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ABSTRACT

COMBINATORIAL ALGORITHMS FOR GRAPH 
DISCOVERY AND EXPERIMENTAL DESIGN

SEPTEMBER 2022

RAGHAVENDRA KIRAN ADDANKI

B.Tech., INDIAN INSTITUTE OF TECHNOLOGY MADRAS

M.Tech., INDIAN INSTITUTE OF TECHNOLOGY MADRAS

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Andrew McGregor and Professor Cameron Musco

In this thesis, we study the design and analysis of algorithms for discovering the 

structure and properties of an unknown graph, with applications in two different 

domains: causal inference and sublinear graph algorithms. In both these domains, 

graph discovery is possible using restricted forms of experiments, and our objective is 

to design low-cost experiments.

First, we describe efficient experimental approaches to the causal discovery prob-

lem, which in its simplest form, asks us to identify the causal relations (edges of the 

unknown graph) between variables (vertices of the unknown graph) of a given sys-

tem. For causal discovery, we study algorithms for the problem of learning the causal 

relationships between a set of observed variables in the presence of hidden or un-

observed variables while minimizing a suitable cost of interventions on the observed

ix



variables. An intervention on a set of variables helps learn the presence of causal

relations adjacent to them. Under various cost models for interventions, we design

combinatorial algorithms for causal discovery by identifying new connections between

discrete optimization, graph property testing, and efficient intervention design.

Next, we investigate query-efficient experimental approaches for estimating various

graph properties, such as the number of edges and graph connectivity. The access to

the graph, or equivalently performing an experiment, is via a Bipartite Independent

Set (BIS) oracle. The BIS oracle is related to the interventional access model used in

our work for causal graph discovery, with other applications in group testing and fine-

grained complexity. In this setting, we develop non-adaptive algorithms that lead to

efficient implementations in highly parallelized and low-memory streaming settings.
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CHAPTER 1

INTRODUCTION

In this thesis, we study the design and analysis of algorithms for discovering the

structure and properties of an unknown graph, with applications in two different

domains: causal inference and sublinear graph algorithms. In both these domains,

graph discovery is possible using restricted forms of experiments and our objective is

to design low cost experiments. First, we describe efficient experimental approaches to

the causal discovery problem, which in its simplest form, asks us to identify the causal

relations (edges of the unknown graph) between variables (vertices of the unknown

graph) of a given system. Next, we investigate query efficient experimental approaches

for estimating various graph properties, such as, the number of edges and graph

connectivity. The access to the graph, or equivalently performing an experiment, is

via certain types of queries that are inspired by the group testing and sublinear time

algorithms literature.

1.0.1 Causal Discovery

Causality has long been a key tool in studying and analyzing various scientific

disciplines, such as genetics, psychology, and economics [104]. With data prolifera-

tion, there is an increasing demand to build automated systems that rely on machine

learning based approaches. Many, if not most, of these approaches are largely based

on learning complicated functional representations in high dimensional spaces of the

observed data, which are then used for predictions. Such approaches do not necessar-

ily help us answer the counterfactual questions. Answers to counterfactual questions
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help us reason about the behaviour of a particular outcome under various changes

to different sets of features, some of which might not necessarily be observed in the

dataset. Such questions are important when a decision making process relies on his-

torical data, e.g., an algorithm deciding whether a loan should be granted by a bank,

or implementing an education policy by a government body.

To provide a firm footing for studying such problems, we employ the Structural

Causal Model (SCM) framework of causality, pioneered by Pearl [104]. Under this

framework, any system is represented by a graphical diagram, encoding the directed

causal relations between variables of the system, often represented using a directed

acyclic graph, and a system of functional equations that define the interactions be-

tween the variables. The SCM framework allows for a control over data generating

process, i.e., it allows for fixing the values of the variables, or changing the func-

tional equations associated with a variable. Using this setup, we can systematically

derive answers for what-if or counterfactual causal questions, capturing settings not

observed directly.

In this thesis, we study one of the fundamental problems in the theory of causality:

causal discovery. In causal discovery, the goal is to identify all the causal relations

existing between variables in a given system.

Causal Sufficiency Broadly speaking, the problem of causal discovery has been

studied based on an assumption on the types of variables, called the causal sufficiency

assumption. The variables in any system can be classified into two types: observ-

able or endogenous variables whose values can be observed and recorded, and latent

or exogenous variables whose values cannot be observed or measured. The causal

sufficiency assumption stipulates that there are no latent variables in the system.

Figure 1.1 illustrates it with an example.
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v1

v2

v3

v4

`1

Figure 1.1: In the causal graph G shown, {v1, v2, v3, v4} are observable variables and
`1 is a latent variable. The causal sufficiency assumption does not hold for G.

Under the causal sufficiency assumption, a culmination of a long series of works re-

sulted in the the well-known IC [104] and PC [119] algorithms, which identify a causal

relation using the observational data, i.e., samples drawn from joint distribution on

observable variables. These approaches are called constraint-based approaches, as

they identify causal relations by making use of the constraints imposed by condi-

tional independences in the causal graph. When a pair of variables are independent

conditioned on a subset of variables, it results in a conditional independence, which

also imposes a restriction on the structure of the underlying causal graph, described

using the notion of d-separation [105]. Such conditional independences can be iden-

tified via conditional independence (CI) tests on the observational data. Much work

has focused on understanding the limitations and assumptions underlying these al-

gorithms [66, 68, 70, 92, 116]. There are other well-known score-based Bayesian

approaches, e.g., Greedy Equivalence Search (GES) [41] that rank the set of all the

possible causal graphs based on a score function and return the graph with the op-

timum score, consistent with the given data. Both score-based and constraint-based

approaches recover the same graph, asymptotically. Apart from these, approaches

based on functional assumptions in the SCM, such as, LiNGAM [116], are also widely

studied. We refer the reader to the survey by Glymour et al. [61] for a comprehen-

sive survey of many causal discovery methods studied under the causal sufficiency

assumption.
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Under the causal sufficiency assumption, PC or any other constraint or score-based

algorithms do not recover all causal relations, but recover only a partial graph, con-

taining both undirected and directed edges. The undirected subgraph of the partial

graph is called the Essential graph. The Essential graph captures all causal rela-

tions that cannot be recovered using CI tests, even with unbounded computational

and statistical resources. The set of all directed causal graphs that have the same

Essential graph are said to form a Markov equivalence class. It is well-known, that

to disambiguate a causal graph from its Markov equivalence class, i.e., recover the

directions in the Essential graph, interventional data, rather than just observational

data is required [50, 51, 65].

v1

v2

v3

v4

`1

v1

v2

v3

v4

`1

Figure 1.2: On the left, we have the causal graph G. An intervention on the variable
v3 eliminates the effect of all the incoming edges into v3, i.e., {v1, v2, `1} in G, resulting
in a new graph shown on the right.

Intervention As defined in the SCM framework, an intervention (or experiment)

requires us to fix a subset of variables to a set of values, inducing a new distribution

on the free variables. We can observe that any intervention on a set of variables

involves a system manipulation and eventually results in a new distribution. Equiva-

lently, when such an intervention is performed, the effect of all the incoming edges in

the causal graph (also called parents) is eliminated completely. Figure 1.2 illustrates

the definition with an example graph. Such interventions are also called hard inter-

ventions, and other types of interventions studied widely include soft and parametric

interventions [50]. In a soft (or a parametric) intervention, the effect of incoming

edges on intervened set of nodes is not fully eliminated and is specified by a new
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distribution [124]. Causal discovery under soft interventions has received attention

recently [75, 87, 130]. In this thesis, we focus only on hard interventions. As it is gen-

erally expensive to generate new samples from interventional distributions, one of the

major goals of causal discovery is to minimize the cost associated with interventions.

In many cases, causal sufficiency is too strong an assumption: it is often contested

if the behavior of systems we observe can truly be attributed to measured variables [21,

104]. In light of this, many algorithms avoiding the causal sufficiency assumption,

such as IC∗ [127] and FCI [119], that only use observational data, have been developed.

However, these algorithms only recover a partial directed graph, called the Partial

Ancestral Graph (PAG), that encodes path relations in the underlying causal graph.

Under causal sufficiency, an undirected edge in the Essential graph represents a causal

relation. However, when there are latents, the edges of PAG are less informative, as

they encode weaker path relations, and do not always represent causal relations.

This makes causal discovery highly challenging, as we have an additional step of

identifying the causal relations adjacent to every variable. There is a growing interest

in constructing efficient intervention designs in this setting [72, 102, 118].

Cost Models Interventions are expensive to perform, and several cost models have

been proposed in the literature addressing various common scenarios. In a general

cost model, intervening on any subset of variables has a cost associated with it, and

the goal is to identify all causal relationships and their directions while minimizing

the total cost of interventions. This captures the fact that some interventions are

more expensive than others. For example, in a medical study, intervening on certain

variables might be impractical or unethical. In this thesis, we focusing on recovering

the causal graph when there are latents, i.e., without the causal sufficiency assump-

tion, by minimizing the intervention cost using two simplifications of the general cost

model.

5



As an alternative to recovering the entire causal graph, there has been recent

interest in recovering the maximum possible number of edges, with a constraint on

the total number of interventions (or an upper limit on the cost) [60, 123]. Most of

the constraint-based causal discovery approaches, including those developed in this

thesis, assume that the conditional independence tests are accurate, which is only

possible in the infinite sample limit. Recently, there has been a renewed interest

in studying various fundamental problems in causality in the finite sample regime,

starting with the work of Acharya et al. [2] and several others [27, 28].

1.0.2 Sublinear Query Algorithms

In this thesis, we study the problem of estimating graph properties using a query

model (or a test) defined with respect to a graph. The query model is related to the

intervention model described in our work on causal discovery.

We study sub-linear query algorithms for estimating the number of edges in a

simple, unweighted graph G = (V,E), and for sampling uniformly random edges.

Access to G is via a Bipartite Independent Set (BIS) oracle [22]. A query to this

oracle takes as input two disjoint subsets L,R ⊆ V and returns

BIS(L,R) =


‘1’ if there is no edge between L and R

‘0’ otherwise.

Local Query Models Prior work on sub-linear query graph algorithms has largely

focused on local queries, in particular, (i) vertex degree queries (ii) neighbor queries

(output the ith neighbor of a vertex) and (iii) edge existence queries [54, 63, 114].

In the literature, the first two types of queries form the adjacency list query model,

while all three types of queries form the adjacency matrix query model. Under these

models, a variety of graph estimation problems have been well studied, including

6



edge counting and sampling [53, 63, 114, 126], subgraph counting [10, 31, 52], vertex

cover [23, 101], and beyond [110].

Global Query Models Motivated by the desire to obtain more query efficient

algorithms, Beame et al. [22] studied edge estimation using global queries that can

make use of information across the graph, including the BIS queries that we will

focus on, and the related Independent Set (IS) queries. IS queries were introduced

in the literature on query efficient graph recovery [1, 12]. They answer whether

or not there exist any edges in the induced subgraph on a subset of nodes S ⊆

V . We refer the reader to the exposition in [22], which discusses applications of

these global query models in group testing [39, 48], computational geometry [13, 33,

56], fine-grained complexity [46, 47], and decision versus counting complexity [47,

111, 121, 122]. Many other variants of global queries have been studied including

Linear, OR and Cut queries [16, 36, 112]. These queries have been applied to

solving maximum matching [84, 100], minimum cut [112], triangle estimation [24,

25, 47], connectivity [16], hitting sets [29], weighted edge estimation [30], hyperedge

estimation [47, 26], problems related to linear algebra [107], quantum algorithms [96],

and full graph recovery [1, 12].

The Role of Adaptivity Notably, for both local and global queries, most sub-

linear time graph algorithms are adaptive, i.e., a query may depend on the answers

to previous queries. In many cases, it is desirable for queries to be non-adaptive.

This allows them to be completed independently, and might allow for the resulting

algorithm to be easily implemented in massively parallel computation frameworks [81].

Non-adaptive algorithms also lead naturally to single-pass, rather than multi-pass,

streaming algorithms. In fact, the BIS query model can be seen as a very restricted

subset of the more general Linear query model, in which each query outputs the

inner product of the edge indicator vector with a query vector. This model has long

7



been studied in the graph-streaming literature [9, 95], in part due to its usefulness in

giving single-pass algorithms. However, it has remained open whether non-adaptive

algorithms can be given in more restricted global query models.

For these reasons, Assadi et al. [16] and Chakrabarti and Stoeckl [36] have recently

sought to reduce query adaptivity under a variety of global query models, including

Linear, OR, Cut and BIS queries. These works study the single element recovery

problem, which is a weaker variant of uniform edge sampling, requiring that the

algorithm return a single edge in G. We note that reducing query adaptivity is also a

well-studied direction in the closely related literature on group testing [49, 73]. IS and

BIS oracles can be thought of as tests if there is a single element in a group of edges,

where that group is required to be all edges incident on one node set (IS) or between

two disjoint sets (BIS). Attempts to minimize query adaptivity have also been made

for sparse recovery [74, 79, 97], sub-modular function maximization [18, 38], property

testing [35] and multi-armed bandit learning [8].

In this thesis, we design non-adaptive algorithms for counting and uniform sam-

pling of edges using BIS queries.

1.1 Summary of Contributions

In this section, we present a summary of the main contributions of the thesis.

First, we start with some useful notation.

Notation Let G be the (unknown) directed causal graph on both observable vari-

ables V and latent variables L. A directed edge (u, v) in G indicates a causal rela-

tionship from u to v. Let G be the induced subgraph of G on the |V | = n observable

variables, also referred to as the observable graph.

Causal Discovery In recent years, various surprising connections have been dis-

covered between well-studied combinatorial structures in discrete optimization and

8



intervention designs for causal discovery [71, 82, 94]. Using these connections, much

recent work has been devoted to minimizing intervention cost while imposing con-

straints such as sparsity or cost models [86, 91, 115]. We contribute to this line of

work by providing low cost, computationally efficient intervention designs. Firstly,

we study causal discovery using the identity cost model, in which, every intervention

has the same cost, regardless of what variables it contains and therefore minimizing

intervention cost is the same as minimizing the number of interventions [88]. Sec-

ondly, in the linear cost model, where each variable has an intervention cost, and the

cost of an intervention on a subset of variables is the sum of costs for each variable in

the set [86, 91], our objective is to minimize the total interventional cost. Finally, we

describe a new model for causal discovery, called the Collaborative Causal Discovery,

where the goal is to learn multiple causal graphs with minimum number of unit sized

interventions. Here is a summary of our results:

1. Causal Discovery: We consider two cost models:

(a) Identity Cost Model. In Chapter 2, we describe algorithms for learning

the causal graph G, where we try to minimize the number of interventions,

i.e., lowest cost in the Identity Cost Model.

(b) Linear Cost Model. In Chapter 3, we describe algorithms that recover

ancestral relations, instead of causal relations, with low total cost. Ances-

tral relations, encoded in the ancestral graph, capture path relations, i.e.,

an edge (u, v) is present in the ancestral graph iff there is a directed path

from u to v in G.

Under the assumption that we are provided with an undirected causal

graph containing all causal relations in G (the observable graph), we de-

sign algorithms that identify the directions using cost efficient algorithms

with small relative error approximation. The undirected input graph may
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be obtained, e.g., by running algorithms that identify conditional depen-

dencies or consulting a domain expert to identify the presence of causal

(undirected) edges.

(c) Collaborative Causal Discovery. In Chapter 4, we study a new model

model for causal discovery where the goal is to learn multiple causal graphs

simultaneously by minimizing the number of unit sized interventions.

2. Sublinear Query Algorithms. In Chapter 5, we describe non-adaptive algo-

rithms for counting and sampling edges using bipartite independent set queries.

Building upon these ideas, we present improved algorithms for testing whether

a graph is connected or not.

1.2 Overview of Results

In this section, we present a summary of our results. First, we discuss our contri-

butions for causal discovery under identity and linear cost models. Next, we discuss

techniques that overcome limitations of several prior works, under a new causal dis-

covery model, called the Collaborative Causal Discovery. Finally, we discuss our

results for estimating various properties of an unknown graph using a query model

that is related to interventions in our work on causal discovery.

1.2.1 Identity Cost Model

In Chapter 2, for the identity cost model, we present algorithms that recover

the causal graph G with fewer interventions. First, we present causal graph instances

where every non-adaptive algorithm requires Ω(n) interventions to recover the observ-

able graph G. As these graphs are worst case instances, our idea is to parameterize

the causal graph in terms of a specific type of variables, that we refer to as p-colliders.

These variables are a special type of colliders, variables that have two incoming edges

incident on them in a given directed path of G. A a node vk is p-collider for a pair of
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nodes (vi, vj) if (i) it is a collider on a path between vi and vj and (ii) at least one of

the parents vi, vj is a descendent of vk.

If G has at most τ p-colliders between every pair of variables (or nodes), then, our

algorithm uses at most O(τ log n) interventions for recovering the observable graph

G, improving upon the worst case lower bound of Ω(n). Moreover, our algorithm

recovers the entire causal graph G using O(nτ log n+n log n) interventions. The only

previous bound on recovering G in this setting utilized O(min{d log2 n, `}+ d2 log n)

interventions where d is the maximum (undirected) node degree and ` is the length

of the longest directed path of the causal graph G [88]. Since we use a different

parameterization of the causal graph, a direct comparison with this result is not always

possible. We argue that a parameterization in terms of p-colliders is inherently more

“natural” as it takes the directions of edges in G into account whereas the maximum

degree does not. The presence of a single high-degree node can make the number of

interventions required extremely high, even if the overall causal graph is sparse. In this

case, the notion of p-colliders is a more global characterization of a causal graph. In

Section 2.3 of Chapter 2, we provide a more detailed discussion of different parameter

regimes under which our scheme provides a better bound. We also experimentally

show that our scheme achieves a better bound over the result due to Kocaoglu et

al. [88], in some popular random graph models.

1.2.2 Linear Cost Model

Under the linear cost model, we study two settings: (i) we study the ancestral

graph recovery, where the goal is to identify all the path relations in G (ii) we study

the observable graph recovery, under the assumption that a domain expert provides us

with an undirected observable graph, and our goal is to recover only their directions.
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1.2.2.1 Ancestral Graph Recovery

In Chapter 3, under the linear cost model, we present algorithms where the cost of

interventions generated by our algorithm is at most twice the cost of the optimum set

of interventions, for ancestral graph recovery. Our result is based on a characteriza-

tion which shows that generating a set of interventions sufficient to recover ancestral

relations is equivalent to designing a strongly separating set system. We show how

to design such a set system with at most twice the optimum cost based on a greedy

algorithm that constructs intervention sets that include a variable with high cost in

the least number of sets possible.

In the special case when each variable has unit intervention cost, Hyttinen et

al. [71] give an exact algorithm to recover ancestral relations in G with minimal to-

tal cost. Their algorithm is based on the Kruskal-Katona theorem in combinatorics

[82, 89]. We show that a modification of this approach yields a (1 + ε)-approximation

algorithm in the general linear cost model for any 0 < ε ≤ 1, under natural assump-

tions. To the best of our knowledge, our result is the first to minimize intervention

cost under the popular linear cost model in the presence of latents, and without the

assumption of unit intervention cost on each variable.

1.2.2.2 Observable Graph Recovery

Under the causal sufficiency assumption, for the linear cost model, recovering the

causal graph was first studied by Kocaoglu et al. [86]. They showed that causal graph

recovery, which translates to recovering the directions of the Essential graph, with

optimal minimum cost is NP-hard. To prove the hardness, they showed that causal

graph recovery is equivalent to designing a separating set system for the Essential

graph. Building on this observation, they presented an approximation algorithm with

a multiplicative factor of ∼ 2. As there are no latents, their algorithm makes use of

chordality property of the the Essential graph to obtain an efficient approximation al-
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gorithm. In the presence of latents, although we presented approximation algorithms

for recovering ancestral relations in G, there seems to be no known characterization of

the optimal intervention sets needed to recover even the observable graph G, making

it hard to design efficient algorithms for recovering G.

Recovering the directions In Chapter 3, we address these shortcomings in two

settings. First, we assume that we are given an undirected graph that contains

all causal relations between observable variables, but must identify their directions.

There is significant precedent for assumptions on such background knowledge graphs

in the literature. For example, Hyttinen et al. [71] and references therein, study

intervention design in the same model: a skeleton of possible edges in the causal

graph is given via background knowledge, which may come e.g., from domain experts

or previous experimental results. In the second setting, we study a relaxation where

we are given a supergraph H of G containing all causal edges and other additional

edges which need not be causal. The second setting is less restrictive, modeling the

case where we can ask a domain expert or use observational data to identify a superset

of possible causal relations. From H we seek to recover edges of the ancestral graph.

Depending on the method by which H is obtained, it may have special properties that

can be leveraged for efficient intervention design. For example, if we use FCI/IC∗ [119]

to recover a partial ancestral graph from observational data, the remaining undirected

edges form a chordal graph [132]. This extends our previous work on ancestral graph

recovery where we considered the worst case, when H is the complete graph. Here,

we do not assume anything about how H is obtained and thus give results holding

for general graphs.

Separating Set Systems In both settings, we show a connection to separating set

systems. Specifically, to solve the recovery problems it is necessary and sufficient to

use a set of interventions corresponding to a separating set system when we are given
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the undirected observable causal graph G and a strongly separating set system when

we are given the supergraph H. A separating set system is one in which each pair of

nodes connected by an edge is separated by at least one intervention – one variable

is intervened on and the other is free. A strongly separating set system requires

that every connected edge (u, v) is separated by two interventions – there exists a

intervention including u but not v and an intervention that includes v but not u.

Unfortunately, finding a minimum cost (strongly) separating set system for an

arbitrary observable graph G is NP-hard [91, 71]. We give simple algorithms that

achieve O(log n) approximation and further argue that, conditioned on the hardness

of approximate graph coloring, no polynomial time algorithm can achieve o(log n)

approximation, where n is the number of observed variables.

Bi-criteria approximation To overcome this limitation, we introduce a bi-criteria

approximation goal that lets us recover all but εn2 edges in the causal or ancestral

graph, where ε > 0 is a specified error parameter. For this goal, it suffices to use a

relaxed notion of a set system, which we show can be found efficiently using ideas

from the graph property testing literature [62]. In the setting where we are given

the causal edges in G and must recover their directions, we give a polynomial time

algorithm that finds a set of interventions from which we can recover all but εn2 edges

with cost at most ∼ 2 times the optimal cost for learning the full graph. Similarly, in

the setting of ancestral graph recovery, where we are given a super set of edges, we

show how to recover all but εn2 edges with intervention cost at most ∼ 4 times the

optimal cost for recovering all edges. Our result significantly extends the applicability

of our previous result that gave a 2-relative error approximation to the minimum cost

strongly separating set system assuming the worst case when the supergraph H is

a complete graph . The previous approach does not translate to an approximation

guarantee better than Ω(log n) for general graphs. Finally, for the special case when
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G is a hyperfinite graph [64] with maximum degree ∆, we give algorithms that obtain

approximation guarantees as above, and recover all but εn∆ edges of G.

1.2.3 Collaborative Causal Discovery

In Chapter 4, we introduce the collaborative causal discovery problem. We assume

that we have a collection of M entities each with their own causal graph. Due to the

presence of latent variables, we use a family of mixed graphs known as maximal

ancestral graphs (MAGs) to model the causal graphs on observed variables.

Motivation In a variety of applications, there is no one true causal structure,

different entities participating in the application might have different causal struc-

tures [58, 106, 76]. In these scenarios, generating a single causal graph by pooling

data from these different entities might lead to flawed conclusions [113]. Allowing for

interventions, we propose a new model for tackling this problem, referred here as Col-

laborative Causal Discovery, which in its simplest form states that: given a collection

of entities, each associated with an individual unknown causal graph and generating

their own independent data samples, learn all the causal graphs while minimizing the

number of single variable interventions for every entity.

We focus on designing algorithms that have worst-case guarantees on the number

of unit sized or atomic interventions needed to recover (or approximately recover)

the MAG of each entity. We assume that there are M MAGs one for each entity

over the same set of n nodes. From Chapter 2, we know that learning a MAG with

atomic interventions, in the worst case requires Ω(n) interventions. To facilitate

efficient algorithms, we impose a structural assumption on the entities: the set of all

the causal graphs (or the entities) can be partitioned into k clusters such that the

causal graphs of any pair of entities belonging to two different clusters are separated

by a distance of at least αn; entities belonging to same cluster are separated by a

distance of at most βn (β < α), where α, β are constants. The distance between two
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causal graphs is defined to be the number of nodes whose direct causal relationships

are different. We refer to this clustering of entities as (α, β)-clustering, where α. A

special but important case is when β = 0, in which case all the entities belonging

to the same cluster have the same causal MAG, referred to as α-clustering. Similar

assumptions are common for recovering the underlying clusters, in many areas, e.g.,

crowd-sourcing applications [15, 17]. We show that the worst case Ω(n) bound can

be substantially reduced if the M MAGs satisfy the (α, β)-clustering property.

Guarantees We first start with the observation that under an (α, β)-clustering,

even entities belonging to the same cluster could have a different MAG, which makes

exact recovery hard without making a significant number of interventions per en-

tity. If the maximum degree of a MAG is upper bounded by ∆, we present an

algorithm that uses at most O(∆ log(M/δ)/(α − β)2) many interventions per entity,

with probability at least 1 − δ (over only the randomness of the algorithm), and

recovers an approximate MAG for each entity. The approximation is such that for

each entity we generate a MAG that is at most βn node-distance from the true

MAG of that entity. Here, ∆ is the maximum undirected degree of the causal

MAGs. Our idea is to first recover the underlying clustering of entities by using

a randomized set of interventions. Then, we distribute the interventions across the

entities in each cluster, thereby, ensuring that the number of interventions per en-

tity is small. By carefully combining the results learnt from these interventions we

construct the approximate MAGs. Under the slightly more restrictive α-clustering as-

sumption, we present algorithms that can exactly recover all the MAGs using at most

min {O(∆ log(M/δ)/α), O(log(M/δ)/α + k2)} many interventions per entity. Com-

plementing these upper bounds, we give a lower bound using Yao’s minimax princi-

ple [131] that shows for any (randomized or deterministic) algorithm Ω(1/α) inter-

ventions per entity is required for this causal discovery problem. This implies the 1/α

dependence in our upper bound in the α-clustering case is optimal.
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Finally, we provide empirical results on data generated from both real and syn-

thetic networks with added latents and demonstrate the efficacy of our algorithms for

learning the underlying clustering and the MAGs.

