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ABSTRACT

COMMUNICATIVE INFORMATION VISUALIZATIONS:
HOW TO MAKE DATA MORE UNDERSTANDABLE BY

THE GENERAL PUBLIC

SEPTEMBER 2022

ALYXANDER BURNS

B.A., MOUNT HOLYOKE COLLEGE

M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Narges Mahyar

Although data visualizations have been around for centuries and are encountered

frequently by the general public, existing evidence suggests that a significant portion

of people have difficulty understanding and interpreting them. It might not seem like

a big problem when a reader misreads a weather map and finds themselves without

an umbrella in a rainstorm, but for those who lack the means, experience, or ability

to make sense of data, misreading a data visualization concerning public health and

safety could be a matter of life and death. However, figuring out how to make visual-

izations truly usable for a diverse audience remains difficult. In my thesis, I examined

three areas where altering current practices may help make data visualizations more

understandable and impactful in the future.

First, I conducted a critical analysis of the ways that audiences of data visualiza-

tions are defined in visualization research papers. Poorly defining the audience of a
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visualization can have negative effects for both people and science. For example, it

may lead to over-generalizing research results or guidelines for audiences that were

never intended (or evaluated) in the original research or ignoring the (potentially

unique) needs of different populations by aggregating them into majority groups.

Therefore, in order to investigate current practices, I conducted a survey of every pa-

per published in a major visualization venue that referred to “novices,” “non-experts,”

the “general public,” or “laypeople” in their title or abstract. I selected this set of

audiences because they represent some of the words used to describe visualization’s

broadening audience. My analysis of 79 papers demonstrated that audiences were

rarely explicitly defined. In place of explicit definitions, authors relied on implicit

definitions (e.g., examples, counter-examples) to clarify who was in the audience. To

improve how audiences are defined in future work, I draw on feminist theory and

research methods to argue that authors should: (1) Explicitly define their audiences

by specifying the dimensions which qualify an individual for inclusion, (2) Think of

their audiences intersectionally by considering how multiple dimensions of identity

and experience can produce unique perspectives on visualization, and (3) be careful

not to reinforce existing oppressive power structures.

Next, I examined current visualization design techniques to test how more explic-

itly encoding data as an array of countable pictographs (instead of as solid abstract

shapes) may impact understanding and experience. In existing research, infographics

show positive empirical findings in terms of memory, engagement, and assessment of

risk — particularly when they contain pictographs (simple, iconic pictures that repre-

sent a word or topic). However, there was little exploration of how pictographs affect

and afford the general public’s understanding of the underlying data or how the choice

to use pictographs affects readers’ personal experiences. Therefore, I conducted an

experiment that utilized a novel method of producing questions that probe different

aspects of a reader’s understanding of 6 pairs of real-world visualizations which are
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identical except for their use of pictograph arrays. My results indicated that the use

of pictograph arrays does not directly impact understanding but can allow readers to

more easily envision real-world connections.

Finally, I explored how accompanying a visualization with contextual information

could impact understanding and experience. While visualizations are designed to

present a multitude of data, they often are not accompanied by key metadata which

provides background on the source of the data, the transformations applied to the

data, the visualization elements, its purpose, the people involved in its creation, or

its intended audience. Current conventions surrounding leaving the context of vi-

sualization invisible can have negative impacts for understanding, transparency, and

ultimately trust. Common wisdom suggests that recontextualizing visualizations with

metadata (e.g., disclosing who made the visualization, the data source, or instruc-

tions for decoding the visualizations’ encoding) may counter these effects and increase

understanding, transparency and, ultimately, trust. However, the impact of adding

metadata to visualizations remains largely unknown. To fill this gap, I conducted

two experiments. In Experiment 1, I explored what kinds of metadata participants

valued the most and how chart type, topic, and user goal impacted their choices of

metadata. My results indicated that participants were most interested in metadata

which explained the visualization’s encoding for goals related to understanding and

metadata about the source of the data for assessing trust. Based on the results of

Experiment 1, in the second experiment, I explored how these two types of metadata

impact trust, information relevance, and understanding. I asked 144 participants to

explain the main message of two pairs of visualizations (one with metadata and one

without); rate them on scales of transparency and relevance; and then predict the

likelihood that they were selected by an organization for a presentation to policy mak-

ers. My results suggested that among four dimensions of transparency, visualizations

with metadata were perceived as more thorough but similarly accurate, clear, and
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complete in comparison to those without. Additionally, visualizations with metadata

were assigned higher probabilities of being selected by a hypothetical organization for

a presentation for policy makers. However, participants did not perceive the informa-

tion in visualizations with metadata as more relevant than those without. Finally, the

presence of metadata did not impact the accuracy of extracting information from the

visualizations, but may have influenced which information participants remembered

as important or interesting.
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CHAPTER 1

INTRODUCTION

Members of the general public rely on data visualizations to make sense of the

world. For example, individuals may consult a graph of COVID-19 health outcomes

to decide whether to get vaccinated or examine a map of test positivity rates to

determine the risk of traveling to see relatives. A majority of the visualizations

that members of the general public encounter are considered communicative data

visualizations because they are crafted to present, support, or explain conclusions

or ideas [1].

Typically in data visualization, data-driven decision making processes are referred

to as sensemaking. The most commonly used model of sensemaking, proposed by

Pirolli and Card, contains both a foraging loop where data are sought, searched, fil-

tered, and read as well as a sensemaking loop where those data are used to iteratively

construct a mental model [292]. This process typically involves time-consuming anal-

ysis and re-analysis, with the intention of finding analytical “ah-ha” moments. It is

also often conducted by expert analysts who have access to the original data and the

resources to independently analyze it [292].

In contrast, members of the general public are conducting what may be consid-

ered casual sensemaking: understanding, reflecting upon, and making judgements

or decisions based on information provided by casual (communicative) visualizations

[297] without deep and time-consuming research using raw data [54]. Instead of being

employed for the purpose deep analyses, casual sensemaking processes may be used to

help people become more aware of issues relevant to their community or to self-reflect
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[297]. This definition of casual sensemaking is therefore more similar to a definition

of sensemaking from business and management in which the viewer uses a conceptual

model of the world informed by available information “to comprehend, understand,

explain, attribute, extrapolate, and predict” [12, 362].

Unfortunately, evidence suggests that a large proportion of the general public

struggles to conduct casual sensemaking processes with visualizations. Past surveys

have estimated that about 60% of Americans encounter significant difficulty using

visualizations to draw accurate conclusions [148, 381]. Disentangling the factors that

make visualizations particularly challenging for some people is difficult because it is

deeply intersectional. For instance, while difficulty understanding visualizations is

sometimes thought to correlate with education [148], highly educated populations

(including doctors) also struggle [309]. Nonetheless, these results indicate that, at

least for some portion of the population, data visualizations are often failing to provide

the information that they were specifically designed to communicate.

To make matters worse, difficulty making sense of visualizations is not just an

inconvenience — it can have very serious consequences. It may not seem like a big

deal to misunderstand a weather prediction and end up without an umbrella, but can

be far more serious when the visualization regards health and safety information. For

instance, misunderstanding a visualization of where a hurricane will make landfall

might lead a person to stay at home even when they are in grave danger. Further,

being unable to understand data may prevent individuals from accessing social ser-

vices that they are entitled to [418]. Therefore, it is critical that we find ways to

create visualizations that allow more people to make sense data.

However, creating visualizations which work for the general public is complicated.

In particular, past work has characterized the general problem of creating visualiza-

tions for non-expert audiences as a wicked problem – a problem without a defined

solution, without even one way to define or test for success, which cannot be “solved”
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with an algorithmic solution [317, 83, 151]. Therefore, by definition, the design of vi-

sualizations which enable the general public to equitably utilize the data they encode

must be studied from multiple angles to find approaches and techniques which get

closer to the goal.

Therefore, in my thesis, I examined three areas where changing current practices

might help make data visualizations more understandable and impactful for the gen-

eral public in the future: Research methodology, Visual design, and the text that

accompanies visualizations. First, I took a critical look at the place where best prac-

tices and guidelines for creating visualizations are derived – visualization research –

and examined how the ways that visualization audiences are defined may have unin-

tended consequences (Chapter 3). In this work, I surveyed 79 published visualization

papers which used one of four words for their audience (novice, non-expert, layperson,

general public) and argued that these audiences are largely implicitly (and simply)

defined which, in turn, can result in poor outcomes such as overaggregating audiences

with differing needs into majority groups or concluding that visualizations “work” for

people that they were never intended to be used by. Next, I studied how changing

the design of visualizations could impact sensemaking. As a case study, I measured

the impacts of converting abstract shapes into countable pictograph arrays on casual

sensemaking. My analysis revealed that while pictographs did not impact aspects

of sensemaking related to comprehension, they did impact experience (Chapter 4).

Finally, I studied the practice of revealing implicit information about the history and

context of a visualization and how providing that information may impact different

sensemaking (Chapter 5). My analyses revealed that the kinds of implicit informa-

tion readers want access to depends on what they will do with it and that providing

readers with information that they think is relevant does not impact their ability to

extract accurate information from the visualization or make the information seem

3



more relevant, but may have directed readers’ attention to different features of the

visualization.

Scope & Definitions

In this dissertation, I focus on three areas where changes to current practice

could create communicative visualizations that enable casual sensemaking for

members of the general public. I define the bolded keywords and phrases as follows:

• Communicative visualizations (or, visualizations for communication) refer

to data visualizations which are designed to present, support, or explain conclu-

sions or ideas. In particular, I focus on static visualizations which are relatively

simple and display (at most) a few hundred datapoints and three dimensions.

• Casual sensemaking refers to understanding, reflecting upon, and making

judgements or decisions based on information provided by casual (communica-

tive) visualizations [297] without deep and time-consuming research using raw

data [54].

• In this work, the general public refers to adults who typically do not have any

formal training on how to read or use data visualizations but already encounter

them in some form (e.g., at work, in the news). The portion of the general public

who I focus on in this thesis are also able to visually perceive visualizations,

can read and write in English, and have high-speed internet access.

Contributions

The contributions of this thesis are:
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Chapter 3 — The Audience Matters! A Critical Analysis of Audiences in

Visualization

• An analysis of how “novice,” “non-expert,” “layperson,” and “general public”

are defined in visualization research papers revealing that these audiences are

rarely defined explicitly and definitions which are present rely on only one aspect

of an individual’s attitudes, experiences, or skills.

• A discussion of the unintended consequences of defining audiences implicitly

and one-dimensionally.

• Suggestions for improving current practice in three areas which draw inspiration

from fields such as critical race theory and feminist theory.

Chapter 4 — Designing with Pictographs: How does Design Impact Casual

Sensemaking?

• A novel framework that provides a systematic way to evaluate levels of under-

standing in a visualization based on Bloom’s Taxonomy.

• Empirical results that suggest that infographics with pictograph arrays are just

as good as more traditional, geometric part-to-whole charts at helping people

make sense of data.

• Empirical insights that show some participants view charts containing picto-

graph arrays as easier to envision, while others view them as unnecessarily

cluttered and slower to understand.

• Qualitative results suggesting that perceptions of visual appeal may be impacted

by ease of understanding, making the topic seem real may help readers envision

the topic more easily, and feelings of urgency and importance may be influenced

by real-world connections.
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Chapter 5 — From Invisible to Visible: Impacts of Metadata in Commu-

nicate Data Visualization

• A comprehensive taxonomy of six types of metadata and discussion of the po-

tential benefits and risks of disclosing each.

• Results from an exploratory study suggesting that what kinds of metadata

people may perceive as most important varies according to their goals (e.g.,

assess trust, understand perspectives).

• Quantitative results suggesting that metadata can increase perceptions of thor-

oughness, which may positively impact the perceived transparency of a visual-

ization.

• Quantitative results suggesting that the information in visualizations with meta-

data are not considered more relevant than in visualizations without

• Quantitative and qualitative results implying that metadata did not impact the

correctness of participant responses, but may have influenced which information

readers paid attention to.

• A discussion the possible implications of the results on trust, understanding,

and the tension between disclosing information and providing more textual in-

formation.
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CHAPTER 2

BACKGROUND

In this section, I will outline existing work relevant to all three components of the

thesis. First, I will talk about the study of visualization for communication. Then

I will discuss how visualizations have historically been evaluated and the debates

surrounding these practices. Finally, I will describe what sensemaking is, contrast

the notion of sensemaking common in visualization to the broader definition used in

this thesis, and describe how this too can be evaluated.

2.1 Designing Communicative Visualizations

There are countless books, web articles, and guides on how to create effective

visualizations for communication (e.g., [57, 58, 205, 379, 255, 336]). Unfortunately,

many of the design guidelines presented in these texts are not backed by evidence, but

instead rely on convention and assumptions [207]. However, there has been recent

work evaluating some of these long-held beliefs that have both found evidence for

some of these guidelines (e.g., removing clutter and providing visual focus [4]) and

against others (e.g., embellishment is always harmful [19, 14]). See Franconeri et al.

and Schwabish [131, 336] for an exhaustive list of evidence-backed guidelines and best

practices. Nonetheless, there is still work to be done to validate the effectiveness of

many common practices.

There has also been recent work on tools for creating communicative visualiza-

tions. There are several tools that focus broadly on the creation of visualizations that

can be used for communication which vary broadly from code-based tools intended
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for use by tech-savvy individuals with coding experience (e.g., D3 [38], Vega [330])

to code-free tools aimed at the general public (e.g., Tableau [369]). Further, tools

to broadly and easily create visualizations are embedded many popular presentation

software systems (e.g., Microsoft Powerpoint [251], Google Slides [149], Prezi Present

[300]). There are also visualization creation tools intended for more specialized uses

such as creating visualizations to talk about climate change [146] and generating sim-

ple part-to-whole visualizations from natural-language phrases [96], and automatically

creating infographic-like “fact sheets” from tabular data [391].

Although there seems to be considerable interest in studying visualizations for

communication within the visualization research community, the pool of existing re-

search on the design of communicative visualizations is historically limited but in-

creasing in size.

2.2 Evaluating Visualizations

A critical component of designing visualizations that meet need of their audi-

ences is effective and appropriate evaluation methods [207, 117]. While evaluation

techniques which do not involve human participants (e.g., heuristic evaluations) are

sometimes still conducted on visualizations or visualization algorithms, studies in-

volving human participants (also referred to as user studies) have become increasingly

common over time [185]. User studies are particularly critical to the evaluation of

visualizations because they can help establish which visualization techniques are most

appropriate for the context and establish where theory differs from reality [209].

Historically, the evaluation of visualizations with human participants was focused

on capturing metrics like time and accuracy [326, 117]. These two metrics have both

been used on their own (e.g., in [166, 353, 208]) and used as a proxy to measure

other phenomena such as knowledge acquisition [264] and working memory [166].

While the relevance of the accuracy component is fairly straightforward, proponents
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of measuring time have argued that if visualizations are intended to make content

easier to understand, then “saving time” is a useful metric of measuring success [70].

Nonetheless, the reliance on time and accuracy as evaluation metrics has received

fierce critiques.

Critics of focusing on time and accuracy argue that these methods are not rich

enough to capture the breadth of human experience. For example, existing work has

pointed out that time and accuracy alone cannot capture: how hard it was for a

person to complete a task [178], what insights participants drew [264], or how much

fun or enjoyable visualization was [326]. Nonetheless, under the right circumstances,

all of these metrics could all be considered metrics of success [326].

Critics therefore suggest that novel techniques need to be used to supplement time

and accuracy by capturing other critical aspects of the experience of using visualiza-

tions. For instance, North proposed new methods for measuring insights by asking

difficult, open-ended questions [264] and Mahyar et al. proposed utilizing Bloom’s

taxonomy to evaluate the depth of users’ engagement with visualizations [242]. The

desire for new metrics and evaluation methods beyond time and accuracy have even

spurred workshops specifically on the topic (most notably the biannual BELIV Work-

shop [338]).

In sum, there is a general agreement among researchers that time and accuracy

are not the only ways to evaluate visualizations, in part due to a diversity of opinions

on what the “right” way to evaluate a visualization is [386]. Further, it is clear that

there is still a need for novel methodologies that can more holistically capture what

makes particular visualizations valuable and appropriate in different circumstances.

2.3 Sensemaking

Casual sensemaking, as defined in this thesis, is related to but distinct from the

model of sensemaking proposed by Pirolli and Card which is often used in the visual-
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ization community [292]. In the Pirolli and Card model, the sensemaking process is

made up of the following activities: collecting information, creating a mental model

of that information in a way that helps analysis, manipulating that model to produce

an insight, and finally producing an idea or action based on that insight [292]. This

process is not linear and instead involves iteratively looping between the steps until

sense is made. In contrast, casual sensemaking does not necessarily involve the same

kind of rigorous, analytic process. It can instead be thought of as an ongoing process

[103] of using information provided by a visualization to update ones’ mental model

of the world [362, 12] in order to reflect and make decisions. By extension, sensemak-

ing is the process by which understanding is obtained [103] and (in line with existing

work on emotional design) is influenced both by the information received as well as

the reader’s experience [263]. Accordingly, in this work, I will define casual sense-

making as measurable through a combination of assessing both understanding and

experience. While the visualization research community has many tools for evaluat-

ing the experiential aspects of these processes, it still lacks comprehensive methods

for evaluating understanding.

As visualization is still a relatively new field, we can take inspiration from the

effective methods used in other disciplines. For example, in visual literacy research,

questionnaires comprised of multiple choice questions have been used to quantify how

fluently people understand graphics in general (e.g. [227]) and in medical contexts

(e.g. [136, 267]). We see evidence of similar use of questionnaires in Medicine and

Chemistry to, for example, measure patients’ understanding of Informed Consent doc-

uments [189] and assess the public’s understanding of nanotechnology [334]. Further,

benchmarks have been used to measure knowledge of topics important to the job per-

formance of professional psychologists and to evaluate the way that this knowledge

appears in on-the-job behavior [130]. In another approach, researchers used a set
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of open-ended questions about Climate Change to establish the effect of combining

refutation texts with graphics and analogies on understanding [99].

Additionally, there are several existing methods within visualization which in some

way accomplish this goal. For example, one study asked participants to describe one

thing they found interesting or surprising [387]. Collecting salient points is a very

direct way of assessing what participants found important, but only requiring one

insight may mean that the information reported is not necessarily indicative of all

that they have learned. Further, while it measures what the perceived takeaway is, it

is not able to assess other related levels of learning, such as how the knowledge could

be applied to a new situation; a step critical to the learning process [286].

Another approach asked participants to describe everything that came to mind

as they interacted with a visualization [265]. Due to the open-ended nature of this

method, it is certainly thorough, but it may not be possible in remote settings and re-

lies on the ability of the participant to verbalize their thoughts reliably. Additionally,

one downside of the approach (as identified in the original paper) is the sheer volume

of qualitative information that is generated [265]. Our approach considerably reduces

this burden, condensing the amount of information collected into only six questions.

A third approach in this vein asked participants to describe different aspects of

a visualization such as the overall message, trend, and sentiment [19]. By requir-

ing participants to comment on each aspect of interest, this method is effective at

assessing the breadth of knowledge obtained by participants, but it too misses the

opportunity to assess other kinds of knowledge acquisition which might have revealed

other differences in the stimuli.

As I have summarized, while some researchers are asking more difficult questions

that assess particular aspects of understanding, they all lack a system for compre-

hensively evaluating different levels of understanding. Such concrete models

can also help to measure affordances that are provided by visualizations to help read-
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ers obtain knowledge. This will enable visualization designers to assess their readers

beyond graph literacy and create more effective visualizations for their audience.

2.4 Summary

In summary, in this thesis, I will focus on the design and evaluation of communica-

tive visualizations that enable members of the general public to more easily perform

casual sensemaking. Communicative visualizations share the same perceptual build-

ing blocks as other kinds of visualizations, but are designed specifically to present,

support, or explain ideas. There are countless resources that dispense advice on how

to design effective visualizations, though much of it is not backed by evidence. One

component of designing visualizations well is having thorough methods for evalua-

tion. Visualization evaluation practices have faced critiques (in part because of their

historical focus on “usability” metrics), but many researchers have shifted toward

including more holistic metrics. One of these goal metrics is sensemaking, which, in

this thesis, is considered to be a combination of both a reader’s understanding and

their experience. Understanding has been quantified in many ways, but also has faced

critiques due to a historical reliance on time and accuracy. Therefore, in this thesis, I

will utilize open-ended questioning to evaluate understanding using methods inspired

by the field of education.
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CHAPTER 3

THE AUDIENCE MATTERS! A CRITICAL ANALYSIS
OF AUDIENCES IN VISUALIZATION

In the Introduction of my thesis, I described the problem that many people who

need to make use of visualizations have difficulty understanding them. To approach

solving this problem, I began by investigating where best practices for creating visu-

alizations come from – the visualization research process. In particular, I investigated

how researchers define and discuss the people who they imagine will use their visual-

ization – the visualization’s audience. By exploring practices for defining audiences, I

analyzed how current practices may have unintended consequences which, ultimately,

may lead to the creation of visualizations that do not meet the needs of the people

who use them. This chapter represents the contents of [50].

3.1 Introduction

Poorly defining the audience of a visualization can have negative, unintended con-

sequences for the ways that visualizations are designed and evaluated, the guidelines

that are produced, and the people who will ultimately use them. For example, by

using language which broadly defines an audience, researchers may risk ignoring the

(potentially unique) needs of different populations by aggregating them into major-

ity groups. The effects of aggregating divergent populations into majority ones is

likely to disproportionately impact groups that have been historically left out of the

visualization literature because their needs have not been identified as distinct from

the majority within which they are contained (e.g., in the case of casual visualization

users [297]).
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Further, these cases can implicitly discourage the scientific community from con-

tinued research in some topics by incorrectly implying that the research has already

been covered (e.g., that visualization for “novices” has been done already) and pro-

duce “one size fits all” designs which do not meet the needs of the people they are

to be used by (e.g., as with accessibility guidelines [221]). One of the audiences

which visualization has expanded in recent years to study and create visualizations

for is “novices” [170]. Grammel and Heer et al. provide divergent definitions for the

term. In one, novices are “users who create visualizations to support their primary

tasks, but who are typically not trained in data analysis, information visualization,

and statistics” [152], while in the other they are “users who have experience operating

a computer, but no experience with programming in general, let alone programming

visualization techniques” [170]. These divergent definitions demonstrate how a lack

of specificity in who belongs to an audience could lead to over-generalizing research

results or guidelines for audiences that were never intended (or evaluated) in the

original research — had their explanations been less clear, readers of the two papers

might generalize the results across their audiences even though they refer to entirely

different groups of people.

Past work has emphasized the broadening audiences for visualizations and created

visualizations for audiences including (but not limited to) domain experts [403], casual

users [297], non-experts [68, 172], and the general public [54, 406]. In this work, we

use the word “audience” to refer to a group of people who share similar attributes,

experiences, perspectives, or interests and are expected to read or otherwise engage

with a visualization. Namely, the audience is the group of people who the visualization

designers have in mind when they design a visualization and the group of people from

which they sample participants when they conduct human-subject studies.

To investigate how audiences are typically defined in visualization research, we

conducted a survey of papers published in IEEE, ACM, and Eurographics visualiza-
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tion venues which used the terms “novice,” “non-expert,” “layperson,” or “general

public” in their abstract or title (n = 79). We focused on this group of audiences

because they are used to refer to the diverse set of individuals in the expanding audi-

ence of visualizations (as discussed in [39, 170]). Three coders collected data on how

audience was defined explicitly and implicitly and how participants were selected for

user studies. Taking the characteristics we observed in the survey as a case study, we

argue that there are fundamental problems with the way that audiences are typically

defined in visualization papers — namely, that explicit definitions of who belongs

in an audience are minimal and that the implicit definitions which are provided are

based on only one aspect of an individual’s identities, interests, or experiences.

We take inspiration from research methodology and feminist theory (e.g., [222,

163]) to provide concrete suggestions for how researchers can define their audiences

more inclusively and thoroughly in three areas. First, we suggest that authors make

the implicit explicit by providing clear definitions and inclusion/exclusion criteria

which clarify who the authors think belongs in the audience and what attributes

are necessary for their inclusion. Second, we encourage authors to think of their

audiences intersectionally by considering how multiple dimensions of identity and

experience can produce unique perspectives on visualization. Finally, we advise that

when defining an audience, authors be aware of systems of power so that the ways

an audience is defined does not cause harm through reinforcing existing oppressive

power dynamics. Our suggestions may better equip readers of visualization papers to

understand to whom research applies and how it fits in with existing work. By clearly

articulating who they are studying or for whom they are building a visualization,

researchers may better align their experimental methods with their intentions. We

do not argue that there is one “correct” way to talk about or define an audience.

Instead, the purpose of this critique is to encourage visualization researchers to think

critically about how they identify and talk about their audience.

15



There are three main contributions of this paper. First, we contribute an analysis

of how “novice,” “non-expert,” “layperson,” and “general public” are defined in visu-

alization research papers revealing that these audiences are rarely defined explicitly

and definitions which are present rely on only one aspect of an individual’s attitudes,

experiences, or skills. Next, we provide a discussion of the unintended consequences of

defining audiences implicitly and one-dimensionally. Finally, we provide suggestions

for improving current practice in three areas which draw inspiration from fields such

as critical race theory and feminist theory.

3.2 Background

3.2.1 What are Audiences?

The word “audience” has many different (and sometimes conflicting) meanings

[397, 278]. Drawing on literature from marketing and communication, an audience

may be broadly defined as “a group of individuals who are more similar to each

other than to individuals in other groups” [354, 158]. While the word “audience”

might evoke images of people sitting in chairs listening to a speech or performance,

the word “audience” does not need to refer to a literal, physical group of people at

all, but the collective set of knowledge and motivation shared by a group of people

which will provide context to a work (for instance, as used in the phrase “know

your audience”) [278]. Further, audiences are not “observable, objective realities but

instead constructed entities that emerge in popular memory, institutional practice,

and academic research” [366, 9]. In other words, an individual is not always or solely

a member of an audience — “audience member” is a role “that people temporarily

perform” depending on the circumstances [55, 366]. In this paper, we will build upon

these conceptions and use the word “audience” to refer to “a group of people who

share similar attributes, experiences, perspectives, or interests and are expected to

read or otherwise engage with a visualization.” In this way, we focus on the role
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that people play when they engage with a visualization — while engaging with the

visualization’s content, they are members of the visualization’s audience.

Scholars in media studies have argued that there are three ways of thinking of the

role of the audience: as a group of people who consume media (“as mass”), as people

who are acted upon by media (“as outcome”), and as people who act upon media

(“as agent”) [397]. These three ways of thinking about an audience suggest different

research direction: viewed as a mass, research questions could be about what media

the audience consumes; as an outcome, how people are affected by the media; and

as agents, what people do with media (e.g., make meaning of, make choices about)

[397].

Within the context of visualization, prior works engaged with all three ways of

viewing the audience’s role. For example, visualization work that conceptualizes the

audience as a mass has asked what kinds of visualization a specific group of people

engaged with [37] or faced barriers to engaging with [123]. Viewed as an outcome,

researchers have asked questions about how visualizations or visualization design

choices impact people including their sensemaking [54], decision making [102, 275],

and recall [35]. Finally, viewed as agents, visualization researchers have asked about

what people do with visualizations such as investigating how visualizations are shared

and discussed [224], constructed [152], and perceived [283, 269].

Our goal with this work is to examine the ways that audiences are defined in a

visualization context, inspect the possible unintended consequences of those actions,

and propose strategies for how future work might not repeat the challenges of the

past.

3.2.2 Broadening Audiences in Visualization

In past years, the visualization community has discussed the expansion of visu-

alization audiences. While visualization was once the realm of data analysts, the
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creation and consumption of visualization has been adopted by broader audiences

[170, 297, 223]. For example, existing work has characterized unique audiences such

as “casual users” who engage with visualizations for personally meaningful, non-work

purposes [297, 402] and “domain experts” who use visualizations to accomplish work-

related tasks (e.g., data analyses) [403].

Along with the push for broader audiences, visualization research has observed

many differences between groups of people. For example, a meta-analysis of eye

tracking studies revealed that expert visualization users identified task-relevant infor-

mation faster and returned to those areas more often than intermediate or novice users

[142]. Work investigating the “Big Five” personality traits (Extraversion, Neuroti-

cism, Openness, Conscientiousness, and Agreeableness) from the Five-Factor Model

[147] have found differences such as introverts (people with low Extraversion) gath-

ered more insights from the data and highly neurotic individuals completed tasks

faster [155] (see [232] for a comprehensive review of cognitive traits investigated in

visualization work).

To make visualizations that meet the needs and abilities of these distinct audi-

ences, authors have argued that it is necessary to understand aspects of an audience

such as their goals, needs, personality, knowledge, and the circumstances when a visu-

alization will be used (e.g., [170, 111, 434]). For example, prior work has emphasized

the importance of finding imagery and analogies which connect with the experiences

of the audience (e.g.,[260, 100]) and adapting designs and interfaces to fit their skills

and interests (e.g., [152, 170, 341]).

The broadening audiences of visualization and the wide array of differences be-

tween groups emphasizes the need to define audiences of visualizations and visualiza-

tion research findings well. In this work, we employ a critical analysis to investigate

the ways that these definitions are done and to question the assumption that current

practices for defining audiences are sufficient.
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3.2.3 Critical Analyses for Examining Assumptions

Broadly speaking, critical analyses examine and question the underlying assump-

tions and practices of a particular field or area [122]. For example, critical analyses

(and critical theories more broadly) form the bases of areas such as Critical Race The-

ory and have been employed to examine power within race, gender, and geographies

(among others) [109, 101]. Critical analyses can range in scope from “macro” studies

of society-wide relationships to “micro” scale analyses of the practices within specific

organizations [101] and provide an opportunity to examine issues which might have

otherwise been ignored.

Critical analyses have been utilized in visualization to explore how visualization

techniques may be applied to new domains and to point out existing problems with

current practice. For example, researchers have speculated about how visualization

could be used for DNA Microarray data analysis [428] and visualizing urban planning

data [296]. Other authors have used critical analyses to argue that text visualization is

political[24], consider the moral and ethical dilemmas of visualization[87], and critique

how visualizations are evaluated for medical use [298].

Scholars have also written about what overarching critical theories for visual-

ization and human-computer interaction might look like. For instance, Dörk et al

proposed the idea and need for “Critical InfoVis” which actively considers disclosure,

plurality, contingency, and empowerment when building visualizations [109]. Addi-

tionally, Ogbonnaya-Ogburu et al. adapted central ideas in Critical Race Theory

to the domain of HCI to form a “Critical Race Theory for HCI” and demonstrated

how those tenets appear in the lived experiences of the paper’s co-authors [266]. In

this paper, we aim to examine the underlying assumptions about how authors define

audiences. In this process, we aim to apply the ideas from these existing theories to

a specific domain rather than to model an overarching critical theory.
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Most closely related to this work are critical works about the ways that audiences

are defined. One example of this kind of work within the context of visualization

focused on the lack of a coherent definition for “domain experts” [403]. While that

work aimed to solve the problem of a missing definition directly by proposing one

and exploring its implications, this paper focuses on a broader problem of how to

construct clear definitions. Also related is recent work from HCI questioning the idea

of the “user” including work investigating how people are represented in machine

learning models [66], arguing that systems are no longer built for a single type of

user but a set of diverse stakeholders [129], and suggesting that focusing on only the

direct “users” means that other types of human-machine interactions are ignored [23].

