site (MCS) -1 and MCS-2, respectively, located within pETDuet-1 (gift 

from Mafu Lab). CaMKII genes were amplified from pre-existing pSMT3 plasmids and 

positioned at the C-terminal end of the protease sites via Gibson assembly.  Constructs were 

confirmed with nanopore single-read sequencing (Plasmidsaurus). 

 

CaMKII Expression and Purification 

A previously established bacterial expression system (Choa et al., 2010) for CaMKII by 

coexpression with Lambda Phosphatase was utilized. We expressed CaMKII in Escherichia coli 

by coexpressing with λ phosphatase (from Kuriyan Lab) in Rosetta (DE3)pLysS competent cells 

(Novagen). λ phosphatase was expressed via a pCDFDuet1 vector and N-terminally clones 

6xHis AviTag CaMKII was expressed in a pET287 vector. Cells were grown to an O.D. (595 

nm) of 0.6 and induced with 1 mM isopropyl β-D-1-thiogalactopyranoside (IPTG; GoldBio). 

Cells were grown for 16 hours at 18 °C and resuspended in buffer A [25 mM tris-HCl (pH 8.5), 

150 mM KCl, 50 mM imidazole, 10% glycerol; Sigma] with 25 mM magnesium chloride, 
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containing a cocktail of protease inhibitors and deoxyribonuclease (DNase) [0.2 mM 4 

benzenesulfonyl fluoride hydrochloride (AEBSF), 5.0 µM leupeptin, pepstatin (1 µg/ml), 

aprotinin (1 µg/ml), trypsin inhibitor (0.1 mg/ml), 0.5 mM benzamidine, DNase (1 µg/ml)] 

(Sigma). Resuspended cells were flash frozen until used.  

 

Cells were lysed via a French press and clarified cell lysate was aspirated from cell debris 

following centrifugation (18,000 rpm; 4 °C; 60 min). All subsequent purification steps were 

performed with an ÄKTA pure chromatography system (Cytiva Life Sciences) at 4 °C. Clarified 

cell lysate was loaded onto 2 5-mL HisTrap FF NiNTA Sepharose columns (Cytiva Life 

Sciences) and eluted with a combination of 50% buffer A and 50% buffer B [25 mM tris-HCl 

(pH 8.5), 150 mM KCl, 1 M imidazole, 10% glycerol] for a final concentration of 0.5 M 

imidazole. The eluate was desalted of residual imidazole with a HiPrep 26/10 Desalting column, 

and His SUMO tags were cleaved with Ulp1 protease overnight at 4°C in buffer C [25 mM tris-

HCl (pH 8.5), 150 mM KCl, 2 mM tris(2-carboxyethyl)phosphine (TCEP) (GoldBio), 50 mM 

imidazole, 10% glycerol]. Cleaved tags were removed by a subtractive NiNTA step. 

Subsequently, and anion exchange step was performed with 2 5-mL HiTrap Q-FF (Cytiva Life 

Sciences) and protein was eluted with a KCl gradient. Eluted proteins were visualized via SDS-

PAGE and select fractions were concentration and further purified in gel filtration buffer [25 mM 

tris-HCl (pH 8.0), 150 mM KCl, 1 mM TCEP, 10% glycerol] using a Superose 6 Increase 10/300 

size exclusion column (Cytiva Life Sciences). Fractions were visualized by SDS-PAGE, and 

pure fractions were pooled, concentrated, aliquoted, flash-frozen in liquid nitrogen, and stored at 

-80 °C until used. Protein concentration was calculated using absorbance (280 nm).  
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Calmodulin Purification 

Calmodulin (Gallus gallus) was recombinantly expressed from a pET-15b vector (a gift from A. 

Nairn, Yale School of Medicine) in BL21(DE3) cells (Millipore). Cells were grown to an O.D. 

(595 nm) of 0.6 and induced with 1 mM isopropyl β-D-1-thiogalactopyranoside (IPTG; 

GoldBio). Cells were grown for 16 hours at 18 °C and resuspended in cell lysis buffer [40 mM 

tris-HCl (pH 8.0), 100 mM KCl, 10 mM EDTA]. Resuspended cells were flash frozen until used. 

