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Abstract 

Incorporating Excess Post-exercise Oxygen Consumption into Accelerometer Energy 

Expenditure Estimation Algorithms 

SEPTEMBER 2022 

Nicholas Remillard, B.S., University of Massachusetts Amherst 

M.S., University of Massachusetts Amherst 

Directed by: John Sirard, PhD 

Accelerometers are objective monitors of physical activity (PA) that can be used to 

estimate energy expenditure (EE). Most accelerometer EE estimation equations are based on 

steady-state data and do not consider excess post-exercise oxygen consumption (EPOC) after 

exercise. PURPOSE: To quantify the error in accelerometer EE estimates due to EPOC after 

varying durations of high-intensity treadmill running. METHODS: Nine young, healthy, 

recreationally active males participated in three study visits. Visit 1 included a treadmill VO2 

peak test to determine the treadmill speed correlating to 80% VO2 peak for visits 2 and 3. Visit 2 

included a seated 20-min baseline and three short (30s, 60s, 120s) vigorous treadmill running 

bouts each followed by 20 minutes of seated rest. Visit 3 included a supine 60-min baseline and a 

30-min treadmill running bout followed by 3 hours of supine rest. Twelve EE estimation 

equations each using either a non-dominant wrist or right hip ActiGraph GT3X+ accelerometer 

were compared to the true EE measured by the Parvomedics TrueOne 2400 indirect calorimeter. 

RESULTS: The Freedson 1998 EE estimation equation overestimated EE during the 20min post-

exercise period after each exercise bout (mean kCals [95% CIs]; 30s: 19.3 [11.4, 27.2], 60s: 16.6 

[8.5, 24.7], 120s: 13.4 [5.74, 21.1], 30min: 15.1 [6.69, 23.5]). The Crouter 2009 branching 

algorithm underestimated EE during the 20min post-exercise period after each exercise bout 
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(mean kCals [95% CIs]; 30s: -8.59 [-10.6, -6.62], 60s: -11.6 [-13.7, -9.38], 120s: -15.0 [-18.1, -

11.8], 30min: -11.0 [-14.3, -7.77]), but was partially corrected by adding in the measured EPOC. 

CONCLUSION: Estimated EE during lying or seated rest from linear accelerometer equations 

was heavily dependent on the y-intercept of the equation, which represents the estimated resting 

EE of the wearer, with the Crouter calibration study being the only one to directly measure 

resting EE. More sophisticated approaches, like the Crouter 2009 and newer machine learning 

algorithms, have better potential to more accurately estimate EE across various activity types. 

New accelerometer EE estimations should include resting in their calibration protocols in order to 

more accurately estimate EE during rest.  
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Chapter 1: 

Introduction 

1.1 Background 

Accelerometers are versatile and widely accepted as objective monitors of 

physical activity (PA). In practice, accelerometers are commonly used in large 

epidemiological studies for measurement of PA in free-living settings. Although PA 

(defined as movement produced by skeletal muscle that results in energy expenditure; 

EE) is an important measure related to better health, EE is believed to be a more specific 

physiological measure more strongly linked to mortality and disease risk factors 

(Hamilton et al., 2007; Mbalilaki et al., 2010). However, direct measures of EE such as 

direct calorimetry, indirect calorimetry, and doubly-labelled water are currently not 

feasible in large studies. Direct and indirect calorimeters are often limited to laboratory 

settings, expensive, and require more extensive staff training than accelerometers. Mobile 

indirect calorimeter carts can wirelessly transmit data to a computer over short distances, 

but the mask and unit on participants are cumbersome, limiting range of motion and 

visibility. Thus, accelerometers may be the best alternative to direct measures of EE due 

to their objectivity, feasibility, and affordability. 

Modern triaxial accelerometers measure the acceleration due to movement of the 

device along three planes of motion. The raw acceleration from the ActiGraph 

accelerometer is translated into “activity counts” representing the magnitude of 

acceleration measured over a unit of time. These activity counts have shown good 

correlation with measured energy expenditure during ambulatory activities (Freedson et 

al., 1998). Many researchers have investigated the relationship between activity counts 
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and energy expenditure using linear correlation, developing linear models to predict 

energy expenditure from the accelerometer output (Brooks, A. G., Gunn, S. M., Withers, 

R. T., Gore, C. J., & Plummer, 2005; Freedson et al., 1998; Hendelman, D., Miller, K., 

Baggett, C., Debold, 2000; Leenders et al., 2003; Nichols et al., 2000; Sasaki et al., 2011; 

Yngve, A., Nilsson, A., Sjostrom, M., & Ekelund, 2003). 

However, common linear-based EE estimation equations, like the Freedson 

equation used with the research-grade ActiGraph accelerometer, have been found to 

underestimate EE when applied to settings outside the laboratory (Crouter et al., 2006; 

Lyden et al., 2011; Imboden et al., 2018). Similarly, commercially available activity 

trackers from companies such as Nike, Fitbit, and Garmin also underestimate EE, 

potentially harming wearers’ progress toward their exercise and weight management 

goals (Morris et al., 2019; Evenson et al., 2020; O’Driscoll et al., 2020). Taken together, 

research and commercial wearables tend to underestimate EE, and are highly variable 

among individuals (O’Driscoll et al., 2020). 

 These inaccuracies occur because accelerometer EE estimation algorithms have 

been primarily developed on steady-state ambulatory data (Freedson et al., 1998; Sasaki 

et al., 2011; Hildebrand et al., 2014). For example, participants may be walking, jogging, 

and running on a treadmill at three distinct speeds while they wear an accelerometer and 

their oxygen consumption is measured. A model using accelerometer output and other 

variables (i.e. body weight) is then developed to estimate EE as measured by the indirect 

calorimetry system. 

In addition to studying the link between EE and disease risk at a population level, 

accurate EE measurement at an individual level is important for intervention studies, 
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clinicians, athletes, and recreational exercisers to help meet physical and nutritional 

needs. Accurate and precise field estimates of EE are needed to better understand the 

relationship between EE and disease, to help athletes better quantify their programming, 

to help people lose weight, and satisfy the recreational exerciser that relies on technology 

to track their energy demands. 

1.2 Limitations to Accelerometer-based Energy Expenditure Estimation 

 Accelerometers can provide researchers with quantifiable PA information, but 

because accelerometers do not measure physiological data directly, they rely on 

predictive algorithms. These algorithms are often based on samples of data no larger than 

50 participants that typically consist of healthy adults with normal BMIs. In addition, 

these algorithms are based solely on motion data – current research-grade accelerometers 

do not collect other physiological data. Some commercial activity trackers measure heart 

rate via photoplethysmography , which has become more reliable over time (Falter et al., 

2019). Energy expenditure estimation would likely improve with more physiological 

data, but there is no clear consensus on which data those are (Ainslie, Reilly & 

Westerterp, 2003). Even if more data beyond motion could be collected, researchers 

should use the fewest number of sensors possible to minimize participant burden, 

especially in unsupervised free-living settings. Further advances in wearable technology 

may be needed before it is feasible to collect different types of physiological data with 

one device on a large scale. 

Current PA levels in large studies are measured in categories of activity intensity: 

sedentary, light, moderate, and vigorous (CDC, 2020). These binned PA levels are 

estimated from accelerometer output, often in the form of ActiGraph counts (device 
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proprietary unit) or ENMOs (Euclydian Norm Minus One) (Van Hees et al., 2013). But 

EE estimation equations (converting counts or ENMOs to kCals or VO2) based on linear 

regressions tend to underestimate EE in free-living settings at the group and individual 

levels (Leenders et al., 2006). These regression equations with several predictive factors 

(i.e. body weight, gender) may work for equations predicting broad activity intensity 

categories, but not for determining exact EE as a continuous outcome. Despite these 

drawbacks, current EE estimation equations accurately estimate energy expenditure 

during steady-state, ambulatory activities. Finding ways to expand these predictive 

algorithms to free-living settings would be beneficial to researchers, clinicians, coaches, 

athletes, and consumers alike. 

 

1.3 Excess Post-Exercise Oxygen Consumption (EPOC) as a source of error 

 One commonly used method in the development of accelerometer EE estimation 

algorithms is to only capture the steady-state period of an activity bout, excluding the 

first few and last few minutes of data. The result is an equation that can accurately 

estimate the EE of someone doing a steady-state ambulatory activity that lasts at least 

several minutes, but that cannot accurately estimate the EE of someone participating in 

interval-like activities or someone participating in a short bout of very intense activity 

(Lyden et al., 2011). The raised metabolism that remains after exercise, or excess post-

exercise oxygen consumption (EPOC), is not captured by motion data. Because the 

accelerometer only measures motion, the accelerometer data reflects a low intensity 

activity although EE remains elevated from the previous bout(s) of exercise. 
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 This EPOC period is a potential source of error that could contribute to the 

underestimation of EE often seen in studies using accelerometer estimation equations. 

Reducing this error could significantly improve accelerometer EE estimates, providing 

increased clarity on relationships among PAEE, health, and disease. 

Figure 1: The rate of energy expenditure (EE) predicted by the accelerometer follows the 

pattern of the wearer’s movement over time, as opposed to the criterion measure (indirect 

calorimetry) that can capture the individual’s elevated metabolism during recovery after 

the termination of an exercise bout. 

 

1.4 Aims and Hypotheses 

Accurate field estimations of energy expenditure (EE) work well for steady-state 

ambulatory activities and can be improved by expanding their application through new 

calibration studies. There is a critical need for new accelerometer EE estimation 

algorithms that consider EPOC to remove underestimation bias for athletes and exercisers 

wanting the most accurate information to meet their fitness goals and for researchers 

seeking to understand EE’s relationship with disease risk. 
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 Our long-term goal is to develop more accurate and feasible accelerometer EE 

estimation algorithms. The overall objective of this study is to pave the way for reducing 

EPOC as a source of error for accelerometer-based EE estimations. Our hypothesis is that 

an accelerometer estimation algorithm incorporating EPOC will not be significantly 

different from the criterion measure. The rationale for this study is that many 

accelerometer EE estimation algorithms have been developed and validated during steady 

state aerobic activities but accuracy is reduced when extrapolated to free-living activities 

and total daily EE. Incorporating EPOC estimations into EE estimations would help to 

eliminate underestimation biases observed in many studies, and which may be especially 

exaggerated in highly active individuals who perform relatively large amounts of high 

intensity activity producing prolonged periods of EPOC. 

 We will test our central hypothesis and address the two specific aims below by 

having participants undergo a vigorous treadmill run like that of a 10km training run, and 

several short bouts of vigorous intensity activity. A portable indirect calorimetry device 

and multiple accelerometers will be worn simultaneously during all exercise. 

1. Quantify the EPOC magnitude after vigorous exercise sessions that vary in 

duration, including short durations simulating free-living activity (30s, 60s, 

120s) and a longer bout of structured exercise (30min).  

Using portable indirect calorimetry to measure EE, we hypothesize that, holding intensity 

constant, EPOC magnitude will increase proportionally with exercise duration.   

2. Incorporate measured EPOC into accelerometer EE estimates.  
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Averaging the EPOC magnitude from exercise sessions across participants, we 

hypothesize that accelerometer EE estimates that include EPOC magnitude will not be 

significantly different from criterion measured EE, while estimates that do not include 

EPOC magnitude will significantly underestimate EE.  

  If our hypothesis is correct, our results would show that further improvements in 

accelerometer EE estimation algorithms are needed, and the methods developed in this 

study for including EPOC in estimation models can be expanded upon. For active 

individuals exercising regularly, incorporating an estimate of EPOC magnitude after a 

given exercise session would help correct the current underestimation of research-grade 

accelerometers and many consumer wearables.  Based on the current proposed work, 

future studies can develop comprehensive EPOC prediction models on varying types of 

exercise intensities, durations, and exercise modalities for further versatility. Increasing 

the accuracy of EE estimation algorithms will strengthen studies using these estimation 

methods to connect PAEE and disease, improving our understanding of PAEE’s 

relationship to obesity, cardiovascular disease, and metabolic disorders, and other 

diseases. ￼ 
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Chapter 2: 

Literature Review 

 The purpose of this thesis is to provide the first steps in eliminating EPOC bias 

from accelerometer-based energy expenditure estimation algorithms. Therefore, this 

literature review begins with a description of how indirect calorimetry is used to measure 

energy expenditure (EE), then reviews the application of accelerometers to measuring PA 

and EE, summarizes the mechanisms of EPOC, and identifies gaps in our knowledge that 

will be addressed by this thesis. 

Understanding the difference between PA and EE is crucial to this literature 

review. Physical activity, defined as a behavior produced by skeletal muscle that requires 

energy expenditure, is important to humans’ physical and mental health. Generally, 

decreasing levels of PA are associated with increased risk of disease, but more specific 

data, such as EE, is needed to better understand relationships between type and intensity 

of PA with various diseases. National guidelines focus on time spent in varying levels of 

PA intensity rather than EE goals per week because of the difficulty in obtaining reliable 

EE estimates. Valid and reliable measures of EE are needed for use in population-wide 

studies to determine these specific relationships between PA and disease. 

 

2.1 Measuring Energy Expenditure using Indirect Calorimetry 

 Indirect calorimetry, measuring oxygen input and carbon dioxide output, is 

considered the most accurate method to measure EE next to direct calorimetry (Gupta et 

al., 2017; Mtaweh et al., 2018). Although EE can be expressed in VO2, EE is often 
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measured in kCals, or kilocalories, representing energy that can be measured as heat. The 

abbreviated Weir equation (1949) is still the most common equation to convert oxygen 

intake (VO2) and carbon dioxide output (VCO2) to kCals (Gupta et al., 2017): 

kcals/min = 3.9 L/min O2 + 1.1 L/min CO2. 

To derive this equation, Weir used previously established energy values (in kCals) for the 

metabolism of each macronutrient (Table 1). Weir concluded that 1 liter of oxygen 

consumed generates 3.941 kCals and 1 liter of carbon dioxide produced generates 1.106 

kCals. Additionally, the original equation included a protein correction factor that 

necessitated obtaining a urine sample to measure nitrogen levels. Assuming that 12.3% of 

total kCals produced come from protein metabolism, about 1% of the energy given in the 

Weir equation would be deducted, and so even for someone with a large protein intake, 

the maximum error of the Weir equation without the protein correction factor would be 2-

3% (Matarese et al., 1997). 

 

Table 1: Energy required to metabolize each macronutrient (Weir, 1949) 
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 Researchers measuring EE using indirect calorimetry commonly use the Weir 

equation without the protein correction factor due to difficulty in obtaining urinary 

nitrogen data. The abbreviated Weir equation, measuring EE in kCals, requires only the 

subject’s rate of O2 consumed and rate of CO2 produced. Open-circuit systems, which 

can be air-tight rooms or mobile metabolic carts, are the most common type of indirect 

calorimeter using paramagnetic or galvanic O2 sensors and infrared CO2 sensors (Mtaweh 

et al., 2018). Open-circuit systems measure the concentration of O2 and CO2, gas volume, 

temperature, and time (Matarese et al., 1997; Mtaweh et al., 2018). Subjects using the 

device breathe room air and expire into a sampling system, which then vents the expired 

air back into the room. The difference between inspired and expired gas concentrations 

(namely of O2 and CO2) and the rate of ventilation is used to determine VO2. 