Like these works, we too wish to complicate the idea of the audience and encourage

readers of this paper to think critically about who they are designing for or studying

and how they are communicating that to the readers of their own work.

3.3 Methodology: An Analysis of Audience Definitions

To dissect current practices for defining audiences and their unintentional conse-

quences, we present evidence from an analysis of “core” visualization papers which

used the terms novice, non-expert, general public, or layperson1.

3.3.1 Paper Selection

The focus of our search was papers from “core” visualization research venues dur-

ing any year of their publication. Namely, we sampled papers published in the IEEE

Transactions on Visualization and Computer Graphics (TVCG) journal or published

as a part of IEEE VIS, InfoVis, VAST, EuroVis, BELIV, and the ACM Conference

on Human Factors in Computing Systems (CHI). We selected these venues based on

1We will use “layperson” throughout as a catch-all for “layman” or “layperson” and their plurals.
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Figure 3.1. We selected all papers published in IEEE, ACM, and Eurographics visu-
alization venues that contained “novice,” “non-expert,” “general public,” or “layper-
son” in their title or abstract (n = 92). We then excluded 13 papers which were not
visualization research papers, resulting in a final set of 79 papers.

past work which similarly surveyed visualization research practices [107]. Our paper

selection process is summarized in Figure 3.1.

We conducted a title and abstract keyword search within the publishers’ respec-

tive digital libraries to retrieve relevant papers. The keywords we used were “novice,”

“non-expert,” “general public,” and “lay(man, men, person, people)2.” We selected

these keywords because they represent a set of words used for non-traditional vi-

sualization audiences which are sometimes cited as having difficulty understanding

visualizations and thus requiring bespoke visualization or visualization creation tools

(e.g., [152, 341, 294]).

We used the IEEE, ACM, and Eurographics Digital libraries to obtain papers

which matched our keywords. Because the Eurographics Digital Library does not

allow users to search within the titles and abstracts directly, we conducted a full-text

keyword search of EuroVis papers and then manually filtered the results to find those

which satisfied the title and abstract requirement. Additionally, papers from CHI

had to also include the word “visualization” in their title or abstract because CHI

is not solely a visualization venue. To ensure we did not miss any related results

from CHI, we manually skimmed through all CHI results which did not use the word

“visualization” but included one of the other terms. Our inclusion criteria resulted

2We use the word “layperson” throughout to refer to any matches in this set of keywords.
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in a total of 92 papers (89 + 3 from skim). Documentation of the specific queries

used to retrieve the papers used in our survey is available on our online repository:

https://osf.io/rdcsf/?view_only=d638db5ca96945ed9765134ffa450d8a

From our list of 92 results, we excluded 13 results that were not visualization

research papers. Namely, we excluded two speeches [91, 258] and eleven papers which

focused solely on animation, virtual reality, or augmented reality (all published in

TVCG). After applying our exclusion criteria, we ended up with a final set of 79

papers. Note that our set of papers included papers of all lengths (e.g., full-length

papers, short papers, extended abstracts). We decided not to apply any exclusion

criteria based on the length of the paper because we wanted to get a holistic view

of how these terms were being used across paper types. Further, restricting to only

papers of a particular length would have been difficult given that the page layout and

page limits vary between conferences and may have changed over time.

3.3.2 Data Collection

A team of three coders collected data from each paper with overlap to increase

reliability. To begin, the coders created a codebook that described the information

they wanted to collect, its purpose, and the process by which they would obtain it.

For instance, coders used the keyboard function Control/Command-f to search for the

terms novice, non-expert, general public, and lay(man, men, person, people). The

information collected included:

• the context of each term used (e.g., if “novice” was used as a modifier for “user”)

• the groups who were included and excluded as defined directly by the paper

• whether a group was directly described as “lacking” in something (e.g., moti-

vation, literacy, a skill)
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• In cases in which a user study included one of the keyword audiences: which

words the authors used to describe the participants (e.g., students, staff, crowd-

workers, volunteers), inclusion criteria, and exclusion criteria

3.3.2.1 Rationale for data collection

Given that our goal was to investigate how audiences were defined in the litera-

ture, we chose to collect the context in which words were used to describe audiences,

as well as the explicit definitions provided for those terms. After a small, initial pilot

suggested that explicit definitions were infrequent, we expanded our data collection to

include people described as included or excluded based on work in social psychology

on in- and out-groups (e.g., [62]). To collect these included and excluded groups, we

collected the groups named and described within the same paragraph of any of the

keywords. We restricted to within one paragraph to be more confident that the words

were being used in relation to each other. A group were marked as included if they

were given as an example (e.g., “Such comparison tasks are challenging for novice

ML practitioners who have primary but not comprehensive ML knowledge background

... For example, a medical school graduate student may want to adopt a CNN for

disease detection” [415]) or if the keyword group was described in terms of what they

thought or did (e.g., “Non-expert users have difficulties to comprehend the coherency

of input, parameters, and output of these algorithms” [45]). We did not count this

kind of description as an explicit definition because it is not clear whether it is neces-

sary for a member of the group to have this kind of thought or difficulty or whether

it was supplied as an example. Alternately, a group was considered to be excluded

if they were named in sequence with one of our keywords (e.g., “Visualization of gen-

eral relativity illustrates aspects of Einstein’s insights into the curved nature of space

and time to the expert as well as the layperson.” [153]) or were directly contrasted

against them (e.g., “While most of these systems are geared towards domain experts ...
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CrowdLayout focuses on novice crowds” [352]). We also collected information on par-

ticipants and how they were selected because participants are supposed to represent

the audience. Finally, we coded for descriptions of people as “lacking” because the

audiences we surveyed (novices, non-experts, the general public, and laypeople) are

non-traditional visualization audiences which may be compared to more traditional

audiences and could be described in a negative light in these comparisons.

3.3.2.2 Data collection process

Using the codebook, coders independently coded the same set of 10 randomly

selected papers, met to discuss their codes, resolve differences, and make any necessary

changes to the code book. The rest of the papers were divided among the coders (19

or 20 per coder). After all coders had coded half of their assigned papers, they all

coded a second common set of 10 papers. Again, they met to discuss their codes

and resolve differences. The mean pairwise inter-coder reliability for the second set

of papers was an average 0.63 (SD=0.02) as calculated using unweighted Cohen’s

Kappa. Once all differences had been settled, the coders coded the remainder of their

papers and adjusted previously coded papers as needed.

After collecting the data, one of the coders categorized the explicit and implicit

definitions provided according to their complexity. Each explicit definition provided

was tagged as either one-dimensional if inclusion in the audience required only one

condition (e.g., “little experience with visualization”) or multi-dimensional if inclusion

required two or more conditions to be met (e.g., “little experience with visualization

and biology concepts). Terms which were not explicitly defined but were defined

implicitly (through the included or excluded groups) were also categorized according

to their complexity. Implicit definitions were tagged as “one-dimensional,” “multi-

dimensional,” or “unclear” when multiple groups were included or excluded but it

was difficult to ascertain what criteria united or divided them.
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3.4 Analysis and Discussion: Characteristics of Audience

Definitions

The purpose of this analysis was to examine how a selection of four audiences are

defined in visualization research. In the following section, we will report our findings

regarding these definitions and discuss some potential implications. The results of

our data collection, per paper, are summarized in Table 3.2.

3.4.1 Audiences were rarely explicitly defined.

Explicit definitions are desirable because they directly and completely describe

what is meant by a term, thus fulfilling their explanatory purpose [27]. Among the

79 papers we examined, only 15 contained an explicit definition clearly identifying

which people were novices, non-experts, members of the general public, or laypeople

(see Table 3.1 for counts and example definition). Two explicit definitions included

“novice Vega users”, which were people who were “unfamiliar with Vega” [172], and

“novice ML practitioners”, which were people with “primary but not comprehensive

ML knowledge background[s]” [415].

3.4.1.1 Implicit Definitions

In place of explicit definitions, authors provided implicit definitions in 56 papers

by sharing examples of audience sub-groups or describing characteristics of audi-

ence processes or background (see Table 3.1 for counts). For example, novices were

said to have difficulty “effectively utilizing GPU clusters” [75] or “lack the knowledge

and expertise in data visualization” [134]. Non-expert users were said to have diffi-

culty “managing the complexity of visual parameters” of volumetric functions [327]

and think that “large network visualizations [were] overwhelming, confusing and con-

tain[ed] too much detail” [384]. Although implicit definitions clarify some of the

characteristics of the words being defined, they rarely provide the clarity and preci-

sion of explicit definitions [401]. Further, not all examples are equally helpful — in
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order for an example to effective, a reader must be able to identify that the example

can generalize to a broader set of problems or rules [245]. Without sufficient context

around the example, it may not be clear to the reader what should be generalized.

In 53 of 79 papers, authors also provided implicit definitions through counter-

examples by describing people who were not in the audience (see Table 3.1 for counts).

In many papers, “experts,” was used as a contrast to “novices” and “non-experts.”

For instance, non-expert algorithm users were contrasted against “experts in data

mining techniques (e.g., engineers or biologists)” [45]. There were also more specific

counter-examples provided such as in Chan et al., which contrasted people in the

general public against “music lovers, who have received extensive training in music

theory and history” [65]. We distinguish between “counter-examples” and “negative

definitions” as such: “counter-examples” are cases where a group is named or de-

scribed in a way that makes it ambiguous who else is included or excluded, while

“negative definitions” refer to explicitly defining a group by what they are not. For

example, “Non-experts and engineers use visualizations” contains a counter-example,

while “Non-experts include anyone who is not an engineer” is a negative definition.

Counter-examples can be a helpful tool for learning about the nature of some phe-

nomena (e.g., as observed in [157, 15, 64]), but they must defy the reader’s existing

expectations in order to be beneficial [420]. In other words, in order to be helpful, a

counter-example must (at least) teach the reader that their existing belief is wrong.

In this way, specifying that “music lovers” are not in the general public may be help-

ful if the paper reader assumed that “music lovers” would be included, while stating

that “experts” are not non-experts or novices may not be helpful if the reader al-

ready assumed this was true. Nonetheless, counter-examples that violate a reader’s

expectations may still be unable to resolve the cognitive dissonance between what a

reader previously believed and their new knowledge [420]. In other words, providing
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an effective counter-example may teach the reader that they are wrong about who

belongs in an audience, but does not always help them understand what is right.

3.4.1.2 Inclusion and Exclusion Criteria as Implicit Definitions

For papers which reported human-subject studies, a paper-reader could refer to

the participant inclusion and exclusion criteria to get an idea of what was meant

by the audience (see Table 3.1 for a count of the inclusion and exclusion criteria

collected. Inclusion criteria are intended to “specify, in great detail, who qualifies to

be included” in a study [222]. Clear inclusion criteria are necessary for replicability

and set the scope of who the research question is about [363, 282]; in this way, they

too define the audience. Exclusion criteria, on the other hand, describe “features

of the potential study participants who meet the inclusion criteria but present with

additional characteristics that could interfere with the success of the study” [282].

Together, inclusion and exclusion criteria can also implicitly define the audience by

specifying who is included in the audience specified by the research question and who

is excluded for the purposes of the study’s design.

Of our set of 79 papers, 44 recruited participants which were intended to repre-

sent novices, non-experts, the general public, or laypeople. Of the 44 papers which

recruited participants, 35 described the inclusion criteria employed. Papers which

recruited crowdworkers often reported very specific inclusion criteria such as citing

that crowdworkers on Amazon’s Mechanical Turk platform were required to have spe-

cific task approval metrics (e.g., “10,000 [human-intelligence tasks] approved” [218])

and live in particular countries (e.g., “Canadian or US residents” [2]). Authors also

mentioned sampling participants who were museum visitors ages 6 and older [192]

and students enrolled in an “undergraduate computer science HCI course (taken in

person during summer session)” [169].
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On the other hand, most of the papers that we surveyed described no exclusion

criteria. Only 5 of 44 papers which recruited participants excluded participants from

one of the keyword groups. Of those 5 papers, 2 rejected or re-categorized participants

into a different audience based on background knowledge [218, 429], 1 based on color-

blindness [425], 1 for poor response quality [385], and 1 on the basis of color-blindness

and a non-English native language [226].

Although inclusion and exclusion criteria are supposed to describe what is required

for an individual to either be included or excluded from a study, it was sometimes

ambiguous whether the characteristics of participants described in the papers we

surveyed were required of participants or if they were disclosed to provide more context

to the reader (i.e., were anecdotal). While both can be helpful for placing results in

context, it can be difficult to establish what aspects of the participant pool the authors

think are relevant or that they intended to control in their study. For instance, among

the 44 papers which recruited participants, undergraduate and graduate students

were sampled as the only participants in 15 papers. The practice of using students as

subjects has been hotly debated for decades and can be problematic when students

differ from the target population along dimensions which influence the magnitude or

direction of the result [112]. However, without a clear description of which dimensions

the authors believe matter to the intended audience within the context of the paper,

it is difficult to accurately assess how students may differ from it. This, in turn, can

make it very difficult to figure out to whom results should apply.

3.4.1.3 Discussion of Implications of Ambiguity

Our analysis suggests that authors may be over-relying on implicit definitions

for visualization audiences in place of explicit definitions (e.g., by using examples or

counter-examples). This lack of specificity is dangerous because it can result in over-

generalizing research outcomes for audiences that were never intended (or evaluated)
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in the original research. We can see how this could occur within the context of our

case study by examining how the pool of visualization “users” has shifted over time

and how implied audiences may have shifted with it. As many authors have pointed

out, analysts were once considered the dominant or sole audience for visualizations

(e.g., [24, 170]). When authors wrote about “novices,” they could have been referring

to less experienced analysts; perhaps to statistics- and visualization-savvy people

without professional experience in field. Today, this same group of people may be

excluded from the audience implied by authors using identical language — as the

audience for visualizations has expanded, analysts may not be considered novices at

all. Therefore, results about and guidelines for novices 30 years ago might not be

applicable to the novices of today. However, it may not be clear to the people who

read the work in the future that the audience has shifted at all and that the results

do not necessarily generalize, unless the authors have defined their audience carefully

in the text.

3.4.2 Definitions focused on only one aspect of the individual’s identities,

interests, or experiences.

In most of the papers that provided explicit or implicit definitions (50/79), au-

thors provided a definition for at least one term that focused on a single aspect of

the individual’s identities, interests, or experiences. Many of the papers we surveyed

focused on an individual’s lack of knowledge to implicitly or explicitly define novice

and non-expert audiences. Most of these papers identified these groups as lacking

domain knowledge when defining novices (12/32) or non-experts (6/20). For exam-

ple, non-experts had “little technical knowledge in ontological models like [Knowledge

Graphs]” [429] and “no deep knowledge of flood management” [86]. Far fewer papers

grouped people based on knowledge focused on an individual’s knowledge of visualiza-

tions (novice: 2/32, non-expert: 2/20, e.g., [215, 388]). Instead, implicit definitions
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were based on an individual’s job title or relationship to a particular system (novice:

12/32, non-expert: 6/20) such as visualization students [368], crowdworkers [352],

and “users of a distributed file sharing system” [118].

A few papers that we surveyed defined at least one audience using multiple di-

mensions (14/79). For instance, South et al. created DebateVis as a tool to explore

presidential debate transcripts for “non-experts” who possessed “limited to no fa-

miliarity with the upcoming U.S. Presidential election” and no “experience with text

analysis or text visualization” [360]. By defining their intended audience using both

domain and visualization knowledge, the authors focus on the unique needs of in-

dividuals within that intersection which may have been missed if they had defined

the group more generally. For instance, the authors reported that participants had

difficulty parsing chord diagrams when evaluating an early prototype [360]. If they

had defined “non-experts” more generally (say, only based on domain knowledge),

then it is possible the needs of these users may have been masked by users with more

experience reading chord diagrams.

Among the 15 papers that provided an explicit definition for at least one of their

audiences, 10 defined their audience along a single dimension. The 5 papers which

did not defined their audiences using a combination of age and experience using a

computer [192], experience with image editing tools and with historical art [289],

experience with design and modeling [180], experience and interest in cryptocurrency

[431], and experience with presidential elections and text visualization [360].

3.4.2.1 Discussion of Risks of Over-aggregation

Researchers risk ignoring the (potentially unique) needs of different populations

them into majority groups when they define audiences based on one aspect of an

individual’s identities, interests, or experiences. As an example, if an audience was to

be categorized based solely on individuals’ knowledge of a non-visualization domain
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such as Biology, the authors of this paper, who study visualizations, and people

who do not need or want to use visualizations would both be grouped together and

considered novices despite likely possessing different perspectives on visualization.

The over-aggregation of audiences is likely to disproportionately impact groups

that have already been historically marginalized in the visualization literature because

they are already minorities or have been minoritized. For example, little visualiza-

tion literature has focused on the needs and experiences of individuals with disabilities

other than blindness and low vision [115]. Without intentionally constructing visu-

alization audiences that consider how disability status interacts with other kinds of

knowledge, experiences, interests, or skills, individuals in these groups are aggregated

into the majority group.

3.5 Suggestions for Practice & Design

In the previous section, we discussed current practices of defining audiences for

visualization work. We demonstrated that in papers which used the terms novice, non-

expert, layperson, or general public, explicit definitions of these terms were largely

absent. Instead, authors used implicit definitions that may be incomplete or one-

dimensional.

In this section, we draw inspiration from research methods and feminist theory

to provide three suggestions for defining visualization audiences more completely.

This section is not intended to represent all of the actions that researchers could

take. Instead, it represents three under-explored areas that mirror our analysis. We

encourage readers who connect with the themes that we examine (particularly those

on intersectionality and power) consult D’Ignazio and Klein’s “Data Feminism” [106]

for further discussion and examples of how these themes manifest in data science

broadly.
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3.5.1 Make the Implicit Explicit – Explicitly define terms; Disclose in-

clusion and exclusion criteria

Our analysis revealed a lack of clear, explicit definitions for audiences. Instead,

authors defined terms by providing examples or counterexamples of people in those

groups (e.g., students are considered novices, experts are not). However, explicit

definitions are often necessary to ensure that readers understand whom the work and

results apply. In this section, we will provide suggestions for how to construct clear

definitions of groups and participants.

1. Explicitly define terms used to describe audience(s) by specifying which

qualities are required for inclusion.

We propose that papers should clearly define the terms they use for their audi-

ence(s). In other contexts, authors are expected to provide definitions when they

introduce new terms or utilize a term that has multiple meanings. The terms authors

use for their audience(s) should be no different. For instance, in a paper exploring

the impact of pictograph arrays on “causal sensemaking” practices of the general

public, the authors define the term “causal sensemaking” but do not define “general

public” [54]. We suggest introducing a definition of general public such as “people

who regularly use static, casual visualizations online or in-print to make decisions.”

Definitions should clearly indicate which qualities are considered salient to an in-

dividual’s inclusion in an audience. We argue that much like the independent and

dependent variables ([222]; see [165] for a template of methodology sections in visual-

ization), the intended audience of a study provides critical context to the outcome(s)

of the experiment. For instance, many papers in our case study implied that “novices”

lacked knowledge about either a particular domain or about visualization, but not

both. Defining novices explicitly would make it easier to understand which qualities
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novices were required to have and to compare results with other work that focuses on

a similar audience. See Table 3.3 for examples of explicit definitions from prior work.

When providing definitions, we encourage authors to think carefully about what

dimensions of experience or identity matter. Slater observed that variables such as

demographics and geographic location are used most frequently because they are easy

to collect and may serve as a starting point for audience differentiation [354]. For ex-

ample, it may be relatively straightforward to identify an audience for a visualization

such as “individuals over the age of 65 who live in Wisconsin.” However, “inferred”

or psychosocial variables may also provide another option for meaningfully dividing

audiences [354]. For instance, Kennedy et al. found that a person’s self-efficacy im-

pacts how and why people use visualizations [195]. While it may be possible to divide

audiences in this way for experimental purposes (e.g., to employ a pre-test to collect

the data and then divide participants based on that), it remains an open question as

to how these inferred variables could be employed in real-world visualizations.

It may also be helpful to name people who are excluded from an audience defini-

tion. Particular groups of people may be excluded because of a design choice made.

For example, if a paper focused on designing intricate visualizations for a large screen,

mobile phone users may be excluded from the audience as a result of the medium. In

this case, we suggest explicitly naming access to particular technologies as necessary

criteria (e.g., “our audience is people with access to large high-definition displays,

who...”). It also may be advantageous to name who is excluded when defining a

particularly broad or diverse audience. For instance, defining the “general public” as

“everyone who is not currently employed as a scientist” clearly delineates who is in

the audience and why. We suggest that authors who employ this approach note the

difference between an explicit “negative” definition (e.g., “The general public is every-

one who is not currently employed as a scientist”) and providing a counter-example

(e.g., “People who are currently employed as scientists are not in the general public”).
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Notice that the former indicates that the only people excluded are people currently

employed as scientists, while the latter suggests that scientists are among the group

of people who are excluded.

2. When papers contain human-subject studies, state inclusion and exclu-

sion criteria.

In papers containing a human-subject study, methods sections should clearly indi-

cate participant inclusion and exclusion criteria. Although this is a practice discussed

by many works on research methodology (e.g., [222, 181]), it is still uncommon in the

papers we surveyed.

Ideally, there should be a clear connection between the definition of the audience

and the inclusion criteria because both define the features relevant to the research

question [282, 181]. Further, by definition, exclusion criteria are not just the inverse

of inclusion criteria [282] — they describe why a person was excluded who otherwise

would have been included. Therefore, it is necessary to disclose both inclusion and

exclusion criteria — the inclusion criteria describe what is required of an individual

to be a representative of the audience, while the exclusion criteria describe who is

in the audience but not allowed to participate in this study to accomplish study

objectives. Regardless if exclusion criteria are applied, authors should state it as to

provide clarity for the reader.

There are different ways of disclosing inclusion and exclusion criteria (see examples

from existing work in Table 3.4). For example, inclusion criteria can be explicitly

stated as such (i.e., the example from [253]) or can be described as requirements

(i.e., the examples from [179, 291]). In either case, the descriptions must contain

sufficient detail to understand who qualified to be a participant and why [156, 84].

Similarly, exclusion criteria may describe qualities of a person (e.g., “compromised
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cardiopulmonary function requiring the use of oxygen” [253]) or particular behavior

observed once the study has begun (e.g., “completed a question under three seconds

for more than three times” [226]).

3.5.2 Think Intersectionally – Define audiences multi-dimensionally; Con-

sider how intersections produce unique perspectives

As discussed in Section 3.4.2, the terms that we investigate (e.g., novice, general

public) were often (implicitly) defined on the basis of one dimension of a person’s

identities, knowledge, or experience. In the papers we surveyed, this dimension was

commonly the amount of knowledge or experience of an individual. We caution

that the practice of defining an audience based on only one dimension may have the

unintended consequence of aggregating individuals who exhibit very different behavior

or needs. These issues may mimic the well-characterized problems of aggregating non-

demographic data, including biased correlation and regression coefficients in statistical

analyses (e.g., [77, 31, 11]).

As an alternative, we suggest thinking of visualization audiences through the lens

of intersectionality — how the intersections of multiple personal dimensions might

result in unique experiences with a visualization. The term “Intersectionality” was

originally introduced by Kimberlé Crenshaw to describe how thinking of Black women

as only Black or women fails to capture their experiences at the intersection of the

two identities – as both Black and women [60, 94]. Although Crenshaw coined the

term in the 21st century, intersectional work has been conducted by predominantly

Black, Latina, and Native women in response to systematic injustice stretching back

to the 18th century [79, 80, 308]. In recent years, intersectionality as a framework has

been applied across many domains including Law, Politics, Psychology, and Social

Science Research [60], as well as the closely-related field of Human-Computer Interac-

tion (HCI) where scholars have characterized Critical Race Theory for HCI (including
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intersectionality as a central tenet) [266] and applied intersectional lenses to ethno-

graphic analyses [403]. Its roots in gender and race can be thought of as a jumping

off point for examining the ways that constellations of an individual’s identities may

shape their experiences and perspectives [74, 60].

Intersectionality, as a lens, asks researchers to consider how the perspectives of

individuals with particular identities or experiences might be unique from the perspec-

tives of individuals who share some, but not all, of the same identities or experiences.

In a visualization context, research could apply an “intercategorical method” of in-

tersectionality “to document and compare relationships between social groups along

multiple identity category dimensions”[332, 248] and ask questions like:

• How might people who do not read visualizations regularly AND are skeptical

of vaccine mandates view this visualization differently than people who do not

read visualizations regularly AND are NOT skeptical of vaccine mandates?

• How could we design a visualization to meet the needs of blind users who are

also unfamiliar with climate science terminology?

• What does it mean to design a visualization of election results for people with no

domain knowledge and years of experience reading visualizations as opposed to

people with no domain knowledge and little experience reading visualizations?

Intercategorical methods of intersectionality may be contrasted against “intracat-

egorical methods” which examine the diversity that arises within a group [332, 248].

One example of work that engages intracategorically with a visualization audience is

Peck et al.’s “Data is Personal” [283]. The authors interviewed 42 adults living in ru-

ral Pennsylvania (USA) about their attitudes and perceptions of data visualizations.

In their analysis, the authors carefully examine the diversity of opinions which ex-

isted within an audience which has been unintentionally excluded from visualization

studies in the past. The strength of intracategorical methods is their focus on the

nuances that arise within an intersection [22], which might make them particularly
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advantageous for projects that build visualizations aimed at a diverse set of readers.

By critically engaging with the nuance of the audience, researchers can actively make

choices that accommodate for diversity as opposed to building a solution aimed at

the (imagined) majority and leaves some readers behind.

Considering intersectional identities could function as a means for uniquely defin-

ing terms/groups. Wong et al. provide an example of how this can be done in

their work characterizing the specific needs of “Domain Experts” who they defined

as “people who are experts in a specific professional domain where they want to apply

visualization and analytics, but who often lack high literacy, training, and motivation

in visualization and visual analytics” [402]. By considering the ways that domain

knowledge, visualization literacy and analytical training intersect, the authors can

clearly differentiate between the unique needs of this group and other groups such

as “Visualization Experts” and “Casual Users.” Although a central aim of Wong et

al.’s paper was to define the needs of domain experts as a group [402], applying an

intersectional lens can also look like defining the intended audience of a visualization

through multiple dimensions, but which ones? Past work in technical communication

by Albers has argued that authors should consider at least three dimensions when

defining an audience: the reader’s current knowledge on the topic, the amount of

detail the reader wants, and the reader’s ability to “comprehend and understand the

material” [6]. They also suggest considering “social and cultural factors that affect the

reader” if the audience is not expected to be homogeneous [6]. Alternately, research

on writing and designing test score reports suggest that authors construct audiences

by considering three different areas: Needs (goals and the steps they need to ac-

complish them), Knowledge (what they already know and will learn), and Attitudes

(“feelings or biases” which influence interpretation) [419, 127]. While we suggest that

authors define their audiences along more than one dimension, which dimensions may
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vary according to the project. However, we hope that the dimensions discussed here

may serve as jumping-off points for readers of this work.

3.5.3 Beware of Power – Avoid only valuing dominant ways of knowing

and doing

In the previous sections, we discussed the importance of clearly identifying one’s

intended audience and defining that audience with enough depth. For example, we

discussed how defining a group of people through multiple dimensions allows for

focusing on the specific needs of that group. As Crenshaw writes, “the process of

categorization is itself an exercise of power” and that the power exerted in categorizing

is inherently different from the power to “cause that categorization to have social

and material consequences” [93]. The ways that researchers categorize the people

who read and interact with visualization can have social and material consequences

including what information is available to whom. Therefore, in this section we focus

on the problem of unintentionally reinforcing dominant systems of power through

categorizations to help future researchers use their power responsibly. Our goal is

not necessarily to prescribe which audience definitions are “right” or “wrong,” but to

encourage researchers to think carefully about the ways power moves and is reinforced

in visualization work.

People who have power define the knowledge or skills that are deemed valuable

and valid [163, 106]. For example, colonial powers have systematically devalued In-

digenous ways of knowing and doing in communities across the world in favor of Euro-

centric knowledge and practices [343, 399]. Unchecked, this functions as a means to

reassert hierarchical power structures where those who have the power perpetuate

the idea that the things they have are the most important and inherently superior.

Hierarchies are “structure[s] in which groups or people are ranked above or be-

low one another in accordance with authority and status” [217]. While hierarchies
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may describe formal relationships among individuals (e.g., many workplaces are orga-

nized hierarchically [217, 140]), they can also describe perceived relationships between

groups (e.g., racial hierarchies in the United States [359, 61, 375]). While some argue

that hierarchies can be helpful organizing principles (e.g., [140]), others emphasize

that hierarchies can be harmful because the groups who are not at the top may be

seen as the inferior version of the ones who are (rather than as distinct entities) [188].

This, in turn, can result in outcomes including inequality and epistemic injustice (in

which minoritized people are not believed, even when speaking from direct experi-

ence) [217]. Hierarchies may also be dangerous because they can be self-reinforcing

— individuals at the top of hierarchies tend to block individuals who do not conform

to behavioral norms from “rising up” [361].

When audiences are defined using only one dimension (as we observed during our

analysis), it it may facilitate the creation of a hierarchy between audiences. One sign

that a hierarchy may be present is when an audience is defined based on a perceived

“lack” of something that another audience has which offers them status or power.

For example, defining a group based on a lack of knowledge directly establishes the

“lacking” group as having less than the group they are being compared to. Fur-

ther, definitions based only on a perceived lack may indicate that a “deficit model”

is being applied. In deficit models, people are “primarily (or even solely) [con-

ceptualized] in terms of their perceived deficiencies, dysfunctions, problems, needs,

and limitations” (emphasis added) [108]. Although the papers we surveyed did not

specifically use the language of deficits, we argue that discussing the lack of particular

knowledge and comparison against experts who do possess that knowledge and do not

warrant further study or technological intervention satisfies the definition of a deficit

posed in past work (i.e., the belief that a person lacks X and ought to have X) [108].

Deficit models have been critiqued for decades in fields like education, disability stud-

ies, and philosophy on the bases that they can be de-humanizing, disproportionately
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punish minoritized people, and position one group as the “lesser” form of another

[108, 168, 188].

One opportunity for authors to value non-dominant ways of knowing and doing

(and thus subvert hierarchical power structures) is to be curious about the perspec-

tives of audiences who think about or use visualizations differently from researchers.

For example, visualization researchers may believe that visualization is good and

worthwhile, so it may be fruitful to consider the perspectives of individuals who do

not use or do not want to use visualizations, despite the pressures from an increasingly

data-focused world [237, 285] to do so. Like the potential for examining who does not

engage with particular media [154], considering the non-users of visualizations may

be illuminating. One instance of engaging with people who use visualizations differ-

ently is present in recent work on visual communication practices in rural Bangladesh

[367]. This project offered a look at ways of encoding and communicating informa-

tion which do not conform to Euro-centric “modern” visualization techniques and

values [367]. However, the visualization research community should proceed with

caution when looking outside of “traditional” visualization audiences and values in

that they do not exoticize and other those who are “out there” [370]. Instead, visu-

alization researchers must actively recognize that they are “in here” – that is, that

their knowledge and perspectives are actively shaped by their own experiences and

perspectives [163, 370].

We also suggest thinking critically about skills or attributes that might be relevant

to an audience member’s success and experience with a visualization, but correlate

with unequal structures of power (such as wealth and attainment of formal education

[125]). Instead, there may be opportunities to anchor analyses to dimensions with

weaker ties to power. For example, literature in education and psychology has ex-

plored how “grit” (i.e., “perseverance and passion for long-term goals” [113]) impacts

success and achievement (e.g., in [114, 92, 113]). Although the evidence is mixed on
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the effects of grit as a composite metric, a recent meta-analysis suggested that per-

severance component may be positively correlated with academic performance [92].