1.2.4 Non-adaptive algorithms for counting and sampling edges

In Chapter 5, we present algorithms for estimating the number of edges, i.e., edge

estimation problem and returning a uniform sample from the set of edges of any

graph, i.e., edge sampling problem, using BIS queries. In particular, we present the

first non-adaptive algorithm for edge estimation in a graph on n-nodes, up to (1± ε)

relative error approximation, using poly(1/ε, log n) BIS queries.

Edge Estimation We present a non-adaptive algorithm that returns a (1± ε) rela-

tive error approximation to the number of edges, with query complexity Õ(ε−5 log5 n),

where Õ(·) hides poly(log log n) dependencies. Prior methods for (1 ± ε) error edge

estimation using BIS queries are based on a binary search style approach [22, 47, 26],

which is inherently adaptive, and this leads to algorithms requiring Ω(log2 n) rounds

of adaptivity. Beame et al. [22] present a non-adaptive algorithm giving a O(log2 n)

approximation factor for bipartite graphs, using O(log3 n) queries. However, no non-

adaptive results for general graphs or achieving 1± ε relative error for arbitrary ε > 0

were previously known. We avoid the pitfalls of the previous approaches, by tak-

ing a fundamentally different approach, inspired by work on single-pass streaming

algorithms. Even with adaptivity, the best known algorithm due to [26] has a query

complexity of O(ε−2 log11 n) and succeeds with probability 1 − 1/n2. Therefore, our

non-adaptive result improves upon the current best known algorithms, for constant

ε.

Edge Sampling Building on our edge estimation result, we give the first non-

adaptive algorithm for outputting a nearly uniformly sampled edge with query com-
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plexity Õ(ε−6 log6 n), improving on the works of Dell et al. [47] and Bhattacharya

et al. [26], which require Ω(log3 n) rounds of adaptivity. Additionally, even ignoring

adaptivity, our result improves on the best known algorithm due to Bhattacharya et

al. [26] which uses O(ε−2 log14 n) BIS queries, for constant ε.

Graph Connectivity As a consequence of our edge sampling algorithm, we obtain

a Õ(n log8 n) query algorithm for connectivity, using two rounds of adaptivity. This

is tight: even in the stronger OR query model (which allows checking the presence

of an edge within an arbitrary subset of edges) no non-adaptive algorithm can make

o(n2) queries. Assadi et al. gave a two-round algorithm in this stronger OR query

model. Thus, we close the gap between BIS queries and OR queries for this problem.
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CHAPTER 2

CAUSAL DISCOVERY UNDER IDENTITY COST MODEL

In this chapter, we describe algorithms for causal discovery under the identity

cost model. In Section 2.1, we present the necessary preliminaries and definitions; in

Section 2.2, we describe our algorithms for recovering the causal graph; in Section 2.3,

we present an empirical evaluation of our approach; in Section 2.4, we present the

necessary proofs of our claims, and in Section 2.5, we present the conclusion.

Overview Suppose G is the causal graph that we wish to recover. Our approach can

be broken down into three steps: first, we construct the ancestral graph Anc(G) of G,

using a set of interventions that satisfy the strongly separating set system property;

next, we recover the observable graph G from Anc(G); and finally, we identify all

the latents L between the variables in V to reconstruct G. In the last two steps, our

main underlying idea is to construct intervention sets such that a special collection

of variables, called the p-colliders, defined for every pair of observable variables, are

included in at least one of the intervention sets. As we do not know the graph G, we

devise randomized strategies that include all the p-colliders, for every pair of variables,

whilst ensuring that we do not create a lot of interventions.

2.1 Preliminaries

Notation Following the SCM framework introduced by [105], we represent the set

of random variables of interest by V ∪ L where V represents the set of endogenous

(observed) variables that can be measured and L represents the set of exogenous
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Figure 2.1: An example of a causal graph G and the corresponding observable graph
G.

(latent) variables that cannot be measured. We define a directed graph on these

variables where an edge corresponds to a causal relation between the corresponding

variables. The edges are directed with an edge (vi, vj) meaning that vi → vj. As is

common, we assume that all causal relations that exist between random variables in

V ∪L belong to one of the two categories : (i) E ⊆ V ×V containing causal relations

between the observed variables and (ii) EL ⊆ L× V containing relations of the form

l → v where l ∈ L, v ∈ V . Thus, the full edge set of our causal graph is denoted by

E = E ∪EL. We also assume that every latent l ∈ L influences exactly two observed

variables i.e., (l, u), (l, v) ∈ EL and no other edges are incident on l following [88]. We

let G = G(V ∪ L, E) denote the entire causal graph and refer to G = G(V,E) as the

observable graph, illustrated in Figure 2.1.

Unless otherwise specified a path between two nodes is a undirected path. For

every observable v ∈ V , let the parents of v be defined as Pa(v) = {w | w ∈

V and (w, v) ∈ E}. For a set of nodes S ⊆ V , Pa(S) = ∪v∈SPa(v). If vi, vj ∈ V , we

say vj is a descendant of vi (and vi is an ancestor of vj) if there is a directed path

from vi to vj. Anc(v) = {w | w ∈ V and v is a descendant of w}. We let Anc(G)
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denote the ancestral graph1 of G that captures the path relations in G. Similar to

the work of Kocaoglu et al. [88], we define Anc(G) as below.

Definition 2.1.1 (Ancestral Graph Anc(G)). An edge (vi, vj) ∈ Anc(G) iff there

is a directed path from vi to vj in G (equivalently in G due to the semi-Markovian

assumption).

Using Pearl’s do-notation, we represent an intervention on a set of variables S ⊆ V

as do(S = s) for a value s in the domain of S and the joint probability distribution

on V ∪ L conditioned on this intervention by Pr[· | do(S)].

We assume that there exists an oracle that answers queries such as “Is vi indepen-

dent of vj given Z in the interventional distribution Pr[· | do(S = s)]?”

Assumption 2.1.2 (Conditional Independence (CI)-Oracle). Given any vi, vj ∈ V

and Z, S ⊆ V we have an oracle that tests whether vi |= vj | Z, do(S = s).

Such conditional independence tests have been widely investigated with sublin-

ear (in domain size) bounds on the sample size needed for implementing this ora-

cle [34, 134]. As is standard in the causality literature, we assume that our causal

relationship graph satisfies the causal Markov condition and faithfulness [119]. We as-

sume that faithfulness holds both in the observational and interventional distributions

following [66].

Semi-Markovian Assumption Our assumption that each latent only affects two

observable variables is commonly known as the semi-Markovian condition and is stan-

dard in the literature, e.g., see [125, 88]. In fact, using (pairwise) conditional inde-

pendence tests, it is impossible to discover latent variables that affect more than two

observables, even with unlimited interventions. Consider observables x, y, z and a

1We note that the term ancestral graph has also been previously used in a different context, see
e.g., [108].
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latent lxyz that is a parent of all them. If we test whether x, y, and z are all pair-

wise independent and they all turn out to be false, we can’t distinguish the cases

where a single latent lxyz or three separate latents lxy, lyz and lxz are causing this

non-independence. Thus, we cannot remove the assumption without changing our

intervention model or making more restrictive assumptions. As an example, Silva et

al. [118] consider the case when latents affect more than two observables, however,

they make very strong assumptions – that there are no edges between observables,

and each observable has only one latent parent.

Identity Cost Model As an intervention on a set of variables requires controlling

the variables, and generating a new distribution, we want to use as few interventions

as possible. In this cost model, an intervention on any set of observed variables has

unit cost (no matter how many variables are in the set). We assume that for any

intervention, querying the CI-oracle comes free of cost. This model is akin to the

model studied in [88].

We recall the notion of d-separation and introduce p-colliders that we rely on.

Definition 2.1.3 (d-separation). Given a causal graph G(V ∪ L, E), let vi, vj ∈ V

and a set of nodes Z ⊆ V . We say vi and vj are d-separated by Z if and only if every

undirected path π between vi and vj is blocked by Z. A path π between vi and vj is

blocked by Z if at least one of the following holds.

Rule 1: π contains a node vk ∈ Z such that the path π = vi · · · → vk → · · · vj or

vi · · · ← vk ← · · · vj.

Rule 2: π = vi · · · → vk ← · · · vj contains a node vk and both vk /∈ Z and no

descendant of vk is in Z.

An important observation that relates d-separation and conditional independence

is captured by the following lemma:
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Lemma 2.1.4. [105] If vi and vj are d-separated by Z, then vi |= vj | Z.

Colliders. For the path π = vi · · · → vk ← · · · vj between vi and vj, vk is called a

collider as there are two arrows pointing towards it. We say that vk is a collider for

the pair vi and vj, if there exists a path between vi and vj for which vk is a collider.

As shown by Rule 2, colliders play an important role in d-separation. We give a more

restrictive definition for colliders that we will rely on henceforth.

Figure 2.2: vk is a p-collider for vi, vj as it has a path to vp, a parent of vj.

Definition 2.1.5 (p-colliders). Given a causal graph G(V ∪ L,E ∪ EL). Consider

vi, vj ∈ V and vk ∈ V . We say vk is a p-collider for the pair vi and vj, if there exists

a path vi · · · → vk ← · · · vj in G and either vk ∈ Pa(vi) ∪ Pa(vj) or has at least one

descendant in Pa(vi) ∪ Pa(vj). Let Pij ⊂ V denote all the p-colliders between vi and

vj.

Intervening on p-colliders essentially breaks down all the primitive inducing paths.

Primitive inducing paths are those whose endpoints cannot be separated by any con-

ditioning [108]. Now, between every pair of observable variables, we can define a set

of p-colliders as above. Computing Pij for the pair of variables vi and vj explicitly

requires the knowledge of G, however as we show below we can use randomization to

overcome this issue. The following parameterization of a causal graph will be useful

in our discussions.
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Definition 2.1.6 (τ -causal graph). A causal graph G(V ∪ L, E) is a τ -causal graph

if for every pair of nodes in V the number of p-colliders is at most τ , i.e., vi, vj ∈ V

(i 6= j), we have |Pij| ≤ τ .

Note that every causal graph is at most n− 2-causal. In practice, we expect τ to

be significantly smaller. Given a causal graph G, it is easy to determine the minimum

values of τ for which it is τ -causal, as checking for p-colliders is easy. Our algorithm

recovers G with number of interventions that grow as a function of τ and n.

2.2 Causal Discovery

In this section, we consider the identity cost model and present algorithms for re-

covering the causal graph G, with the goal of minimizing the number of interventions.

Our algorithm is based on parameterizing the causal graph based on a specific type

of collider structure.

We break our approach into multiple steps. First, in section 2.2.1, we discuss

the procedure to recover the ancestral graph Anc(G) using a strongly separating set

system (Definition 2.2.1). Next, the algorithm has two steps: (i) we recover the

observable graph G from Anc(G) (section 2.2.2); (ii) after obtaining the observable

graph, we identify all the latents L between the variables in V to construct G (sec-

tion 2.2.3). In both these steps, an underlying idea is to construct intervention sets

with the aim of making sure that all the p-colliders between every pair of nodes is

included in at least one of the intervention sets. As we do not know the graph G,

we devise randomized strategies to hit all the p-colliders, whilst ensuring that we do

not create a lot of interventions. Missing proofs from the section are collected in

Section 2.4.
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2.2.1 Recovering the Ancestral Graph

For ancestral graph recovery, we will leverage a simple characterization of when a

set of interventions S = {S1, . . . , Sm} is sufficient to recover Anc(G). In particular,

S is sufficient if it is a strongly separating set system [88].

Definition 2.2.1 (Strongly Separating Set System). A collection of subsets S =

{S1, · · · , Sm} of the ground set V is a strongly separating set system if for every

distinct u, v ∈ V there exists Si and Sj such that u ∈ Si \ Sj and v ∈ Sj \ Si.

Ancestral graph recovery using a strongly separating set system is simple: we

intervene on each of the sets S1, . . . , Sm. Using CI-tests we can identify for every

pair of vi and vj, if there is a path from vi to vj or not in G using the intervention

corresponding to S ∈ S with vi ∈ S and vj /∈ S. We add an edge to Anc(G) if the test

returns dependence. Finally, we take the transitive closure and output the resulting

graph as Anc(G). In our approach, a strongly separating set system is constructed

with m = 2 log n interventions by using the binary encoding of the numbers 1, · · · , n,

similar to the construction due to Kocaoglu et. al [88].

In Lemma 2.2.2, we show that in fact being strongly separating is necessary for

any set of interventions to be used to identify Anc(G).

Lemma 2.2.2. Suppose S = {S1, S2, · · · , Sm} is a collection of subsets of V . For a

given causal graph G if Anc(G) is recovered using CI-tests by intervening on the sets

Si ∈ S. Then, S is a strongly separating set system.

Proof. Suppose S is not a strongly separating set system. If there exists a pair of

nodes (vi, vj) such that every set Sk ∈ S contains none of them, then, we cannot

recover the edge between these two nodes as we are not intervening on either vi or

vj and the results of an independence test vi |= vj might not be correct due to the

presence of a latent variable lij between them. Now, consider the case when only one

of them is present in the set system. Let (vi, vj) be such that ∀Sk : Sk ∩ {vi, vj} =
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{vi} ⇒ vi ∈ Sk, vj 6∈ Sk. We choose our graph Gij to have two components {vi, vj}

and V \{vi, vj}; and include the edge vj → vi in it. Our algorithm will conclude from

CI-test vi |= vj | do(Sk) that vi and vj are independent. However, it is possible that

vi 6⊥⊥ vj because of a latent lij between vi and vj, but vi |= vj | do(Sk) as intervening

on vi disconnects the lij → vi edge. Therefore, our algorithm cannot distinguish the

two cases vj → vi and vi ← lij → vj without intervening on vj. For every S that is

not a strongly separating set system, we can provide a Gij such that by intervening

on sets in S, we cannot recover Anc(Gij) correctly.

2.2.2 Recovering the Observable Graph

Anc(G) encodes all the ancestral relations on observable variables V of the causal

graph G. To recover G from Anc(G), we want to differentiate whether vi → vj

represents an edge in G or a directed path going through other nodes in G. We use

the following observation, if vi is a parent of vj, the path vi → vj is never blocked by

any conditioning set Z ⊆ V \{vi}. If vi 6∈ Pa(vj), then we show that we can provide a

conditioning set Z in some interventional distribution S such that vi |= vj | Z, do(S).

For every pair of variables that have an edge in Anc(G), we design conditioning sets

in Algorithm 1 that blocks all the paths between them.

Let vi ∈ Anc(vj)\Pa(vj). We argue that conditioning on Anc(vj)\{vi} in do(vi∪

Pij) blocks all the paths from vi to vj. The first simple observation, from d-separation

is that if we take a path that has no p-colliders between vi to vj (a p-collider free path)

then it is blocked by conditioning on Anc(vj) \ {vi} i.e., vi |= vj | Anc(vj) \ {vi}.

The idea then will be to intervene on colliders Pij to remove these dependencies

between vi and vj as shown by the following lemma.

Lemma 2.2.3. Let vi ∈ Anc(vj). vi |= vj | do(vi ∪ Pij),Anc(vj) \ {vi} iff vi 6∈ Pa(vj).

From Lemma 2.2.3, we can recover the edges of the observable graph G provided

we know the p-colliders between every pair of nodes. However, since the set of p-
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colliders is unknown without the knowledge of G, we construct multiple intervention

sets by independently sampling every variable with some probability. This ensures

that there exists an intervention set S such that {vi} ∪Pij ⊆ S and vj 6∈ S with high

probability.

Formally, let At ⊆ V for t ∈ {1, 2, · · · , 72τ ′ log n} be constructed by includ-

ing every variable vi ∈ V with probability 1 − 1/τ ′ where τ ′ = max{τ, 2}. Let

Aτ = {A1, · · · , A72τ ′ logn} be the collection of the set At’s. Algorithm 1 uses the

interventions in Aτ .

Algorithm 1 RecoverG (Anc(G),Aτ )
1: E = φ
2: for vi → vj in Anc(G) do
3: Let Aij = {A | A ∈ Aτ such that vi ∈ A, vj 6∈ A}
4: if ∀ A ∈ Aij ,vi 6⊥⊥ vj | Anc(vj) \ {vi},do(A) then
5: E = E ∪ {(vi, vj)}
6: end if
7: end for
8: return E

Proposition 2.2.4. Let G(V ∪L,E ∪EL) be a τ -causal graph with observable graph

G(V,E). There exists a procedure to recover the observable graph using O(τ log n +

log n) many interventions with probability at least 1− 1/n2.

Lower Bound. Complementing the above result, the following proposition gives a

lower bound on the number of interventions by providing an instance of a O(n)-causal

graph such that any non-adaptive algorithm requires Ω(n) interventions for recovering

it. The lower bound comes because of the fact that the algorithm cannot rule out the

possibility of latent.

Proposition 2.2.5. There exists a graph causal G(V ∪L,E∪EL) such that every non-

adaptive algorithm requires Ω(n) many interventions to recover even the observable

graph G(V,E) of G.
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2.2.3 Detecting the Latents

We now describe algorithms to identify latents that effect the observable variables

V to learn the entire causal graph G(V ∪ L,E ∪ EL). We start from the observable

graph G(V,E) constructed in the previous section. Our goal will be to use the fact

that G is a τ -causal graph, which means that |Pij| ≤ τ for every pair vi, vj. Since we

assumed that each latent variable (in L) effects at most two observable variables (in

V ), we can split the analysis into two cases: a) pairs of nodes in G without an edge

(non-adjacent nodes) and b) pairs of nodes in G with a direct edge (adjacent). In

Algorithm LatentsNEdges (Section 2.4.1.2), we describe the algorithm for identi-

fying the latents effecting pairs of non-adjacent nodes. The idea is to block the paths

by conditioning on parents and intervening on p-colliders. We use the observation

that for any non-adjacent pair vi, vj an intervention on the set Pij and conditioning

on the parents of vi and vj will make vi and vj independent, unless there is a latent

between them.

Proposition 2.2.6. Let G(V ∪L,E ∪EL) be a τ -causal graph with observable graph

G(V,E). Algorithm LatentsNEdges with O(τ 2 log n + log n) interventions recov-

ers all latents effecting pairs of non-adjacent nodes in the observable graph G with

probability at least 1− 1/n2.

Latents Affecting Adjacent Nodes in G. Suppose we have an edge vi → vj in

G(V,E) and we want to detect whether there exists a latent lij that effects both of

them. Here, we cannot block the edge path vi → vj by conditioning on any Z ⊆ V

in any given interventional distribution do(S) where S does not contain vj. However,

intervening on vj also disconnects vj from its latent parent. Therefore, CI-tests are

not helpful. Hence, we make use of another test called do-see test [88], that compares

two probability distributions. We assume there exists an oracle that answers whether

two distributions are the same or not. This is a well-studied problem with sublinear

(in domain size) bound on the sample size needed for implementing this oracle [37].
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Algorithm 2 LatentsWEdges(G(V ∪ L,E ∪ EL),Bτ )
1: Consider the edge vi → vj ∈ E.
2: Let Bij = {B \ {vi} | B ∈ Bτ s.t. vi ∈ B, vj 6∈ B}
3: if ∀B ∈ Bij ,Pr[vj | vi,Pa(vj),do(Pa(vi) ∪ B)] 6= Pr[vj | Pa(vj),do({vi} ∪ Pa(vi) ∪ B)]

then
4: L← L ∪ lij , EL ← EL ∪ {(lij , vi), (lij , vj)}
5: end if
6: return G(V ∪ L,E ∪ EL)

Assumption 2.2.7 (Distribution Testing (DT)-Oracle). Given any vi, vj ∈ V and

Z, S ⊆ V tests whether two distributions Pr[vj | vi, Z, do(S)] and Pr[vj | Z, do(S ∪

{vi})] are identical or not.

The intuition of the do-see test is as follows: if vi and vj are the only two nodes in

the graph G with vi → vj, then, Pr[vj | vi] = Pr[vj | do(vi)] iff there exists no latent

that effects both of them. This follows from the conditional invariance principle [20]

(or page 24, property 2 in [105]). Therefore, the presence or absence of latents can

be established by invoking a DT-oracle.

As we seek to minimize the number of interventions, our goal is to create interven-

tion sets that contain p-colliders between every pair of variables that share an edge

in G. However, in Lemmas 2.2.8, 2.2.9 we argue that it is not sufficient to consider

interventions with only p-colliders. We must also intervene on Pa(vi) to detect a

latent between vi → vj. The main idea behind LatentsWEdges is captured by the

following two lemmas.

Lemma 2.2.8 (No Latent Case). Suppose vi → vj ∈ G and vi, vj 6∈ B, and Pij ⊆ B

then, Pr[vj | vi,Pa(vj), do(Pa(vi)∪B)] = Pr[vj | Pa(vj), do({vi}∪Pa(vi)∪B)] if there

is no latent lij with vi ← lij → vj.

Lemma 2.2.9 (Latent Case). Suppose vi → vj ∈ G and vi, vj 6∈ B, and Pij ⊆ B,

then, Pr[vj | vi,Pa(vj), do(Pa(vi)∪B)] 6= Pr[vj | Pa(vj), do({vi}∪Pa(vi)∪B)] if there

is a latent lij with vi ← lij → vj.
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From Lemmas 2.2.8, 2.2.9, we know that to identify a latent lij between vi → vj,

we must intervene on all the p-colliders between them with Pa(vi)∪{vi}. To do this,

we again construct random intervention sets. Let Bt ⊆ V for t ∈ {1, 2, · · · , 72τ ′ log n}

be constructed by including every variable vi ∈ V with probability 1−1/τ ′ where τ ′ =

max{τ, 2}. Let Bτ = {B1, · · · , B72τ ′ logn} be the collection of the sets. Consider a pair

vi → vj. To obtain the interventions given by the above lemmas, we iterate over all

sets in Bτ and identify all the sets containing vi, but not vj. From these sets, we remove

vi to obtain Bij. These new interventions are then used in LatentsWEdges to

perform the required distribution tests using a DT-oracle on the interventions B ∪

Pa(vi) and B ∪ Pa(vi) ∪ {vi} for every B ∈ Bij. We can show:

Proposition 2.2.10. Let G(V ∪L,E∪EL) be a τ -causal graph with observable graph

G(V,E).

LatentsWEdges with O(nτ log n+n log n) interventions recovers all latents effect-

ing pairs of adjacent nodes in the observable graph G with probability at least 1−1/n2.

Putting it all Together. Using Propositions 2.2.4, 2.2.6, and 2.2.10, we get the

following result. Note that τ ≤ n− 2.

Theorem 2.2.11. Given access to a τ -causal graph G = G(V ∪ L,E ∪ EL) through

Conditional Independence (CI) and Distribution Testing (DT) oracles, Algorithms Re-

coverG, LatentsNEdges, and LatentsWEdges put together recovers G with

O(nτ log n+n log n) interventions, with probability at least 1−O(1/n2) (where |V | =

n).

Remark Note that our algorithms achieve an overall success probability of 1 −

O(1/n2), however, the success probability can be boosted to any 1 − O(1/nc) for

any constant c, by adjusting the constant factors (see for example the proof of

Lemma 2.4.2). Also for simplicity of discussion, we assume that we know τ . How-
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ever as we discuss in Section 2.4.1.4, this assumption can be easily removed with an

additional O(log τ) factor.

2.3 Experimental Evaluation

In this section, we compare the total number of interventions required to recover

causal graph G parameterized by p-colliders (see Section 2.2) vs. maximum degree

utilized by Kocaoglu et al. [88].

Since the parameterization of these two results are different, a direct comparison

between them is not always possible. If τ = o(d2/n), we use fewer interventions

than those used by Kocaoglu et al. [88] for recovering the causal graph. Roughly,

for any 0 ≤ ε ≤ 1, (a) when τ < nε, d > n(1+ε)/2, our bound is better, (b) when

τ > nε, τ < d < n(1+ε)/2, then we can identify latents using the algorithms of Kocaoglu

et al. [88], after using our algorithm for observable graph recovery, and (c) when

τ > d > nε, d < n(1+ε)/2, the bound achieved by Kocaoglu et al. [88] is better.

In this section, our main motivation is to show that p-colliders can be a useful

measure of complexity of a graph. As discussed in Chapter 1, even few nodes of high

degree could make d2 quite large.

Setup We demonstrate our results by considering sparse random graphs generated

from the families of: (i) Erdös-Rényi random graphs G(n, c/n) for constant c, (ii)

Random Bipartite Graphs generated using G(n1, n2, c/n) model, with partitions L, R

and edges directed from L to R, (iii) Directed Trees with degrees of nodes generated

from power law distribution. In each of the graphs we generate, we additionally

include latent variables by sampling 5% of
(
n
2

)
pairs and adding a latent between

them.

Finding p-colliders Let G contain observable variables and the latents. To find p-

colliders between every pair of observable nodes of G, we enumerate all paths between
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them and check if any of the observable nodes on a path can be a possible p-collider.

As this became practically infeasible for larger values of n, we devise an algorithm

that runs in polynomial time (in the size of the graph) by constructing an appropriate

flow network and finding maximum flow in this network. We will first describe a

construction that takes three nodes (vi, vj, vk) as input and checks if vk is a p-collider

for the pair of nodes vi and vj. Iterating over all possible nodes vk gives us all the

p-colliders for the pair vi, vj.

