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ABSTRACT

MIXTURE MODELS FOR INTERVAL CENSORED
OUTCOMES

SEPTEMBER 2022

YIBAI ZHAO

M.B., CHINA MEDICAL UNIVERSITY

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Raji Balasubramanian

Silent events such as the first detectable HIV infection, the onset of Type 2 dia-

betes and prostate cancer progression are often ascertained by diagnostic tests and/or

self-reports that are scheduled periodically. In such applications, we only observe the

time to the event of interest to lie between the times of last negative and the first pos-

itive tests, resulting in interval-censored observations. In addition, in some medical

studies, a substantial proportion of participants may experience the events before the

study, so-called prevalent cases, or participants may never experience the event, that

is regarded as non-susceptible cases (or indolent cancer or long-term survivor). In

this dissertation, I develop mixture models for the analysis of heterogeneous survival

data subject to interval-censoring.

In Chapter 1, we propose a parametric mixture model for interval censored time to

event outcomes, while relaxing the commonly used proportional hazards assumption.

The proposed model is applied to data collected in the National Health and Nutrition

Examination Survey to evaluate risk factors of Type 2 diabetes.

vi



The second chapter of this dissertation is motivated by a study of the effects of

maternal and infant antiretroviral therapy on the sensitivity of DNA PCR diagnostic

tests in detecting HIV infection in infants born to HIV-positive mothers. We apply

a mixture model to evaluate the association of a set of predictors with an interval-

censored time to first detectable DNA PCR test, while accounting for the subset

of infants who test positive at birth. The mixture model is applied to data from

the Pediatric AIDS Collaborative Transmission Study and the Women and Infants

Transmission Study to evaluate the effects of maternal/infant antiretroviral therapy

in HIV subtype B infected mother-infant pairs.

Chapter 3 is motivated by a Canary Prostate Active Surveillance Study (PASS)

where the time to cancer progression (i.e., biopsy upgrade) is of primary interest. In

this paper, we assume a mixture model for progressive and indolent cancers as well as

the prevalent cases where the proportional hazards model incorporates the effect of

either time-independent or varying covariates on cancer progression and the mixing

parameter modelled with logistic regression corresponds to the fraction of indolent

cancer. We propose a semiparametric likelihood-based approach to handle interval-

censored observations while accounting for the misclassification rates of biopsy. We

present simulation studies to investigate the performance of the proposed approach

under various settings. The proposed approach is applied to the Canary Prostate

Active Surveillance Study to evaluate the effects of factors on the risk of cancer

progression and estimate the indolent fraction under a range of sensitivity rates of

biopsy.
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CHAPTER 1

FLEXIBLE, PARAMETRIC MIXTURE MODELS FOR
TIME TO EVENT OUTCOMES, WITH INFLATION OF

ZEROES AT BASELINE

1.1 Introduction

In longitudinal cohort settings such as the National Health and Nutrition Exam-

ination Survey, detecting the onset of a silent event such as onset of Type 2 diabetes

is challenging. Since diagnostic tests are scheduled at periodic clinic visits, the exact

time of onset of the disease is unknown. If tests are perfect, the time to event of

interest is interval censored and known only up to the interval from the last negative

and the first positive diagnostic test. A variety of methods have been proposed to

analyze interval censored outcomes [42, 20]. We refer the reader to the tutorial by

Gomez, G. et al. (2009) for a review of statistical models appropriate for interval

censored outcomes [24].

Moreover, in longitudinal cohort settings, there is often a non-ignorable propor-

tion of subjects who have already had the event of interest at study onset or baseline,

representing left censored observations. [19] pointed out that the use of a Weibull

distribution assumption leads to biased estimates when used to model time to death

in studies that included a significant proportion of long-term survivors. Instead, the

authors proposed using a mixture model to model two distinct populations, short

term versus long term survivors. In an analysis of colon cancer patients that included

a proportion of cured participants, [13] applied a parametric mixture relative survival

model which combined a logistic function to incorporate the cure proportion and an

1



exponential or Weibull distribution to model to the survival times for those who died

during the study. [50] introduced flexible mixture models, where one part was for zero

inputs, the other part was usually a continuous distribution of nonzero values. Mod-

els discussed in the paper included hurdle models, zero-inflated models and two-part

semi-continuous models. [9] presents a parametric mixture model for undiagnosed

prevalent disease and interval censored outcomes with application to data from elec-

tronic health records. The authors propose a parametric logistic-Weibull mixture

model and assume proportional hazards to incorporate the effect of covariates on the

time to event outcome.

In this paper, we implement a mixture Logistic-stratified Weibull model for mod-

eling the effect of covariates on the risk of incident disease, applicable to settings

that include undiagnosed prevalent cases as well as right censored/interval-censored

outcomes, while relaxing the PH assumption. The paper is organized as follows: In

Section 2, we present the proposed mixture model and discuss the estimation of un-

known parameters of interest using the Expectation-Maximization (EM) algorithm.

In Section 3, we present results from simulation studies to test the performance of

the proposed model. We compare relative bias and coverage probability estimates for

the proposed model to other competing approaches ([27] [9]). In Section 4, we apply

the proposed model to NHANES data to find the risk factors of type 2 diabetes.

In Section 5, we conclude with a summary of this paper and directions for future

research.

1.2 Model

1.2.1 Notation

For subject i = 1, 2, . . . , n, let Ti denote the time to the event of interest, which is

never directly observed. Let ci be a subject-specific class indicator of Ti = 0, where:
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ci =


1 if Ti = 0

0 if Ti > 0

(1.1)

ci is unobserved for those subjects for whom the first test at τ > 0 is positive. Let

(Li, Ri) denote the last negative and the first positive test times for the ith subject,

respectively. In a dataset of n subjects, we denote the sequence of observed test times

0 = τ0 < τ1 < · · · < τm. Let ki be subject-specific censoring indicator of whether ci

is observed. If ci is observed, then ki = 1, ki = 0 otherwise. Let zi denote a binary

covariate for subject i. Let xi denote a vector of covariates for subject i.

1.2.2 Likelihood, Assumptions

Let θ1 and θ2 denote disjoint vectors of parameters, where θ = (θ1,θ2). Let

Pr(c = 1) = π(z;θ1). The mixture model can be expressed as:

Pr(T ≤ t; z, θ) = Pr(T ≤ t; z, θ | c = 1)× Pr(c = 1) (1.2)

+Pr(T ≤ t; z, θ | c = 0)× Pr(c = 0)

= π(z;θ1) + (1− π(z;θ1))[1− S(t;θ2|c = 0, z)].

Let K1 include the set of subjects for whom ki = 1, when ci is observed. Let K0

denote the set of subjects for whom ki = 0, when ci is missing at random (MAR).

When ki = 1 and ci = 1, the corresponding log likelihood contribution is log{π(z;θ1)}.

When ki = 1 and ci = 0, the corresponding log likelihood contribution is log{(1 −

π(z;θ1))[S(Li;θ2|c = 0, z) − S(Ri;θ2|c = 0, z)]}. When ki = 0, the subject con-

tributes log{π(z;θ1) + (1 − π(z;θ1))[S(Li;θ2|c = 0, z) − S(Ri;θ2|c = 0, z)]} to the

observed data log-likelihood. Thus,:
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`(θ) =
∑
i∈K1

[ci log{π(zi;θ1)}+ (1− ci) log{(1− π(zi;θ1))×

(S(Li;θ2|ci = 0, zi)− S(Ri;θ2|ci = 0, zi))}] + (1.3)∑
i∈K0

log[π(zi;θ1) + {1− π(zi;θ1)}{1− S(Ri;θ2|ci = 0, zi)}]

,where S(Li;θ2|ci = 0, zi) and S(Ri;θ2|ci = 0, zi)) are the survival functions evaluated

at times Li and Ri, respectively.

Parametric assumptions and incorporating covariates:

Suppose the time to event T ∼ Weibull(γ, λ), where γ and λ are the shape and scale

parameters of a Weibull distribution. The density function and survival functions of

T can be expressed as:

f(t; γ, λ) = λγtγ−1 exp(−λtγ)

S(t; γ, λ) = exp(−λtγ)

We further assume that the effects of covariates z on T are incorporated via a

proportional hazards(PH) model, where β is the corresponding covariate coefficient.

The survival function at t can be expressed as:

S(t; γ, λ,β) = exp(−λtγ exp(zTβ))

To model the effect of covariates on π(z;θ1), we assume the logistic model as

follows:

π(z;θ1) =
eα0+α1zi

1 + eα0+α1z

, or equivalently logit(π(z;θ1)) = α0 + α1z.
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Then the π(zi;θ1) and S(ti;θ2|ci = 0, zi) in Equation (1.3) can be expressed as:

π(zi;θ1) =
exp (α01 + zTi αj)

1 + exp (α01 + zTi αj)

S(ti;θ2|ci = 0, zi) = exp (−λtγi exp(zTi β))

, where zi is a (n × p) matrix of p covariates, αj is a vector of p logistic regression

coefficients and β is a vector of p Weibull regression coefficients.

To relax the proportional hazards assumption, we consider the stratified Cox

model, where λz and γz depend on covariate z as shown below:

S(t;β, γz, λz|x, z) = exp(−λztγz exp(xTβ))

So S(ti;θ2|ci = 0, zi) in Equation (1.3) can be expressed as:

S(ti;θ2|ci = 0, zi = j) = exp (−λjt
γj
i + xTi β)

S(ti;θ2|ci = 0, zi = j,xi) = exp (− exp(log λj + γj log ti + xTi β))

1.2.3 Estimation for Survival Models

Following the approach in cheung, we propose the following EM algorithm for

maximizing the log likelihood in Equation (1.3).

Initialization Set initial values for θ(0) = {θ(0)
1 = (α

(0)
0 , α

(0)
1 ), {θ(0)

2 = (β(0), γ(0), λ(0))}.

θ(0) = {β(0), γ(0), λ(0), α
(0)
0 , α

(0)
1 }.

Iterate E-step and M-step until convergence, that is |`(θ(l+1))− `(θ(l))| < 10e−6
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E-step Conditional on θ = θ(l), compute the expected log-likelihood given by

Q(θ|θ(l)) =
n∑
i=1

[E(ci;θ
(l)) log{π(xi;θ1)}

+(1− E(ci;θ
(l))) log{(1− π(xi;θ1)) (1.4)

×(S(Li;θ2|ci = 0, zi)− S(Ri;θ2|ci = 0, zi))}]

, where

E(ci;θ
(l)) =


ci if i ∈K1

π(xi;θ
(l)
1 )

π(xi;θ
(l)
1 )+{1−π(xi;θ

(l)
1 )}{1−S(Ri;θ

(l)
2 |ci=0,zi)}

if i ∈K0

M-step The updated θ(l+1) are the values of θ maximizes the expected log-likelihood in

E-step.

For simplicity, We use Newton’s method to find the optimal estimates, the

formula is

θ(l) = θ(l−1) − Q′(θ(l−1))

Q′′(θ(l−1))

, where Q′(θ(l−1)) and Q′′(θ(l−1)) are the first and second derivative of Q evalu-

ated at θ(l−1).

However, Newton’s method does not behave well when θ(0) are far away from the

true value. In order to solve this problem, we find two extreme situation, where all

subjects are from K0 and all subjects are from K1. Our initial values are in between

this two extremes, so we let θ(0) to be estimates from case where half of the subjects

are from K0 and rest of them are from K1.
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Let θ̂ be the MLE of θ, we can derive the variance of θ̂ using observed fisher

information matrix,

Iobs(θ̂) = −`′′(θ̂)

The the variance is the diagonal elements of I−1
obs(θ̂).

1.3 Simulation

The results presented in this section are averages obtained across 1000 simulated

datasets, each including 2500 subjects. For the ith subject, we simulated Z, a binary

covariate of interest, with Pr(Z = 0) = Pr(Z = 1) = 0.5. As shown below, we

assumed the logistic model to incorporate the effect of Z on π(Z) = P (T = 0 | Z).

π(Z) =
eα0+α1Z

1 + eα0+α1Z

For each subject, we simulated the time to event random variable T from a mix-

ture distribution with π(Z) probability of T = 0 and 1 − π(Z) probability with T

distributed as a Weibull distribution. We simulate X from a normal distribution

with mean 0 and variance 1. In addition, to incorporate the effects of Z and X on

T | T > 0 we assume a Cox PH model or a stratified Cox model as defined in Section

1.2:

h(t | Z) = λγtγ−1eβZ

h(t | Z,X) = λZγZt
γZ−1eβX

where h(t | Z) and h(t | Z,X) denotes the hazard function at time t for a subject

with covariate Z and X, respectively. The set β = 0.7 and selected α0, α1, γ, λ
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to satisfy pre-specified values of π and the failure rate; the later is defined as the

Pr(T ≤ τ3). π was varied between (0.1, 0.2, 0.4) and failure rate between (0.3, 0.5, 0.9).