Further, grit is theorized to differ little between demographic groups [113], though

more empirical work needs to be done to clarify the mixed evidence on the relation-

ship between grit scores and specific demographic variables (e.g., age [119], gender [8],

ethnicity [67]) [92]. Within a visualization context, one might therefore ask: What

strategies do audiences with high grit/perseverance, but little formal visualization

training, utilize to accomplish tasks?

Valuing the perspectives of people who use visualizations differently and including

skills or attributes which are less tied to institutional power could enable researchers

to build visualizations that leverage the knowledge and skills that audience members

already have. Connecting visualization practices to the experiences and interests of

audiences has been discussed in visualization work for years (e.g., [152, 170, 341, 260,

100]) and could take the shape of alternative visual metaphors (e.g., [260]) or entirely

different ways to encode or represent data (e.g., [341]). In Science and Technical

Communication, reframing communication messages in ways that connect with the

audience’s specific values and knowledge has been observed as an effective method to

connect with people who were entirely excluded from the conversation before (e.g.,

[262, 29, 239]). For example, Nisbet and Scheufele observed that framing science

as “anti-religion” meant that some religious communities felt that climate change

conversations were irrelevant to their lives, but re-emphasizing the moral and ethical

dimensions of climate change helped scientists such as E. O. Wilson to convince

“religious leaders that environmental sustainability is directly applicable to questions

of faith” [262].

But does creating visualizations that utilize the unique experiences, attitudes,

and perceptions of audiences mean that visualizations which work for “all” cannot

or should not be made? We argue that the body of existing work suggests that,
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no, “one-sized-fits-all” solutions are not likely to work for “all.” For example, there

is plenty of evidence supporting that accommodating for the needs of people with

extensive visualization knowledge can make tools difficult to use for people with less

experience and the inverse – that choices made to fit people without experience can

make it harder for those with experience (e.g., [152, 378]). Further, an individual’s

perceptions are shaped by their existing experiences, knowledge, perception, and

values [163, 161]. Therefore, it is necessarily impossible to create a visualization that

is uniformly interpreted by all.

3.5.4 Summary

In this work, we proposed four actions that researchers can take to define audiences

more inclusively and completely:

1. Treat words for audiences like new or contested terms in papers – define them

with precision. Indicate which dimensions are relevant to inclusion in the audi-

ence.

2. If participants are recruited, clearly state the inclusion and exclusion criteria

used.

3. Think critically about how intersecting dimensions of experience might produce

unique experiences; define audiences using multiple dimensions to center those

unique experiences.

4. Think broadly about which of skills, knowledge, and experiences might be rel-

evant; look outside of dominant ways of knowing or doing.

3.6 Conclusion

In this paper, we argue that defining the intended audience of a visualization

is critically important and that implementing changes will benefit readers and the

field as a whole. Through our case study of visualization research papers that used
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the terms “novice,” “non-expert,” “general public,” and “layperson,” we discussed

the unintended consequences of two problems: explicit definitions are largely absent

and the implicit definitions provided are overly simplistic. We proposed that authors

ought to improve current practices by: making the implicit explicit and carefully

defining terms directly, thinking of audiences intersectionally, and keeping dominant

power structures in mind (as to not reinscribe them). Our intention with this work

was to identify a potentially dangerous issue in current research practices and provide

suggestions for how the visualization research community might avoid those practices

in the future. Our suggestions are not intended to be exhaustive, but instead meant

to spark a conversation among the visualization research community about how to

talk about the audiences of visualizations and the assumptions made about the people

inside of them.
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Table 3.1. Few of the 79 papers we surveyed provided an explicit definition of a term.
Instead, definitions were often provided or audiences were defined implicitly using ex-
amples (i.e., a sub-group or description) or counter-examples (i.e., by contrasting).
Papers which recruited participants matching one of our surveyed audiences (n=44)
provided differing amounts of information on why participants were included or ex-
cluded. Counts reported per paper, represent explicit and implicit definitions within
1 paragraph of the term being used, and are not exclusive.

Code n Example Source

Explicit
Definition

15/79 “None of the participants reported expertise in
political debates or text visualization. We chose
to use this population for our study because they
represented the non-expert, general audience
we want to use DebateVis.”

[360]

At least 1
Example

52/79 “Since novice users of visualization systems
lack the knowledge and expertise in data visu-
alization, ...”

[134]

At least 1
Counter-
example

53/79 “While pop music is intended to be friendly to
the general public ... [classical music is] usu-
ally only understood by music lovers, who have
received extensive training in music theory and
history.

[65]

Disclosed
Inclusion
Information

35/44 “We conducted our experiment on Amazon Me-
chanical Turk with the following recruiting spec-
ifications ... 10,000 # HITs approved, 99 HIT
approval rate (%).

[218]

Disclosed
Exclusion
Information

5/44 “We exclude participants knowledgeable in KG
or graph visualization to avoid interference from
their prior knowledge.”

[429]
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TVCG (40)

[32][65][71][73][75][110][145][153][175][180][192][197][210][214][215][226][234][236][271][287][289][304][310][319][327][337][342][355][384][385][390][404][412][415][423][425][426][430][433][436]

Novice

Non-Expert

Gen. Public

Layperson

Explicit Def.

Example

Counter-Ex.

Incl. Criteria

Excl. Criteria

CHI (22) EuroVis (9) VAST (4) InfoVis VIS BELIV

[25][30][82][85][169][172][190][218][235][246][252][276][352][357][368][376][383][398][410][424][429] [45][86][118][159][249][374][388][407][414] [56][281][320][431] [134][150] [2] [360] [63]

Novice

Non-Expert

Gen. Public

Layperson

Explicit Def.

Example

Counter-Ex.

Incl. Criteria

Excl. Criteria

Table 3.2. An overview of the 79 articles we reviewed. The filled boxes indicate
that a specific keyword appeared in the paper ( ), an explicit definition was provided
for at least one keyword ( ), an implicit definition was provided via an example or
counter-example ( ), and inclusion or exclusion criteria were provided ( ). We use
to indicate that no participants were recruited to represent any of the keyword

audiences we collected.
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Table 3.3. Authors should define their audiences carefully by explicitly describing
the dimensions they consider. This table contains examples from existing work which
provide explicit definitions that describe what constitutes membership, though most
are one-dimensional.

Term Explicit Definition Source

Target Users “Our target users are people who want to understand
their personal data with an aesthetically pleasing dis-
play, rather than to perform focused tasks in data anal-
ysis”

[280]

General Public “The target audience of the science center is the gen-
eral public, ages from six years and up, with no spe-
cific prior experience in computer usage.”

[192]

Non-expert “None of the participants reported expertise in politi-
cal debates or text visualization. We chose to use this
population for our study because they represented the
non-expert, general audience we want to use Debate-
Vis.”

[360]

Novice “All of our participants were novice Vega users (i.e.,
were unfamiliar with Vega)”

[172]

Novice “There is a need for a novice environment in which first-
time (novice) users can get
acquainted with the basic technology”

[121]

Novice “... we are interested in ‘novice users’ that can be
defined as users who have seen a particular type of vi-
sualization for the first time.”

[225]
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Table 3.4. In papers reporting on human-subject studies, authors should carefully
disclose inclusion and exclusion criteria. This table contains examples from existing
work which do this well.

Inclusion Criteria Source

“Inclusion criteria included community dwelling, 50 years and older, able
to read and write in English (no translation services were provided), and
able to ambulate without use of assistive devices.”

[253]

“Participants were required to be at least 18 years old; have two Instagram
accounts, one regarded as their ‘real’ account (Rinsta) and another one
regarded as their ‘fake’ account (Finsta); and be active on both accounts,
making at least one post on each account within the last six months.”

[179]

“We had three specific inclusion criteria. First, at least one child had to
be experiencing poor sleep, as assessed by a parent-completed Children’s
Sleep-Habits Questionnaire (CSHQ) ... Second, the child experiencing
poor sleep needed to be between the age of 7 and 12 years old ... Finally,
all participating family member were required to live in the same home.”

[291]

Exclusion Criteria Source

“Exclusion criteria included cognitive impairment and compromised car-
diopulmonary function requiring the use of oxygen.”

[253]

“We exclude participants knowledgeable in [Knowledge Graphs] or graph
visualization to avoid interference from their prior knowledge.”

[429]

“We excluded people who have prior knowledge about parallel coordinates
(n = 49). To remove random clickers, we filtered out participants who
completed a question under three seconds for more than three times.”

[226]

“No participants were excluded or withdrawn following randomisation or
lost to follow-up.”

[78]
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CHAPTER 4

DESIGNING WITH PICTOGRAPHS: HOW DOES
DESIGN IMPACT CASUAL SENSEMAKING?

In Chapter 3, I discussed how improving how researchers write and think about

the audiences of visualizations could result in visualizations that better fit the needs

of those audiences. However, improving the design of the visualizations themselves

and the methods used to decide which visualizations are understandable could also

improve the visualizations which are created. To fill both gaps, I turned my atten-

tion to one of the most common types of visualizations encountered by the public –

infographics – and used a novel education-inspired method for forming comprehen-

sion questions to evaluate how making quantities more explicit through the use of

pictograph arrays impacts casual sensemaking. This chapter is a combination of two

previously published works [53, 54].

4.1 Introduction

People engage with visualizations to make everyday inferences and decisions. A

viewer might consult a hurricane risk map to decide whether to evacuate or inspect a

graph of COVID-19 health outcomes for their age group to decide whether to obtain a

vaccine. Consider the case of a newspaper reader who encounters a map of COVID-19

positivity rates. Though this static visualization might only contain geographic areas

that are categorically coded into risk rates depicted by colors, that reader can still

identify trends, compare their county to others, and make choices about whether or

not to travel.
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Typically in data visualization, data-driven decision making processes are referred

to as sensemaking. The most commonly used model of sensemaking, proposed by

Pirolli and Card, contains both a foraging loop where data are sought, searched, fil-

tered, and read as well as a sensemaking loop where those data are used to iteratively

construct a mental model [292]. This process typically involves time-consuming anal-

ysis and re-analysis, with the intention of finding analytical “ah-ha” moments. It is

also often conducted by expert analysts who have access to the original data and the

resources to independently analyze it [292].

In contrast, the everyday decisions about hurricane paths or COVID-19 might be

considered casual sensemaking, where the general public understands, reflects, and

makes decisions based on information provided by casual visualizations [297] without

deep and time-consuming research using raw data. It is therefore more similar to a

definition of sensemaking from business and management in which the viewer uses

a conceptual model of the world informed by available information “to comprehend,

understand, explain, attribute, extrapolate, and predict” [12, 362].

One kind of data visualization often encountered by the general public is the in-

fographic. Although infographics have been used for, by some estimates, as long as

bar and pie charts [268], there is no single definition. In the journalism world, the

word “infographic” has been historically used to refer to pieces that combine graph-

ical elements with text to convey information [58, 57, 243]. Although infographics

in this context might contain data visualizations, they may also contain maps, dia-

grams, or illustrations combined with text or annotations. Overall, the purpose of an

infographic is to present important information in a way that is sensitive to common

barriers encountered by the public such as limited time and information overload

[268]. Because infographics are used to communicate critical information to the pub-

lic, they could have a strong impact on the way that everyday people understand

science and current events. After encountering an infographic, viewers may not seek
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out and further analyze the data, even if the data is publicly available, because of a

lack of the motivation, time, or skill (for example). In these cases, the viewer must

come to conclusions based on the information that they are shown. For example, if a

person encounters an infographic about COVID-19 cases in their state while reading,

we cannot assume that the person will then seek out the associated data dashboard

to do a more in-depth analysis – yet, they might use the graphic as it is presented

to make choices about how to safely navigate their community. Therefore, it is im-

portant to understand how to design visualizations in a way which communicates

information effectively to everyone who encounters it – this is the chief interest of the

paper. In other words, if we know that people are using data visualizations to engage

in casual sensemaking, then we should be thinking critically about how our designs

afford those activities.

To measure the ability of visualizations to afford casual sensemaking or, more

traditionally, understanding, we turn to the field of Education for inspiration and

operationalize Bloom’s taxonomy, following the taxonomy proposed in [53]. Bloom’s

taxonomy describes 6 aspects of the learning process: knowledge, comprehension,

application, analysis, synthesis, and evaluation [33]. Though originally intended as

a strict hierarchy, some critiques suggest that while some dependency may exist be-

tween the levels, it is not a strict hierarchy [53]. Therefore, we view it instead as

6 complementary skills of differing complexity. We chose to use Bloom’s taxonomy

because it is commonly used to evaluate learning processes [212] and maps well to

the activities necessary for casual sensemaking.

In existing research, infographics show positive empirical findings in terms of mem-

ory, engagement, and assessment of risk [166, 36, 138] — particularly when they con-

tain pictographs (simple, iconic pictures that represent a word or topic). Pictographs

may also be helpful because they make topics and quantities more explicit than when

represented abstractly (as with concrete scales [72]). Yet, there is little exploration
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of how pictographs affect and afford different kinds of understanding. Further, there

is little work on how the choice to use pictographs affects the personal experience of

using infographics across factors such as visual appeal, clutter, and ease of envisioning

the topic.

We first demonstrated the applicability of our proposed framework with three

case studies comparing two alternative designs of real-world visualizations, selected

because they represent several common chart types and were identified by the data

visualization or data journalism communities as being confusing or misleading (Sec-

tion 4.4). Sixty participants from Amazon’s Mechanical Turk answered a set of six

open-ended comprehension questions (one targeting each of the six levels of Bloom’s

taxonomy) about three visualizations. Each question was designed to target a specific

level of Bloom’s taxonomy and was presented in order, beginning with Knowledge and

ending with Evaluation. We showed that different versions of each chart afford differ-

ent interpretations and conclusions across particular levels of the taxonomy, allowing

a systematic evaluation of similarities and differences between designs.

Then, we conducted a series of experiments on Amazon’s Mechanical Turk where

we compared variations of charts that are informationally equivalent but differed in

the presence (or absence) of pictographs. In Experiment 1, we examined how well

infographics with pictograph arrays afford sensemaking compared to more traditional

bar, pie, and donut charts. We created 1 open-response question to target each of the

6 levels of Bloom’s taxonomy. We found that participants generated similar quality

insights across the two chart versions evaluated. Our data suggest that designers can

use pictographs in place of more traditional geometric shapes without impacting user

understanding.

While the first experiment helped us understand aspects of casual sensemaking re-

lated to learning and understanding, we conducted a second experiment to interrogate

the experiential aspects of casual sensemaking. In the second experiment, participants
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compared the same charts from Experiment 1 on 5 metrics identified by the visual-

ization community as important to effective infographics: visual appeal, quickness of

understanding, ease of envisioning, clutter, and perceived importance. Additionally,

we asked participants to explain their reasoning. We found that some participants

thought the charts with pictographs helped them envision the topic better, while oth-

ers thought they required more time to understand and were unnecessarily cluttered.

Additionally, we found that charts that were rated as more visually appealing, less

cluttered, easier to envision, and faster to understand were also thought to make their

topics seem more important.

The main contributions of this chapter are: (1) empirical results that suggest that

infographics with pictograph arrays are just as good as more traditional, geometric

part-to-whole charts at helping people make sense of data; (2) empirical insights that

show some participants view charts containing pictograph arrays as easier to envision,

while others view them as unnecessarily cluttered and slower to understand; and (3)

qualitative results suggesting that perceptions of visual appeal may be impacted by

ease of understanding, making the topic seem real may help readers envision the topic

more easily, and feelings of urgency and importance may be influenced by real-world

connections.

4.2 Background

4.2.1 Infographics and relationships with data visualization

For many people, the word “infographic” is a loaded term. The word infographic

initially gained traction within the news world to refer to any sort of graphic that

was used to display information [58]. As different fields have brought infographics

into their practices, the word has changed meaning. A definition used within the

communication and design communities similarly requires a combination of text and

graphics but stresses the purpose of the chart — they must be created to assist
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in communication [295]. Alternately, definitions may be very strict, incorporating

requirements about the way that the graphic is laid out [394]. In some sources, all data

visualizations are considered infographics. This is incorrect for a variety of reasons,

but, as it pertains to this chapter, infographics are largely intended for effective

communication while data visualizations can be used not just to communicate, but

for exploration, discovery, and analysis, among other tasks.

Outside of the visualization community, infographics are known for their ability

to drive engagement. Many news organizations have teams devoted to developing

infographics, where the quality of a graphic is judged by its ability to engage audiences

[104]. Within the medical communication community, a study found that when wound

care instructions were accompanied by images, patients read the instructions more

often, could recall the instructions more accurately, and followed the instructions

more often [177]. Another found that infographics that were designed with and for

communities of non-native English speakers with low medical literacy were viewed as

more likely to influence behavioral change [16].

Within the sphere of medical communication, visual aids are well understood as

effective tools to help people understand risk. In that domain, visual aids such as

infographics and pictograph arrays are useful for helping individuals with medium

to high graph literacy and low numeracy [138]. These infographics have also been

effective at encouraging behavioral change and communicating medical information

across language barriers [138].

4.2.2 InfoVis research on infographics

Critics of infographics have argued that embellishments should be avoided, lest

they cause distraction from understanding the data presented [379]. However, exist-

ing work that compared highly illustrated infographics to informationally equivalent,

plain charts found no difference in overall understanding of the data [19]. Further,
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even when the illustration strictly appeared in place of bars of a bar chart, there was

no effect on speed or accuracy [353].

Past research has also revealed memorability to be a strength of infographics,

showing that when compared to unembellished charts, participants are able to recall

the data, trend, value message, and topic of an infographic more accurately over a long

period of time [19]. Further, over a shorter-term, participants were able to remember

that they had seen the infographic, could more accurately recall its message, and,

when attention was divided, could more accurately recall specific points of data,

especially when those infographics were colorful and contained pictographs [36, 35,

19, 166].

Within the data visualization community, infographics have also been shown to

be particularly useful for engaging audiences, though an infographic’s effectiveness

may be linked to its visual appeal [240]. For example, one study found that when

news articles were accompanied with visualizations, people who found the infographic

visually appealing were more likely to read the accompanying article [100]. Investiga-

tions into what makes infographics visually appealing found that the most appealing

graphics were those that were very colorful but not visually complex [167]. Some

speculate that because infographics are designed to be easy to understand, they are

more compelling to share, leading them to reach a wider audience [356].

However, existing work has sometimes also found infographics to be less effective

than other techniques. When comparing infographics to data comics, one group

found that participants who were shown data comics were able to answer questions

more accurately and remember those facts longer than those shown infographics [394].

They also found that, when compared to data comics, infographics were preferred for

exploration — a quality seen as effective for building trust that the whole story is

being shown [270].
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There has also been recent work on infographics-creation tools, particularly aimed

at users with limited programming experience. Some of these tools aim to bridge the

gap between data analysis and vector graphic tools by allowing the user to assign

specific aspects of the illustration to data dimensions via lazy data binding (e.g.,

[233, 408]). Others are designed to allow users to define custom layouts [315], quickly

style unembellished charts [392], and use existing images to copy styles [427] or extend

timelines [71]. There are also several tools intended to create infographics specifically

for use with personal data, including an end-to-end data collection and visualization

generation tool [200] and a tool to modify photographs to fit line charts [279].

Though interest in infographics within the visualization community is high as

evidenced by the bounty of tools available for their creation, the pool of existing

research on the design and evaluation of infographics has been limited. However,

within the existing research, pictographs appear several times as potentially impactful

elements of design.

4.2.3 InfoVis research on pictographs

Though empirical work on pictographs is fairly limited, the idea of using pic-

tographs for data communication is not new. For example, in the mid 1920s, Otto

Neurath, Marie Neurath, and Gerd Arntz created the ISOTYPE system, which used

a set of custom pictographs to create data visualizations about social and economic

topics [380]. Their designs were guided by 2 simple principles: (1) use pictographs to

represent objects and (2) use repetition, not size, to represent quantities, which leads

to designs with rows or arrays of pictographs.

Empirical work on bar charts in this style found that when pictographs were used

to encode data, they had a positive effect on short-term memorability and engagement

[166]. Further, pictographs were found to have no impact on performance in terms

of speed or accuracy unless they were used decoratively [166]. More generally, info-
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graphics with pictographs have been shown to be more instantly recognizable and to

result in more accurate descriptions when recalled from memory [35]. Within medical

contexts, pictograph arrays have also been shown to be effective for conveying risk

for people with differing levels of graph literacy [139, 137]. Other studies have found

pictograph arrays to be less liked and trusted when used to display breast cancer risk

when compared to more traditional methods [46].

However, not all pictographs are equally effective. Past work has observed that

iconicity can impact both the recall of information and the perception of risk [435].

Additionally, the pictographs might be interpreted in ways the designer did not an-

ticipate (such as when representing categories of items) [16].

4.2.4 Realistic evaluation of sensemaking

In this work, we wanted to make sure that we realistically evaluated the ways

that pictograph arrays impacted readers’ sensemaking processes. Therefore, we em-

ployed a novel technique for evaluating visualizations based on Bloom’s taxonomy of

educational objectives[33].

As discussed in Chapter 2, there are a variety of metrics used to assess particular

understanding within visualization research. One of the most popular methods for

measuring understanding is by measuring speed and accuracy. Although popular,

this method has been critiqued because visualizations are not just intended to help

people understand information easier or faster, but also to better afford aspects of un-

derstanding such as applying or evaluating the visualized information. Therefore, to

truly evaluate the efficacy of a visualization, we need to ask more difficult, open-ended

questions [264] which can capture different information than closed-ended methods

[265, 314]. Existing methods of forming open-ended questions (e.g., asking partici-

pants to describe one thing they found interesting or surprising [387]) lack a system

for comprehensively evaluating different levels of understanding.
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To fill this gap, we endeavored to create a method which combines open-ended

questioning techniques, which have been shown to capture data that would otherwise

have been lost [314], based on Bloom’s six-level taxonomy of educational objectives.

In 2015, Mahyar et al proposed the use of Bloom’s taxonomy in information visual-

ization to measure the depth of engagement and knowledge obtained by viewers [242].

However, before our work, there was no concrete description of how the taxonomy

could be applied, nor a demonstration of its efficacy. In Section 4.3, we describe

Bloom’s taxonomy in detail and provide specific examples of how this framework can

be used to assess visualizations.

Existing Taxonomies in Visualization

Existing taxonomies within the visualization community can be roughly divided

into three categories: taxonomies of visualizations, objectives, and actions. Where

taxonomies of visualizations classify types of data visualizations (e.g., [47, 288]),

taxonomies of objectives categorize the questions that a user wants the answers to

in order to solve a problem (e.g., [44, 256, 432, 382, 69, 316, 299]). Finally, tax-

onomies of actions classify concrete actions done in pursuit of an objective (e.g.,

[335, 3, 196, 13, 316]).

Our proposed framework is a taxonomy of objectives and is most similar to the

taxonomy of analytic tasks described by Amar and Stasko [10]. In both taxonomies,

the categories of objectives correspond to types of tasks which need to be completed in

decision-making practices. However, our proposed taxonomy is more comprehensive,

expanding the scope of objectives to include both more simplistic tasks and the final

conclusions drawn. Some existing work also focuses on participant learning outcomes,

but they cannot be used to form evaluation questions – only to evaluate the responses.

This work quantifies the completeness and correctness of a response (e.g., in [19, 411])
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or the complexity of a reported insight (e.g., in [387]) in order to evaluate open-ended

responses in a post-hoc way.

In summary, we build on existing work in 2 important ways. First, prior work

which compares charts with pictographs to those without either uses real charts which

are not informationally equivalent (e.g., [36]) or informationally equivalent charts

which are not real (e.g., [166]). If we want to know what impact design decisions

might have on the audience, then it is important to use charts which are both as

realistic as possible and informationally equivalent. Finally, though identifying values

in a chart is a critical skill that forms a basis for other more complicated tasks, it

does not realistically capture the kinds of understanding-based tasks which readers

partake in. Phrased differently, though we have some indication that pictographs do

not impact accuracy tasks, we do not yet know what impact pictographs have on

understanding beyond these tasks.

4.3 Bloom’s Taxonomy

In 1948, a group of psychologists and teachers had an informal meeting at the

American Psychological Association Convention, brought together by a shared prob-

lem. They wanted their students to understand their lessons, but they each had

different ideas about what they meant by terms like “understand” or “internalize,”

leaving them with no way to compare those objectives [33]. Motivated by a desire to

find a common, rigorous way to categorize student understanding, the group came up

with the Taxonomy of Educational Objectives, described in a handbook published in

1956. The system is now commonly referred to as Bloom’s taxonomy, named after

Benjamin Bloom, the educational psychologist who edited the handbook.

In the years since its creation, Bloom’s taxonomy has been used broadly in Ed-

ucation [212]. Educators can create activities and assessments that target specific

levels of the taxonomy [17] or use it to evaluate the assessments they already use to
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better understand the objectives being tested and potentially inspire a broadening

of those objectives [191]. In addition, Bloom’s taxonomy has been applied widely in

other fields such as Biology, Business, and Health Sciences, to create and evaluate

exam questions [95], teach critical thinking skills [259], guide course creation on sub-

stance use disorders [257], and visualize the breadth of goals present while developing

curriculum on visual literacy [120].

Drawing inspiration from the taxonomies of Biology, Bloom’s taxonomy is in-

tended to be hierarchical, meaning that learning at the higher levels is dependent

on demonstrating mastery of lower levels. However, this is not necessarily a realistic

representation of the learning process, which is not linear [28]. Therefore, although

we will now describe the levels of Bloom’s taxonomy in the order originally presented,

we reject the assumption that a strict hierarchy exists between levels. Instead, we

view them as complementary skills. For a quick reference to the 6 levels and how

they can be used for evaluating visualization, refer to Table 4.1.

Level Description Example Tasks
Knowledge Recall basic facts and definitions. • Retrieve points

• Locate value
• Identify axis labels

Comprehension Understand the information in context. • Summarize main message/take away
• Describe content of visualization
• Explain the topic of the visualization

Application Apply knowledge to a new problem or represent
it differently.

• Use a percentage and total population to cal-
culate a number

• Calculate the difference between two points
• Translate the data in a chart to a table

Analysis Break down a concept into parts and under-
stand their relationship.

• Describe a trend
• Describe the relationship between two vari-

ables
• Identify what data was used to come to a

conclusion
Synthesis Use knowledge to create something new. • Predict a future value

• Generate a new visual representation
Evaluation Judge the value of information, backed by evi-

dence.
• Justify a conclusion based on data
• Judge which design is more appropriate

Table 4.1. This table presents the 6 levels present in the original Bloom’s taxonomy
[33], a short description of each, and example tasks specific to the visualization com-
munity.
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4.3.1 Knowledge

The Knowledge level historically describes the simplest learning objective demon-

strable by the learner. Associated with verbs such as retrieve, identify, and recall, at

this level a learner is able to accurately recall or recognize factual information

that they have learned. Note that this does not require the learner to understand any

contextual information or the reason behind facts [33].

This level, in its original context, describes a very simple learning task – reporting

back something already seen. Therefore, for visualization, we translate this level into

tasks which ask participants to locate and report specific pieces of information. In

both the original and translation, no transformation is applied to the information by

the viewer and no understanding of context is required. In the experiment described

later in this paper, we used this question to ask participants to locate specific data

points, though other appropriate tasks might include copying text from an annotation

layer or identifying what manipulations an interactive visualization offers.

4.3.2 Comprehension

At the Comprehension level, learners begin to understand the underlying

information as a whole [33]. Traditionally, questions at this level ask learners

to write summaries or identify key ideas [98] and use verbs such as describe, explain,

and summarize.

When applied to visualizations, we can translate this level’s focus on understand-

ing information as a whole into tasks that ask about features present in a dataset as

a whole. For example, we suggest asking for a general summary of the data or the

key take-away messages. Questions formed at this level can be more open-ended than

those at the Knowledge level and, through this, can reveal the different conclusions

afforded by the visualization being evaluated.
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4.3.3 Application

At the Application level, learners apply their knowledge to solve an unfamiliar

problem [33]. This level is commonly associated with verbs such as translate, solve,

calculate, and apply.

For visualization, this level could be translated to tasks where the participant

solves a problem using the data from the visualization, such as identifying a proportion

and using it in a simple computation. This approach may be most appropriate when

the response modality for the participant is restricted to text. In our experiment, we

asked participants to determine the difference between two data values. For situations

where there is not an obvious problem to be solved, this level can also be interpreted

as translating knowledge from one form to another. For example, one could ask

participants to translate the data displayed in a visualization into another visual

style, though this approach requires a more complicated response modality.

4.3.4 Analysis

At the Analysis level, the learner is expected to break down a topic into parts

and understand the relationship between each part [33]. This level is therefore

associated with verbs such as classify, break-down, associate, and relate.

Questions targeting this level could ask about trends, as this requires the par-

ticipant to identify relevant components and then compare their spatial relationship

to each other. We rely on this type of question in the experiment presented in this

paper. Alternately, questions could also ask participants to identify which pieces of

evidence were used to support a specific conclusion drawn from the data. This trans-

lation views the conclusion as the “topic” to be broken down and the data points as

the components. Acquiring a conclusion from the data points requires understanding

the relationship of the points to each other.
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4.3.5 Synthesis

Where the focus of Analysis level was to test the learner’s ability to decompose

a topic into its requisite parts, the Synthesis level focuses on the learner’s ability to

put ideas together to create something new [33]. Among the hierarchy, this is

the first level which requires a certain amount of creativity from the learner and is

associated with the verbs such as create, invent, predict, and devise [33, 98].

When applied to visualizations, questions targeting this level could ask partici-

pants to make predictions about what values will come next in a sequence. In this

translation, the participant takes existing trends and values extrapolates on them to

form a prediction. Alternately, in the case of interactive visualizations, participants

could instead use interactive features to find a view of the data which reveals some-

thing new. Because we used static data visualizations in our experiment, we used the

prior approach and asked participants to make a prediction.

4.3.6 Evaluation

Finally, we arrive at the sixth and final level of Bloom’s taxonomy – Evaluation.

This level evaluates a learner’s ability to judge the value of a topic or idea

based on criteria that is either provided or self-derived [33]. Therefore, rather than

judgements, tasks at this level may look more like arguments or proofs, as evidenced

by the verbs often associated with this level which include judge, justify, argue, and

recommend [98].

The most straightforward translation of this level to an evaluation task might be

to ask participants to judge the quality of the visualization itself by some provided

criteria (e.g., reliability). This method might be appropriate if the experiment aims

to evaluate the participant’s understanding of the visual encoding of the visualization.

Alternately, if the experiment aims to evaluate the participant’s understanding of the

underlying data, we suggest instead either asking participants to come to a conclusion
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and provide a data-based justification for that conclusion or to provide a conclusion

and ask participants to only provide the justification. With this tactic, participants

judge the value of data features when deciding which are appropriate to justify the

conclusion drawn. We use this approach in our experiments.

4.4 Preliminary Demonstration of Evaluation Method

To demonstrate the kind of results an experiment could obtain with our evaluation

method, we evaluated three pairs of visualizations as case studies.

4.4.1 Stimuli

For our stimuli, we selected 3 static, real world data visualizations varying in com-

plexity and design that were identified by the internet community as being confusing

or misleading [81, 405, 229]. We also collected three corresponding redesigns of the

confusing visualization created either by one of the authors who is an expert in visu-

alization design or the original visualization designer at the Economist [229], where

the goal of the redesign was to clarify the message conveyed by the visualization.