 Gas collection systems can be breath-by-breath or a mixing chamber. Breath-by-

breath devices measure gas exchange at the mask the individual wears and average data 

over time, avoiding problems of incomplete mixing of gases, unstable inspired O2 

fraction, and the effects of water vapor (Matarese et al., 1997). Breath-by-breath analyses 

can typically measure in time intervals as small as 5 seconds. Some metabolic carts 

contain a small mixing chamber that is quickly flushed during high intensity exercise, and 

so can obtain data in small time intervals similar to a breath-by-breath system. 

 Mixing chamber systems direct expired gas into a chamber where analyzers 

sample the gas at select intervals. Many whole-room calorimeters include a separate 

mixing chamber and take longer than breath-by-breath systems for expired gases to mix 

properly. For this reason, large mixing chambers are better for longer periods of 

metabolic testing that include steady-state periods. 
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2.1.2 Indirect Calorimetry Limits 

 Indirect calorimeters currently cannot be used in free-living settings or studies 

wishing to look at EE over a prolonged period. Indirect calorimeters can only be used in 

controlled settings under the supervision of a researcher trained to set up and calibrate the 

device. In addition, even wireless mobile carts have a limited telemetry range of up to 

about 1000m (CareFusion, CA). Thus large population-wide studies and researchers 

wishing to capture EE over several days in free-living settings cannot feasibly use 

indirect calorimeters. These researchers must rely on EE estimates from questionnaires, 

and more recently, accelerometers, which have been validated against indirect 

calorimetry. 

 

2.2 Accelerometer Energy Expenditure Estimation  

 Subjective measures like questionnaires, diaries, and interviews are prone to 

various types of error, difficult to validate, and are not internally consistent or reliable 

(LaPorte et al., 1985). For example, recall surveys are limited by recall bias and memory 

limitations, including participants’ subjective experiences of exercise intensity. The 

validity and reliability of questionnaires are not established enough to be considered 

sensitive to small but important differences in PA between groups or over time (LaPorte 

et al., 1985). Objective monitors, such as accelerometers, provide an alternative that is 

more reliable easier to validate against a criterion measure than subjective measures. 
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 The LSI (large-scale integrated motor activity monitor) preceded accelerometers 

as one of the first objective monitors and had severe limitations: the mercury switches in 

the device were insensitive to low and high levels of activity, and only measured the 

quantity of movement (Patterson et al.,1993). Early prototypes of accelerometers looked 

to be more promising than LSIs as potential objective monitors for use in large studies 

because of their better sensitivity to low and high levels of activity and the ability to 

measure intensity of activity in addition to the quantity (LaPorte et al., 1985). In addition, 

acceleration of the human body and energy expenditure (EE) measured by indirect 

calorimetry are well correlated during locomotion (Reswick et al., 1978). Early 

accelerometers, such as the Caltrac, were calibrated on oxygen consumption data and 

designed to output the wearer’s METs (metabolic equivalent) (Wong et al., 1981; 

Montoye et al., 1983). The Caltrac’s estimated EE output had a strong linear relationship 

with measured VO2, but consistently over and underestimated EE during walking and 

running, respectively (Pambianco et al., 1990; Haymes & Byrnes, 1993). Despite these 

limitations, the Caltrac proved accelerometers were at least sensitive to small changes in 

walking speeds and could reliably differentiate between a range of speeds (Washburn et 

al., 1988; Nichols et al., 1992). 

 The Caltrac accelerometer’s major limitations included the inability to select 

device sensitivity based on a study’s protocol and its output being in MET scores (Sallis 

et al., 1993; Miller et al., 1994; Richardson et al., 1995). Redmond and Hegge (1985) 

developed what would later be known as the ActiGraph accelerometer, incorporating 

adjustable sensitivity measures in the device and producing outputs in movement scores 

representing changes in PA. The ActiGraph’s movement scores were able to differentiate 
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intensity between a range of daily activities with high reliability and had strong 

correlations with measured VO2 in laboratory and simulated free-living settings 

(Patterson et al., 1993). These initial findings, improved upon the performance of the 

Caltrac, and indicated that the ActiGraph could be used in the field where indirect 

calorimetry is impractical. 

 The ActiGraph became the most popular research-grade accelerometer due to its 

affordability and versatility (Troiano et al., 2014; Montoye et al., 2018). The ActiGraph’s 

output can be raw acceleration signal or in counts, a proprietary unit representing 

movement within a selected epoch window (ActiGraph Corp, Pensacola, Fl). Both the 

Freedson 1998 equation (Freedson et al., 1998) and Hildebrand 2014 equations 

(Hildebrand et al., 2014) are among the most common accelerometer EE estimation 

equations (Montoye et al., 2020), Freedson making use of count output and Hildebrand 

raw acceleration output. 

 The Freedson equation is one of the earliest equations for converting ActiGraph 

counts into PA levels and kCals (Freedson et al., 1998). Freedson and colleagues had 

participants walk and run at three speeds on a treadmill, comparing the ActiGraph counts 

with VO2 to create intensity thresholds based on METs. These count thresholds were 

designed to estimate broad MET-based PA intensity categories: light (<3.00 METs), 

moderate (3.00-5.99 METs), hard (6.00-8.99 METs), and very hard (>8.99 METs) to 

account for the national focus on time spent in categories of PA intensity level. These 

categorical PA intensity thresholds (instead of continuous EE) have been applied to 

ActiGraph data from large epidemiological studies to relate time spent in each intensity 

category to disease risk (Loprinzi et al., 2012) while continuous EE output has not. 
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Freedson et al. (1998) developed a separate equation using the treadmill data to 

estimate kCals. The ActiGraph counts at each treadmill speed was used as a predictor to 

estimate kCals, measured by indirect calorimetry, to develop a linear regression model on 

35 of the 50 participants, then tested on the remaining fifteen. Only the steady-state data, 

defined as the last 3 minutes of the exercise period for each speed, was considered for the 

regression model. 

kcal·min-1 = (0.00094 * cnts·min-1) + (0.1346 * mass in kg) - 7.37418 

(R2 = 0.82, SEE = ± 1.40 kcal·min-1) 

 Other popular EE estimation algorithms have also only used steady-state data for 

their estimation equations, regardless of modelling technique used. Sasaki, John & 

Freedson (2011) used mean data from minutes 3-6 within their exercise bouts. 

Hildebrand et al. (2014) used minutes 2.5-4.5 from 5-minute long bouts for input in their 

model. 

 Sasaki, John & Freedson (2011) developed a regression equation to estimate 

METs (another form of EE, easily converted kCals) based on the vector magnitude of all 

three ActiGraph axes. Sasaki and colleagues performed a similar calibration study as 

Freedson, walking (4.8 and 6.4 kph) and running (9.7 and 12 kph) on a treadmill while 

wearing a hip-placed ActiGraph GT3X+ accelerometer and used an Oxycon Mobile 

indirect calorimeter as the criterion measure of EE. Thirty-six participants were included 

in the sample for the development of the EE estimation model: 

METs = 0.000863(VM3) + 0.668876 

(R2 = 0.78, SEE = ±1.3 METs) 
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 Hildebrand et al.’s (2014) equations (Table 2) differ from other popular EE 

estimation equations because they utilized raw ActiGraph output at a 60Hz sampling rate 

in the form of ENMOs. ENMOs, or Euclidian norm minus one, were developed by 

removing the gravitational component of acceleration from the raw accelerometer data 

(Van Hees et al., 2013). Van Hees and colleagues created the ENMO as an accelerometer 

output accessible to all researchers across devices, so researchers would not be limited by 

the accelerometer manufacturer’s proprietary algorithms. Hildebrand et al. used ENMO 

data from ActiGraph accelerometers placed on the wrist and on the hip to develop 

separate wrist-based and hip-based EE estimation linear regression models. Hildebrand et 

al.’s regression VO2 output can be converted to kCals using the Weir equation or binned 

in MET-based PA intensity categories. 

 
Table 2: Hildebrand ENMO-based EE estimation equations (Hildebrand et al., 2014) 

 

Most research-grade accelerometer EE estimation algorithms only include the 

acceleration data, but some also included heart rate data in their EE estimation to address 

acceleration-only limitations (Rennie et al., 2000; Strath et al., 2001; Romero-Ugalde et 

al., 2017). Both Strath (2001) and Romero-Ugalde (2017) compared hip-worn 

accelerometer-only EE estimation models with their proposed combined accelerometer-

HR EE estimation models, finding that the combined models more accurately predicted 
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EE. Other researchers have proposed that including more physiological data, such as HR, 

skin temperature, and sweat rate may improve EE estimation models (Ainslie, Reilly & 

Westerterp, 2003). A major concern regarding heart rate monitoring techniques is the 

increase in heart rate due to stress, heat, and stimulants; HR does not increase solely due 

to PA (Meijer et al., 1989). In addition, the HR monitors used in accelerometer-HR 

combination calibration studies are placed on the chest, which in large epidemiological 

studies adds to participant burden and introduces more potential user error and non-

compliance with the wear protocols. Although wrist-based HR measures have become 

more accessible in recent years, validation studies report inconclusive evidence that 

wrist-based HR measures are as accurate as traditional and clinical measures and often 

cite the need for more research to make valid conclusions (Sartor et al., 2018; Cadmus-

Bertram et al., 2017). 

 

2.3 Excess Post-exercise Oxygen Consumption (EPOC) 

Originally termed O2 debt, the phenomenon now known as EPOC has been 

studied since the early 1900s beginning with Hill, Long & Lupton (1924)’s lactic acid 

theory. As metabolic testing became more prevalent, researchers noticed the lag in VO2 

at the onset of exercise and the continued elevation of VO2 after the termination of 

exercise (Gaesser & Brooks, 1984). The traditional theory asserted that the lactic acid 

built up during exercise was transformed into glycogen during recovery, powered by 

oxygen. This glycogen would be used to replenish the glycogen stores used during the lag 

in VO2 at the onset of exercise. As time went on, more evidence that lactate removal and 

EPOC are not temporally or causally linked was identified, based on the finding that 
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lactic acid reached its highest concentration after the EPOC period and that metabolism 

of lactate after exercise depends on the biochemical profiles of muscle fibers, which 

varies between and within species (early experiments were conducted on frogs) 

(Margaria, Edwards & Dill, 1933; Gaesser & Brooks, 1984). In addition, lactate 

metabolism is always occurring after exercise, and so cannot be attributed with a 

particular phase of EPOC. 

After lactate was determined not to be the primary contributor to EPOC, 

researchers have identified several other metabolic processes that cause EPOC in 

humans, such as the rephosphorylation of creatine and ADP, an increase in catecholamine 

levels that indirectly elevates mitochondrial respiration, and activation of ATP pumps 

working to reestablish sodium and potassium gradients (Brooks et al., 1971; Gaesser & 

Brooks, 1984). At a broader level, the return of tissue temperature to baseline levels is 

closely associated with the return of VO2 to baseline; increased tissue temperature 

decreases mitochondrial efficiency, requiring more oxygen for the same quantity of ATP 

production (Hagberg, Mullin & Nagle, 1980). The total effect of all the biological 

variables contributing to EPOC can be simplified: metabolism will return to baseline 

levels when all the factors affecting mitochondrial respiration have returned to normal 

levels. Despite the lingering uncertainty surrounding physiological mechanisms of 

EPOC, many researchers have sought increased understanding of the effect of different 

exercise protocols on the EPOC magnitude and time coefficients. 
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2.3.2 Intensity and duration of activity affect EPOC magnitude 

EPOC can account for a significant number of calories contributing to total daily 

energy expenditure (Knab et al., 2015). The EPOC magnitude is also a clear marker of 

recovery and is more sensitive than other recovery measures, such as heart rate recovery 

(Mann et al., 2014). The EPOC magnitude is primarily affected by the intensity and 

duration of an exercise session. Physical activity or exercise at a threshold of at least 50-

60% VO2 max is necessary to induce a detectable EPOC that will last several hours. At a 

given intensity, there is a linear relationship between EPOC magnitude and exercise 

duration (Børsheim & Bahr, 2003). But the relationship between EPOC magnitude and 

exercise duration changes according to varying intensities, as shown below in Figure 2. 

Notably, exercise of an intensity below 50% VO2 max did not cause an increase in EPOC 

magnitude. Above the 50% VO2 max threshold, duration is often found to have a positive 

linear relationship with EPOC magnitude. Intensity, holding duration constant, has an 

exponential relationship with EPOC magnitude (Gore & Withers, 1990; Laforgia, 

Withers & Gore, 2006). 
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Figure 2: EPOC values by intensity and duration (Gore & Withers, 1990) 

 

EPOC can also be broken down into a fast and a slow component, first observed 

by Hill, Long & Lupton (1924), and recognized to have separate time constants reflecting 

their respective slopes by Margaria, Edwards & Dill (1933). These two phases are 

characterized by different properties and affected by exercise intensity and duration 

separately (Knuttgen, 1970; Ozyener et al. 2001). The fast component is characterized by 

a steep slope, during which heart rate and VO2 decrease rapidly toward baseline (often 

within minutes). The slow component is characterized by a less steep slope that gradually 

returns to baseline over a longer period of time (up to and over an hour, depending on 

exercise intensity and duration). When EPOC is broken down into its fast and slow 
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components, Hagberg, Mullin & Nagle (1980) found intensity significantly affected the 

fast component. Duration significantly affected the slow component, but only at the 

highest intensity studied (80% of VO2 max; Figure 3). 

 

Figure 3: EPOC values by intensity and duration (Hagberg, Mullin & Nagle, 1980) 

 

This finding is consistent with other studies that find EPOC increasing in 

magnitude as duration increases, keeping intensity constant (Gore & Withers, 1990; 

Laforgia et al., 1997, Phelain et al. 1997). Mann et al. (2014) found EPOC magnitude to 

be significantly greater at 80% VO2 max than at 70% VO2 max (effect size: 0.9), but not 

between 70% VO2 max and 60% VO2 max (effect size: 0.5), suggesting that there is a 
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nonlinear relationship between exercise intensity and EPOC magnitude when duration is 

kept the same. This literature demonstrates two major points, (1) that EPOC consists of 

two distinct components, the fast and slow phases, and (2) that exercise intensity and 

duration have varying relationships to each phase and to the overall EPOC magnitude. 

The effect of intensity and duration on EPOC magnitude can be seen in Table 3, 

which summarizes measured EPOC magnitudes according to different intensities and 

durations of exercise across seven studies. Intensity and duration demonstrate a dose-

response relationship among this data: EPOC magnitude increases with duration and with 

intensity. 
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Table 3: Reported EPOC magnitudes by study. 