To simulate test results at pre-specified visit times, we set the vector of test times

to be τ0 = 0, τ1 = 1, τ2 = 4, and τ3 = 10. At each test time, the corresponding test

results are set to be negative if τ ≤ T , positive if τ > T . Finally, for each subject, we

simulate an independent binary random variable Ki where Ki = 1 with probability

0.5 and 0 otherwise. Those subjects for whom Ki = 1 are assumed to be missing the

test result at τ = 0. The distribution of T averaged over 1000 simulated datasets is

shown within groups defined by Z in Figure (1.1) and Figure (1.2).

We quantified model performance based on coverage probability and relative bias.

We estimated coverage probability as the proportion of simulated datasets in which

the 95% confidence interval includes the true parameter value. We estimated relative

bias as E(θ̂)−θ
θ

.

1.3.1 Assuming proportional hazards

In this setting, we let the time to event T follow a Weibull PH model. The

distribution of T averaged over 1000 simulated datasets is shown within groups defined

by Z in shown Figure (1.1), where each observed value of T is rounded up to the closest

integer (for visualization).

Estimates of the parameters in the mixture Logistic-Weibull PH model are ob-

tained by maximizing the log likelihood in Equation (1.3) and compared to estimates

obtained from the Weibull PH model that ignores the prevalent cases at baseline (i.e.

subjects for whom T = 0). The results from this simulation are shown in Figure (1.3)

and Table (1.5). As π increases from 0.1 to 0.4, we can see sharp increases in the

relative bias of the estimates of β and λ from the Weibull PH model that ignores the

prevalent cases - for example, when the failure rate is 0.5, π is 0.4, relative bias of λ̂

is 15, while the relative bias of the estimates from the mixture Logistic-Weibull PH
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model is approximately zero. In the coverage probability plots in Figure (1.3), we

see that the mixture model coverage probabilities are centered around the nominal

level of 95%, whereas the model that ignores the prevalent cases has significant under

coverage.

1.3.2 Relaxing the proportional hazards assumption

In this scenario, we relax the proportional hazards assumption in the Weibull

regression model, so that the baseline hazard depends on the levels of covariate z.

For strata j, our mixture model can be expressed as

P (T ≤ t; z = j,θ) = π(z;θ1) + (1− π(z;θ1))[1− S(t;θ2|c = 0, z = j)]

, where S(t;θ2|c = 0, z = j) = exp(−λj exp(xTβ)tγj). The distribution of T within

groups defined by Z and averaged over 1000 simulated datasets is shown in Figure

(1.2), where each observed value of T is rounded up to the closest integer for visual-

ization.

Estimates of the parameters in the mixture Logistic-Weibull stratified model are

obtained by maximizing the log likelihood in Equation (1.3) and compared to esti-

mates obtained from the Weibull stratified Cox model implemented in the R package

straweib[25]. We note that the Weibull stratified Cox model ignores the prevalent

cases at baseline (i.e. subjects for whom T = 0). The results from this simulation are

shown in Figure (1.4) and Table (1.5). The relative bias of the parameter estimates

from the mixture model are all close to zero. When failure rate is large (failure rate =

0.9) and π is small (π = 0.1 or 0.2), all estimates are nearly unbiased in the Weibull

stratified Cox model. As π increases from 0.1 to 0.4, the estimates of γ1 and λ1 from

Weibull stratified Cox model move further away from their true values.

In the coverage probability plot in Figure (1.4), we see all estimates from mix-

ture Logistic-Weibull stratified model are approximately 95% (nominal level). In the

9



Weibull stratified Cox model that ignores prevalent cases, γ1 and γ2 are always over-

estimated, and λ1 is underestimated. When failure rate is fixed and as π increases,

the coverage probabilities of β and λ2 decrease. λ1 in all settings are underestimated

with coverage probability around 0%.

1.4 Application

Based on the current National Diabetes Statistics Report, 37.3 million Americans,

or 11.3% of the population, had diabetes with type 2 diabetes making up about 90%

to 95% of diabetes cases. With incidence of type 2 diabetes increasing worldwide,

metabolic diseases represent a major public health burden [46]. Epidemiological in-

vestigations into risk factors of incident type 2 diabetes in various populations is an

active area of research.

We apply our proposed method to data from the NHANES I (First National

Health and Nutrition Examination Survey) Epidemiologic Follow-up Study (NHEFS).

Data are publicly available via the CDC at https://wwwn.cdc.gov/nchs/nhanes/

nhefs/default.aspx/. NHEFS is a national longitudinal study aimed to investigate

the relationships between clinical, nutritional, and behavioral factors and subsequent

morbidity, mortality, and hospital utilization. A subset of individuals who partici-

pated in the original NHANES I survey in the early 1970s are included in NHEFS.

Participants of NHEFS cohorts were followed during the periods 1982-1984 (data col-

lected over a two-year period), 1986, 1987, and 1992 with either a personal interview

or phone interview. The analysis dataset included 9974 participants, of whom 639

(6.41%) reported being diabetic at baseline. Of those who did not report a diabetes

diagnosis at baseline, 634 reported an incident diabetes diagnosis during follow up.

In this group, the mean time to diabetes was 6.43 with a range (IQR) of 4 to 9.5

years. The dataset included 6374 women and 3600 men, with a mean (IQR) age at
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baseline of 54 (44-68) years, mean (IQR) weight of 157 (136-181) lb and 3431 (34%)

who reported hypertension at baseline.

We applied the mixture Weibull stratified model to evaluate risk factors associated

with prevalent and incident Type 2 diabetes, including weight (weight < 150 lb,

weight in [150, 250) lb and weight ≥ 250 lb), hypertension (1 if has hypertension, 0

if not), age (age < 60, age in [60, 80) and age ≥ 80) and biological sex (1 for male,

0 for female). We tested the PH assumption for weight in a likelihood ratio test by

comparing the mixture stratified Weibull model (full model) to the nested mixture

PH Weibull model (reduced model). In the mixture PH Weibull model, we included

weight as a categorical covariate in both the logistic and Weibull components. In the

mixture stratified Weibull model, we adjusted for weight as a categorical predictor in

the logistic component, and fit a stratified Weibull model with weight category as a

stratification factor. The likelihood ratio test comparing the full model to the reduced

model resulted in a p value of 0.004, indicating a violation of the PH assumption. In

Figure (1.5), we see that the hazard ratio estimates from mixture stratified Weibull

model change with time during follow up, which is consistent with the violation of

the PH assumption in the likelihood ratio test.

We fit the mixture stratified Weibull model including weight, age, hypertension

and biological sex as simultaneous predictors in both the logistic and Weibull com-

ponents. In this dataset, all included participants had self-reports at baseline. As

a result, there were no unreported diabetics at baseline (T = 0). To simulate the

scenario in which a proportion of subjects are unreported prevalent cases at baseline,

a random subset of 20% of subjects who reported diabetes at baseline were selected

and their baseline self-report was set to be missing. Table (1.5) presents the model

results, showing that all predictors in the model are significantly associated with both

the rate of prevalent diabetes (at baseline) and with incident diabetes. Figure (1.6)

illustrates the effects of each covariate in different weight groups. We see that survival
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rates are all above 95% within the first 10 years for weight ≤ 150 (lb). However, the

survival probabilities drop dramatically in the stratum of participants with weight

≥ 250 (lb). Participants who are 55-years-old older or with hyertension are more

likely to have type 2 diabetes. Men are less likely to have type 2 diabetes. These

results are consistent with the established literature on risk factors of Type 2 diabetes.

1.5 Discussion

Silent events, like incidence of Type 2 diabetes, cannot be observed directly and

can be diagnosed only when tests or questionnaires are given. For the analysis of data

collected in longitudinal cohorts that include a non-ignorable proportion of partici-

pants with a prevalent diagnosis at baseline, we demonstrate that traditional para-

metric survival models are inappropriate and propose a flexible mixture model that

also relaxes the oft used PH assumption. We use EM algorithm to fit our proposed

model and obtain estimates by numeric optimization of the log likelihood.

We compare our proposed model with time to event analyses that ignore the

participants with a prevalent diagnosis at baseline. We find that when failure rate

is large (0.9) and prevalent proportion is small (π = 0.1), both approaches yield

estimates with a relative bias around 0 and with coverage probability around 95%.

As the prevalent proportion increases, models that exclude observations with T = 0

result in severely biased estimates. Our approach made the strong assumption of a

Weibull distribution for T | T > 0. Alternative solutions that relax this parametric

assumption will be useful for general settings.
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Figure 1.5. NHANES/NHEFS: Plot of hazard ratio by time (in years) with respect
to different weight groups. Red dotted line made by mixture PH Weibull model. It’s
constant over time. Blue dotted line represent hazard ratio from mixture stratified
Weibull model. It’ll change with time.
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Figure 1.6. NHANES/NHEFS: Proportion of surviving free of type 2 diabetes for
each categories. Red dotted line represent baseline for each variable, for example age
≤ 60, no hypertension and female group. Solid lines are for groups other than baseline.
Each column show sdifferent weight groups. Three covariates age, hypertension and
sex are located in rows.
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Subjects who report type 2 diabetes at their first interview
Variable Odds Ratio (OR) 95% CI
Baseline 1.00 N/A

Weight in [150,250) (lb) 1.6 (1.28, 2)
Weight >250 (lb) 3.36 (1.74, 6.5)

Hypertension 2.71 (2.23, 3.3)
Age >55 2.62 (1.98, 3.46)

Sex (Male) 0.9 (0.73, 1.11)

Subjects who report type 2 diabetes after first interview (for baseline ONLY)
Variable Hazard Ratio (HR) 95% CI

Hypertension 2.06 (1.73, 2.46)
Age >55 1.74 (1.41, 2.14)

Sex (Male) 0.66 (0.54, 0.79)

Table 1.5. NHANES/NHEFS: Covariate coefficients table from mixture Logistic-
stratified Weibull model. The first 7 rows are the estimates of subjects who get
diabetes at the entry of study. Last 4 rows represent subjects who develop type 2
diabetes after time zero.
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CHAPTER 2

TIME TO FIRST POSITIVE DNA-PCR IN HIV-1
INFECTED, NON-BREASTFED INFANTS IN US

COHORTS

2.1 Introduction

Prompt antiretroviral therapy (ART) can be lifesaving among HIV-infected in-

fants, and accurate early diagnosis is essential to ensuring early effective treatment

intervention [73, 11]. While traditional serologic antibody-detection tests are effec-

tive in detecting HIV in adults, they are not valid in infants, since infants can carry

passively acquired antibodies from their mothers for more than 9 months after birth

[55]. Instead, virologic tests including viral culture, viral antigen (p24), and poly-

merase chain reaction (PCR) are used as methods for early diagnosis of human im-

munodeficiency virus (HIV) infection among infants and children [62]. Among these,

DNA/RNA PCR tests show a high concordance and can be used as the “gold stan-

dard” for the diagnosis of infant HIV infection. Critically, timing and type of ARV

exposure of mothers during pregnancy and at the time of labor/delivery can affect

the performance of these assays.

Prior to the 1990’s, HIV-infected women did not generally receive ARV during

pregnancy, and transmission rates to their infants were 15% to 45%. In the early

2000s, most HIV-infected pregnant women received single antiretroviral treatment

(usually zidovudine), however the virus can be resistant to a single agent and trans-

mission rates to infants were still around 8% [21, 22]. Combined antiretroviral therapy

(cART) was introduced in the 2010s and can prevent viral resistance by combining

more than three antiretroviral drugs. Transmission rate to infants can be reduced to
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below 2% with cART during the periods of pregnancy, labor and delivery [10] . How-

ever, in addition to decreasing transmission rate, cART increases false negative and

indeterminant rate of testing in infants, especially soon after birth when the infant

may still have residual cART in their system [47, 2, 28, 48, 71].

Various groups have studied the performance of virologic tests for the early diag-

nosis of HIV-infected infants [36, 14, 15, 55, 39, 52]. The majority of the literature in

this area is focused on pediatric populations infected with subtype B virus and who

are exposed to at most single antiretroviral regimens given to the mother during preg-

nancy and/or to the infant as prophylaxis. These previous reports have consistently

showed that DNA/RNA PCR tests had a high specificity, meaning a positive test re-

sult reliably indicated a true positive infection. However, the sensitivity of those tests

was consistently very low at birth and increased after two to four weeks of age. This

literature forms the basis for current CDC guidelines that states that exclusion of

HIV infection in non-breastfed infants can be based on two or more negative virologic

tests with one negative test obtained at age ¿= 1 month and one at age ¿= 4 months.

However, these guidelines do not account for the effects of exposure to potent cART

that could result in delaying the time to earliest positive DNA PCR test is delayed

in infants [56].

In our previous work, we combined data from multiple cohorts to evaluate the

association of type and timing of prophylactic maternal and infant antiretroviral

regimen with time to first positive HIV-1 DNA PCR test [2]. In this work, our focus

was on non-breastfed infants infected with non-B subtype HIV-1 virus. Our results

showed that in the subset of infants testing negative at birth, infants exposed to

combination ARV had a longer time to DNA PCR test positivity. However, these

results were based on a limited sample size in the combination ARV group [2].

In this study, we present results on the sensitivity of DNA PCR tests given to

HIV-infected, non-breastfed infants born to HIV-infected mothers from the prospec-
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tive Women and Infants Transmission Study (WITS) and the Perinatal AIDS Collab-

orative Transmission Study (PACTS), where subtype B HIV infections are dominant.