Markets The first stimulus (as shown on the left in Figure 4.1) was highlighted in an

online article from The Economist titled “Mistakes, we’ve drawn a few” [229]. The

original chart depicts the US trade deficit with China and the number of people in the

US employed in manufacturing between 1995 and 2016 as two line plots. The cardinal

sin committed by this chart is its double y-axes – one positive and one negative, color-

coded to match its associated line. In the article, the author presents a redesigned

version of the chart that separates the two plotted quantities into separate, side-by-

side charts and encodes the trade deficit using bars connected to the 0 baseline to

emphasize the directionality of the plot.

Immigration The second stimulus was produced by The Globe and Mail to discuss

differences in immigrant populations in Thunder Bay, Ontario, and Canada (as shown
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Figure 4.1. The Markets (left) and Immigration (right) charts used in our experi-
ment. The original versions are on top.
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on the right in Figure 4.1). The original version of the chart features three stacked

bars, one per location. Each stack is divided into five sections, corresponding to the

decade when people immigrated to Canada. At a first glance, this chart might be

confusing because the sections correspond to time – a variable conventionally reserved

for the x-axis.

Unlike the first chart, the structural problem with this chart is harder to identify.

If the purpose of the chart is to highlight the differences in distribution or visualize

the aspect of time, the original chart does a poor job. However, if the primary purpose

of this chart is to highlight differences between the total percentage of immigrants

in each area, the original chart might accomplish that goal. For the purpose of this

paper, we assumed that the designer of this chart intended to show the differences

between the distributions of immigrant year of arrival and emphasized this message

in our redesigned chart by unstacking the bars and recoloring the chart such that

each location uses a different color (instead of each decade).

COVID-19 The final chart we selected was a now retracted chart created by the

Georgia Health Department[144] depicting the number of COVID-19 cases reported

over two weeks in the five counties with the largest number of cases (see Figure 4.2).

The original version of this chart at first looks uncomplicated. It’s just a simple bar

chart, but a close reading of the labels along the x-axis reveals the problem – the

dates are not in chronological order. Instead, both the days and the counties within

each day are sorted by severity.

As made obvious by its retraction, if this chart was intended to show how the num-

ber of cases of COVID-19 have changed over time, this chart is plainly misleading.

However, like the chart on Canadian Immigration, this chart would be appropriate

for answering a different question. Namely: which days saw the largest or smallest

number of COVID-19 cases reported, and which counties had the highest or lowest

number of cases within each of those days? Unfortunately, this message is not sup-
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ported by the annotation layer of the chart, which uses the phrase “the number of

cases over time.” For comparison, one of the authors created a second version of this

chart with its dates in chronological order and with the bars divided by county to

make it easier to compare how the number of cases changed over time within each

region.

4.4.2 Methods

We conducted our experiment on Amazon’s Mechanical Turk and recruited a total

of 60 Workers (Meanage = 36.4, SDage = 10.7, 18 women, 41 men, 1 other). In line

with past research on acquiring quality results without attention check questions, we

required that workers had completed at least 100 tasks with an approval rate of at

least 95% [284]. The experiment took approximately 30 minutes and participants

were compensated with $5.00 for their time.

In this experiment, participants were shown 3 charts and asked to answer 6 ques-

tions based on each one. Each question was designed to target a specific level of

Bloom’s taxonomy and was presented in order, beginning with Knowledge and end-

ing with Evaluation. The order of charts was determined via a 2 by 3 Latin Square

design (yielding 6 unique chart orderings and thus 6 conditions). Each participant

saw 1 version of each chart in accordance with their assigned condition. In 3 of the

conditions, participants saw 2 of the original charts and 1 redesigned chart, while

participants assigned to the other 3 conditions saw 1 original and 2 redesigned charts.

We want to emphasize that the purpose of using the alternative designs in this

study was to show the range of reader interpretations and visualization affordances

our method could evaluate, rather than to generate concrete design guidelines from

these case studies. Because of this, we note that our analysis utilizes an exploratory

approach – not formal hypothesis testing.
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4.4.3 Results

Figure 4.2 provides the questions used for the COVID-19 chart and a summary

of results for all 6 levels.

Q1 – Knowledge Which county had the largest number of cases 

in 1 day during the period of time shown in the 

chart?

Q2 - Comprehension Imagine that you want to explain the content of 

this chart to a friend without showing them the 

chart. How would you describe the data shown 

here, in your own words?

Q3 - Application How many fewer cases did Hall County have 

on May 1 than Apr 28?

Q4 - Analysis How have the number of COVID-19 cases in 

Fulton County changed over time?

Q5 - Synthesis Given the data here, how many cases would 

you expect there to be in DeKalb County on 

May 10?

Q6 - Evaluation If you were a lawmaker in this US state, what 

policy change would you use this information 

to argue for and what evidence would you 

provide?

Most participants predicted 

0 cases, possibly directly 

from the count on May 9

More participants provided 

higher values with the 
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Figure 4.2. A summary of the stimuli and questions used in the experiment for the
COVID charts. Charts on the right show results for each level examined. Participants
answered Question 1 correctly significantly more often when using the redesigned
chart than the original. This does not hold for Question 3, however. When describing
the contents of the chart (Q2), participants viewing the redesigned chart were more
likely to talk about the chart on a county level, but otherwise answered similarly.
Participants more often incorrectly classified the trend of the chart as going down
when viewing the original version and were less likely to comment on the bi-modal
shape (Q4). We observed no effect of the version on the prediction made about the
number of cases (Q5) and, unexpectedly, participants argued for “opening up” and
cited decreasing cases as frequently in both groups (Q6).

4.4.4 Question 1: Knowledge

We begin our analyses with the first question, which asked participants to locate

particular values in the chart. We constructed a logistic regression predicting response

accuracy with visualization design (original vs. redesigned) across the three chart

topics. We found that participants were more likely to answer the question correctly

when they saw the redesigned visualization compared to the original (χ2(1) = 21.45,
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p < 0.001). There was no main effect of the topic on this relationship (χ2(2) = 4.54,

p = 0.10) (see Supplemental materials for pair-wise ratios in our online repository:

https://osf.io/85rcf/?view_only=bb1995101d04400bbb70f0b7a8931fc6). This

suggests that participants were retrieving values from the redesigned visualizations

more accurately compared to the original version. Further, as the visualization was

redesigned following common guidelines to increase clarity and afford more accurate

value retrieval, this result suggests that the Knowledge level questions were successful

in capturing the improvement brought by the redesign.

4.4.5 Question 2: Comprehension

Questions targeting the Comprehension level were open-ended without defined

correct or incorrect answers. Therefore, to analyze these responses, we read through

the responses blind to the version seen, and identified varying categories of conclu-

sions. Each response was tagged as either containing or not containing each conclu-

sion. This approach was selected in order to compare differences in patterns identified

between the two versions of each chart. We note that while this approach was cho-

sen for demonstration, this kind of analysis is not specific to our proposed method;

many existing techniques for analyzing qualitative results could be appropriate here,

such as content-based analyses or interpretive analyses (see [26] for some common

practices). We conducted exploratory analysis using Pearson’s chi-squared tests of

independence to examine the relation between visualization design and user-identified

salient patterns, with Yates’ continuity correction and Bonferroni adjustments. See

the Supplemental materials for details.

As shown in Figure 4.2, participants who saw the original and redesigned versions

of the COVID chart describe salient features with varying frequencies. For example,

they were trendingly more likely to identify and compare the counties included in the

redesigned chart, (χ2(1, N = 54) = 5.33, p = 0.083). The participants also mentioned
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different dates depending on the chart they viewed. Namely, all seven participants

who saw the original chart incorrectly identified the earliest date present as April 28,

when it is April 26. This was a fact correctly identified by all participants who viewed

the redesigned chart.

In the Immigration chart, participants pointed out similar salient patterns in both

visualizations. In other words, there is no difference in the distributions of conclusions

drawn across both the original and the redesigned visualizations (χ2(1, N = 51) =

0.51, p = 1). We found this to be somewhat unexpected. We expected participants to

more often comment on the total number of immigrants when the data was visualized

as a stacked bar chart (as in the original) because they are viewed as the best choice

for communicating an overall quantity among bar chart variations [365], but this was

not the case. Similar to the immigration chart, we found that participants pointed

out similar patterns in both versions of the Market chart (see Supplemental materials

for more details).

These three case studies illustrate different outcomes to expect when analyzing

responses to this kind of question. We see that the Market and Immigration redesigns

did not differ from the original, suggesting that they afford the same set of conclusions.

This is different from the redesign of the COVID-19 visualization, which made a

different set of patterns more salient to the viewers. We recognize that there could be

more subtle differences in affordances between the original and the redesign that this

question does not capture. We speculate why this might be in the Discussion section.

4.4.6 Question 3: Application

Questions at this level challenged participants to determine the numerical dif-

ference between two specific points. As with Question 1, we constructed a logistic

regression predicting response accuracy with the original and redesigned visualiza-

tion across the three charts. Unlike with Question 1, participants who viewed the
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redesigned version of a chart were not statistically more likely to answer this question

correctly (χ2(1) = 2.51, p = 0.11). In addition, we observed no statistical difference

between the accuracy between charts (χ2(2) = 2.96, p = 0.23) and no significant

interaction (χ2(2) = 2.97, p = 0.23).

Although our questions at this level failed to find a significant difference between

the two versions of the charts with respect to answer correctness, there may be other

factors at play as well, which we discuss in the Discussion section.

4.4.7 Question 4: Analysis

As with Question 2, questions for level 4 were open-ended. Participants were

asked to describe a specific trend present in each chart. We identified a series of

descriptions for each chart that either were mentioned by the participants or were

determined by the authors as reasonable conclusions to mention. Their responses

ranged from describing the directions of the trend (e.g., up or down) to commenting on

modality. We coded each response blind to the chart version, tagging each description

as present or not (e.g., was the trend described as positive or not). We then compared

the frequency of descriptions between the two chart versions. We note that, as before,

this is not the only way to complete this analysis, but was selected for demonstrative

purposes. We conducted chi-square analysis to examine the relation between chart

design and chart descriptions, similar to that in Section 4.4.5.

In response to the COVID-19 chart, we can see two distinct points of difference in

the distributions (as shown in Figure 4.2). First, although participants were equally

likely to describe the trend direction as containing both positive and negative sections,

(χ2(1, N = 43) = 1.06, p = 1), more participants incorrectly categorized the trend

as decreasing when they viewed the original chart compared to the redesigned chart,

although not significantly (χ2(1, N = 43) = 4.25, p = 0.20). In addition, participants

more frequently noticed the bi-modal shape in the data when viewing the redesigned
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chart (χ2(1, N = 43) = 12.34, p = 0.0022), such that only one participant who viewed

the original version identified the bi-modal shape in the data whereas over 60% of the

participants with the redesigned chart noticed this bi-modal pattern (see Figure 4.2).

This suggests that the redesigned version more readily affords viewers the ability to

see the bi-modality of the case count. In reality, answering this question correctly

with the original version of the COVID-19 chart is extremely difficult. Because the

labels on the x-axis are not in chronological order, characterizing the distribution

over time would require mentally reorganizing the bars. However, it is important to

note that none of the participants who saw the original version of this chart gave

any indication on any question that they noticed that the dates were out of order,

suggesting that either no participants noticed this feature or found it pertinent.

With the Immigration chart, we observed that most of the topics commented

upon by participants are similar across versions, but with one very distinct difference.

Namely, participants who viewed the original chart were significantly more likely than

those who viewed the redesign to correctly describe the trend of immigration as in-

creasing (χ2(1, N = 51) = 10.23, p = 0.007). We suspect this unexpected disparity

may be driven by the increasing size of the stacked bars over time. Additionally,

because of the relatively small change each decade, it is possible that participants

viewing the redesigned chart considered the change not remarkable enough to men-

tion. Regardless of the cause, it represents a distinct difference in the affordances

between these charts that this question was able to capture. The distribution of

topics discussed in response to the Markets chart was highly similar across visual-

ization versions with no significant difference with respect to the version viewed (see

Supplemental materials for details).

The difference in distributions here suggests that the different versions of the

chart lead to participants to come to describe the underlying data differently. This
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difference was not captured by the previous three levels, supporting the importance

of a multi-leveled approach to evaluate visualization understanding.

4.4.8 Question 5: Synthesis

At this level, participants were asked to make predictions about future data values

and trends for each chart. By looking at the distributions of the predicted values,

we begin to unpack the decision making process afforded by each chart and version.

In particular, we can glimpse both where the design had an effect on the average

prediction made, as well as on the variance of those predictions. To identify sta-

tistical differences, we utilized Welch’s two-sided t-tests with Bonferroni corrections

to compare mean predictions and two-sided F-tests with Bonferroni corrections to

compare variances. For this analysis, we only included responses that contained a

single, numeric answer, excluding those with ranges or that described a trend. This

excluded 17% of responses from the COVID-19 chart, 0% from Immigration, and 7%

from the Markets charts.

For the COVID chart, participants were asked to predict the number of COVID-19

cases for one day beyond the dates shown in the chart. Results showed no significant

difference between the mean prediction ((M = [5.13, 5.13], SD = [14.84, 11.77], t(41.83) =

0, p = 1) nor the variance of the predictions made (F (22, 22) = 1.59, p = 0.28). This

suggests that though we observed differences between the versions in previous ques-

tions, both charts afforded similar predictions to participants.

For the immigration chart, participants were asked to predict the percentage of the

population made up of immigrants in Thunder Bay, Ontario, and Canada. First, we

observed that the mean prediction for all 3 locations were not significantly different

across the two versions (see Supplemental materials for details). While the variance

of predictions between chart versions was not significantly different for Thunder Bay

(F (9, 7) = 0.73, p = 1) or Ontario (F (9, 7) = 4.75, p = 0.31), it was significantly
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different for the predictions about Canada (F (9, 7) = 15.40, p = 0.009), such that the

predictions made about Canada’s population were more clustered with the redesigned

version than the original version. This suggests that while both chart versions afford

similar numeric predictions, the redesigned chart affords less variation in predictions.

When viewing the Market chart, participants were asked to predict the trade

deficit and the manufacturing employment. Participants predicted trade deficits to be

significantly higher when they viewed the redesigned version (M = [272.19, 355.00], SD =

[100.47, 49.61]), t(21.053) = −3.0032, p = 0.027). We additionally see that the shapes

of the distributions were different: the predictions made with the original chart were

highly clustered while those made with the redesigned chart were far more variable.

Our analysis suggests that the difference between these distributions is significant

(F (15, 18) = 4.10, p = 0.021). There was no significant difference between the

predictions made by participants about the number of people employed in manu-

facturing with respect to chart version (M = [38.18, 11.56], SD = [57.60, 1.59],

t(16.026) = 1.9044, p = 0.30). However, we observed that the variance of the predic-

tions is, again, significantly different between the two versions (F (16, 15) = 1311.7,

p < 0.001). These results suggests that while both charts afford similar predictions

about manufacturing employment, the original chart affords significantly higher pre-

dictions about trade deficit than the redesigned chart.

Although all of our questions about the Synthesis level did not reveal differences

between versions of every chart, we were still able to reveal some different affordances

that were not captured by the previous questions. Evaluating these charts systemat-

ically across levels of understanding allows the identification of distinctions between

affordances that might otherwise be missed.
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4.4.9 Question 6: Evaluation

In the sixth and final question, participants were asked to apply their learning

to a real-world situation by describing the argument that they would make. Similar

to Section 4.4.5 and 4.4.7, we identified common conclusions and evidence that was

cited, tagged each response as containing or not containing mentions of each of these

topics, and used the same chi-square analysis approach.

In response to COVID-19 charts, the most common conclusion drawn by partic-

ipants was for “opening up” (see Figure 4.2). This conclusion was mentioned by

participants regardless of which version of the COVID-19 chart they were presented

with (χ2(1, N = 44) = 0.76, p = 1). Additionally, the most common evidence cited

by participants in defense of their claim was a decrease in COVID-19 cases. Sur-

prisingly, participants were as likely to use this argument when viewing the original

as the redesigned chart (χ2(1, N = 44) = 2.32, p = 0.76). This is unexpected, as

the original COVID-19 chart shows a strong downward trend in cases (as long as the

x-axis ordering is ignored), but the redesigned version of the chart shows increasing

numbers in several of the counties. This result suggests that despite the differences in

design, both charts afforded participants the ability to come to the same conclusion.

The unexpected nature of this result further emphasizes the reason why asking diffi-

cult questions in evaluation is important; sometimes conclusions arise because (or in

spite) of otherwise careful encoding.

For the Immigration chart, participants were asked to argue why the population

of Thunder Bay was not representative of the population of Canada at large. The

two main arguments were “there were fewer immigrants in total” and “there were

fewer immigrants over time,” but participants were equally likely to report these

justifications regardless of the chart they saw (χ2(1, N = 47) = 0, p = 1).

As for the Markets chart, we see that participants were very consistent across

versions with respect to the conclusions drawn and evidence provided. One repeated
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theme present in the responses was a suggestion of a causal relationship between

the number of people employed in manufacturing and the trade deficit with China.

This relationship was suggested in both directions (i.e. changes in the deficit causes

changes in employment and changes in employment cause changes in the deficit) and

did not appear statistically more often in response to either chart version (χ2(1, N =

46) = 0.014, p = 1; χ2(1, N = 46) = 0.51, p = 1). This suggests that the two charts

did not afford different conclusions nor justifications.

4.4.10 Is this taxonomy really hierarchical?

The original Bloom’s taxonomy argues that there is a strict hierarchical relation-

ship between the levels [33]. To shed some light on this idea, we looked for evidence

that would suggest that performance on earlier questions is correlated with perfor-

mance on later ones.

Because Questions 1 and 3 had correct answers, we first examined if success on

Question 1 was correlated with success on Question 3. We constructed a logistic

regression and observed that participants who answered Question 1 correctly were

significantly more likely to answer Question 3 correctly compared to those who an-

swered Question 1 wrong (χ2(1) = 22.3411, p < 0.001) irrespective of chart topic

(χ2(2) = 1.02, p = 0.60), version (χ2(1) = 0.0099, p = 0.92), and with no significant

interaction effect (χ2(2) = 3.46, p = 0.18). The effect size is quite pronounced for

all three charts on both original and redesigned versions. For example, participants

who answered Question 1 correctly using the redesigned COVID-19 chart were 1.8

times more likely to answer Question 3 correctly. More dramatically, participants

who viewed the original COVID-19 chart were over 10 times more likely to answer

Question 3 correctly if they answered Question 1 correctly. This is unsurprising – in

order to answer Question 1 correctly, one must estimate one value and Question 3
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builds on this skill by requiring participants to estimate two values and then subtract

them.

To further explore the relationship between performance on questions, we asked

whether performance on Questions 1 or 3 predicted a participant’s performance on

Question 4. That is, is there a relationship between how well a person locates or

determines the difference between points and how well they classify a trends? For

this, we reviewed the responses to Question 4 and marked those which were obviously

incorrect. We then used another logistic regression that predicted whether a response

was obviously incorrect or not based on the chart topic, version, and the participants’

performance on Question 1 and 3. Our model suggests that there is no significant

relationship between performance on Question 1 or Question 3 on the whether their

response to Question 4 was reasonable or not (see Supplemental materials). This

suggests that though there may be some overlapping skills required between levels,

this taxonomy is not hierarchical in nature.

4.5 Experiment 1: Understanding

In infographics, pictographic arrays are often used to depict part-to-whole rela-

tionships. We explore how this choice affects the insights that viewers draw from

the image, compared to using traditional charts that encode the same information

with solid areas by using the methodology for constructing comprehension questions

discussed in the previous section. In this experiment, we explore the 3 hypotheses

described in Section 4.5.3.

4.5.1 Experiment 1: Stimuli

For this experiment, we used 6 pairs of infographics that display part-to-whole

relationships. In each pair, one encoded that relationship with solid, geometric areas

and the other used pictograph arrays (see Figure 4.3). We will refer to these two
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types as “versions” and, for brevity, call the two chart versions “Area” and “Count,”

respectively.

Our criteria for selecting charts included: diversity of chart type, diversity of

topic, and a comparable number of variables. Past research suggests that familiarity

with a chart type can influence perceptions of attractiveness and ease of use [306].

Therefore, we wanted our stimuli set to include chart types which were common in

media so that participants were unlikely to be encountering a chart type for the first

time, but that would vary in familiarity. Our final stimuli set includes 1 bar chart,

1 pie chart, 2 stacked bar charts, 1 donut chart, and 1 treemap (listed in decreasing

familiarity for general audiences according to [306]).

We also aimed to select charts with a diverse set of topics that would vary in

familiarity and interest among participants. Existing work has shown that back-

ground knowledge on and interest in the subject matter of a visualization can impact

engagement [195], so we hoped a diverse set of topics would include something for

every participant. The topics of the charts in the final set were: Alphabet’s earnings,

the number of COVID-19 cases and deaths in a US state, the severity of COVID-19

symptoms, the threat of extinction for different kinds of animals, the guns used in

mass shootings in the US, and the number of times different diseases were mentioned

on Twitter. Of this set, we hypothesized that the charts about COVID-19 would be

the most familiar topic and the breakdown of Alphabet’s earnings would be the least

familiar.

While all 6 pairs take inspiration from real-world infographics, 5 of the pairs

contained a modified version of real, published charts gathered from sources including

the New York Times, Washington Post, and Visual Capitalist. The sixth pair was

created by one of the authors in the style of existing area charts of COVID-19 cases,

but using a smaller data set that more closely matched the range of variables present

in the other stimuli. Each chart contained between 3 and 6 variables. The specific
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range of variables was not pre-selected, but emerged through our search for real-world

charts with limited visual complexity.

To isolate the effects of using pictographs versus solid areas, when creating the

informationally equivalent designs, we maintained other properties, including colors,

positions, labels, legends, and shapes. Only 2 of the charts originally contained pic-

tographs, so when creating the alternate version, the research team selected publicly

available pictographs that we thought would be reflective of the topics.

Figure 4.3. During Experiment 1 and 2, participants saw six different visualizations.
Each visualization was drawn from a pair of visualizations (columns) which were
informationally identical but which either encoded values as pictograph arrays (top
row) or solid areas (bottom row).

4.5.2 Experiment 1: Method

We conducted this experiment on Amazon’s Mechanical Turk. We recruited 60

Workers (Meanage = 39.44, SDage = 11.28, 18 women, 30 men, 12 others) who had

completed at least 100 tasks with an approval rate of at least 95%. We selected

this combination of tasks completed and approval rate in line with existing research

on quality data without attention-check questions [284]. We decided to survey 60

participants after calculating a power analysis based on the effect size of a pilot study.

This experiment was conducted in 2 phases: Comprehension and Comparison. All

participants completed both phases. In total, the experiment took about 30 minutes

and participants were paid $5.00.
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Level Description Example Question
1. Knowledge Learner can recall facts without an under-

standing of the meaning behind them.
What percentage of birds are threatened?

2. Comprehension Learner is able to understand the information
in context.

What is the take-away message from this in-
fographic?

3. Application Learner can apply knowledge to a new prob-
lem or represent it in a different way.

If your town has 200 birds, how many of them
are threatened?

4. Analysis Learner can break down a concept into com-
ponent parts and understand the relationship
between them.

Are birds or mammals in more danger of ex-
tinction?

5. Synthesis Learner is able to generalize and use their
knowledge to make a prediction or create
something new.

How do you think your community would re-
act to this information?

6. Evaluation Learner is able to assess the value of ideas and
methods and make choices based on reasoned
arguments.

What do you think public officials should do
to combat this problem?

Table 4.2. We used Bloom’s taxonomy [33] to create comprehension questions fol-
lowing the method from [53]. The levels of the original taxonomy are shown here,
along with a sample question indicative of those created for the experiment.

Phase 1: Comprehension. The first phase of the experiment asked participants to

answer a series of 6 comprehension questions based on the levels of Bloom’s taxonomy

[33, 53]. This method, which was proposed in [53], allowed us to comprehensively

assess different aspects of understanding which differ in complexity. The possible

limitations of this approach (and the newness of the technique) are discussed in

Section 4.7.

Because each chart has a different topic, we created a set of 6 different questions

per chart — see Table 4.2 for a description of each level in the taxonomy and an

example question for each level. The entire list of comprehension questions can be

found in supplementary materials. This experiment has a 2 by 6 Graeco Latin Square

design with repetition, wherein each participant sees one version of all 6 infographics

(3 Count, 3 Area).

Phase 2: Comparison. In the second phase of the experiment, participants were

shown both versions of each infographic, side by side, and asked to compare them

on a series of metrics (see Table 4.3). Participants viewed the charts in the same

order as in the comprehension portion. We used an additional Latin Squares design

to randomize whether the Area condition appeared on the left or right. The metrics
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were selected after compiling a list of qualities remarked in existing literature as being

important for effective infographics [216, 417]. From this list, we selected those which

we thought could be affected by the presence or absence of pictographs and designed

a question based on each. For each metric, participants indicated on a 5-point Likert

scale which of the two versions of the chart best satisfied the prompt. The extremes

of these scales indicated a strong preference for one chart over the other. Finally, par-

ticipants scored their familiarity with the topic of each chart on a 5-point Likert scale.

Metric Question
Readability Which of these charts is quicker and easier to read?
Visual Appeal Which of these charts is more visually appealing?
Understandability Which of these charts is clearer and easier to understand?
Envisioning Which of these charts makes the data easier to imagine?
Clutter Which of these charts is more visually cluttered?
Complexity Which of these charts is more complex?
Importance Which of these charts makes its topic seem more important?
Familiarity How familiar are you with the topic of this chart?

Table 4.3. In Experiment 1, Phase 2 participants were asked to compare 2 versions
of the same chart in response to these metrics and questions.

4.5.3 Experiment 1: Hypotheses, Metrics and Analysis

We developed a coding scheme to analyze the open responses from Phase 1 (Com-

prehension) of the experiment. Of the 6 comprehension questions we used per chart,

3 questions (Questions 1, 3 and 4) have a correct answer, so responses to these were

marked as correct or incorrect. For the other 3 questions that have subjective re-

sponses (Questions 2, 5, and 6), we developed codes relating to the 3 hypotheses

described below. All responses (except for those deemed to be extremely low quality

and disqualified) were coded on every dimension by one of the authors. Of the 60

participants sampled, 13 (about 19%) were disqualified. For two of the metrics (men-

tal effort and insight) which are both of high importance to our research question

and are based on a subjective scale, we additionally utilized a second coder outside

of the research team and computed inter-rater reliability. Data from Phase 2 of the

experiment was recorded numerically. As the location of the two chart versions dif-
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fered across conditions, we applied a transformation to the scores such that a score of

1 corresponds to strong preference for the Area version and a score of 5 corresponds

to a strong preference for the Count version. The following 3 hypotheses guided our

analysis:

• Hypothesis 1.1: Participants will draw higher-level insights from Count info-

graphics than Area infographics.

• Hypothesis 1.2: Participants will have a higher level of engagement with Count

infographics than Area infographics.

• Hypothesis 1.3: Participants will show a stronger emotional response when they

look at Count infographics than Area infographics.

4.5.4 Experiment 1, Phase 1: Results

In the following sections, we describe the results with respect to each hypothesis,

then conclude whether the results support the hypothesis.

4.5.4.1 Hypothesis 1.1: Higher-level insights

Insight. Question 2, 5, and 6 tested the ability of participants to extract key messages

and gain insight. These questions had no objectively correct answers, so we designed

a 7 point scale (0–6) judging the kind of insight present. On this scale, a score of 0

indicated no information gathered from the chart. Low insight responses (assigned

scores of 1 or 2) referenced the information directly from the chart and demonstrated

no further attempt at casual sensemaking. For example, in response to Q2 about

the main takeaway of the chart about COVID-19 cases, one participant responded

“Everything is increasing every day.” Medium insight responses focused on a single

dimension (score: 3) or offered opinions without coming to conclusions based on

the data (score: 4). For example, to the same chart, another participant responded

“Death rate goes down with more testing.” Finally, high insight responses came to

conclusions not included in the chart (for a score of 5) and offered justification for
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those responses (for a score of 6), such as here, where a participant speculates about

what is to come: “This shows that the number of cases increase rapidly and could

double in a week.”

These insight scores were independently assigned by 2 coders (1 author, 1 outside)

using a common scale, then compared for differences and discussed (see supplementary

materials for the exact scale used by the coders). Inter-rater reliability was calculated

using a weighted Kappa with squared weights for Question 2, 5, and 6 and was 0.959,

0.979, and 0.89, respectively.

Overall, our results indicated that chart version had no significant effect on insight

extraction. To obtain this result, we predicted level of insight with a mixed-effect

linear model from the lme4 package in R [20]. The model suggested that chart version

had no significant effect on insight extraction (χ2 = 0.47, p = 0.49). However, the

model suggested that there was a main effect of question number (χ2 = 902.26, p <

0.001), such that the highest level of insight was displayed in responses to Question

6 (Mean = 4.58, SE = 0.91), followed by Question 5 (Mean = 2.62, SE = 0.91) and

Question 2 (Mean = 1.88, SE = 0.91). This is not surprising considering that Question

2, 5, and 6 were designed to probe for increasingly complex aspects of understanding,

which yield higher levels of insight. We also observed a main effect of chart topic

(χ2 = 21.53, p < 0.001). Viewers reported the highest level insights in response to

the chart of confirmed cases of COVID-19 (Mean = 3.33, SE = 0.112). This was

significantly higher than the chart about Alphabet’s earnings (p < 0.001), extinction

of animals (p = 0.016), and severity of COVID-19 symptoms (p = 0.022).

Accuracy. In Phase 1, Questions 1, 3, and 4 had an objectively correct answer.

Question 1 asked participants to pull a single datapoint out of the chart, Question 3

asked for a short calculation based on the data, and Question 4 asked for a comparison

of two datapoints. Our results revealed that while the question and chart topic had

an effect on whether a question was answered correctly, the version did not.
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Overall, accuracy was high — 92.9% of the participants answered Question 1

correctly, 70.4% of the participants answered Q3 correctly, and 92% of the partici-

pants answered Q4 correctly. Participants had the highest accuracy when answering

questions about the extinction chart (90.2%) and the lowest accuracy when answer-

ing about the chart about guns (80.6%). Post-hoc analysis with Tukey adjustments

showed no significant difference in accuracy between topics. Using a mixed-effect

linear model to predict accuracy with question type, chart version, and chart topic,

we found no main effect of chart version (χ2 = 0.0024, p = 0.96), but an overall main

effect of question (χ2 = 106.56, p < 0.001) and chart topic (χ2 = 12.62, p = 0.027).

Post-hoc analysis with Tukey adjustments [228] showed that participants performed

significantly worse on Question 3 compared to Question 1 (Est = 0.23, SE = 0.025,

p < 0.001) and 4 (Est = −0.22, SE = 0.025, p < 0.001). Because Question 1 and

4 were tasks related to identifying information in the chart directly and Question 3

asked participants to compute a number based on information from the chart, we hy-

pothesize that the dip in accuracy for Question 3 may be driven by higher graphical

literacy than numeracy in our participant population.