Construction If vk is not an ancestor of either vi or vj, then, output vk is not a

p-collider. Else, we describe a modification of G to obtain the flow network G̃. First,

initialize G̃ with G. Remove all outgoing edges of vk from G̃ and set the capacity

of all incoming edges incident on vk to 1. Add a node Tij along with the edges

Tij → vi and Tij → vj to G̃ and set the capacity of these edges to 1. For every node

w ∈ V ∪L\{vk}, create two nodes win and wout. Add edge wout → win with a capacity

1. Every incoming edge to w i.e., z → w is replaced by z → win and every outgoing

edge w → z is replaced by wout → z with capacity 1. Find maximum s, t flow in G̃

with Tij, vk as source and sink respectively. If the maximum flow is 2, then output vk

is a p-collider, otherwise no.

Now, we outline the idea for the proof of correctness of the above construction.

Sketch of the Proof After ensuring that vk has a directed path to either vi or vj,

we want to check whether there is an undirected path from vi to vj containing vk as a

collider. In other words, we want to check if there are two vertex disjoint paths from

vi and vj to vk such that both of these paths have incoming edges to vk. By adding

a node Tij connected to vi and vj, we want to route two units of flow from Tij to vk

where each node has a vertex capacity of 1. Converting vertex capacities into edge

capacities by splitting every node into two nodes (one for incoming and the other for
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outgoing edges) gives us the desired flow network on which we can solve maximum

flow.
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Figure 2.3: Comparison of τ vs. maximum degree in various sparse random graph
models. On the x-axis is the number of nodes in the graph. Note that our bound
on the number of interventions needed to recover G is better than those provided by
Kocaoglu et al. [88] roughly when τ < d2/n.

Results In our plots (Figure 2.3), we compare the maximum undirected degree (d)

with the maximum number of p-colliders between any pair of nodes (which defines τ).

We ran each experiment 10 times and plot the mean value along with one standard

deviation error bars.

Recall that in the worst case, the number of interventions used by our approach

(Theorem 2.2.11) is O(nτ log n + n log n) while the algorithm proposed by Kocaoglu

et al. [88] uses O(min{d log2 n, `}+ d2 log n) many interventions where ` is the length

of the longest directed path in the graph. So roughly when τ < d2/n, our bound

is better. For this purpose, we also plot the d2/n line using the mean value of d

obtained.

For random bipartite graphs, that can be used to model causal relations over time,

we use equal partition sizes n1 = n2 = n/2 and plot the results for G(n/2, n/2, c/n)

for constant c = 5. We observe that the behaviour is uniform for small constant

values of c. In this case, we observe that the number of p-colliders is close to zero for

all values of n in the range considered and our bound is better.
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For directed random trees, where degrees of nodes follow the powerlaw distribution

(observed in real world networks [3]), we again observe that for almost all the values

of n, our bound is better. We run our experiments with small constant values for the

exponent γ and show the plots for γ = 3 in Figure 2.3. As powerlaw graphs contain

only a few nodes concentrated around a very high degree, we expect our algorithm to

perform better in such cases. For Erdös-Rényi random graphs G(n, 1/n), we observe

that our result is either better or comparable to that of Kocaoglu et al. [88].

It is interesting to see that in the sparse graphs we considered τ is considerably

smaller compared to d. Moreover, if we want to identify only the observable graph G

under the presence of latents, our algorithm uses O(τ log n) interventions where as the

previous known algorithm, due to Kocaoglu et. al. [88], uses O(d log2 n) interventions.

In the random graphs considered above, our algorithms perform significantly better

for identifying G. Therefore, we believe that minimizing the number of interventions

based on the notion of p-colliders is a reasonable direction to consider.

2.4 Additional Proof Details from Section 2.2

In this section, we provide all the missing proof details from section 2.2.

2.4.1 Recovering the entire causal graph G

In this section, we present the missing proof details from section 2.2. In sec-

tion 2.4.1.1, we present the missing proof details for recovering the observable graph

G; in sections 2.4.1.2 and 2.4.1.3, we present the missing proof details for detecting

the latents.

2.4.1.1 Recovering the observable graph G

In this section, we present the missing proof details from section 2.2.2 for recov-

ering the observable graph G.

35



Lemma 2.4.1 (Lemma 2.2.3 restated). Let vi ∈ Anc(vj). vi |= vj | do(vi∪Pij),Anc(vj)\

{vi} iff vi 6∈ Pa(vj).

Proof. Suppose vi ∈ Anc(vj)\Pa(vj). Consider the interventional distribution do(vi∪

Pij) where Pij is the set of p-colliders between vi and vj. We intervene on vi to block

the path (if present) given by vi ← l̃ → vj where l̃ ∈ L. Consider all the remaining

undirected paths between vi and vj denoted by Πij. We divide Πij into three cases.

Let π ∈ Πij be a path from vi to vj.

1. π contains no colliders, then, π is blocked by Anc(vj) \ {vi}. As π contains

no colliders, we can write π = vi · · · vk → vj where vk ∈ Anc(vj). As we are

conditioning on Anc(vj) \ {vi} ⊇ {vk}, π is blocked by vk.

2. π contains colliders but not a p-collider. We argue that there are no collider

nodes in π that are also in Anc(vj) \ {vi}. As there are no p-colliders, it means

that all the colliders have no descendants in the conditioning set Anc(vj)\{vi}.

Because if a collider vc have a descendant in Anc(vj) \ {vi}, then there is a

path from vc to Pa(vj) through Anc(vj) \ {vi}. This means that vc is a p-

collider, contradicting our assumption. Therefore, from Rule-2 of d-separation,

π is blocked.

3. π contains at least one p-collider. We are intervening on Pij containing all the

p-colliders. In the intervened mutilated graph, all the p-colliders no longer have

an incoming arrow and therefore are not colliders. So π is blocked.

If vi 6∈ Pa(vj), we can conclude that vi |= vj | do({vi} ∪ Pij),Anc(vj) \ {vi}. Suppose

vi ∈ Pa(vj). In the interventional distribution do({vi}∪Pij), we still have vi ∈ Pa(vj)

and any conditioning will not block the path π = vi → vj. Therefore, vi 6⊥⊥ vj |

(do({vi} ∪ Pij),Anc(vj) \ {vi} if vi ∈ Pa(vj).
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Lemma 2.4.2. Let G(V ∪ L,E ∪ EL) be a τ -causal graph with observable graph

G(V,E). Given an ancestral graph Anc(G), Algorithm RecoverG correctly recovers

all edges in the observable graph with probability at least 1− 1/n2.

Proof. Let τ ′ = max{τ, 2}. From Lemma 2.2.3, we can recover the edges ofG provided

we know the p-colliders between every pair of nodes. As we do not know the graph

G, we devise a randomized strategy to hit all the p-colliders, whilst ensuring that we

don’t create a lot of interventions. Suppose max(vi,vj)∈V×V |Pij| ≤ τ . We show that

with high probability, ∀vi ∈ Anc(vj), ∃At such that {vi} ∪ Pij ⊆ At and vj 6∈ At. We

can then use the CI-test described in Lemma 2.2.3 to verify whether vi is a parent of

vj. In Algorithm RecoverG, we repeat this procedure on every edge of Anc(G) and

output G.

Suppose vi ∈ Anc(vj). Let Γt denote the event that At ∈ Aτ such that {vi}∪Pij ⊆

At and vj 6∈ At for a fixed t ∈ {1, . . . , 72τ ′ log n}. Let T = 72τ ′ log n. As we include

a vertex vi ∈ At with probability 1− 1/τ ′, we obtain

Pr[Γt] =

(
1− 1

τ ′

)|Pij |+1
1

τ ′
≥
(

1− 1

τ ′

)τ ′+1
1

τ ′
.

Using the inequality (1 + x
n
)n ≥ ex(1− x2

n
) for |x| ≤ n, and since τ ′ ≥ 2 we have:

Pr[Γt] ≥ 1
eτ
′+1/τ ′ (1−

(τ ′+1)2

τ ′2(τ ′+1)
) 1
τ ′
≥ 1

18τ ′

⇒ Pr[Γ̄t] ≤ 1− 1
18τ ′

and Pr[∃t ∈ [T ] : Γt] ≥ 1−
(
1− 1

18τ ′

)72τ ′ logn
.

Using the inequality (1 + x
n
)n ≤ ex for |x| ≤ n we have:

Pr[∃t ∈ [T ] : Γt] ≥ 1− 1

n4
.
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So the probability that there exists at least one set At for the given pair vi, vj for

which vi ∪ Pij ⊆ At and vj 6∈ At is at least 1 − 1
n4 .2 To ensure this probability of

success for every pair of variables, we use a union bound over the n2 node pairs.

Proposition 2.4.3 (Proposition 2.2.4 restated). Let G(V ∪L,E ∪EL) be a τ -causal

graph with observable graph G(V,E). There exists a procedure to recover the ob-

servable graph using O(τ log n + log n) many interventions with probability at least

1− 1/n2.

Proof. As is well-known, e.g. [88], a strongly separating set system can be constructed

with m = 2 log n interventions by using the binary encoding of the numbers 1, . . . , n.

Two intervention sets are constructed for every bit location k ∈ [log n], one with any

node vi if the number i has kth bit set to 1, and other with any node vi if the number

i has kth bit set to 0. Therefore, we require 2 log n interventions to obtain ancestral

graph Anc(G) of the observable graph. From Lemma 2.4.2, we require O(τ log n)

interventions to recover all the edges of observable graph of G from Anc(G) with

probability 1− 1
n2 . Therefore, using O(τ log n) interventions, Algorithm RecoverG

can recover the observable graph G(V,E) with high probability.

It is well established that log(χ(G)) interventions are necessary and sufficient in

the causally sufficient systems (where there are no latents) where χ(G) is the chro-

matic number of G. Generalized over all graphs this becomes log(n). Our following

lower bound shows that, even if there are no latent variables in the underlying system,

if the algorithm cannot rule latents out, and needs to consider latents as a possibility

to compute the graph skeleton, then Ω(n) interventions are necessary. Shanmugam

et al. [115] provide a lower bound in a different setting, when the intervention sets

are required to have only limited number of variables.

2Note by adjusting the constant 72, we could have pushed this probability to any 1/nc for constant
c.
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Proposition 2.4.4 (Proposition 2.2.5 restated). There exists a graph causal G(V ∪

L,E ∪EL) such that every non-adaptive algorithm requires Ω(n) many interventions

to recover even the observable graph G(V,E) of G.

Proof. Consider an ordering of observable variables given by v1, v2, · · · , vn. Let G be

a graph with all directed edges (va, vb) for all b > a. Suppose the set of interventions

generated by the non-adaptive algorithm is given by H. Now consider vi for some

fixed i ≥ n
4
.

We claim that if every intervention H ∈ H is such that for some j ∈ {3, · · · , i −

1}, vj 6∈ H, then there exists a graph Gi such that G and Gi are both indistinguishable

under all the interventions in H irrespective of other conditioning. Now consider

any set Hj ⊆ ({v1, v2, · · · , vi−1} \ {vj})
⋃
{vi+1, · · · , vn}. Let Gi be such that it

contains all the directed edges (va, vb) for all b > a but does not contain the directed

edge (v1, vi). To distinguish between G and Gi one needs to determine whether

v1 → vi. Note that any intervention we use to determine the edge should contain

v1 to rule out the possibility of the influence of latent v1 ← l1i → vi on the CI-tests

we perform. Now, under do(Hj), there are only two CI-tests possible to determine

whether v1 → vi : v1 |= vi | vj, do(Hj) and v1 |= vi | do(Hj). However, for both graphs

G and Gi, both these independence tests will always turn out negative. In the former

case, it is because vj will be a collider on the path vi, vj, vj−1, vi, and in the latter

case there is a path v1, vj, vi that is not blocked. In other words, the CI-tests will

provide no information to distinguish between G and Gi, unless H contains the set

{v1, v3, . . . , vi−1}.

One can similarly construct these Gi’s for all i ≥ n
4
, thereby H needs to contain

the intervention sets {v1, v3, . . . , vi−1} for all n/4 ≤ i ≤ n to separate G from all the

Gi’s. This proves the claim.
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Algorithm 3 LatentsNEdges (G(V,E),Dτ )
1: L← φ,EL ← φ
2: for (vi, vj) 6∈ E do
3: Let Dij = {D | D ∈ Dτ and vi, vj 6∈ D}
4: if vi 6⊥⊥ vj | do(D) ∪ Pa(vi) ∪ Pa(vj) for every D ∈ Dij then
5: L← L ∪ lij , EL ← EL ∪ {(lij , vi), (lij , vj)}
6: end if
7: end for
8: return G(V ∪ L,E ∪ EL)

2.4.1.2 Latents Affecting Non-adjacent Nodes in G

Let Ē = {(vi, vj) | (vi, vj) 6∈ E} be the set of non-edges in G. The entire procedure

for finding latents between non-adjacent nodes in G is described in Algorithm La-

tentsNEdges. Similar to Algorithm RecoverG, we block the paths by condition-

ing on parents and intervening on p-colliders. The idea is based on the observation

that for any non-adjacent pair vi, vj an intervention on the set Pij and conditioning

on the parents of vi and vj will make vi and vj independent, unless there is a latent

between then. The following lemma formalizes this idea.

Lemma 2.4.5. Suppose (vi, vj) ∈ Ē. Then, vi |= vj | do(Pij),Pa(vi) ∪ Pa(vj) iff vi

and vj has no latent between them.

Proof. Suppose there is no latent between vi and vj. We follow the proof similar to

the Lemma 2.2.3. Consider the pair of variables vi and vj and all the paths between

them Πij. Let π ∈ Πij.

1. Let π be a path not containing any colliders. Using Rule-1 of d-separation, we

can block π by conditioning on either Pa(vi) or Pa(vj).

2. If π contains colliders and no p-colliders, then, using Rule-2 of d-separation, π

is blocked as the colliders have no descendants in Pa(vi) ∪ Pa(vj).

3. We block the paths π containing p-colliders by intervening on Pij
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As all the paths in Πij are blocked, we have vi |= vj | do(Pij),Pa(vi)∪Pa(vj). If there

is a latent lij then the path vi ← lij → vj is not blocked and therefore vi 6⊥⊥ vj |

(do(Pij),Pa(vi) ∪ Pa(vj)).

Formally, let Dt ⊆ V for t ∈ {1, 2, · · · , 24τ ′2 log n} be constructed by including

every variable vi ∈ V with probability 1 − 1
τ ′

where τ ′ = max{τ, 2}. Let Dτ =

{D1, · · · , D24τ ′2 logn} be the collection of the set Dt’s. Using these interventions Dτ ,

we argue that we can recover all the latents between non-edges of G correctly with

high probability.

Proposition 2.4.6 (Proposition 2.2.6 restated). Let G(V ∪L,E ∪EL) be a τ -causal

graph with observable graph G(V,E). Algorithm LatentsNEdges with O(τ 2 log n+

log n) many interventions recovers all latents effecting pairs of non-adjacent nodes in

the observable graph G with probability at least 1− 1/n2.

Proof. We follow a proof similar to Lemma 2.4.2. Consider a pair of variables vi and

vj such that there is no edge between them in G. From Lemma 2.4.5, we know that

by intervening on all the colliders between vi and vj, we can identify the presence of a

latent. In Algorithm LatentsNEdges, we iterate over sets in Dij. As Dij ⊆ Dτ , we

have |Dij| ≤ 24τ ′2 log n. Let Γt denote the event that Dt ∈ Dij is such that vi, vj 6∈ Dt

and Pij ⊆ Dt for a fixed t ∈ {1, · · · , 24τ ′2 log n}. Let T = 24τ ′2 log n.

Pr[Γt] =

(
1− 1

τ ′

)|Pij | 1

τ ′2
≥
(

1− 1

τ ′

)τ ′
1

τ ′2
.

Using the inequality (1 + x
n
)n ≥ ex(1− x2

n
) for |x| ≤ n, and since τ ′ ≥ 2 we have:

Pr[Γt] ≥ 1
e
(1− 1

τ ′
) 1
τ ′2
≥ 1

2eτ ′2

⇒ Pr[Γ̄t] ≤ 1− 1
6τ ′2

and Pr[∃t ∈ [T ] : Γt] ≥ 1−
(
1− 1

6τ ′2

)24τ ′2 logn
.
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Using the inequality (1 + x
n
)n ≤ ex for |x| ≤ n we have:

Pr[∃t ∈ [T ] : Γt] ≥ 1− 1

n4
.

So the probability that there exists a set Dt for which vi, vj 6∈ Dt and Pij ⊆ Dt is at

least 1− 1
n4 . A union bound over at most n2 pair of variables completes the proof.

2.4.1.3 Latent Affecting Adjacent Nodes in G

We follow an approach similar to the one presented in section 2.4.1.2 for detecting

the presence of latent between an edge vi → vj in G. In Algorithm 2, we block all the

paths (excluding the edge) between the variables vi and vj using a conditioning set

Pa(vj) in the intervention distribution do(Pa(vi)∪Pij) in the do-see tests we perform.

This idea is formalized using the following lemma.

Lemma 2.4.7. Suppose vi → vj ∈ G. Let ltj be a latent between vt and vj where

vt 6= vi and vi, vj 6∈ B, Pij ⊆ B. Then, ltj |= vi | Pa(vj), do(B ∪ {vi} ∪ Pa(vi)) and

ltj |= vi | Pa(vj), do(Pa(vi) ∪B).

Proof. The proof goes through by analyzing various cases. We give a detailed outline

of the proof.

Claim 1: ltj |= vi | Pa(vj), do(B∪{vi}∪Pa(vi)). Suppose vt ∈ Pa(vi)∪B. Consider

all the paths between vi and ltj in the interventional distribution do(B∪{vi}∪Pa(vi)).

The only paths that are not separated because of the intervention are ltj → vj ← vi,

ltj → vj ← vk · · · ← vi where vk ∈ Pa(vj), and ltj → vj → · · · ← vi. As we are not

conditioning on vj, ltj → vj ← vi is blocked (Rule-2 in d-separation); conditioning

on Pa(vj) 3 vk block the paths ltj → vj ← vk · · · ← vi (Rule-1 in d-separation); and

ltj → vj → · · · ← vi paths have a collider that is not Pa(vj) hence blocked by Rule-2

in d-separation.

Suppose vt 6∈ Pa(vi) ∪ B. As before it follows that all paths between ltj and

vi going through vj are blocked. All other paths between ltj and vi should have a
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collider. This is because in any such path π the only edge from ltj is ltj → vt and the

edges that remain at vi are outgoing. It is easy to see that the collider on this path

π can’t be in Pa(vj) because otherwise it will also be a p-collider between vi and vj

which are intervened on through B. When there is a collider on the path that is not

in the conditioning set, then the path is blocked (Rule-2 in d-separation). The same

holds for all paths between ltj and vi.

Claim 2: ltj |= vi | Pa(vj), do(B ∪ Pa(vi)). Consider all the paths between ltj and

vi. Using the above arguments, we have that all paths containing vj are blocked. All

other paths between ltj and vi should have a collider. This is because in any such

path π the only edge from ltj is ltj → vt and π will end at vi either as ltj · · · ← vi or

ltj → · · · ← vk → vi where vk ∈ Pa(vi). It is again easy to see that the collider on this

path π can’t be in Pa(vj) because otherwise it will also be a p-collider between vi and

vj which are intervened on through B. As before, when there is a collider on the path

that is not in the conditioning set, then the path is blocked (Rule-2 in d-separation).

The same holds for all paths between ltj and vi.

Lemma 2.4.8 (Lemma 2.2.8 restated). Suppose vi → vj ∈ G and vi, vj 6∈ B, and

Pij ⊆ B then, Pr[vj | vi,Pa(vj), do(Pa(vi)∪B)] = Pr[vj | Pa(vj), do({vi}∪Pa(vi)∪B)]

if there is no latent lij with vi ← lij → vj.

Proof. Suppose vi → vj in G and there is no latent between (vi, vj). Then, we claim

that Pr[vj | vi,Pa(vj), do(Pa(vi)∪B)] = Pr[vj | Pa(vj), do({vi}∪Pa(vi)∪B)]. Let Lj

represents all the latent parents of vj. By including vi in the intervention,

Pr[vj | Pa(vj), do({vi} ∪ Pa(vi) ∪B)]

=
∑
Lj

Pr[vj | Lj,Pa(vj), do({vi} ∪ Pa(vi) ∪B)] Pr[Lj | Pa(vj), do({vi} ∪ Pa(vi) ∪B)].

=
∑
Lj

Pr[vj | Lj,Pa(vj), do({vi} ∪ Pa(vi) ∪B)] Pr[Lj | Pa(vj), do(Pa(vi) ∪B)].

(2.1)
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As the value of Lj is only affected by conditioning on its descendants, and in the

interventional distribution do(Pa(vi)), vi is not a descendant of Lj, the last statement

is true.

Under conditioning on vi

Pr[vj | vi,Pa(vj), do(Pa(vi) ∪B)]

=
∑
Lj

Pr[vj | Lj, vi,Pa(vj), do(Pa(vi) ∪B)] Pr[Lj | vi,Pa(vj), do(Pa(vi) ∪B)]

=
∑
Lj

Pr[vj | Lj, vi,Pa(vj), do(Pa(vi) ∪B)] Pr[Lj | Pa(vj), do(Pa(vi) ∪B)]. (2.2)

The last statement is true because Lj |= vi | Pa(vj) in the distribution do(B ∪ Pa(vi))

from Lemma 2.4.7. From the invariance principle (page 24 in [105], [88]), for any

variable vi:

Pr[vi | Pa(vi)] = Pr[vi | Z, do(Pa(vi) \ Z)] for any Z ⊆ Pa(vi)

Applying it to our case we get

Pr[vj | Lj, vi,Pa(vj), do(Pa(vi) ∪B)] = Pr[vj | Lj,Pa(vj), do({vi} ∪ Pa(vi) ∪B)].

Putting this together with (2.1) and (2.2), we get Pr[vj | vi,Pa(vj), do(Pa(vi) ∪

B)] = Pr[vj | Pa(vj), do({vi} ∪ Pa(vi) ∪ B)], if there is no latent lij with vi ← lij →

vj.

Lemma 2.4.9 (Lemma 2.2.9 restated). Suppose vi → vj ∈ G and vi, vj 6∈ B, and

Pij ⊆ B, then, Pr[vj | vi,Pa(vj), do(Pa(vi)∪B)] 6= Pr[vj | Pa(vj), do({vi}∪Pa(vi)∪B)]

if there is a latent lij with vi ← lij → vj.

Proof. Suppose vi → vj in G and there is a latent lij between (vi, vj). Then, we claim

that Pr[vj | vi,Pa(vj), do(Pa(vi)∪B)] 6= Pr[vj | Pa(vj), do({vi}∪Pa(vi)∪B)]. Let Lj
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represents all the latent parents of vj, where lij ∈ Lj. Therefore, vi is a descendant

of Lj. By including vi in the intervention,

Pr[vj | vi,Pa(vj), do(Pa(vi) ∪B)]

=
∑
Lj

Pr[vj | Lj,Pa(vj), do({vi} ∪ Pa(vi) ∪B)] Pr[Lj | Pa(vj), do({vi} ∪ Pa(vi) ∪B)]

=
∑
Lj

Pr[vj | Lj,Pa(vj), do({vi} ∪ Pa(vi) ∪B)] Pr[Lj | Pa(vj), do(Pa(vi) ∪B)].

As the value of Lj is only affected by conditioning on its descendants, and in the

interventional distribution do(Pa(vi)), vi is not a descendant of Lj, the last statement

is true. Under conditioning on vi, we have :

Pr[vj | vi,Pa(vj), do(Pa(vi) ∪B)]

=
∑
Lj

Pr[vj | Lj, vi,Pa(vj), do(Pa(vi) ∪B)] Pr[Lj | vi,Pa(vj), do(Pa(vi) ∪B)]

=
∑
Lj

Pr[vj | Lj, vi,Pa(vj), do(Pa(vi) ∪B)]
Pr[vi | Lj,Pa(vj), do(Pa(vi) ∪B)]

Pr[vi | Pa(vj), do(Pa(vi) ∪B)]

· Pr[Lj | Pa(vj), do(Pa(vi) ∪B)]

From the invariance principle (page 24 in [105], [88]), we have for any variable vi

Pr[vi | Pa(vi)] = Pr[vi | Z, do(Pa(vi) \ Z)] for any Z ⊆ Pa(vi)

Applying it to our case we get

Pr[vj | Lj, vi,Pa(vj), do(Pa(vi) ∪B)] = Pr[vj | Lj,Pa(vj), do({vi} ∪ Pa(vi) ∪B)].

However, since the numerator of

Pr[vi | Lj,Pa(vj), do(Pa(vi) ∪B)]

Pr[vi | Pa(vj), do(Pa(vi) ∪B)]
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depends on Lj as vi is a descendant of lij ∈ Lj, whereas the denominator is not

dependent on Lj, the ratio is not equal to 1 unless in pathological cases. A sim-

ilar situation arises in the do-see test analysis for [88]. Hence, we have Pr[vj |

vi,Pa(vj), do(Pa(vi) ∪B)] 6= Pr[vj | Pa(vj), do({vi} ∪ Pa(vi) ∪B)].

Proposition 2.4.10 (Proposition 2.2.10 restated). Let G(V ∪L,E∪EL) be a τ -causal

graph with observable graph G(V,E). Algorithm LatentsWEdges with O(nτ log n+

n log n) many interventions recovers all latents effecting pairs of adjacent nodes in the

observable graph G with probability at least 1− 1
n2 .

Proof. From Lemma 2.4.2, we know that with probability 1− 1
n2 , for every pair vi and

vj, there exists, with high probability, an intervention B ∈ Bτ such that vi ∈ B, vj 6∈ B

and Pij ⊆ B. On this B, using Lemmas 2.2.8 and 2.2.9, we can identify the latent by

using a distribution test on B ∪ Pa(vi) and B ∪ Pa(vi) ∪ {vi}.