Cells were lysed via a French press and clarified cell lysate was aspirated from cell debris 

following centrifugation (18,000 rpm; 4 °C; 60 min). All subsequent purification steps were 

performed with an ÄKTA pure chromatography system (Cytiva Life Sciences) at 4 °C. Clarified 

cell lysate was loaded onto 2 5-mL HiTrap Phenyl FF (Low Sub) columns (Cytiva Life 

Sciences). Column flow through was collected and CaCl2 was added to the flow through (final 

concentration 20 mM CaCl2). The flow through was applied to a different pair of 5-mL HiTrap 

Phenyl FF (Low Sub) columns (Cytiva Life Sciences) with buffer A [50 mM tris-HCl (pH 7.5), 

1mM CaCl2]. The column was washed sequentially with buffer A, buffer B [50 mM tris-HCl (pH 

7.5), 500 mM NaCl, 1 mM CaCl2], and buffer A. Calmodulin was eluted with buffer C [50 mM 

tris-HCl (pH 7.5), 2 mM EDTA]. Purity was assessed via SDS-PAGE and clean eluate fractions 

were pooled and concentrated. To quantify calmodulin concentration, we used circular dichroism 

on a Jasco J-1500 spectrophotometer to make a measurement in triplicate for our purified sample 

scanning a wavelength spectrum between 250 and 215 nm to measure the characteristic 

wavelength of 222 nm as previously described (Harmat et al., 2000). We calculated the 

calmodulin concentration as follows: 
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[𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐](𝑛𝑛𝑛𝑛)
1000 × (𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

222 𝑛𝑛𝑛𝑛 − 𝐶𝐶𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏222 𝑛𝑛𝑛𝑛)
𝛩𝛩 × 𝑙𝑙 × 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 

where the circular dichroism at 222 nm (CD222nm) is expressed in mdeg, Θ is the molar 

ellipticity, and l is the path length in cm. 

 

Coupled Kinase Assay 

Kinase activity was monitored under previously described conditions (Chao et al., 2011; Barker 

et al., 1995) with a Synergy H1 microplate reader (BioTek). Each well of the plate contained 

master mix composed of the following (all concentrations listed as final, working 

concentrations): 5 mM tris (pH 7.5; Thermo Fisher Scientific), 150 mM KCl (Sigma), 10× 

tris/MgCl2 buffer (50 mM/10 mM, respectively) (Thermo Fisher Scientific), 0.2 mM CaCl2 

(Sigma), 1 mM phosphoenolpyruvate (Alfa Aesar), nicotinamide adenine dinucleotide (0.15 

mg/ml; Sigma), pyruvate kinase (10.0 U/ml; Sigma), lactate dehydrogenase (30 U/ml; Millipore 

Sigma), 2.0 mM adenosine triphosphate (ATP) (Sigma), and 0.3 mM syntide (LifeTein). The 

final pH in each well of the reaction was~7.5 to 8, and the final enzyme concentration was 13.3 

nM. The reagents were added to the well in the following order: tris buffer, calmodulin (ranging 

from 0.4 nM to 2 µm final concentration), and mastermix. The additional of CaMKII was used to 

initiate the kinase reaction, after which absorbance (340 nm) was measured at 15-s intervals for 

10 min. The change in absorbance over time was fitted with a straight line (y = mx + c) to obtain 

a slope (m) proportional to the kinetic rate of the reaction. For each time series, slopes were 

fitted to a sliding window of five points (1 min 15 s) and the maximum observed slope was used 

to represent the kinetic rate of that reaction. Kinetic rates across a series of calmodulin 

concentrations were fitted with the following equation: 
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𝑌𝑌 = 𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚 +
(𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚) × 𝑋𝑋𝑛𝑛𝐻𝐻

𝑋𝑋𝑛𝑛𝐻𝐻 + 𝐸𝐸𝐸𝐸50
𝑛𝑛𝐻𝐻  

to obtain EC50 (defined as the calmodulin concentration needed to reach the half-maximal 

reaction velocity) and cooperativity values (Hill coefficients, nH). Ninety-five percent 

confidence intervals for fit parameters (EC50 and nH) were determined using the following 

bootstrap procedure. Ten thousand replicate calmodulin concentration series were generated by 

randomly selecting one observed kinetic rate at each measured calmodulin concentration from 

the set of replicates for that variant. Each generated concentration series was fit with the equation 