Author Year Participant 
Number 

Participant 
VO2 max 

(ml/kg/min) 
Modality Intensity (% 

VO2 max) 
Duration 
(minutes) 

EPOC 
Duration 

Measured 
(hours) 

Behavior 
during 
EPOC 

Measurement 
Method EPOC (L O2) 

Estimated 
kCals (L O2 * 5 

kCals/L O2) 

Mann 2014 20 M 60.2 (4.8) Treadmill 60% 20 0.25 Seated Cont Ind Cal 6.09* 30.45 

Mann 2014 20 M 60.2 (4.8) Treadmill 70% 20 0.25 Seated Cont Ind Cal 6.73* 33.65 

Mann 2014 20 M 60.2 (4.8) Treadmill 80% 20 0.25 Seated Cont Ind Cal 7.86* 39.3 

Smith 1993 8 M 50.3 (4.7) Cycling 40% 30 0.52 Bedrest Disc Ind Cal  16.3 (0.03) 81.5 

Smith 1993 8 M 50.3 (4.7) Cycling 50% 30 0.70 Bedrest Disc Ind Cal   22.1 (0.03) 110.5 

Smith 1993 8 M 50.3 (4.7) Cycling 70% 30 0.79 Bedrest Disc Ind Cal  28.1 (0.06) 140.5 

Gore 1990 9 M 63.0 (5.7) Treadmill 50% 20 8 Bedrest Disc Ind Cal  3.14 (3.58) 15.7 

Gore 1990 9 M 63.0 (5.7) Treadmill 50% 50 8 Bedrest Disc Ind Cal  5.19 (3.83) 25.95 

Gore 1990 9 M 63.0 (5.7) Treadmill 50% 80 8 Bedrest Disc Ind Cal  6.10 (4.22) 30.5 

Gore 1990 9 M 63.0 (5.7) Treadmill 70% 20 8 Bedrest Disc Ind Cal  5.68 (4.89) 28.4 

Gore 1990 9 M 63.0 (5.7) Treadmill 70% 50 8 Bedrest Disc Ind Cal  10.04 (3.26) 50.2 

Gore 1990 9 M 63.0 (5.7) Treadmill 70% 80 8 Bedrest Disc Ind Cal  14.59 (2.94) 72.95 

Bahr 1987 6 M 54.1 (1.5) Cycling 70% 20 12 Bedrest Disc Ind Cal  5.1 (1.2) 25.5 

Bahr 1987 6 M 54.1 (1.5) Cycling 70% 40 12 Bedrest Disc Ind Cal  6.8 (1.7) 34 

Bahr 1987 6 M 54.1 (1.5) Cycling 70% 80 12 Bedrest Disc Ind Cal  14.4 (1.2) 72 

Phelain 1997 8 F 47.4 (1.5) Cycling 50% 77.8 3 Bedrest Cont Ind Cal 4.8 (1.6) 24 

Phelain 1997 8 F 47.4 (1.5) Cycling 75% 50.9 3 Bedrest Cont Ind Cal 9.0 (1.7) 45 

Laforgia 1997 8 M 69.2 (4.0) Treadmill 70% 30 9 Bedrest Disc Ind Cal  6.9 (3.8) 34.5 

Knab 2011 10 M 43.5 (12.8) Cycling 72% 45 14.2 Seated WRC 38.0 (14.3) 190 

*EPOC values are estimated from reported data and include male and female participants 
**kCals estimated using modified Weir equation (kCals = 5 * L O2) 
Disc Ind Cal: Discontinuous Indirect Calorimetry; Cont Ind Cal: Continuous Indirect Calorimetry; WRC: Whole-Room Calorimeter 
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Notably, the number of calories EPOC contributes varies greatly according to 

exercise intensity and exercise duration. Table 3 displays a range from 15.9 kCals 

(intensity: 50% VO2 max; duration: 20 minutes; Gore & Withers, 1990) to 190.0 kCals 

(intensity: 72% VO2 max; duration: 45 minutes; Knab et al., 2011). Also, the duration for 

which EPOC was measured after exercise likely affects the reported EPOC magnitude 

values (Gore & Withers, 1990: 8 hours; Knab et al., 2011: 14.2 hours). Understanding 

how long EPOC should be measured after a given exercise session would be possible if 

more studies reported when or if post-exercise metabolic rate returned to baseline levels. 

Of the studies in Table 3, only Smith & Naughton (1993) reported the time EPOC took to 

reach a non-significantly different rate from baseline after their 30-minute cycling 

session, defined as VO2 returning to +12mL O2/min for five consecutive 2-minute 

measurement periods (minutes; mean (SD); 40% VO2 max: 31.2 (1.9), 50% VO2 max: 

42.1 (2.6), 70% VO2 max: 47.6 (2.9)). 

Though not reported in the studies included in Table 3, there is evidence that 

fitness, measured by VO2 max, has an inverse relationship with EPOC magnitude for a 

given intensity and duration (Matsuo et al., 2012). Researchers studying EPOC should 

take the fitness level of their participants into consideration when designing protocols and 

making conclusions. 

 

2.3.4 Predicting EPOC 

Varying relationships among multiple factors complicates attempts to predict 

EPOC based on a given exercise session. One study by Jones et al. (2020) attempted to 

use heart rate as a proxy for modeling EPOC, but found that post-exercise heart rate and 
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oxygen consumption were poorly correlated in their sample (R2<0.01). Jones et al. used 

data from a small and homogeneous sample of 14 active and healthy college students, 

which may have contributed to their poor correlation. In contrast, a conference abstract 

by Rusko et al. (2003) developed a proprietary model for predicting the EPOC magnitude 

based on heart rate data before and during an exercise session, using data from 48 peer-

reviewed articles (158 different subjects, with duration ranging from 2 to 90 minutes and 

intensity ranging from 18% to 108% of VO2 max). Rusko et al.’s EPOC prediction model 

yielded an R2-value of 0.79 utilizing only R-R interval measurement (heart rate) validated 

on a sample of 32 healthy adults across a range of intensities (40%, 70%, and 100% VO2 

max). Because Rusko et al.’s EPOC prediction model is proprietary, other researchers 

cannot directly replicate their modeling techniques. 

Jung et al. (2021) developed a multiple linear regression model to predict EPOC 

magnitude across different exercise protocols. Variables considered for the model were 

sex, age, height, weight, BMI, fat-free mass, fat mass, percent body fat, and heart rate. 

Only fat-free mass and heart-rate sum were included in the final model, yielding R2 

values ranging from 0.831 to 0.955. These results, in combination with Rusko et al.’s 

(2003) model, suggest that heart rate during exercise is an important factor in predicting 

EPOC. Including anthropometric data in EPOC prediction models, such as fat-free mass, 

may improve a model’s ability to predict EPOC (Rusko: R2 = 0.79 with no 

anthropometric data vs. Jung: R2 > 0.83). 

Jones, Rusko, and Jung’s models predicted the EPOC magnitude based on 

physiological and anthropometric data. None of these models used motion data, such as 

accelerometer data, to aid in their prediction and did not model the time coefficients of 
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the EPOC curve or separate the fast and slow components. Therefore, additional research 

in this area could take advantage of wearable accelerometer devices to estimate EPOC 

using acceleration data alone or in combination with physiological variables such as heart 

rate, aerobic fitness, and body composition. The inclusion of additional physiological 

variables creates feasibility concerns about free-living or consumer applications because 

of limitations in obtaining these data outside of a laboratory setting. 

 

2.4 Accelerometers Inaccurately Estimate Free-living Energy Expenditure 

Estimated EE from free-living or unstructured accelerometer data should be 

interpreted with caution because most algorithms were calibrated on small samples 

performing ambulatory activities in lab-based settings (Freedson et al., 1998; Crouter et 

al; 2006; Sasaki et al., 2011; Hildebrand et al., 2014). Several studies have compared the 

most widely used EE equation, the Freedson equation (1998), to indirect calorimetry in 

semi-structured settings designed to simulate free-living scenarios, with the purpose of 

determining the Freedson equation’s validity to estimate EE outside of ambulatory 

activities (Crouter, Churilla & Bassett, 2006; Lyden et al., 2011; Bai et al., 2016; 

Imboden et al., 2018). 

Crouter, Churilla & Bassett (2006) tested several ActiGraph EE estimation 

algorithms against indirect calorimetry among various activities, including sedentary 

tasks, walking at various speeds, running at various speeds, playing basketball, 

racquetball, washing windows and dishes, raking, vacuuming, and sweeping. The 

ActiGraph equations tended to underestimate EE during non-ambulatory tasks and 

overestimated sedentary tasks (Figure 4). 
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Figure 4: METs per method for each activity (Crouter, Churilla & Bassett, 2006) 

 

Lyden et al. (2011) had participants perform two routines in random order: 

treadmill activities (at three speeds) and five activities of daily living (ADLs), of which 

two of the five were chosen from a list of 14 activities representing common household 

and leisure time activities, all at a self-selected pace. Similar to Crouter, Churilla & 

Bassett (2006), accelerometer EE estimations underestimated during all ADL activities 

(Figure 5). 
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Figure 5: Bias values of accelerometer-predicted EE (Lyden et al., 2011) 

 

Imboden et al.’s (2018) protocol allowed participants to choose 12 activities from 

a list of 21, and were able to select the pace, duration, and order of activities. Participants 

wore an ActiGraph accelerometer plus multiple consumer monitors (AG: ActiGraph, FZ: 

Fitbit Zip, FO: Fitbit One, FF: Fitbit Flex, JU: Jawbone UP24). All accelerometer EE 
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estimation algorithms (AG using the Freedson equation) underestimated the entire 80-

minute session (see Table 4). 

 

 

Table 4: Mean and %bias of accelerometer-predicted EE (Imboden et al., 2018) 

 

Bai et al. (2016) developed a semi-structured protocol consisting of three 

components (20 minutes of sedentary activity, 25 minutes of self-selected treadmill 

walking or running, and 25 minutes of self-selected resistance exercise) and analyzed 

each component separately in addition to the whole protocol. The analysis of individual 

components allowed Bai et al. to conclude that the Freedson equation (denoted GT3X+ in 

Tables 5 and 6) overestimated EE during sedentary and aerobic activities and 

underestimated EE during resistance exercise, in agreement with Crouter, Churilla & 

Bassett (2006) and Lyden et al. (2011). But the Freedson equation did not significantly 

differ from indirect calorimetry for the whole protocol, potentially due to the cancellation 

of error between the three components of the protocol (Tables 5 and 6). Because all 

participants followed the three components in the same order and were allowed to self-

select exercise intensities, EPOC resulting from the aerobic component may have 

impacted results of the resistance exercise component. If there was an EPOC significantly 
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raising the metabolic rate, the existing overestimation found during the resistance 

component would have resulted at least in part to EPOC. If EPOC resulting from the 

aerobic exercise was controlled, Bai et al. may have found greater overestimation by the 

monitors during the resistance exercise component. 

 

 

Table 5: Total EE Mean Bias. Freedson equation denoted as GT3X+. (Bai et al., 2016) 

 

 

Table 6: EE Mean Bias per Protocol Component. Freedson equation denoted as  
GT3X+. (Bai et al., 2016) 
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2.5 Literature Review Summary 

Accelerometers have become the preferred tools to measure PA and EE because 

of their objectivity and reliability. Past researchers have modeled accelerometer output 

against indirect calorimetry to estimate EE, which works well in the settings in which 

they were calibrated. Most often, these calibration studies take place during steady-state 

ambulatory activities such as walking and running. Researchers have begun to apply 

accelerometer EE estimates (via intensity categories, such as light, moderate, and 

vigorous) to large-scale epidemiological studies because EE is theorized to be closely 

associated with disease risk. Accelerometer estimates of EE as a continuous output (such 

as kCals/day) currently underestimate EE and should be improved before applied to free-

living settings like epidemiological studies. One potential reason contributing to 

accelerometer-based underestimation of EE is the exclusion of EPOC from 

accelerometer-based EE estimates. 
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Chapter 3: 

Methods 

3.1 Study Overview 

The purpose of this thesis was to incorporate measured EPOC into accelerometer 

EE estimation algorithms to improve their accuracy. We focused on active, healthy 

college-aged males performing vigorous exercise sessions that vary in duration, including 

short durations simulating free-living activity (30s, 60s, 120s) and a longer bout of 

structured exercise (30min). Oxygen consumption was measured using a metabolic cart 

during the short vigorous bouts the 30-minute bout. Oxygen consumption was measured 

for 3 hours after the 30-minute exercise session, allowing for measurement of exercise 

VO2 and a majority of the EPOC magnitude due to both fast and slow components. The 

mobile cart allows for quantification of sensitive changes in the EPOC curve following 

exercise. The post-exercise VO2 was compared to a pre-exercise VO2 baseline measured 

at the beginning of each visit to quantify EPOC. Participants also wore hip and wrist 

accelerometers and a heart rate monitor for the duration of all protocols.  

All participants completed three total visits at the Institute of Applied Life 

Sciences (IALS) inside the Center for Human Health and Performance (CH2P). 

Participants were instructed not to perform any exercise for 24 hours prior to the 

beginning of each visit. Each subsequent visit took place between 2 and 14 days of the 

prior visit. Visit 1 included consenting the participant, taking height and weight 

measurements, performing a DXA scan, and an incremental VO2 peak test on a treadmill. 

At visit 2, participants performed vigorous exercise bouts of different durations (30 

seconds, 1 minute, 2 minutes) at 80% vVO2 peak (treadmill velocity at 80% VO2 peak). 
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At visit 3, participants performed a baseline supine rest for 60 minutes, followed by a 30-

minute treadmill run at 80% vVO2 peak and then a 3-hour supine rest. 

 

Figure 6: Visitation Flowchart - Sequence of events and equipment needed for each 

visit. REDCap, Research Electronic Data Capture; DXA, dual-x-ray absorptiometry; 

AGs, ActiGraph accelerometers; HR, heart rate. 
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3.2 Data Collection 

Participants 

Ten young (18-30 years) males with normal BMI (18.0-24.9 kg/m2) were 

recruited for this study from the University of Massachusetts Amherst campus. Only 

males were included for this study because controlling for differences in metabolic rate 

due to the menstrual cycle were outside the scope and timeline of this project. 

Participants were recreationally active for two months prior to beginning the study. An 

active activity status was determined by a score of at least 24 points on the Godin-

Shepherd Leisure Time questionnaire (Godin, 2011; Appendix B). Participants were 

healthy by self-report and free from any chronic disease (cardiovascular, pulmonary, 

neurological) and serious musculoskeletal injury in the lower extremities (including but 

not limited to; broken bones, ruptured or torn ligaments and tendons that required more 

than 6 months of rehabilitation or surgery) that may have impeded them from performing 

vigorous exercise. The Physical Activity Readiness Questionnaire, or PARQ (Warburton 

et al., 2011; Appendix D), was used to determine if participants were healthy to 

participate in exercise. 

 

Equipment 

For criterion measures, the ParvoMedics TrueOne 2400 metabolic cart (Parvo 

cart; Salt Lake City, UT) and the Room Calorimeter at the University of Massachusetts's 

CH2P (MEI Research, St. Louis Park MN) were used to measure oxygen consumption 
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(VO2), which can be converted to energy expenditure (calories). The Parvo cart was worn 

as a mask covering the nose and mouth connected to a gas collection tube. The Parvo cart 

is one of the research field’s standard criterion measures for collecting laboratory-based 

oxygen consumption data in humans and has been validated for use in exercise protocols 

(Bassett et al., 2001). Participants were asked to fast for at least 4 hours prior to all testing 

involving the Parvo cart. 

Before beginning any data collection with indirect calorimetry, devices need to be 

warmed up and calibrated. Both the flow transducer, measuring the amount of air flow, 

and the gas analyzer need to be calibrated once the gas analyzers have warmed up for 15-

30 minutes. The flow transducer was calibrated before data collection sessions by 

manually injecting a known volume of air repeatedly through the device. The gas 

analyzers were calibrated before each measurement against standard reference gases of 

known concentration. Calibrations were considered complete when the device measured 

within a 3% error margin of the known gas volume and gas concentrations. 