Misinterpretation. Although few responses contained misinterpretations overall

(4.69%), we find that chart version had an effect. A logistic general linear model

predicting misinterpretations with chart version and chart topic suggested a trending

effect of chart version (χ2 = 3.22, p = 0.056), such that participants were 1.82

times more likely to misinterpret the Count charts. There was also an effect of

chart topic (χ2 = 45.74, p < 0.001). A closer look revealed that a majority of these

misinterpretations come from responses to the chart about Twitter mentions. Instead

of being about Twitter, the chart was misinterpreted to be comparing the severity of

infectious diseases, such as in this response from a participant: “Coronavirus is more

dangerous than any other pandemmic [sic].”
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Conclusion: Evidence does not support Hypothesis 1.1 After observing that

chart version had no effect on insight and accuracy, as well as a mixed effect on

likelihood of misinterpretations, we therefore conclude that the data do not support

Hypothesis 1.1: Participants will draw higher-level insights from Count infographics

than Area infographics.

4.5.4.2 Hypothesis 1.2: Higher Engagement

Mental Effort. As with insight, we created a 7-point scale (0–6) for rating the

mental effort displayed in each response. A comment with a score of 0 mentioned

no information from the infographic and a comment with score of 6 considered all

information, drew a conclusion, and provided evidence to support that conclusion

(the scale used by coders is included in the supplementary materials). Low-mental

effort answers copied text from the title (score: 1) or restated text directly from

the title, legend, or annotations (score: 2), such as in this response to Question 2

about the main take-away for the chart about extinction: “To show the percentage of

animals that are endangered species.” In contrast, medium effort responses focused

on a single dimension (score: 3) or observed a comparison (score: 4), as seen here:

“Birds are less likely to be threatened than mammals or amphibians.” High effort

responses made conclusions based on the information (score: 5) and justified their

responses (score: 6). For example, this response received a score of 5, because they

drew a conservation message which was not present in the chart: “That we need to

be more careful with the earth or we will cause many new extinctions.”

Mental effort scores were independently assigned by 2 coders (1 author) using

the mental effort scale paraphrased above (exact scale included in the supplementary

materials). After scores were assigned, they were compared and differences were

discussed. Inter-rater reliability was calculated using a weighted Kappa with squared

weights and was 0.972, 0.986, and 0.936 for Questions 2, 5, and 6, respectively.

84



As with insight and accuracy, we found that the question and chart topic had an

effect on mental effort, but the chart version did not. A mixed-effect linear model

predicting mental effort suggested a main effect of question (χ2 = 385.95, p < 0.001)

and a main effect of chart topic (χ2 = 27.31, p = 0.49), but no effect of chart version

(χ2 = 0.05, p = 0.82). Post-hoc analysis with Tukey’s adjustment suggested that,

like with insight, Question 6 elicited significantly higher mental effort compared to

that of Question 5 (p < 0.001) and Question 2 (p < 0.001). Viewers seemed to exert

the most mental effort when responding to the chart about Alphabet (M = 2.84, SE

= 0.14), which is significantly higher than the chart about extinction (M = 2.14, p

= 0.0058), and COVID-19 cases (M = 2.66, p = 0.017). See supplementary for full

pair-wise comparisons.

Response length. We also examined engagement via response length. Our mixed-

effect linear model predicting the number of tokens suggested a trending main effect

of chart version (χ2 = 3.59, p = 0.058), such that viewers wrote on average one more

word when viewing an Area chart (M=14.4, SE = 0.93) than a Count chart (M=13.4,

SE = 0.93). Additionally, there was a main effect of question (χ2 = 75.94, p < 0.001)

such that participants wrote the longest responses for Question 6 (M = 16.6 words,

SE = 0.97) and a main overall effect of chart topic (χ2 = 11.17, p = 0.048), although

post-hoc analysis reveals no particular chart elicited a longer response than others.

Conclusion: Evidence does not support Hypothesis 1.2 Considering that chart

version had no effect on mental effort and participants wrote more words when viewing

an Area chart, we therefore conclude that our results do not support Hypothesis 1.2:

Participants will have a higher level of engagement with Count infographics than Area

infographics.
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4.5.4.3 Hypothesis 1.3: Stronger Emotional Response

Emotional Response. While we hypothesized that viewers would show stronger

emotional response when looking at Count than Area charts, Pearson’s Chi-squared

test showed that viewers were significantly more likely to respond in a neutral fashion

(p < 0.001), and overall there was no significant difference in Area and Count chart

in eliciting emotional responses (χ2 = 0.43, p = 0.81).

Negative responses reflected a variety of emotions including shock, worry, or frus-

tration. An example of this was a response to the Alphabet chart in which a partici-

pant wrote “if i was a decision making[sic] at google i would stop caring about growth

and instead focus on using that wealth to help struggling people.” Neutral responses

reflected facts or preferences, such as this response to the same prompt “I would

invest more in Google Properties.” Finally, positive responses also varied in emotion

including relief, interest, and hope, as is expressed here by one participant about

using the chart about Symptoms of COVID-19, “to calm them and provide data and

let them know that it’s not that bad.”

Surprise. Because past literature identified “surprise” as a component of the insight

generation process (e.g., [264]), we also coded for this dimension (binary, contains/-

does not contain). Chart version did not have a significant effect on eliciting expres-

sions of surprise (χ2 = 0.092, p = 0.76). Very few viewers mentioned surprise in their

response (1.69%), with about half of them in response to a Area chart and the other

half in response to a Count chart. Responses containing surprise varied across topics,

but often related to the size of particular dimensions. One example of this was in

response to the chart about confirmed cases of COVID-19, “They would be surprised

that there were so few cases of death and hospitalizations as the number of confirmed

cases grows.” They also commented on the overall size of the units depicted such as

this response to the Alphabet chart “People in my community would be very surprised
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at how much money that these companies make from Google and I think they would

be very surprised at these numbers.”

Conclusion: Evidence does not support Hypothesis 1.3 We observed that

chart version had neither an effect on emotional response nor surprise. We can there-

fore conclude that our evidence does not support Hypothesis 1.3: Participants will

show a stronger emotional response when they look at Count infographics than Area

infographics.

Readability Visual Appeal Understandability Relatability Clutter Complexity Importance Familiarity VIF

Readability 1.00 4.52

Visual Appeal 0.38 1.00 1.85

Understandability 0.86 0.40 1.00 4.68

Relatability 0.34 0.59 0.46 1.00 1.97

Clutter -0.66 0.00014 -0.61 0.0058 1.00 3.29

Complexity -0.58 0.059 -0.54 0.0029 0.77 1.00 2.65

Importance 0.10 0.46 0.17 0.49 0.25 0.25 1.00 1.59

Familiarity -0.017 0.061 -0.04 -0.0087 0.12 0.069 0.13 1.00 1.04

Table 4.4. Correlation table and VIF for metrics from Experiment 1, Phase 2. Note
that larger values are darker, regardless of sign. Several metrics were highly correlated,
such as readability and understandability, or perceived clutteredness and complexity.
VIFs were relatively high. For example, both readability and understandability had
VIFs greater than 4, rendering them less-optimal measures of viewer attitudes as
they can be highly accounted for by other dimensions. Experiment 2 modified these
metrics to reduce the multicollinearity between them.

4.5.4.4 Other Observations

Numerical Thinking. Though numerical thinking was not directly related to any

hypothesis, we noticed evidence of it while analysing the results. We identified two

categories of numerical thinking: references to frequency (e.g. 8 in 10) and probability

(e.g. 80%). Overall, participants were significantly more likely to mention probability

than frequency when viewing Area chart (p < 0.001), but were equally likely to

mention frequency and probability when viewing Count chart (p < 0.001). Note,

however, that very few participants mentioned frequency or probabilities overall (∼

3.9%), meaning that the small percentage of frequency/probabilities mentions likely

skewed the Chi-square approximation to exaggerate effects (χ2 = 12.82, p = 0.0016).
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Relating to Community. Though it was not connected to any particular hypoth-

esis, we also examined the responses to Question 5 more closely because it asked

viewers to speculate and discuss how their own community would react to the in-

formation shown. Specifically, we coded for (1) whether participants deemed the

information to be relevant enough to affect their own community, (2) whether they

described their community in their response, and (3) whether they explicitly men-

tioned their community would take action. We found that chart version had no effect

on the prevalence of any of these connections.

With chart topic and chart version as fixed effects and participant as random

effects, mixed-model regression analysis showed that chart topic significantly pre-

dicted whether a viewer would judge the information as relevant to their community

(χ2 = 44.12, p < 0.001), with the chart about COVID-19 cases as the most rel-

evant (detailed pair-wise comparisons can be found in the supplementary). There

was, again, no significant effect of chart version (χ2 = 1.01, p = 0.31). Participants

that referenced their community often did so while reflecting on the relevance of the

information to them. For example, a participant expressed why the chart about

COVID-19 symptoms was very relevant: “I think that people in my community would

be relieved that most cases are mild but also wary that the percentages are still sig-

nificant that infection will require hospitalization and possibly intensive care. They

might be more prone to stay home and isolate.” Another reflected on why a chart

about extinction wouldn’t have any effect on their community: “It wouldn’t as my

community is already a bird sanctuary area and has been for decades.”

We found a similar pattern of effects regarding whether participants described

their community or mentioned taking action. For descriptions, there was a main

effect of chart topic (χ2 = 19.80, p = 0.0014), but no main effect of chart version

(χ2 = 2.42, p = 0.12). Similarly, chart version did not have a significant effect on

mentions of taking action (χ2 = 0.82, p = 0.37), but chart topic did (χ2 = 26.91,
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p < 0.001). Participants were more likely to describe their community and mention

taking actions in responses to the charts about extinction and guns. For example,

one participant described their geographic location as a means to justify the relevance

of the extinction chart “It would effect it to a small extent although the threat of

extinction to Amphibians could pose an issue as we are located on the ocean.” Another

mentioned the action their community would take in response to the guns chart,

writing “Smart people would back legislation to make all guns more difficult to obtain.

People would be more willing to accept stricter background checks and mandatory

registration.”

4.5.5 Experiment 1, Phase 2: Results

Readability. Our results suggested that there was an overall difference in perceived

readability (χ2 = 61.71, p < 0.001). Post-hoc analysis with Bonferroni adjustments

[171] suggested that viewers were evenly divided on this issue, such that there were

equal amounts of participants who rated the Area (45%) and Count chart (46%) as

more readable (p = 1.00) (1 5). Details of pair-wise post-hoc comparisons can

be found in the supplementary materials.

Visual Appeal. Ratings of visual appeal were similar to those of readability, such

that there was an overall difference (χ2 = 39.03, p < 0.001) driven by polarized

ratings (1 5). Viewers were equally likely to rate Area (46%) and Count chart

(47%) as more visually appealing (p = 1.00), with very few giving neutral ratings

(6.5%).

Understandability. Similarly, viewers were evenly divided on understandability

ratings (χ2 = 25.13, p < 0.001) (1 5). They were equally likely to rate Area

(43%) and Count charts (44%) as easier to understand (p = 1.00), with very few

giving neutral ratings (13%).
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Relatability. Although there was an overall difference in relatability ratings (χ2 =

23.49, p < 0.001) (1 5), post-hoc analysis revealed that viewers were not more

likely to rate one chart version as more relatable (p = [0.25, 1.00]).

Clutter. There was no overall difference in ratings of perceived clutter (χ2 = 2.21,

p = 0.70) (1 5), such that participants rated Area and Count as equally cluttered.

Complexity. Participants gave differing complexity ratings (χ2 = 27.07, p < 0.001),

but an equal number of participants rated Area and Count charts as more complex

(p = 1.00). The majority of participants gave neutral ratings, suggesting that they

perceived Area and Count charts to have similarly complexity (parea/neutral = 0.0054,

pcount/neutral = 0.0023) (1 5).

Perceived Importance. Participant ratings of importance followed a similar trend

to complexity: there was an overall difference between scores (χ2 = 24.80, p < 0.001),

but participants were equally likely to rate the two chart versions as seeming more

important (p = 0.15). Significantly more participants gave neutral ratings than chose

Area charts as more important (p = 0.00026), but there was no significant difference

between the number of neutral responses and participants who rated Count charts as

more important (p = 0.69) (1 5).

Familiarity. One-way ANOVA suggested that chart topic and perceived importance

significantly predicted familiarity ratings. Perceived importance was positively cor-

related with familiarity, such that more familiar topics were rated as more important

(or vice versa, as we cannot determine the direction of their relationship) (Est = 0.13,

SE = 0.062, p = 0.043). Post-hoc analysis with Tukey’s adjustment revealed that

charts depicting COVID-19 related information was rated as more familiar (Mean

Difference = 1.02).

Predicting Comprehension with Comparison Metrics. Because viewers spent

a considerable amount of time deciphering the infographics in Phase 1, by the time

90



the participants saw both versions of the infographic in Phase 2, they may have

processed the chart seen before more ‘fluently’ – requiring less time to visually dissect

and comprehend it [312]. This processing fluency may impact judgment, such as

preference or trustworthiness ratings [311, 313]. Therefore, we investigated whether

the chart seen in Phase 1 impacted ratings on the given metrics in Phase 2.

We constructed 8 mixed-effect linear models, where each predicted 1 of the 8

metrics evaluated in Phase 2 and controlled for the 7 other metrics. With these

models, we aimed to establish if chart topic or the chart version seen in Phase 1

had any effect on the metrics from Phase 2. The chart version seen before did not

significantly predict visual appeal (χ2 = 0.44, p = 0.50), readability (χ2 = 0.75,

p = 0.39), understandability (χ2 = 0.70, p = 0.40), relatability (χ2 = 0.98, p = 0.32),

importance (χ2 = 1.86, p = 0.17), or topic familiarity (χ2 = 0.46 , p = 0.50). However

viewers were trendingly more likely to rate the chart version they saw in Phase 1 as

more cluttered (χ2 = 3.45, p = 0.06) and to rate the chart version they saw in Phase

1 as less complex (χ2 = 6.74 , p = 0.0094).

We also examined the inverse, looking at whether the metrics measured in Phase 2

had predictive power on accuracy, insight, or mental effort in Phase 1. We conducted

similar mixed-effect linear model as before, but with the 8 metrics measured in Phase

2 as additional fixed effects. Overall, none of the metrics in Phase 2 predicted Phase

1 accuracy (measured by performance in Question 1, 3, 4), insight, mental effort, or

response length (measured by coder ratings for Question 2, 5, 6). Statistical details

can be found in the supplementary materials.

4.5.6 Experiment 1: Discussion

In summation, we observed that Count and Area charts did not differ in their

ability to elicit higher levels of insight. Participants were not more likely to answer

questions correctly across the two chart versions, nor did they show more signs of
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engagement with the content on metrics of mental effort or response length. We

observed that participants were more likely to misinterpret Count charts than Area

charts, but because of the small number of misinterpretations overall, this effect may

be overstated and explainable by one commonly misinterpreted chart. Additionally,

we observed several interesting trends among the results of Phase 2, including polar-

ized views on visual appeal and no observed effect of chart version on relatability.

However, there was a correlation between some of the metrics assessed in Phase

2 and the chart version participants saw previously in Phase 1. We suspect that

either perceptual fluency was a factor or that the questions were not clear to the

participants. Further, analysis of multicollinearity using variance inflation factors

(VIFs) (see Table 4.4) suggested that many of our metrics were not independent,

as evidenced by several high VIFs of 2.5 and above. Stated differently, the set of

metrics interacted with each other and, therefore, unsatisfactorily measured viewers’

perceptions. When moving to explore the metrics from Phase 2 more deliberately, we

made several changes. Namely, we removed redundancy within the set by removing

questions about Readability and Complexity. Additionally, we rephrased several of

the questions to increase clarity (see Table 4.5 for the updated questions).

4.6 Experiment 2: Personal Experience

Experiment 2 aimed to better understand how participants experienced the info-

graphics and tease apart the factors that made a difference.

4.6.1 Experiment 2: Stimuli and Methods

In this experiment, we utilized the same stimuli as the previous experiment but

iterated upon the Comparison phase to see what other insights could be revealed. We

collected data from 60 participants via Amazon’s Mechanical Turk (meanage = 39.74,

SDage = 12.98, 23 women, 27 men, 10 other). As in Phase 2 of Experiment 1,
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participants were shown two versions of the same chart and asked to indicate which

of the two charts best satisfied the prompt (see Table 4.5 for prompts). After each

rating, with the exception of the questions about Familiarity and Interest, participants

were asked to explain their reasoning. Chart order was determined with the Graeco

Latin Square order from the previous experiment, but, critically, participants had not

seen either chart previously. Participants rated every metric on a separate page and

all metrics were presented in the same order throughout.

Metric Question Themes (Number of associated re-
sponses)

Visual Appeal Which of these charts is more visually ap-
pealing to you?

Easy to understand (54), Easy to see (34),
Icon selection (29), Simplicity (24)

Understandability Which of these charts takes more time to
understand?

Difficulty understanding value (54), More
to look at (49), Difficulty focusing (33), Dif-
ficulty identifying topic (27)

Envisioning Which of these charts makes it easier for
you to envision what is happening, by re-
lating the data to real world objects, situ-
ations, or entities?

Makes topic real (83), Straightforward (47),
Obvious topic (23)

Unnecessary Clutter Do either of these charts feel needlessly
cluttered?

No added meaning (29), Organization (30),
Space (27)

Importance and Urgency Which of these charts makes the topic seem
more urgent or important to you?

Real-world connection (77), Color (40),
Straightforward (28), Size (19), Effort/Pro-
fessionalism (14)

Familiarity How familiar are you with the topic of this
chart?

None (Likert scale only)

Interest How interested are you in the topic of this
chart?

None (Likert scale only)

Table 4.5. In Exp. 2, participants compared 2 versions of a chart along 7 metrics
and then explained their reasoning. These metrics are a subset of those used in Exp.
1 Phase 2, but most are worded differently. The top 3-5 themes for each question are
listed with the number of responses they were assigned to. There was no justification
requested for Familiarity or Interest, because these questions pertained to the chart
topic only and did not compare chart versions.

4.6.2 Experiment 2: Analysis and Results

To analyze the responses, we utilized the Thematic Analysis method [41]. Two

of the authors familiarized themselves with the responses and then independently

generated a set of preliminary codes for separate questions based on common topics

mentioned. Additional codes were generated and applied iteratively until each author

could not come up with more codes, at which point the codes were grouped into
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broader themes. The 3 to 5 most frequently applied themes for each question are

included in Table 4.5. We now present the numeric and qualitative results for each

dimension judged by participants.

Visual Appeal. Participant opinion on visual appeal was polarized (χ2 = 54.43, p <

0.001). A Chi-squared test revealed that there was an equal number of participants

that rated Count and Area as more visually appealing (parea/count = 0.82). A post-

hoc analysis with Bonferroni corrections [171] showed significantly fewer people gave

a neutral rating (1 5). Detailed pair-wise comparison p-values can be found in

the supplementary materials. We observed a positive correlation between perceived

visual appeal and importance (Est = 0.23, SE = 0.051, p < 0.001), such that the

chart that was perceived to be more visually appealing was also perceived to make

its topic seem more important.

As shown in Table 4.5, the most common themes identified for this question

were “easy to understand,” “easy to see,” “icon selection,” and “simplicity.” This is

particularly interesting because although this question was asking about visual appeal,

the most common themes we found are actually about ease of use. This suggests that

for many participants, visual appeal and understanding cannot be separated – a chart

which is easy to use is also visually appealing.

Participants who preferred Count charts appreciated how quickly they could grasp

the topic of the chart and mentioned how the individual pictographs allowed them to

see and compare quantities more easily. As one participant put it, “Understanding the

[Count] chart is immediate[.] I see the drawings of the different kind of animals and

I understand immediately the quantities. I don’t need to read words [to] understand

the issue.” Other participants struggled to explain why they liked the Count charts

better, but attributed it to the pictographs, for example saying: “Neither is very easy

to read but the animal shapes are nicer to look at.”
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Proponents of Area charts argued that the simplicity or clarity of this style made

the charts easier to understand. One participant expressed this opinion as “[The Area

chart] has a much simpler design and in turn offers a clearer and more understandable

message.” Here, the participant is very clearly describing the implicit relationship

between understanding and visual appeal for them. Beyond simplicity, some other

participants (11%) cited precision as factor as in: “Although the [pictographs] are

visually appealing I like the precision of the donut chart since the percentages aren’t

exactly equal.”

Understandability. Overall, participants rated the Count charts as taking more

time to understand (χ2 = 50.23, p < 0.001). Post-hoc analysis with Bonferroni correc-

tions revealed that the majority of viewers gave neutral ratings or rated Count charts

as taking longer to understand (1 5). We also observed a negative correlation

between perceived time to understand and importance (Est = −0.11, SE = 0.054,

p = 0.049), such that the chart that seemed to take longer to understand was per-

ceived as seeming less important. Detailed pair-wise comparisons can be found in the

supplementary materials.

Although participants rated the Count charts as requiring more time to under-

stand, an analysis of the amount of time it took for participants to answer each ques-

tion in Experiment 1 does not support this belief. A mixed-effect model predicting

response time for all 6 questions in Experiment 1 revealed that question (χ2 = 1.63,

p = 0.44), chart topic (χ2 = 2.35, p = 0.80), nor chart version (χ2 = 3.59, p = 0.058),

seem to be significant predictors of how long a participant spent on the chart. We

speculate as to why this mismatch occurred in the Discussion.

The most common themes that emerged were “difficulty understanding value,”

”more to look at,” “difficulty focusing,” and “difficulty identifying topic” (see Table

4.5). These themes may give us a window into what kind of information the par-

ticipants were using as a proxy for the amount of time it would take for them to

95



understand the chart or the kinds of things they imagine would be a hindrance to

understanding.

Within responses that described Count charts as requiring more time to under-

stand, many participants (55%) focused on the number of items in the image. Some

offered that Count charts required more time purely because there was more to look

at. Others viewed the number of items more negatively, describing it as “distracting”

and a hindrance to finding critical information. Another point of disagreement was

whether the possibility of counting the pictographs was helpful or harmful. Some

participants thought seeing the individual pictographs was helpful for understanding

ratios quickly, while others preferred the solid blocks of the Area charts. For some,

this preference came down to familiarity. As one participant wrote “[The count chart]

is a new form of chart for me so I really need to put some effort in order to read it

properly.”

Participants who thought that the Area chart required more time to understand

cited the need to read more text to figure out the topic of the chart. As one participant

put it “The bars are more abstract and therefore [require] more time to understand.”

Ironically, a similar sentiment was expressed by other participants as a reason that

Count charts required more time to read, arguing that the viewer had to figure out

what each of the symbols represented.

Envisioning. Overall, when asked about which chart best made it easier to envision

what was happening and to relate the data to real world objects, situations, or enti-

ties, viewers perceived Count and Area charts differently (χ2 = 29.03, p < 0.001). In

particular, significantly more participants rated the Count chart as easier to envision

(p < 0.01)

(1 5). There was also a positive correlation between perceived easiness to en-

vision and perceived importance (Est = 0.39, SE = 0.052, p < 0.001), such that
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the chart that was perceived to be easier to envision also made its topic seem more

important.

The top themes identified in responses to this question were “makes the topic real,”

“straightforward,” and “obvious chart topic” (see Table 4.5). Though it’s unsurprising

that participants talked about things that made a topic seem real, the other two

popular themes suggest a more surprising potential relationship between relating

and ease or speed of understanding. Proponents of Count charts expressed that the

pictographs made the topic seem more “real” and encouraged them to relate it to their

own experience. As one participant wrote, “The human icons emphasizes [sic] that

COVID-19 is affecting people just like me all over the world.” In addition, participants

contended that the pictographs made the topic and message of the chart obvious,

especially at a glance. For example, about the chart about social media mentions,

one participant wrote “When I looked at [the count chart] I knew without even looking

at the top that it was about Twitter as I saw the Twitter logo. At first glance I don’t

know what [the area chart] is referring to.” While the bird pictographs were effective

for signaling the chart topic to some participants, others found it confusing. As one

participant described it “The birds are somewhat misleading as I think of actual birds

instead of Twitter.” Another participant said that they found the Area chart easier

to envision “Because I don’t know what birds have to do with the coronavirus.”

Participants who favored Area charts found the straightforwardness of the charts

to assist in envisioning the topic. As one participant wrote “[The Area chart] is using

a good old traditional bar chart which is easy to read at a glance and therefore it is easy

to see what is actually happening without over thinking it.” Those who preferred this

style also found the presentation of the numerical information to be easier to grasp.

For example, writing “[The area chart] doesn’t need me to do my math meaning that

I can instantly feel on my skin what the chart wants to tell me.” In contrast, others

found interpreting the proportions easier with the individual pictographs. As one
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wrote “I can easily visualize the statistics because the objects represent them at a

glance.”

Unnecessary Clutter. Count charts were significantly more often rated as unnec-

essarily cluttered, compared to Area charts (χ2 = 227.4, p < 0.001). However, the

number of people who gave neutral ratings is significantly higher than all the other

categories (1 5). Detailed pair-wise comparisons can be found in the supple-

mentary materials.

There is a negative, but not statistically significant, correlation between perceived

visual clutter and importance (Est = 0.035, SE = 0.078, p = 0.75) such that the

chart that is perceived to be less cluttered is perceived to make its topic seem more

important. The reason this correlation was not statistically significant was due to

that fact that very few people rated the Area chart as cluttered.

As Table 4.5 shows, the main themes for this question were “no added meaning,”

“organization,” and “space.” Within these themes, we see both a possible response

to the word “needlessly” that was used in the prompt, as well as an idea of what

characteristics participants were using to decide what was or was not cluttered.

For some participants, the Count charts felt needlessly cluttered because the pic-

tographs contributed no additional meaning. Exemplifying this idea was this response

from one participant “It doesn’t seem like there’s much point in using the moneybags

when [the area chart] works just as well. I’d rather just have [the area chart] if I

were reading this data on a website or document.” Additionally, participants were

critical of the number of pictographs and their organization, describing the page as

“busy” and “complicated.” As one participant put it, “I can get what the person who

made this chart was trying to express that all different types of people get COVID-19

and it effects them in different ways but the presentation is jumbled and distracting.”

Some participants who answered neutrally didn’t consider either of the the charts

cluttered. One reason for this was the layout, such as expressed here: “Both charts

98



use the space provided well enough and do not feel overwhelming.” Others did find

the Count charts cluttered, but not “needlessly” so. For example, one participant

wrote “I wouldn’t say either is NEEDLESSLY cluttered. [The Count chart] seems a

little more cluttered since it’s representing each person but I don’t think it’s needless.

It definitely serves a purpose.”

Importance and Urgency. There was an equal number of participants that rated

Area and Count charts as more urgent/important (p = 1.00). A Chi-squared test

for given probabilities revealed an overall difference in importance/urgency ratings

(χ2 = 30.578, p < 0.001). However, as established with Post-hoc analysis with

Bonferroni adjustments, significantly more participants gave neutral ratings (1

5).

The most common themes present in responses to this question were “real world

connection,” “color,” and “straightforward” (see Table 4.5). These themes suggest

both an impact of realism and ease of understanding on perceptions of importance

and urgency.

Participants who thought Area charts made their topic seem more urgent and

important reasoned that the straightforward style of the chart enabled them to im-

mediately get the gist of the data. Further, they criticized icon charts as too playful

and cartoonish for important topics. For example, one participant said “it looks

like [the Area charts] are trying to give you straight facts not make it fun with little

pictures.”

In contrast, viewers who preferred the Count chart expressed that the relatability

of the symbols connected it to real-world objects and made it seem more important,

for example, saying “Seeing the guns makes it less about numbers and more about

actual guns.” Some explained that the number of individual items helped the graphic

seem more impactful. For example, one participant summarized, “The sheer amount

of red animals should raise a red flag in the reader’s mind.”
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Among those that felt that the chart versions made the topic seem equally impor-

tant, there were several different factors cited. Some participants stressed that the

design didn’t have much to do with their perception of urgency or importance; in-

stead mentioning that it was the topic that mattered. This sentiment appeared both

in reference to topics perceived as unimportant, as in: “Number of tweets doesn’t seem

like a particular[ly] urgent or important topic so neither stands out that way to me.”

and in reference to topics perceived as critical: “Both talk about a serious topic. It is

serious and urgent regardless of how the charts are displayed in this case.”

Just under half of all participants (47%) referenced the influence of color and size

on their perceptions of importance. Red and black were cited as contributing the

feeling of importance, especially when paired with large areas, as in: “The giant red

block screams ‘urgency’ when I see it.” Additionally, the accessibility of the numeric

data was also cited as a factor of perceived importance. For some, the ease of seeing

the proportions in the data, assisted by the individual pictographs, made the message

seem more important. Others disagreed, arguing that the precision of the Area charts

was better.

Finally, important-seeming designs were also praised for perceived professionalism

and effort. Participants that preferred Area charts argued that this style looked more

professional and therefore more important. This opinion was not shared by those who

preferred Count charts, who expressed that Count charts looked like more effort had

been put into them and therefore looked more important. Of the Extinction chart,

one participant wrote: “[The Area chart] just feels so lazy and underdeveloped that it

is hard [for] to me read it, much less care. [The Count chart] at least feels like there

is some passion there.”

Familiarity. Familiarity is a different metric than the others because it measures

viewer attitude towards the topic rather than the chart. We conducted a one-way

ANOVA comparing familiarity for each topic which suggested differing familiarity
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Visual Appeal Understandability Envision Clutter Importance Familiarity Interest VIF

Visual Appeal 1.00 2.18

Understandability -0.48 1.00 1.45

Envision 0.59 -0.46 1.00 2.07

Clutter -0.59 0.42 -0.50 1.00 1.67

Importance 0.57 -0.42 0.63 -0.40 1.00 1.85

Familiarity 0.076 -0.055 -0.008 -0.054 0.029 1.00 2.00

Interest 0.16 -0.019 0.17 -0.016 -0.094 -0.051 1.00 2.07

Table 4.6. Correlation table and VIF for metrics from Experiment 2. Note that
larger values are darker, regardless of sign. No two metrics appear to be strongly
correlated. Overall VIFs decreased compared to those in Experiment 1, suggesting
that the metrics used in Experiment 2 more orthogonally capture different participant
attitudes and thus were better metrics to use in this type of work.

across the topics represented (F = 19.63, p < 0.001). Post-hoc analysis with Tukey

adjustment [228] suggests that participants were significantly more familiar with

COVID-19 related topics than other topics (MD = 1.28, p < 0.001).

We further examined if topic familiarity significantly influenced participants’ rat-

ing on the above metrics via linear regression models. Controlling for other metrics,

familiarity does not significantly predict visual appeal (Est = −0.082, SE = 0.068,

p = 0.023), perceived importance/urgency (Est = −0.008, SE = 0.061, p = 0.90),

easiness to understand (Est = −0.094, SE = 0.065, p = 0.15), easiness to envi-

sion (Est = 0.023, SE = 0.063, p = 0.71), or unnecessary clutter (Est = 0.0065,

SE = 0.046, p = 0.89). However, it does significantly predict interest in the

topic, such that more familiar topics were rated as more interesting (Est = 0.69,

SE = 0.041, p < 0.001).

Interest. Like familiarity, interest is another metric that measures viewer attitude

towards the topic rather than the chart itself. One-way ANOVA comparing interest

for each topic suggested that viewers were more interested in some topics than others

(F = 14.9, p < 0.001). Post-hoc analysis with Tukey adjustment suggested that

participants were significantly more interested in COVID-19 related topics than other

topics (MD = 1.03, p < 0.001). Controlling for other metrics, interest in the topic

did not significantly predict perceived topic importance/urgency (Est = 0.021, SE =
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0.062, p = 0.74), easiness to understand (Est = 0.096, SE = 0.66, p = 0.14), or

perceived unnecesary clutter (Est = −0.026, SE = 0.046, p = 0.58). However, it did

significantly predict familiarity, such that more familiar topics were rated as more

interesting (Est = 0.71, SE = 0.042, p < 0.001). It also significantly predicted visual

appeal – charts depicting more interesting topics were also rated as more visually

appealing (Est = 0.20, SE = 0.068, p = 0.004). Finally, it trendingly predicted

easiness to envision such that charts depicting more interesting topics were rated as

harder to envision (Est = −0.11, SE = 0.063, p = 0.07).