 
Figure 5. CaMKIIδ kinase assay results suggest variable linker tunes autoinhibited equilibrium and 
CaM accessibility. Kinase assay data completed and fitted as described by Sloutsky et al. Introduction of a 
variable linker in CaMKIIδ reveals a similar trend to CaMKIIα as previously described by Chao et al. 
(2011) and Sloutsky et al. (2020). 
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described earlier. Parameter values at the 2.5th and 97.5th quantiles of the 10,000 fits were taken 

as the boundaries of the 95% confidence interval. 

 

Results 

In conjunction with previous kinase assay data (Chao et al., 2011; Sloutsky et al., 2020), a 

CaMKIIδ variant containing a linker (6v1-14a-16-17-18, 63 aa) displayed a reduced EC50 when 

compared to a CaMKIIδ variant containing no linker (CaMKIIδ-0) (Fig 4). Sloutsky et al. (2020) 

reported an EC50 value of 167 nM for CaMKIIδ-0. In comparison, CaMKIIδ-63 displayed an 

EC50 for Ca2+/CaM of 20 nM. Further, mutants of CaMKIIδ-63 – specifically, Q274P, R275H, 

and F294S – all displayed lower EC50 values 8 nM, 11 nM, and 7 nM respectively. However, 

these EC50 values do not seem to be significantly different from wild type CaMKIIδ-63. 

Interestingly, CaMKIIδ-63 Q274P and CaMKIIδ-63 F294S displayed Ca2+/CaM independent 

activity. In the absence of Ca2+/CaM, CaMKIIδ-63 Q274P displayed 40% activity of CaMKIIδ-

63 wildtype, whereas CaMKIIδ-63F294S displayed 20% activity of CaMKIIδ-63 wildtype (Fig. 

6 and 7). 

 

To address the dominant negative impacts of CaMKII mutants a dual expression system needed 

to be established to allow for purification and quantification of hetero-oligomers. To develop the 

system, it was decided to begin with two CaMKII variants which are known to express well in 

our bacterial expression system CaMKIIα-0 and CaMKIIβ-0. Initially, glutathione S-tramferase 

(GST-tag) was fused to the N-terminus of CaMKIIβ-0 with a PreScission protease site located 

between them. In a similar manner, Strep-II tag was fused with  
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Figure 6. Mutant CaMKIIδ-63 kinase assay fits. Kinase assay data completed and fitted as described by 
Sloutsky et al. All mutations resulted in further decrease in EC50 values which are lower than any values 
previously determined.  

 

the N-terminus of CaMKIIα -0 with a Tobacco Etch virus (TEV) cleavage site located between 

them. These two fusion proteins were cloned in pETDuet-1 and expressed as described above. 

Under these conditions expression CaMKIIβ-0 fused with GST is observed but there was no 

accumulation of CaMKIIα -0 at any time point (Fig. 9). To increase stability of CaMKIIα -0 

SUMO-tag was inserted between the Strep-II tag and the N-terminus of CaMKIIα -0. The 

addition of SUMO did not increase the expression of CaMKIIα -0 under the same growth 

conditions (Fig. 9). Further development of this expression system is necessary. 
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Figure 7. De novo CaMKIIδ mutations significantly impact Ca2+/CaM independent activity. Data are 
normalized to the wild-type CaMKIIδ-63 Vmax to reveal differences in CaMKII activity in the 
absence of CaM. 

 

Discussion 

The model for a tunable autoinhibited equilibrium proposed by Chao et al. (2011) was initially 

established in the context of CaMKIIα, but it is still applicable in this case. In fact, it may be 

more applicable to CaMKIIδ than to either CaMKIIβ or CaMKIIγ based on the divergence 

history of CaMKII paralogs and that CaMKIIβ sensitivity to Ca2+/CaM is not influenced by the 

presence of the variable linker (Sloutsky et al., 2020). Both Chao et al. (2011) and Sloutsky et al. 