We estimated the sensitivity of DNA PCR tests as a function of age at testing, in

infants exposed to specific maternal and infant ARV regimens, including infants ex-

posed to cART. Our analyses adjust for potential confounders such as viral load, CD4

count, mode of delivery, and gestational age and birth weight.

2.2 Methods

Cohorts: We included HIV-infected women and their non-breastfed HIV-infected

infants from WITS and PACTS cohorts. WITS was a prospective epidemiologic study

of the natural history of HIV infection in pregnant women and their infants carried

out at obstetric/gynecologic and pediatric clinics in Boston, Chicago, Manhattan,

Brooklyn, San Juan, and Houston. There were 788 HIV-infected pregnant women

and 657 infants born to them admitted into the study before June 1993 [68]. PACTS

was a multicenter, prospective cohort study of HIV-infected pregnant women and

their newborns conducted in 4 US cities (New York City, 1986; Baltimore, 1989;

Atlanta, 1990; and Newark, 1990). The study monitored the incidence of mother-

to-child HIV transmission and described the natural course of pediatric HIV disease

progression. It was supported by the CDC from 1986 through 1999 [34].

Inclusion and exclusion: We included infants who were HIV positive or inde-

terminate and had at least one DNA PCR test before age of 3 months and excluded

those whose infant/maternal antiretroviral regimen were not recorded (N = 39). The

final dataset included 428 HIV-infected infants (WITS: 129; PACT: 299). 103 infants

in WITS and 162 infants in PACTS had complete covariate data (See Figure 2.1) so

this subset of 265 infants was used for the adjusted model.

26



Covariates: Covariates accounted from in the analyses included maternal CD4+

cell count and maternal viral load obtained closest to time of delivery, mode of deliv-

ery, infant’s gestational age and infant birthweight.

Each covariate was included into statistical models as categorical variables as

follows: maternal CD4+ cell count closest to delivery was categorized into 4 levels

according to (1) less than 200 cells/ul, (2) 200-350 cells/ul, (3) 350-500 cells/ul and (4)

greater than 500 cells/ul; mode of delivery included (1) vaginal, (2) C-section before

onset of labor/membrane rupture and (3) C-section after onset of labor/membrane

rupture; gestational age was categorized as (1) ¡ 37 weeks and (2) ¿= 37 weeks; birth

weight as (1) ¡ 2500 grams and (2) ¿= 2500 grams; maternal viral load closest to

delivery categorized as (1) ¡ 400 copies/ml, (2) between 400 and 999 copies/ml, (3)

between 1,000 and 9999 copies/ml, (4) between 10,000 and 99,999 copies/ml and (5)

greater than or equal to 100,000 copies/ml.

2.2.1 Maternal Antiretroviral Regimen

Infants were grouped according to their mother’s most complex antiretroviral reg-

imen during the trimester closest to delivery and at the time of labor/delivery. Mater-

nal antiretroviral regimen was categorized as: no ARV (N=198); Single NRTI refer-

ring to Single nucleoside reverse transcriptase inhibitor (N=89); 2-3 NRTIs without

sdNVP referring to combination ARV regimen of 2-3 nucleoside reverse transcrip-

tase inhibitors without single dose Nevirapine (N=11); 2-3 NRTIs + sdNVP referring

to combination ARV regimen that includes 2-3 NRTIs with single-dose nevirapine

(N=8); 3+ ARV referring to combination ARV regimens that included three or more

ARVs with non-nucleoside reverse transcriptase inhibitors and with or without pro-

tease inhibitors (N=106); sdNVP referring to single-dose nevirapine only (N=6); and

ZDV + sdNVP referring to the combination of zidovudine and single-dose nevirapine

(N=10). (See details in Table 2.4)
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2.2.2 Infant Antiretroviral Regimen

We only considered infant prophylactic regimens initiated prior to 45 days after

birth. Infant prophylactic antiretroviral regimen was categorized as: no antiretroviral

regimen (No ARV) (N=355); zidovudine (ZDV) (N=70); and Other (N=3). (See

details in Table 2.4)

2.2.3 Statistical Analysis

The goal was to estimate the distribution of time to first positive DNA PCR test

among all non-breastfed HIV-infected infants exposed to different maternal/infant

antiretroviral regimens. For each infant, the time to earliest DNA PCR test positivity

is only known to be within the interval from the time of the last negative test and that

of the first positive test; to accommodate this uncertainty, we fit models appropriate

for interval censored time to event outcomes. To include infants who tested positive

at birth, we set their interval of time to earliest test positivity to be between 0 (birth)

and 1 day. We applied Weibull proportional hazards (PH) regression to evaluate the

association of type of prophylactic maternal and infant antiretroviral regimen with

time to first positive HIV DNA PCR test. Due to the concordance of maternal and

infant ARV regimens, we considered the effects of maternal and infant ARV regimen

in separate models. The goodness of fit of the Weibull assumption was checked by

comparing estimates of cumulative test positivity at various ages from the model to

estimates from a non-parametric Kaplan Meier procedure.

We verified the validity of the PH assumption by testing the interaction of time

and treatment in an expanded model using a likelihood ratio test (LRT). The sta-

tistical significance of the effects of maternal and infant ARV regimen were based on

LRT obtained by comparing models with and without treatment. Weibull regression

models also adjusted for potential confounders including maternal CD4+ cell count,

viral load, mode of delivery, infant’s gestational age and birth weight.
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In a supplemental analysis, we fit a parametric mixture model to account for the

subset of infants who tested positive at birth. See Appendix B for details.

2.3 Results

Our analysis included 428 HIV-infected, non-breastfed infants, including 129 in-

fants in WITS and 299 in PACTS. Mothers of 46% (N=198) of infants received no

ARV, 21% received Single NRTI (N=89) and 25% received cART (N=106). All other

categories of maternal ARV included fewer than 10 infants each. The majority of

infants born to mothers who received No ARV or Single NRTI were from PACTS;

whereas, the majority of infants whose mothers received cART were from WITS (Ap-

pendix Tables B.1 and B.2).

83% (N=355) of infants were not given any prophylactic regimen at birth and

16% (N=70) of infants received zidovudine (ZDV) (Table 2.4). 44% of infants had

maternal CD4+ count exceeding 500 cells/ul. 37% of infants had maternal viral load

lower than 400 copies/ml. 71% of infants were delivered vaginally. 33% of infants were

pre-term (gestational age less than 37 weeks). For 65% of infants, birthweight was

greater than 2500 grams. Baseline characteristics by maternal/infant antiretroviral

regimen categories can be found separately for WITS and PACTS (Supplemental

Tables B.1, B.2, B.3 and B.4) in the Appendix. Maternal and infant characteristics

were each not associated with maternal ARV (p> 0.2).

In both WITS and PACTS, the majority of DNA PCR tests were given in the

first week after birth (Supplemental Figure B.1). In PACTS, there were no tests done

after 90 days, while in WITS a few tests were given after 90 days (Supplemental

Figure B.1). All available DNA PCR test results in the maternal No ARV group

were given prior to 90 days of age. A similar distribution of timing of tests was

observed among infants whose mothers received Single NRTI. The majority of DNA

PCR tests were given prior to 90 days of age among infants whose mothers received
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cART (Supplemental Figure B.2, Supplemental Table B.5). All infants in PACTS

had a single DNA PCR test result. The number of DNA PCR tests per infant ranged

from 1 to 6 in WITS. The majority of infants whose mothers received No ARV or

Single NRTI had only 1 DNA PCR test result available; however, among infants

whose mothers received cART, the number of test results available per infant ranged

from 1 to 6.

2.3.1 DNA PCR test positivity and maternal ARV exposure

Maternal antiretroviral regimen was significantly associated with time to first

positive HIV DNA PCR in a Weibull PH model without confounders (LRT p value

< 10e−13). The test of proportional hazards was not rejected (p=0.06), indicating a

lack of evidence for a violation of the PH assumption. The estimated probabilities of a

positive HIV DNA PCR test in HIV-infected non-breastfed infants when tested on the

first day after birth are significantly lower in infants whose mothers were given cART

(5%, 95% CI: 2% - 9%) than in infants whose mothers received no ARV (29%, 95%

CI: 22% - 38%) or received Single NRTI (25%, 95% CI: 17% - 35%). The differences

in test positivity remained when infants were tested at 90 days of age (Table 2.4;

Figure 2.2), with estimated probabilities of a positive DNA PCR test of 20% (95%

CI: 12%-32%), 81% (95% CI: 68%-91%) and 74% (95% CI: 56% - 89%) in the cART,

No ARV and Single NRTI groups, respectively. For infants whose mothers received

other antiretroviral regimens, the estimated probabilities of a positive HIV DNA PCR

test by 90 days of age varied between 18% and 80%. However, since sample sizes in

these groups were small (n < 10), the 95% CIs were wide and overlapping with that

for the No ARV group (See Table 2.4 and Figure 2.2). The association between

maternal ARV with time to DNA PCR test positivity remained after adjusting for

potential confounders including maternal viral load, CD4 count, mode of delivery,

infant gestational age and birthweight (LRT p value < 10e−4). The hazard ratios
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of time to test positivity relative to the cART group (reference) were 5.78 (95% CI:

2.61 – 12.82) in the No ARV group and 4.65 (95% CI: 1.95 – 11.07) in the Single

NRTI group (Table 2.4). These results indicate that infants whose mothers received

no ARV or Single NRTI were much more likely to have positive tests at birth or

at earlier times after birth than those whose mothers received cART. A secondary

analysis based on a mixture model to account for the infants who test positive at

birth (n=13) resulted in similar findings (see Supplement).

2.3.2 DNA PCR test positivity and infant ARV prophylaxis

As our dataset included only 3 infants who received a prophylactic ARV regimen

other than ZDV, we did have the ability to evaluate the impact of infant combination

ARV therapy on the time to DNA PCR test positivity. When comparing infants who

received ZDV to those who received no ARV, we observed no evidence of a delay in

the time to DNA PCR test positivity (LRT test p-values of 0.9 and 0.38 in unadjusted

and adjusted models, respectively).

2.4 Discussion

Our results show that exposure to cART significantly delays time to the first DNA

PCR test positivity in models that adjust for potential confounders.

Infants with HIV infection whose mothers received no treatment or single NRTI

are more likely to test positive at birth, compared to those whose mothers received

cART. Among infants exposed to No ARV or maternal single NRTI, test sensitivity is

low at birth, but increases rapidly thereafter. By 3 months of age, most HIV-infected

infants in “no ARV” or single NRTI groups test positive, while for those in the cART

group the detectability is much lower. Lastly, there was no evidence of a delay in time

to test positivity in infants who received ZDV as prophylaxis following birth when
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compared to infants who received no ARV. However, our study was not sufficiently

powered to evaluate the effects of infant cART with DNA PCR sensitivity.

Our estimates of DNA PCR sensitivity at various ages are concordant with prior

research conducted in cohorts of HIV infected infants without ARV exposure or among

those exposed to simpler single NRTI treatments [55, 14, 15, 39, 7, 6, 41, 63, 75]. We

find that for those infants whose mothers received no ARV, DNA PCR sensitivity is

low at birth and increases dramatically after two weeks. Similar findings are reported

in the literature published in the late 1990s. In a study of 56 HIV infected infants

born to ARV naive mothers in the Bahamas and Montreal, DNA PCR sensitivity in

dried blood spots is only 27% within 4 days of life but rises to 88.9% in 2-weeks and

97.2% by 3 months of age [7]. Another study analyzed data from 271 HIV-infected

infants born to mothers with no ARV exposure by aggregating data from 12 different

cohorts. The sensitivity of HIV-1 DNA PCR was 40% at birth and rose rapidly to

93% in the second week. By the end of one month, sensitivity was 96% [14]. These

findings are largely concordant with our estimates in infants born to mothers with no

ARV exposure during pregnancy or at the time of labor/delivery.

Among infants born to mothers exposed to Single NRTI, we observed a similar

pattern of low DNA PCR sensitivity during the first week of age followed by a rapid

increase in sensitivity afterwards. This pattern was also seen in several other stud-

ies. Dunn et al. (2000) [15], included 422 infants infected with HIV subtype B,

combining data from four prospective, multi-center studies of HIV positive pregnant

women. HIV positive infants included in this study were either not exposed to ARV

or exposed to at most to monotherapy with ZDV. This study found that DNA PCR

sensitivity at birth was 36% (95% CI: 31% - 41%) and approximately 100% by 1

month of age. Moreover, test positivity was not affected by maternal/infant ZDV

exposure. A subset of infants in the Dunn et al. (2000)[15] analysis from PACTS

and WITS who were exposed to Single NRTI were also included in our analysis. An-
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other smaller study of 24 HIV-infected infants in a pediatric AIDS clinical trial found

that the sensitivity of DNA PCR at birth was 10% and exceeded 80% at 6 weeks of

age and thereafter16. HIV positive mothers in this trial were randomized either to

ZDV combined with HIV-1 hyperimmune globulin (HIVIG) or ZDV combined with

immuno-globulin lacking antibody to HIV-1 (IVIG). In a French study that included

65 HIV-infected infants exposed to a variety of maternal ARV regimens including 15

infants exposed to maternal triple ARV, DNA PCR sensitivity during the first week

was 55%, 89% at 1 month and 100% by 3-months of age. Although limited by the

available sample size, the study found no evidence that the sensitivity of DNA PCR

is associated with types of maternal and infant ARVs [6].