For every variable vi ∈ V , our algorithm constructs at most 2|Bτ | many inter-

ventions, given by do({vi} ∪ Pa(vi) ∪ B) and do(Pa(vi) ∪ B) for every B ∈ Bτ .

Therefore, the total number of interventions used by Algorithm LatentsWEdges is

O(nτ log n+ n log n).

2.4.1.4 Removing the dependence on the exact value of τ

Let G be a τ -causal graph. We assume that we know the exact value of τ in

Algorithms RecoverG, LatentsNEdges, and LatentsWEdges. However, this

assumption can be easily removed. For a fixed τ , let Gτ be graph returned after going

through all these above algorithms. Given Gτ , checking whether vk is a p-collider for

some pair vi, vj is simple, iterate over all paths between vi and vj that include vk. Let

Π = {π1, . . . , πr} be these paths. For each πw ∈ Π, remove the edges in πw from Gτ

see if vk has a descendant in Pa(vi) ∪ Pa(vj) in this modified graph. If this holds for

any path πw ∈ Π, then vk is a p-collider for the pair vi, vj. We describe an efficient

algorithm for finding p-colliders in section 2.3.

46



The idea is as follows, we invoke Algorithms RecoverG, LatentsNEdges and

LatentsWEdges for τ = 1, 2, 4, .., until we find the first τ̂ and 2τ̂ such that

Gτ̂ = G2τ̂ . We now check whether the observable nodes in Gτ̂ has at most τ̂ p-colliders,

if so we are output Gτ̂ (and τ̂). Otherwise, we continue by doubling τ , i.e., by consid-

ering 2τ̂ and 4τ̂ . By increasing τ by a constant factor, it is easy to see that process

will stop in at most log(2τ) steps and when it stops it produces the correct observable

graph G and also that τ̂ ≤ 2τ . Overall, this will increase the number of interventions

in Theorem 2.2.11 by a factor of O(log τ) (to O(τ 2 log n log τ + nτ log n log τ) inter-

ventions). Through a union bound, the same success probability of 1− O(1/n2) can

be ensured by adjusting the constants.

2.5 Conclusion

We have studied how to recover a causal graph in the presence of latents while

minimizing the interventional cost. Under the identity cost model, we gave a random-

ized algorithm to recover the full causal graph, through a novel characterization based

on p-colliders. In this setting, understanding the optimal interventional cost is open,

and an important direction for future research. While we focus on settings that are

close to being non-adaptive, where all the interventions are constructed at once in the

beginning, an adaptive or sequential setting has received recent attention [67, 115],

and is an interesting direction for future work.
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CHAPTER 3

CAUSAL DISCOVERY UNDER LINEAR COST MODEL

In this chapter, we describe algorithms for recovering the causal graph or the

ancestral graph under the linear cost model. In section 3.1, we present the necessary

preliminaries and definitions; in section 3.2, we describe our algorithms for recovering

the ancestral causal graph; in section 3.3, we discuss the generalizations of separating

set systems that are used for causal discovery in Chapter 2 and section 3.2.

For the subsequent portion of the chapter, we assume access to additional infor-

mation, such as access to the presence of causal edges in the observable graph, but

not their directions. Under such additional information, we describe algorithms for

recovering the observable graph in section 3.4 and ancestral graph in section 3.5. In

section 3.8, we present the conclusion.

Overview Suppose G is the observable graph of the causal graph G, that we wish

to recover. We present an algorithm that recovers the ancestral graph Anc(G) using

a set of interventions that satisfy the strongly separating set system property. There

might be many candidate set systems that satisfy the strongly separating property,

and we argue that a greedy strategy will yield a low-cost collection of sets that is only

a multiplicative factor 2 away from the optimal cost. As we do not have a handle

on exactly characterizing the set systems that allow for recovering G, we consider a

setting with side information. We assume access to additional knowledge about G,

via access to the presence of exact set (or a superset) of edges in G, without their

directions. The goal, under this setting, is to recover the directions. We argue, even
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under such a restriction, that this is computationally hard, in fact, NP-hard. Unfortu-

nately, we observe that identifying good approximation seems also intractable, under

certain complexity-theoretic conjectures. To overcome these challenges, we introduce

a new goal in causal discovery, where we wish to recover all but ε fraction of edges

of G. For this approximate recovery goal, we present efficient low-cost algorithms, by

generalizing the notions of separating set systems to arbitrary graphs, and drawing

connections to graph property testing.

3.1 Preliminaries

Following the SCM framework [105], we represent a set of random variables by

V ∪ L where V contains the endogenous (observed) variables that can be measured

and L contains the exogenous (latent) variables that cannot be measured. We define a

directed causal graph G = G(V ∪ L, E) on these variables where an edge corresponds

to a causal relation between the corresponding variables: a directed edge (vi, vj)

indicates that vi causes vj. Throughout we denote n = |V |.

We assume that all causal relations belong to one of two categories : (i) E ⊆ V ×V

containing direct causal relations between the observed variables and (ii) EL ⊆ L×V

containing relations from latents to observable variables. Thus, the full edge set of

our causal graph is E = E ∪ EL. We also assume that every latent l ∈ L influences

exactly two observed variables, i.e., (l, u), (l, v) ∈ EL and no other edges are incident

on l. This semi-Markovian assumption is widely used in prior works [88, 117] (see

discussion 2.1 for additional details). Let G(V,E) denote the subgraph of G restricted

to observable variables, referred to as the observable graph. The Ancestral graph of

G (see Defn. 2.1.1), denoted by Anc(G) is defined over the variables |V | and contains

the set of all edges (vi, vj) ∈ Anc(G) iff there is a directed path from vi to vj in G.

Intervention Sets Our primary goal is to recover either G or Anc(G) via interven-

tions on the observable variables. We assume the ability to perform an intervention

49



on a set of variables S ⊆ V which fixes S = s for each s in the domain of S. We then

perform a conditional independence test answering for all vi, vj “Is vi independent of

vj in the interventional distribution do(S = s)?” and denote it using vi |= vj | do(S).

Here do(S = s) uses Pearl’s do-notation to denote the interventional distribution

when the variables in S are fixed to s.

An intervention set is a collection of subsets S = {S1, . . . , Sm} that we intervene

on in order to recover edges of the observable or ancestral graph. It will also be

useful to associate a matrix L ∈ {0, 1}n×m with the collection where the ith column

is the characteristic vector of set Si, i.e., row entry corresponding to node in Si is 1

iff it is present in Si. We can also think of L as a collection of n = |V | length-m

binary vectors that indicate which of the m intervention sets S1, . . . , Sm each variable

vi belongs to.

As is standard, we assume that G satisfies the causal Markov condition and assume

faithfulness [119], both in the observational and interventional distributions follow-

ing [66]. This ensures that conditional independence tests lead to the discovery of

true causal relations rather than spurious associations.

Linear Cost Model In the Linear Cost Model, each node v ∈ V has a different cost

C(v) ∈ [1,W ] and the cost of intervention on a set S ⊂ V is defined as
∑

v∈S C(v),

as also considered by Kocaoglu et al. [91]. That is, interventions that involve a

larger number of, or more costly nodes, are more expensive. Our goal is to find

an intervention set S minimizing
∑

S∈S
∑

v∈S C(v) for recovering a suitable causal

structure.

In our setting, we have a constraint on the the number of interventions to be upper

bounded by some budgetm. Without such a bound, we can observe that for ancestral

graph recovery, the optimal intervention set is S = {{v1}, {v2}, . . . , {vn}} with cost∑
v∈V C(v) as intervention on every variable is necessary, as we need to account for

the possibility of latent variables (See Lemma 3.2.1 for more details). The optimality
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of S here follows from a characterization of any feasible set system we establish in

Lemma 3.2.1. This min cost intervention design problem was first introduced in [86].

Letting L ∈ {0, 1}n×m be the matrix associated with an intervention set S, the

cost C(S) can be written as C(L) =
∑n

j=1C(vj) ·‖L(j)‖1, where ‖L(j)‖1 is the weight

of L’s jth row, i.e., the number of 1’s in that row or the number of interventions in

which vj is involved.

We study two variants of causal graph recovery, in which we seek to recover the

observable graph G or the ancestral graph Anc(G). We say that an intervention set S

is α-optimal for a given recovery task if C(S) ≤ α ·C(S∗), where S∗ is the minimum

cost intervention set needed for that task. For both recovery tasks we consider a

natural approximate learning guarantee:

Definition 3.1.1 (ε-Approximate Learning). An algorithm ε-approximately learns

G(V,E) (analogously, Anc(G)) if it identifies the directions of a subset Ẽ ⊆ E of

edges with |E \ Ẽ| ≤ εn2.

Generally, we will seek an intervention set S that lets us ε-approximately learn G

or Anc(G), and which has cost bounded in terms of S∗, the minimum cost interven-

tion set needed to fully learn the graph. In this sense, our algorithms are bicriteria

approximations.

Independent Sets Our intervention set algorithms will be based on finding large

independent sets of variables, that can be included in the same intervention sets,

following the approach of [91]. Given G(V,E), a subset of vertices Z ⊆ V forms

an independent set if there are no edges between any vertices in Z, i.e., E[Z] = ∅

where E[Z] is set of edges in the sub-graph induced by Z. Given a cost function

C : V → R+, an independent set Z is a maximum cost independent set (MIS) if

C(Z) =
∑

u∈Z C(u) is maximized over all independent sets in G. Since finding MIS is
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hard [43], we will use the following two notions of a MIS, with the first often referred

to as simply Near-MIS, in our approximate learning algorithms :

Definition 3.1.2 ((γ, ε)-Near-MIS). A set of nodes S ⊆ V is a (γ, ε)-near-MIS in

G = (V,E) if C(S) ≥ (1 − γ)C(T ) and |E[S]| ≤ εn2 where T is a maximum cost

independent set (MIS) in G.

Definition 3.1.3 ((ρ, γ, ε)-Independent-Set). A set of nodes S ⊆ V is a (ρ, γ, ε)-

independent-set in G = (V,E) if C(S) ≥ ρ(1− γ) · C(V ) and |E[S]| ≤ εn2.

Hardness of Independent Set For the linear cost model, the problem of learning

a causal graph was introduced in [86]. It was shown recently that the problem of

obtaining an optimum cost set of interventions is NP-hard [91]. Under causal suffi-

ciency (no latents), it is well known that the undirected graph (also called Essential

Graph [133, 91]) recovered after running the IC∗ algorithm is chordal. Further, an

intervention set which is a separating set system (Def. 3.3.1) for the Essential Graph

of G is both necessary and sufficient [50, 115] for learning the causal graph.

The authors of [91] give a greedy algorithm to construct a 2-approximation to the

optimal cost separating set system of the essential graph. Their algorithms requires

at each step finding a maximum independent set in G and peeling it off the graph,

and is the basis for our approach in Section 3.4. Since G is chordal, there is an

algorithm for finding an exact maximum independent set in polynomial time [57].

However, without the assumption of causal sufficiency, we cannot directly extend

their algorithm, since finding a maximum independent set in a general graph G is

NP-hard [43]. Moreover, finding an approximate independent set within a factor of

nε for any ε > 0 in polynomial time is also not possible unless NP ⊆ BPP [55].
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3.2 Ancestral Graph Recovery

In this section, we describe algorithms for recovering the ancestral graph Anc(G)

in the linear cost model. In section 3.2.1, we present an algorithm that recovers

Anc(G) using a cost that is within a factor of 2 of the cost obtained by the optimal

intervention design. In section 3.2.2 under some mild restrictions, we improve this

result to 1 + ε, for any constant ε > 0.

Recall that, given a budget of m interventions, our objective is to find a set of

interventions S = {S1, S2, · · ·Sm} that can be used to identify Anc(G) while mini-

mizing
∑

S∈S
∑

v∈S C(v). As detailed in Chapter 2, a strongly separating set system

(see Defn. 2.2.1) is necessary and sufficient to recover the ancestral graph, Anc(G).

Formally, we have:

Lemma 3.2.1 (Lemma 2.2.2 restated). Suppose S = {S1, S2, · · · , Sm} is a collection

of subsets of V . For an unknown causal graph, with observable graph G, if Anc(G)

is recovered using CI-tests by intervening on the sets Si ∈ S. Then, S is a strongly

separating set system.

Given this characterization, the problem of constructing the ancestral graph Anc(G)

with minimum linear cost reduces to that of constructing a strongly separating set sys-

tem with minimum cost. In developing our algorithm for finding such a set system, it

will be useful to represent a set system by a binary matrix, with rows corresponding to

observable variables V and columns corresponding to interventions (sets S1, . . . , Sm).

Definition 3.2.2 (Strongly Separating Matrix). Matrix U ∈ {0, 1}n×m is a strongly

separating matrix if ∀i, j ∈ [n] there exists k, k′ ∈ [m] such that U(i, k) = 1, U(j, k) =

0 and U(i, k′) = 0, U(j, k′) = 1.

Note that given a strongly separating set system S, if we let U be the matrix where

U(i, k) = 1 if vi ∈ Sk and 0 otherwise, U will be a strongly separating matrix. The

other direction is also true. Let U(j) denote the jth row of U . Using Definition 3.2.2
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and above connection between recovering Anc(G) and strongly separating set system,

we can reformulate the problem at hand as:

minU
n∑
j=1

C(vj) · ‖U(j)‖1 (3.1)

s.t. U ∈ {0, 1}n×m is a strongly separating matrix.

We can thus view our problem as finding an assignment of vectors in {0, 1}m (i.e.,

rows of U) to nodes in V that minimizes (3.1). Throughout, we will call ‖U(j)‖1 the

weight of row U(j), i.e., the number of 1s in that row. It is easy to see that m ≥ log n

is necessary for a feasible solution to exist as each row must be distinct.

We start by giving a 2-approximation algorithm for (3.1). In Section 3.2.2, we

show how to obtain an improved approximation under certain assumptions.

3.2.1 2-approximation Algorithm

In this section, we present an algorithm (Algorithm SSMatrix) that constructs

a strongly separating matrix (and a corresponding intervention set) which mini-

mizes (3.1) to within a 2-factor of the optimum. Missing details from section are

collected in Section 3.7.1.1.

Outline Let UOPT denote a strongly separating matrix minimizing (3.1). Let

cOPT =
∑n

j=1 C(vj)‖UOPT(j)‖1 denote the objective value achieved by this optimum

UOPT. We start by relaxing the constraint on U so that it does not need to be strongly

separating, but just must have unique rows, where none of the rows is all zero. In

this case, we can optimize (3.1) very easily. We simply take the rows of U to be the

n unique binary vectors in {0, 1}m \ {0m} with lowest weights. That is, m rows will

have weight 1,
(
m
2

)
will have weight 2, etc. We then assign the rows to the nodes in

V in descending order of their costs. So the m nodes with the highest costs will be
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assigned the weight 1 rows, the next
(
m
2

)
assigned weight 2 rows, etc. The cost of this

assignment is only lower than cOPT, as we have only relaxed the constraint in (3.1).

We next convert this relaxed solution into a valid strongly separating matrix.

Given m+ log n columns, we can do this easily. Since there are n nodes, in the above

assignment, all rows will have weight at most log n. Let Ū ∈ {0, 1}m+logn have its

first m columns equal to those of U . Additionally, use the last log n columns as ‘row

weight indicators’: if ‖U(j)‖1 = k then set Ū(j,m + k) = 1. We can see that Ū is

a strongly separating matrix. If two rows have different weights k, k′ in Ū , then the

last log n columns ensure that they satisfy the strongly separating condition. If they

have the same weight in Ū , then they already satisfy the condition, as to be unique

in U they must have a at least 2 entries on which they differ.

To turn the above idea into a valid approximation algorithm that outputs Ū with

just m (not m+ log n) columns, we argue that we can ‘reserve’ the last log n columns

of Ū to serve as weight indicator columns. We are then left with justm−log n columns

to work with. Thus we can only assign m − log n weight 1 rows,
(
m−logn

2

)
weight 2

rows, etc. Nevertheless, if m ≥ γ log n (for a constant γ > 1), this does not affect

the assignment much: for any i we can still ‘cover’ the
(
m
i

)
weight i rows in U with

rows of weight ≤ 2i. Thus, after accounting for the weight indicator columns, each

weight k row in U has weight ≤ 2k+ 1 in Ū . Overall, this gives us a 3-approximation

algorithm: when k is 1 the weight of a row may become as large as 3.

To improve the approximation to a 2-approximation we guess the number of weight

1 vectors a1 in the optimum solution UOPT and assign the a1 highest cost variables

to weight 1 vectors, achieving optimal cost for these variables. There are O(m)

possible values for a1 and so trying all guesses is still efficient. We then apply our

approximation algorithm to the remaining m− a1 available columns of U and n− a1

variables. Since no variables are assigned weight 1 in this set, we achieve a tighter

2-approximation using our approach. The resulting matrix has the form:
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Algorithm 4 SSMatrix (V,m)

1: cUmin ←∞
2: for a1 ∈ {0, 1, · · · , 2m/3} do
3: U ∈ {0, 1}n×m be initialized with all zeros
4: Assign the highest cost a1 nodes with unit weight vectors such that U(i, i) = 1 for
i ≤ a1

5: Set m′ ← m− a1

6: Mark all vectors of weight at least 1 in {0, 1}m′−logn as available
7: for unassigned vi ∈ V (in decreasing order of cost) do
8: Set U(i, (a1 + 1) : m− log n) to smallest available weight vector in {0, 1}m′−logn

and make this vector unavailable. Let the weight of the assigned vector be k
9: Set ‘row weight indicator’ U(i,m′ − log n+ k) = 1
10: end for
11: Compute cost of objective for U be cU
12: if cU < cUmin then
13: cUmin ← cU , Umin ← U
14: end if
15: end for
16: Return Umin

U =



Ia1 0 0

0 C1 M1

0 C2 M2

...
...

...



where Ia1 is the a1×a1 identity matrix, the rows of Cw are all weight w binary vectors

of length m− log n− a1, and the rows of Mw are length log n binary vectors with 1’s

in the wth column. The entire approach is presented in Algorithm SSMatrix and a

proof of the approximation bound in Theorem 3.2.3 is present in Section 3.7.1.1.

Theorem 3.2.3. Let m ≥ γ log n for constant γ > 1 and U be the strongly separating

matrix returned by SSMatrix.1 Let cU =
∑n

j=1 C(vj) ‖U(j)‖1. Then, cU ≤ 2 ·

cOPT, where cOPT is the objective value associated with optimum set of interventions

corresponding to UOPT.

1In our proof, γ = 66 but this can likely be decreased.
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Using the interventions from the matrix U returned by Algorithm SSMatrix, we

obtain a cost within twice the optimum for recovering Anc(G).

3.2.2 (1 + ε)-approximation Algorithm

Hyttinen et al. [71] presented a collection A of m strongly separating interven-

tion sets with minimum average set size, i.e.,
∑

A∈A |A|/m. This is equivalent to

minimizing the objective (3.1) in the linear cost model when the cost of intervening

on any node equals 1. In this section, we analyze an adaptation of their algorithm

to the general linear cost model, and obtain a (1 + ε)-approximation for any given

0 < ε ≤ 1, an improvement over the 2-approximation of Section 3.2.1. Our analysis

requires mild restrictions on the number of interventions and an upper bound on the

maximum cost. The algorithm will not depend on ε but these bounds will. Missing

details from this section are collected in Section 3.7.1.2.

Algorithm ε-SSMatrix Outline The famous Kruskal-Katona theorem in com-

binatorics forms the basis of the scheme presented in [71] for minimizing the average

size of the intervention sets. To deal with with varying costs of node interventions, we

augment this approach with a greedy strategy. Let A denote a set of m interventions

sets over the nodes {v1, v2 · · · , vn} obtained using the scheme from [71]. Construct

a strongly separating matrix Ũ from A with Ũ(i, j) = 1 iff vi ∈ Aj for Aj ∈ A.

Let ζ denote the ordering of rows of Ũ in the increasing order of weight. Our Algo-

rithm ε-SSMatrix outputs the strongly separating matrix U where, for every i ∈ [n],

U(i) = Ũ(ζ(i)) and the ith row of U corresponds to the node with ith largest cost.

Let cmax = maxvi∈V C(vi)/minvi∈V C(vi) be the ratio of maximum cost to mini-

mum cost of nodes in V . For ease of analysis, we assume that the cost of any node is

least 1.
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Theorem 3.2.4. Let U be the strongly separating matrix returned by ε-SSMatrix.

If cmax ≤ εn

3(mt )
for 0 < ε ≤ 1 where

(
m
k−1

)
< n ≤

(
m
k

)
and t = bk − εk/3c, then,

cU :=
n∑
j=1

C(vj) ‖U(j)‖1 ≤ (1 + ε) · cOPT ,

where cOPT is the objective value associated with optimum set of interventions corre-

sponding to UOPT.

Proof. Suppose the optimal solution UOPT includes a∗q vectors of weight q. Let S be

the a∗1 +a∗2 + . . .+a∗t nodes with highest cost in UOPT. Since a∗q ≤
(
m
q

)
, it immediately

follows that |S| ≤
∑t

i=q

(
m
q

)
. However, a slightly tighter analysis (see Lemma 3.7.9)

implies |S| ≤
(
m
t

)
. Let cOPT(S) be the total contribution of the nodes in S to cOPT.

Let cU(S) denote the sum of contribution of the nodes in S to cU for the matrix U

returned by ε-SSMatrix. Let k̄|S| and k̄n be the average of the smallest |S| and n

respectively of the vector weights assigned by the algorithm. It is easy to observe

that k̄|S| ≤ k̄n.

cU(S) =
∑
vi∈S

C(vi) ‖U(i)‖1 ≤ cmax
∑
vi∈S

‖U(i)‖1

= cmaxk̄|S||S| ≤ cmaxk̄|S|

(
m

t

)
≤ εk̄|S|n/3.

As every node in V \S receives weight at least t = k−εk/3 in UOPT and at most k

in U returned by ε-SSMatrix, we have cU(V \ S) ≤ cOPT(V \S)
1−ε/3 . Now, we give a lower

bound on the cost of the optimum solution cOPT(V ). We know that when costs of all

the nodes are 1, then ε-SSMatrix achieves optimum cost denoted by c′OPT(V ) (see

Section 3.7.1.2 for more details). As all the nodes of V have costs more than 1, we

have:
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cOPT(V ) ≥ c′OPT(V ) = k̄n · n ≥ k̄|S| · n.

Hence,
cU(V )

cOPT(V )
≤ cU(S)

k̄|S|n
+

cU(V \ S)

cOPT(V \ S)
≤ ε

3
+

1

1− ε/3
≤ 1 + ε.

This completes the proof.

By bounding the binomial coefficients in Thm. 3.2.4, we obtain the following

somewhat easier to interpret corollary:

Corollary 3.2.5. If cmax ≤ (ε/6)nΩ(ε) and either a) nε/6 ≥ m ≥ (2 log2 n)c1 for

some constant c1 > 1 or b) 4 log2 n ≤ m ≤ c2 log2 n for some constant c2 then the

Algorithm ε-SSMatrix returns an (1 + ε)-approximation.

3.3 Separating Set Systems for Graphs

In the previous section, we discussed separating set systems as a collection of sets

that satisfy a particular property for every pair of elements (or equivalently vertices).

In this section, we generalize this notion by restricting the property to an input graph

G.Using these generalizations, we provide constructions of intervention sets which we

show in Sections 3.4 and 3.5 are necessary and sufficient for recovering observable and

ancestral graphs. Missing details from this section are collected in section 3.7.2.

Definition 3.3.1 (Separating Set System). For any undirected graph G(V,E), a

collection of subsets S = {S1, · · · , Sm} of V is a separating set system if every edge

(u, v) ∈ E is separated, i.e., there exists a subset Si with u ∈ Si and v /∈ Si or with

v ∈ Si and u /∈ Si.
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Definition 3.3.2 (Strongly Separating Set System). For any undirected graph G(V,E),

a collection of subsets S = {S1, · · · , Sm} of V is a strongly separating set system if

every edge (u, v) ∈ E is strongly separated, i.e., there exist two subsets Si and Sj such

that u ∈ Si \ Sj and v ∈ Sj \ Si.

We can observe that if G is the complete graph, then, the above definitions are

equivalent to those discussed in Chapter 2.

For a separating set system, each pair of nodes connected in G must simply have

different assigned row vectors in the matrix L ∈ {0, 1}n×m corresponding to S (i.e.,

the rows of L form a valid coloring of G). For a strongly separating set system, the

rows must not only be distinct, but one cannot have support which is a subset of

the other’s. We say that such rows are non-dominating : there are distinct i, j ∈ [m]

such that L(u, i) = L(v, j) = 0 and L(u, j) = L(v, i) = 1. We observe that every

strongly separating set system must satisfy the non-dominating property. When S is

a (strongly) separating set system for G we call its associated matrix L a (strongly)

separating matrix for G.

Finding an exact minimum cost (strongly) separating set system is NP-Hard [91,

71] and thus we focus on approximation algorithms. We say the S is an α-optimal

(strongly) separating set system if C(S) ≤ α · C(S∗), where S∗ is the minimum cost

(strongly) separating set system. Equivalently, for matrices C(L) ≤ α · C(L∗) where

L,L∗ correspond to S,S∗ respectively.

Unfortunately, even when approximation is allowed, finding a low-cost set system

for an arbitrary graphG is still hard. In particular, we prove a conditional lower bound

based on the hardness of approximation for 3-coloring. Achieving a coloring for 3-

colorable graphs that uses sub-polynomial colors in polynomial time is a longstanding

open problem [128, 32, 80], with the current best known algorithm [14] achieving an

approximation factor O(n0.2111). Thus Theorem 3.3.3 shows the hardness of finding
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near optimal separating set systems, barring a major breakthrough on this classical

problem.