Correlation and VIF of Metrics Used. Analysis of multicollinearity using vari-

ance inflation factors (VIF) (see Table 4.6) suggested that although our rating met-

rics were not fully independent, there was only a small amount of variance inflation

(most VIFs were around 2 or below). In other words, these metrics were satisfac-

tory measures of viewer perceptions of visualization designs. In addition, both VIFs

and the number of highly-correlated metrics decreased from Experiment 1, which

demonstrates that the changes made to the metrics were effective.

4.7 Discussion and Future Work

This study revealed several important findings. First, we found no difference

in the aspects of understanding demonstrated by viewers of infographics containing

pictograph arrays and those containing solid areas. However, using pictograph arrays

significantly influenced the participants’ experience. In particular, we found a visual

complexity-relatability trade-off. Infographics with pictograph arrays were thought to

require more time to understand and were perceived as more often visually cluttered,

but they enabled viewers to more easily relate the chart topic to the real world.

Additionally, two distinct perspectives on the use of pictographs emerged in our

experiment. For some, pictographs are preferable to abstract areas because they

are visually appealing and make the topic more relatable. For others, charts with
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pictographs are not preferred because they are seen as cluttered, complex, and less

serious. We will now speculate as to why these results occurred and then discuss their

potential impacts on the design of visualizations.

Bloom’s taxonomy as an evaluation method

In this chapter, we used Bloom’s taxonomy as a formal evaluation method for vi-

sualizations. Through this method, we were able to comprehensively probe 6 different

aspects of understanding. Although we found no difference between the two chart

versions we evaluated, the breadth of aspects covered and the real-world applicability

of these aspects suggests that our inquiry was still valuable. Since conducting these

experiments, the authors have written a more in-depth description of the method of

using Bloom’s taxonomy for evaluation [53].

The questions used in the experiments we conducted were designed to reflect the

spirit of the levels of Bloom’s taxonomy in the context of casual sensemaking. It is

relatively straightforward to translate the aspects of understanding measured by Lev-

els 1 to 4 to casual sensemaking, as they are largely similar to simple tasks completed

in the original, educational context. But for Levels 5 and 6, the type of learning eval-

uated in an educational context differs from that of casual sensemaking. Specifically,

Levels 5 and 6 are intended to evaluate understanding in cases where students could

gather more information, ask questions, and take lots of time to produce responses.

In contrast, in the casual sensemaking context, such as when someone sees a visual-

ization in a news article or a tweet, that process typically does not involve seeking

more information or asking questions, and typically unfolds across a few minutes at

maximum. We translated Levels 5 and 6 in ways that we saw as most similar to

the intent of the original taxonomy, but our translation between these mismatched

contexts is only one of many possible translations and represents one limitation of

this work.
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We can imagine other translations of these levels to the causal sensemaking con-

text and we did translate them differently in other related work [53]. In that work,

participants predicted a value beyond the chart (Level 5) and generated and justified

a conclusion (Level 6). This is in contrast to this chapter, where we asked about the

participant’s community (Level 5) and what they thought a public official should do

(Level 6). Future work that uses this method may find yet new ways of translating

these upper levels across contexts.

Future iteration of this line of work could also extend the list of example tasks in

this paradigm to evoke specific, detailed responses that help designers and researchers

gain insights regarding how a visualization reader is reacting to a visualization. We

see strong potential for this method to evolve into a useful technique supplementing

in-person interviews in remote environments where in-depth interviews may be dif-

ficult or impossible. Future researchers could also combine this evaluation method

with other measures of graphical, linguistic, or numerical literacy to generate a more

comprehensive evaluation method, or use this method to identify concrete design

guidelines. Alternatively, researchers could diversify the data analysis approaches to

extend our method beyond just evaluating affordances to cover graphical literacy or

numeracy. For example, one could compare the participants’ trend predictions in

the synthesis (prediction) task to a ground truth to determine the accuracy of their

prediction, which could inform researchers about their numeracy skills (e.g., how well

the participant could interpolate/extrapolate trends in data). Additionally, although

in our paradigm, we only compared two alternative designs of the same chart, this

framework is flexible enough to allow for single or multi-chart comparisons.

Why was there no effect on understanding?

In our experiments, replacing the geometric shapes of the plain charts with pic-

tograph arrays changed the way that the information was encoded. It would be
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reasonable to think that a change like this would have some effect on the understand-

ing obtained by viewers, but we observed no such effect. There are several reasons

why this might be.

First, it is possible that although one version uses solid shapes and the other

individual icons, participants may process the images similarly – as masses of color

[166]. Future work with more complex charts or with fewer pictographs may produce

different results. Second, it is possible that while there was no effect for participants in

aggregate, there were subsets of people who did experience some effect. For example,

particular combinations of graph literacy and numeracy may have led to larger effects

such as those observed in the medical risk literature (e.g., [138]). Similarly, some of

the factors which have been observed to affect engagement such as subject matter,

source, or self-efficacy [195] may also affect understanding. Future work could examine

the possible effect of these factors and could help the community better understand

what about an audience matters when trying to communicate facts and ideas. Third,

it could be a feature of the infographics that we used in our experiments. The stimuli

we chose to use were relatively simplistic as they only contained a few categories and

under a few hundred points. It is possible that more complex charts might lead to

larger effects. Future work with more complex infographics could help determine the

veracity of this possibility.

It is also possible that this manipulation affected casual sensemaking, but not

understanding, in ways that could not be detected by our measures, e.g., emotional

aspects of sensemaking or sensemaking as an ongoing personal experience (e.g., as

in the notion of sensemaking in [103]). Past work has shown that emotions have a

strong impact on the way that data and visualizations are perceived and understood

– it is not just the data themselves that are important, but how they feel [194].

Given the range of factors identified in Experiment 2, it may be true that though the
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comprehension aspects of casual sensemaking (measured in Experiment 1) were not

effected, the meaning made was.

Why did participants find pictographs easier to relate to?

Our results for Experiment 2 indicate that participants thought that charts with

pictographs helped them better envision the chart topic. One possible explanation is

that including pictographs related to the topic reduces the mental burden of relating

abstract textual content to a visual depiction. This could be related to the factors

thought to make concrete scales effective – by relating abstract depictions of data to

something more familiar, concrete scales reduce the cognitive load of comprehend-

ing the underlying numerical values [72]. This explanation could still be consistent

with our results from Experiment 1 that observed no difference in response accuracy

between the pictograph and area conditions, as reducing cognitive load does not nec-

essarily increase performance [178]. Instead, it could indicate that even the most

complex questions did not overtax the participant’s cognitive resources. Nonetheless,

to investigate this conjecture, future work could incorporate subjective or psycholog-

ical measures of mental effort and cognitive load (such as those reviewed in [273]).

Alternately, strong positive emotions could influence participant perceptions. Pre-

vious work on emotional design has shown that tools which are perceived as beautiful

or attractive are also considered to work better [263]. Following this model, when a

chart containing pictographs evoked positive emotions for participants, it may have

helped them feel more willing to engage and ultimately produced a feeling of ease

and reduced effort. It is worth noting, however, that a viewer may experience posi-

tive emotions in response to charts as a whole, even when the topic or pictographs

are not happy or joyful. For example, in our study, sometimes the pictographs were

described by participants as “scary,” even in a chart that was otherwise noted to be

aesthetically beautiful (e.g., in response to the guns chart in Figure 4.3).
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It is also possible that the “realism” of a pictograph contributes to how effective

they are at making the topic seem real. There is conflicting evidence supporting the

effectiveness of anthropomorphized images of people on inducing empathy (such as in

[40, 143]), but little is known about their effect in other realms such as those explored

in this chapter. Future research may investigate the use of more realistic images in

infographics.

Why did participants think that the pictograph arrays took more time to

understand? (and why were they wrong?)

On the other hand, though participants reported that charts with pictographs

were easier to envision, they also perceived them to require more time to understand.

Though this was believed to be true by participants, our results from Experiment

1 do not support this – we found no significant difference in response time on any

question with respect to the version of chart viewed.

Estimating the time it takes to complete a task is not straightforward. Therefore,

instead of asking why participants thought the charts with pictograph arrays would

take more time to understand, a better place to start may be to ask: What were

participants using as a proxy for estimating the time? It is possible that participants

were using something like visual complexity or the total number of items on the

screen. Investigating exactly what factor is being used to estimate time could be a

future direction in itself, but our results imply that the actual effect of this factor

is smaller than people think and may not actually have an effect at all. Further,

this could suggest that there is a difference between the features that people think

contribute to their understanding and those that actually do.

Design considerations for the use of pictographs

Our results suggest three design considerations. First, if a designer is looking to

make their topic easy to envision, they should consider using pictograph arrays in

107



place of geometric areas. Second, if a design contains pictographs and the designer is

concerned that viewers could think the chart will take too long to understand, they

may wish to consider the number of items present in the design and how easy it is

to understand the value of each component. Third, to mitigate potential perceptions

of unnecessary clutter in a design containing pictographs, the designer may wish to

consider what additional meaning the pictographs contribute over a more traditional

representation.

Further, our results suggest that when producing graphics which are not very data

dense, pictographs are best when used in two ways: to help identify what the chart is

about or when organized spatially into clusters that should be interpreted collectively.

Critically, this means that pictographs should not be used to force the viewer to count

[377]. Instead, designers should combine pictographs with textual labels containing

the absolute values where they are important to avoid making viewers feel like they

need to count in order to understand.

Though our results indicate that pictographs can be effective for helping the viewer

envision the topic, finding representative pictographs for abstract concepts is not a

trivial task. For example, while there was little confusion about the symbols we used

to represent people, some participants found the Twitter bird to be helpful, while

others found it confusing. Existing studies have shown that even when icons are

specifically designed to cross language and cultural divides, they are often not under-

stood as intended [422]. However, having a set of pictographs which is as inclusive

as possible in terms of subject and multi-cultural clues can help. One set which we

utilized in our redesigned chart about COVID-19 symptoms (see top row, second

column of Figure 4.3) was WeePeople [302] which contains silhouettes of individuals

of different genders and races, with and without mobility aids. While there are some

excellent inclusive pictograph sets, such as the WeePeople set, there is still work to
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be done so that designers can choose resonant pictographs based on the background

of their anticipated audiences.

4.8 Conclusion

When designing a data visualization, infographic, map, or diagram for the general

public, designers need to weigh trade-offs in visual complexity, relatability, and clarity

of design. One decision to make is whether to show the data through bare geometric

objects, such as familiar bars and lines found in conventional charts, or icon arrays,

such as human silhouettes. We explored the effect of encoding information with

pictograph arrays and more traditional solid areas in part-to-whole relationships as a

case study, referencing Bloom’s taxonomy to design comprehension tasks. We found

that using familiar geometric objects and icon arrays have no significant impact on

sensemaking activities, at least in the context of our study participants and set of

visualizations that we tested. We found individual differences in design preference,

but, overall, viewers considered infographics with pictograph arrays to require more

time to read, but easier for envisioning the topic and associating it with real-world

entities.
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CHAPTER 5

FROM INVISIBLE TO VISIBLE: IMPACTS OF
METADATA IN COMMUNICATIVE DATA

VISUALIZATION

In Chapter 4, I explored how altering the design of a visualization may impact

casual sensemaking. One reason that a visualization may be difficult to understand

could be because of what is not present. For instance, communicative visualizations

are often disseminated without “metadata:” information that is not directly repre-

sented in a visualization and provides contextual information on the source of the

data, the transformations applied to the data, the visualization elements, its purpose,

the people involved in its creation, and its intended audience. Although metadata are

typically absent, their content nonetheless could impact the way that people under-

stand or experience a visualization. To investigate the effects of metadata further, I

first proposed a taxonomy of types of metadata and then conducted two experiments

to investigate what kinds of metadata visualizations might want access to and then

evaluate what impact having some of that information had on their understanding

and experience of a set of four real-world visualizations. This chapter represents the

work from two papers: [52, 51].

5.1 Introduction

Although designers and practitioners aim to create communicative visualizations

which are easily understandable, relevant, and trustworthy, visualizations do not al-

ways speak for themselves. For instance, a lack of transparency surrounding how
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visualizations with unusual or unfamiliar elements should be decoded can make suc-

cessfully extracting information difficult for readers who have not encountered them

before or do not use them regularly [225] (e.g., logarithmic scales [318], truncated

y-axes [88]). The same of lack of transparency may also impact how much readers

trust the visualization (i.e., believe that the information communicated by visual-

izations is truthful and worth sharing with other people). For example, a lack of

transparency surrounding where noise and uncertainty may be present in the data

could sew doubt in the accuracy of the information and cause a reader to ignore the

visualized information all together [187].

Prior work has theorized that contextualizing visualizations with metadata (e.g.,

disclosing the creator, information about the encoding used, or the data source) may

counter these effects and potentially increase understanding, perceived transparency,

and ultimately trust (e.g., [109, 183]). For instance, providing metadata in the form of

instructions for how to make sense of a visualization’s encodings might enable readers

to understand representations they otherwise would have difficulty with (e.g., as with

visualizations viewed for the first time [389]). The practice of disclosing metadata

may also increase the transparency of the processes underlying a visualization, helping

the public build trust [116, 176], and encouraging people to use visualizations [247].

However, there is little empirical evidence of the impacts of providing metadata on

visualization readers.

To address this gap, we conducted a pair of empirical experiments to investigate

the impacts that metadata have on readers of static communicative visualizations.

We build upon previous work by the authors that defines a taxonomy of metadata:

information that is not directly represented in a visualization which provides contextual

information on the source of the data, the transformations applied to the data, the

visualization elements, its purpose, the people involved in its creation, and its intended

audience[52]. This definition of metadata is broad and intentionally encompasses
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types of data that are typically considered metadata (e.g., about data collection or

methods [90, 272]) as well as information that may not traditionally be thought

of as “data” but are nonetheless important for establishing the social, cultural, or

historical circumstances in which a visualization was made (e.g., authorial statements

of positionality which elaborate on identities and experiences that inform how the

authors relate to knowledge [173]) [52].

In our first study, we utilized an exploratory design to identify which of six cate-

gories of metadata readers wanted to have to accomplish user goals (e.g., better un-

derstand the topic, assess trust). We presented 64 participants from Prolific[301] with

set of four random visualizations from five award-winning data journalism projects.

For each visualization, participants were given four goals and selected the type of

metadata they most wanted to have from a set of 18 types of metadata to accomplish

each of them. Our results indicated that participants were most interested in meta-

data that explained the visualization’s encoding (Encoding Explanation) for goals

related to understanding (e.g., “to make you feel more confidence that you under-

stand the chart well) and metadata about the source of the data (Data Source) for

assessing trust (i.e., “to determine if the chart is trustworthy”).

Based on the results of Experiment 1, in the second experiment, we explored how

these metadata (i.e., Encoding Explanation, Data Source) impact transparency, trust,

information relevance, and understanding. 144 participants from Prolific were shown

pairs of visualizations, both with and without metadata. We collected open-response

feedback related to the visualization’s message and Likert-scales corresponding to

dimensions of transparency (accuracy, clarity, completeness, and thoroughness) and

relevance (meaningfulness, relevance to self, relevance to others). Finally, partici-

pants compared two visualizations by predicting the likelihood that they would be

selected by an organization for a presentation. Our results suggest that people view

visualizations with metadata as more thorough than those without, but found no
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evidence that it contributes to perceptions of accuracy, clarity, completeness, or rele-

vance. Finally, we found that the presence of metadata did not impact how correctly

participants described the main message and what they learned from a visualization,

but may have influenced which information readers interpreted as important.

The contributions of this work are: 1) an exploratory study of what kinds of meta-

data people may perceive as most important to accomplish different goals (e.g., as-

sess trust, understand perspectives); 2) quantitative results suggesting that metadata

can increase perceptions of thoroughness, which may positively impact the perceived

transparency of a visualization; 3) quantitative results suggesting that the information

in visualizations with metadata are not considered more relevant than in visualiza-

tions without; 4) quantitative and qualitative results implying that metadata did not

impact the correctness of participant responses, but may have influenced which in-

formation readers paid attention to; and 5) a discussion the possible implications of

our results on trust, understanding, and the tension between disclosing information

and providing more textual information.

5.2 Background

5.2.1 Potential Benefits of Metadata

Existing literature has posed that the practice of disclosing metadata may provide

benefits for researchers, data users, and society as a whole. For example, past work has

posed that disclosing metadata in research can help establish the accuracy of claims,

prove authenticity, replicate work, and conduct meta-analyses [413, 48, 351, 307,

164, 21, 49], which can help establish the objectivity and context of research claims

[34, 219]. This practice has also been argued to be beneficial for prospective users by

helping them interpret data [351], judge whether it is appropriate to apply a dataset to

a problem [141], and determine what kinds of conclusions can be responsibly inferred

from data [135].
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In addition, there may be other aspects of a visualization’s history and context

which may be important to divulge, but not typically considered data. For example,

positionality statements which describe an author’s world view and the ways that they

think about the social and political context of their research are commonplace made in

social science [173, 128, 331]. Understanding the positionality of people is an integral

component of understanding the visualizations they make because one’s identities and

experiences both frame and limit which knowledge they create [163, 106, 224, 322].

This kind of information is considered metadata by our definition, but may have been

left out by past work because it is not readily quantifiable and therefore not typically

considered data. Past work in the visualization community has also demonstrated

that a person’s personal knowledge and experience is highly related to what they

will perceive as useful [283], believe to be too difficult to understand [195], and think

others will see in the visualization [412]. Finally, feminist scholars have emphasized

the importance of understanding the social and historical contexts of data to challenge

hegemonic power structures (e.g., [106, 163, 141]).

5.2.2 Increasing Transparency & Trust

One of our primary motivations for this work is to examine the potential for

metadata to influence and increase transparency and trust. Past research in visu-

alization concluded that providing metadata like data provenance can be a tool for

signalling transparency and trustworthiness to end-users [183, 109]. While increased

transparency is often associated with increased trust (e.g., as in [254]), this relation-

ship does not always hold. Instead, transparency increases trust to a critical point,

at which increasing transparency further can counter-intuitively decrease trust — es-

pecially when expectations are broken [176, 204]. This erosion of trust is theorized

to occur because too much explanation confuses readers and directs their attention

toward unexpected outcomes [204].

114



Additionally, past work on transparency and trust in map-based visualizations

found that elements of transparency from existing work (accuracy, clarity, disclosure,

and thoroughness) did not predict participants’ perceived level of trust [409, 333].

Instead, they found that only accuracy and disclosure significantly predicted partic-

ipants’ perceived levels of trust in visualizations, while clarity, disclosure, and thor-

oughness predicted which visualization participants selected for the experimental task

[409]. Further, existing work suggests that the perceived value of transparency (as a

component of trust in a resource) is higher for people with deeper relationships with

an organization or resource [293]. Within the context of visualization, this result

could indicate that individuals who engage with a visualization repeatedly or have

more at stake if the visualization is incorrect may value transparency more than those

who interact only once.

Trust, in general, is a critical aspect of successful visualization and has been iden-

tified as one of the field’s most pressing challenges [247, 372]. However, past work has

established that evaluations of trust are based (in part) on stakeholders’ expectations,

which may make building trustworthy visualizations particularly challenging because

they often have multiple stakeholders [42, 400]. Readers of a visualization can both

assess trust through comprehensive processes (when readers have time or sufficient

motivation) and through the use of mental shortcuts [247, 193]. For example, past

work has shown that people use the trustworthiness of a source and how much the

“raw” data had been processed as proxies for trustworthiness [193, 89, 206, 230]. It

is conceivable that the presence of metadata might influence trust for readers engag-

ing in comprehensive processes (who want or need to look through all of the related

information) and readers making quicker judgements using proxies (who could use

metadata like the source of the data as a shortcut). However, little work has empiri-

cally investigated this relationship.
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While studies of metadata within visualization are limited, other related fields

have investigated how metadata influences perceptions of transparency and trust.

For instance, past work in the Digital Humanities found that transparency was an

important factor in social assessments of the trust for digital repositories [416] and ed-

ucational resources [132]. Notably, the disclosure of metadata was specifically named

as a sign of trustworthiness for many participants [416]. Recent work also found that

metadata which indicated a software was reputable and would perform well increased

perceptions of trustworthiness and willingness to reuse the software [5].

The influence of metadata on credibility has also been explored in non-visualization

domains. Credibility refers to the extent to which something is thought to be believ-

able, trustworthy, accurate, and valid [396]. Past work in this space has observed,

for example, that the presence of sources believed to be experts increased the per-

ceived credibility of memes [396], tweets [231], and social media posts [358]. Existing

results on metadata, credibility, trust, and transparency may indicate that the dis-

closure of metadata alongside a visualization could increase perceptions of credibility,

transparency, and trust among visualization readers. However, it is not yet clear

whether these results translate to visualizations. For example, everyday readers of

communicative visualizations may not expect that metadata is available or find it as

important as researchers have in past work. Further, while metadata is mentioned

frequently in the context of transparency, it is also unclear whether readers of visu-

alizations perceive the disclosure of metadata as contributing additional information

(that is, makes them more transparent).

5.2.3 Improving Understanding with Context

Finally, metadata may influence how accurately visualization readers are able to

understand a visualization. For example, rhetorical choices made by visualization de-

signers can make some interpretations more or less salient [183]. Therefore, metadata
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which include “instructions” for decoding a visualization could minimize confusion

and misunderstanding, especially when a visualization is complex or when the rhetori-

cal choices are novel. For instance, past work on providing instructions and tips in the

form of cheat sheets [393] or slide shows [389] have both shown to help people who are

new to visualization draw conclusions from unfamiliar data visualizations. However,

providing additional information might not always be beneficial – an experiment in

psychology found that while access to additional information made participants more

confident in their responses, it also decreased their accuracy because they were biased

by preconceived notions about the information they received [160].

Beyond influencing accuracy, it is also possible that metadata could influence how

readers understand the visualization. The encoding/decoding theory model of com-

munication suggests that when consuming new information, people use both their

own knowledge and the new information to come to conclusions [162]. This theory is

consistent with existing results in visualization which have shown that a reader’s inter-

pretation of a visualization may be affected by their own experience, knowledge, and

perspectives (e.g., [283, 183, 195, 202, 201]). Consequently, providing more informa-

tion about a visualization in the form of metadata could influence which conclusions

are drawn by readers.

In summary, although metadata has been proposed to have positive impacts on

people in a variety of contexts, there is little empirical evidence of theses impacts. In

this work, we explored the impacts of metadata on trust and understanding because

they both can impact how much a visualization is used and have been theorized

to be improved by the inclusion of metadata. Because the space of possible kinds

of metadata to disclose is broad, we first needed to know what kinds of metadata

visualization readers wanted to have in order to eventually study their impacts.
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5.3 Types of Metadata

In this section, we discuss the potential pros and cons of two broad groups of

metadata: metadata about the visualization pipeline from “raw” data to final visu-

alization and metadata about the people behind the pipeline. We do not wish to

suggest that there is a distinct separation between pipeline and people – there is, in

fact, quite the opposite because data are necessarily the result of human decisions and

processes. However, we decided to divide these two groups in order to focus on what

kinds of information we could provide about each and because they offer different

benefits and challenges.

We identified the two groups based on existing research including Gebru et al.’s

“Datasheets for Datasets” [141] and Krause’s notion of “Data Biographies” [213].

Gebru et al. [141] divided metadata into seven thematic categories based on impor-

tant components of a dataset’s lifecycle, where five categories are encompassed within

our section about the visualization pipeline (Collection Process, Preprocessing/Clean-

ing/Labeling, Maintenance, Composition, and Uses) and the remaining two fit within

our category about people (Motivation and Distribution). Krause [213] approached

the categorization differently by creating five groupings based on the central questions

of When, Where, Why, How, and Who. Of these categories, When, Where and How

are covered by our section about the visualization pipeline and Who and Why fall

within our section on people.

Previously, we discussed that providing any kind of truthful information increases

transparency and trust up to a threshold, after which disclosing more may decrease

trust. Therefore, in the remainder of this section, we will only mention this relation-

ship when there are novel considerations.
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5.3.1 Metadata about the Visualization Pipeline

We consider what metadata could be disclosed to the readers regarding three

stages of the data visualization pipeline: data sourcing, data transformation, and

data visualization. We primarily focus on the transformation and visualization com-

ponents because existing work has extensively researched what should be collected

and disseminated about the data sourcing step [141].

5.3.1.1 Data Source

Documenting the data collection process itself is a critical component of document-

ing a dataset and is covered in depth in [141]. However, describing which dataset was

used in a visualization may still be an important piece of metadata to include. In

fact, this practice is already an important part of the visualization style guides for

some organizations (e.g., the Urban Institute [184]).

Pros: Providing the name of (or, ideally, a reference link to) the original dataset, may

allow readers to replicate the visualization or conduct their own analyses on the data.

While not all readers will have the time or expertise to do further analysis, they still

might use this information to judge the usefulness of the visualization if they are able

to discern its collectors. Evidence of using the source to judge usefulness was observed

in past work, though the source was of the visualization, not of the underlying dataset

[283].

Cons: However, it may be difficult to clearly describe the source of data without also

disclosing who collected it, which may have negative impacts on privacy and trust if,

for example, a dataset is associated with a particular individual or organization that

readers already distrust.
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5.3.1.2 Cleaning and Processing

However, disclosing only the dataset without also describing which transforma-

tions were applied to the data may lead to a loss of trust from data analysis-savvy

readers who conduct their own analyses. This is because the readers could make dif-

ferent data analysis choices and come to different (or even contradictory) results [350].

Data processing is the middle-stage between the data obtained from the dataset and

the visualization. It is important to consider what one could disclose about this stage

because the methods chosen can introduce uncertainty into the data in ways which

are not immediately apparent in the visualization [277, 183]. For example, the choice

to keep or filter out outliers may change the mean and variation of the data. This, in

turn, will change the visualization in ways which may not be apparent to the reader.

Within this stage, one could also consider disclosing whether the data will be cleaned

or processed again in the advent of updates to the underlying dataset. This kind of

information might be particularly important in domains like public health where the

recency of data is critical because there can be consequences for making a decision

with out-of-date data.

Pros: Disclosing one’s data cleaning and processing methods make the visualization

more credible [244] and replicable, especially if the methods are sufficiently detailed

such that another person could follow the steps to recreate the values represented

in the final visualization. Further, this information may also allow readers to inde-

pendently extract insights that can improve their own data cleaning methods in the

future, as these insights “cannot be ensured by merely observing the results from data

analytics”[76].

Cons: On the other hand, being transparent about one’s methods of data cleaning

and processing might open the creators up to undue or pedantic critique, especially

if the creators belong to minoritized groups (e.g., because minoritized individuals are

not always believed even when they are experts [220, 133]) . Furthermore, while
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pressure to include how the data were processed might push some creators to select

their methods more carefully if they know it will be public information, any diversion

from the methodological norm might incur the wrath of the crowd and result in

creator harassment or a loss of trust in the visualization – even if the methods are

sound. Finally, it may be deceptively difficult to explain methodology in a way

that is understandable for the general public, especially when analysis techniques

are complicated or counter-intuitive [321]. Science communication techniques might

provide guidance on this front, but explanation remains a challenge.

5.3.1.3 Visual Encoding: Explaining Perceptual Challenges

The final stage in the visualization pipeline is visualizing the data. Because this

space is less explored in existing literature, we will discuss two different options for

this stage.

One possible piece of information one could provide is an explanation of problems

that the reader might face while trying to decode the marks, channels, or other design

elements used in the visualization. For example, log scales have been shown to be

difficult for the general public to understand [318]. Offering information that explains

the log scale or simply points out its existence might help readers better understand

the scale and the visualization as a whole.

Pros: Describing the potential difficulties of a visualization’s encoding may help

readers understand what problems exist so that they might try to avoid them. Ex-

isting work has shown that when flaws in visualizations are pointed out to readers,

they are able to identify similar errors in other charts more often in the future [174].

This suggests that explaining what may go wrong with a visualization may also help

readers learn over time what to look out for. Finally, it is possible that visualization

creators will also learn how to create better designs over time by thinking critically

about the negative impacts their design choices. Reflection is already an integral
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part of generating insights for visualization design studies [250] and it stands to rea-

son that design insights could result from asking designers to reflect on their designs

more generally.

Cons: Nevertheless, when a reader is made aware of potential pitfalls in a visual-

ization, it is possible that it becomes irredeemable in their opinion. The relationship

between trust and use after a system is known to be flawed seems to not be very

well understood in data visualization, but is an ongoing research direction in the re-

lated field of human-robot interaction where existing work suggests that the impact of

known flaws on the user’s behavior changes with the kind of task they are conducting

(e.g., in [329]). Additionally, telling the reader that there are potential issues with a

design begs the question: Why wasn’t a different design choice made? Every design

choice involves trade-offs that may be clear to the visualization creator but not to the

reader. Finding ways to communicate what choice was made and why could bring

the readers and creators onto the same page regarding the visualization design, but

justification is particularly difficult when readers do not posess sufficient knowledge of

the alternatives. Finally, explaining to the reader that they may make a mistake un-

derstanding an aspect of a visualization takes up space in the metadata that could be

used to include other useful information and does not necessarily prevent the reader

from making that mistake. For example, past work on truncated y-axes found that

participants using visualizations that explicitly pointed out truncated axes made sim-

ilar errors to participants using designs that did not point out the potential problem

[88].

5.3.1.4 Visual Encoding: How to read the visualization

Finally, one could also consider providing information that helps the reader make

sense of a visualization. Two possible ways of doing this are (1) directly telling the

reader what the intended message of the visualization is and (2) providing a tutorial
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describing how to “decode” the encoding. For example, when explaining a scatterplot,

one could directly report that sugar intake and the number of cavities have a positive

correlation or break down the encoding by describing what each point represents and

what the axes mean without providing a specific conclusion that could or should be

drawn. These two techniques have overlapping benefits but different challenges.

Pros: Directly providing information about what is being shown through either

of the methods described may primarily benefit readers who are less experienced

in decoding visualizations. Past work has shown that generating slideshows and

“cheat sheets,” which explained the encodings of complicated data visualizations,

helped readers without a background in visualization successfully extract information

from the charts [389, 393]. It is also possible that this type of information may

motivate people to engage with and try to understand complex or unfamiliar looking

visualizations by boosting self-efficacy, a factor known to impact engagement [195].

Finally, one possible benefit of providing a tutorial (which is not necessarily afforded

by describing the intended message) is that readers may learn how to decode similar

visualizations in the future.

Cons: However, there are also drawbacks to providing either the intended message

or a tutorial. For instance, being explicit about the intended message might bias

attention and interpretation, as well as change the reader’s behavior. Pointing out a

feature or conclusion to a visualization reader can change what they pay attention to

[412]. For example, the content of captions can bias reader’s attention toward specific

points instead of other salient ones [199] and the content of titles have a significant

impact on what the reader understands and remembers about a visualization [35].