A study conducted in Thailand where HIV-1 subtype E is predominant included

98 HIV-infected infants who were exposed to maternal ZDV treatment24. This study

found that the detectability of HIV infection by DNA PCR at birth was dependent

on the duration of maternal ZDV treatment [63], with longer treatment duration

resulting in delays in HIV detection. While our study did not consider duration of

maternal ARV treatment, these findings may explain the heterogeneity in the sensi-

tivity estimates between studies that included infants from varying maternal or infant

treatment types and durations. Another randomized, placebo-controlled clinical trial

of short-course ZDV in Bangkok that included 395 non-breastfed infants born to HIV-

infected mothers (91.7% with subtype E, 8.3% with subtype B) found that DNA PCR

sensitivity at birth was 38% and reached 100% after 2 months [75]. Among infants

whose mothers did not receive any treatment, sensitivity was 35% at birth, while

among infants whose mothers received ZDV, sensitivity was 50%. However, these

differences in sensitivity by maternal ARV exposure were not statistically significant

[75]. The higher sensitivity at birth in the ZDV group relative to the placebo group

may be due to the differences in the timing of HIV transmission between the ZDV

and placebo arms - a larger proportion of HIV transmissions in the placebo group
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during labor and delivery could lead to a lower overall DNA PCR test positivity at

birth as intrapartum infections are likely to be detected at later times when compared

to in-utero infections. In a previous paper by our group, we evaluated the association

of maternal and infant ARV treatment on time to DNA PCR test positivity with a

focus on infants infected with HIV-1 non-B subtype virus [2]. In this analysis, 165

infants were exposed to maternal Single NRTI – in this group, the sensitivity of DNA

PCR was 85% one day after birth and 91% by 2 weeks of age.

Our analysis found evidence that the time to DNA PCR test positivity is sig-

nificantly delayed in infants exposed to combination ARV regimens that include 3

or more ARVs that include NNRTIs and/or PIs (cART). Our findings are concor-

dant with reports of studies conducted during the more recent ART-dominated era,

although these reports have been in limited sample sizes. A prospective study con-

ducted in South Africa where HIV-1 subtype E is prevalent included 38 HIV-infected

infants whose mothers received maternal AZT or highly potent ARVs. A majority of

the infants also received prophylaxis such as sdNVP combined with various durations

of AZT (92%) or daily-dose NVP (7.9%). The sensitivity of DNA PCR at birth and

at 2 weeks were 68.4% and 62%, but rising to 100% by 6 weeks of age []23. Due to

a limited sample size (n=38), this study did not assess the sensitivity of DNA PCR

by type of maternal ARV exposure. In our prior work in populations infected with

non-B subtype virus, we evaluated DNA PCR sensitivity by type of maternal and

infant ARV exposure in a combined cohort analysis of 405 perinatally infected infants

who were not breastfed [2]. In the subgroup of 143 HIV-infected infants who tested

negative at birth including 6 who received combination ARV treatment, we observed

a longer time to test positivity among infants who received combination ART when

compared to infants who received either no ARV or single NRTI.

Although significantly limited by the sample size in the combination ARV expo-

sure group, the findings in our prior work [2] consistent with our findings here in
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PACTS and WITS. To our knowledge, no previous study has been sufficiently pow-

ered to evaluate DNA PCR sensitivity with cART exposure; however, prior reports

in the literature have presented evidence of cART exposure in infants leading to a

substantial reduction in HIV titers to levels below the limit of detection by PCR

[61]. A recent report from South Africa also described a case series of 3 HIV-infected

infants with varying ART exposures in whom DNA PCR tests given after treatment

initiation resulted in repeated false negative and indeterminate results, highlighting

the challenge of diagnosis of HIV infection in the backdrop of exposure to potent ARV

regimens [47].

Our research provides evidence that the detectability of DNA PCR positivity

could vary by type of maternal ARV exposure, so that the definitive exclusion of

HIV infection should also take this important characteristic into account. Our study

has several strengths. To our knowledge, this is one of the largest studies of DNA

PCR test performance among HIV-infected, non-breastfed infants who were exposed

to highly active combination ARV regimens. We restricted our analysis to infants

who were not breast fed to limit the duration of HIV exposure to the in-utero and

intrapartum periods. While we restricted our analysis to infants who did not breast

feed, our results equally apply to breast fed populations. By combining data from well

characterized prospective cohorts in the US, we were able to disentangle the effects

of varying types of maternal ARV treatments on the time to test positivity and to

adjust for potential confounders of this association.

Our study has several limitations. First, our dataset did not include a large enough

sample size of infants who received combination ARV therapies as prophylaxis, thus

limiting our evaluation of the effects of infant prophylaxis. Second, we did not have

complete information on timing and duration of antiretroviral treatments to allow

a more in-depth exploration of the duration and type of ARV exposure on DNA

PCR sensitivity. Third, our analysis is likely to be impacted by varying sample
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collection/processing and differences in the types of assays used across studies and

sites.

Our work provides evidence of a significant delay in DNA PCR test positivity in

HIV-infected infants who are exposed to potent combination ARV therapies. Our

findings have implications on the recommended schedule for HIV testing for infants

born to HIV-positive mothers, especially in the current era when cART regimens are

common. The focus of our study was on HIV-infected infants in the US where subtype

B HIV-1 infections are prevalent. Future work on non-B subtype populations and in

breast-fed populations is needed to further inform infant HIV testing guidelines.

Table 2.1. Infants classified by maternal antiretroviral regimen and infant
antiretroviral regimen (N=428).

Maternal antiretroviral regimen
Infant antiretroviral regimen

None ZDV Other

No ARV1 193 5 0
Single NRTI2 54 35 0

sdNVP3+ ZDV4 8 2 0
sdNVP3only 5 1 0

2-3 NRTIs2without sdNVP3 9 2 0
2-3 NRTIs2with sdNVP3 6 2 0

cART5 80 23 3

1 ARV: antiretroviral
2 NRTI: nucleoside reverse transcriptase inhibitors
3 sdNVP: single dose Nevirapine
4 ZDV: Zidovudine
5 cART: combination anti-retroviral therapy, defined as including Non-Nucleoside Re-

verse Transcriptase Inhibitors (NNRTI) and/or Protease Inhibitors (PI)
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Table 2.2. Probabilities of a positive HIV DNA PCR test [95% confidence interval] among HIV-infected non-
breastfed infants by 1,14,30, 42 and 90 days after birth, according to type of maternal antiretroviral regimen.
Results from a unadjusted Weibull PH model.

Maternal ARV Day 1 Day 14 Day 30 Day 42 Day 90

No ARV1

(N=198)
0.29[0.22,0.38] 0.58[0.5,0.66] 0.68[0.58,0.77] 0.72[0.61,0.82] 0.81[0.68,0.91]

Single NRTI2

(N=89)
0.25[0.17,0.35] 0.51[0.39,0.65] 0.6[0.46,0.76] 0.65[0.49,0.8] 0.74[0.56,0.89]

sdNVP3+ ZDV4

(N=10)
0.11[0.03,0.32] 0.25[0.09,0.59] 0.31[0.11,0.69] 0.34[0.13,0.73] 0.42[0.16,0.82]

sdNVP3only
(N=6)

0.28[0.1,0.66] 0.57[0.23,0.93] 0.66[0.29,0.97] 0.7[0.32,0.98] 0.8[0.39,0.99]

2-3 NRTIs2without sdNVP3

(N=11)
0.04[0.01,0.26] 0.1[0.01,0.52] 0.13[0.02,0.62] 0.14[0.02,0.66] 0.18[0.03,0.76]

2-3 NRTIs2with sdNVP3

(N=8)
0.09[0.02,0.34] 0.21[0.06,0.62] 0.27[0.08,0.72] 0.3[0.08,0.76] 0.37[0.11,0.84]

cART5

(N=106)
0.05[0.02,0.09] 0.11[0.06,0.18] 0.14[0.08,0.23] 0.16[0.09,0.25] 0.2[0.12,0.32]

1 ARV: antiretroviral
2 NRTI: nucleoside reverse transcriptase inhibitors
3 sdNVP: single dose Nevirapine
4 ZDV: Zidovudine
5 cART: combination anti-retroviral therapy, defined as including Non-Nucleoside Reverse Transcriptase Inhibitors (NNRTI) and/or

Protease Inhibitors (PI)

Table 2.3. Hazard ratios of time to DNA PCR test positivity by type of maternal
antiretroviral regimen from unadjusted and adjusted Weibull PH models.

Maternal ARV
Unadjusted Model

(N=428)
Hazard Ratio [95% CI]

Adjusted Model*
(N=265)

Hazard Ratio [95% CI]

No ARV 7.49 [4.06-13.81] 5.78 [2.61-12.82]
Single NRTI 6.18 [3.09-12.38] 4.65 [1.95-11.07]

ZDV + sdNVP 2.47 [0.7-8.7] 2.49 [0.67-9.29]
sdNVP only 7.23 [2.04-25.64] 3.5 [0.84-14.52]

2-3 NRTIs without sdNVP 0.9 [0.12-6.89] 1.76 [0.21-14.74]
2-3 NRTIs with sdNVP 2.09 [0.47-9.3] 1.96 [0.37-10.49]

cART 1 (Reference) 1 (Reference)

1 ARV: antiretroviral
2 NRTI: nucleoside reverse transcriptase inhibitors
3 sdNVP: single dose Nevirapine
4 ZDV: Zidovudine
5 cART: combination anti-retroviral therapy, defined as including Non-Nucleoside Reverse Transcrip-

tase Inhibitors (NNRTI) and/or Protease Inhibitors (PI)
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Figure 2.1. Inclusion/exclusion criteria for selecting participants from the PACTS
and WITS cohorts into the analysis dataset.
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Figure 2.2. Probability of a positive HIV-1 DNA PCR test as a function of
age (in days) from birth to 180 days among HIV-infected infants by type of
maternal antiretroviral regimen. Shaded area indicate the 95% confidence
interval. Results from a Weibull PH model without adjusting for confounders.
A: no ARV; B: Single NRTI; C: sdNVP+ZDV; D: sdNVP only; E: 2-3 NRTIs without
sdNVP; F: 2-3 NRTIs with sdNVP; G: cART.
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CHAPTER 3

A MIXTURE MODEL FOR ESTIMATING THE RISK OF
PROSTATE CANCER PROGRESSION AND THE
FRACTION OF INDOLENT CANCER IN ACTIVE

SURVEILLANCE

3.1 Introduction

Active surveillance (AS) has become a widely accepted management strategy for

early-stage prostate cancer to reduce the adverse effects of unnecessary treatment

and offer patients the opportunity to receive effective treatments [12, 29]. Patients

with low-risk prostate cancer do not undergo active treatment immediately but are

assigned to a schedule of regular biopsies and PSA measurements instead to detect

cancer progression. Cancer progression is defined as an upgrade from low-risk to

high-risk.

During the initial diagnosis, patients are classified into either low-risk, who may

benefit from AS, or high-risk, who need to receive immediate treatment. However,

the criteria for determining low-risk cancer in AS are not perfect. A study shows

that the sensitivity and specificity of the diagnostic tests vary largely (8.5–97.9% and

24.7–97.8%, respectively) across 16 AS criteria, which suggests that there may be

nonignorable misclassification at study entry [59]. Individuals already at high-risk

may enter AS due to imperfect enrollment criteria at baseline, and be diagnosed with

high-risk cancer during surveillance. Hence, prostate cancers monitored through AS

are potentially heterogeneous consisting of (undetected) high-risk cancer at the time

of diagnosis (i.e., prevalent cases) and truly low-risk at baseline.
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Furthermore, among the non-prevalent cases, there are slow-growing cancers that

remain indolent indefinitely. An autopsy study shows that some latent prostate tu-

mors may not be progressive throughout the life span [74]. It is important to account

for this cancer heterogeneity when studying the risk of prostate cancer progression in

AS. Since the types of cancer – prevalent case, slow-growing but progressive cancer,

and indolent cancer – are often unobserved, modeling time to progression cannot be

done by applying conventional survival models.

A commonly used approach to account for unobserved heterogeneity in the pop-

ulation is the mixture model. In this paper, we consider extending the mixture cure

model, which consists of two components – a survival model for susceptible subjects

and a cure rate model for non-susceptible subjects. Several parametric mixture cure

models have been proposed [5, 19, 58]. However, parametric mixture models are not

robust when the underlying distribution is mis-specified. [37] proposed a generalized

semiparametric model with a logistic regression model combined with the propor-

tional hazards (PH) specification for survival time, which was developed on the basis

of [19]. The semiparametric mixture cure models using the PH model [60, 70, 18, 30],

the accelerated failure time model [77] or the proportional odds model [43] have been

extensively studied for modeling the association between the event time and the risk

factors. For estimating the risk of cancer progression in AS, the existing mixture

cure models need to be further extended to incorporate the proportion of undetected

prevalent cases (i.e., the misclassification rate at entry) as well as those who remain

indolent.