Theorem 3.3.3. Assuming 3-colorable graphs cannot be colored with sub-polynomial

colors in polynomial time, there is no polynomial time algorithm for finding an o(log n)-

optimal (strongly) separating set system for an arbitrary graph G with n nodes when

m = β log n for some constant β > 2.

Proof. We give a proof by contradiction for the case of separating set system A similar

proof can be extended to strongly separating set systems. Suppose G is a 3-colorable

graph containing n nodes with unit costs for every node. We argue that if there is an

a o(log n)-optimal algorithm for separating set system then, we can use it to obtain

an algorithm for 3-coloring of G using no(1) colors, thereby giving a contradiction.

First, we observe that the cost of an optimal separating system on G when m =

β log n is at most n, as each color class forms an independent set in G and every node

in the color class can be assigned a vector of weight at most 1. Let A(G) denote

the separating set system output by an α-optimal algorithm where α = o(log n). We

outline an algorithm that takes as input A(G) and returns a no(1)-coloring of G.

We have C(A(G)) ≤ αC(S∗) where S∗ is an optimal separating set system for G.

Letting L be the separating matrix associated with A(G), we thus have

C(A(G)) =
n∑
j=1

‖L(j)‖1 ≤ αC(S∗) ≤ αn.

Using an averaging argument, we have that in A(G), there are at most n
4
nodes

(denoted by V \D(1)) with weight ‖L(j)‖1 more than 4α. Consider the remaining 3n
4

nodes given by D(1). Let D(1)
j denote the nodes that have been assigned weight j by

A(G). For each of the at most
(
m
j

)
vectors with weight j that are feasible, we create

a new color and color each node in D(1)
j using these new colors based on the weight

j vectors assigned to the node in A(G). We repeat this procedure for every weight j
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in D(1). As the maximum weight of a node in D(1) is 4α, the total number of colors

that we use to color all the nodes of D(1) is

4α∑
j=0

(
m

j

)
≤

4α∑
j=0

mj

j!
=

4α∑
j=0

(4α)j

j!

(m
4α

)j
≤ e4α

(m
4α

)4α

≤ 24α log e+4α log m
4α

< 24α log e+
√

4mα

< 2o(logn)+
√

logn·o(logn)

< no(1),

where the first strict inequality used the fact that log m
4α
≤
√

m
4α

for m
4α
> β logn

o(logn)
>

32.

After coloring the nodes of D(1), we remove these nodes from G and run α-optimal

algorithm A on the remaining nodes V \ D(1). Observing that a sub-graph of a 3-

colorable graph is also 3-colorable, we have that the set of nodes obtained by running

A on V \D(1) that have weight at most 4α (denoted by D(2)) also require at most no(1)

colors. As |D(i)| ≥ 3|V \D(i−1)|
4

for all i ∈ {1, 2, · · · , log n}, in at most log n recursive

calls to A, we will fully color G using at most no(1) log n = no(1) colors. Hence, we have

obtained a no(1)-coloring of G using an α-optimal algorithm when α = o(log n).

Remark The results of Theorem 3.3.3 can be extended to any m. When m =

o(log n), in our hardness example that uses 3 colors, any valid separating set system

using m interventions would lead to a coloring of the graph using at most 2m = no(1)

colors, i.e., a sub-polynomial number of colors. Thus, even finding a valid separating

matrix in this scenario is hard, under our assumed hardness of 3-coloring.

We shall now proceed to discuss a O(log n) approximation algorithm for finding

(strongly) separating set systems on any graph G.

A 2 log n-Approximation Algorithm It is easy to check that for a strongly sep-

arating set system, every node must appear in at least one intervention (because of
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non-dominating property), and so the set system has cost as least
∑

v∈V C(v). At

the same time, with m ≥ 2 log n, we can always find a strongly separating set system

where each node appears in log n interventions. In particular, we assign each node to

a unique vector with weight log n. Such an assignment is non-dominating and since(
2 logn
logn

)
≥ n, is feasible. It achieves cost C(S) = log n ·

∑
v∈V C(v), giving a simple

log n-approximation for the minimum cost strongly separating set system problem.

For a separating set system, a simple O(log n)-approximation is also achievable by

first computing an approximate minimum weight vertex cover and assigning all nodes

in its complementary independent set the weight 0 vector i.e., assigning them to no

interventions.

Description of the Algorithm:

1. Find a 2-approximate weighted vertex cover X in G using the classic algorithm

from [129].

2. In L, assign zero vector to all nodes of V \ X; assign every node in X with a

unique vector of weight log n and return L.

We give a sketch of the arguments involved in proving the approximation ratio of

the above algorithm and defer the full details to section 3.7.2. We observe that all

the nodes that are part of maximum cost independent set (complement of minimum

weighted vertex cover) are assigned a weight 0 vector by optimal separating system

for G. Therefore, the cost of optimal separating set system is at least the cost of

minimum cost vertex cover in G. As every node is assigned a vector of weight log n

and the cost of vertex cover is at most twice the cost of the minimum weighted vertex

cover, we have C(L) ≤ 2 log n · C(L∗).

By Theorem 3.3.3, it is hard to improve on the above O(log n) approximation

factor (up to constants). Therefore, we focus on finding relaxed separating set systems
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in which some variables are not separated. We will see that these set systems still

suffice for approximately learning G and Anc(G) under the notion of Definition 3.1.1.

Definition 3.3.4 (ε-(Strongly) Separating Set System). For any undirected graph

G(V,E), a collection of subsets S = {S1, · · · , Sm} of V is an ε-separating set system

if, letting L ∈ {0, 1}n×m be the matrix corresponding to S, |{(vi, vj) ∈ E : L(i) =

L(j)}| < εn2. It is strongly separating if:

|{(vi, vj) ∈ E : L(i), L(j) are not non-dominating}| < εn2.

For ε-strongly separating set systems, when the number of interventions is large,

specifically m ≥ 1/ε, a simple approach is to partition the nodes into 1/ε groups

of size ε · n. We then assign the same weight 1 vector to nodes in the same group

and different weight 1 vectors to nodes in different groups. For ε-separating set

system, we first find an approximate minimum vertex cover, and then apply the above

partitioning. In section 3.7.2, we show that we get within a 2 factor of the optimal

(strongly) separating set system. Therefore, for the remainder of this chapter, we

assume m < 1/ε. While m is an input parameter, smaller m corresponds to fewer

interventions and this is the more interesting regime.

3.4 Observable Graph Recovery

In this section, we consider the setting where we are given all edges in the ob-

servable graph G (i.e., all direct causal relations between observable variables) e.g.,

by a domain expert, and wish to identify the direction of these edges. It is known

that, assuming causal sufficiency (no latents), a separating set system is necessary

and sufficient to learn G [50]. In section 3.7.3 we show that this is also the case in

the presence of latents when we are given the edges in G but not their directions. We

also show that an ε-separating set system is sufficient to approximately learn G in

this setting:
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Claim 3.4.1. Under the assumptions of section 2.1, if S = {S1, S2, · · ·Sm} is an

ε-separating set system for G, S suffices to ε-approximately learn G.

In particular, if S is an ε-separating set system, we can learn all edges in G that

are separated by S up to εn2 edges which are not separated. Given Claim 3.4.1,

our goal becomes to find an ε-separating matrix Lε for G satisfying for some small

approximation factor α, C(Lε) ≤ α ·C(L∗) where L∗ is the minimum cost separating

matrix for G. Missing technical details of this section are collected in section 3.7.3.

We follow a similar approach as that of Kocaoglu et al. [91], observing that every

node in an independent set of G can be assigned the same vector in a valid separating

matrix. They show that if we greedily peel off maximum independent sets from G

and assign them the lowest remaining weight vector in {0, 1}m not already assigned

as a row in L, we will find a 2-approximate separating matrix. Their work focuses

on chordal graphs where an MIS can be found efficiently in each step. However for

general graphs G, finding an MIS (even approximately) is hard (see discussion 2.1).

Thus, in Algorithm 5, we modify the greedy approach and in each iteration we find

a near independent set with cost at least as large as the true MIS in G (Def. 3.1.2).

Each such set has few internal edges, this leads to few non-separating assignments

between edges of G in Lε. Let ε be parameter that bounds the number of non-

separating edges, and δ is the failure probability parameter of our Algorithm 5. All

the error parameters are scaled appropriately (see section 3.7.3 for more details) when

we pass them along in a procedure call to Near-MIS (line 5 in Algorithm 5).

Observe that any subset of fewer than εn nodes has at most ε2n2 internal edges

and so the Near-MIS (G, ε2, εδ) routine employed in Algorithm 5 always returns

at least εn nodes. Thus the algorithm terminates in 1/ε iterations. Across all 1/ε

Near-MIS’s there are at most ε2n2 · 1/ε = εn2 edges with endpoints assigned the

same vector in Lε, ensuring that Lε is indeed ε-separating for G.
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Algorithm 5 ε-Separating Matrix(G,m, ε, δ)

1: Input : Graph G = (V,E), cost function C : V → R+, m, error ε, and failure
probability δ.

2: Output : ε-Separating Matrix Lε ∈ {0, 1}n×m.
3: Mark all vectors in {0, 1}m as available.
4: while |V | > 0 do
5: S ← Near-MIS (G, ε2, εδ)
6: ∀ vj ∈ S, Set Lε(j) to smallest weight vector available from {0, 1}m and mark

it unavailable.
7: Update G by E ← E \ E[S] and V ← V \ S.
8: end while
9: return Lε

In Algorithm 6, we implement the Near-MIS routine by using the notion of a

(ρ, γ, ε)-Independent-Set (Definition 3.1.3). We find a value of ρ that achieves close

to the MIS cost via a search over decreasing powers of (1 + γ). In Algorithm 7 we

show how to obtain a (ρ, γ, ε)-Independent-Set (denoted by S) whenever the cost of

MIS in G is at least ρ · C(V ). So, C(S) ≥ ρC(V ) − ργC(V ) and we might lose a

cost of at most γρC(V ) compared to the MIS cost. Therefore, we add ε · n nodes of

highest cost (denoted by Sε/2) to S and argue that by setting γ = O(ε/W ), S ∪ Sε/2

has a cost at least the cost of MIS, i.e., S ∪ Sε/2 is a (0, ε)-Near-MIS.

Algorithm 6 Near-MIS

1: Input : Graph G(V,E), cost function C : V → R+, error ε, and failure proba-
bility δ.

2: Output : Set of nodes that is a (0, ε)-Near-MIS in G.
3: Initialize ρ = 1, and let T be the set of

√
εn nodes in G with the highest cost.

4: while ρ ≥
√
ε do

5: S ← Independent-Set(G, ρ, ε/8W, ε, δ′) where δ′ = εδ/4W log(1/ε)
6: Let Sε/2 denote the highest cost ε · n/2 nodes in V \ S.
7: if C(S ∪ Sε/2) ≥ C(T ) and |E[S ∪ Sε/2]| ≤ εn2 then
8: return S ∪ Sε/2
9: end if
10: ρ = ρ/(1 + γ)
11: end while
12: return T

66



3.4.1 (ρ, γ, ε)− Independent-Set

In this section, we introduce several new ideas and build upon the results for

finding a (ρ, 0, ε)-Independent-Set which has been used to obtain independent set

property testers for graphs with unit vertex costs [62]. First, we describe an overview

of the general approach.

Unit Cost Setting Suppose S is a fixed MIS in G with |S| ≥ ρ ·n and U ⊂ S. Let

Γ(u) represent the set of nodes that are neighbors of node u in G. Let

Γ(U) =
⋃
u∈U

Γ(u) and Γ(U) = V \ Γ(U).

Here, Γ(U) denotes the set of nodes with no edges to any node of U . We claim that

S ⊆ Γ(U). First, we observe that S ⊆ Γ(S) as S is an independent set so no node

in S is a neighbor of another node in S (i.e., all nodes in S are in Γ(S)). Then, we

use the fact Γ(S) ⊆ Γ(U) since U ⊆ S to conclude S ⊆ Γ(U). Further, [62] proves

that, if U is sampled randomly from S, taking the lowest degree ρ · n nodes in the

induced subgraph on Γ(U) will with high probability yield a (0, ε)-Near-MIS for G.

Intuitively, the nodes in Γ(U) have no connections to U and thus are unlikely to have

many connections to S.

To find a U that is fully contained in S, we can sample a small set of nodes

in G; since we have |S| ≥ ρ · n the sample will contain with good probability a

representative proportion of nodes in S. We can then brute force search over all

subsets of this sampled set until we hit U which is entirely contained in S and for

which our procedure on Γ(U) returns a (ρ, 0, ε)-Independent-Set, i.e., a Near-MIS.

Cost setting for MIS In the general cost setting, when S is a high cost MIS,

may not contain a large number of nodes, making it more difficult to identify via

sampling. To handle this, we partition the nodes based on their costs in powers
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of (1 + γ) into k = O(γ−1 logW ) (where W is the maximum cost of a node in V )

partitions V1, . . . , Vk.

A good partition is one that contains a large fraction of nodes in S: at least γρ|Vi|.

Focusing on these partitions suffices to recover an approximation to S. Intuitively,

all bad partitions have few nodes in S and thus ignoring nodes in them will not

significantly affect the MIS cost.

Definition 3.4.2 ((γ, ρ)-good partition). Let S be an independent set in G with cost

≥ ρC(V ). Then F(γ,ρ) = {i | |Vi∩S| ≥ γρ|Vi|} is the set of good partitions of V with

respect to S.

Claim 3.4.3. Suppose S is an independent set in G with cost C(S) ≥ ρC(V ), then,

there exists an independent set S ′ ⊆ S such that C(S ′) ≥ ρ(1−2γ)C(V ) and S ′∩Vi =

S ∩ Vi for all i ∈ F(γ,ρ).

While we do not a priori know the set of good partitions, if we sample a small

number t of nodes uniformly from each partition, with good probability, for each

good partition we will sample γρt/2 nodes in S. We search over all possible subsets

of partitions and in one iteration of our search, we have all the good partitions denoted

by {V1, V2 · · ·Vτ}. Now, for such a collection of good partitions, we search over all

possible subsets U = U1 ∪U2 · · · ∪Uτ where |Ui| = γρt/2 and in at least one instance

have all Ui in good partitions fully contained in S. Let

Z(U) :=
τ⋃
i=1

Vi \
τ⋃
i=1

Γ(Ui)

be the nodes in every good partition Vi with no connections to any of the nodes in Ui.

Analogous to unit cost case, we sort the nodes in a good partition Vi by their degree

in the induced subgraph on Z(U). We select low degree nodes from each partition

until the sum of the total degrees of the nodes selected is εn2/k. We output union
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of all such nodes iff it is a (ρ, 3γ, ε)-independent set. One key difference is that while

including nodes from Z(U), we do not include the nodes in the sorted order until sum

of degrees is εn2. Instead, we process each good partition and include the nodes from

each partition separately. Later, we will argue that by doing so we have made sure

that the cost contribution of a particular partition is accounted for accurately.

Algorithm 7 (ρ, γ, ε) Independent-Set

1: Input : Graph G = (V,E), cost function C : V → R+, parameters ρ, γ, ε and δ
2: Output : (ρ, 3γ, ε) independent set in G if one exists.
3: For i = 1, . . . , k, define Vi = {v ∈ V | (1 + γ)i−1 ≤ C(v) < (1 + γ)i} where
k = γ−1 logW

4: Sample t = O(k log(k/εδ)
εγρ

) nodes Ṽi in each partition Vi.
5: for every collection of partitions {V1, V2, · · ·Vτ} ⊆ {V1, V2, · · ·Vk} do
6: for U = U1 ∪U2 ∪ · · · ∪Uτ such that Ui ⊆ Ṽi with size γρt/2 for all i ∈ [τ ] do
7: Let Z(U) :=

⋃τ
i=1 Vi \

⋃τ
i=1 Γ(Ui).

8: for i = 1 . . . τ do
9: Sort nodes in Z(U) ∩ Vi in increasing order of degree in the induced

graph on Z(U).
10: Let Ẑi(U) ⊆ Z(U) ∩ Vi be set of nodes obtained by considering the

nodes in the sorted order until the total degree is εn2/k.
11: end for
12: Let Ẑ(U) =

⋃τ
i=1 Ẑi(U).

13: return Ẑ(U) if C(Ẑ(U)) ≥ ρ(1− 3γ)C(V ).
14: end for
15: end for

By construction, our output, denoted by Ẑ(U) will have at most εn2 internal edges.

Thus, the challenge lies in analyzing its cost. We argue that in at least one iteration,

all chosen Ui for good partitions will not only lie within the MIS S, but their union

will accurately represent connectivity to S. Specifically, any vertex v ∈ Z(U), i.e.,

with no edges to Ui for all i ∈ F(γ,ρ), should have few edges to S. We formalize this

notion using the definition of ε2-IS representative subset below.

Definition 3.4.4 (ε2-IS representative subset). R ⊆
⋃
i∈F(γ,ρ)

(S ∩ Vi) is an ε2-IS

representative subset of S if for all but ε2n nodes of good partitions, i.e.,
⋃
i∈F(γ,ρ)

Vi,

we have the following property:
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Suppose v ∈
⋃

i∈F(γ,ρ)

Vi : if Γ(v) ∩R = ∅ then |Γ(v) ∩ S| ≤ ε2n.

We show that there is a ε2-IS representative subset containing at least γρt/2 nodes

from each good partition among our sampled nodes
⋃k
i=1 Ṽi. Setting ε2 = ε/2k we

have:

Lemma 3.4.5. If t = O(k log(k/εδ)
εγρ

) nodes are uniformly sampled from each partition

Vi to give Ṽi, with probability 1 − δ, there exists an ε/2k-IS representative subset R

such that, for every i ∈ F(γ,ρ), |Ṽi ∩R| = γρt/2.

Lemma 3.4.5 implies that in at least one iteration, our guess U restricted to the

good partitions is in fact an ε/2k-IS representative subset. Thus, nearly all nodes in

Z(U) lying in good partitions have at most εn/2k edges to S.

In the graph induced by nodes of Z(U), with edge set E[Z(U)], consider the degree

incident on nodes of S ∩ Vi for each partition Vi. As there are at most n nodes in Vi,

from Defn. 3.4.4, we have the total degree incident on S ∩ Vi is at most εn2/k. Thus,

including the nodes with lowest degrees in Ẑi(U) until the total degree is εn2/k will

yield a set of nodes at least as large as S ∩ Vi. Since all nodes in Vi have cost within

a 1± γ factor of each other, we will have C(Ẑi(U)) ≥ (1− γ) ·C(S ∩ Vi). As the cost

of S in the bad partitions is small, using Claim 3.4.3, we have Ẑ(U) =
⋃τ
i=1 Ẑi(U) is

a (ρ,O(γ), ε)-independent set.

3.4.2 Greedy Algorithm: Guarantees

Overall, Algorithm 7 implements a (ρ, γ, ε)−Independent-Set as required by

Algorithm 6 to compute a Near-MIS in each iteration of Algorithm 5. It just remains

to show that, by greedily peeling off Near-MIS from G iteratively, Algorithm 5

achieves a good approximation guarantee for ε-Approximate Learning G. To do this,

we use a similar analysis as that of Kocaoglu et al. [91]. In their work, an exact
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MIS is computed at each step, since their graph is chordal so the MIS problem is

polynomial time solvable [91]. However, the analysis extends to the case when the set

returned has cost that is at least the cost of MIS (in our case a Near-MIS), allowing

us to achieve near 2-factor approximation, as achieved in [91]. Our final result is:

Theorem 3.4.6. For any m ≥ η log 1/ε for some constant η, with probability ≥ 1−δ,

Algorithm 5 returns Lε with C(Lε) ≤ (2+exp (−Ω(m))) ·C(L∗), where L∗ is the min-

cost separating matrix for G. Moreover Lε ε-separates G. Algorithm 5 has a running

time O(n2f(W, ε, δ)) where

f(W, ε, δ) = O

(
W

ε2
log

1

ε
exp

(
O

(
W 2 log2W

ε6
log

W

ε
log

W logW log 1/ε

εδ

)))
.

3.5 Recovering ancestral graph from a supergraph

In section 3.4, we assumed knowledge of the edges in the observable graph G and

sought to identify their directions. In this section, we relax the assumption, assuming

we are given any undirected supergraph H of G i.e., it includes all edges of G and

may also include edges which do not represent causal edges. When given such a graph

H, we cannot recover G itself and therefore, we seek to recover all directed edges of

the ancestral graph Anc(G) appearing in H (i.e., the set of intersecting edges), which

we denote by Anc(G) ∩ H. This problem strictly generalizes that of section 3.4, as

when H = G we have Anc(G) ∩H = G. Missing details of this section are collected

in section 3.7.4.

First, we show that to recover Anc(G)∩H, a strongly separating system (Def 3.3.1)

for H is both necessary and sufficient. Furthermore, an ε-strongly separating system

suffices for approximate learning. We formalize this using the following lemma:

Lemma 3.5.1. Under the assumptions of section 3.1, if S = {S1, S2, · · ·Sm} is an ε-

strongly separating set system for H , S suffices to ε-approximately learn Anc(G)∩H.
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Given Lemma 3.5.1, our goal becomes to find an ε-strongly separating matrix for

H, Lε with cost within an α factor of the optimal strongly separating matrix for

H, for some small α. To do so, our algorithm builds on the separating set system

algorithm of section 3.4. We first run Algorithm 5 to obtain an ε-separating matrix

LSε and construct S1, S2, · · ·S1/ε where each set Si contains all nodes assigned the

same vector in LSε – i.e., Si corresponds to the Near-MIS computed at step i of

Algorithm 5. We form a new graph by contracting all nodes in each Si into a single

super node and denote the resulting at most 1/ε vertices by VS. In [5], the authors

give a 2-approximation algorithm for finding a strongly separating matrix on a set of

nodes, provided the graph on these nodes is complete. As H is an arbitrary super

graph of G, the contracted graph on VS is also arbitrary. However we simply assume

the worst case, and run the Algorithm of [5] on it to produce LSSε , which strongly

separates the complete graph on VS. It is easy to show that as a consequence, LSSε

ε-strongly separates H.

Algorithm 8 Ancestral Graph(H,m, ε, δ)

1: LSε := ε-Separating Matrix(H,m, ε, δ).
2: Construct S1, S2, · · ·S1/ε where each set Si contains nodes assigned the same vec-

tors in LSε .
3: Construct a set of nodes VS by representing Si as a single node wi and C(wi) =∑

u∈Si C(u).
4: LSSε :=SSMatrix(VS,m) from Chapter 2.
5: return LSSε

To prove the approximation bound, we extend the result of [5], showing that their

algorithm actually achieves a cost at most 2 times the cost of a separating matrix for

the complete graph on VS which satisfies two additional restrictions: (1) it does not

assign the all zeros vector to any node and (2) it assigns the same number of weight

one vectors as the optimal strongly separating matrix. Further, we show via a similar

analysis to Theorem 3.4.6 that this cost on VS is bounded by 2 times the cost of

72



the optimal strongly separating matrix on the contracted graph over VS. Combining

these bounds yields the final 4 approximation guarantee of Theorem 3.5.2.

Theorem 3.5.2. Let m ≥ η log 1/ε for some constant η and LSSε be matrix returned

by Algorithm 8. Then with probability ≥ 1− δ, LSSε is an ε-strongly separating matrix

for H and C(LSSε ) ≤ (4 + exp (−Ω(m))) · C(L∗) where L∗ is the min-cost strongly

separating matrix for H. Algorithm 8 runs in time O(n2f(W, ε, δ)) where

f(W, ε, δ) = O

(
W

ε2
log

1

ε
exp

(
O

(
W 2 log2W

ε6
log

W

ε
log

W logW log 1/ε

εδ

)))
.

3.6 Hyperfinite Graphs : Improved Guarantees

In this section, we show that when G has maximum degree ∆ and satisfies hyper-

finite property, we can obtain the same approximation guarantees, but the number

of edges that are not (strongly) separated can be improved to ε · n · ∆. Informally,

a hyperfinite graph can be partitoned into small connected components by removing

ε · n edges for every ε > 0. Bounded degree hyperfinite graphs include the class of

bounded-degree graphs with excluded minor [11], such as planar graphs, constant

tree-width graphs, and also non-expanding graphs [45].

Definition 3.6.1. A Graph G(V,E) is (ε, k)-hyperfinite if there exists E ′ ⊆ E and

|E ′ \ E| ≤ εn such that every connected component in the induced subgraph of E ′ is

of size at most k. A Graph G is said to be τ -hyperfinite, if there exists a function

τ : R+ → R+ such that for every ε > 0, G is (ε, τ(ε))-hyperfinite.

If a τ -hyperfinite graphG has maximum degree ∆, we give algorithms for (strongly)

separating set systems on G that obtain the same approximation guarantees, but the

number of edges that are not (strongly) separated at most ε · n · ∆. In order to

obtain that, we extend the additive approximation algorithm of [64] for finding the
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maximum independent set to the weighted graphs i.e., when the nodes have costs and

return a Near-MIS instead of MIS. First, we define a very important partitioning of

the nodes V possible in τ -hyperfinite graphs and give the lemma that describes the

guarantees associated with finding the partitions.

Definition 3.6.2 ([64](ε, k) partitioning oracle O). For a given graph G(V,E) and

query q about v ∈ V , O returns the partition P [v] ⊆ V containing v that satisfies :

1. for every node v ∈ V , |P [v]| ≤ k and P [v] is connected

2. |{(u,w) ∈ E | P [u] 6= P [w]}| ≤ ε · n with probability 9/10.

Lemma 3.6.3 ([64]). If G is (ε, τ(ε))-hyperfinite graph with maximum degree ∆,

then, there is a (ε ·∆, τ(ε3/54000)) partition oracle that answers a given query q with

probability 1− δ, using a running time O(2∆O(τ(ε3))
/δ log 1/δ).