(2020) demonstrate an increase in the sensitivity of CaMKIIα to Ca2+/CaM when any linker is 

present. While the presence of a linker – not the length – determined  CaMKIIα sensitivity to 
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Ca2+/CaM (Sloutsky et al., 2020) , the composition of the linker has been shown to vastly impact 

CaMKIIα sensitivity to Ca2+/CaM (Nguyen, personal communication). Thus, more data would 

be needed to determine if the linker length and composition within CaMKIIδ variants further 

impacts sensitivity to Ca2+/CaM (Fig. 5). Additionally, there is a slight reduction of the hill 

coefficient  

 (nH) value  

 

Figure 8. Analysis of structural impacts caused by de novo mutations on CaMKIIδ kinase and 
regulatory segment. The figures above were constructed from a crystal structure of inhibited CaMKIIδ and 
regulatory segment (PDB: 2VN9). (A) The positions of the mutations and their corresponding wild-type 
residues are colored in cyan. The remainder of the kinase is colored white. (B) Q274 is located within a 
unique alpha helical turn and solvent exposed. This image shows an overlay of Q274 and P274 indicating 
the potential positioning of a proline directly in the helical turn. (C) R275 is located within the same turn 
and is proximal enough to Q118 for hydrogen bonding (2.9 Å) and H115 (3.9 Å) for like-charged pair 
interaction (Heyda et al., 2010) between the two nitrogen atoms. (D) F294 is located within the regulatory 
segment and faces into a hydrophobic patch consisting of I206 and L305.  
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reported by Sloutsky et al. (2020) for CaMKIIδ-0 (nH = 2.3) compared to these variants (nH = 

1.6-1.7). This is likely related to the quality of the fits, but these values still indicate cooperative 

binding of CaM and CaMKII activation (Chao et al., 2010). 

 

The increase in Ca2+/CaM independent activity of these mutants  (Q274P, R275H, and F294S) 

provides some evidence about the structural importance of these residues (PDB: 2VN9 (Rellos et 

al., 2010)). These residues are conserved across all four CaMKII genes excluding position 274 

which is Histidine in CaMKIIα but remains solvent exposed (PDB: 3SOA (Chao et al., 2010)). 

Q274 and R275 are located within a small alpha helix amino-terminal to the autoinhibitory 

domain (Fig. 8A). This alpha helical turn seems to be crucial for the correct positioning of the 

autoinhibitory domain. Proline is an uncommon residue in helices and often results in their early 

termination (Chou and Fasman, 1974). Therefore, substitution of glutamine to proline at position 

274 (Fig. 8B) would likely break this alpha helix and disrupt proper orientation of the 

autoinhibitory domain resulting in a CaMKII protein that is more easily activated. The results 

from the kinase assays are consistent with this hypothesis and reveal that this mutation allows for 

activity of CaMKII in the absence of Ca2+/CaM (Fig. S9).  

 

The adjacent residue, R275, is also required for positioning of the autoinhibitory segment and 

conserved across all four genes. Previous mutagenesis of R274 in CaMKIIα to glutamate 

resulted in a 5% increase in Ca2+-independent activity (Yang and Schulman, 1999) suggesting 

that integrity of this smaller alpha helix affects CaMKII activation. In CaMKIIδ, H115 and Q118 

are proximal to R275 and could form interactions which stabilize the position of the alpha helix 
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(Fig. 8C). In particular, the interaction formed between R275 and H115 may be a like-charged 

pair interaction (Heyda et al., 2010) caused by π-π interactions. Specifically, the introduction of 

H-H π-stacking caused by 275H would be associated with a higher entropic cost because it 

requires more rigidity and precise orientation of the histidine side chains (Heyda et al., 2010). It 

is likely that R275H would not completely disrupt this helical turn but may affect proper 

orientation of the autoinhibitory segment.  The slight reduction in EC50 for R275H when 

compared to CaMKII CaMKIIδ-62 is consistent with this hypothesis, however this mutation does 

not induce Ca2+/CaM independent activity as the others do. 