Beyond its heterogeneity survival data nature, another challenging is that the

onset of cancer progression cannot be directly observed for susceptible group. We

can only know the occurrence of cancer progression happens between the last time

subjects test to be low-risk and the first time subjects are in high-risk, which is char-

acteristic as interval-censored. Mixture models have been investigated with respect to
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interval censoring outcomes. A semiparametric model was proposed in the presence

of non-susceptible group for case I interval censored (current status) data [38]. [45]

studied mixture cure model under case II interval censored obtained from a sequence

of examinations. [8] proposed semiparametric transformation mixture cure models for

interval-censored data to describe distribution of non-susceptilbe rate and event time

for susceptible group. However, none of these methods account for time-dependent

covariates.

In addition to the heterogeneity of cancer, there are additional features of the data

collected in AS that introduce challenges in modelling cancer progression. Individuals

under AS follow predetermined protocols including regular clinical visits, prostate-

specific antigen (PSA) measurements and repeated biopsies to detect prostate cancer

progression. Prostate cancer progression is usually detected by an increase in tumor

grade or volume on biopsy. Because cancer grades are evaluated through biopsy at

scheduled visits, cancer progression time is not directly observed, but only known

to lie between the previous visit (i.e., when the individual last tests negative) and

the current visit at which the individual are classified as high-risk. Hence, the time

to progression is interval-censored. In the literature, mixture models have been in-

vestigated for interval-censored outcomes. A semiparametric model was proposed in

the presence of non-susceptible group for case I interval-censored (i.e., current sta-

tus) data [38]. [45] studied the mixture cure model under case II interval-censored

data obtained from a sequence of examinations. [8] proposed semiparametric trans-

formation mixture cure models for interval-censored data to model the distribution

of non-susceptible rate and the event time distribution for susceptible group. These

approaches, however, cannot be applied to data collected in AS, even after incorpo-

rating the prevalent cases because the test results at each visit may not be accurate.

In existing studies, the sensitivity and specificity of prostate biopsy ranged between

8.5–97.9% and 24.7–97.8%, respectively [59].
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In this paper, we propose a semiparametric likelihood-based approach which is

established relying on the work of [26] to handle interval-censored observations while

incorporating the misclassification rates of biopsy. We construct the likelihood based

on a mixture model with mixing parameters for the prevalence rate at baseline and

the fraction of indolent cancer, and the survival model for cancer progression. The

model allows us to estimate the risk of cancer progression accounting for prevalent

and indolent cases, and the fraction of indolent cancer in AS.

The organization of this paper is as follows. In Section 2, we introduce the model,

the likelihood function and the semiparametric maximum likelihood estimation for

interval-censored data with misclassification. In Section 3, we simulate data and

evaluate the performance of the proposed approach under various settings. We further

assess how the proposed approach performs when the fraction of indolent cancer is

ignored and when incorporating time-varying covariates. In Section 4, we apply

the proposed method to data from the Canary Prostate Active Surveillance Study

cohort[53] for estimating the risk of cancer progression among early-stage prostate

cancer patients. We make conclusion and remarks in Section 5.

3.2 Methods

3.2.1 The mixture model

To account for potential cancer heterogeneity (i.e., prevalent, progressive and in-

dolent cancers), we assume a mixture model that extends the two-component mixture

cure model [19]. In our mixture model, we model (1) factors that are associated with

the risk of cancer progression and (2) the fraction of indolent cancer adjusting for co-

variates, while incorporating the proportion of prevalent cases undetected at baseline.

Let random variable T denote the time from prostate cancer diagnosis to cancer pro-

gression with a survival function S(t | zzz), whereZZZ is a p×1 vector of covariates for pro-

gressive cancer. Without loss of generality, we set T ∗ = v ·0+(1−v){(1−c)·T+c·∞},
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where v and c are the indicators of prevalent case and indolent cancer, respectively.

Then, T ∗ = 0 for prevalent cases (v = 1) and T ∗ =∞ when cancer is indolent indef-

initely (c = 1). We consider a mixture model for the marginal survival function in

the form as follows:

Pr(T ∗ > t;xxx,zzz) = (1− η){(1− π(xxx)) Pr(T ∗ > t | v = 0, c = 0) + π(xxx)}

= (1− η){(1− π(xxx))S(t | zzz) + π(xxx)},

where η is the probability of being prevalent at baseline and π(xxx) is the probability of

indolent cancer with XXX being a d× 1 vector of covariates associated with the fraction

of indolent cancer. Alternatively, the model can be rewritten as

Pr(T ∗ ≤ t;xxx,zzz) = η + (1− η)(1− π(xxx)){1− S(t | zzz)},

which is the cumulative risk. We note that Pr(T ∗ > t) and Pr(T ∗ ≤ t) are improper

mixture distributions with a mixing parameter η (i.e., the prevalence rate at baseline),

a mixing proportion π(xxx) (i.e., the indolent fraction), and the following component

distributions: Pr(T ∗ > t | v = 1) = 0, Pr(T ∗ ≤ t | v = 1) = 1, Pr(T ∗ > t | v = 0, c =

1) = 1, and Pr(T ∗ ≤ t | v = 0, c = 1) = 0 as well as Pr(T ∗ > t | v = 0, c = 0) = S(t |

zzz) and Pr(T ∗ ≤ t | v = 0, c = 0) = 1− S(t | zzz).

In the mixture model, we assume that the fraction of indolent cancer is associated

with the covariates through a logit link as

logit(π(xxx)) = x̃xx>ααα,

where x̃xx = (1,xxx>)> and ααα = {α0, α1, . . . , αd} is a (d + 1) × 1 vector of coefficients

including the intercept. For modelling the risk of cancer progression, we assume a
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Cox proportional hazards (PH) model. Given covariates ZZZ, the survival function of

progressive cancer is

S(t | zzz) = S0(t)exp(zzz>βββ), (3.1)

where S0(·) is the baseline survival function and βββ is a p× 1 vector of coefficients.

3.2.2 Data, likelihood and estimation

In active surveillance, individuals, who were diagnosed with low-grade prostate

cancer, including prevalent cases who were misclassified as low-grade at baseline, enter

the program and undergo periodically scheduled biopsies to detect cancer progression.

At each visit for biopsy, we observe whether each individual tested positive (i.e., high-

grade cancer) or negative (i.e., low-grade). Therefore, time to cancer progression T

is subject to interval-censoring and not observed directly.

Let N be the number of individuals in the study and ni be the random variable

denoting the number of each individual’s visits, i = 1, . . . , N . For the ith individual,

we let ttti = {ti1, . . . , tini
} denote the sequence of visit times. Individuals continue

to visit for scheduled biopsy until they test positive or the end of study. Hence, we

observe a sequence of test results, RRRi = {ri1, . . . , rini
}, at corresponding visit times

ttti where rik = 0 for k = 1, . . . , (ni − 1) and rini
can either be 0 or 1 indicating neg-

ative and positive test results, respectively. The interval-censored time lies between

(ti(ni−1), tini
) when rini

= 1. When rini
= 0, time to progression is right-censored at

tini
. We assume that ttti is independent of T ∗i , which implies that the individual follows

the regular examination schedule regardless of cancer grade.

We denote the observed data as OOO = {OOOi = (RRRi, ttti, ni,XXX i,ZZZi), i = 1, . . . , N}. Let

τ1, . . . , τJ be the distinct, ordered visit times among all {ttti, i = 1, . . . , N}, where

0 = τ0 < τ1 < · · · < τJ < τJ+1 = ∞ and [0, τ1), [τ1, τ2), . . . , [τJ ,∞) become J + 1
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disjoint intervals. Then, the conditional probability of the observed data given the

covariates (XXX i,ZZZi) for the ith individual is

g(RRRi, ttti, ni |XXX i,ZZZi) =
J+1∑
j=1

Pr(τj−1 < Ti ≤ τj |XXX i,ZZZi) (3.2)

× Pr(RRRi, ttti, ni | τj−1 < Ti ≤ τj,XXX i,ZZZi).

Following [26], we assume that

Pr(RRRi | Ti, ttti,XXX i,ZZZi) =

ni∏
k=1

Pr(rik | Ti, tik,XXX i,ZZZi).

This assumes that the sequence of biopsy tests are independent given individual’s

time to progression. Based on the derivation provided in the Appendix of [3], the

probability in Equation (3.2) can be further simplified as:

g(RRRi, ttti, ni |XXX i,ZZZi) =
J+1∑
j=1

Pr(τj−1 < Ti ≤ τj |XXX i,ZZZi)ωij,

where ωij =
∏ni

k=1 Pr(rik = 1 | τj−1 < Ti ≤ τj, tik,XXX i,ZZZi).

3.2.2.1 Biopsy misclassification during surveillance

Biopsy tests at regularly scheduled visits during surveillance are also imperfect

as the initial diagnostic test. Let δ1 and δ0 denote the sensitivity and specificity of

biopsy. We assume that the probability of testing positive given the progression time

is independent of the covariates, which leads to

Pr(rik = 1|τj−1 < Ti ≤ τj, tik,XXX i,ZZZi) = Pr(rik = 1|τj−1 < Ti ≤ τj, tik)

=


δ1, tik ≥ τj

1− δ0, tik ≤ τj−1

.

46



In Equation (3.1), for the baseline survival function, we assume that

S0(t) = S0(τj−1) for τj−1 ≤ t < τj,

j = 1, . . . , J + 1, and let Sj = S0(τj−1). This leads to 1 = S1 > S2 > · · · > SJ+1 > 0,

among which {Sj, j = 2, . . . , J + 1} are the unknown parameters. Then, for the ith

individual,

Pr(τj−1 < Ti ≤ τj |XXX i,ZZZi) = (Sj)
exp(zzz>i βββ) − (Sj+1)exp(zzz>i βββ).

It follows that the conditional probability in Equation (3.2) can be rewritten as

g(RRRi, ttti, ni |XXX i,ZZZi) =
J+1∑
j=1

{(Sj)exp(zzz>i βββ) − (Sj+1)exp(zzz>i βββ)}ωij

=
J+1∑
j=1

Dij(Sj)
exp(zzz>i βββ),

where Dij is the (i, j)th element of the matrix DDD = ΩΩΩTrTrTr, in which ΩΩΩ = (ωij)N×(J+1)

and

TrTrTr =



1 −1 0 · · · 0 0

0 1 −1 · · · 0 0

...
. . .

...

...
. . .

...

0 0 0 · · · 1 −1

0 0 0 · · · 0 1


(J+1)×(J+1)

,

for i = 1, . . . , N and j = 1, . . . , J, J + 1. We note that Dij’s incorporate the constant

sensitivity and specificity rates of biopsy, δ1 and δ0, respectively, in their functions of

the visit times and the corresponding test results.
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Let θθθ = (ααα>,βββ>,SSS>)>, where SSS = (S2, . . . , SJ , SJ+1)> be the set of unknown

parameters. Then, the likelihood for the ith individuals is

Li(θθθ) ∝ g(RRRi, ttti, ni |XXX i,ZZZi) =
J+1∑
j=1

Dij(Sj)
exp(zzz>i βββ).

Note that the likelihood is constructed for susceptible individuals who have slow-

growing but progressive cancer.

3.2.2.2 Prevalent cases and indolent cancer

Let b denote the diagnostic test result at baseline where b = 0 indicates low-grade

cancer (i.e., negative). Since only individuals testing negative enter the surveillance

program, everyone under surveillance has b = 0. Then, for η which represents the

proportion of prevalent cases in the study in Section 3.2.1, we can define it as η =

Pr(v = 1 | b = 0), where v indicates the true cancer grade at baseline. We assume

that Pr(vi = 1 | bi = 0) = Pr(vi = 1 | bi = 0,XXX i,ZZZi), i.e., the probability of prevalent

cases is independent of the covariates. For the ith individual, the likelihood is

Li(θθθ) ∝Pr(RRRi, ttti, ni | bi = 0,XXX i,ZZZi)

=η Pr(RRRi, ttti, ni | vi = 1, bi = 0,XXX i,ZZZi)

+ (1− η) Pr(RRRi, ttti, ni | vi = 0, bi = 0,XXX i,ZZZi).

We assume that individuals who are truly negative and test negative at baseline

are random samples of the population who are truly negative at baseline. To further

incorporate the fraction of indolent cancer among those who are truly negative (i.e.,

vi = 0), we re-express π(xxx) in Section 3.2.1 as π(xxx) = Pr(c = 1 | v = 0, b = 0,xxx) =

48



Pr(c = 1 | v = 0,xxx) by the aforementioned assumption. For the ith individual, the

likelihood becomes

Li(θθθ) ∝η Pr(RRRi, ttti, ni | vi = 1, bi = 0,XXX i,ZZZi)

+ (1− η) {(1− π(xxxi)) Pr(RRRi, ttti, ni | vi = 0, ci = 0,XXX i,ZZZi)

+π(xxxi) Pr(RRRi, ttti, ni | vi = 0, ci = 1,XXX i,ZZZi)}

=ηDi1S1 + (1− η)

{
(1− π(xxxi))

J+1∑
j=1

Dij(Sj)
exp(zzz>i βββ) + π(xxxi)Di(J+1)

}
.