The GE Lunar iDXA (GE Healthcare, Madison, WI) in the CH2P is a valid and 

precise measurement of body composition (Hild, Oldroyd & Truscott, 2011) and was 

operated by certified technicians provided by the CH2P. Fat mass and fat-free mass (kg) 

were obtained from the iDXA and height and weight from the Seca 719/220 Scale and 

Stadiometer for use in descriptive statistics and for use in EPOC magnitude prediction 

models. 

Participants wore one ActiGraph GT3X+ accelerometer (ActiGraph LLC, 

Pensacola FL) on the right iliac crest (hip) and another on the non-dominant wrist. The 

ActiGraph GT3X+ accelerometer is a research-grade triaxial accelerometer that measures 
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raw accelerations and is widely used in the field. Motion data from the accelerometer was 

collected during all protocols and used in twelve accelerometer-based EE estimation 

algorithms (Table 7). A Polar heart rate monitor (Polar Electro) was used to measure 

heart rate, secured onto the participant with a chest strap. Heart rate data is included for 

potential future analyses (Jones et al., 2020; Jung et al., 2021; Rusko et al., 2003), but 

will not be included in the analyses of this project’s aims. Participants wore the 

ActiGraph accelerometers and Polar heart rate monitor during all visits. The Parvo cart 

was utilized during all visits. The room calorimeter was utilized during visits 3 and 4 for 

one participant whose data was analyzed separate from the sample. 
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Table 7: ActiGraph EE estimation equations 

MET Predictions Equations Calibration activities 

Freedson 1998 (0.000795*counts/min) + 1.439008 
2 walking speeds, 1 running 
speed 

Sasaki 2011 (0.000863*VM3) + 0.668876 
2 walking speeds, 2 running 
speeds 

Crouter 2010 

counts/min <= 8, EE = 1.0 MET; counts/min 
>8 and CV counts/10s <=10, EE = 
2.294275*(exp(0.00084679 *counts/10s)); or 
CV counts/10s >10, EE = 0.749395 + 
(0.716431 * (ln(counts/10s))) – (0.179874 * 
(ln(counts/10s))^2) + (0.033173 * 
(ln(counts/10s))^3) 

lifestyle and ambulatory 
activities, includes lying down 

Swartz 2000 (0.0006863*counts/min) + 2.606 
lifestyle and recreational 
activities 

Brooks 2005 (0.000370*counts/min)-(0.012*BM) + 3.33 1 walking speed 

Yngve 2003 (0.0008249*counts/min) + 1.136 
standing, 2 walking speeds and 1 
running speed 

Leenders 2003 hip (0.0006*counts/min) + 2.240 5 walking speeds 

Hendelman 2000 (0.000638*counts/min) + 1.602 
lifestyle and ambulatory 
activities 

Heil 2003 
(0.00171*counts/min)+ (1.957*height)–
(0.000631*counts/min*height)–1.883 2 walking speeds 

VO2 Predictions     
Hildebrand 2014 
Hip (0.0554*mg) + 6.67 

lifestyle and ambulatory 
activities 

Hildebrand 2014 
Wrist (0.0320*mg) + 7.28 

lifestyle and ambulatory 
activities 

Nichols 2000 (0.002545*counts/min) + 6.057359 
2 walking speeds, 1 running 
speed 

kCal/min 
Predictions     

Freedson 1998 
(0.00094*counts/min) + (0.1346*BM) - 
7.37418 

2 walking speeds, 1 running 
speed 

Brooks 2005 (0.000452*counts/min) + (0.051*BM) – 0.774 1 walking speed 
Leenders 2003 hip (0.00001*counts/min) + 0.0378 5 walking speeds 
Leenders 2003 
wrist (0.00000646*counts/min) + 0.0495 5 walking speeds 

*all EE equations give output in units per minute; counts/min: ActiGraph axis 1 counts; 
VM3: vector magnitude of all three axes; mg: ENMO units; BM: body mass in kg; 
lifestyle activities: activities of daily living including household chores; recreational 
activities: leisure-time sports and structured exercises 
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Visit 1 

Participants that were deemed eligible after the phone screening completed visit 1 

at the Center of Human Health and Performance (CH2P) in the Institute of Applied Life 

Sciences on the University of Massachusetts Amherst campus. Study personnel read 

through the informed consent with the participant and answered any questions. Once 

consenting was complete, study personnel took height and weight measurements, in 

duplicate. Participants then underwent a DXA scan operated by trained and certified 

CH2P staff. 

After completing the DXA scan, participants were led into the Exercise Training 

Room and fitted for a mouth-piece to use with the Parvo metabolic cart. Study personnel 

assisted the participant in putting on a Polar heart rate monitor using the chest strap and 

placing the ActiGraph accelerometers on the correct locations on the non-dominant wrist 

and right hip. Once all equipment was comfortably on the participant, the VO2 peak test 

began. All treadmill controls and speed changes were performed by study personnel. This 

incremental treadmill VO2 peak test has been previously used by Bartlett et al. (2011) 

with a similar young, active male population. The participant began with a 5-minute 

warm up period consisting of a 3-minute walk at 4.8 kph and 2-minute jog at 8.0 kph. 

After warm up, study personnel increased the treadmill speed to begin the VO2 peak test.  

The first part of the VO2 peak test consisted of three 2-minute stages at 10 kph, 12 

kph, and 14 kph (6.2 mph, 7.5 mph, and 8.7 mph). After completing the 14 kph stage, the 

treadmill was inclined by 2% in grade every 2 minutes until exhaustion (when the 

participant decided to stop the test). Reaching VO2 max is defined as the highest VO2 

value obtained in a 10-second period when meeting the end-point criteria: (1) heart rate is 
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within 10 beats per minute of age-predicted maximum (220-age), (2) the respiratory 

exchange ratio (RER) is equal to or greater than 1.15, and (3) VO2 plateaus despite an 

increase in workload. This test was considered a VO2 peak (rather than max) test because 

the termination criteria consisted of the participant going to voluntary exhaustion. Once 

the VO2 peak test was complete, study personnel removed equipment from the 

participant, sat the participant after a 5-minute walking cooldown, and monitored their 

condition. Gatorade was provided to the participant when testing was complete to 

rehydrate and help replenish electrolytes and carbohydrates. 

The purpose of conducting the VO2 peak test was to calculate the treadmill speed 

corresponding with 80% of each participant’s VO2 peak. After visit 1, the averages of the 

VO2 values from the last minute of each of the first five stages (4.8, 8.0, 10.0, 12.0, 14.0 

kph) of the VO2 peak test were linearly correlated with the treadmill speed to calculate 

the treadmill speeds correlating to 70% and 80% VO2 peak. The speed correlating with 

80% VO2 peak (80% vVO2 peak) was used as the treadmill speed for all exercise during 

visit 2 and was used as the starting speed for visit 3. The speed correlating with 70% VO2 

peak (70% vVO2 peak) was calculated to use as a minimum speed during visit 3 that 

participants should attempt to remain above for the duration of the run. 

  

Visit 2 

After completing visit 1, participants completed visit 2 between 2 and 14 days 

after visit 1. Visit 2 (short duration running bouts) occurred at the CH2P Exercise 

Training Room. Participants were asked to fast for at least 4 hours prior to this visit. At 
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the beginning of the visit, study personnel fit the participant with the Parvo cart mask, 

Polar heart rate monitor, and ActiGraph accelerometers at the hip and wrist locations 

(same as visit 1). The participant first sat quietly for 20 minutes to establish a seated VO2 

baseline measurement. 

After establishing a baseline measurement, study personnel increased the 

treadmill speed to the speed that corresponds to 80% of the participant's VO2 peak (80% 

vVO2 peak) calculated using data from the VO2 peak test during the first visit. Grade was 

not considered when calculating the treadmill speed corresponding to 80% VO2 peak. 

The participant straddled the treadmill as research personnel increased the belt speed to 

8.0 kph, then the participant was instructed to hop onto the moving belt. Speed was 

increased to 80% vVO2 peak when the participant was jogging on the belt, and a 

stopwatch began when the participant reached the desired speed. This protocol was 

designed to isolate the short bout duration as much as possible while keeping participant 

safety in mind. This protocol was repeated for three separate short bouts; 30, 60, and 120 

seconds. The order of bout duration was randomized and balanced across participants (six 

possible combinations were distributed among the participants, with four repeats). Study 

personnel instructed the participant to straddle the treadmill at the end of the bout while 

the belt came to a stop and to immediately sit for 20 minutes after each short bout. This 

process (straddle treadmill, run at 80% vVO2 peak for short duration, sit for 20 minutes) 

was conducted three times for each short bout duration (30, 60, and 120 seconds). 

A 20-minute EPOC measurement period following these short bouts was chosen 

for three reasons: (1) to capture the fast component and most of, if not all, the slow 

component of EPOC, (2) not to induce too much participant burden, (3) there was no 
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literature found on how long EPOC lasts after very short intense bouts of exercise. After 

measuring VO2 for the third 20-minute EPOC period, study personnel removed the 

equipment from the participant. Total duration of this visit was about 100 minutes. 

 

Visit 3 

After completing visit 2, participants completed visit 3 between 2 and 14 days 

after visit 2. Visit 3 occurred at the Center of Human Health and Performance (CH2P) 

Exercise Training Room. 

Researchers asked participants to use a mode of transportation that involves the 

least amount of physical activity as possible. Participants were instructed to not perform 

any exercise or strenuous activities the day prior and to maintain an overnight fast before 

the third visit (instructed not to consume breakfast, including caffeine). 

Participants were asked to arrive in the morning around 7:00am to the Exercise 

Training Room. Upon arrival, study personnel fit the participant with the Polar heart rate 

monitor, the ActiGraph accelerometers at the hip and wrist locations and the Parvo mask 

just like in visits 1 and 2. Once fitted, participants began a supine VO2 baseline 

measurement at 7:15am lasting 60 minutes. At 8:15am, the Parvo mask was removed 

from the participant, who was allowed a restroom break and a small drink of water. At 

this time the Parvo cart gas analyzers were recalibrated to prevent drift. After 

recalibration, participants began a 10-minute warm up on the treadmill. The first 5 

minutes was a walking warm up at 4.8 kph, then 5 minutes of jogging at 8.0 kph. After 

the warm up, the exercise session began. Participants began the run at 80% vVO2 peak 
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(the speed that corresponds with 80% of the participant's VO2 peak) for 30 minutes. 

Participants were asked to begin at their 80% vVO2 peak treadmill speed and instructed 

that they could decrease the speed if they felt it necessary in order to complete the run. 

Participants were asked to not decrease the treadmill speed below their 70% vVO2 peak 

treadmill speed, as that would classify as terminating the data collection session. All 

treadmill speed changes were supervised by research personnel. The treadmill had a 

safety clip that can be attached to the participant; if the participant began to fall too far 

back on the treadmill, the cord would be pulled so that the treadmill belt immediately 

stops.  

The treadmill belt was stopped at the end of the 30 minutes and the participant 

was asked to resume a supine resting position for 20 minutes. After 20 minutes, research 

personnel reset the Parvo gas analyzers to baseline using room air, which allows for the 

participant to continue wearing the Parvo mask and for the least disruption possible. After 

another 40 minutes (60 minutes after termination of exercise), the Parvo mask was 

removed for full recalibration while the participant was asked if they would like a drink 

of water or like to use the restroom. After this second recalibration, participants resumed 

supine rest for the remaining 2 hours. During all supine resting, participants were allowed 

to watch their choice of pre-approved television shows or movies (documentaries or 

something similar preferred) in order to prevent participants falling asleep and boredom. 
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Visit 3 Timeline: 

7:00am - participant arrived 

7:15am - baseline supine rest began 

8:15am - full recalibration and short break 

8:20am - began exercise (10min warmup + 30min run) 

9:00am - ended exercise, resumed supine resting position 

9:30am – full recalibration and short break 

10:35am – short recalibration (room air sampling) and optional break 

12:05pm - finish session 

 

3.3 Data Analysis and Statistics 

Data were analyzed as a group across participants. Descriptive analyses were used 

to assess data distributions and analyses were specific to the data needs.  A p-value below 

0.05 was considered a significant difference. All data analysis was conducted in custom-

made R scripts (R Core Team, Vienna, Austria) using existing statistical packages. 

Aim 1: Quantify the EPOC magnitude after vigorous exercise sessions that vary 

in duration, including short durations simulating free-living activity (30s, 60s, 120s) and 

a longer bout of structured exercise (30min).  

EPOC magnitude was calculated for each participant as the baseline VO2 subtracted from 

the total post-exercise VO2 value. The post-exercise period was defined between the 

termination of exercise and the end of the measurement period or return to baseline value 

(a return to within 95% confidence interval bounds of the baseline rate for more than five 
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consecutive data points) if it occurred. To calculate time to return to baseline (TTB), each 

participant’s raw VO2 data from the Parvo metabolic cart was fit to a bi-exponential 

function (f(x) = a*exp(b*x) + c*exp(d*x)) in the cftool package in MATLAB (MATLAB 

Version 9.8.0.1380330 (R2020a) Update 2, 2020) to extrapolate the long duration effect 

of the slow component if baseline was not reached before the end of the measurement 

period (Hagberg et al., 1980; Özyener et al., 2001). The TTB was defined as how long (in 

minutes) the modeled VO2 took to reach the mean pre-exercise supine resting VO2 value. 

We hypothesized that both the EPOC magnitude and TTB would increase with exercise 

duration. 

Aim 2: Incorporate measured EPOC into accelerometer EE estimates.  

The average EPOC magnitude across participants for each exercise bout was 

calculated using the methods described under Aim 1 and added to the ActiGraph EE 

estimation equations (Table 7). Equations with MET and VO2 outputs were converted to 

kCals (using conversion factor 1 L O2 = 5 kCals) for comparability. The averaged 

ActiGraph EE estimates with and without EPOC were subtracted from the measured EE 

to calculate bias for both ActiGraph estimations. All data processing and statistics were 

conducted in R software (R Core Team, 2020). We hypothesized that (1) the bias of the 

ActiGraph EE estimates including EPOC would not be significantly different from zero, 

demonstrating that EE estimates can be improved by incorporating EPOC, and (2) the 

bias of the ActiGraph EE estimate without including EPOC would be significantly below 

zero, demonstrating underestimation of EE by the existing ActiGraph EE algorithms. 
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Chapter 4: 

Results 

All participants included in this thesis were young, healthy, recreationally active 

males. Participant characteristics are listed in Table 8. 

Table 8: Participant Characteristics; RMR calculated from visit 3 pre-exercise baseline VO2 (Mean + SD) 

Age 
(years) 

Height 
(m) 

Weight 
(kg) 

BMI 
(kg/m^2) 

VO2 peak 
(mLO2/kg/min) 

80% vVO2 
peak (kph) 

70% vVO2 
peak (kph) BF% FFM (kg) 

RMR in 
mLO2/kg/min 

20.9 + 2.9 1.8 + 0.1 75.4 + 5.3 24.4 + 1.0 50.9 + 3.8 12.7 + 1.1 11.2 + 1.0 16.3 + 4.2 60.7 + 6.2 3.5 + 0.3 

 

Table 9 provides values for the EPOC magnitudes and TTBs after each exercise 

bout. The total post-exercise VO2 magnitudes and EPOC (reported in both VO2 and 

kCals) values significantly increased (p < 0.05) with each increase in exercise bout 

duration. A short increase in exercise duration, from 30 seconds to 60 seconds at 80% 

vVO2max, was enough to elicit a small but significant increase in EPOC EE (p = 0.04). 