 

Lastly, F294 is located within the main alpha helix of the autoinhibitory segment, which is 

highly conserved across all four human CaMKII genes (Rellos et al., 2010). Upon further 

inspection of the crystal structure of CaMKIIδ kinase and regulatory domain, the sidechain of 

F294 is facing inwards toward a hydrophobic patch in the kinase domain (Fig 7D). The distance 

between these residues (L305 4.3 Å; I206 4.5 Å) is within the range for Van der Waals 

interactions. Previous mutagenesis of key positions within the regulatory segment indicated that 

conservation of the residues which interface with the kinase domain is integral for CaMKII 

activity (Yang and Schulman, 1999). Specifically, F294E resulted in no increase in Ca2+-

independent activity but did increase affinity for CaM (Yang and Schulman, 1999). On the 

contrary, I observed a slight increase in Ca2+/CaM independent activity. Therefore, mutating 

F294 likely disrupts interactions with the kinase domain and may lead to some Ca2+/CaM-

independent activity and increased sensitivity to Ca2+/CaM. This hypothesis may explain the 

reduction in EC50 (Fig. 6 and 7) and the Ca2+/CaM independent activity which was observed for 

F294S (Fig. S9) 
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These mutations appear to be more active than wild-type CaMKIIδ and may act as gain-of-

function mutants in vivo. De novo mutations that were previously detected in CaMKIIα and β 

both increase and decrease T286 phosphorylation which negatively impacts migration of 

CaMKII in neurons (Küry et al., 2017). More recently, a gain of function mutation, R292P, 

which is associated with intellectual disability was detected in CaMKIIγ (Onori et al., 2018). 

These mutations (Q274P, R275H, and F294S), therefore, are consistent with previous 

observations that many CaMKII mutants responsible for human disease impact CaMKII 

activation properties. These mutants also seem to impact the stability of CaMKIIδ due to reduced 

expression of all three mutants in E. coli. Obviously more precise biophysical characterization of 

stability is necessary, but these mutants likely also impact holoenzyme stability and protein 

turnover thereby impacting CaMKII signaling in vivo.  

 

Further study of de novo CaMKII mutations and their impacts on CaMKII activity in vitro and in 

vivo is necessary. In particular, the formation of hetero-oligomers with CaMKII occurs in vivo ( 

Brocke et al., 1999) and is important for targeting of CaMKII. Thus, the expression of mutant 

and wildtype CaMKII within the same cell likely occurs and impacts kinase activity and 

holoenzyme stability and turnover. To test these properties the development of a dual expression 

system would be beneficial and allow for purification of recombinant heterooligomers even if we 

cannot control the exact stoichiometries.  
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The design of the dual expression system had two parts in mind, to be able to discern the 

CaMKII variants from one another by size and to be able to specifically select for a species 

containing both variants – should one exist. With these goals in mind, I began with pETDuet-1 

which allows for very simple cloning strategies to be implemented. Two CaMKII genes were 

inserted into the multiple cloning sites (MCS). Next, I chose two tags which differed in weight 

but were highly specific, glutathione s-transferase (GST) tag and Strep tag. This would allow for 

the two CaMKII constructs do be easily identified and subsequent pull downs from these tags 

would allow for purification of only heterooligomers. For the initial test of this system, I chose 

two variants which express well: CaMKIIα-0 and CaMKIIβ-0. GST was fused with the N-

terminus of CaMKIIβ-0 and Strep-II with the N-terminus of CaMKIIα-0. In addition, protease 

 

Figure 9. pETDuet-1 dual expression system design and expression tests. Linear depictions of the two 
constructs to be coexpressed are shown above the corresponding gels. The gel images are representative of 
samples taken following induction with 1 mM IPTG. Number to the left of the gel images correspond with the 
molecular weight (kDA) of the markers. On the right side of each gel are arrows which highlight bands 
corresponding to the predicted molecular weight of the two CaMKII constructs. The lanes for each gel are as 
follows (time in minutes following induction): LEFT): 0, 30, 60, 120, 180, 240, 300, 960; RIGHT): 0, 30, 60, 120, 
180, 240, 300, 390, 585, 960. 
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sites – PreScission and TEV, respectively – were included between the tags and the N-terminus 

(Fig. 9). The plasmid was expressed as normally and time points were taken throughout the 

growth, however only expression of CaMKIIβ-0 was observed (Fig. 9). This could possibly be 

due to the increased stability and solubility associated with GST fusion proteins (Smith, 2000). 