Using Lemma 3.6.3, we query every node to obtain the partitioning of V and

formalize this in the following corollary.

Corollary 3.6.4. If G is (ε, τ(ε))-hyperfinite graph with maximum degree ∆, then, we

can obtain a partitioning of the graph G, given by V1, V2, · · · such that with probability

1− δ and a running time of O(n
δ
· 2∆O(τ(ε3/∆3))

log 1/δ), we have :

1. For every i, |Vi| ≤ τ(ε3/∆354000) and Vi is connected

2. |{(u,w) | (u,w) ∈ E, u ∈ Vi, w ∈ Vj and i 6= j}| ≤ ε · n

Given a τ -hyperfinite graph with maximum degree ∆, we describe an algorithm

that returns a set of nodes that have at most εn∆ edges instead of εn2 edges that

we saw previously for general graphs G. To do so, we build upon the previous result

from [64] that returns a set of nodes R which is an additive εn approximation of

MIS S∗, i.e., |R| ≥ |S∗| − εn. To obtain this, the authors first use the partitioning

obtained using Lemma 3.6.3 and find MIS in each partition separately. They show
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that ignoring the nodes that are incident on edges across the partitions obtained using

Lemma 3.6.3 will only result in a loss of εn nodes. We observe that in Algorithm 9,

by removing the ε · n nodes (denoted by V̂ ) that are incident on the edges across

partitions, and adding back εn nodes with highest cost, we will obtain a set of nodes

with cost at least that of MIS while only adding εn∆ edges amongst the combined

set of nodes.

Algorithm 9 Near-MIS in τ -Hyperfinite Graph G
1: Input : Graph G = (V,E), cost function C : V → R+, m, ∆, function τ(·), error
ε, failure probability δ.

2: Output : T that is a Near-MIS with at most ε · n ·∆ edges.
3: Let the set of partitions is {V1, V2 · · · } of G(V,E) returned using Corollary 3.6.4

with parameters τ(·), error ε/2 and failure probability δ.
4: for each partition Vi do
5: Calculate the maximum cost independent set Ti in Vi.
6: end for
7: Ê ← {(u, v) | (u, v) ∈ E and there exists i, j where i 6= j, u ∈ Vi, v ∈ Vj}.
8: V̂ ← {u | ∃v such that (u, v) ∈ Ê}.
9: T ← (

⋃
i=1 Ti) \ V̂ .

10: Let H denote ε · n nodes of highest cost in V \ T .
11: return T ∪H.

Lemma 3.6.5. In Algorithm 9, we have |V̂ | ≤ ε · n and C(T ∪H) ≥ C(S∗).

Proof. From Corollary 3.6.4, we have |Ê| ≤ ε ·n/2. From the definition of V̂ , we have

|V̂ | ≤ 2|Ê| ≤ ε · n.

Suppose S∗ is the maximum cost independent set in G. Now, consider all nodes

in V̂ . Similar to the above case, it is possible that (u,w) ∈ Ê and u ∈ Ti, w ∈ Tj for

some i 6= j. Consider a node u ∈ S that is isolated in E ′ ⊆ E, and included in some

partition Vi. As Ti is maximum cost independent set in Vi, we have C(Ti) ≥ C(S∗∩Vi)

where S∗∩Vi is an independent set induced by MIS S∗ in the partition Vi. Combining

it for all partitions, we have C(
⋃
i Ti) ≥ C(S∗). As nodes in V̂ , it is possible that
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including those that share an edge in
⋃
i Ti will result in the set of nodes not forming

an independent set. However, the set
⋃
i Ti \ V̂ formed by removing all the nodes that

are incident with edges across the partitions, is an independent set. Since S∗ is MIS,

we have

C(
⋃
i

Ti \ V̂ ) ≤ C(S∗).

As |V̂ | is at most ε · n, replacing them with H consisting of ε · n highest cost nodes

from T will only increase the cost. Therefore, we have

⇒ C(T ∪H) = C

((⋃
i

Ti \ V̂

)
∪H

)
≥ C(

⋃
i

Ti) ≥ C(S∗).

Theorem 3.6.6. Algorithm 9 returns a set T ⊆ V of nodes such that C(T ) ≥ C(S∗)

where S∗ is the maximum cost independent set; |E[T ]| ≤ ε · n ·∆ and uses a running

time O(n
δ
· 2∆O(τ(ε3/∆3))

log 1/δ + n∆) with probability 1− δ

Proof. From Lemma 3.6.5, we have C(T ) ≥ C(S∗) and the nodes in H include ε · n

nodes that are added (line 10 in Algorithm 6) have at most ε · n · ∆ edges among

themselves. Therefore, |E[T ]| ≤ ε ·n ·∆. Using Corollary 3.6.4, we have that it takes

O(n
δ
· 2∆O(τ(ε3/∆3))

log 1/δ) time to find the partitions. After finding the partitions, we

find maximum cost independent set in each of the at most n partitions each of size

O(τ(ε3/∆3)), which takes a running time of

O(finding maximum cost independent set in each partition) = O(n · 2O(τ(ε3/∆3))).

Combining the running times for both these steps, along with O(n∆), the time to

find Ê, we have the running time as claimed.
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We can use Algorithm 9 to obtain Near-MIS in each iteration of Algorithm 5;

from Lemma 3.7.32 and Theorem 3.6.6, we have the following proposition about

separating set system for G.

Proposition 3.6.7. Let G(V,E) be a ∆-degree bounded τ -hyperfinite graph. For any

m ≥ η log 1/ε for some constant η, with probability ≥ 1−δ, there is an algorithm that

returns Lε with C(Lε) ≤ (2+exp (−Ω(m)))·C(L∗), where L∗ is the min-cost separating

matrix for G and has a running time O
(
n3

δ
· 2∆O(τ(ε3/n3∆3))

log n
δ

)
. Moreover using Lε,

the number of edges that are not separated in G is at most ε · n ·∆.

Proof. In every iteration, we identify a set of nodes that has the cost at least the

cost of MIS. Therefore, total number of iterations possible is at most n. Scaling

the error parameter by setting ε′ = ε/n and δ′ = δ/n for each iteration, we have

that Algorithm 5 returns Lε such that the number of edges that are not separated is

n · (ε′ · n ·∆) = ε · n ·∆. Using Lemma 3.6.5, we have that the total running time of

our algorithm is

O(n · n
δ′
· 2∆O(τ(ε′3/∆3))

log 1/δ′) = O

(
n3

δ
· 2∆O(τ(ε3/n3∆3))

log
n

δ

)
.

We can obtain a similar result for strongly separating set system for G using

Algorithm 8 and give the following proposition.

Proposition 3.6.8. Let G(V,E) be a ∆-degree bounded τ -hyperfinite graph. For any

m ≥ η log 1/ε for some constant η, with probability ≥ 1 − δ, there is an algorithm

that returns Lε with C(Lε) ≤ (4 + exp (−Ω(m))) · C(L∗), where L∗ is the min-cost

strongly separating matrix for G and has a running time O
(
n3

δ
· 2∆O(τ(ε3/n3∆3))

log n
δ

)
.

Moreover using Lε, the number of edges that are not strongly separated in G is at

most ε · n ·∆.
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Proof. In Algorithm 8, we first find LSε , a separating matrix obtained using Propo-

sition 3.6.7 that does not separate ε · n · ∆ edges of G. Next, we find super nodes

using the Near-MIS’s returned and assign it vectors appropriately to form strongly

separating matrix LSSε on super nodes. Using Theorem 3.7.38, we have the claimed

approximation guarantee. The running time follows from Proposition 3.6.7.

3.7 Additional Proof Details

3.7.1 Additional Proof Details from Section 3.2

In this section, we include all the missing details of proofs from Section 3.2.

3.7.1.1 Proof Details from Section 3.2.1

We first argue that the matrix returned by Algorithm SSMatrix is indeed a

strongly separating matrix.

Lemma 3.7.1. The matrix U returned by Algorithm SSMatrix is a strongly sepa-

rating matrix.

Proof. Consider any two nodes vi, vj with corresponding row vectors U(i) and U(j).

Suppose ‖U(i)‖1 = ‖U(j)‖1.

By construction, U(i) 6= U(j) they will differ in at least one coordinate. However,

they have equal weights, so, there must exist one more coordinate such that the

strongly separating condition holds. If U(i) and U(j) have weights ri 6= rj, then,

U(i,m′− log n+ ri) = U(j,m′− log n+ rj) = 1 and U(i,m′− log n+ rj) = U(j,m′−

log n + ri) = 0 by construction outlined in the Algorithm SSMatrix. This proves

that the matrix U returned is a strongly separating matrix.

The following inequalities about Algorithm SSMatrix will be useful in analyzing

its performance.
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Lemma 3.7.2. . For m ≥ 66 log n and m′ as defined in Algorithm SSMatrix, we

have the following

(a)
∑logn

t=1

(
m′−logn

t

)
≥ n (i.e., there are enough vectors of weight ≤ log n only using

m′ − log n columns to assign a unique vector to each variable).

(b) Let i∗ be the smallest integer s.t.
∑i∗

t=1

(
m′

t

)
≥ n. Then,

∑2i−1
t=1

(
m′−logn

t

)
≥∑i

t=1

(
m′

t

)
for all i ∈ {2, . . . , i∗}.

Proof. Let m ≥ 66 log n. From Algorithm SSMatrix, we have m′ = m − a1 for all

guesses 1 ≤ a1 ≤ 2m
3
. By reserving the last “ log n” columns in Algorithm SSMatrix,

we want to make sure that m′ − log n can fully cover n nodes with weight at most

log n. We have :

m′ = m− a1 ≥
m

3
≥ 22 log n and

logn∑
t=1

(
m′ − log n

t

)
≥
(
m′ − log n

log n

)
≥
(

21 log n

log n

)logn

> n.

Moving onto Part (b). Let i∗ be the minimum value of i such that
∑i∗

t=1

(
m′

t

)
≥ n.

Consider i such that 2 ≤ i ≤ i∗:

2i−1∑
t=1

(
m′ − log n

t

)
≥
(
m′ − log n

2i− 1

)
.

Consider now the right hand side:

i∑
t=1

(
m′

t

)
≤

i∑
t=0

(
m′

t

)
≤

i∑
t=0

m′t

t!
≤

i∑
t=0

it

t!

(
m′

i

)t
≤ ei

(
m′

i

)i
.
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We inductively show that for all i ≥ 2

(
em′

i

)i(
m′−logn

2i−1

) ≤ 1.

Let i = 2. For m ≥ m′

3
≥ 50

(
22
21

)3 we have

(em′/2)2(
m′−logn

3

) ≤ (em′/2)2

(m
′−logn

3
)3
≤ 50

(
22

21

)3
m′2

m′3
≤ 1.

Assume the inequality is correct for some i > 2. Now, we show that it must also hold

for i+ 1.

(
em′

i+1

)i+1(
m′−logn

2i+1

) =

(
em′

i+1

)i em′
i+1

(
m′−logn

2i−1

)(
m′−logn

2i−1

)(
m′−logn

2i+1

) ≤ ( em′i )i em′i+1

(
m′−logn

2i−1

)(
m′−logn

2i−1

)(
m′−logn

2i+1

) ≤ em′

i+1

(
m′−logn

2i−1

)(
m′−logn

2i+1

) .

For ease of notation, denote a = m′ − log n ≥ m′(1− 1
22

) ≥ 21 log n.

Consider the binary entropy function H(x) = −x log x − (1 − x) log(1 − x). For

x ∈ [2i−1
a
, 2i+1

a
], H(x) is an increasing function. For some value of x in the range we

have :

H(2i+1
a

)−H(2i−1
a

)
2i+1
a
− 2i−1

a

= H ′(x) = log

(
1

x
− 1

)
≥ log

(
a

2i− 1
− 1

)

=⇒ H

(
2i+ 1

a

)
−H

(
2i− 1

a

)
≥ 2

a
log

(
a

2i− 1
− 1

)
.

Now, consider the fraction

(
a

2i− 1

)
/

(
a

2i+ 1

)
.
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Using the bound from ([93], Page 309)

√
a

8b(a− b)
2mH(b/a) ≤

(
a

b

)
≤
√

a

2πb(a− b)
2mH(b/a),

(
a

2i− 1

)
/

(
a

2i+ 1

)
≤
√

8(2i+ 1)(a− 2i− 1)/2π(2i− 1)(a− 2i+ 1)/2aH( 2i+1
a

)−H( 2i−1
a

)

≤
√

20/3π/2aH( 2i+1
a

)−H( 2i−1
a

)

≤
√

20/3π/22 log( a
2i−1
−1)

=

√
20/3π(

a
2i−1
− 1
)2 .

Combining the above, we have :

(
em′

i+1

)i+1(
m′−logn

2i+1

) ≤ m′

i+1

√
20e2/3π(

a
2i−1
− 1
)2

≤
4m′i

√
20e2/3π

(a− 2i)2

≤
4m′ log n

√
20e2/3π

m′2 (1− 3/22)2 =
4 log n

√
20e2/3π

m′ (1− 3/22)2 ≤
21.2 log n

m′
≤ 1.

Therefore, we have for all i ≥ 2

(
em′

i

)i
/

(
m′ − log n

2i− 1

)
≤ 1

=⇒
i∑
t=1

(
m′

t

)
≤
(
em′

i

)i
≤
(
m′ − log n

2i− 1

)
≤

2i−1∑
t=1

(
m′ − log n

t

)
.

Let cU =
∑n

j=1C(vj)‖U(j)‖1 be value of objective for the matrix U returned by

Algorithm SSMatrix.
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Consider UOPT, and let V (1)
OPT represent all nodes that are assigned weight 1 in

it (nodes which have only one 1 in their row). Let c(1)
OPT denote the sum of cost

of the nodes in V
(1)

OPT. In our Algorithm SSMatrix, we maintain a guess for the

size of V (1)
OPT as a1. We want to guess the exact value of |V (1)

OPT | ≤ m. However, we

only guess a1 until 2m
3
, so that the remaining columns can be used to obtain a valid

separating matrix (for each of our guesses) as observed in Lemma 3.7.2. We show

that the cost contribution of nodes in V
(1)

OPT (by allowing this slack in our guesses)

due to Algorithm SSMatrix is not far away from c
(1)
OPT.

First, we show that for any weight i ≥ 2 node in UOPT, the output U of Algo-

rithm SSMatrix assigns vectors with weight at most 2i and for a weight 1 node, we

show that the weight assigned by U is at most 3.

Lemma 3.7.3. Algorithm SSMatrix assigns a weight of

(a) at most 3 for a weight 1 node in UOPT.

(b) at most 2i for a node of weight i in UOPT for i ≥ 2.

Proof. (a) Let V denote sorted (in the decreasing order of cost) order of nodes. Sup-

pose we assign unique length-m vectors starting from weight 1 to the nodes in the

order V . Let the assignment of vectors be denoted by Ũ . It is easy to observe that this

described assignment Ũ is not a strongly separating matrix. However, any strongly

separating matrix U is such that the vector assigned to any node vi in U has weight at

least that in Ũ i.e., ‖U(i)‖1 ≥ ‖Ũ(i)‖1. As U can be any strongly separating matrix,

it also holds for UOPT giving us ‖UOPT(i)‖1 ≥ ‖Ũ(i)‖1.

The number of weight 1 nodes possible in the assignment Ũ is
(
m
1

)
and therefore,

|V (1)
OPT| ≤ m. Consider all the nodes of weight ≤ 3 in U assigned by Algorithm SS-

Matrix. After discarding the first m′ = m−a1 columns assuming our guess a1 in the

current iteration, U starts assigning vectors with weight 1 in the remaining m′− log n

while setting a ‘row weight indicator bit’ in the last log n columns. In order to obtain
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nodes of weight ≤ 3, in U , we include vectors of weight ≤ 2 in the m′− log n columns.

Therefore, total number of such nodes is a1 +
(
m′−logn

1

)
+
(
m′−logn

2

)
.

a1 +

(
m′ − log n

1

)
+

(
m′ − log n

2

)
≥
(
m′ − log n

1

)
+

(
m′ − log n

2

)
≥ m′ − log n+

(
m′ − log n

2

)2

, using
(
m′

k

)
≥
(
m′

k

)k
≥ m ≥ |V (1)

OPT|,

where the last inequality uses m′ ≥ m
3
and m ≥ 66 log n).

Therefore, every weight 1 node in UOPT is covered by a vector in U with weight

≤ 3.

(b) First we argue that using an appropriate m′, we can give a construction of

Ũ ∈ {0, 1}n×m′ (similar to case (a)) such that weight of node vj in Ũ is at most the

weight in UOPT for all nodes of weight more than 2 in UOPT. Let m′ = m − 2m
3
. In

other words, we are considering the guess a1 = 2m
3
. As our algorithm U considers

all the guesses and returns U with the lowest cost, arguing that our lemma holds for

this guess is sufficient. For this value of m′, let Ũ be constructed using vectors from

{0, 1}m′ in the increasing order of weight, starting with weight 1.

When m′ = m
3
, it is possible that a node in UOPT can be assigned a vector of

weight 1 from {0, 1}m′ (this can happen when |V (1)
OPT| ≥ 2m

3
). As Ũ assigns weights in

the increasing order occupying the entire m′ columns, it will not result in a strongly

separating matrix. Therefore, any node vj with weight i ≥ 2 in UOPT, will be assigned

a weight of at most i in Ũ .

We know that the number of vectors of weight at most i in Ũ is equal to
∑i

t=1

(
m′

t

)
and number of vectors with weight at most 2i − 1 using m′ − log n columns of U

is equal to
∑2i−1

t=1

(
m′−logn

t

)
. As Lemma 3.7.2 holds for all guesses of a1, we have∑i

t=1

(
m′

t

)
≤
∑2i−1

t=1

(
m′−logn

t

)
for all i ≥ 2. Using induction, we can observe that vj
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is assigned a vector in {0, 1}m′−logn with weight at most 2i− 1. As U obtained from

Algorithm SSMatrix mimics the construction used in Ũ over m′ − log n columns,

we have that weight of node vj in U using m′ − log n columns is at most 2i − 1.

Combining it with the ‘row weight indicator’ bit we set to 1 in the last log n columns

gives us the lemma.

In our next lemma shows that the sum of contribution of the nodes in V
(1)

OPT to

cU is at most twice that of c(1)
OPT. Combining this with Lemma 3.7.3, we show that U

achieves a 2-approximation.

Lemma 3.7.4. Let c(1)
U =

∑
vi∈V

(1)
OPT

C(vi)‖U(i)‖1 for the matrix U returned by Algo-

rithm SSMatrix, then c(1)
U ≤ 2c

(1)
OPT .

Proof. Suppose a1 represents our guess for the number of weight 1 vectors and a∗1

represent the number of weight 1 vectors in UOPT i.e, |V (1)
OPT| = a∗1. In Algorithm SS-

Matrix, we use the following bounds for our guess 0 ≤ a1 ≤ 2m/3. If a∗1 ≤ 2m
3
, then

it would have been one of our guesses. As we take minimum among all the guesses,

we have c(1)
U = c

(1)
OPT in such a case.

Consider the case when a∗1 >
2m
3
. Let V (1)

OPT = {v1, v2, · · · va∗1} represent an order-

ing of nodes in the decreasing ordering of cost that are assigned weight 1 in UOPT.

Consider the contribution of only weight 1 nodes to cOPT. We have

c
(1)
OPT =

a∗1∑
k=1

C(vk) ≥
2m/3∑
k=1

2m

3
C(vk) ≥

2m

3
C(v2m/3).

We will look at the case when our guess a1 reaches a1 = 2m
3

and argue about the

cost for this particular value of a1. As we are taking minimum over all the guesses,

we are only going to do better and our approximation ratio will only be better.

Among the nodes {v1, v2, · · · va∗1} first 2m
3

nodes would be assigned weight 1 by U .
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From Lemma 3.7.3, we have that for the remaining a∗1− 2m
3

nodes, Algorithm SSMa-

trix might assign a weight 2 or weight 3 vector in U .

c
(1)
U ≤

2m/3∑
i=1

C(vi) + 3

a∗1∑
j=2m/3+1

C(vj) =

a∗1∑
i=1

C(vi) + 2

a∗1∑
j=2m/3+1

C(vj)

≤
a∗1∑
i=1

C(vi) + 2

(
a∗1 −

2m

3

)
C(v2m/3+1)

≤ c
(1)
OPT + 2

(
a∗1 −

2m

3

)
C(v2m/3) (since C(v2m/3) ≥ C(v2m/3+1) )

≤ c
(1)
OPT +

2m

3
C(v2m/3) (since a∗1 ≤ m )

≤ 2c
(1)
OPT .

This completes the proof of the lemma.

Theorem 3.7.5 (Theorem 3.2.3 Restated). Let m ≥ 66 log n and U be the strongly

separating matrix returned by Algorithm SSMatrix. Let cU =
∑n

j=1C(vj) ‖U(j)‖1.

Then,

cU ≤ 2 · cOPT,

where cOPT is the objective value associated with optimum set of interventions corre-

sponding to UOPT.

Proof. From Lemma 3.7.1, we know that matrix returned by Algorithm SSMa-

trix given by U with cost cU is a strongly separating matrix. Consider a strongly

separating matrix UOPT that achieves optimum objective value cOPT. Let V
(1)

OPT repre-

sent all nodes that are assigned weight 1 in UOPT. Let c
(1)
U denote the cost of nodes in

V
(1)

OPT using U returned by Algorithm SSMatrix and c(1)
OPT represents that of UOPT.

We have cOPT = c
(1)
OPT +

∑
j:‖UOPT(j)‖1≥2C(vj) ‖UOPT(j)‖1.
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cU = c
(1)
U +

∑
j:‖UOPT(j)‖1≥2

C(vj) ‖U(j)‖1

≤ c
(1)
U +

∑
j:‖UOPT(j)‖1≥2

C(vj) 2‖UOPT(j)‖1 (from Lemma 3.7.3)

≤ 2c
(1)
OPT + 2

∑
j:‖UOPT(j)‖1≥2

C(vj) ‖UOPT(j)‖1 (from Lemma 3.7.4)

≤ 2cOPT.

This completes the proof of the theorem.

3.7.1.2 Proof Details from Section 3.2.2

In this section, we present our algorithm that achieves an improved 1+ε-approximation

in the linear cost model setting under mild assumptions on the cost of the nodes and

the number of interventions. The algorithm is adapted from that proposed by [71]

whose work drew connections between causality and known separating system con-

structions in combinatorics. In particular, [71] considered a setting where given n

variables and m, the goal is to construct k sets that are strongly separating with the

objective of minimizing the average size of the intervention sets. Stated differently

this provides an algorithm for solving 3.1 when C(v) = 1 for all nodes v ∈ V .

Next, we adapt the algorithm from [71] to deal with the case where each node could

have a different cost value. Our main contribution is to show that this adaptation

constructs a set of interventions which achieves an objective value in the linear cost

model that is within a factor 1+ε times of the optimum under some mild restrictions.

First, we start with some definitions and statements from the combinatorics that will

prove useful for stating and analyzing the algorithm.

Definition 3.7.6. (antichain). Consider a collection S of subsets of {v1, v2, · · · vn}

such that for any two sets Si, Sj ∈ S, we have Si 6⊂ Sj and Sj 6⊂ Si. Then, such a

collection S is called an antichain.
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We provide a lemma that shows that an antichain can also be represented as a

strongly separating matrix.

Lemma 3.7.7. Let T = {T1, T2, · · ·Tn} be an antichain defined on {1, 2, · · ·m}.

Construct a matrix U ∈ {0, 1}n×m where U(i, j) = 1 iff Ti contains j. Then U is a

strongly separating matrix.

Proof. From the definition of antichain, for any two sets Ti, Tj ∈ T , there exists k

and k′ such that k ∈ Ti \ Tj and k′ ∈ Tj \ Ti. So, we have U(i, k) = U(j, k′) = 1

and U(i, k′) = U(j, k) = 0. It follows that U is a strongly separating matrix from the

definition.

In the previous lemma, we gave a construction of a strongly separating matrix

that corresponds to an antichain. In the next lemma, we show that given a strongly

separating system, we can also obtain a corresponding antichain.

Lemma 3.7.8. Let S = {S1, S2, · · ·Sm} be a strongly separating set system defined on

{v1, v2, · · · vn}. Construct a strongly separating matrix U ∈ {0, 1}n×m where U(i, j) =

1 iff Sj contains vi. Define a collection of sets T = {T1, T2, · · ·Tn} defined over the

column indices of U i.e., {1, 2, · · ·m} such that j ∈ Ti iff U(i, j) = 1. Then, T is an

antichain.

Proof. From the definition of strongly separating system, we have for every two nodes

vi, vj ∈ S, there exists Sk and Sk′ such that vi ∈ Sk \ Sk′ and vj ∈ Sk′ \ Sk. This

implies k ∈ Ti\Tj and k′ ∈ Tj \Ti as U(i, k) = U(j, k′) = 1 and U(i, k′) = U(j, k) = 0.

Therefore, for every two sets Ti and Tj in T , we have Ti 6⊂ Tj and Tj 6⊂ Ti. Hence, T

is an antichain.

Lemma 3.7.9 (LYM inequality [77]). Suppose S represent an antichain defined over

the elements {1, 2, · · ·m}. Let ak = |{T | T ∈ S where |T | = k}| defined for all

k ∈ [m], then,
m∑
k=0

ak(
m
k

) ≤ 1.
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Definition 3.7.10 ([77]). A neighbor of a binary vector v is a vector which can be

obtained from v by flipping one of its 1-entries to 0. A shadow of a set A ⊆ {0, 1}m

of vectors is the set of all its neighbors and denoted by ∂(A).

Suppose A ⊆ {0, 1}m consists of weight k vectors i.e., for all v ∈ A, ‖v‖1 = k .