Then, the log likelihood for N individuals is

`(θθθ) ∝
N∑
i=1

log

[
ηDi1S1 + (1− η)

{
(1− π(xxxi))

J+1∑
j=1

Dij(Sj)
exp(zzz>i βββ) + π(xxxi)Di(J+1)

}]
.

(3.3)

The gradient function of log likelihood presented in Equation (3.3) is in Supple-

ment (C.1.1).

3.2.2.3 Time-varying covariates

Suppose ξi(τj) is the subject specific time-varying covariates measured at τj and

assume it’s constant during the interval [τj, τj+1). Let Pi(t) = (ξi(t),Zi) be the design

matrix including both time-varying and time-invariant covariates (Zi) that related

to survival times. Let Λj and Λj exp(Pi(τj)
>β) be the cumulative hazards during

interval [τj, τj+1) for baseline group and the other group, respectively. The survival

function for subject i at τj−1 can be expressed as

S
(i)
j = exp

(
−

j−2∑
l=0

Λl exp(Pi(τl)
>β)

)
, j = 2, . . . , J + 1. (3.4)
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Let γγγ = (ααα>,βββ>,Λ0,Λ1, . . . ,ΛJ−1)> be the unknown parameters. The log likeli-

hood function with time-varying covariates can be written as

`(γγγ) ∝
N∑
i=1

log

[
ηDi1 + (1− η)

{(
1− πi(xxxi)

) J+1∑
j=1

Dij exp

(
−

j−2∑
l=0

Λl exp(Pi(τl)
>β)

)

+ πi(α)Di(J+1)

}]
. (3.5)

The gradient function of log likelihood presented in Equation (3.5) is in Supple-

ment (C.1.2).

3.2.2.4 Estimation

To estimate parameters θθθ and γγγ, we directly maximize the log likelihood functions

presented in Equation 3.3 and 3.5 with the constraints 1 = S1 > S2 > · · · > SJ+1 >

0 and Λj > 0 for models with the time-invariant covariates and the time-varying

covariates, respectively.

The algorithm is implemented using R package, constrOptim [64], by which we

can set a feasible region for each parameter and search the interior of that region

with constraints. The standard error of the point estimates can be obtained either

asymptotically or by the bootstrap method. The asymptotic standard deviation is

derived using the estimated covariance matrix, which is the inverse of the Hessian

matrix, and the bootstrap standard error by resampling the dataset with replacement.

The odds ratio of indolent cancer and the hazard ratio of cancer progression, which

are expressed by exp(ααα) and exp(βββ), represent how likely individuals with low-risk

cancer in a certain group have indolent cancer compared to the reference and how

often individuals with low-risk cancer in a certain group experience cancer progression

compared to the reference, respectively.
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3.3 Simulation

We conduct simulation studies to assess the performance of the proposed approach

accounting for (1) the proportion of prevalent cases (i.e., misclassification at study

entry); (2) the fraction of indolent cancer; (3) biopsy misclassification (i.e., sensitivity

and specificity of biopsy); and (4) the presence of time-varying covariates. Under

various settings, we examine the bias and the standard deviation of the estimates,

the standard errors, and the coverage probabilities.

We simulate 1000 data sets with N = 1000 subjects each. We assume that all

subjects are assigned to the same fixed sequence of visit times (τ1, . . . , τJ), where

0 = τ0 < τ1, . . . , τJ < ∞. We set J = 6 and the visit times to be τ1 = 0.5, τ2 =

1, τ3 = 2, τ4 = 4, τ5 = 6, τ6 = 10 to mimic the protocol of the Canary Prostate Active

Surveillance Study (PASS) [54].

3.3.0.0.1 Simulating event time with time-invariant covariate We simulate

a covariate Z from a standard normal distribution. Under the setting where the

covariate is time-invariant, we generate event times from an exponential distribution

T ∼ Exp(λ), where λ = λ0 × exp(Z>β) assuming a Cox PH model for time to

progression.

3.3.0.0.2 Simulating event time with time-varying covariate To consider

time-varying covariates, we generate ξξξi(t) for subject i by simulating J random vari-

ables from Uniform(0, 1), and sorting them in increasing orders to correspond to

the covariate values at each visit ξξξi = {ξi(τ1), . . . , ξi(τJ)}. We then combine the

time-varying covariate ξi(τj) and the time invariant covariate Zi and denote it as

PPP i(τj). For subject i, the hazard rate at τj is λij = λ
(0)
j exp(PPP i(τj)

>βββ), where

λ
(0)
j is the baseline hazards at τj for j = 1, . . . , J , and βββ = {β(Z), β(ξ)} is a vec-

tor of the regression coefficients for time-invariant and time-varying covariates, re-

spectively. The cumulative hazard function during interval [τj, τj+1) is derived as
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Λ∗ij = λ
(0)
j exp(PPP i(τj)

>βββ)× (τj+1 − τj). Let Λ
(0)
j = λ

(0)
j × (τj+1 − τj). The correspond-

ing cumulative hazard function at τj can be written as Λij =
∑j−2

l=0 Λ
(0)
l exp(PPP i(τl)

>βββ).

The event times Ti can be generated as follows

Ti =



− logUi

λ∗i1
if 0 < − logUi < Λi1

τik + (− logUi−Λik)
λ∗
i(k+1)

if Λik ≤ − logUi < Λik+1, 1 ≤ k < J

τiJ + (− logUi−ΛiJ )
λ∗iJ

if − logUi ≥ ΛiJ ,

where Ui is randomly simulated from Uniform(0, 1).

3.3.0.0.3 Misclassification at study entry In Section 3.2.2.2, we define η to

represent the proportion of prevalent cases. By definition, it follows that 1 − η is

the baseline negative predictive value, which is the probability of being truly low-risk

given that they were tested low-risk at baseline. If baseline diagnostic test perfectly

screens those who are low-risk, η = 0. For each subject i, we simulate a binary

random variable κmi from a binomial distribution with probability η. If κmi = 1, we

replace event time Ti with 0, for i = 1, . . . , N .

3.3.0.0.4 Fraction of indolent cancer For each subject i, we assume the proba-

bility of having indolent cancer is π(xi) = exp(xxxi
>ααα)

1+exp(xxxi>ααα)
, where xxxi = {1, xi}, ααα = (α0, α1)

and xi is randomly sampled from a standard normal distribution. We prepecify pcure

as the overall probability of being event-free indefinitely. We select ααα that satisfies

the overall probability pcure = 1
N

∑N
i πi(±xi). We generate the indicator of indolent

cancer κci for each subject i from a binomial distribution with probability π(xxxi)). If

κci = 1, we replace event time Ti with ∞, for i = 1, . . . , N .

3.3.0.0.5 Biopsy misclassification during surveillance We pre-specify the

sensitivity and specificity of biopsy, δ1 and δ0. Let R∗ij be the true cancer status for

each subject i at visit time τj, which can be determined by the generated cancer
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progression time Ti. We set R∗ij = 0 if T > τj indicating a true low-grade cancer, and

R∗ij = 1 otherwise indicating a true high-grade cancer. We generate test results Rij

accounting for the sensitivity and specificity rates of biopsy given the true status. If

R∗ij = 1, then Rij is simulated from a binomial distribution with probability δ1. If

R∗ij = 0, then Rij is randomly sampled from a binomial distribution with δ0.

3.3.0.0.6 Scenario I First, we assess the performance of our proposed mixture

model under varying levels of indolent cancer fraction. We set pcure to 1%, 20%

and 50%, which correspond to small, median and large proportion of indolent cancer

among those who are not prevalent, respectively. Additionally, we set β = 0.7, the

misclassification rate at entry η = 0.2, the sensitivity rate δ1 = 0.8, and the specificity

rate δ0 = 1. We compare our proposed mixture model with the model proposed in [26]

which doesn’t account for the fraction of indolent cancer. We summarize the point

estimates and compute the coverage probabilities based on asymptotic standard errors

and bootstrap standard errors.

3.3.0.0.7 Scenario II To test the robustness of the proposed approach, we con-

sider a setting where there is no indolent cancer. Under this scenario, we set pcure = 0

and keep all other parameters the same as Scenario I.

3.3.0.0.8 Scenario III Lastly, we consider a time-varying covariate in the model

and evaluate the performance of the proposed approach. We apply our semiparametric

approach presented in Section 3.2.2.3. The asymptotic standard errors of βββ are derived

by the delta method [16].

3.3.1 Results

In Table 3.1, we compare our semiparametric mixture cure model with a non-

mixture model[26] which ignoring the fraction of indolent cancer under very small

(1%), median (20%) and large (50%) proportion of indolent cancer in the simulate
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data. We report both asymptotic standard deviation and bootstrap standard error

and corresponding 95% coverage probability for our proposed method. In table of

small proportion of indolent cancer, the covariate effect β for Cox PH model (Equation

3.1) is 0.7028 (95% CI: 96.24%, 97.1%-BS) and 0.6678 (95% CI: 90.1%) in proposed

model and non-mixture model. The baseline survivals estimates at visit time 0.5, 1,

and 2 from both models are quite accurate compared to the truth and 95% CI are all

around 95%. While at visit time 4, 6 and 10, the survival estimates from non-mixture

model are getting more and more biased with 95% CI decreasing to 91.51%, 88.41%

and 76.1%, respectively. Table of median indolent cancer shows that the estimate

of covariate effect β from non-mixture model is underestimated (0.41, Truth: 0.7)

with a 0.21% coverage probability. The only accurate estimate is the survival at visit

time 0.5, while the rest of survival estimates overestimate the truth with very low

coverage probabilities (79.32%, 24.31%, 0%, 0%, 0%). As fraction of indolent cancer

increasing to 50%, all of the estimates from non-mixture model overestimate the truth

and coverage probability are all below 1%. This is because the non-mixture model

treating all indolent cases into incident cases, so more subjects categorized in the risk

set render an overestimate of baseline survivals.

Table 3.2 presents the results under no indolent cancer scenario. The Proposed

model as a more general form can handle this scenario as well as the non-mixture

model. The coverage probability of all estimates are around nominal 95% which

indicates a goodness of fit.

We also report standard deviation and coverage probability based on both asymp-

totic and bootstrap method. The results are overall comparable, though bootstrap

standard error is slightly larger than asymptotic one, resulting in a relative conser-

vative coverage probability. We think this might due to local variation in the data

[4].
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In Table 3.3, we show the results from proposed semiparametric mixture cure

model by incorperating time-varying covariates in Cox model. Point estimates are

very close to the truth. Standard error from both methods are in consistency. The

coverage probabilities from both methods are well aligned. The survival estimate at

visit time 10 is small and the standard deviation are relative large, causing a slightly

off coverage probability (9̃0%), although still acceptable. This might be because

there’s very few subject fall into the last interval.

3.4 Application

The Canary Prostate Active Surveillance Study (PASS) [54] enrolled 1067 partic-

ipants during 2008-2013. The eligibility criteria included confirmed prostate cancer

with clinical stage T1-2, no previous treatment and either a ≥ 10-core biopsy within

one year before enrollment or ≥ 2 biopsies one of which was within 2 year before

enrollment. Participants measured PSA every 4 months and repeated biopsy 0.5,

1, 2, 4, 6 years after diagnosis. After exclusions, there were 652 patients with no

progression at study entry, at least one follow-up biopsy and PSA after study begins

included in the dataset. There were 428 (65.64%) of participants censored and the

median follow-up time was 2 (IQR:1-3.45) years. The median of biopsy and PSA

frequencies per patient were 1 (IQR: 1-2) and 8 (IQR: 4-14) respectively.

Demographics of cohorts are summarized in Table 3.4. Median age at diagnosis

was 63 (IQR: 58-67). Median PSA during follow-up was 4.65 ng/mL (IQR:3.15-

6.39). 91% of participants were white. Most participants were in clinical T1 stage

(88%), didn’t assess lymph nodes to cancer (NX=97%), didn’t evaluate metastasis

(MX=97%) at baseline. Figure 3.1 shows PSA changing overtime, where PSA from

progression-free group (N=428) are more variant than progression group (N=224).

For identifiability of the model parameters, we kept PSA records after the last biopsy

visit because sufficient follow-ups can help yield unbiased results [17]. For those with
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PSA missing at some visit times, we used the PSA level at previous visit. To improve

convergence, we centered all continuous variables.

We are interested in the risk factor of prostate cancer progression from low-risk to

high risk and the fraction of indolent cancer in the AS cohort. Figure 3.2 shows the

nonparametric maximum likelihood estimates (NPMLE) [72, 23] of survivals for dif-

ferent categories ignoring indolent cancer. For example, survival curve of age greater

than 63 year-old group levels off to a non-zero plateau after 5 years which counts for

24 (8.79%) participants. Since this long flat tail may indicate a presence of indolent

cancer, we use the mixture model to account for the unobserved cancers that remain

indolent.