To increase the expression of CaMKIIα-0, a SUMO tag was inserted between the Strep tag and 

the N-terminus. However, this did not increase the expression of CaMKIIα-0. Further 

troubleshooting of this system is necessary. 
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CHAPTER IV 

FREQUENCY EXPERIMENT COMPLETE PROTOCOL 

 

Matthew J. Dunn1, Margaret M. Stratton2 
Molecular and Cellular Biology Graduate Program1, Department of Biochemistry and Molecular 
Biology2 
 

Protocol 

Buffers 

Frequency Buffer 

• 150 mM KCl 

• 50 mM tris-HCl,  pH 7.5 

 

EGTA Buffer 

• 1.2 mM EGTA 

• 25 mM tris-HCl, pH 8.0 

 

10X tris-HCl, Mg2+ Buffer 

• 500 mM tris-HCl, pH 7.5 

• 100 mM MgCl2 

 

Bead Preparation and Incubation 

1. Determine necessary volume of beads for the number of pulse experiments you will be 

conducted. 

a. 10 µL of beads per each pulse experiment (i.e., 4 pulses = 40 µL of beads) 

2. Remove beads from fridge and place on ice. Prior to removing beads homogenize them 

by swirling container in your hand until no beads remain sedimented on the bottom of the 

container. 



46 
 

3. Transfer the necessary volume of beads to a clean tube. 

4. Add volume of Frequency Buffer for 10 X total volume (i.e., 400 µL for 40 µL of beads) 

5. Concentrate the beads with a magnet and remove buffer ‘supernatant’. Discard Buffer. 

6. Repeat Steps 4 and 5 two more times for a total of 3 washes. 

7. After washes, resuspend beads in frequency buffer, protein, and 100 mM TCEP. 

a. [Final TCEP] = 1 mM 

b. Protein mass should be calculated to saturate the beads. (10mg/mL; >2,500 

pmol/mg beads) 

c. Add Frequency Buffer up to 10x volume of beads. 

8. Incubate protein and beads for 1.5 h at 4 °C, rotating at 20 rpm. 

 
Activation and Master Mix Preparation 

1. ADP Hunter Reagents mut equilibrate at room temperature for at least 1 hour before use, 

so take them out and thaw them immediately after beginning protein/bead incubation. If 

necessary, combine multiple aliquots into one tube and mix prior to use. 

2. Additionally, remove 100 mM ATP aliquots and CaM stock from -20 and -80, 

respectively, to allow time to thaw on ice.  

3. At 6 PSI and using the y-connector you need ~9 mL of Activation Buffer for the pulse 

experiments (60, 100 ms pulses). Additionally, you will need several mL to fill the 

system.  

a. Therefore, volume of activation buffer = 2 + 9*(# of pulse experiments) 

4. The Activation Buffer components are as follows (Add them in this order and mix after 

each reagent): 

a. Frequency Buffer 
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b. 20 mM CaCl2 – [Final] = 500 µM 

c. CaM (concentration prep dependent) – [Final] = 8 µM 

d. 100 mM ATP – [Final] = 250 µM 

e. 500 mM MgCl2 – [Final] = 10 mM 

Calculations for necessary volumes can be found in benchling (Matt -> Notebook -> 

Frequency Experiments). 

5. Store Buffer on ice until use. 

6. 4 µL of Master Mix is added to each kinase reaction. Normally 6 kinase reactions are run 

per pulse experiment + and additional 3 of reagents only to begin each experiment) 

a. Volume = 4*6*(# of pulse experiments) +3 

b. You want to make more than the exact volume you need.  

7. Syntide is the determining reagent for how much you make. The reactions use very little 

syntide (< 1mg) so the increments on the scale are 0.1 mg. 