Then, there is an interesting representation for |A| i.e., size of A called the k-cascade

form,

|A| =
(
ak
k

)
+

(
ak−1

k − 1

)
+

(
ak−2

k − 2

)
+ · · ·+

(
as
s

)
where ak > ak−1 > · · · as ≥ s ≥ 1.

Moreover, this representation is unique and for every |A| ≥ 1, there exists a k-cascade

form. Given a set A of such vectors, we can make the following observation.

Observation 3.7.11. Let B ⊆ {0, 1}m be a collection of vectors with weight exactly

k − 1. If A ∪B is an antichain, then, B ∩ ∂(A) = φ.

The above observation implies that if we want to maximize the number of weight

k− 1 vectors to get a collection of weight k and k− 1 vectors that form an antichain,

then, we have to choose weight k vectors that has a small shadow. Now, we describe

the statement of the famous Kruskal-Katona theorem that gives a lower bound on

the size of shadow of A.

Theorem 3.7.12 (Kruskal-Katona Theorem [77]). Consider a set A ⊆ {0, 1}m of

vectors such that for all v ∈ A, ‖v‖1 = k and the k-cascade form is

|A| =
(
ak
k

)
+

(
ak−1

k − 1

)
+

(
ak−2

k − 2

)
+ · · ·+

(
as
s

)
.

Then,

|∂(A)| ≥
(

ak
k − 1

)
+

(
ak−1

k − 2

)
+

(
ak−2

k − 2

)
+ · · ·+

(
as

s− 1

)
.
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Definition 3.7.13. (Colexicographic Ordering) Let u and v be two distinct vectors

from {0, 1}m. In the colexicographic ordering u appears before v if for some i, u(i) =

0, v(i) = 1 and u(j) = v(j) for all j > i.

We now state a result that the colexicographic ordering (or colex order) of all

vectors of {0, 1}m achieves the Kruskal-Katona theorem lower bound. Therefore, we

can generate a sequence of any number of vectors with weight k that has the smallest

possible shadow.

Lemma 3.7.14. Proposition 10.17 from [77]. Using the first T of weight k vectors

in the colex ordering of {0, 1}m, we can obtain a collection A ⊆ {0, 1}m such that

|∂(A)| =
(
ak
k−1

)
+
(
ak−1

k−2

)
+
(
ak−2

k−2

)
+ · · ·+

(
as
s−1

)
where the k-cascade form of T = |A| =(

ak
k

)
+
(
ak−1

k−1

)
+
(
ak−2

k−2

)
+ · · ·+

(
as
s

)
.

We state the Flat Antichain theorem, that we will use later.

Theorem 3.7.15 (Flat Antichain Theorem). [85] If A is an antichain, then, there ex-

ists another antichain B defined over same elements, such that |A| = |B|,
∑

A∈A |A| =∑
B∈B |B| and for every B ∈ B, we have |B| ∈ {d− 1, d} for some positive integer d.

Algorithm ε-SSMatrix is an adaptation of Algorithm 4 of [71] for the linear cost

model setting. From Lemma 3.7.8 and 3.7.7, it is clear that constructing a strongly

separating set system is equivalent to constructing an antichain. A consequence of

Flat Antichain theorem [85] is that for every antichain A there is another antichain

B of same size such that
∑

A∈A |A| =
∑

B∈B |B| and B has sets of cardinality either

d or d− 1 for some positive integer d. Therefore, the problem of finding a separating

set system reduces to finding an appropriate antichain with weights d and d− 1 that

minimizes the objective (assuming all nodes have cost equal to 1).

Corollary 3.7.16. [71] Flat Antichain theorem implies Algorithm 4 achieves optimal

cost assuming all nodes have unit costs.
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Algorithm 4 of [71] is a consequence of Kruskal-Katona theorem; using colex-

icographic ordering we can maximize the d − 1 weight vectors in an antichain of

size n consisting of weight d and d − 1 vectors. Therefore, choosing d = k where(
m
k−1

)
< n ≤

(
m
k

)
, they consider all possible number of vectors of weight k and find

the one with the minimum number of weight k vectors. However, unlike [71], we have

to deal with different costs of intervention for each node. We adopt a greedy strategy,

where we assign the vectors (obtained using the previous algorithm) in the increasing

order of weight to the nodes in the decreasing order of their costs. Observe that our

Algorithm ε-SSMatrix assigns vectors of weight k − 1 or k that are relatively high

to the nodes with large costs. Surprisingly, we show that when the costs are bounded

by ≈ εnε, and number of interventions m ≤ nε, it achieves a 1 + ε-approximation.

Algorithm 10 ε-SSMatrix (V,m)

1: Let Ũ ∈ {0, 1}n×m be initialized with all zeros
2: Find k satisfying

(
m
k−1

)
< n ≤

(
m
k

)
3: for t = 0 to n do
4: Let At denote the first t vectors in the colex ordering of {0, 1}m with weight k.

Calculate |∂(At)| using Lemma 3.7.14.
5: if t− |∂(At)|+

(
m
k−1

)
≥ n then

6: For the rows Ũ(j) with n− t+ 1 ≤ j ≤ n assign the vectors of weight k using At
7: For the rows Ũ(j) with j ≤ n − t, assign vectors of weight k − 1 from {0, 1}m

that are not contained in ∂(At)
8: break;
9: end if
10: end for
11: Let ζ denote the ordering of rows of Ũ in the increasing order of weight.
12: For every i ∈ [n] assign U(i) = Ũ(ζ(i)) where ith row of U corresponds to the node with

ith largest cost.
13: Return U

Lemma 3.7.17. Let U represent the output of Algorithm ε-SSMatrix. Then, U is

a strongly separating matrix.

Proof. From Observation 3.7.11, we have that our set of weight k vectors At and set

of weight k − 1 vectors given by Bt = At \ ∂(At) satisfy Bt ∩ ∂(At) = φ. So, the

collection At ∪ Bt is an antichain. In Algorithm ε-SSMatrix, U and Ũ contain the
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same collection of vectors, only differing in the ordering ζ. From Lemma 3.7.7, we

have U constructed from At ∪Bt is a strongly separating matrix.

The following lemma follows from LYM inequality in Lemma 3.7.9.

Lemma 3.7.18. Let UOPT represent the optimum solution with a∗q representing the

number of rows of U with weight q. Then, for any t ≤ n :

t∑
q=1

a∗q ≤
(
m

t

)
.

Proof. From Lemma 3.7.17 and Corollary 3.7.16, we know that the matrix UOPT is a

strongly separating matrix. Therefore, using Lemma 3.7.8, we can construct a collec-

tion T defined over {1, 2, · · · ,m} such that T is an antichain. Ti ∈ T corresponds to

a row of UOPT and |Ti| = ‖UOPT(i)‖1 represents the weight of ith row of U . Applying

LYM inequality from Lemma 3.7.9 gives us:

t∑
q=1

a∗q(
m
t

) ≤ t∑
q=1

a∗q(
m
q

) ≤ m∑
q=0

a∗q(
m
q

) ≤ 1

and so
∑t

q=1 a
∗
q ≤

(
m
t

)
.

The next lemma gives an upper bound for
(
m
t

)
that can be used to simplify the

statement of the Theorem 3.2.4.

Lemma 3.7.19. If 6/k ≤ ε ≤ 1/2 and m ≥ 2 log2 n:

(
m

t

)
≤ 2n · 2−(εk/6) log2(m/(2k)).
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Proof. By the definition of k,

(
m

t

)
=

(
m

k − 1

)(
m

t

)
/

(
m

k − 1

)
< n

(
m

t

)
/

(
m

k − 1

)
.

Let H(x) denote the binary entropy function. Note that t = bk − εk/3c. Therefore,

(k − 1)− t ≥ k − 1− k + εk/3 = εk/3− 1 ≥ εk/6,

and that for all x ∈ [t/m, (k − 1)/m],

H ′(x) ≥ H ′
(
k − 1

m

)
= log2

(
m

k − 1
− 1

)
≥ log2

(m
2k

)
,

where we used the assumption t/m ≤ (k − 1)/m ≤ 1/2. Hence,

|H((k − 1)/m)−H(t/m)| ≥ εk/6

m
log2

(m
2k

)
.

Using the bound from ([93], Page 309)

√
a

8b(a− b)
2mH(b/a) ≤

(
a

b

)
≤
√

a

2πb(a− b)
2mH(b/a),

we get that

(
m

t

)
/

(
m

k − 1

)
≤ 2m(H(t/m)−H((k−1)/m)

√
8(k − 1)(m− k + 1)

2πt(m− t)
≤ 2 · 2−(εk/6) log2(m/(2k))

where the last inequality used ε ≤ 1.
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Corollary 3.7.20. (Corollary 3.2.5 Restated). Algorithm ε-SSMatrix is a (1 + ε)-

approximation if the maximum cost satisfies

cmax ≤ ε/6 · 2(εk/6) log2(m/(2k))

assuming nε/6 ≥ m ≥ 2 log2 n. If a) m ≥ (2 log2 n)c1 for some constant c1 > 1 or b)

4 log2 n ≤ m ≤ c2 log2 n for some constant c2 then the RHS bound is at least ε/6·nΩ(ε).

Proof. First note that k ≥ logm n since

mk ≥
(
m

k

)
≥ n.

When 2 log n ≤ m ≤ nε, we have k ≥ logm n ≥ 6
ε
. From the previous lemma 3.7.19,

cmax ≤ ε/6 · 2(εk/6) log2(m/(2k)) ≤ εn/3

(
m

t

)

Using Theorem 3.2.4, we have that Algorithm ε-SSMatrix is a (1+ε)-approximation.

We next consider the simplification in Part (a). If m ≥ (2 log2 n)c1 for some c1 > 1

then k ≤ log2 n as
(
m

logn

)
≥ n. So 2k ≤ 2 log2 n ≤ m1/c1 . Hence,

log2(m/(2k)) ≥ (1− 1/c1) log2m

and so

2(εk/6) log2(m/(2k)) ≥ 2(εk(1−1/c1)(log2m)/6) ≥ n
ε(1−1/c1)

6 .

where the last inequality follows since k ≥ logm n.
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We next consider the simplification in Part (b). Now suppose m ≤ c2 log2 n for some

constant c2 ≥ 2 then, k ≥ logec2 n since

(c2e)
k ≥ (me/k)k ≥

(
m

k

)
≥ n .

Note that for m ≥ 4 log n,

log2(m/(2k)) ≥ log2(4 log n/(2 log2 n)) ≥ 1

and so

2(εk/6) log2(m/(2k)) ≥ 2(εk/6) ≥ n
ε

6 logec2
2 .

3.7.2 Proof Details from Section 3.3

In this section, we present missing details from section 3.3, about various efficient

constructions of separating set systems.

3.7.2.1 2 log n Approximation Algorithm for Separating Set System

In this section, we show that the algorithm presented in section 3.3 obtains a

2 log n-optimal separating set system for a given graph G. To do so, we first make

the following two simple claims. Let S∗ = {S1, S2, · · ·Sm} be the minimum cost

separating set system for G and I denote the maximum cost independent set in G.

Definition 3.7.21. (Vertex Cover). A set of nodes S is a vertex cover for the graph

G(V,E), if for every edge (u, v) ∈ E, we have {u, v} ∩ S 6= φ.

Claim 3.7.22. The set of vertices in V \ I forms a minimum weighted vertex cover

for G.
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Proof. Suppose X denote a minimum weighted vertex cover in G, then, V \X is an

independent set in G. We have C(X) = C(V ) − C(V \ X) ≥ C(V ) − C(I) as I is

maximum cost independent set. Observe that the vertex cover given by X := V \ I

satisfies the above equation with equality. Hence, the claim.

Claim 3.7.23. C(S∗) ≥ C(V \ I)

Proof. Let L∗ denote optimal separating matrix corresponding to S∗. We can rewrite

C(S∗) in terms of C(L∗) =
∑n

j=1 C(vj) ‖L(j)‖1. It is easy to observe that every

node in an independent set of G can be assigned the same vector in a separating

matrix. So, nodes with weight zero in L∗ are from an independent set (say IL∗) in

G. As weight of the vectors assigned to remaining nodes in L∗ is at least 1, we have

C(L∗) ≥ C(V )− C(IL∗) ≥ C(V )− C(I), using the definition of I.

Combining Claims 3.7.22 and 3.7.23, we can observe that a good approximation

for weighted vertex cover will result in a good approximation for separating set system.

There is a well known 2-approximation algorithm for weighted vertex cover problem

using linear programming that runs in polynomial time (Page 10, Theorem 1.6 [129]).

Lemma 3.7.24. If m ≥ 2 log n, then, there is an algorithm that returns a separating

set system that is 2 log n-optimal.

Proof. Let X denote the minimum weighted vertex cover which is a 2-approximation

obtained using the well known linear programming relaxation [129]. In our algorithm,

we assign every node in X with a unique vector of weight log n. This is feasible

because the set of nodes in V \X form an independent set, and
(
m

logn

)
≥
(

2 logn
logn

)
≥ n.

Combining Claims 3.7.22 and 3.7.23, we have

C(L) = log n C(X) ≤ 2 log n C(V \ I) ≤ 2 log n C(S∗).
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3.7.2.2 Algorithms for ε-(Strongly) Separating Set System when m ≥ 1/ε

ε-Separating Set System For ε-separating set system on G(V,E), we first find a

2-approximate minimum weighted vertex cover X using the well-known linear pro-

gramming based algorithm from [129] (Refer Page 10, Theorem 1.6 in [129]). We then

partition the nodes of X randomly into 1/ε groups of expected size ε · n. We then

assign the same weight 1 vector to nodes in the same group and different weight 1

vectors to nodes in different groups. This is possible since m ≥ 1/ε. It is easy to see

that the total number of edges that are not separated on expectation is ε|E| ≤ εn2.

For the remaining nodes in V \X that form an independent set, we assign the zero

vector. Therefore, total cost of ε-separating set system is given by C(X). From

Claim 3.7.22, we have C(X) ≤ 2C(V \ I) where I is maximum weighted independent

set in G. Using Claim 3.7.23, we have C(X) ≤ 2C(S∗) where S∗ is optimal separating

set system for G. Therefore, we get within a 2 factor of the optimal separating set

system.

ε-Strongly Separating Set System For ε-strongly separating set system onH(V,E),

we partition the nodes randomly into 1/ε groups of expected size ε · n. We then as-

sign the same weight 1 vector to nodes in the same group and different weight 1

vectors to nodes in different groups. This is possible since m ≥ 1/ε. It is easy to

see that the total number of edges that are not strongly separated on expectation is

ε|E| ≤ εn2. As every vector assigned to a node in a valid strongly separating matrix

should have weight at least 1, this results in an ε-strongly separating matrix, and the

corresponding set system with optimal cost.

3.7.3 Proof Details from Section 3.4

Claim 3.7.25. Suppose a set on interventions S = {S1, S2, · · ·Sm} is used for learn-

ing the edges of an undirected causal graph G. Then, under the assumptions of section

3.1, S is a separating set system for G.
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Proof. First, we show that when S is a separating set system for G, we can recover

the directions of G. Consider an edge (vi, vj) ∈ G and let Sk ∈ S be such that vi ∈ Sk

and vj 6∈ Sk. As S is a separating set system, we know that such a set Sk exists

for every edge in G. Consider the CI-test between vi and vj in the interventional

distribution do(Sk). If the test returns that vi |= vj | do(Sk), then, we infer vi → vj,

otherwise we infer that vi ← vj. When we intervene on vi obtained by do(Sk), the

latent edges affecting vi and all other incoming edges to vi are removed. As we know

that there is a causal edge between the two variables, if the independence test returns

true, it must mean that there is no incoming edge into vi from vj.

In [50], it was shown that a separating set system is necessary for learning the

directions among the observable variables assuming causal sufficiency. As we are

trying to recover G using interventions, such a condition will also hold for our case

that is a generalization when not assuming causal sufficiency. Hence, the claim.

Claim 3.7.26. (Claim 3.4.1 restated) Under the assumptions of Section 3.1, if S =

{S1, S2, · · ·Sm} is an ε-separating set system for G , S suffices to ε-approximately

learn G.

Proof. Given S denotes an ε-separating set system for G(V,E). So, there are at

most εn2 edges (u, v) ∈ E such that for all i ∈ [m], either {u, v} ∩ Si = φ or

{u, v} ∩ Si = {u, v}. For every such edge, any intervention on a set in S, say Si

cannot recover the direction from a CI-test u |= v | do(Si)? because for both the cases

u ← v or u → v, the CI-test returns that they are dependent. For the remaining

edges (u, v) ∈ E, in the intervention Sj where {u, v} ∩ Sj = {u}, we can recover the

direction using the CI-test : u → v if u 6⊥⊥ v | do(Sj) and u ← v otherwise. From

Def. 3.1.1, we have that S ε-approximately learns G.

Claim 3.7.27. (Claim 3.4.3 restated) Suppose S is an independent set in G with

cost C(S) ≥ ρC(V ), then, there exists an independent set S ′ ⊆ S such that C(S ′) ≥

ρ(1− 2γ)C(V ) and S ′ ∩ Vi = S ∩ Vi for all i ∈ F(γ,ρ).
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Proof. Construct S ′ using (γ, ρ)-good partitions of V . For every i ∈ F(γ,ρ), include

S ∩ Vi in S ′. Therefore, we have

C(S ′) = C(S)−
∑

i 6∈F(γ,ρ)

C(S ∩ Vi)

≥ ρC(V )− γρ
∑

i 6∈F(γ,ρ)

|Vi|(1 + γ)i

≥ ρC(V )− γρ(1 + γ)
∑

i 6∈F(γ,ρ)

|Vi|(1 + γ)i−1

≥ ρC(V )− γρ(1 + γ)C(V )

≥ ρ(1− 2γ)C(V ).

Lemma 3.7.28. (Lemma 3.4.5 restated) If t = O( k
εγρ

log 4k
εδ

) nodes are uniformly

sampled from each partition Vi to give Ṽi, with probability 1− δ, there exists an ε/2k-

IS representative subset R such that, for every i ∈ F(γ,ρ), |Ṽi ∩R| = γρt/2.

Proof. Consider a good partition Vi for some i ∈ F(γ,ρ). So, |Vi ∩ S| ≥ γρ|Vi|. As Ṽi

consists of t nodes that are uniformly sampled from Vi, using Hoeffding’s inequality

([19, 69]), we know that |Ṽi ∩ S| ≥ γρt/2 with probability at least

1− exp(−γρt/8) ≥ 1− exp

(
−k
ε

log
4k

εδ

)
≥ 1− δ

2k
.

Applying union bound, we have for every i ∈ F(γ,ρ), |Ṽi ∩ S| ≥ γρt/2 with proba-

bility at least

1− k δ
2k
≥ 1− δ

2
.

Consider the union of all subsets Uj ⊆ Ṽj ∩ S of good partitions such that |Uj| =

γρt/2, i.e.,

R =
k⋃

j=1 | j∈F(γ,ρ)

Uj.
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We claim that R is a ε/2k-IS representative subset of V by arguing that if v has

no neighbours in R, then, the degree to S is more than εn/2k with low probability.

First, consider the case when v ∈ S, then |Γ(v) ∩ S| = 0 and Γ(v) ∩ R = φ.

Suppose v ∈ Vj \ S for some j ∈ F(γ,ρ) and |Γ(v) ∩ S| ≥ εn/2k. If Γ(v) ∩ R = φ,

then Γ(v) ∩ R ∩ Vi = φ for all i ∈ F(γ,ρ). As R is formed using the sampled nodes,

we have that every node in R should be from Vi \ (Γ(v) ∩ S ∩ Vi) for the condition

Γ(v) ∩ R = φ to be satisfied. As every element in R is chosen uniformly at random

from the respective good partitions independently, we have :

Pr
∀i,Ui∼Vi

[∀i : Γ(v) ∩R ∩ Vi = φ and |Γ(v) ∩ S| > εn/2k]

≤ Πi∈F(γ,ρ)

(
|Vi| − |Γ(v) ∩ S ∩ Vi|

|Vi|

)|Ui|
≤ exp

(
−
∑
i

|Ui||Γ(v) ∩ S ∩ Vi|
|Vi|

)

≤ exp

(
−γρt

n

∑
i

|Γ(v) ∩ S ∩ Vi|

)

≤ exp

(
−γρt

n

εn

2k

)
≤ εδ/2k.

Therefore, on expectation, there are at most n · εδ/4k nodes such that the number

of neighbours in S is more than εn/2k. Using Markov’s inequality, with probability

1 − δ/2, we have that at most εn/2k nodes have number of neighbours in S greater

than εn/2k. Applying union bound, we have with probability 1−δ that R is a ε/2k-IS

representative subset.

Lemma 3.7.29. Suppose S is an independent set in G with cost C(S) ≥ ρC(V ) for

some ρ > 0 and Ẑ(U) denote the set found by Algorithm 7 such that U is a ε/2k-IS

representative subset. Then, with probability 1− δ, we have
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C(Ẑ(U)) ≥ ρ(1− 3γ)C(V ).

Proof. Consider Ẑi(U) for some i ∈ F(γ,ρ) and let F :=
⋃
i∈F(γ,ρ)

Vi. In Algorithm 7,

we obtained Ẑi(U) by including nodes from Z(U) ∩ Vi in the sorted order of degree

such that the total degree of nodes in the induced graph Z(U) is bounded by εn2/k.

First, when U is a ε/2k-IS representative subset, we observe that

U ⊆ S ∩ F ⊆ F \ Γ(S ∩ F ) ⊆ Z(U).

So, S ∩ Vi ⊆ Z(U)∩ Vi. From Lemma 3.4.5, we have, for every node in Z(U)∩ Vi

except for ε/2k many, the maximum degree to S ∩ Vi is at most εn/2k, and the

remaining nodes can have a maximum degree of n. Combining these statements, we

have that the total degree incident on the nodes in S ∩ Vi from the nodes Z(U) ∩ Vi

is at most
εn

2k
· |Z(U) ∩ Vi|+ n · εn

2k
≤ εn2

k
.

As we include nodes in Ẑi(U) until sum of degrees is εn2/k, we have that the size

of Ẑi(Ui) will only be more than the size of S ∩Vi and satisfies |Ẑi(U)| ≥ |S ∩Vi|. We

know that every node in Vi has cost in the range [(1 + γ)i−1, (1 + γ)i), therefore, we

have

C(Ẑi(U)) ≥ 1

(1 + γ)
C(S ∩ Vi)∑

i∈F(γ,ρ)

C(Ẑi(U)) ≥ 1

(1 + γ)

∑
i∈F(γ,ρ)

C(S ∩ Vi)

From Claim 3.7.27, we know
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∑
i∈F(γ,ρ)

C(Ẑi(U)) ≥ 1

(1 + γ)
C(S ′)

≥ (1− γ)(1− 2γ)ρC(V )

C(Ẑ(U)) ≥ ρ(1− 3γ)C(V ).

Lemma 3.7.30. Let G contain an independent set of cost ρC(V ), then, Algorithm 7

returns a set of nodes Ẑ(U) such that C(Ẑ(U)) ≥ ρ(1−3γ)C(V ) and |E[Ẑ(U)]| ≤ εn2

with probability 1− δ and runs in time O
(
n2 exp

(
O
(
k2

ε
log 1

γε
log k

εδ

)))
.

Proof. As our Algorithm 7 selects nodes from each partition Vi such that the total

degree of nodes in Ẑi(U) in the graph induced by E[Z(U)] is at most εn2/k. There-

fore, total degree of nodes in Ẑ(U) =
⋃
i∈F(γ,ρ)

Ẑi(U) is at most k · εn2/k. Hence,

|E[Ẑ(U)]| ≤ εn2. From Lemma 3.7.29, we have C(Ẑ(U)) ≥ ρ(1− 3γ)C(V ).

In Algorithm 7, we iterate over all subsets of the partitions {V1, V2, · · ·Vk}. Con-

sider a subset {V1, V2, · · ·Vτ} and in each partition, we iterate over all subsets Ui of

size γρt/2. Therefore, total number of subsets U formed from the union of subsets in

each partition ∪τi=1Ui is given by
(

t
γρt/2

)τ . Using t = O(k log k/εδ
ργε

) and ρ ≥
√
ε, we have

that the total number of iterations is at most

2k ·
(

t

γρt/2

)k
≤ 2k ·

(
2te

γρt

)γρtk/2
≤ 2k ·

(
6

γρ

)γρtk/2
≤ exp

(
O

(
k2

ε
log

1

γε
log

k

εδ

))
.

In each iteration, we can find Z(U) in O(|U|n) time. After that, we calculate the

degree of nodes in Z(U) ∩ Vi in the induced sub-graph E[Z(U)] which requires

O(|Z(U)|2) = O(n2) running time. Hence, the claim.
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Lemma 3.7.31. Suppose S∗ denotes MIS in G(V,E). Algorithm 6 returns a set of

nodes S such that C(S) ≥ C(S∗), |S| ≥
√
εn and |E[S]| ≤ εn2 with probability 1− δ

and runs in time

O

(
n2W

ε
log

1

ε
exp

(
O

(
W 2 log2W

ε3
log

W

ε
log

W logW log 1/ε

εδ

)))
.

Proof. Let T denote the set of
√
εn nodes from V with highest cost. It is easy to

observe that C(T ) ≥
√
ε C(V ). If C(S∗) < C(T ), then, Algorithm 6 outputs the set

T . Therefore,

C(T ) > C(S∗) and |E[T ]| ≤ (
√
εn)2 = εn2.

Otherwise, in Algorithm 6, we search for MIS with cost ρC(V ) using decreasing powers

of (1 + γ) with the help of the parameter ρ when ρ ≥
√
ε. If C(S∗) ≥ C(T ), then,

|S∗| ≥ |T | =
√
εn and for some 1 ≤ j ≤ 1

2γ
log 1

ε
and ρ = 1

(1+γ)j
(i.e.,

√
ε ≤ ρ ≤ 1) we

have

ρC(V ) ≤ C(S∗) ≤ ρ(1 + γ)C(V ).