Each of the short bout TTBs were significantly different from the long duration exercise 

TTB (p < 0.05), but none of the short bout TTBs were significantly different from each 

other (p > 0.05). 
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Table 9: EPOC magnitude (post-exercise VO2 – baseline VO2) and TTB averaged across participants 
during the post-exercise measurement period (Mean + SD) 
 Exercise Bouts 

 30s 60s 120s 30min 

Total Post-exercise 
VO2 (L O2) 

6.9 + 0.7** 7.1 + 0.8** 7.5 + 0.8** 61.0 + 7.3** 

EPOC (L O2) 1.1 + 0.5** 1.3 + 0.7** 1.7 + 0.7** 10.1 + 4.1** 

EPOC (kCals) 5.5 + 2.4** 7.3 + 3.1** 10.2 + 3.5** 50.4 + 20.4** 

Time to Return to 
Baseline (minutes) 13.3 + 5.1* 13.0 + 5.2* 19.0 + 7.8* 354.4 + 223.8** 

*significantly different (p<0.05) from the 30min bout only 
**significantly different (p<0.05) from all other exercise bouts 

 

Figure 8 graphically displays the bi-exponential EPOC curves for each exercise 

duration during the first 20 minutes of the post-exercise period. When averaging the 

modeled VO2 values across participants, there is little difference between the time it took 

for VO2 values to return to baseline levels (TTB) across the short-duration exercise bouts 

(13.3 minutes, 13.0 minutes, and 19.0 minutes for the 30sec, 60sec, and 120sec bouts 

respectively), but the EPOC magnitudes did increase significantly with each increasing 

bout duration (see Table 9). The TTB according to the biexponential model for the 30-

minute exercise bout was 354.4 minutes on average, which extends beyond the x-axis of 

Figure 8 and the post-exercise measurement period (180 minutes after the termination of 

exercise). 

Table 10 contains the average biexponential coefficients and goodness of fit 

parameters across all participants for each condition (see supplementary Tables S1 and 

S2 for individual coefficients and parameters). Overall, the bi-exponential model 

demonstrated a good fit for the EPOC data during the post-exercise periods after the short 

bouts (R2 = 0.89, 0.88, 0.91 for 30sec, 60sec, and 120sec respectively) but was not as 
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good a fit for the post-exercise EPOC data after the 30-minute bout (R2 = 0.66). Figure 9 

displays the fitted curve and its residuals over the raw data for participant 1 during the 

post-exercise period after the 30-minute run. 

 
Figure 8: Bi-exponential modeled EPOC curves for all exercise bouts over the initial 20-
minutes of the post-exercise period. Baseline VO2 95% confidence intervals are 
highlighted in red. 
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Table 10: Average biexponential model (f(x) = a*exp(b*x) + c*exp(d*x)) coefficients 
and goodness of fit parameters for EPOC models for each exercise duration. 

  30 sec 60 sec 120 sec 30 min 

M
od

el
 

C
oe

ffi
ci

en
ts

 a 1.50 1.54 1.61 2.33 

b -0.03 -0.02 -0.02 -0.01 

c 0.32 0.32 0.35 0.34 

d -1.91E-04 -2.05E-04 -2.29E-04 -1.55E-05 

G
oo

dn
es

s o
f 

Fi
t P

ar
am

et
er

s SSE 1.16 1.41 1.31 35.06 

R Squared 0.89 0.88 0.91 0.66 

Adjusted R Squared 0.88 0.88 0.91 0.66 

RMSE 0.07 0.08 0.07 0.12 

 

 
Figure 9: Example bi-exponential EPOC curve fitted over the 30-minute post-exercise 
period for participant 1. Panel A contains the fitted curve (see Table 10 for the fit 
parameters) with the raw VO2 data points. Panel B contains the residuals. 

A 

B 
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Figure 10 displays raw VO2 data averaged across participants from the Parvo 

metabolic cart with time-synchronous acceleration data (vector magnitude, VM, was 

chosen to represent the sum of the acceleration signal from all 3 axes) from the hip and 

wrist ActiGraph accelerometers. In red is displayed the 95% confidence interval bounds 

of the averaged pre-exercise baseline VO2 to compare to the raw VO2 data (blue). Figure 

10 includes continuous data from the warm up, the 30-minute exercise session, and the 

entire post-exercise period. There are two periods where the acceleration signals spike, 

denoting the times when participants were allowed to take a break to use the bathroom. 

During the breaks, participants were removed from the Parvo metabolic cart (and data 

during the break was extrapolated using linear regression from 10 minutes before and 

after the break for each participant) but the ActiGraph accelerometers remained on the 

participants. 



   
 

54 
 

Figure 10: Raw oxygen consumption and accelerometer data over the 30-minute run and 
post-exercise period averaged across participants. 

  

Figure 11 (30-minute bout) and 13 (short exercise bouts) display the measured EE 

rate in kCals/min (calculated from the Parvo metabolic cart VO2) and the estimated 

kCals/min from the Crouter and Freedson ActiGraph EE equations for each exercise 

bout. Figures 12 (30-minute bout) and 14 (short exercise bouts) are identity plots 

comparing the Crouter and Freedson estimated kCals to the Parvo-measured kCals during 

the exercise and post-exercise periods of each exercise bout.  
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During the 30-minute exercise session, both the Crouter (-4.07 kCals/min) and 

Freedson (-3.92 kCals/min) algorithms underestimated the EE rate. During the post-

exercise period after the 30-minute run, the Crouter algorithm was similar to the 

measured kCals/min and the Freedson algorithm overestimated the EE rate (+1.34 

kCals/min). During the 30-second exercise period, both the Crouter and Freedson 

algorithms overestimated the EE rate (3.58 kCals/min and 2.88 kCals/min, respectively). 

During the 20-minute post-exercise period after the 30-second run, the Crouter algorithm 

underestimated the EE rate by 0.43 kCals/min, and the Freedson algorithm overestimated 

the EE rate by 0.97 kCals/min. During the 60-second run, both the Crouter and Freedson 

algorithms overestimated the EE rate (3.28 kCals/min and 3.73 kCals/min, respectively). 

During the 20-minute post-exercise period after the 60-second run, the Crouter algorithm 

underestimated the EE rate by 0.58 kCals/min, and the Freedson algorithm overestimated 

the EE rate by 0.83 kCals/min. During the 120-second exercise period, both the Crouter 

and Freedson algorithms were not biased in EE rate. During the 20-minute post-exercise 

period after the 120-second run, the Crouter algorithm underestimated the EE rate by 

0.75 kCals/min, and the Freedson algorithm overestimated the EE rate by 0.67 kCals/min. 

Notably, during the 30-second and 60-second exercise bouts in Figure 13, the 

peak VO2 value occurs after the termination of the exercise bout, contributing to error in 

the rate of accelerometer EE during the first two minutes of the post-exercise period. This 

may be due to the exercise bout duration, which is short enough to notice the delay in gas 

exchange between the working muscles and the lungs. 
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Figure 11: Measured vs. Crouter and Freedson estimated kCals/min over the 30-minute 
run and post-exercise period averaged across participants. Minute zero is the last exercise 
data point. SD error bars are depicted on only one side of the data for readability of the 
figure. 
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Figure 12: Identity plot for the Crouter and Freedson accelerometer EE estimation 
algorithms during the 30-minute exercise and 180-minute post-exercise. Each data point 
represents the kCals during one minute of data. 
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Figure 13: Measured vs. Freedson and Crouter estimated kCals/min over each short bout 
(run and post-exercise periods) averaged across participants. SD for each averaged data 
point is depicted as error bars. Minute zero is the last exercise data point (120s panel 
includes one extra data point at time -1 minutes). 
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Figure 14: Identity plots for the Crouter and Freedson accelerometer EE estimation 
algorithms during the short exercise bouts and 20-minute post-exercise periods. Each data 
point represents the kCals during one minute of data. 
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Figure 15 demonstrates the bias of the accelerometer EE estimates in kCals (from 

lowest to highest post-exercise values) during the long-duration (30 minutes) exercise 

data collection session, with the following 20 minutes and 180 minutes post-exercise 

periods. The top panel including only 20-minutes of post-exercise data was included to 

compare to the short bouts and to display the effect on data collection duration on bias 

results. The whole session, exercise only, and post-exercise periods are separated to 

demonstrate which portion of the session drove the whole session bias. The x-axis 

includes selected accelerometer EE equations and the y-axis is bias, calculated as the 

measured EE subtracted from the accelerometer EE estimate. The right panels display the 

bias from the accelerometer EE estimates with the addition of the measured EPOC EE (in 

kCals) attributable to the exercise. The EPOC kCals added to the whole session and post-

exercise bias values were the EPOC kCals measured during 20 minutes of post-exercise 

and 180 minutes of post-exercise. 

Table 11 lists the bias values displayed in figure 14 and notes which equations 

were unbiased during each part of the data collection period according to 95% confidence 

intervals. The size of the confidence intervals in this analysis were large (average range 

between lower and upper 95% bounds: 79.1 kCals) and so reduces the interpretation of 

the results. 

For the entire 180-minute post-exercise data collection without adding EPOC, 

only the Nichols equation did not demonstrate bias on average (18.9 kCals, 95% CI: [-

12.6, 50.5]). When cutting the post-exercise period to only 20 minutes, only the 

Hildebrand hip (-10.3 kCals, 95% CI: [-50.4, 29.8]) and Hildebrand wrist (29.3 kCals, 

95% CI: [-41.8, 100.4]) equations were unbiased.  
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Isolating the 30-minute exercise period, the Hildebrand hip (-27.2 kCals, 95% CI: 

[-67.7, 13.3]) and the Hildebrand wrist (5.05 kCals, 95% CI: [-62.6, 72.7]) were not 

biased. Isolating the 180-mintue post-exercise period after the 30-minute run, the Crouter 

(-2.68 kCals, 95% CI: [-25.1, 19.8]) and Yngve (1.53 kCals, 95% CI: [-19.3, 22.4]) 

equations were not biased. When cutting the post-exercise period to only 20 minutes, 

only the Heil (-1.94 kCals, 95% CI: [-4.49, 0.616]) and Hendelman (-0.33 kCals, 95% CI: 

[-1.49, 0.827]) equations were not biased. 

After adding EPOC to the 180-minute post-exercise whole session values, the 

Heil (-34.3 kCals, 95% CI: [-74.1, 5.45]) and Hendelman (-7.92 kCals, 95% CI: [-45.1, 

29.2]) equations became unbiased. When cutting the post-exercise period to only 20 

minutes, for the whole session values the Hildebrand hip (11.9 kCals, 95% CI: [-29.2, 

53.1]) and Hildebrand wrist (51.5 kCals, 95% CI: [-17.3, 120.3]) equations became 

unbiased. All equations overestimated during the 20-minute and 180-minute isolated 

post-exercise period with added EPOC, except for the Sasaki equation (-54.6 kCals, 95% 

CI: [-84.5, -24.7]) which underestimated EE. 
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Figure 15: Bias is kCals (AG-IC) by method over the 30-minute exercise and the 
following 20-minute and 180-minute post-exercise periods. The right panels display each 
AG bias with added EPOC EE to each AG EE estimate. 
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Table 11: Bias in kCals (Mean and 95% CIs) for the 30-minute run and the 20-minute 
and 180-minute post-exercise periods with and without adding the measured EPOC EE. 

 
No EPOC Added EPOC Added 

 
Method Whole Session Exercise Post-exercise Whole Session Post-exercise 

20 m
inutes post-exercise 

Sasaki -124.5 (-163.4, -85.6) -103.8 (-142.3, -65.3) -20.7 (-22.3, -19.1) -102.3 (-141.5, -63.0) 23.6 (2.95, 44.2) 

Crouter -133.1 (-189.0, -77.1) -122.0 (-177.8, -66.2) -11.0 (-14.3, -7.77) -110.8 (-167.5, -54.2) 33.3 (11.5, 55.1) 

Yngve -126.1 (-162.4, -89.8) -115.6 (-151.8, -79.4) -10.5 (-11.6, -9.4) -103.9 (-140.3, -67.5) 33.8 (13.1, 54.4) 

Heil -181.8 (-214.4, -149.1) -179.8 (-214.3, -145.4) -1.94 (-4.49, 0.616)* -159.5 (-191.5, -127.6) 42.3 (20.4, 64.3) 

Hendelman -164.7 (-195.0, -134.4) -164.4 (-195.3, -133.5) -0.33 (-1.49, 0.827)* -142.5 (-172.5, -112.5) 43.9 (22.8, 65.1) 

Nichols -122.7 (-155.1, -90.2) -127.2 (-160.1, -94.3) 4.56 (3.44, 5.67) -100.4 (-132.9, -68.0) 48.8 (27.8, 69.9) 

Hildebrand Hip -10.3 (-50.4, 29.8)* -27.2 (-67.7, 13.3)* 16.9 (15.0, 18.8) 11.9 (-29.2, 53.1)* 61.2 (39.6, 82.8) 

Freedson -102.4 (-132.0, -72.9) -117.5 (-150.8, -84.2) 15.1 (6.69, 23.5) -80.2 (-110.1, -50.3) 59.4 (34.5, 84.2) 

Leenders Hip -152.1 (-179.8, -124.4) -166.2 (-195.1, -137.4) 14.2 (12.3, 16.1) -129.9 (-157.1, -102.6) 58.5 (36.9, 80.0) 

Hildebrand Wrist 29.3 (-41.8, 100.4)* 5.05 (-62.6, 72.7)* 24.2 (20.2, 28.3) 51.5 (-17.3, 120.3)* 68.5 (48.8, 88.2) 

Brooks -226.5 (-254.4, -198.5) -242.0 (-272.5, -211.6) 15.6 (12.4, 18.7) -204.2 (-230.7, -177.8) 59.8 (37.7, 82.0) 

Leenders Wrist -182.8 (-206.0, -159.6) -212.6 (-238.2, -187.0) 29.7 (26.4, 33.1) -160.6 (-182.6, -138.6) 74.0 (51.8, 96.2) 

  

Method Whole Session Exercise Post-exercise Whole Session Post-exercise 

180 m
inutes post-exercise 

Sasaki -202.7 (-242.5, -162.8) -103.8 (-142.3, -65.3) -98.9 (-119.2, -78.5) -158.4 (-203.6, -113.2) -54.6 (-84.5, -24.7) 

Crouter -124.7 (-179.1, -70.3) -122.0 (-177.8, -66.2) -2.68 (-25.1, 19.8)* -80.4 (-140.8, -20.0) 41.6 (9.36, 73.8) 

Yngve -114.1 (-150.8, -77.4) -115.6 (-151.8, -79.4) 1.53 (-19.3, 22.4)* -69.8 (-112.7, -26.8) 45.8 (14.5, 77.1) 

Heil -78.6 (-109.5, -47.7) -179.8 (-214.3, -145.4) 101.2 (66.6, 135.9) -34.3 (-74.1, 5.45)* 145.5 (99.1, 192.0) 

Hendelman -52.2 (-82.8, -21.6) -164.4 (-195.3, -133.5) 112.2 (90.6, 133.8) -7.92 (-45.1, 29.2)* 156.5 (123.2, 189.8) 

Nichols 18.9 (-12.6, 50.5)* -127.2 (-160.1, -94.3) 146.2 (124.1, 168.3) 63.2 (24.1, 102.4) 190.4 (156.6, 224.3) 

Hildebrand Hip 204.5 (167.7, 241.3) -27.2 (-67.7, 13.3)* 231.7 (207.4, 256.0) 248.8 (200.6, 296.9) 276.0 (239.1, 312.8) 

Freedson 122.8 (51.6, 193.9) -117.5 (-150.8, -84.2) 240.3 (156.0, 324.6) 167.0 (85.8, 248.3) 284.6 (190.9, 378.3) 

Leenders Hip 82.3 (54.8, 109.8) -166.2 (-195.1, -137.4) 248.5 (223.9, 273.1) 126.5 (91.1, 162.0) 292.8 (256.1, 329.5) 

Hildebrand Wrist 281.0 (213.0, 349.0) 5.05 (-62.6, 72.7)* 276.0 (251.7, 300.2) 325.3 (261.9, 388.7) 320.2 (285.0, 355.5) 

Brooks 42.8 (16.7, 68.8) -242.0 (-272.5, -211.6) 284.8 (254.0, 315.6) 87.0 (54.5, 119.6) 329.1 (286.3, 371.8) 

Leenders Wrist 196.3 (170.4, 222.3) -212.6 (-238.2, -187.0) 408.9 (378.6, 439.2) 240.6 (206.7, 274.5) 453.2 (410.9, 495.4) 

*not significantly different from zero, unbiased 

 

Figure 16 and table 12 demonstrate the bias of the accelerometer EE estimates in 

kCals during each short exercise bout (exercise only), 20-minute post-exercise period 

only, and the whole data collection session (exercise + post-exercise). During all 

constituent parts (whole session, exercise, and post-exercise) of the 30-second running 
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bout without adding EPOC, all the accelerometer EE estimation equations demonstrated 

bias by either over or underestimating EE. When adding EPOC to the 30-second bout 

whole session analysis, the Crouter (0.53 kCals, 95% CI: [-1.49, 2.55]) and Yngve (1.96 

kCals, 95% CI: [-0.2, 4.1]) equations were not biased. Only the Ygnve equation (-0.89 

kCals, 95% CI: [-3.01, 1.22]) was not biased when adding EPOC EE to the post-exercise 

period following the 30-second run. 