Additionally, one may also consider that providing the intended message of a visual-

ization may also change the way that the reader engages with the visualization. For

example, readers might be less inclined to spend time exploring the visualization if

they are explicitly told the key insight. At worst, this might result in a reader skip-
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ping the visualization entirely, as has been experimentally observed with students

[324].

Utilizing a tutorial about how to understand the visualization suffers from different

challenges than describing the intended message because it tells the reader how to see

something instead of what to see. While a lack of guidance might be desirable when

exploration of the data is important, it is much less helpful for readers who are less

experienced in drawing conclusions from what they are seeing or lack the time to sit

with the visualization long enough to parse it.

5.3.2 Metadata about People

Metadata does not only refer to information about the data, but also includes

information about the people involved in the process of visualization creation. We

have identified two groups of people which have an impact on a visualization: the

creators who make choices about what and how to visualize and the intended audience

whose wants and needs inform what choices the creators make.

5.3.2.1 Creators

One could consider including information about the identities and lived experi-

ences of the visualization creators. At its simplest, one could imagine that this could

include pieces of information like an individual’s name, job title, gender, or country

where they live. It could also include information about the creator’s motivation to

create the visualization or anything that the authors deem relevant to convey. For

example, depending on the topic of the visualization, one might consider including in-

formation about their political affiliation or their relationship to wealth, sexuality, or

privilege. It may also be pertinent to think broadly about who qualifies as a “creator”

of a visualization. For example, if a visualization was produced on behalf of an orga-

nization, one could also imagine disclosing the identities of the organization’s leaders

or its management structure, as they can reflect the priorities of that organization
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and how much they value the perspectives of minoritized groups [106]. Additionally,

information about the funding organizations may also help answer questions about

who owns the visualization or how it can be used.

Pros: Sharing aspects of the authors’ identities may increase transparency and lend

credibility to both the individuals who created the visualization and the visualization

itself [254]. This is consistent with the feedback-loops present in data provenance and

trustworthiness theories where the trustworthiness of data is reflective of the trust-

worthiness of the provider and the trustworthiness of the provider is reflective of the

trustworthiness of the data (e.g., [97]). Further, acknowledging that a visualization is

ultimately constructed by people recognizes their unseen labor [105, 87] and breaks

down what Donna Haraway calls the “god trick” — where a visualization appears to

“[see] everything from nowhere” [163] and thus appears to represent objective, global

truth rather than a situated viewpoint. Data products like data visualizations only

“seem objective... because the perspectives of those who produce them... pass for the

default” when really they represent one of many perspectives [106]. This also means

that providing information about the identities of the creator(s) allows the reader to

more clearly see who is involved in the creation of data visualizations and to uplift

the voices and work of authors in minoritized groups.

Cons: On the other hand, if visualization readers feel that they have some rea-

son to distrust the individual or organization who produced the visualization, they

may distrust the visualization too. While in some situations this loss of trust might

be considered warranted, it is also important to recognize that trust is socially con-

structed and that what/who is considered trustworthy is a reflection of existing power

structures. This means that individuals in minoritized groups may not be trusted or

believed even when they are experts – a phenomenon commonly referred to as tes-

timonial injustice [220, 133]. It is not yet clear how disbelief of an individual or

institution transfers to the visualizations that they create, though recent work on
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visualization recommendations found that reader’s trust was directly impacted by

how capable they thought the creator was of making accurate visualizations [421].

Unfortunately, this suggests that individuals from minoritized groups may be dispro-

portionately hurt by the disclosure of information about identity. However, there is

evidence that readers make assumptions and judgements about the identities held by

authors even when it is not disclosed (e.g., using the subject or content of a paper

[203]), which suggests that witholding identity information is not an effective way to

prevent the effect of harmful biases such as racism, xenophobia, or misogyny.

5.3.2.2 Intended Audience

In addition to the creators of a visualization, it may also be fruitful to consider

for whom the visualization was made. One could imagine identifying the intended

audience through demographic features (e.g., Georgia residents) or by specifying a

group who use visualizations in a particular way (e.g., casual visualization readers).

Pros: One benefit of disclosing the intended audience of a visualization is formally

recognizing that every design does not work equally well for every reader. By making

the intended audience of a visualization explicit, readers might get a better under-

standing of why particular design choices were made. For example, explaining that

a map of sea temperature was intended for use by museum visitors might help a sci-

entist understand why a red-blue scale, which maps to customary ideas of hot and

cold, was used instead of the rainbow scale commonly used by experts in the field

(example from [290]).

Cons: Nonetheless, making the intended audience of a visualization explicit may also

alienate some readers. For example, if a reader belongs to the intended group and

does not understand what is being shown or otherwise does not find the visualization

helpful, they may disengage or feel disillusioned. Alternately, if a reader does not

belong to the intended group, they may feel as if they cannot or should not try to
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understand what is being shown. It is possible that this could lead to disengaging

entirely with a visualization. For example, people who felt that particular visualiza-

tions were too hard for them, but not too hard for others, were resistant to spend

time with the visualization [195].

5.4 Experiment 1: Desirable Metadata

Category of Metadata Description of Metadata Category Surveyed Examples of Metadata (Pro-
vided examples are highlighted)

(1) Data Source Information about which dataset was used
and details of its collection including peo-
ple involved and methods used

Link to the dataset, Name of the people or or-
ganization(s) that collected the data, Descrip-
tion of the data collection method, Name of
the data source (unlinked), Note about when
the data were collected

(2) Cleaning & Processing Methodological information about how
data were cleaned and processed in order
to produce the final visualization

Description of how the data were processed,
Description of a few impactful processing
steps, Date when the data were last processed,
Link to external description of how the data
were processed, Link to tool used to create
the chart

(3) Perceptual Challenges Problems the reader might face while de-
coding the marks, channels, or other de-
sign elements

Description of a potential misunderstanding,
A warning against using the chart in some
way, Description of the limits of the data

(4) Encoding Explanation Information that helps the reader make
sense of the visualization through explain-
ing key takeaways or how to read the visu-
alization

Explanation of how to read the chart, De-
scription of the main message of the chart,
Description of a few key insights

(5) Creators Information about creators of the visual-
ization either directly (e.g., designers) or
indirectly (e.g., donors)

Names of the people who created the chart,
Name of the funding organization(s), Name of
the organization that made the chart, Roles
of the people who created the chart, Biogra-
phies of the people who created the chart,
Photographs of the people who created the
chart, Link to social media handles, Links to
email addresses, Link to external page with
biographies and other work by the same au-
thor, Name of the creation team, Link to the
funding organization(s) website(s)

(6) Intended Audience Information about for whom the visualiza-
tion was originally designed

Description of the intended audience’s demo-
graphics, Design choices made to cater to
them, Location where it was displayed

Table 5.1. We used six categories of metadata defined by the authors in prior work
[52] (columns 1 & 2). We collected 28 examples of metadata in our survey of existing
practices. Because there were too many examples to show participants, we selected
a subset to show participants (3 per metadata category, highlighted). Note: no
examples for “Intended Audience” were collected during the survey and were instead
generated by the researchers.
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5.4.1 Methodology

In order to investigate the effects of metadata on visualization readers, we began

with the high-level question Which metadata do people prefer to see?, by asking the

following questions:

• Q1: Does the goal of a reader impact the category of metadata (e.g. data

source, author, encoding explanation, etc.) that they prefer?

• Q2: Does the type of visualization and presented topic impact a person’s meta-

data preferences?

Stimuli: Choosing Visualizations

Source of visualizations: We used a set of 32 visualizations collected from

projects that won the 2022 Sigma Awards — an annual data journalism competition

evaluated by an international panel of judges [344]. Sigma Awards are given to

“projects” – bodies of work on one topic by the same organization or authors. The

website is organized such that each project has a single page containing all of the

resources submitted by the authors for review. We selected visualizations from the

Sigma Awards because they were high-quality visualizations and were deployed in the

wild.

Selection criteria: The 32 visualizations that we used were every English-language

visualization linked from the winners’ project pages. For the purposes of this search,

photographs, illustrations, and street maps intended for navigation (e.g., Google

Maps) were not considered data visualizations. There were five projects which were

written in English and contained at least one visualization that met our selection

criteria: The COVID Tracking Project at The Atlantic [348], Mapping Makoko [346],

Land-Grab Universities [345], Rough Justice [347], and Who Gets to Breathe Clean

Air in New Delhi? [349]. Within the set, there were a total of 12 maps, 10 bar
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charts, 8 line charts, 2 pie or donut charts, 2 area charts, and 1 infographic1. All 32

visualizations are provided in the Supplemental materials (available online: https:

//osf.io/mzgrp/?view_only=47f1e00053a14501babe93e45129e094).

Metadata

In Section 5.3, we defined six categories of metadata that could be provided to

visualization readers (summaried in Column 1 of Table 5.1). However, each of the

six categories of metadata are broad. For example, there are many different pieces

of information that could be considered metadata about a creator (e.g., their name,

job title, photograph, the company they work for, etc). Even though all of these data

points might be considered the same category of metadata, they may be useful in

different scenarios and have different impacts on readers.

Since it may be difficult to select between broad metadata categories, we began

by collecting concrete examples of disclosed metadata by news and journalism web-

sites. Three of the authors compiled a set of examples disclosed in five recent articles

published by the top five English-language news organizations, measured by the total

number of website visits (New York Times, BBC, CNN, Daily Mail, and Fox News)

and articles linked from the 2022 Sigma Awards winners’ project pages. This inquiry

resulted in a set of 28 discrete examples, listed in Column 3 of Table 5.1.

Selecting examples: From this set, we selected three examples for each of the six

metadata categories for a total of 6 × 3 = 18 examples (highlighted in Table 5.1).

The research team selected examples that were distinct from each other and used

by multiple organizations (where possible). For example, two of the five examples

of Data Source metadata were “Link to the dataset” and “Name of the data source

(unlinked).” Both pieces of metadata disclose the exact source of the data, so we

included the “Link to the dataset” because it appeared more frequently in our survey.

1Three visualizations contained two types of graphs within the same image.
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At least three examples of metadata were collected for all of the metadata categories

except for “Intended Audience,” of which we found no explicit examples. In lieu

of “Intended Audience” metadata, the research team generated three examples that

represent ways in which intended audiences are described in fields like communication

studies: by their demographics, as belonging to a place and time, and by the choices

made to suit them (as discussed in [261]).

Goals

There were a total of eight goals that participants could encounter during the

study (listed in Figure 5.1). The set of eight goals was generated to represent different

types of outcomes which have been theorized to result from metadata access (e.g., in

[52]) or were shown in existing literature to be a reason that people sought additional

information (e.g., as in [186]). Each goal completed the phrase: “From the list below,

please select 1 piece of information you most want to have...” For example, the

prompt text for the goal “Increase Confidence with Chart” was “From the list below,

please select 1 piece of information you most want to have to make you feel more

confident that you understand the chart well.”

Participants

We recruited 64 participants who self-identified as fluent in English from Prolific

[301]. Prolific is a crowdsourcing data collection platform that provides access to a

diverse pool of vetted participants. In comparison to alternative platforms such as

Amazon MTurk, Prolific provides more comprehensive and granular control over the

selection of participants. We restricted our participant pool to only include individuals

who identified as fluent in English to ensure that the instructions, visualization text,

and metadata would be well understood. We decided to recruit 64 participants based

on a small pilot study.
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Other (Please Specify)

From the list below, select 1 type of 
information that you would most like 
to have to determine if the chart is 
trustworthy.

Goal: Prompt Text:
1. Confidence in 
Chart

to make you feel more confident that you 
understand the chart well

2. Confidence in 
Topic

to make you feel more confident that you 
understand the topic of the chart well

3. Key Takeaways to better understand the key takeaways 
of the chart

4. Assess Trust to determine if the chart is trustworthy

5. Understand 
Method

to better understand how the chart was 
made

6. Understand 
Design

to better understand why the chart was 
designed this way

7. Understand 
Perspective

to better understand whose perspective 
the chart represents

8. Satisfy Interest because the information seems 
interesting to you

These boxes represent the 19 options presented to 
participants (18 types of metadata + 1 option to self-specify) 

Participants were randomly assigned 4 goals from the table 
below for each of the 4 visualizations they viewed.

Figure 5.1. In Experiment 1, participants indicated which type of metadata they
were most interested in having to accomplish a specified goal. Participants were
randomly assigned 4 goals for each of the 4 visualizations they were shown.

We collected demographic information about education and use of visualizations

because they may be indicative of how fluently participants are able to use visual-

izations. A majority of our participants had completed some education beyond high-

school (71.19%), split fairly evenly among participants with some college education

and completed a four-year degree. In addition, a majority of participants reported

encountering or using visualizations at least once a week (53.13%) or once a month

(26.56%). The entire experiment was implemented in Qualtrics[305] and participants

were redirected back to Prolific after successful completion of the experiment. The

study took about 10 minutes to complete and participants were paid $3.00.

Procedure

In each trial, participants were presented with a visualization and asked to indicate

which piece of metadata they would most want to have to reach a specified goal. The

question was posed as a multiple-choice question with 19 options: 18 examples of
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metadata (6 categories × 3 examples), plus one option to select “Other” and type in

a type of metadata not listed (see Figure 5.1 for a simplified view of the study layout).

Each participant completed a total of 16 trials (4 goals × 4 visualizations), where the

order of the goals and visualizations were randomized. We used a 4 by 4 design for

this experiment so that each participant would see a diverse set of visualizations and

goals without getting fatigued from the repetition. Although this design means that

not every participant saw visualizations from each project, the purpose of this study

was to get a snapshot of which metadata categories participants were interested in.

The number of times each goal was encountered varied between 115 and 144 due to

random selection.

Analysis

To analyze our data, we grouped the 18 responses (all except “Other”) back

into the category of metadata to which they belonged. We counted the number of

times that examples from each category were selected and compared them. “Other”

responses were only given 7 times across the 1024 trials completed by participants

and so are excluded from our statistical analysis.

Categories of Metadata

Data Sources
Cleaning &
Processing

Perceptual
Challenges

Encoding
Explanation

Creators
Intended
Audience

Other

G
o
a
ls

Confidence in
Chart

11% (13) 10% (12) 11% (13) 51% (59) 4% (4) 13% (15) 0% (0)

Confidence in Topic 14% (21) 6% (9) 7% (10) 58% (83) 1% (2) 13% (18) 1% (1)

Key Takeaways 11% (15) 8% (12) 4% (5) 65% (92) 3% (5) 9% (13) 0% (0)

Assess Trust 51% (62) 15% (18) 5% (6) 5% (6) 13% (16) 9% (11) 2% (2)

Understand
Method

32% (40) 21% (27) 4% (6) 20% (25) 6% (7) 17% (21) 0% (0)

Understand Design 10% (12) 24% (27) 3% (4) 17% (19) 6% (7) 39% (45) 1% (1)

Understand
Perspective

21% (25) 8% (9) 8% (9) 22% (27) 20% (24) 21% (26) 1% (1)

Satisfy Interest 26% (36) 11% (15) 7% (9) 24% (33) 7% (10) 25% (34) 1% (2)

Table 5.2. In Experiment 1, participants selected which kind of metadata they
would most want to see when provided one of the eight goals. This table provides
the number and percentages of times each metadata category (columns) was selected
per goal (rows). Participants most frequently requested in Encoding Explanation
metadata, followed by Data Sources. Percentages are rounded up to the next integer;
rows may not sum to 100.
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5.4.2 Results

Our results suggested that among our participants, the goal given in the prompt

impacted the category of metadata selected, but not the chart type or topic. We

used a linear mixed-effects model to investigate if the category of metadata selected

by participants was impacted by the chart type, chart topic, and goal. The fixed

effects of our model were the chart type, the chart topic, and the goal. We also used

a random intercept term to account for individual differences between participants.

We observed a significant effect of goal (χ2 = 17.5289, p < 0.05), but not chart type

or topic. Table 5.2 contains an overview of the distribution of participant responses

for each goal. Therefore, in the following sub-sections, we explore which kinds of

metadata were selected when participants were presented with each goals.

For each goal, we utilized a Chi-squared test of independence to determine if

there was a significant difference overall between the categories of metadata selected.

If an overall difference was detected, we used a post-hoc analysis with Bonferroni

adjustments [171] to further explore pairwise differences.

Understanding-based Goals

Our results suggest that participants were most interested in accessing Encoding

Explanation metadata (e.g., explanation of how to read the chart, the intended main

message) for all three of the goals relating to understanding: Increase Confidence

with Chart, Increase Confidence with Topic, andUnderstanding Takeaways.

For all three goals, our Chi-squared test indicated an overall difference among the

categories of metadata (χ2 = [101.45, 237.11, 240.48], p < 0.001). Post hoc analysis

with Bonferroni adjustments suggested that the number of requests for Encoding

Explanation metadata was significantly higher than all other categories of metadata.

Details of pairwise post-hoc comparisons can be found in the Supplemental Materials.
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Assess Trust

Our results suggested that metadata about the Data Source (e.g., name of the

data collector, link to the dataset) was selected most frequently by participants for the

goal of Assessing Trust. Our Chi-squared test indicated that there was an overall

difference among the categories of metadata requested by participants (χ2 = 146.33,

p < 0.001). Post-hoc analysis suggested that the number of times metadata about

the Data Source were selected was significantly higher than any other category of

metadata.

Design-based Goals

The categories of metadata that were selected by participants for goals related to

design (Understand Method, Understand Design, Understand Perspectives)

did not follow a consistent pattern, unlike the group of goals related to understanding.

Our Chi-squared tests for all three goals related to understanding indicated that there

was an overall difference among the categories of metadata requested by participants

(χ2 = [39.714, 87.39, 39.19], p < 0.001). Post-hoc analysis suggested that for the goal

of Understand Method, metadata about the Data Source, Cleaning & Process-

ing, Encoding Explanation, and Intended Audience were the most requested, with no

significant difference between the categories. For Understand Design, metadata

about the Intended Audience (e.g., description of design choices) was selected signifi-

cantly more than any other category of metadata except metadata about Cleaning &

Processing (e.g., description of how data were processed). Finally, post-hoc analysis

for Understand Perspective revealed that no category of metadata were selected

significantly more than any other category.

Satisfy Interest

Our results suggested that when participants were given the goal of Satisfying

Interest, there was an overall difference among the categories of metadata requested
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by participants (χ2 = 59.971, p < 0.001) and they selected metadata about the

Encoding Explanation, Intended Audience, and Data Source significantly more often

than the other categories. Among these three categories of metadata, none was

selected more frequently.

5.4.3 Experiment 1: Summary of Results

In summary, we observed that our participants selected different categories of

metadata across the goals they were presented with. Encoding Explanation metadata

was selected most frequently for the three goals related to understanding. Addition-

ally, participants most frequently selected metadata about the Data Source for the

goal of Assessing Trust. Finally, the categories of metadata requested for Design-

related goals and the goal related to personal interest did not indicate a strong pref-

erence for one category of metadata over others.

5.5 Experiment 2: Impacts of Metadata

The previous experiment identified metadata categories that participants were

interested in accessing. This experiment investigates the impacts of metadata on

understanding and perceptions of relevance, transparency, trust, and persuasion.

5.5.1 Methodology

Stimuli

We showed participants four visualizations used in Experiment 1. In Experiment

1, we found that the type and topic of the visualization did not have a strong effect on

how participants responded to metadata. Therefore, for Experiment 2, we chose to

sample all of the visualizations from a single source on a single topic: the Land-Grab

Universities [345] project. This topic serves as a good testing bed because the project

contained information about locations and universities that American participants

might recognize, even if they were unfamiliar with the idea of land-grant universities
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prior to participating in the study. We instead varied the type of visualization shown

and used a map, a bar chart, an infographic, and a series of pie charts (see Figure

5.2).

When participants were provided metadata with a visualization, they were told

that there was additional information available and were directed to a screen contain-

ing only the textual metadata about the visualization and then a screen containing

both the metadata and visualization (see the top of Figure 5.2 for screenshots of

all three pages). We chose to direct the participants to designated screens to view

the metadata to ensure that they were aware of its presence. The metadata pre-

sented to participants was always information about the Data Source and Encoding

Explanation drawn from public sources related to the project. We always presented

participants with the both of these kinds of metadata because we wanted to iden-

tify the effects of metadata in general rather than a specific type of metadata. We

selected these two categories of metadata based on our results from Experiment 1

because they were the most highly requested categories of metadata for goals related

to understanding and trust. There were no goals from Experiment 1 which were

explicitly related to relevance.

Transparency

The disclosure of metadata is often cited as a means to communicate transparency

(e.g., in [109]), but do visualization readers see it that way? Previous work concluded

that accuracy, clarity, and completeness2 were essential components of transparency

[333] and that, in a visualization context, thoroughness captures the extent to which

the data visualized represents the possible design space [409]. To examine perceived

transparency, we asked participants to rate their agreement with four statements

about the visualizations: accuracy, clarity, completeness, and thoroughness (see Ta-

2In previous work, completeness is referred to as “disclosure.”
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ble 5.3 for the statements provided to participants and our definitions for each of

the dimensions). We compared responses to these questions across participants to

compare whether the presence of metadata had an effect on the perceived data trans-

parency.

Dimension Definition Likert-Scale Statement
Accuracy The extent to which the information in the

visualization is correct.
The chart was accurate.

Clarity The extent to which the information in the
visualization is understandable.

The chart was clear.

Completeness The extent to which the visualization
contains all of the possible components.

The chart told the whole story.

Thoroughness The extent to which the visualization
exhausts all possibilities.

The chart was thorough.

Meaningfulness The extent to which the information is
significant.

The information in the chart was meaningful.

Relevance to Self The extent to which the information has a
purpose for the reader.

The information in the chart was relevant to
me.

Relevance to Others The extent to which the information has a
purpose for someone else.

The information in the chart was relevant to
people I know.

Table 5.3. Participants rated each visualization by responding to seven 5-point Lik-
ert scales (1 - Strongly disagree to 5 - Strongly agree). Four scales assessed Subjective
Transparency (Accuracy, Clarity, Completeness, Thoroughness) and three scales as-
sessed Relevance (Meaningfulness, Relevance to Self, Relevance to Others).

Trust & Persuasion

In addition to measuring perceived transparency, we also wanted to capture trust

more directly. Based on our goal to explore how disclosing metadata might influence

readers’ conceptions of trust, we asked participants to make a prediction about the

probability that an organization would choose a visualization. After having seen two

visualizations, participants were given the following scenario: An organization selected

one of the two charts you just saw to use in a presentation for local policy makers.

They selected the chart that they believed was most persuasive and trustworthy. and

were prompted to “Use the sliders to indicate how probable you think it is that the

organization selected each chart (out of a total of 100%).”

We asked participants to indicate a probability out of 100% to capture the magni-

tude of the difference between the two choices that participants felt (e.g., whether they
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felt strongly that one had been selected over the other). The prompt mentioned that

the hypothetical organization had “used” trust and persuasion to select the visualiza-

tion to ensure that participants used similar metrics to make judgements, rendering

the predictions comparable between participants. Further, it mentioned both trust

and persuasiveness because the two have been shown in past work to be closely linked

(e.g., in [328]) and a visualization which is selected because it is trusted and persuasive

may contain true information and possess some quality that convinces other readers

of that truth. This may be desirable for communicative visualizations like the one in

the scenario. We asked participants about how someone else would respond because

prior work suggests that asking participants about how others will respond can result

in responses that are more honest because participants are not providing answers that

they think are more socially acceptable or desired by researchers [412]. The numerical

predictions made were analyzed to determine whether participants assigned higher

probabilities to the visualizations that they had seen with metadata.

Relevance

Participants indicated their agreement with three scales related to the relevance

of the information in the chart. Existing literature defined the goal of journalism as

making information more meaningful and relevant to readers [211], and thus we also

measure perceived relevance of the visualizations. We wanted to know if disclosing

metadata supported journalists’ goal of explaining data in a way that is meaningful

and relevant to readers [43]. We asked participants about three dimensions: Mean-

ingfulness, Relevance to Self, and Relevance to Others (see Table 5.3 for the exact

statements provided to participants). We compared responses to these questions

across participants to compare whether the presence of metadata had an effect on

how relevant participants found the information in the visualization.
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Understanding

After seeing each visualization, participants were asked to describe its main mes-

sage and anything else that they learned via an open-ended response. We used an

open-ended question in order to better understand participants’ thought process (e.g.,

[54]). We analyzed participants’ responses to these questions in two ways.

Understanding: Response Correctness. To establish whether the presence of

metadata had any impact on participants’ abilities to correctly extract information

from the visualization, we measured the correctness of the information in each re-

sponse. Two coders rated each response on a 4-point scale (0-3) as a measure of how

well it was supported by the visualization or metadata. The scale and the process by

which it was created and applied is described in depth in Section 5.5.6.

Understanding: Response Content. We also qualitatively analyzed the responses

to capture what participants found important or memorable enough to comment on.

Details about the codes assigned and the method used to generate codes can be found

below in Section 5.5.7.

Participants

We recruited 144 participants from Prolific. To derive our sample size, we con-

ducted a power analysis based on data collected from a pilot of 24 participants that

suggested 144 participants would yield 80% power to detect an overall difference be-

tween the subjective trust scores assigned for visualizations with and without meta-

data, at an alpha level of 0.05, assuming a medium effect size of 0.2. Following a

similar exclusion criteria as in Experiment 1, we filtered for participants that self-

identified as fluent in English. We additionally excluded all participants that took

part in Experiment 1. The study took about 15 minutes to complete and participants

were paid $5.00.
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MetadataVisualization Visualization + Metadata

…

1 2 4

3

When metadata was presented, 
participants saw a visualization, 
then just the metadata, then the 
visualization and the metadata.

During the experiment, participants 
saw all 4 visualizations below
(2 with metadata, 2 without). 

Figure 5.2. When participants were shown metadata, they were presented with a
screen containing just the visualization, a screen with only metadata, and a screen
with both the visualization and metadata. Participants saw four visualizations from
“Land-Grab Universities” [345] including an infographic about the Morrill Act (1),
pie charts about land rights (2), a bar chart of endowments (3); and a map of land-
grant universities and the amount of land given to each (4).
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Our participants were largely highly educated individuals who encountered or

used visualizations semi-frequently. A majority of our participants had completed

some education beyond high-school (86.8%) and individuals which had completed a

4-year degree represented the largest portion of participants (38.19%). In addition, a

majority of participants reported encountering or using visualizations at least once a

week (42.36%) or once a month (31.25%).

Procedure

In Experiment 2, participants saw two pairs of visualizations (Step 1). Within each

pair, one visualization was shown with metadata and the other without. After view-

ing each visualization, participants answered two open-ended understanding-based

questions (Step 2) and then rated the visualization on a series of scales related to

transparency and relevance (Step 3). After completing the tasks for each visualiza-

tion in a pair, participants completed a prediction task in which they predicted the

probability that the visualizations in the pair were selected by a hypothetical organi-

zation (Step 4). The order in which the visualizations were presented, accompanied

with metadata, and compared were balanced using a Greco-Latin square design to

prevent the ordering from biasing the results. All 24 permutations of the visualiza-

tions were used and the presence of metadata was balanced across conditions such

that every chart appeared in each position in the order (e.g., first, second) three

times with and without metadata. At the end of the study, the participants com-

pleted a demographic survey. The entire experiment was implemented in Qualtrics

and participants were redirected back to Prolific after successful completion of the

experiment.

5.5.2 Approach to Quantitative Analysis

In Experiment 2, participants rated each visualization on four dimensions of Trans-

parency and three dimensions of Relevance. For both Transparency and Relevance,
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Transparency
Ratings of thoroughness were significantly higher 
for visualizations with metadata than without. 
All other dimensions of transparency were 
equivalent.

Thoroughness

Completeness

Accuracy

Clarity

*

1 2 3 4 5

There was no significant difference between ratings 
of relevance for visualizations with metadata and
without. 

RelevancePrediction
Visualizations with metadata 
were assigned significantly 
higher probabilities of being 
selected than those without. 

0%

100%

53%
47%

Relevance to Others

Relevance to Self

Meaningfulness

1 2 3 4 5

Figure 5.3. Our results from Exp. 2 suggest that visualizations with metadata
were perceived as more thorough, but similarly clear, accurate, complete, and rele-
vant. Participants also assigned higher probabilities that visualizations with metadata
were chosen for a presentation to policy makers. Error bars of ratings depict 95%
Confidence Intervals.

we analyzed our results using a multivariate analysis of variance (MANOVA), which

is an analysis of variance (ANOVA) with two or more dependent variables [395]. Us-

ing MANOVAs allowed us to model each set of three or four ratings as dependent

variables simultaneously, reducing the number of computations and the likelihood of

Type I errors (falsely rejecting the true null-hypothesis) as opposed to conducting

multiple independent ANOVAs [395]. In each MANOVA, we considered the effects

of the presence of metadata, chart type, order in which the charts were shown, im-

portance of the topic, and how frequently participants used charts on the sets of

ratings. We report on the result of Pillai’s trace (Pillai’s value) because it is the most

robust MANOVA test statistic [126, 395]. Pillai’s value ranges from 0 to 1 and can

be converted to an approximate F-statistic and then used to calculate a p-value [395]

(higher values suggest that the null hypothesis should be rejected, moderated by the

degrees of freedom). MANOVAs can suggest an overall difference among values of

some variable, but cannot determine which levels of that variable. For this, a post-

hoc analysis must be conducted. Here, we conduct post-hoc analyses with Tukey’s

adjustment using the lme4 package [20] to correct p-values for multiple comparisons.

We also tested for collinearity to evaluate if our sets of three or four ratings

measured different qualities using pairwise correlation coefficients and variance of
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inflation factors (VIF). Correlation coefficients can range from -1 to 1 where values

close to -1 suggest strong negative correlation between two variables, close to 0 suggest

no correlation, and close to 1 suggest strong positive correlation [371]. For variables

to be considered independent, correlation coefficients should be close to 0. On the

other hand, VIF values indicate the extent to which a variable can be described by a

combination of the other variables. There is no consensus on what an unacceptable

VIF value is, but higher VIF values suggest more interdependence between values

[373].

For both the Prediction and Response Correctness scores, we used a linear mixed-

effect model. This allowed us to model the prediction percentage and correctness

score as a function of variables that we had measured (fixed effects) and individual

differences between individuals (through a random intercept term). We modeled the

Prediction percentage as a function of the chart shown, whether it was shown with

or without metadata, and the four transparency-related ratings (to determine if the

prediction, based on trust and persuasion, was influenced by participants’ perceptions

of transparency). Because we did not expect the Response Correctness scores to

interact with transparency, we modeled the score only as a function of the chart

shown and whether it was shown with or without metadata.

5.5.3 Results: Subjective Transparency Scales

In our second experiment, we measured transparency subjectively by asking par-

ticipants to rate each visualization on a set of four dimensions: accuracy, clarity,

completeness, and thoroughness. Our results indicated that the dimensions of trans-

parency were impacted differently by the presence of metadata, chart type, impor-

tance of the topic, and how frequently participants used charts. Our MANOVA

analysis revealed a trending effect of the presence of metadata (Pillai’s value = 0.02)

and a significant effect of the chart type (Pillai’s value = 0.04), importance of the
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topic (Pillai’s value = 0.06), and frequency that participants used charts (Pillai’s

value = 0.06). We will now discuss the observed significant effects of each modeled

variable. Details of all pairwise analyses can be found in the Supplemental Materials.

Effect of Metadata: The only dimension of transparency which was significantly

impacted by the presence of metadata was thoroughness (F (1) = 7.29, p < 0.01).

Post-hoc analysis with Tukey’s adjustment suggested that visualizations with meta-

data were considered to be significantly more Thorough than those without (Est =

0.24, p = 0.002).