We fit a mixture model with age and median PSA and adjust for one covariate each

time to check the significance of covariates using likelihood ratio test (See Table 3.4).

Race (pvalue=0.41), clinical T stage (pvalue=0.33), clinical N stage (pvalue=0.12),

clinical M stage (pvalue=0.11) are all insignificant, hence they are not incorporated

into the final model. We assume independent censoring, that is, patients’ dropout is

independent of their progression status. Our final model includes diagnostic age and

median PSA into logistic regression model to account for the indolent cancer based on

preliminary studies [69], and age and time-dependent variable PSA to estimate sur-

vivals. We use a step function to model time-varying covariate which assumes that the

values of the time-varying covariate are constant in each time interval. To investigate

the impact of imperfect biopsy test (i.e., misclassification rate during surveillance),

we consider a range of biopsy sensitivity of 90%, 80%, 70%, and specificity of 90%,

following the literature [31, 65]. The misclassification rate at entry η is set to be

equal to 1 minus the negative predictive value (PPV). We set the prevalence (biopsy

upgrade rate among patients eligible to active surveillance) to be 0.579 [1]. Then η

can be obtained by the following formula,
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η = 1− PPV = 1− Specificity × (1− Prevalence)
Specificity × (1− Prevalence) + (1− Sensitivity)× Prevalence

The standard errors and the 95% confidence intervals of the estimates are calcu-

lated through 100 bootstrap resampling.

The estimated coefficients, bootstrap standard errors, P-values, odds ratio (OR)

or hazard ratio (HR), and the overall indolent cancer rate are reported in Table

3.5. In the logistic regression for indolent caner rate, there are no covariates with

significant impact on the fraction of indolent cancer. For progressive cancer, Age at

Diagnosis is significant with HR=9.08 (95% CI: 2.5-32.92) for sensitivity (δ1)=0.9

and specificity (δ0)=0.9, HR=6.79 (95% CI: 1.34-34.46) for δ1 = 0.8 and δ0 = 0.9,

indicating that among those who will eventually progress to high risk, older subjects

can have a higher risk than younger subjects, however, it becomes insignificant with

HR=5.03 (95% CI: 0.79-32.22) when δ1 = 0.7 and δ0 = 0.9. PSA is not significantly

associated with grade progression, which is consistent with findings in prior studies

[66]. The predicted overall probability of indolent cancer ranges from a median of

50.04% to 57.51% with respect to different sensitivity and specificity assumptions,

which is closed to a report of 55% in a 15-year follow-up Canadian active surveillance

study [35]. As sensitivity decreases, the model tends to overestimate the fraction of

indolent cancer.

3.5 Conclusion

Prior studies that estimate the risk of prostate cancer progression in active surveil-

lance have not considered the fraction of indolent cancer. It has been shown that some

low-risk participants in the AS program do not experience a progression to high-risk

even after a long follow-up [32], which indicates the potential mixture of progressive

and indolent cases in prostate cancer. Ignoring the presence of indolent cancer would

lead to an underestimation of the risk of cancer progression.
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This paper inherits the most commonly used framework for modeling interval cen-

sored survival outcome in a heterogeneous population. We extend the semiparametric

mixture cure model to incorporate misclassification at entry, imperfect diagnostic tests

and time-varying covariates. The proposed mixture model have three components,

a mixing parameter for prevalent cases, a logistic regression model for the indolent

cancer, and a semiparametric Cox PH model with a piecewise constant baseline haz-

ard function to model time to progression. Our simulation results indicate that the

proposed model provides satisfactory results under a large range of indolent cancer

fraction given the sensitivity and specificity. However, the model tends to overesti-

mate the indolent fraction when sensitivity is too low. The reliability of the estimates

is conditional on reasonable assessment of the sensitivity and specificity.

Another limitation is that although our model can handle irregular visits, our

NPMLE-type of estimation suffers from computational complexity as there are no

closed form. Moreover, with too many distinct intervals, some Λj’s in Equation

3.5 become zero and result in convergence issue. To circumvent these problems, we

rounded the visit times to integers in the application. Further work is needed to refine

the current proposed method, for example, by incorporating a penalized likelihood

function which only retain the non-zero intervals [33]. It might also be interesting to

modify our estimation approach to an efficient EM-type algorithm which estimates

the Λj as weighted sums of Poisson rates [76].

A key assumption we made in this article is independent censoring. We assume

that the time of censoring such as individual’s dropout is independent of cancer

progression or the underlying health condition. However, this assumption may be vi-

olated in the case where patients decide to receive treatment without testing positive

due to an increasing PSA level. Ignoring dependent censoring may lead to biased esti-

mates. The current framework can be extended by using a class of Archimedean cop-
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ula models [51, 40, 44] or using an inverse probability of weighted censoring (IPWC)

to derive unbiased estimator to account for dependent censoring [67, 49, 57].

Table 3.1. Results for Very small (1%), Median (20%) and Large (50%) indolent
cancer. We compare estimates from the proposed semiparametric mixture cure model
and a non-mixture model. β is the log(Hazard Ratio) of time-invariant covariate.
S0.5, . . . , S10 are survivals at visit time 0.5, . . . , 10.

Parameter True
Estimate (Std, StdBS) Coverage Probability

Proposed Model Non-Mixture Model Proposed ProposedBS Non-Mixture Model

1% of indolent cancer

β 0.7 0.7028 (0.0583,0.0612) 0.6678 (0.0545) 0.9624 0.971 0.9006
S0.5 0.9048 0.9009 (0.0173,0.0318) 0.9033 (0.0169) 0.9436 0.9679 0.9472
S1 0.8187 0.8154 (0.0188,0.0324) 0.8183 (0.0182) 0.9426 0.9627 0.9462
S2 0.6703 0.6667 (0.0216,0.0319) 0.6729 (0.0205) 0.9572 0.9772 0.9524
S4 0.4493 0.4475 (0.0235,0.029) 0.4598 (0.0212) 0.9489 0.9752 0.9151
S6 0.3012 0.2986 (0.0227,0.0266) 0.3162 (0.019) 0.953 0.9752 0.8841
S10 0.1353 0.1332 (0.0201,0.0215) 0.1542 (0.015) 0.9426 0.942 0.7609

20% of indolent cancer

β 0.7 0.7025 (0.0676,0.0702) 0.4146 (0.0515) 0.9488 0.9606 0.0021
S0.5 0.9048 0.9035 (0.0202,0.0297) 0.9095 (0.0182) 0.9606 0.9872 0.9446
S1 0.8187 0.8171 (0.0218,0.0308) 0.8369 (0.0182) 0.9318 0.9616 0.7932
S2 0.6703 0.6701 (0.0249,0.0318) 0.7233 (0.0195) 0.9478 0.968 0.2431
S4 0.4493 0.4488 (0.0271,0.0308) 0.5671 (0.0203) 0.9499 0.9723 0
S6 0.3012 0.3009 (0.0264,0.029) 0.4688 (0.0195) 0.9595 0.9755 0
S10 0.1353 0.1366 (0.0241,0.0253) 0.3587 (0.0184) 0.9638 0.9638 0

50% of indolent cancer

β 0.7 0.7114 (0.0926,0.0984) 0.2557 (0.0647) 0.9676 0.9708 0
S0.5 0.9048 0.9045 (0.0271,0.0298) 0.9437 (0.0182) 0.9468 0.9687 0.4311
S1 0.8187 0.8202 (0.0292,0.0319) 0.8999 (0.0175) 0.9457 0.9697 0.0042
S2 0.6703 0.6723 (0.0332,0.0356) 0.8313 (0.0184) 0.9384 0.9551 0
S4 0.4493 0.4497 (0.0365,0.0381) 0.7404 (0.0194) 0.953 0.9656 0
S6 0.3012 0.3002 (0.0362,0.0379) 0.6841 (0.0195) 0.9363 0.9363 0
S10 0.1353 0.1335 (0.034,0.0352) 0.6212 (0.0196) 0.9301 0.9468 0

Table 3.2. Results from 1000 simulation with 500 bootstrap each, where there’re
1000 subjects, None of which have indolent cancer. We compare estimates from the
proposed semiparametric mixture cure model and a non-mixture model. β is the
log(Hazard Ratio) of time-invariant covariate. S0.5, . . . , S10 are survivals at visit time
0.5, . . . , 10.

Parameter True
Estimate (Std, StdBS) Coverage Probability

Proposed Model Non-Mixture Model Proposed ProposedBS Non-Mixture Model

β 0.7 0.7097 (0.0561,0.0584) 0.7001 (0.0547) 0.9355 0.9369 0.9317
S0.5 0.9048 0.9022 (0.0171,0.0326) 0.9041 (0.0168) 0.9602 0.9911 0.9546
S1 0.8187 0.8163 (0.0187,0.0337) 0.8186 (0.0182) 0.9209 0.9734 0.9233
S2 0.6703 0.6662 (0.0215,0.0328) 0.6692 (0.0206) 0.9177 0.9791 0.9144
S4 0.4493 0.4423 (0.0229,0.029) 0.4473 (0.0213) 0.9245 0.9588 0.9311
S6 0.3012 0.2937 (0.0213,0.0255) 0.3008 (0.019) 0.9528 0.9609 0.9343
S10 0.1353 0.1271 (0.0175,0.019) 0.1349 (0.0143) 0.9132 0.9218 0.9358
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Table 3.4. Baseline Characteristics for time-invariant covariates

Variable N = 652 LRT P-value
Age at Diagnosis 63 (58, 67) -
median PSA, ng/mL 4.65 (3.15, 6.39) -
Race 0.41

White 596 (91%)
Other 56 (8.6%)

Clinical T Stage 0.33
cT1(cT1a, cT1b) 576 (88%)
cT2(cT2a, cT2b) 76 (12%)

Clinical N Stage 0.12
NX 634 (97%)
N0 18 (2.8%)

Clinical M Stage 0.11
MX 633 (97%)
M0 19 (2.9%)

1 Median (IQR); n (%)

Table 3.3. Results from 1000 simulation with 500 bootstrap each, where there’re
1000 subjects, 20% of which have indolent cancer. {α0, α1, α2} are intercept
and slopes from logistic regression for indolent cancer population. β is the
log(Hazard Ratio) of time-invariant covariate and βt is the log(Hazard Ratio) of time-
variant covariate. S0.5, . . . , S10 are survivals at visit time 0.5, . . . , 10.

Parameter True Estimate
Std Coverage Probability

Asymptotic Bootstrap Asymptotic Bootstrap

α0 -2.4488 -2.4788 0.2658 0.2887 0.9537 0.9623
α1 -1.1857 -1.2074 0.1819 0.1931 0.9623 0.9763
α2 2.4721 2.4964 0.2780 0.2992 0.9483 0.9591
β 0.7000 0.7046 0.0677 0.0696 0.9634 0.9644
βt 1.2000 1.2116 0.3424 0.3508 0.9418 0.9418
S0.5 0.9048 0.9042 0.0189 0.0191 0.9547 0.9537
S1 0.8187 0.8193 0.0238 0.0240 0.9569 0.9591
S2 0.6703 0.6689 0.0385 0.0392 0.9397 0.9450
S4 0.4493 0.4490 0.0602 0.0609 0.9246 0.9203
S6 0.3012 0.3004 0.0691 0.0690 0.9278 0.9343
S10 0.1353 0.1414 0.0647 0.0646 0.8987 0.9041
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Table 3.5. Analysis of 652 patients in PASS cohort. Estimates of covariates of
interest are based on sensitivity (δ1) and specificity (δ0) pairs, including (δ1, δ0) =
(0.9, 0.9), (0.8, 0.9) and (0.7, 0.9). Estimates for indolent cancer are from logistic re-
gression, where exp(Est) represents Odds Ratio (OR). We fit a survival function to
model event time in susceptible group, where exp(Est) represents Hazard Ratio (HR).

Variable Estimates Std P-value exp(Est) [95% CI] Median indolent cancer rate [IQR]

Sensitivity = 0.9
Specificity = 0.9

Estimates from Logistic Model for Indolent Cancer

50.04% [42.48%-58.44%]

Intercept 0.08 0.49 0.88 1.08 [0.41,2.85]
Age at Diagnosis -0.21 0.66 0.75 0.81 [0.22,2.95]

Median PSA 0.58 0.99 0.56 1.79 [0.26,12.4]
Estimates from Survival Model for Progressive Cancer

Age at Diagnosis 2.21 0.66 <0.001 9.08 [2.5,32.92]
PSA(t) -0.09 0.82 0.91 0.91 [0.18,4.59]

Sensitivity = 0.8
Specificity = 0.9

Estimates from Logistic Model for Indolent Cancer

54.63% [47.95%-62.94%]

Intercept 0.24 0.67 0.72 1.28 [0.34,4.78]
Age at Diagnosis 0.29 0.6 0.63 1.34 [0.41,4.36]

Median PSA 0.47 1.01 0.64 1.6 [0.22,11.55]
Estimates from Survival Model for Progressive Cancer

Age at Diagnosis 1.92 0.83 0.02 6.79 [1.34,34.46]
PSA(t) 0.59 0.84 0.48 1.81 [0.35,9.5]

Sensitivity = 0.7
Specificity = 0.9

Estimates from Logistic Model for Indolent Cancer

57.51% [38.65%-75.34%]

Intercept 0.36 0.92 0.7 1.43 [0.23,8.72]
Age at Diagnosis 0.9 1 0.37 2.46 [0.35,17.43]

Median PSA 0.92 1.19 0.44 2.52 [0.25,25.74]
Estimates from Survival Model for Progressive Cancer

Age at Diagnosis 1.62 0.95 0.09 5.03 [0.79,32.22]
PSA(t) 0.48 0.81 0.55 1.62 [0.33,7.99]

Figure 3.1. PSA trajectory in subgroups who were censored and whose cancers
were detected to be progressive during surveillance. Black solid lines represent indi-
vidual’s PSA level across time for 40 randomly selected subjects. Red dashed line and
shaded area represent median and interquartile range of PSA level over time among
all subjects.