During the 60-second exercise period, the Brooks (-0.50 kCals, 95% CI: [-1.73, 

0.72]) and Leenders wrist (0.49 kCals, 95% CI: [-0.75, 1.73]) equations were unbiased, 

and during the post-exercise period following the 60-second running bout the Heil 

equation (1.76 kCals, 95% CI: [-0.48, 3.99]) was unbiased. When adding EPOC to the 

whole session and post-exercise bias values, the Crouter (-1.0 kCals, 95% CI: [-4.24, 

2.23]) and Yngve (1.66 kCals, 95% CI: [-1.19, 4.51]) equations were unbiased for the 

whole session and only the Yngve equation (-2.15 kCals, 95% CI: [-4.52, 0.22]) was 

unbiased for the post-exercise period. 

During the 120-second whole session bout, the Hendelman (2.17 kCals, 95% CI: 

[-6.34, 2.00]) and Nicholas (3.74 kCals, 95% CI: [-0.56, 8.04]) equations were unbiased. 

Isolating the 120-second exercise period, the Crouter (0.44 kCals, 95% CI: [-4.12, 5.0]), 

Freedson (1.26 kCals, 95% CI: [-1.87, 4.40]), Heil (-2.87 kCals, 95% CI: [-5.84, 0.11]), 

Hendelman (-1.84 kCals, 95% CI: [-4.82, 1.14]), Leenders hip (-1.94 kCals, 95% CI: [-

4.74, 0.85]), Nicholas (0.63 kCals, 95% CI: [-2.60, 3.86]), Sasaki (2.43 kCals, 95% CI: [-

1.16, 6.01]), and Yngve (1.38 kCals, 95% CI: [-2.14, 4.90]) equations were unbiased. 

During the post-exercise period following the 120-second run, the Heil (-1.40 kCals, 95% 

CI: [-4.04, 1.24]) and Hendelman (-0.33 kCals, 95% CI: [-3.06, 2.39]) equations were 
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unbiased. Adding EPOC to the 120-second whole session bout, the Crouter (-4.37 kCals, 

95% CI: [-9.73, 1.00]) and Yngve (-1.04 kCals, 95% CI: [-5.53, 3.45]) equations were 

unbiased. None of the equations were unbiased when adding EPOC EE to the post-

exercise period.  
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Figure 16: Bias is kCals (AG-IC) by method over the whole data collection and its 
constituent parts (exercise and 20-minute post-exercise periods). The right panels display 
each AG bias with added EPOC EE to each AG EE estimate. 
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Table 12: Bias in kCals (Mean and 95% CIs) for each exercise bout and 20-min post-
exercise resting period with and without adding the measured EPOC EE. 

 No EPOC Added EPOC Added  

Method Whole Session Exercise Post-exercise Whole Session Post-exercise 

30-second bout 

Sasaki -14.8 (-17.4, -12.3) 3.07 (2.27, 3.87) -17.9 (-20.4, -15.5) -9.3 (-11.7, -6.89) -12.4 (-14.7, -10.0) 

Crouter -5.01 (-6.83, -3.19) 3.58 (3.02, 4.14) -8.59 (-10.6, -6.62) 0.534 (-1.49, 2.55)* -3.04 (-5.1, -0.986) 

Yngve -3.58 (-5.54, -1.63) 2.85 (2.03, 3.68) -6.44 (-8.35, -4.52) 1.96 (-0.181, 4.1)* -0.891 (-3.01, 1.22)* 

Heil 6.52 (4.56, 8.49) 1.9 (1.24, 2.55) 4.63 (2.59, 6.66) 12.1 (9.2, 14.9) 10.2 (7.24, 13.1) 

Hendelman 7.81 (6.3, 9.32) 2.14 (1.46, 2.81) 5.67 (4.15, 7.2) 13.4 (11.2, 15.5) 11.2 (9.08, 13.4) 

Nichols 11.8 (10.3, 13.3) 2.71 (1.96, 3.46) 9.08 (7.61, 10.6) 17.3 (15.1, 19.6) 14.6 (12.4, 16.8) 

Hildebrand Hip 23.4 (21.4, 25.5) 4.69 (3.92, 5.46) 18.8 (17.1, 20.4) 29.0 (25.6, 32.4) 24.3 (21.1, 27.5) 

Freedson 22.1 (14.1, 30.1) 2.88 (2.15, 3.6) 19.3 (11.4, 27.2) 27.7 (18.4, 37.0) 24.8 (15.6, 34.0) 

Leenders Hip 22.4 (21.0, 23.8) 2.14 (1.51, 2.76) 20.2 (18.8, 21.7) 27.9 (25.5, 30.4) 25.8 (23.3, 28.2) 

Hildebrand Wrist 27.0 (25.2, 28.8) 5.45 (4.5, 6.4) 21.6 (19.7, 23.4) 32.5 (29.7, 35.4) 27.1 (24.3, 29.9) 

Brooks 25.6 (23.9, 27.3) 0.989 (0.53, 1.45) 24.6 (22.7, 26.4) 31.1 (28.1, 34.2) 30.1 (27.0, 33.3) 

Leenders Wrist 39.1 (37.3, 40.9) 1.47 (0.991, 1.95) 37.7 (35.8, 39.5) 44.7 (41.6, 47.7) 43.2 (40.1, 46.3) 
 

Method Whole Session Exercise Post-exercise Whole Session Post-exercise 

60-second bout 

Sasaki -16.7 (-19.7, -13.6) 4.31 (2.47, 6.15) -21.0 (-23.5, -18.5) -9.4 (-12.3, -6.47) -13.7 (-16.1, -11.3) 

Crouter -8.27 (-11.4, -5.1) 3.28 (0.826, 5.74) -11.6 (-13.7, -9.38) -1.0 (-4.24, 2.23)* -4.29 (-6.77, -1.8) 

Yngve -5.6 (-8.16, -3.04) 3.81 (1.98, 5.64) -9.42 (-11.5, -7.37) 1.66 (-1.19, 4.51)* -2.15 (-4.52, 0.218)* 

Heil 3.39 (1.22, 5.55) 1.63 (0.0638, 3.19) 1.76 (-0.477, 3.99)* 10.7 (7.58, 13.7) 9.02 (5.91, 12.1) 

Hendelman 4.97 (2.78, 7.17) 2.15 (0.574, 3.72) 2.83 (1.06, 4.6) 12.2 (9.39, 15.1) 10.1 (7.62, 12.6) 

Nichols 9.69 (7.46, 11.9) 3.41 (1.71, 5.1) 6.28 (4.54, 8.02) 17.0 (14.0, 19.9) 13.5 (11.0, 16.1) 

Hildebrand Hip 22.9 (19.8, 26.1) 6.9 (5.2, 8.59) 16.0 (14.0, 18.1) 30.2 (25.8, 34.6) 23.3 (19.6, 27.0) 

Freedson 20.3 (12.2, 28.5) 3.73 (2.09, 5.36) 16.6 (8.5, 24.7) 27.6 (18.1, 37.1) 23.9 (14.4, 33.3) 

Leenders Hip 19.6 (17.6, 21.7) 2.07 (0.589, 3.56) 17.6 (15.8, 19.3) 26.9 (23.8, 30.0) 24.8 (22.0, 27.6) 

Hildebrand Wrist 26.1 (22.7, 29.5) 8.08 (5.96, 10.2) 18.0 (15.8, 20.2) 33.4 (29.1, 37.6) 25.3 (21.7, 28.8) 

Brooks 21.4 (19.3, 23.6) -0.503 (-1.73, 0.719)* 21.9 (19.8, 24.1) 28.7 (25.2, 32.2) 29.2 (25.7, 32.7) 

Leenders Wrist 35.7 (33.4, 37.9) 0.489 (-0.747, 1.73)* 35.2 (33.1, 37.3) 42.9 (39.3, 46.5) 42.4 (39.0, 45.8) 
 

Method Whole Session Exercise Post-exercise Whole Session Post-exercise 

120-second bout 

Sasaki -21.5 (-27.0, -16.1) 2.43 (-1.16, 6.01)* -24.0 (-27.6, -20.4) -11.4 (-16.3, -6.53) -13.8 (-16.4, -11.2) 

Crouter -14.5 (-20.1, -8.95) 0.437 (-4.12, 5.0)* -15.0 (-18.1, -11.8) -4.37 (-9.73, 1.0)* -4.8 (-7.24, -2.37) 

Yngve -11.2 (-16.0, -6.44) 1.38 (-2.14, 4.9)* -12.6 (-15.6, -9.53) -1.04 (-5.53, 3.45)* -2.42 (-4.73, -0.12) 

Heil -4.26 (-7.96, -0.569) -2.87 (-5.84, 0.107)* -1.4 (-4.04, 1.24)* 5.89 (2.11, 9.67) 8.76 (6.2, 11.3) 

Hendelman -2.17 (-6.34, 2.0)* -1.84 (-4.82, 1.14)* -0.333 (-3.06, 2.39)* 7.99 (3.9, 12.1) 9.82 (7.59, 12.1) 

Nichols 3.74 (-0.556, 8.04)* 0.628 (-2.6, 3.86)* 3.12 (0.449, 5.78) 13.9 (9.63, 18.2) 13.3 (11.0, 15.5) 

Hildebrand Hip 20.7 (15.7, 25.8) 7.72 (4.6, 10.8) 13.0 (10.7, 15.3) 30.9 (25.1, 36.7) 23.2 (19.7, 26.6) 

Freedson 14.7 (6.34, 23.1) 1.26 (-1.87, 4.4)* 13.4 (5.74, 21.1) 24.9 (15.4, 34.3) 23.6 (14.8, 32.3) 

Leenders Hip 12.5 (8.59, 16.3) -1.94 (-4.74, 0.851)* 14.4 (11.9, 16.9) 22.6 (18.6, 26.7) 24.6 (22.2, 27.0) 

Hildebrand Wrist 25.9 (19.8, 31.9) 10.7 (5.54, 15.9) 15.1 (12.4, 17.9) 36.0 (29.9, 42.1) 25.3 (22.4, 28.2) 

Brooks 11.8 (8.4, 15.2) -6.97 (-9.25, -4.69) 18.8 (16.2, 21.4) 22.0 (18.1, 25.8) 28.9 (26.0, 31.9) 

Leenders Wrist 27.0 (23.5, 30.5) -4.99 (-7.28, -2.71) 32.0 (29.4, 34.6) 37.2 (33.2, 41.2) 42.2 (39.3, 45.0) 

*not significantly different from zero, unbiased
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Chapter 5: 

Discussion 

The purpose of this study was to investigate the bias of accelerometer EE 

estimation algorithms during the post-exercise period after four different durations of 

exercise, holding intensity constant. We hypothesized that (1) the accelerometer EE 

estimation equations would underestimate EE during the post-exercise period due to 

EPOC not being captured by the accelerometers, and (2) that the underestimation would 

increase with increasing bout duration, if intensity was held constant, due to the resulting 

increase in EPOC magnitude. 

The results from this study contradict the original hypothesis that accelerometer 

EE estimation equations would underestimate EE as compared to indirect calorimetry 

during the post-exercise periods. After the 30-minute run, nine of the twelve algorithms 

overestimated EE during the post-exercise period, two were not biased, and only one 

underestimated EE. After the 30-second run, nine of the twelve algorithms overestimated 

EE and three underestimated EE during the post-exercise period. After the 60-second run, 

eight of the twelve overestimated EE, one was not biased, and three underestimated EE. 

After the 120-second run, seven algorithms overestimated EE, two were not biased, and 

three underestimated EE. With increasing bout duration, EPOC magnitude did increase 

across participants. Adding the measured EPOC EE from the Parvo metabolic cart 

reduced the bias of the algorithms that underestimated EE during the post-exercise 

period, but increased the bias of the algorithms that overestimated EE. 
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The unexpected overestimation of EE by the accelerometer algorithms occurred 

because of two factors, (1) the accelerometer EE estimation equations in this analysis 

(with the exception of Crouter 2006) are standard linear models, and (2) none of the 

accelerometer EE estimation equations that overestimated EE during the post-exercise 

period included lying rest in their calibration protocols, producing accelerometer-based 

estimates of resting EE (y-intercept values) that were above the true resting EE. 

Although linear regression is a useful model to understand the basic relationships 

between two variables, the relationship between motion data (acceleration) from a single 

body part and EE is much more complex (Freedson et al., 1998; Hildebrand et al., 2014). 

Linear regression models adequately describe acceleration-EE relationships during 

specific types of activities, such as ambulatory activities, but do not adequately describe 

the acceleration-EE relationship during a wide range of activities involving irregular 

movement patterns like resistance training, common recreational sports, household 

activities and some sedentary behaviors, plus regular ambulatory movement like 

locomotion. None of the linear models in this analysis included lying rest during their 

calibration protocols (Table 7) and only included data from activities demanding higher 

energy expenditure than that of lying rest. The exclusion of lying rest may be partially 

due to the public health focus on classifying higher intensity activities. Basing a model on 

activities with higher EE values resulted in linear models with y-intercepts above the 

resting metabolic rate of the participants in this study. When one of these linear models is 

applied to a wearer who is not performing any motion, the output of the linear model is 

solely the y-intercept. For example, the average resting rate of participant 1 during the 

post-exercise period was 1.24 kCals/min and the y-intercept of the Freedson kCal 
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equation for participant 1 is 2.97 kCals/min ([0.1346*(BM in kg)] - 7.37418). With no 

input to the accelerometer while the participant is resting, the Freedson kCal equation 

estimated an EE rate above the resting metabolic rate, resulting in a large overestimation 

of total EE over the post-exercise period. In contrast, during the post-exercise period after 

the 30-minute run, the Sasaki algorithm underestimated EE because the y-intercept was 

below resting EE of participants, the Yngve algorithm did not demonstrate bias because 

the y-intercept was similar to that of the mean resting EE, and the Crouter algorithm (not 

based on basic linear regression) did not demonstrate bias because of its branching logic. 