8. Determine the amount of syntide needed for your experiment and weigh it using the scale 

in the Heuck lab. Ensure the mass is accurate. 

9. Resuspend the syntide in the necessary volume of 100 mM tris-HCl, pH 8.0 

10. Combine the following reagents in a clean tube for master mix: 

a. 1.5 mM Syntide – [Final in Kinase Reaction] = 300 µM  

b. 2 mM ATP – [Final in Kinase Reactions] = 100 µM 

i. Dilute 100 mM ATP to 2 mM ATP with 100 mM tris-HCl, pH 8.0 

c. 10X tris-HCl, Mg2+ Buffer – [Final in Kinase Reactions] = 75/15 mM 

11. Dilute remaining CaM to 100 µM. 
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a. Only need 2 µL of 100 µM CaM for each pulse experiment so a minimal volume 

is necessary. 

b. Dilute CaM with 25 mM tris-HCl pH 8.0, 500 µM CaCl2 

 

Pulse Experiment 

1. Following incubation of the protein/beads, concentrate beads with magnet and remove 

supernatant. Keep Supernatant. 

a. A good control to test binding is to run a +CaM kinase assay with this and 

compare the activity to your beads, the dilutions will be slightly off but still a 

good thing to check if you get weird results. 

b. This will allow for you to approximate the amount of protein that bound. 

2. Resuspend beads in 10X bead volume of Frequency buffer and mix. 

3. Concentrate the beads with a magnet and remove buffer ‘supernatant’. Discard Buffer. 

4. Repeat Steps 2 and 3 two more times for a total of 3 washes. 

5. Resuspend beads in 10.05x bead volume of frequency buffer. For each frequency 

experiment you will use 100 µL of beads, so this will give you enough for each one. 

6. Fill each syringe with buffer:  

a. Just make sure you have enough of EGTA and Frequency 

b. Each pulse experiment uses about 9 mL of Activation Buffer so ensure you have 

enough. 

7. Connect the air supply to each syringe and ensure that channel 2 (the empty one is close). 

Then turn on the air supply. Adjust the pressure if necessary to 6 PSI using the dial on top 

of the perfusion system.  
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8. Flow 2 mL of each buffer through the system using the manual mode on the controller. 

9. Secure the injection loop to the magnet. 

a. First turn the T-connector such that it closes the injection loop from the rest of the 

system. 

b. Use three pieces of tape to attach the tubing to the rim of the magnet. At this point 

about half of the tubing will be secured to the magnet. You can double check that 

you have secured the correct amount of tubing by inserting the needle into the 

tubing and seeing that it reaches just the end of the taped area. 

10. Next, fill the injection loop with frequency buffer.  

a. Use needle and 1 mL syringe to fill loop with frequency buffer. 

b. IT IS CRUCIAL TO REMOVE ALL AIR FROM THE INJECTION LOOP. Any 

air which is left in the loop will significantly decrease the recovery of your beads. 

c. The volume of frequency buffer used doesn’t matter just make sure the loop is 

filled without any air 

11. Apply your beads to the tubing. 

a. Remove 100 µL of beads from your stock and transfer to a clean microcentrifuge 

tube.  

b. Use same needle and 1 mL syringe to remove beads from tube. 

c. When injecting onto the tubing ensure no air in the syringe.  

d. If you place the syringe directly next to the magnet the beads will remain in the 

needle, so to avoid this stop the end of the needle just below the area of tape 

tubing and deposit your beads slowly. 
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e. If done correctly you should see your beads accumulate right where the taped 

portion of the tubing ends.  

f. Add 400 µL of frequency buffer to the tube which contained your 100 µL of 

beads and use this volume to wash the syringe. Mix up and down. Apply total 

volume to the injection loop as described previously.  

g. Following application of your sample, very carefully tape the remaining tubing to 

the rim of the magnet.  

12. Open the T-connector such that the injection loop is connected to the perfusion system. 

13. Double check all connectors are open, buffer volumes, and pressure. 

14. Run appropriate pulse experiment. 

15. Disconnect Activation and EGTA Y connector and switch to Frequency Buffer. 

16. Place the end of the tube in a microcentrifuge tube and remove the tape holding the 

tubing to the magnet. Flick the now free tubing with the end in the microcentrifuge tube. 