61



Figure 3.2. Turnbull’s nonparametric estimates of survival probability for each
subgroup.
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APPENDIX A

SUPPLEMENT TO ”FLEXIBLE, PARAMETRIC
MIXTURE MODELS FOR TIME TO EVENT

OUTCOMES, WITH INFLATION OF ZEROES AT
BASELINE”
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APPENDIX B

SUPPLEMENT TO ”TIME TO FIRST POSITIVE
DNA-PCR IN HIV-1 INFECTED, NON-BREASTFED

INFANTS IN US COHORTS”

B.1 Parametric mixture model analysis to account for in-

fants who test positive at birth

B.1.1 Methods

In a supplemental analysis, we fit a parametric mixture model to account for the

subset of infants who tested positive at birth. In this analysis, we assumed that a

proportion π of infants test positive at birth and a proportion 1 − π test positive

after birth. In the latter group of infants, times of earliest DNA PCR positivity was

modeled as a Weibull distribution. A similar approach has been applied in prior work

on the sensitivity of DNA PCR assays in infants [47, 2]. The effects of maternal or

infant ARV on π was modeled using a logistic function. In addition, the effects of

maternal or infant ARV on the time to test positivity after birth was modeled using

a Cox PH model. The statistical significance of maternal/infant ARV was estimated

using LRT by comparing nested models with and without treatment as a predictor.

B.1.2 Results

To preserve statistical power, this analysis was limited to infants whose mothers

received either No ARV, Single NRTI or cART (n=393). As in the previous analysis,

there was no evidence of the violation of the PH assumption (LRT p value = 0.65). We

observed a similar trend of delayed test positivity in the cART group (Supplemental

Table B.5). Infants whose mothers were exposed to No ARV or to Single NRTI had a
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significantly higher odds of a positive test at birth relative to infants whose mothers

received cART, with an odds ratio (OR) of 4.29 (95% CI: 1.57 - 11.71) in the No ARV

group and an OR of 5.53 (95% CI: 2.02 – 14.16) in the Single NRTI group. Among

infants who did not test positive at birth, exposure to No ARV or to Single NRTI

was associated with shorter times to test positivity relative to the group exposed to

cART (Supplemental Table B.8).
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Table B.3. Baseline characteristics by infant antiretroviral regimen in WITS

Characteristic
Infant Antiretroviral Regimen

None,
N = 98

ZDV,
N = 28

Other,
N = 3

Maternal CD4+ cell count, cells/ul
0 to <200 14 (14%) 2 (7.4%) 1 (33%)

200 to <350 19 (20%) 3 (11%) 1 (33%)
350 to <500 23 (24%) 6 (22%) -
>=500 41 (42%) 16 (59%) 1 (33%)

Unknown 1 1 -
Mode of delivery

Vaginal 39 (50%) 9 (33%) 1 (33%)
Cesarean Section before onset of labor and before membrane rupture 21 (27%) 15 (56%) 2 (67%)

Cesarean Section after onset of labor or membrane rupture 15 (19%) 3 (11%) -
Other 3 (3.8%) - -

Unknown 20 1 -
Gestational age, weeks

0 to <37 28 (29%) 13 (46%) 1 (33%)
>=37 69 (71%) 15 (54%) 2 (67%)

Unknown 1 - -
Birth weight, grams

0 to <2,500 17 (18%) 9 (32%) 1 (33%)
>=2,500 76 (82%) 19 (68%) 2 (67%)
Unknown 5 - -

Maternal viral load, copies/ml
0 to <400 53 (54%) 12 (43%) 1 (33%)

400 to <1,000 8 (8.2%) 4 (14%) -
1,000 to <10,000 14 (14%) 10 (36%) 2 (67%)
10,000 to 100,000 17 (17%) 1 (3.6%) -

>=100,000 6 (6.1%) 1 (3.6%) -

68



Table B.4. Baseline characteristics by infant antiretroviral regimen in PACTS

Characteristic
Infant Antiretroviral Regimen

None,
N = 257

ZDV,
N = 42

Other,
N = 0

Maternal CD4+ cell count, cells/ul
0 to <200 39 (15%) 5 (12%) -

200 to <350 49 (19%) 9 (21%) -
350 to <500 49 (19%) 17 (40%) -
>=500 120 (47%) 11 (26%) -

Mode of delivery
Vaginal 200 (82%) 31 (74%) -

Cesarean Section before onset of labor and before membrane rupture 8 (3.3%) 5 (12%) -
Cesarean Section after onset of labor or membrane rupture 36 (15%) 6 (14%) -

Other - - -
Unknown 13 - -

Gestational age, weeks
0 to <37 78 (31%) 17 (40%) -
>=37 173 (69%) 25 (60%) -

Unknown 6 - -
Birth weight, grams

0 to <2,500 101 (40%) 20 (48%) -
>=2,500 150 (60%) 22 (52%) -
Unknown 6 - -

Maternal viral load, copies/ml
0 to <400 39 (28%) 5 (16%) -

400 to <1,000 2 (1.4%) - -
1,000 to <10,000 33 (24%) 8 (25%) -
10,000 to 100,000 52 (38%) 12 (38%) -

>=100,000 12 (8.7%) 7 (22%) -
Unknown 119 10 -
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Table B.7. Number of DNA PCR tests per infant by cohort and by maternal ARV
regimen

Number of DNA PCR tests

1 2 3 4-6
Cohort
PACTS 299 0 0 0
WITS 47 48 22 12

Maternal ARV regimen
No ARV 196 2 0 0

Single NRTI 89 0 0 0
ZDV+sdNVP 3 2 2 3
sdNVP only 1 3 0 2

2-3 NRTIs without sdNVP 8 3 0 0
2-3 NRTIs with sdNVP 2 5 0 1

cART 47 33 20 6

Table B.8. Timing of earliest DNA PCR test positivity by type of maternal an-
tiretroviral regimen from an unadjusted Logistic-Weibull PH mixture model. This
analysis was restricted to infants whose mothers received one of the following: No
ARV, Single NRTI or cART (n=393).

Maternal ARV Effect Estimate [95% CI]

Association with positive DNA PCR test at birth
No ARV OR=4.29 [1.57-11.71]

Single NRTI OR=5.53 [2.02-14.16]
cART 1

Association with time to the first positive DNA PCR test after birth
No ARV HR = 34.57 [11.72-101.99]

Single NRTI HR = 12.71 [2.63-61.51]
cART 1
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Figure B.1. Distribution of the number of infants who had at least one DNA PCR
tests by age (days) and cohort.
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Figure B.2. Distribution of number of positive (red) and negative (blue)
DNA PCR tests by age (days) and type of maternal antiretroviral regimen.
A: no ARV; B: Single NRTI; C: ZDV + sdNVP; D: sdNVP only ; E: 2-3 NRTIs without
sdNVP; F: 2-3 NRTIs with sdNVP; G: cART
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Figure B.3. Cumulative distribution of number of infants have had DNA
PCR tests (red) and have tests (blue) by age (days) and type of maternal
ARV.
A: no ARV; B: Single NRTI; C: ZDV + sdNVP; D: sdNVP only ; E: 2-3 NRTIs
without sdNVP; F: 2-3 NRTIs with sdNVP; G: cART
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APPENDIX C

SUPPLEMENT TO ”A MIXTURE MODEL FOR
ESTIMATING THE RISK OF PROSTATE CANCER

PROGRESSION AND THE FRACTION OF INDOLENT
CANCER IN ACTIVE SURVEILLANCE”

C.1 First Derivatives of the Log-Likelihood

C.1.1 Cox PH model with time-invariant covariates

The log-likelihood function is

`(yobs;α,β) =
∑
i

log

{
ηDi1S1 + (1− η)

[(
1− πi(α)

) J+1∑
j=1

Dij(Sj)
exp (Z>i β)

+πi(α)Di(J+1)

]}

Let `i = log(Li) be the log-likelihood function for subject i, where

Li = ηDi1S1 + (1− η)

[(
1− πi(α)

) J+1∑
j=1

Dij(Sj)
exp (Z>i β) + πi(α)Di(J+1)

]

The first derivative of the log-likelihood function for subject i, `i, can be expressed

as,
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∂`i
∂πi

=
1

Li
(1− η)

(
−

J+1∑
j=1

Dij(Sj)
exp(Z>i β) +Di(J+1)

)
∂πi
∂αd

=
∂

∂πi

(
exp(X̃>αd)

1 + exp(X̃>αd)

)

=
1

1 + exp(X̃>αd)
exp(X̃>αd)Xij − exp(X̃>αd)

exp(X̃>αd)

(1 + exp(X̃>αd))2
Xij

= πiXij − π2
iXij

= Xij(πi − π2
i )

∂`i
∂αd

=
∂`i
∂πi

∂πi
∂αd

∂`i
∂Sj

=
1

Li

∂Li
∂Sj

=
1

Li
(1− η)(1− πi)Dij exp(Z>i β)(Sj)

exp (Z>i β)−1

∂`i
∂βk

=
1

Li

∂

∂βk

(
(1− η)(1− πi)

J+1∑
j=1

Dij(Sj)
exp (Z>i β)

)

=
1

Li
(1− η)(1− πi)

J+1∑
j=1

Dij(logSj)(Sj)
exp (Z>i β) exp (Z>i β)Zik

C.1.2 Cox PH model with time-varying covariates

The log-likelihood function is

`(yobs;α,β) =
∑
i

log

{
ηDi1 + (1− η)

[(
1− πi(α)

) J+1∑
j=1

Dij exp

(
−

j−2∑
l=0

Λl exp(Pi(τl)
>β)

)

+πi(α)Di(J+1)

]}

Let `i = log(Li) be the log-likelihood function for subject i, where

Li = ηDi1 + (1− η)

[(
1− πi(α)

) J+1∑
j=1

Dij exp

(
−

j−2∑
l=0

Λl exp(Pi(τl)
>β)

)
+πi(α)Di(J+1)

]
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The first derivative of the log-likelihood function for subject i, `i, can be expressed

as,

78



∂`i
∂πi

=
1

Li
(1− η)

(
−

J+1∑
j=1

Dij exp

(
−

j−2∑
l=0

Λl exp(Pi(τl)
>β)

)
+Di(J+1)

)
∂πi
∂αd

=
∂

∂πi

(
exp(X̃>αd)

1 + exp(X̃>αd)

)

=
1

1 + exp(X̃>αd)
exp(X̃>αd)Xij − exp(X̃>αd)

exp(X̃>αd)

(1 + exp(X̃>αd))2
Xij

= πiXij − π2
iXij

= Xij(πi − π2
i )

∂`i
∂αd

=
∂`i
∂πi

∂πi
∂αd

Let Sij = exp

(
−

j−2∑
l=0

Λl exp(Pi(τl)
>β)

)
∂`i
∂Sij

=
1

Li

∂Li
∂Sij

=
1

Li
(1− η)(1− πi)Dij

∂Sij
∂Λl

= Sij

(
− exp(Pi(τl)

>β)

)
= − exp(Pi(τl)

>β) exp

(
−

j−2∑
l=0

Λl exp(Pi(τl)
>β)

)
∂Sij
∂βk

= Sij

(
−

j−2∑
l=0

Λl exp(Pi(τl)
>β)Pik(τl)

)

= exp

(
−

j−2∑
l=0

Λl exp(Pi(τl)
>β)

)(
−

j−2∑
l=0

Λl exp(Pi(τl)
>β)Pik(τl)

)
∂`i
∂Λl

=
J+1∑
j=1

∂`i
∂Sij

∂Sij
∂Λl

=
1

Li
(1− η)(1− πi)

J+1∑
j=1

Dij

(
− exp(Pi(τl)

>β)

)
exp

(
−

j−2∑
l=0

Λl exp(Pi(τl)
>β)

)
∂`i
∂βk

=
J+1∑
j=1

∂`i
∂Sij

∂Sij
∂βk

=
1

Li
(1− η)(1− πi)

J+1∑
j=1

Dij exp

(
−

j−2∑
l=0

Λl exp(Pi(τl)
>β)

)(
−

j−2∑
l=0

Λl exp(Pi(τl)
>β)Pik(τl)

)
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C.2 Data Exploration in Application

Figure C.1. Turnbull’s nonparametric estimates of survival probability for each
subgroup.
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