Crouter (2006) includes separate equations for three different conditions: (1) regular, 

ambulatory activities, (2) irregular lifestyle activities, and (3) sedentary activities with 

little to no motion. Depending on the 10-sec CV of the 1-second ActiGraph counts, the 

minute-by-minute data is then run through the appropriate equation. These results support 

the use of more complex algorithms that use branching logic or machine learning based 

on one or several of the many features of accelerometer output to determine activity type 

before running data through an EE equation. Although, current machine learning models 

do not always perform better in estimating EE than traditional hip-based linear models 

(Montoye et al., 2017). 

During the exercise portion of the 30-minute run session, ten of the twelve 

accelerometer EE estimation algorithms underestimated EE and the Hildebrand hip and 

wrist algorithms were not biased. None of the calibration protocols included as high 

intensity activity as was performed in this validation protocol, which may be why they 

were consistently inaccurate, for two primary reasons: the public health focus on 

categorizing PA intensity zones and for researchers to minimize participant burden. Most 
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EE estimation equations are developed to discern cut-points determining “zones” of PA 

intensity, and so most researchers would aim to reach the minimum requirement of 

“vigorous” (> 6 METs). In a free-living setting, any activity above the determined cut-

point would simply be classified as “vigorous.” Researchers could then quantify how 

many minutes an individual spends in a given PA intensity zone. In addition, the 

ActiGraph output counts/min plateaus or decreases (known as the inverted-U 

phenomenon) with increasing speed or intensity past 10 kph or 6 mph (John et al., 2012). 

Because participants ran, on average, between 11.2 and 12.7 kph and ten of the twelve 

ActiGraph EE estimation equations are based on counts/min, the inverted-U phenomenon 

may have partially driven the underestimation of EE during the run. The Hildebrand 

algorithms are based on ENMOs rather than counts, and so do not experience the 

inverted-U phenomenon. 

Analyzing the 30-minute run and 180-minute post-exercise period together, six of 

the twelve algorithms overestimated EE, five underestimated EE, and one was not biased. 

Overall, these algorithms are not adequate in estimating EE during high intensity (70-

80% VO2 peak) treadmill running, lying rest, or during a period of time that involves 

high intensity running followed by a long bout of rest. These results are consistent with 

previous studies that demonstrate that linear models do not accurately estimate EE 

outside of the range of activities included in the calibration protocols (Bai et al., 2016; 

Crouter et al., 2006; Lyden et al., 2011). 

Extrapolating these results to free-living scenarios, ActiGraph accelerometer EE 

estimation equations based on linear models are likely to overestimate EE significantly in 

a largely sedentary population (Crouter et al., 2006), due to the y-intercepts of linear 



   
 

72 
 

equations being above true resting EE. The EE estimation equations included in these 

analyses significantly overestimated EE during activities with little motion, and so are too 

biased to be used in public health surveillance studies in the United States where adult 

participants may be spending up to or more than 12 hours per day of sedentary time (Diaz 

et al., 2018). 

Researchers looking to use an accelerometer EE estimation equation must be 

aware of the effects their protocol activities and population may have on the EE 

estimates. One of the main findings of this analysis includes the effect that exercise and 

measurement duration have on EE estimates. There was no single EE equation that 

performed better than other equations across all conditions. Some equations demonstrated 

a lack of bias during certain exercise conditions, some demonstrated a lack of bias during 

certain post-exercise conditions, and others demonstrated a “wash-out” effect (under and 

overestimation during the exercise and post-exercise periods, respectively, resulted in an 

unbiased total EE for the whole session), but there was no consistency across all 

conditions. Thus, researchers should select an equation that best suits their specific needs 

based on validation studies. 

The strengths of this study include (1) oxygen consumption data obtained in small 

time intervals from the Parvo metabolic cart, allowing for time synchrony between the 

VO2 and accelerometer data, (2) participants’ behavior during the pre-exercise and post-

exercise periods were strictly controlled to lying rest, (3) the comparison between pre-

exercise resting VO2 and post-exercise VO2 eliminates concerns about day-to-day 

variability in metabolic rate, (4) the exploration of the effect of short running bouts (30s, 

60s, and 120s) of exercise on EPOC, rarely seen in the EPOC literature, and (5) the 
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inclusion of twelve accelerometer EE estimation equations. Limitations of this study 

include (1) the exclusion of the prolonged slow component of EPOC after the 30-minute 

run due to the post-exercise data collection time being limited to 180 minutes, (2) the 

involvement of high participant burden due to the intensity of the exercise (70-80% VO2 

peak) and participants having to wear the Parvo mask for several hours, (3) the removal 

of participants from the Parvo cart while it was being recalibrated resulted in data gaps in 

the post-exercise period, (4) only one non-linear regression algorithm was included in 

this analysis, (5) the sample in this study only included young, healthy and fit males, and 

(6) accelerometer EE equations that did not estimate kCals directly were translated to 

kCals using 1 L O2 = 5 kCals conversion factor, which may not be as accurate at high 

intensities. The listed limitations were addressed by (1) extrapolating the duration of the 

EPOC slow component with biexponential models, (2) allowing participants to decrease 

the treadmill speed as long as intensity remained between 70-80% VO2 peak and building 

breaks into the post-exercise protocol, (3) data during the breaks was extrapolated using 

linear regression from 10 minutes of pre-break data and 10 minutes of post-break data. 

The fourth and fifth limitations should be addressed in future studies and analyses with 

the purpose of including more non-linear regression algorithms and different populations. 

Future directions should focus on developing EE estimation algorithms with 

branching logic and tailoring equations to the EE rates of specific types of activity. 

Developing a branching logic algorithm (also known as decision trees) based on different 

features of the accelerometer requires expertise in accelerometry and algorithm 

development and resources to run a comprehensive study with protocols spanning several 

activity types, which may increase participant burden. Researchers should also validate 
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existing EE equations outside of the activities they were calibrated in to determine their 

generalizability and inform other researchers which equations are appropriate for 

different settings and populations. Future studies investigating the lasting effects of 

EPOC should utilize whole-room calorimeters with longer stays to study the prolonged 

effect of EPOC after intense exercise, which according to the results of this study could 

last about 354 minutes after a 30-minute run at 80% VO2 peak. Future accelerometer EE 

estimation validation studies should also include more machine learning EE models as 

they are developed in order to investigate their potential for improved performance over 

linear models. 
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Supplementary Figures and Tables 

 

Figure S1: Identity plots for each ActiGraph EE estimation equation for the 30-minute 
exercise session. Exercise data points are in red, post-exercise data points are in yellow. 
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Table S1: Biexponential model coefficients for all individual participant models. 

 Participant a b c d 

30
se

c 
1 1.66 -0.02 0.27 -1.45E-05 
2 1.40 -0.02 0.39 -1.54E-04 
3 1.98 -0.03 0.37 -1.65E-04 
4 1.37 -0.04 0.35 -3.63E-04 
5 1.91 -0.04 0.34 -3.23E-04 
6 1.43 -0.04 0.32 -3.27E-04 
7 1.34 -0.03 0.32 -2.10E-04 
8 1.44 -0.02 0.28 -1.00E-06 
9 1.00 -0.02 0.28 -1.59E-04 

60
se

c 

1 2.04 -0.02 0.27 -7.12E-06 
2 1.89 -0.03 0.39 -1.97E-04 
3 1.77 -0.02 0.36 -1.35E-04 
4 1.20 -0.03 0.37 -4.62E-04 
5 1.61 -0.02 0.31 -1.92E-04 
6 1.10 -0.03 0.30 -1.86E-04 
7 1.35 -0.03 0.28 -1.70E-04 
8 1.61 -0.02 0.32 -1.86E-04 
9 1.31 -0.02 0.29 -3.10E-04 

12
0s

ec
 

1 2.13 -0.02 0.31 -7.98E-05 
2 1.87 -0.02 0.46 -2.83E-04 
3 1.25 -0.02 0.39 -2.63E-04 
4 1.38 -0.03 0.34 -2.22E-04 
5 1.99 -0.03 0.37 -2.99E-04 
6 1.34 -0.02 0.31 -2.57E-04 
7 1.68 -0.04 0.38 -4.27E-04 
8 1.34 -0.02 0.34 -1.79E-04 
9 1.49 -0.02 0.29 -4.75E-05 

30
m

in
 

1 2.64 -0.01 0.30 -5.14E-06 
2 2.11 -0.01 0.36 -4.24E-05 
3 2.56 -0.01 0.34 -5.71E-06 
4 2.90 -0.02 0.36 -2.46E-05 
5 2.09 -0.01 0.38 -1.22E-05 
6 2.38 -0.01 0.32 -8.04E-06 
7 2.43 -0.01 0.36 -1.00E-05 
8 2.42 -0.01 0.38 -2.72E-06 
9 1.44 -0.01 0.28 -2.88E-05 
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Table S2: Goodness of fit parameters for all individual participant biexponential models. 

 Participant SSE R squared dfe Adjusted R squared RMSE 

30
se

c 
1 2.25 0.87 201 0.87 0.11 
2 1.37 0.87 230 0.87 0.08 
3 1.17 0.92 235 0.92 0.07 
4 1.39 0.83 229 0.83 0.08 
5 0.97 0.92 228 0.91 0.07 
6 0.61 0.92 233 0.92 0.05 
7 1.59 0.79 207 0.79 0.09 
8 0.59 0.94 175 0.94 0.06 

9 0.52 0.91 229 0.91 0.05 

60
se

c 

1 1.77 0.93 214 0.93 0.09 
2 1.29 0.92 224 0.92 0.08 
3 0.78 0.95 235 0.95 0.06 
4 1.25 0.84 226 0.84 0.07 
5 1.15 0.91 218 0.91 0.07 
6 1.11 0.84 235 0.83 0.07 
7 2.69 0.70 192 0.70 0.12 
8 0.92 0.94 208 0.94 0.07 

9 1.69 0.87 231 0.87 0.09 

12
0s

ec
 

1 1.30 0.95 215 0.95 0.08 
2 3.03 0.86 233 0.85 0.11 
3 0.78 0.93 228 0.93 0.06 
4 0.89 0.89 229 0.89 0.06 
5 0.86 0.95 231 0.95 0.06 
6 0.95 0.90 228 0.90 0.06 
7 1.81 0.86 220 0.86 0.09 
8 1.13 0.90 221 0.90 0.07 

9 1.02 0.92 225 0.91 0.07 

30
m

in
 

1 20.11 0.72 2106 0.72 0.10 
2 23.74 0.68 2001 0.68 0.11 
3 37.32 0.63 2124 0.63 0.13 
4 64.89 0.73 3467 0.73 0.14 
5 36.38 0.51 1925 0.51 0.14 
6 22.22 0.67 2166 0.67 0.10 
7 29.91 0.65 2085 0.65 0.12 
8 50.13 0.68 2745 0.68 0.14 

9 30.81 0.65 3087 0.65 0.10 
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Appendix A 
Informed Consent 

Consent Form for Participation in a Research Study 
University of Massachusetts Amherst 

 
 
Researcher(s):  John Sirard, PhD; Nicholas Remillard, B.S. 
Study Title:   Improving Accelerometer Energy Expenditure Predictions 
 
 

1. WHAT IS THIS FORM? 
This form is called a Consent Form. It will give you information about the study so you 
can make an informed decision about participation in this research. We encourage you to 
take some time to think this over and ask questions now and at any other time. If you 
decide to participate, you will be asked to sign this form and you will be given a copy for 
your records. 
 
 

2. WHAT ARE SOME OF THE IMPORTANT ASPECTS OF THIS 
RESEARCH STUDY THAT I SHOULD BE AWARE OF? 

1) Consent is being sought for participation in this research study. Participation is 
voluntary. 

2)  The purpose of this study is to improve accelerometer energy predictions, specifically 
by including the metabolism experienced after exercise into prediction models. 

3) You will be asked to come to the laboratory for three visits. The expected duration of 
your participation is 10 hours over a period of 2-6 weeks. Visit 1 will include the 
consent process, height and weight measurements, a DXA scan, and an incremental 
VO2 peak (aerobic capacity) test on a treadmill. At visit 2, you will perform vigorous 
exercise bouts of different durations (30 seconds, 1 minute, and 2 minutes) at 80% VO2 
peak. At visit 3, you will perform a long-duration (30 minutes) vigorous (80% VO2 
peak) exercise session, with 1 hour of laying rest before and 3 hours of rest after. 

4) There are minimal to moderate risks associated with the procedures in this study. You 
may experience muscle soreness or discomfort, and there is a slight risk of falling while 
on the treadmill. These risks are increased during the maximal treadmill test. The DXA 
scan does involve ionizing radiation, though a small amount (about 5% of a 
transcontinental flight). 

5) You will receive no direct benefit from participating in this research study. 
 
 

3. WHY ARE WE DOING THIS RESEARCH STUDY? 
Accelerometers are wearable devices often used to measure physical activity and energy 
expenditure (calories) in epidemiological studies. The purpose of this study is to improve 
accelerometer-based energy expenditure estimates by incorporating the elevated metabolism 
experienced after exercise into accelerometer prediction methods. 
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4. WHO CAN PARTICIPATE IN THIS RESEARCH STUDY? 
Ten participants will participate in this study, each must be a young (18-30 years) male 
with a BMI between 18.0-24.9 kg/m2. You must score at least 24 points on the Godin-
Shepherd Leisure-time questionnaire and exercise on a weekly basis. Additionally, you 
must be healthy by self-report, free from any chronic disease (cardiovascular, pulmonary, 
neurological), free from musculoskeletal injury (current or prior history) that may impede 
them from performing vigorous exercise, and be able to ambulate without assistance. 
 
 

5. WHERE WILL THIS RESEARCH STUDY TAKE PLACE AND HOW 
MANY PEOPLE WILL PARTICIPATE? 

This research will be conducted at the University of Massachusetts Amherst at the Center 
for Human Health and Performance (CHHP). We expect to enroll 10 males in this study, 
between the ages of 18 and 30 years. 
 
 

6. WHAT WILL I BE ASKED TO DO AND HOW MUCH TIME WILL IT 
TAKE? 

Prior to your first visit, you will be screening by telephone to detail the study protocol in 
full, give you the opportunity for you to ask questions, obtain your medical history, 
medication use, and physical activity habits to determine eligibility. The medical history 
includes questions about chronic diseases, smoking status, medications, and incident 
history. The medication use section includes questions about your regular use of any 
prescription or over-the-counter medications to screen for any medications that may 
affect resting or exercise metabolism, such as hormone therapy or beta-blockers. Physical 
activity status is assessed using the Godin-Shepherd Leisure Time questionnaire, in 
addition to questions about running habits within the past 2 months. A score equal to or 
above 24 points on the Godin-Shepherd Leisure Time questionnaire is determined to be 
active. Prior to your first visit, you will have answered questions on the Physical Activity 
Readiness Questionnaire (PARQ) to determine safety for exercise and on a DXA safety 
screening form to ensure your safety during this scan.  
 