Then run program 10 (300 ms pulse of Frequency Buffer) to elute any beads which are 

somewhat stuck. 

17. Use the magnet to concentrate your beads as previously described. Remove ALL 

supernatant and resuspend beads in 35 µL of cold frequency buffer. (You use 5 µL per 

kinase reaction and will run 6 reactions per pulse experiment so this allows you to have 

enough plus some extra in case) 

18. Turn off the air and depressurize the system. 

 

ADP Hunter Plus Kinase Reactions 

1. For each pulse experiment run: 

a. 2 + CaM reactions 
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b. 4 – CaM reactions 

c. Run at least 2 baseline reactions (reagents/Buffer only) for the whole day 

2. To each reaction add: 

a. 4 µL master mix 

b. 1 µL 100 µM CaM or 25 mM Tris pH 8.0 

c. Add 5 µL of pulsed beads 

3. It is crucial to begin a timer when adding kinase to the first reaction. Then space your 

additional reactions by 20 s. You should finish adding kinase to 4 reactions in 1 min (0s, 

20 s, 40s, 60s) 

4. Following addition or kinase to all reactions you will quench the kinase reaction with 2 

µL of 50 mM EDTA, 15 mM EGTA after 5minutes. So, at 5 minutes add the quench 

buffer to the first reaction and space by 20 s again to keep the reaction time consistent. 

5. After you have quenched all of the reactions, add the ADP Hunter reagents, Solution A 

and Solution B immediately after one another 

a. Add 5 µL Solution A and 10 µL of Solution B to the same well. 

b. Try to keep the addition of solution A + B spaced the same for all reactions 

6. Following the addition of the ADP Hunter reagents to all reactions start a 15-minute 

timer and cover the plate with tin foil 

7. Also move your ADP Hunter reagents back to dark storage. 

8. Take a reading using the plate reader 

a. The protocol is a fluorescent intensity, endpoint reading 

b. The excitation is 530 and emission is 590 

c. Keep all other parameters as the preset 
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9. Export your data to whatever place you want to process 

10. To calculate percent autonomy, you should average the values of each condition. 

11. Then subtract the average baseline fluorescent value from the average frequency 

fluorescent and the maximum fluorescent. 

12. Finally divide your adjusted frequency fluorescent average by the adjusted maximum 

fluorescent average for your percent autonomy. 

13. To conduct replicates, you should repeat the pulse experiment itself for technical 

replicates. 
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SUPPLEMENTARY FIGURES 

Figure S1. Normalized CaMKIIα N-terminal AviTag construct kinase assay fits. Data was 
normalized as in Sloutsky et al. (2020). 

 
 

Figure S2. Normalized CaMKIIβ N-terminal AviTag construct kinase assay fits. Data was 
normalized as in Sloutsky et al. (2020). 
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Figure S3. Parameters from EC50 fits of N-terminal AviTag constructs. 

 
 

Figure S4. ADP Hunter standard curve. 
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Figure S5. ADP Hunter CaMKII titration. CaMKIIα-30 was used in this titration, and it was not 
bound to beads, thus protein concentration is known and calculable by A280. 

 
 

Figure S6. Technical images of perfusion system and bead injection. A) Depiction of how Y-
connector and proximity to tubing for injection. Half of tubing taped to magnet prior to injection. Ensure 
the connector is closed to the system when injecting sample, as shown in images. B) Position of needle 
when injecting the sample. It is crucial not to position the needle directly next the needle or the beads 
will remain in the needle. Also ensure tubing has not air when injection sample. 
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Figure S7. Visualization and comparison of frequency programs compared to pulse duration programs. 
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Figure S8. Fit parameters from EC50 fits determined by Sloutsky et al. (2020). 

 
 

Figure S9. Raw slopes of de novo CaMKIIδ mutations in the absence of CaM.      
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Figure S10. Raw fluorescent values of pulse duration experiments. Y axis label is relative fluorescence 
units. Bar graphs indicate mean and standard deviation is shown by error bars.  
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