Effect of Chart Type: Clarity was the only dimension of transparency significantly

impacted by the chart type (F (1) = 15.93, p < 0.001) such that the pie chart visual-

ization was perceived as significantly less clear than the other three visualizations.

Effect of Topic Importance: Both thoroughness (F (5) = 2.44, p = 0.03) and

accuracy scores (F (5) = 2.73, p = 0.02) were impacted by the importance of the

topic. Although the model suggested an overall difference among ratings of topic

importance, we observed no significant effects in post-hoc pair-wise comparisons.

Frequency Charts were Used: Accuracy scores were the only dimension of trans-

parency significantly impacted by the frequency participants used charts (F (5) =

2.56, p = 0.03).

Collinearity: The four dimensions of transparency that we collected were distinct,

but not entirely independent (see Table 5.4). We can conclude that there is a small to

medium correlation between the measures because all of the VIF values are greater

than 1 but below 4. The highest correlation seemed to be between measures of

completeness and thoroughness (see Table 5.4).

5.5.4 Results: Prediction

We also asked participants to indicate how probable they thought it was that an

organization selected each of two visualizations for a presentation to policy makers.
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Clarity Accuracy Completeness Thoroughness VIF
Clarity 1 0.41 0.48 0.50 1.43
Accuracy 1 0.51 0.48 1.45
Completeness 1 0.72 2.27
Thoroughness 1 2.24

Table 5.4. The four dimensions of transparency were not entirely independent.
There was a small to medium correlation between the measures.

The prompt indicated that the organization had selected the chart because they

deemed it the most persuasive and trustworthy. We used a linear mixed-effects model

to investigate whether the predictions assigned by participants were (1) impacted by

whether a visualization had appeared with or without metadata and (2) correlated

with the ratings for the four dimensions of transparency that they had assigned in a

previous step.

(1) Effects of Metadata: We observed a significant effect of metadata on the pre-

dictions (χ2 = 8.06, p = 0.004). Further, our results suggest that visualizations

with metadata were assigned higher probabilities of being selected than

those without. Post-hoc analysis with Tukey adjustments suggested that visualiza-

tions with metadata were assigned significantly higher probabilities in comparison to

those without (Est = 5.99, p = 0.004).

(2) Correlations with Transparency: Of the four dimensions of transparency,

our model suggested a significant effect of Clarity (χ2 = 13.53, p < 0.001), but

not of Accuracy (χ2 = 0.12, p = 0.72), Completeness (χ2 = 0.26, p = 0.61), or

Thoroughness (χ2 = 1.48, p = 0.22). These results suggest that the probabilities

that were assigned by participants may have been informed, in part, by participants’

perceptions of Clarity.

We observed a significant effect on the predictions from the chart (χ2 = 40.70,

p < 0.001). Post-hoc analysis suggests that the pie chart was given significantly

lower predictions than the other three visualizations (Est = [−16.70,−13.52,−16.89],
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p < 0.001). This is consistent with our results in the previous section which revealed

that the pie chart visualization was also assigned lower Clarity scores.

5.5.5 Results: Relevance

We additionally asked participants to rate each visualization on three Likert scales

related to relevance: Meaningfulness, Relevance to Self, and Relevance to Others. Our

results indicate that the three measures of relevance were impacted by the chart type,

importance of the topic, and how frequently participants used charts, but not the

presence of metadata,. The analysis revealed a non-significant effect of the presence

of metadata (Pillai’s value = 0.01), but a significant effect for all other variables.

Additionally, the three measures of relevance were not entirely independent. Because

all of the VIFs are above 1, we can conclude that there is some correlation between

all three measures (see Table 5.5). The VIFs for relevance to self and to others are

high (above 3) and seem to be highly correlated.

Meaningfulness Relevance Relevance VIF
(Self) (Other)

Meaningfulness 1 0.49 0.41 1.31
Relevance (Self) 1 0.81 3.18
Relevance (Other) 1 2.93

Table 5.5. The three measures of relevance were not entirely independent. Relevance
to self and relevance to others were highly correlated.

5.5.6 Results: Understanding – Response Correctness

We asked participants two open-ended questions about each visualization. In the

first question, participants described the main message of the visualization. In the

second, they describe anything else that they learned. We analyzed each of these

responses with respect to correctness, how they talked about the data, and the topics

they mentioned.
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Analysis

To analyze how well participants were able to extract correct information from

the visualizations and metadata, we generated a scale to rate how well responses were

supported by the visualization and metadata. The scale was iteratively created by

two authors. Two annotators generated an initial version of the scale based on scales

from past work (e.g., in [19]). Once the initial scale was generated, both annotators

used it to independently code three sets of 25 responses from each question that were

randomly sampled. After each iteration, the annotators compared the codes they

had assigned, discussed the scale, and then made revisions where needed. After three

iterations, the inter-rater agreement (as measured by weighted Cohen’s Kappa) was

0.61. After the scale was finalized, one of the annotators applied the scale to all of

the responses. The other author verified the codes after they were assigned. The final

scale used was as follows:

• 3 points: The response is entirely supported by the chart or metadata.

• 2 points: The response is partially supported by the chart or metadata but contains

some inaccuracies.

• 1 point: The response is neither supported nor refuted by the chart or metadata.

• 0 points: The response is directly refuted by the chart or metadata, has no relevant

information, or states that the reader does not know.

Results

Overall, a majority of the responses provided to the question about the main

message (90%) and anything else learned (86%) were entirely supported by the infor-

mation in the visualization or metadata.

Our results indicated that presence of metadata had no significant im-

pact on the correctness of descriptions of the main message. We used a linear

mixed-effects model to investigate whether the correctness of a response to the main
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message question was impacted by the presence or absence of metadata. We did not

observe a significant effect of metadata on the correctness of reader interpretation

(χ2 = 0.28, p = 0.60), nor did the chart (χ2 = 3.80, p = 0.28). Our results also

indicate no significant interaction between the two (χ2 = 2.95, p = 0.40). Similarly,

our results suggested that the presence of metadata had no effect on the correctness

of responses about what participants learned. The presence of metadata did not

have a significant effect on the correctness of what participants learned (χ2 = 2.73,

p = 0.10), nor did the chart type (χ2 = 1.30, p = 0.73). Our results also indicate no

significant interaction between the two (χ2 = 2.69, p = 0.44).

5.5.7 Results: Understanding – Topics Discussed

Analysis

In addition to measuring how the presence of metadata impacted how accurately

participants understood the visualizations, we also wanted to qualitatively evaluate

what participants talked about. To investigate this, we iteratively developed a code-

book (see Table 5.6) using an iterative method similar to the one used in [241]. To

create the initial codebook, two annotators skimmed the dataset and generated an ini-

tial set of codes. They then completed three iterations on the codebook in which they

independently coded a set of 25 responses from each question, compared the codes

assigned, and then altered, added, or removed codes based on discussion and dis-

agreements between assigned codes. After three iterations, the inter-rater agreement

(as measured by Cohen’s Kappa) was 0.82. Once all three iterations were complete

and the annotators agreed on the codes, the annotators used the final codebook to

apply codes to different sections of the qualitative data. These codes were verified by

the other annotator and any disagreements were discussed and resolved. The entire

codebook, with definitions for each code, is available in the Supplemental Materials.
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Category Codes Multiple
Discussions of Data Extrema, Specific Point, Relationship, Correlation/Causation, Comparison, Process,

Other
Yes

Topics of Interest Named State, Named University, Geographical Region, Land, Money, Government,
Laws, People, History, Theft, Other

Yes

Table 5.6. We iteratively generated a codebook to analyze participants’ responses
to questions about the main message and what else they learned from visualizations.
Our codebook coalesced around two areas: (1) description and discussion of data and
(2) topics of interest.

Results

Our qualitative analysis of the responses to the question about the visualization’s

main message and anything else learned suggested that the presence of metadata

did not change what participants perceived as the most dominant themes

of the visualization. For example, most of the responses referenced the use or

ownership of land as a central aspect of the main message of all four visualizations

(88.76% n = 511). For the map visualization, discussions of the use of land appeared

frequently with comments related to governmental representation such as “States with

large congressional delegations received more land overall.” Similarly, participants de-

scribed relevant laws when describing the infographic explaining the Morrill Act (e.g.,

“It gave step-by-step information on the Morrill Act of 1862”), and mentioned money

in their descriptions of the visualization on college endowments (e.g., “It showed the

top ten beneficiaries of sold indigenous land and the money raised from it.”). The

dominance of these topics are not surprising, and instead reflect the repetition of

topics in the visualization, the textual layer, and the metadata.

Our results also suggest that metadata may direct readers’ attention to-

ward aspects of the visualization which may be less obvious or emphasized

in the visualization alone. For example, there are several possible main messages

afforded by the bar-chart visualization about endowments, such as: “Cornell Univer-

sity generated the most revenue,” “The chart shows how much money each university

has made from selling or owning indigenous land,” and “Top 10 beneficiaries from
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indigenous lands.” However, our results indicated that participants who saw meta-

data were twice as likely to conclude that Cornell’s endowment was the main message

of the chart (33.3%, n = 24) in comparison to participants who saw the same chart

without metadata (16.6%, n = 12). A Chi-squared test of independence comparing

the number of times that a specific university was mentioned (all Cornell) confirmed

that the difference was significant (χ2 = 4.00, p = 0.04). In this case, the metadata

specifically mentioned two universities by name (Cornell and New Mexico State Uni-

versity), which may suggest that it impacted participants’ interpretations (see Figure

5.2 for the metadata provided to participants).

We can see the pattern repeated in the features of the data that are mentioned

in comments: all participants mentioned the same dominant themes, but

differed in the details. For example, participants frequently commented on the

distribution of data in the map visualization, irrespective of whether they had seen

(79.17%, n = 57) or had not seen the metadata (91.67%, n = 66). However, partici-

pants who had seen the metadata made a comparison in their description of the main

message more often (31.94% n = 23) than participants who did not see the meta-

data (13.89% n = 10). For instance, a one participant concluded that: “...The chart

showed that the amount of land was not equal and Eastern universities got more on

average.” A Chi-squared test of the frequencies that comparisons were mentioned for

this chart suggests that participants mentioned comparisons significantly more often

(χ2 = 5.12, p = 0.02).

Although rare, we also observed that some participants explicitly mentioned in-

formation that was only present in the metadata in their responses. The strongest

example of this behavior was when one participant referenced the organization which

produced several of the visualizations that we used, commenting that “High Coun-

try News seems to be interested in this situation” (emphasis added).
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5.6 Discussion & Future Work

Our two experiments showed the following main results:

• Among four dimensions of transparency, visualizations with metadata were per-

ceived as more thorough but similarly accurate, clear, and complete in comparison

to visualizations without metadata.

• Visualizations with metadata were also assigned higher probabilities of being se-

lected by a hypothetical organization than visualizations without.

• Participants did not perceive the information in visualizations with metadata as

more relevant than those without.

• Metadata did not impact the accuracy of extracting information from the visualiza-

tions, but our results suggest that metadata might have directed readers’ attention

toward aspects of the visualization which were less obvious or emphasized in the

visualization alone.

5.6.1 How does metadata impact trust?

Our motivation for this study was to investigate whether the disclosure of meta-

data alongside visualizations would impact the way that visualization readers per-

ceive transparency and therefore trust. Our results suggested that participants rated

visualizations with metadata higher on one of the dimensions of transparency (thor-

oughness), but we observed no evidence of an effect of metadata on the other three

dimensions (accuracy, clarity, completeness). Further, participants predicted that it

was significantly more likely that an organization would select the visualization with

metadata for a presentation. These predictions were, in turn, impacted by partici-

pants’ perceptions of clarity. These results suggest that metadata may impact percep-

tions of thoroughness and clarity, which, in turn, positively impact transparency. But

how well does this transparency translate to trust? Past work that investigated the

relationship between trust and same dimensions of transparency that we employed
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found that neither thoroughness nor clarity were a good predictor of participants’

reported levels of trust [409]. Additionally, while prediction scores were higher for

visualizations with metadata, our experimental design did not disambiguate whether

participants were more motivated to select the visualizations because of trust or per-

suasion. Therefore, we must conclude that our results show weak support for the idea

that metadata improve readers’ trust. However, studying trust and the mechanisms

behind building trust are difficult [247]. We hope that the visualization community

will see this as a call to investigate the effects of metadata further and to explore

additional ways of measuring transparency and trust. For example, it may be fruitful

to investigate whether metadata could help distinguish between credible and sus-

pect visualizations or increase trust in credible visualizations and decrease trust in

misleading ones.

Additionally, there is a rich literature surrounding the visualization of uncertainty

and its relationship to trust. Both visualizing uncertainty within the data and the

practice of disclosing metadata aim to increase transparency [274]. Rather than con-

tradictory, these two techniques of reducing ambiguity may build upon one another.

Similar to the results presented here, previous work on uncertainty found that the

act of disclosing the presence of uncertainty also raised trust [325]. While uncertainty

visualizations may use visual encoding to communicate the quantifiable uncertainty

within the data [274], the practice of disclosing metadata may be able to elucidate

the source of uncertainty or aspects of uncertainty which cannot be quantified easily.

On the other hand, it is yet unclear to whether visualization creators face the same

apprehensions to disclosing metadata that they face to communicating uncertainty,

such as a lack of resources and worry that disclosing uncertainty will impair under-

standing [182]. The visualizations that we used in our experiments did not directly

visualize uncertainty, but future researchers may explore the ways that communicat-

ing metadata and visualizing uncertainty can support each other.
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5.6.2 How does metadata impact information relevance?

We also investigated the effects of metadata on how relevant information seemed,

which we operationalized through three scales: meaningfulness, relevance to oneself,

and relevance to others. We found that metadata did not have an impact on how

relevant the information seemed to participants. In existing literature, there are few

studies which measure the perceived relevance of information in a visualization. One

example of how it has been operationalized in past work, however, was as a compo-

nent of how readers talked about their communities [54]. Outside of visualization,

researchers have measured perceived relevance by measuring whether participants

choose to engage in particular behaviors (e.g., signing a petition [238]). Future work

may therefore draw inspiration from other fields and explore the space of perceived

relevance further.

5.6.3 How does metadata impact understanding & recall?

In Experiment 2, we conceptualized understanding in two ways: (1) The cor-

rectness of the responses given and (2) the topics that were mentioned within those

responses. Our results suggested that the accuracy of responses provided by partic-

ipants was not impacted by the presence of metadata, but it might have influenced

what participants remembered as interesting or important. For example, participants

who were given metadata about the map visualization were more likely to mention

specific regions of the map in their descriptions, even beyond the regions which were

specifically mentioned in the metadata.

Past work on understanding and recall found that textual elements like the title

can have a strong impact on whether they recall the visualization accurately [35, 206].

For example, the title of a visualization can bias descriptions of the main message

of a visualization toward the conclusion described instead of what is shown in the

visualization [206]. The ability of textual elements to bias what participants remember
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as the main message is consistent with our results regarding the topics mentioned

in responses by participants. It is therefore possible that participants utilized the

metadata in a similar way to other textual elements. Future work could explore the

interplay between the textual elements of a visualization and the metadata. One

possible direction might be to explore the impact of perceived misalignment between

the information in the visualization and metadata, as has been explored with other

elements of the textual layer (e.g., [206]).

However, if the metadata was used by participants in a similar way to other tex-

tual elements, then why did we observe no impact of metadata on the correctness of

responses? (as has been observed in past work including [35]). One possible explana-

tion is the visualizations that we used as stimuli. Namely, that the stimuli we used

did not require much explanation. Past literature characterized the three basic types

of visualizations that we used in our experiments (maps, bar charts, and pie charts)

as very familiar to members of the general public [306, 37]. Nearly all participants

were able to extract information from the visualizations that we provided, which may

suggest a ceiling effect. When there were misunderstandings, this often seemed to be

a result of misreading or misinterpreting the historical context. For example, some

participants interpreted the visualization about money that was raised by colleges

through the sale of formerly Indigenous land as the money that was raised by colleges

to give to Indigenous people. Therefore, it is possible that metadata may impact the

correctness of responses when accompanying more complicated or less familiar types

of visualizations. Additionally, the lack of observed impact on understanding may

have been a result of the prompts we used. While asking about the main message

of a visualization as a measure of understanding is common (e.g., as in [19, 206]),

this kind of question only probes one aspect of understanding. Past work has defined

means of assessing participants’ understanding at different levels which range in com-

plexity from retrieving a single value to providing evaluations with evidence [53, 1].
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Therefore, it might be that metadata impacts a different kind of understanding than

the one we evaluated. Similarly, we only considered the correctness of the information

with regards to the amount it was supported by the chart and metadata. Although

common, this technique does not allow us to distinguish between the complexity of

the information that was retrieved or the difficulty of retrieving it. For example, it

may be easier to directly copy a number from a chart than to draw an inference from

those numbers. Future work may therefore explore more complex ways of measur-

ing understanding such as correctness alongside the mental effort required to extract

information (as has been done past work on the impact of pictographs [54]).

5.6.4 Tension between providing text information vs. visuals

While our experiment setup mirrored the metadata disclosure methods of data

journalism projects (i.e., as long-form text), it is worth asking: Are there more in-

teresting or engaging ways to disclose metadata? This question may be especially

prescient because there may be a trade-off between the amount of text provided, its

readability, and its efficacy [364]. By definition, visualizations are intended to pro-

vide a visual representation of data to help readers complete tasks [255]. However,

despite this intention, textual information has proven to be a successful component of

narrative visualizations [339], better for extracting critical information [269], and can

be added to existing visualizations in order to add context, heighten empathy, and

introduce temporal references [124]. Nonetheless, we can still ask: how much text is

too much? What alternatives are there to representing the metadata solely as text?

One alternative to presenting the metadata solely as text might be to visualize the

metadata. Visualizing textual data can enable readers to fully understand insights

from large amounts of text [59]. However, visualizing textual data is also well under-

stood to be very difficult (see [7] for extensive discussion of the challenges including

high dimensionality and irregularity) and some categories of metadata resist quan-
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tification (e.g., names, sources, or personal socio-cultural identities). However, future

work may be able to leverage some visualization techniques to deliver the information

differently or reduce the amount of information that is immediately presented to the

reader. For example, in situations where some amount of narrative text is necessary,

storytelling techniques like infographics, data comics [18], or cheat sheets [393] could

be effective for integrating metadata into visualizations. Recent work on the use of

infographics to communicate methodology has also found that infographics increased

both accuracy and trust when compared to text-only communications [198]. Future

work could investigate whether using infographics or storytelling techniques to com-

municate metadata might improve upon the results we observed in our experiments

with only text.

5.6.5 Investigating the Impact of Animation & Interactivity

While experiment focused on static visualizations, interactivity and animation

may afford new possibilities for communicating metadata. For example, past work

demonstrated that animation can be used to effectively communicate steps taken in

data analysis pipelines [303] or help readers better understand unfamiliar visualiza-

tions [323]. Future results could build upon these promising results to establish how

these techniques impact understanding and perceptions of trustworthiness. Given

that the value of different metadata varied significantly between user goals in Ex-

periment 1, one could also consider using interactive technology like a conversational

chatbot to deliver only the metadata that participants wanted. While it may be pos-

sible to guess some of the tasks readers want to complete, it may be advantageous

to use interactive techniques to allow readers to directly access the metadata that

they find most relevant. Recent work has outlined methods for the creation of chat-

bots for visualization which build and preserve trust(e.g., [340]). This work may be

156



extended to explore how chatbots could communicate metadata and its impacts on

other measures such as understanding and relevance.

Limitations

As with all studies, there are limitations to our work. First, our results may have

been impacted by our participant pool. In both experiments, we recruited participants

from Prolific which, while fairly diverse, were highly educated and may not be repre-

sentative of visualization readers. Second, Experiment 1 used an exploratory design in

order to reduce the complexity of the design space surrounding metadata, and inform

the design of Experiment 2. However, the findings from that experiment would be

reinforced by hypothesis-driven studies that interrogate their generalizability across

diverse contexts. In Experiment 2, we used visualizations about a non-polarizing topic

from sources that may not have been familiar to our participants. Future work may

wish to examine how a polarizing topic or pre-existing levels of trust in an a visualiza-

tion source impacts the outcomes we observed in our study. Additionally, the design

of our experiments specifically focused on assessing the impact of the metadata that

participants thought would be most relevant on fairly simple, static visualizations.

As a result, the design of our experiment pulled participants’ attention toward the

metadata and did not distinguish between the effects of different types of metadata.

This was an intentional choice in order to ensure participants noticed the text, but it

may not realistically reflect situations where people encounter metadata and revealed

what the purpose of the experiment was to participants. Further, in Experiment 2,

we did not provide definitions for any of the terms participants rated visualizations

on (e.g., trust, accuracy), nor did we ask participants to provide their own definitions

which means that participants may have had different interpretations of these terms.

As a result, it is unclear to what extent the results we observed generalize to specific
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types of metadata, visualizations, and situations where attention is not drawn to the

metadata.

Several of our design choices for the Prediction component of Experiment 2 may

have influenced our results. In our scenario, we did not provide a description of the

organization which “selected” the visualizations. Participants’ assumptions of what

kind of organization this was may have influenced how they interpreted the prompt.

Additionally, we told participants that the organization had selected the visualizations

on the basis of trust and persuasion. While this choice allowed us to make sure all

participants judged the visualizations on similar criteria, the design does not allow us

to disambiguate between whether the visualizations were selected because of trust or

persuasion (or both). These criteria may also not be meaningful to all participants and

a more open-ended prediction scenario may have been able to to gather more insight

into the characteristics participants valued as well as how metadata relates to those

characteristics. Future work may therefore consider providing further information on

the hypothetical organization and utilizing open-ended prediction scenarios.

5.7 Conclusion

There is a lot about visualization that goes unsaid. This ambiguity is a reflec-

tion of a lack of transparency and can have impacts on understanding and ultimately

trust. In this paper, we interrogated the claim that providing metadata alongside a

visualization could be an effective way to increase transparency and understanding.

We adopted a broad definition of metadata and an associated six category taxonomy

from the authors’ past work and conducted two experiments. In the first, we in-

vestigated which categories of metadata readers of visualizations think is relevant to

specific goals (e.g., assess trust, build confidence). Based on the results of our first ex-

periment, we ran a second experiment to study the impacts of the metadata that our

first group of participants thought was most relevant on perceptions of transparency,
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information relevance, and understanding. We found that visualizations with meta-

data were perceived as more thorough, but similarly accurate, clear, complete, and

relevant in comparison to visualizations without metadata. Additionally, we found

that the presence of metadata did not impact the correctness of descriptions given by

participants, but may have impacted what they saw as important enough to mention.

Our results raise further questions about the potential role and impacts of metadata

in visualization which we hope will inspire the visualization community to investigate

further.
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CHAPTER 6

CONTRIBUTIONS AND FUTURE WORK

In this chapter, I will summarize the contributions of each of the chapters of my

thesis. Then, I will discuss future directions which may build upon my thesis work.

6.1 Review of Thesis Contributions

6.1.1 The Audience Matters! A Critical Analysis of Audiences in Visu-

alization

In Chapter 3, I conducted an analysis of how the words “novice,” “non-expert,”

“layperson,” and “general public” were defined in existing visualization papers as a

means to better understand how audiences are defined. The key contributions were:

• An analysis of how “novice,” “non-expert,” “layperson,” and “gen-

eral public” are defined in visualization research papers revealing that

these audiences are rarely defined explicitly and definitions which are

present rely on only one aspect of an individual’s attitudes, experi-

ences, or skills.

• A discussion of the unintended consequences of defining audiences

implicitly and one-dimensionally.

• Suggestions for improving current practice in three areas which draw

inspiration from fields such as critical race theory and feminist theory.

Namely, I suggest that: (1) make the audiences clearer for researchers and paper

readers by carefully defining who belongs in an audience and the criteria used

to select participants; (2) define audiences multi-dimensionally and consider
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how intersections of identity/experience produce unique experiences; and (3)

be careful to avoid recreating hierarchical power structures which value some

kinds of knowledge over others.

6.1.2 Designing with Pictographs: How does Design Impact Casual Sense-

making?

In Chapter 4, I investigated what impact using pictograph arrays had on casual

sensemaking when used in place of solid, abstract shapes. The key contributions were:

• A novel framework that provides a systematic way to evaluate levels

of understanding in a visualization based on Bloom’s Taxonomy. This

framework can be used to generate a set of six comprehension questions which

each assess a different level of understanding.

• Empirical results that suggest that infographics with pictograph ar-

rays are just as good as more traditional, geometric part-to-whole

charts at helping people make sense of data.

• Empirical insights that show some participants view charts containing

pictograph arrays as easier to envision, while others view them as

unnecessarily cluttered and slower to understand. Although participants

thought that visualizations with pictographs would be slower, we observed no

significant difference between the amount of time it took for participants with

pictographs or solid areas to answer the questions in our study.

• Qualitative results suggesting that perceptions of visual appeal may

be impacted by ease of understanding, making the topic seem real

may help readers envision the topic more easily, and feelings of ur-

gency and importance may be influenced by real-world connections.
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6.1.3 From Invisible to Visible: Impacts of Metadata in Communicative

Data Visualization

Finally, in Chapter 5, I explored what kinds of metadata people want access to

and how having it impacts their understanding and experience of the visualization.

The key contributions were:

• A comprehensive taxonomy of six types of metadata and discussion

of the potential benefits and risks of disclosing each. This taxonomy

includes metadata about the people who influenced the visualization’s creation

(Creators, Intended Audience) as well as several stages of the visualization

creation pipeline (Data Source, Cleaning & Processing, Perceptual Challenges,

Visual Encoding).

• Results from an exploratory study suggesting that what kinds of

metadata people may perceive as most important varies according

to their goals (e.g., assess trust, understand perspectives). For in-

stance, participants were most interested in metadata about the Data Source

in order to assess the trustworthiness of the visualization.

• Quantitative results suggesting that metadata can increase percep-

tions of thoroughness, which may positively impact the perceived

transparency of a visualization.

• Quantitative results suggesting that the information in visualizations

with metadata are not considered more relevant than in visualiza-

tions without. Participants rated visualizations with and without metadata

similarly on three measures of relevance (Relevance to Self, Relevance to Others,

Meaningfulness).

• Quantitative and qualitative results implying that metadata did not

impact the correctness of participant responses, but may have influ-

enced which information readers paid attention to.
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• A discussion the possible implications of the results on trust, under-

standing, and the tension between disclosing information and provid-

ing more textual information.

6.2 Future Work

Ultimately, neither disclosing metadata nor using pictographs arrays noticeably

altered the ways that participants understood the visualizations they saw. However,

both interventions impacted readers’ experience of the visualizations. This suggests

that altering the ways that visualizations are designed and communicated could im-

pact readers’ casual sensemaking processes, though the complexity of this relationship

remains to be seen. Future work may build upon the work of this thesis in several

different directions, which I will now discuss.

6.2.1 Complex, Unusual, or Interactive Visualizations

In the experiments in my thesis, I used real-world visualizations as stimuli. How-

ever, all of the visualizations were static, used common visual encodings, and pre-

sented data with low dimensionality. These qualities may have meant that the visual-

izations were relatively easy for most participants to make sense of the visualizations

with or without the interventions and, therefore, hid effects that could be present with

complicated, interactive, animated, or unfamiliar charts. Future work may therefore

wish to replicate this work with different visualizations to establish how our results

generalize to different encodings.

6.2.2 Alternative Methods of Presentation

Alternatively, future work could explore different methods for providing informa-

tion to visualization readers. In my thesis, I presented information to readers by

adding text alongside the visualization (Chapter 5) or by using pictographs to alter

the visualization’s design (Chapter 4). Yet, there may be other ways to present in-
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formation that might have alternative effects. For instance, future work may explore

how pictographs or graphics could be used to communicate metadata such as data

cleaning processes or to signal that particular types of information are available for

view. Another potential direction may be to use interactivity to allow readers to

show or hide the information that is available or to ask for particular information

(e.g., using a chatbot or natural-language interface).

6.2.3 Specialized Audiences

In this work, I focused on visualizations for people in the general public which

was defined quite broadly. As I discussed in Chapter 3, audiences that are defined too

broadly may mask the unique needs of sub-groups. It is possible that by focusing on

the broad group, I was unable to detect an effect experienced by some, but not all of

the participants. Future work may investigate the impact of disclosing information

on narrower audiences such as people who have never seen a particular visualization

before or people who might face a social or economic consequence if a particular

visualization is unexpectedly deceptive.

6.2.4 Attitudes & Barriers Toward Disclosure

One question that I did not explore in this thesis is how stakeholders (e.g., design-

ers, researchers) feel about disclosing different types of information such as metadata

or details about their audiences. This direction may build upon past work that in-

vestigated why visualization creators do not disclose uncertainty [182]. Similarly, it

may be relevant to explore what tools or structures would encourage visualization

designers and researchers to disclose information (or otherwise reduce the difficulty

of doing so). For instance, future researchers might ask: what effect could a data

visualization “code of ethics” that prioritizes transparency and accountability have

on practice? What tools might make it easier to disclose information in a way that

is accessible and useful to readers?
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6.3 Concluding Thoughts

In my thesis, I explored three ways that changing current practice may result in

communicative data visualizations that are more understandable by members of the

general public. I began with the possibility of changing research methods and investi-

gated current practices for defining the audiences of data visualizations and how those

current practices may have unintended consequences. Next, I explored how changing

the design of visualizations might change how they are understood and experienced

by replacing abstract areas with pictograph arrays. Finally, I investigated how re-

contextualizing a visualization with additional text altered how it was understood

and perceived. There is still much to be learned about how to make visualizations

that “work” for the people who use them and I hope that my work in this thesis will

inspire future inquiry into this important topic.
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[334] Schönborn, K. J., Höst, G. E., and Lundin Palmerius, K. E. Measuring un-
derstanding of nanoscience and nanotechnology: development and validation of
the nano-knowledge instrument (NanoKI). Chem. Educ. Res. Pract. 16 (2015),
346–354.

[335] Schulz, H., Nocke, T., Heitzler, M., and Schumann, H. A design space of
visualization tasks. IEEE Trans. Vis. Comput. Graph. 19, 12 (2013), 2366–
2375.

[336] Schwabish, Jonathan. The practice of visual data communication: What works.
Psychological Science in the Public Interest 22, 3 (2021), 97–109.

[337] Sedlmair, Michael, Frank, Annika, Munzner, Tamara, and Butz, Andreas.
Relex: Visualization for actively changing overlay network specifications. IEEE
Trans. Vis. Comput. Graph. 18, 12 (2012), 2729–2738.

[338] Sedlmair, Michael, Isenberg, Petra, Isenberg, Tobias, Mahyar, Narges, and Lam,
Heidi. Preface. In BELIV ’16: Proc. of the Sixth Workshop on Beyond Time
and Errors on Novel Evaluation Methods for Visualization (New York, NY,
USA, 2016), Association for Computing Machinery.

[339] Segel, Edward, and Heer, Jeffrey. Narrative visualization: Telling stories with
data. IEEE Trans. Vis. Comput. Graph. 16, 6 (2010), 1139–1148.

[340] Setlur, Vidya, and Tory, Melanie. How do you converse with an analytical chat-
bot? revisiting gricean maxims for designing analytical conversational behavior.
arXiv preprint arXiv:2203.08420 (2022).

[341] Shen, Hong, Jin, Haojian, Cabrera, Ángel Alexander, Perer, Adam, Zhu, Haiyi,
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