At the beginning of visit 1, study personnel will read through the informed consent with 
you. You are encouraged to ask questions at any time during this process. To ensure 
comprehension of the study and what you will be asked to do, we will ask you to describe 
the study and what you will be asked to do in your own words. Points of confusion or 
missed elements will be reviewed again to ensure comprehension. Following this process, 
you and the research staff member will sign the consent form. 
 
Visit 1 (~2 hours): If you are deemed eligible after the phone screening, you will 
complete visit 1 at the Center of Human Health and Performance (CH2P) in the Institute 
of Applied Life Sciences on the University of Massachusetts Amherst campus. Study 
personnel will read through the informed consent with you and answer any questions. 
Once consenting is complete, study personnel will take height and weight measurements. 
You will then undergo a DXA scan operated by trained and certified CH2P staff.  
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A DXA (dual-energy X-ray absorptiometry) scan, also called a bone density scan, is a 
common technique used to measure bone density. It can also be used to estimate body 
composition (% fat and % lean mass), as in this study. The DXA scan will involve lying 
on a padded table while a scanning arm passes over you. This test will last no longer than 
30 minutes. This completely painless procedure is easily performed and involves minimal 
radiation exposure. 
 
 In accordance with Massachusetts Department of Public Health guidelines, DXA scans 
are performed by a certified technician. During the scan you will be exposed to low 
amounts of ionizing radiation; these levels are approximately 2% of that you would be 
exposed to during a chest X-Ray or 5% of that you would receive from a cross-country 
airplane flight. 
 
After completing the DXA scan, you will be led into the Exercise Training Room and 
fitted for a mouth-piece to use with the Parvo metabolic cart. Study personnel will assist 
you in putting on a Polar heart rate monitor using the chest strap and placing the 
ActiGraph accelerometers on the correct locations on the non-dominant wrist and right 
hip. Once all equipment is comfortably on you, the VO2 peak test will begin. All 
treadmill controls and speed changes will be performed by study personnel. You will 
begin by warming up with a 3-minute walk at 3 mph and a 2-minute jog at 5mph.. After 
warm up, study personnel will increase the treadmill speed to begin the VO2 peak test. 
The first part of the test consists of three 2-minute stages at 10 kmh, 12 kmh, and 14 kmh 
(6.2 mph, 7.5 mph, and 8.7 mph). After completing the 14 kmh stage, the treadmill will 
be inclined by 2% every 2 minutes until exhaustion. After exhaustion is reached, you will 
be asked to complete a 5-minute cooldown at 3mph. Once the VO2 peak test is complete, 
study personnel will remove equipment and instruct you to sit to monitor your condition. 
A Gatorade will be provided to rehydrate, replenish electrolytes and carbohydrates. 
 
Visit 2 (~2 hours): After completing visit 1, you will complete visit 2 between 2 and 14 
days after visit 1. Visit 2 will occur at the Center of Human Health and Performance 
(CH2P) Exercise Training Room again. At the beginning of the visit, study personnel will 
fit you with the Parvo cart mouth-piece, Polar heart rate monitor, and ActiGraph 
accelerometers at the hip and wrist locations. You will first sit quietly for 20 minutes to 
establish a seated VO2 baseline measurement (you will have the choice to watch TV 
while sitting quietly). During this visit, you will perform three bouts of exercise in 
random order including a 30-second bout, a 1-minute bout, and a 2-minute bout. After 
establishing your seated VO2 baseline, you will be asked to step onto the treadmill and 
straddle the treadmill belt. Study personnel will turn on the treadmill to the speed that 
corresponds with 80% of your VO2 peak calculated using data from the VO2 peak test 
during the first visit. You will step onto the treadmill belt and run at this speed for either 
30 seconds, 60 seconds, or 120 seconds. At the end of your bout, you will be asked to 
straddle the treadmill belt and the treadmill will be stopped. Immediately after the 
exercise bout, study personnel will instruct you to sit for 30 minutes. After your rest you 
will repeat the protocol two more times for the other two durations at 80% VO2 peak. 
After each of the bouts, study personnel will instruct you to sit and rest for 30 minutes. 
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Once your final bout and rest is complete, study personnel will remove the equipment 
and provide you with water and a snack. 
 
Visit 3 (~5 hours): Your third visit will be completed between 2 and 14 days after visit 2. 
Visit 3 will occur at the Center of Human Health and Performance (CH2P) Exercise 
Training Room. You will be asked to arrive in the morning at 7:00am to the Exercise 
Training Room. At the beginning of the visit, study personnel will fit you with the Parvo 
cart mouth-piece, Polar heart rate monitor, and ActiGraph accelerometers at the hip and 
wrist locations. You will first sit quietly for 60 minutes to establish a lying VO2 baseline 
measurement (you will have the choice to watch TV while laying quietly). After your 
rest, you will have the opportunity to use the bathroom and drink water before beginning 
a 10-minute warm up on the treadmill. The first 5 minutes will be a walking warm up at 
3mph, the last 5 minutes of the warm up will be an easy jog at 5mph. After the warm up, 
the exercise session will begin. You will run at the speed that corresponds with 80% of 
your VO2 peak for 30 minutes. After 30 minutes the treadmill will be stopped and you 
will be asked to sit down and rest for 60 minutes. All treadmill speed changes will be 
made by study personnel, who will give you a verbal warning 15 seconds prior to any 
speed changes and a 5-second countdown. You can stop the treadmill at any time by 
pulling the safety cord clipped to your waistband. After 60 minutes, you will have 
another opportunity to use the bathroom and drink water. Then you will be asked to lay 
back down for another 2 hours until the termination of this visit. At the end of your visit, 
you will be provided a snack (protein bar) and an electrolyte drink. During all the lying 
rest of this visit, you will be allowed to watch your choice of TV to prevent you from 
falling asleep and to keep you entertained. 
 
 

7. WILL BEING IN THIS RESEARCH STUDY HELP ME IN ANY WAY?  
You may not directly benefit from this research. However, if you are interested in 
knowing your body composition (DXA) and maximal aerobic capacity (VO2 peak) test 
results, study personnel will share and explain these data if you request. 
 
 

8. WHAT ARE MY RISKS OF BEING IN THIS RESEARCH STUDY?  
General Exercise Precautions: During any type of exercise, there are slight health risks, 
along with the possibility of fatigue, cardiovascular events, muscle soreness, and falls. 
Study personnel will monitor your performance. The testing will be terminated if you 
show any signs of poor exercise tolerance (i.e. extreme fatigue, shortness of breath, chest 
pain, dizziness, etc.). 
 
VO2 Peak Testing and treadmill running: Risks include, but are not limited to, abnormal 
blood pressure, chest pain, shortness of breath, fainting, disorders of the heartbeat (too 
rapid, too slow or unusual beats) and in rare instances, heart attack. Every effort will be 
made to avoid or minimize such occurrences through screening and continuous 
observations during testing. Emergency equipment and trained personnel are available to 
deal with unusual situations which may arise. The emergency cord attached to the 
treadmill will be utilized so that, in case of exhaustion or a fall, the pulling of the 
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emergency cord will immediately stop the treadmill belt. Two trained researchers will 
also be standing next to the treadmill (one behind and one to the side) ready to assist if 
needed. 
 
DXA Scan: Scans expose you to low-levels of X-Ray ionizing radiation. The risk 
associated with this type of scan is very low, similar to that of a New York to Los 
Angeles flight. You will be screened for the possibility of lifetime limit for radiation 
exposure. If you indicate that you have reached your lifetime limit for being exposed to 
ionizing radiation, then no scan will be performed. 
 
Parvo Metabolic cart: Use of the Parvo metabolic cart requires a face mask to be placed 
you through which you breathe. This mask can cause discomfort when worn for long 
periods of time. The built-in break periods during visit 3 are designed to minimize this 
discomfort by allowing you a break from wearing the mask. In addition, the straps 
securing the mask onto your face will be loosened as much as they can during the rest 
periods to minimize discomfort. 
 
We believe there are minimal risks associated with this research study; however, a risk of 
breach of confidentiality always exists and we have taken the steps to minimize this risk 
as outlined in section 9 below. 
 
 

9. HOW WILL MY PERSONAL INFORMATION BE PROTECTED?  
Your privacy and confidentiality are important to us. The following procedures will be 
used to protect the confidentiality of your study records. The electronic forms with your 
name or signature on them (the Telephone Screening Form, the Informed Consent, 
Physical Activity Readiness Questionnaire (PARQ), DXA safety screening form) will be 
stored securely on an electronic database that authorized study staff will only access from 
password protected computers using user-specific log-in credentials. Any physical paper 
versions that will have your name on them will be stored securely in a locked filing 
cabinet, which is located in a locked office. All other data collection sheets (electronic or 
paper) will be labeled with a code instead of your name, so that no potential identifiers 
can be linked back to you. Data collection sheets and the master key of participant codes 
and names are kept separate from all other study materials in separate locked filing 
cabinets, which are also located in a locked office. The master key will be destroyed 6 
years after the close of the study. All electronic data will be kept on a password-protected 
computer in a locked office to prevent access by unauthorized users. Only the members 
of the research staff will have access to the passwords. At the conclusion of this study, 
the researchers may publish their findings. Information will be presented in summary 
format and you will not be identified in any publications or presentations. Your privacy 
will be protected by conducting the study procedures in a private location with only 
authorized research team members present. 
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10. WHAT IF THERE IS AN UNEXPECTED FINDING ON MY DXA SCAN? 
The investigators for this research project are not licensed or trained diagnosticians or 
clinicians. The testing performed in this project is not intended to find abnormalities, and the 
images or data collected do not comprise a diagnostic or clinical study. However, 
occasionally in the process of research, investigators may perceive an abnormality, the 
health implications of which may not be clear.  When an unexpected finding is noted, 
UMASS Amherst researchers will consult with a physician (for DXA).  If the 
radiologist/physician determines that an additional inquiry is warranted, the researcher will 
then contact you regarding the radiologist’s/physician’s opinion of the unexpected 
finding(s). 
 
In such a case, you are advised to consult with a licensed physician to determine whether 
further examination or treatment would be prudent. Although the images collected for this 
research project do not comprise a diagnostic or clinical study, the images can be made 
available to you for clinical follow-up. The costs for any care that will be needed to diagnose 
or treat an unexpected finding(s) would not be paid for by University of Massachusetts, 
Amherst.  These costs would be your responsibility. If you have further tests done by your 
licensed physician, those results will then become part of your medical record, which may 
affect your current and future health or life insurance. Regardless of the health implications, 
the discovery of an unexpected finding(s) may cause you to feel anxious or worried. You 
may wish to talk to your physician or a qualified mental health clinician. You can contact 
the Center for Counseling and Psychological Health (CCPH) at (413) 545-2337 (Mon-Fri 
from 8-5pm) - on weekends or after 5pm, call (413) 577-5000 and ask for the CCPH 
clinician on call. You can also contact the Psychological Services Center at 413-545-0041 
(Monday-Friday 8am-5pm) or psc@psych.umass.edu. In a serious emergency, remember 
that you can also call 911 for immediate assistance. 
 
 

11. WILL MY INFORMATION (BIOSPECIMENS OR PRIVATE 
INFORMATION) BE USED FOR RESEARCH IN THE FUTURE? 

Identifiers might be removed and the de-identified information or biospecimens may be 
used for future research without additional informed consent from you. 
 
 

12. WILL I BE GIVEN ANY MONEY OR OTHER COMPENSATION FOR 
BEING IN THIS RESEARCH STUDY?  

You will be compensated for your participation with $100 cash. We will prorate the 
compensation to $10 cash for visit 1, $10 for visit 2, $80 for visit 3. 
 
Since you are being compensated for your participation in this study, your personal 
information may be released to the accounting officials at University of Massachusetts, 
Amherst. If payment to a research participant is $600 or more in any one calendar year, 
the University of Massachusetts, Amherst is required to report this information to the IRS 
as taxable income. This information will be kept confidential and will only be used to 
process payment. 
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13. WHO CAN I TALK TO IF I HAVE QUESTIONS? 

Take as long as you like before you make a decision. We will be happy to answer any 
question you have about this study. If you have further questions about this project or if 
you have a research-related problem, you may contact the researchers via Nicholas 
Remillard at nremillard@umass.edu. 
 
If you have any questions concerning your rights as a research subject, you may contact 
the University of Massachusetts Amherst Human Research Protection Office (HRPO) at 
(413) 545-3428 or humansubjects@ora.umass.edu. 
 
 

14. WHAT HAPPENS IF I SAY YES, BUT I CHANGE MY MIND LATER? 
You do not have to be in this study if you do not want to. If you agree to be in the study, but 
later change your mind, you may drop out at any time. There are no penalties or 
consequences of any kind if you decide that you do not want to participate. 
 
 

15. WHAT IF I AM INJURED? 
The University of Massachusetts does not have a program for compensating subjects for 
injury or complications related to human subjects research, but the study personnel will 
assist you in getting treatment. 
 
 

16. SUBJECT STATEMENT OF VOLUNTARY CONSENT 
When signing this form I am agreeing to voluntarily enter this study. I have had a chance 
to read this consent form, and it was explained to me in a language which I use. I have 
had the opportunity to ask questions and have received satisfactory answers. I have been 
informed that I can withdraw at any time. A copy of this signed Informed Consent Form 
has been given to me. 
 
________________________ ____________________  __________ 
Participant Signature:   Print Name:    Date: 
 
 
By signing below I indicate that the participant has read and, to the best of my 
knowledge, understands the details contained in this document and has been given a 
copy. 
 
_________________________    ____________________  __________ 
Signature of Person   Print Name:    Date: 
Obtaining Consent 
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Appendix B 
Godin-Shepherd Leisure Time Questionnaire 

  
  

Weekly leisure--time activity score = (9 × Strenuous) + (5 × Moderate) + (3 × Mild) 

EXAMPLES FOR COMPUTING THEOVERALL SCORE 

•        Strenuous = 2 times/wk 

1. Moderate = 2 times/wk 
 
•        Mild = 7 times/wk 

  

Total leisure---time activity score 

= (9 × 2) + (5 × 2) + (3 × 7) 

= 18 + 10 + 21 = 49 units 
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Appendix C 
iDXA Screening Form 

 

Participant Identifier                                                           Study PI                                            

Date of Visit                                                     
  

1)      Height (in.)                                  

2)          Weight (lbs.)                                   

3)          Month and Year of birth                                                          

4)          Sex       Male           Female           Intersex 

a. If female or intersex: ‘Are you or might you be pregnant?’ 

Yes         No         I don’t know *If ‘Yes,’ no iDXA will be performed 

b)    If ‘I don’t know’: ‘Would you be willing to take a urine pregnancy test?’ 

Yes         No *If ‘No,’ no iDXA will be performed 

c)    If participant consents to a pregnancy test, administer test. Test results: 

Positive         Negative *If ‘Positive,’ refer to UHS Women’s Health Clinic 

5)          Have you ever been told that you have reached your lifetime limit for being exposed to 
ionizingradiation? 

Yes         No 

*If ‘Yes’ no iDXA will be performed 

 
 

  

For iDXA technician only: 

1. Was a scan performed? 

Yes         No 

  

2. Were the results placed in .pdf format in the shared folder for MD review? Yes       No 

  

Technician Signature:                                                                            
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Appendix D 
PARQ 
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