For this value of ρ, Algorithm 7 returns a set of nodes S such that |E[S]| ≤ ε
8W
n2.

We observe that

C(S) ≥ 1

(1 + γ)j
(1− 3γ)C(V )

≥ 1− 3γ

1 + γ

C(V )

(1 + γ)j−1
≥ (1− 4γ)C(S∗).

In our call to the Algorithm 7 from Algorithm Near-MIS, we set γ = ε
8W

.

C(Sε/2) ≥ εn

2
(since, cost of a node is at least 1)

⇒ C(S ∪ Sε/2) ≥ C(S∗) +
εn

2
− ε

2W
C(S∗)

≥ C(S∗) +
εn

2
− ε

2W
n ·W ≥ C(S∗).
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As every node in Sε/2 has degree at most n, we have

|E[S ∪ Sε/2]| ≤ εn2

8W
+
εn2

2
≤ εn2.

As C(S ∪ Sε/2) ≥ C(T ) where T contains the
√
εn highest cost nodes, we have |S ∪

Sε/2| ≥
√
εn. When C(S∗) ≥ C(T ), we search for the correct value of ρ and for each

guess, we call the routine Algorithm 7. In total, the number of calls that are made to

Algorithm 7 is at most 1
2γ

log 1
ε
. However, in each call to Algorithm 7, we fail to output

with probability δ′. As we set the failure probability to δ′ = 2γδ/ log(1/ε), overall the

iterations, using union bound, the failure probability is at most δ′ · 1
2γ

log 1
ε

= δ.

From Lemma 3.7.30, Algorithm 7 runs in time O
(
n2 exp

(
O
(
k2

ε
log 1

γε
log k

εδ′

)))
.

Substituting k = γ−1 logW, δ′, γ = ε
8W

and for a total of 1
2γ

log 1
ε
calls to Algorithm 7,

the running time of Algorithm 6 is

O

(
n2W

ε
log

1

ε
exp

(
O

(
W 2 log2W

ε3
log

W

ε
log

W logW log 1/ε

εδ

)))
.

From Lemma 3.7.31, we have that in each iteration, Algorithm 6 returns a set of

nodes S that have a cost C(S) ≥ C(S∗) where S∗ is the maximum independent set

in G. In a previous work [91], it was shown that by using maximum independent

set in each iteration, we obtain a (2 + exp (−Ω(m))-optimal separating set system.

Following the exact same analysis, gives us an approximation factor close to 2. We

refer the reader to the analysis in Section 3.7.5, and give the main statement of the

Lemma below.

Lemma 3.7.32. For any m ≥ η log 1/ε for some constant η > 2, with probability

≥ 1 − δ, Algorithm 5 returns Lε with C(Lε) ≤ (2 + exp (−Ω(m))) · C(L∗), where L∗

is the min-cost separating matrix for G
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Scaling Parameters In Algorithm 5, we pass a scaled value of ε by setting it to ε2

when we call Algorithm 6, as this ensures that total number of edges returned over 1
ε

calls is at most εn2. We also set the failure probability for each call as εδ, to ensure

that over 1
ε
calls, total failure probability using union bound is at most δ.

Theorem 3.7.33. (Theorem 3.4.6 restated) For any m ≥ η log 1/ε for some constant

η, with probability ≥ 1− δ, Algorithm 5 returns Lε with C(Lε) ≤ (2 + exp (−Ω(m))) ·

C(L∗), where L∗ is the min-cost separating matrix for G. Moreover Lε ε-separates G.

Algorithm 5 has a running time O(n2f(W, ε, δ)) where

f(W, ε, δ) = O

(
n2W

ε2
log

1

ε
exp

(
O

(
W 2 log2W

ε6
log

W

ε
log

W logW log 1/ε

εδ

)))
.

Proof. Using all the above scaled parameters, from Lemma 3.7.31, the running time

of Algorithm 5 that internally calls Algorithm 6 for 1
ε
number of times, is given by

O

(
n2W

ε2
log

1

ε
exp

(
O

(
W 2 log2W

ε6
log

W

ε
log

W logW log 1/ε

εδ

)))
.

From Lemma 3.7.32, we have the approximation guarantee.

Dependence on ε Observe that our running time is exponential in 1/ε and there-

fore setting ε < 1/n2 to get a separating system with all edges separated requires

exponential running time. As we have argued that finding such a set system with

near optimal cost is hard conditioned on the hardness of approximate coloring (Theo-

rem 3.3.3), it is thus also conditionally hard to improve our runtime to be polynomial

in 1/ε. It is an interesting open question to study the parameterized hardness beyond

polynomial factors with respect to ε.

By Theorem 3.4.6 with m = O(log(1/ε)) interventions we can ε-approximately

learn any causal graph G. For learning the entire graph G, m ≥ logχ interventions
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are necessary, where χ is the chromatic number of G, since the rows of L ∈ {0, 1}n×m

must be a valid coloring of G [91].

3.7.4 Proof Details from Section 3.5

In this section, we say a pair of nodes (vi, vj) share an ancestral relation, if vi has

a directed path to vj (vi is an ancestor of vj) or vj has a directed path to vi (vj is an

ancestor of vi).

Lemma 3.7.34. Suppose S = {S1, S2, · · · , Sm} is a collection of subsets of V . If

Anc(G) ∩H is recovered from H using conditional independence tests by intervening

on the sets Si ∈ S. Then, under the assumptions of section 3.1, S is a strongly

separating set system on H.

Proof. First, we argue that to recover Anc(G)∩H it is sufficient that S is a strongly

separating set system on H. Suppose (vi, vj) ∈ H and vi, vj share an ancestral

relation i.e., either vi is an ancestor of vj or vj is an ancestor of vi. Therefore, vi 6⊥⊥ vj

and (vi, vj) ∈ Anc(G). From Lemma 1 in [88], we know that, we can recover the

ancestral relation between vi and vj using conditional independence tests (or CI-tests)

on interventional distributions that strongly separate the two variables vi and vj. As

S is a strongly separating set system for H, we can recover all ancestral relations in

Anc(G) ∩H.

Now, we show that a strongly separating set system on H is necessary. Here, we

give a proof similar to Lemma A.1 from [5]. Suppose S is not a strongly separating

set system for H. If there exists a pair of nodes containing an ancestral relation, say

(vi, vj) ∈ H ∩ Anc(G) such that every set Sk ∈ S contains none of them, then, we

cannot recover the ancestral relation between these two nodes as we are not interven-

ing on either vi or vj and the results of an independence test vi |= vj might result in

a wrong inference, possibly due to the presence of a latent variable lij between them.

Consider the case when only one of them is present in every set of S. Let S be such
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that ∀Sk ∈ S : Sk ∩ {vi, vj} = {vi} ⇒ vi ∈ Sk, vj 6∈ Sk. We choose our graph G to

have two components {vi, vj} and V \ {vi, vj}; and include the edge vj → vi in it.

Observe that vi 6⊥⊥ vj. Our algorithm will conclude from the CI-test vi |= vj | do(Sk)?

that vi and vj are independent. However, it is possible that vi 6⊥⊥ vj because of a latent

lij between vi and vj, but when we do CI-test, we get vi |= vj | do(Sk) as intervening

on vi disconnects the lij → vi edge. Therefore, our algorithm cannot distinguish the

two cases vj → vi and vi ← lij → vj without intervening on vj. For every S that is

not a strongly separating set system on H, we can provide a graph G such that by

intervening on sets in S, we cannot recover Anc(G) ∩H from H correctly.

Lemma 3.7.35. (Lemma 3.5.1 restated) Under the assumptions of Section 3.1, if

S = {S1, S2, · · ·Sm} is an ε-strongly separating set system for H, S suffices to ε-

approximately learn Anc(G) ∩H.

Proof. Given S denotes an ε-strongly separating set system for H. So, there are

at most εn2 edges (u, v) ∈ H such that for all i ∈ [m], either {u, v} ∩ Si = φ or

{u, v} ∩ Si = {u, v} or {u, v} ∩ Si = {u} (without loss of generality). For every

such edge, any intervention on a set in S, say Si cannot recover the direction from a

conditional independence test(CI-test) u |= v | do(Si) because for both the cases u← v

or u← luv → v, where luv is a latent, the CI-test returns that they are independent.

Therefore, we cannot recover the ancestral relation (if one exists) between u, v that

are not strongly separated in H. For edges (u, v) ∈ H that are strongly separated

using Si and Sj, we can recover the ancestral relation using CI-tests u |= v | do(Si)

and u |= v | do(Sj). From Def. 3.1.1, we have that S ε-approximately learns G.

Algorithm SSMatrix from [5] gives a 2-approximation guarantee for the output

strongly separating matrix. However, we cannot directly extend the arguments as the

guarantee holds when the input graph is complete. We get around this limitation,

and show that Algorithm 8 achieves a close to 4-approximation, by relating the cost
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of ε-strongly separating matrix returned by SSMatrix on the supernode set VS, to

the cost of 2-approximate ε-separating matrix that we find using Algorithm 5.

Let ALGS denote the cost of the objective
∑n

j=1C(vj) ‖LSε (j)‖1 obtained by Al-

gorithm 5 where LSε is an ε-separating matrix; ALGSS denote the cost of the objective∑n
j=1 C(vj) ‖LSSε (j)‖1 obtained by Algorithm 8 where LSSε is an ε-strongly separating

matrix. For the sake of analysis, during assignment of vectors to nodes in LSε , we

assume that Algorithm 5 only allows vectors of weight at least 1. As SSMatrix al-

gorithm from [5] assigns vectors with weight atleast 1 (otherwise it will not be a valid

strongly separating matrix), this assumption for ALGS helps us in showing a relation

between the costs of LSSε and LSε . As that is not sufficient to obtain the claimed

guarantee, instead of assigning
(
m
1

)
vectors of weight 1, we constraint it to a fixed

number r ≤
(
m
1

)
. In [5], Algorithm SSMatrix assigns vectors to LSSε by guessing

the exact number of weight 1 vectors in OPTSS, the parameter r corresponds to this

guess.

Let OPTSS and OPTS denote optimum objective values associated with strongly

separating and separating matrices for a graph H. Let ALGSS(r) denote the cost

C(LSSε ) assuming first r columns are used for exactly r weight 1 vectors during the

assignment in LSSε , and the remaining m− r columns are used for all the remaining

vector assignments. Similarly, ALGS(r), OPTS(r) and OPTSS(r) are defined.

Lemma 3.7.36. OPTS(r) ≤ OPTSS(r) for any r ≥ 0.

Proof. Observe that any strongly separating matrix for H is also a separating matrix

for H. Now, consider a strongly separating matrix that achieves cost OPTSS(r) using

r weight 1 vectors, then, we have

OPTS(r) ≤ OPTSS(r).
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Lemma 3.7.37. C(LSSε ) ≤ (4 + γ + exp (−Ω(m))) ·OPTSS.

Proof. First, we note that in any strongly separating matrix, for the non-dominating

property to hold, the support of weight 1 vectors and the support of vectors of weight

> 1 are column disjoint. Suppose a∗1 denote the number of columns of m that are

used by OPTSS for weight 1 vectors i.e, OPTSS(a∗1) = OPTSS.

Following the exact proof of Lemma A.5 in [5] gives us the following guarantee

about Algorithm 8

C(LSSε ) ≤ 2ALGS(a∗1).

From Theorem 3.4.6 and Lemma 3.7.32 in Section 3.7.5 (or the analysis from [91]) :

ALGS(a∗1) ≤ (2 + exp (−Ω(m))) OPTS(a∗1).

From Lemma 3.7.36, we know OPTS(a∗1) ≤ OPTSS(a∗1). Therefore, we have:

ALGS(a∗1) ≤ (2 + exp (−Ω(m))) OPTSS(a∗1)

= (2 + exp (−Ω(m))) OPTSS .

Hence, the lemma.

Theorem 3.7.38. (Theorem 3.5.2 restated) Let m ≥ η log 1/ε for some constant η

and LSSε be matrix returned by Algorithm 8. Then with probability ≥ 1 − δ, LSSε

is an ε-strongly separating matrix for H and C(LSSε ) ≤ (4 + exp (−Ω(m))) · C(L∗)

where L∗ is the min-cost strongly separating matrix for H. Algorithm 8 runs in time

O(n2f(W, ε, δ)) where

f(W, ε, δ) = O

(
n2W

ε2
log

1

ε
exp

(
O

(
W 2 log2W

ε6
log

W

ε
log

W logW log 1/ε

εδ

)))
.
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Proof. From Lemma 3.7.37, we have C(LSSε ) ≤ (4 + exp (−Ω(m)))C(L∗). The sets

of nodes S1, S2, · · ·S1/ε returned by Algorithm 8 are such that every set Si contains

at most ε2n2 edges with probability 1 − δ. Therefore, in total at most 1
ε
ε2n2 ≤ εn2

edges do not satisfy strongly separating property. As SSMatrix has a running time

of O(|VS|) = O(1
ε
), and using the running time of Algorithm 5 from Theorem 3.7.33,

our claim follows.

3.7.5 Additional Details for the analysis of 2-approximation result for

ε-Separating Set Systems

In this section, we present already known results from [91] filling in the details in

the analysis of our Algorithm 5 for the sake of completion.

Let I denote the set of all independent sets in G. For some A ⊆ I, we have

J(A) =
∑

v∈
⋃
S∈A

C(v)

that is, it takes a set of independent sets and returns the sum of the cost of the vertices

in their union. We observe that J is submodular, monotone, and non-negative [91].

Let S0 denote the set of nodes that are assigned weight 0 vector after the first

iteration of Algorithm 5. We set V = V \ S0 for the remainder of this section and

handle the cost contribution of nodes in S0 separately in the analysis of approximation

ratio.

Lemma 3.7.39. Given a submodular, monotone, and non-negative function J over a

ground set V and a cardinality constraint k. Let Algorithm 5 return Sgreedy a collection

of at most Ck (for some constant C > 0) sets that are (0, ε)-Near-MIS, then,

J(Sgreedy) ≥ (1− e−C) max
S⊆I,|S|≤k

J(S).
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Proof. We have that in ith iteration of Algorithm 5, we pick a set of nodes Si with

cost at least the cost of MIS Ti in G, i.e., Si is a (0, ε)-Near-MIS in G and satisfies

C(Si) ≥ C(Ti). Let S∗ be the collection of independent sets such that J(S∗) =

maxS⊆I,|S|≤k J(S). Let
⋃
j≤i Sj be denoted by S1:i. We claim using induction that

J(S∗)− J(S1:i) ≤
(

1− 1

k

)i
J(S∗).

Consider ith iteration when Algorithm 5 picks Si. Using submodularity, we have

J(S∗)− J(S1:i−1) ≤
∑

B∈S∗\S1:i−1

J(S1:i−1 ∪B).

Therefore, there exists one setB ∈ S∗\S1:i−1, with cost at least
∑
B∈S∗\S1:i−1

J(S1:i−1∪B)

k
.

As argued in Lemma 3.7.31, we are picking a set Si with cost C(Si) ≥ C(Ti) where

Ti is MIS in the ith iteration, we have :

C(Si) ≥ C(Ti) ≥
∑

B∈S∗\S1:i−1
J(S1:i−1 ∪B)

k
≥ J(S∗)− J(S1:i−1)

k

J(Si) = C(Si) ≥
J(S∗)− J(S1:i−1)

k
.

For i = 1, our claim follows from the above statement, i.e., C(S1) = J(S1) ≥ J(S∗)
k

.

Assuming that our claim holds until iteration i− 1 for some i ≥ 2, we have after the

ith iteration : J(S∗) − J(S1:i) = J(S∗) − J(S1:i−1) − J(Si). This is true because

J(S1:i) = J(S1:i−1) + J(Si) as Si is greedily chosen by picking a set containing nodes

that are not previously selected. Therefore,
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J(S∗)− J(S1:i) = J(S∗)− J(S1:i−1)− J(Si)

≤ J(S∗)− J(S1:i−1)− J(S∗)− J(S1:i−1)

k

≤ (J(S∗)− J(S1:i−1))

(
1− 1

k

)
≤
(

1− 1

k

)i
J(S∗).

Setting i = C · k, we have

J(S∗)− J(Sgreedy) ≤
(

1− 1

k

)Ck
J(S∗) ≤ e−C · J(S∗)

⇒ J(Sgreedy) ≥ (1− e−C)J(S∗).

Now, we define two types of submodular optimization problem, called the sub-

modular chain problem and the supermodular chain problem that will be useful later.

Definition 3.7.40. Given integers k1, k2, . . . , km and a submodular, monotone, and

non-negative function J , over a ground set V , the submodular chain problem is to

find sets A1, A2, . . . , Am ⊆ 2[V ] such that |Ai| ≤ ki that maximizes

m∑
i=1

J(A1 ∪ A2,∪ · · · ∪ Ai).

Lemma 3.7.41. Let A∗1, A∗2, . . . , A∗m be the optimal solution to the submodular chain

problem. Suppose that for all 1 ≤ p ≤ m/2 − 1 we have that
∑2p

i=1 ki ≥ τ
∑p

i=1 ki.

Also assume that J(A1 ∪A2 ∪ · · · ∪Am) = J(V ). Then the greedy algorithm 5 for the

submodular chain problem returns set A1, A2, . . . , Am such that

m∑
i=1

J(A1 ∪ A2 · · ·Ai) ≥ J(V ) + 2(1− e−τ )
m/2−1∑
i=1

J(A∗1 ∪ A∗2 ∪ · · ·A∗i ).
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Proof. Given
∑2p

i=1 ki ≥ τ
∑p

i=1 ki. From Lemma 3.7.39, we have

J(A1 ∪ A2 ∪ · · ·A2p) ≥ (1− e−τ )J(A∗1 ∪ A∗2 ∪ · · · ∪ A∗p).

m/2−1∑
i=1

J(A1 ∪ A2 · · ·A2i) ≥ (1− e−τ )
m/2−1∑
i=1

J(A∗1 ∪ A∗2 ∪ · · · ∪ A∗i ).

Now, we use the monotonicity property of the submodular function J to get

m∑
i=1

J(A1 ∪ A2 · · ·Ai)

= J(A1 ∪ A2 · · · ∪ Am) +

m/2−1∑
i=1

J(A1 ∪ A2 ∪ · · · ∪ A2i) + J(A1 ∪ A2 ∪ · · · ∪ A2i+1)

≥ J(V ) + 2

m/2−1∑
i=1

J(A1 ∪ A2 ∪ · · · ∪ A2i).

Hence, the lemma.

Definition 3.7.42. Given integers k1, k2, . . . , km and a submodular, monotone, and

non-negative function F , over a ground set V , the supermodular chain problem is to

find sets A1, A2, . . . , Am ⊆ 2[V ] such that |Ai| ≤ ki that minimizes

m∑
i=1

J(V )− J(A1 ∪ A2 ∪ · · · ∪ Ai).

For the greedy algorithm 5, we give the following claim for the supermodular chain

problem.

Lemma 3.7.43. Let A∗1, A∗2, . . . , A∗m be the optimal solution to the supermodular chain

problem. Suppose that for all 1 ≤ p ≤ m/2 − 1 we have that
∑2p

i=1 ki ≥ τ
∑p

i=1 ki.

Also assume that J(A1 ∪A2 ∪ · · · ∪Am) = J(V ). Then the greedy algorithm 5 for the

supermodular chain problem returns set A1, A2, . . . , Am such that

m∑
i=1

J(V )− J(A1 ∪ A2 ∪ · · · ∪ Ai) ≤ e−τm · J(V ) + 2
m∑
i=1

J(A∗1 ∪ A∗2 ∪ · · ·A∗i ).
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Proof. From Lemma 3.7.41, we have

(m+ 1)J(V )−
m∑
i=1

J(A1 ∪ A2 ∪ · · · ∪ Ai)

≤ mJ(V )− 2(1− e−τ )
m/2−1∑
i=1

J(A∗1 ∪ A∗2 ∪ · · ·A∗i )

≤ e−τmJ(V ) +mJ(V )− 2

m/2−1∑
i=1

J(A∗1 ∪ A∗2 ∪ · · ·A∗i )

≤ e−τmJ(V ) + 2

m/2−1∑
i=1

J(V )− J(A∗1 ∪ A∗2 ∪ · · ·A∗i ).

Now, we use the monotonicity property of J to get

e−τmJ(V ) + 2

m/2−1∑
i=1

J(V )− J(A∗1 ∪ A∗2 ∪ · · ·A∗i )

≤ e−τmJ(V ) + 2
m∑
i=1

J(V )− J(A∗1 ∪ A∗2 ∪ · · ·A∗i ).

Finally, we have

m∑
i=1

J(V )− J(A1 ∪ A2 ∪ · · · ∪ Ai) ≤ (m+ 1)J(V )−
m∑
i=1

J(A1 ∪ A2 ∪ · · · ∪ Ai)

≤ e−τm · J(V ) + 2
m∑
i=1

J(V )− J(A∗1 ∪ A∗2 ∪ · · ·A∗i ).

Lemma 3.7.44. Suppose S+ denote optimal separating set system that uses an ad-

ditional color of weight 1 and uses weight 0 vector to color A0. Let S∗ denote optimal

separating system. Then, we have C(S+)− C(S∗) ≤ 0.

Proof. We give a proof similar to Lemma 22 in [91]. Let the set of nodes A0 selected

in the first iteration of greedy Algorithm 5 and assigned weight 0 vector be denoted
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by S+
0 . Similarly, the set of nodes that are colored with weight 0 vector in S∗ be

denoted by S∗0 . As S+ denotes optimal solution on V \ S+
0 , we can assume that a

solution that uses a weight 1 color for nodes in S∗0 \ S+
0 is only going to be worse.

Therefore, we have :

C(S+)− C(S∗) ≤
∑

v∈S∗0\S
+
0

C(v)−
∑

v∈S+
0 \S∗0

C(v)

≤
∑

v∈S∗0\S
+
0

C(v) +
∑

v∈S∗0∩S
+
0

C(v)−
∑

v∈S+
0 \S∗0

C(v)−
∑

v∈S∗0∩S
+
0

C(v)

≤
∑
v∈S∗0

C(v)−
∑
v∈S+

0

C(v) ≤ 0.

Let Lε denote the ε-separating matrix returned by Algorithm 5, and let Lε =

{A0, A1, A2, · · ·Am} where we abuse the previous notation and denote Ai to represent

the set of all nodes (instead of a collection of subsets of V ) that have weight i assigned

by Lε.

C(Lε) =
m∑
i=1

J(V )− J(A1 ∪ A2 ∪ · · ·Ai),

where |Li| ≤
(
m
i

)
. We observe that this cost representation corresponds to the super-

modular chain problem discussed above.

Assuming m ≥ η log 1/ε for η > 2, we have that, the greedy Algorithm 5 only

uses vectors of weight at most log 1/ε i.e., m/2. In Lemma 3.7.41, each of the values

k1, k2 · · · ki · · · kp represent number of weight i vectors available and from Lemma 21

in [91], we have that τ = Ω(m), for every p in the range.

Lemma 3.7.45. (Lemma 3.7.32 restated) For any m ≥ η log 1/ε for some con-

stant η > 2, with probability ≥ 1 − δ, Algorithm 5 returns Lε with C(Lε) ≤ (2 +

exp (−Ω(m))) · C(L∗), where L∗ is the min-cost separating matrix for G.
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Proof. Using the definition of S+ from Lemma 3.7.44, we argue that C(S+) ≥ J(V )

as every node in V is assigned a weight 1 vector. From Lemma 3.7.43, we have:

C(Lε) =

m/2∑
i=1

J(V )− J(A1 ∪ A2 ∪ · · ·Ai)

≤ e−τm · J(V ) + 2
m∑
i=1

J(V )− J(A∗1 ∪ A∗2 ∪ · · ·A∗i )

≤ e−τm · C(S+) + 2
m∑
i=1

J(V )− J(A∗1 ∪ A∗2 ∪ · · ·A∗i )

≤ e−τm · C(S+) + 2C(S∗).

From Lemma 3.7.44 and τ = Ω(m), we have:

⇒ C(Lε) ≤ (2 + exp (−Ω(m))) · C(S∗) = (2 + exp (−Ω(m))) · C(L∗).

3.8 Conclusion

We highlight that in both the settings, although we consider the presence of la-

tents in the system, we provide results for learning causal relations among only the

observable variables. Identification of latents is an important goal and has been well-

studied [88, 87, 5] when the objective is to minimize the number of interventions.

There is no good cost lower bound known, even for recovering the observable (rather

than ancestral) graph in the presence of latents. This makes the development of al-

gorithms with approximation guarantees in terms of the optimum cost difficult. We

view addressing this difficulty as a major open question.

Our results on bounded degree graphs make an additional assumption that the

graph is hyperfinite, which gives more structure but still captures many graph families.

It is an interesting open question if we can extend them to general sparse graphs. This
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setting is challenging since even finding a Near-MIS with ε · |E| edges is still open and

likely to be hard [109]. We conjecture that if |E| = O(n), a constant approximation

for our objectives is not possible (assuming standard complexity theoretic conjectures)

if we must separate all but ε · |E| many edges.

It would also be very interesting to extend our work to the setting where we seek

to identify a specific subset of edges of the causal graph, or where certain edges are

‘more important’ than others. We hope that our work is a first step in this direction,

introducing the idea of partial recovery to overcome hardness results that rule out

non-trivial approximation bounds for full graph recovery in the linear cost model.
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CHAPTER 4

COLLABORATIVE CAUSAL DISCOVERY

In this chapter, we introduce a new model for causal discovery. In section 4.1, we

present the motivation for the new model; in section 4.2, we describe the model in

detail; in sections 4.3 and 4.4, we present causal discovery algorithms under suitable

model specific assumptions; in section 4.5, we present an empirical evaluation of our

approaches; in section 4.6, we present all the missing proof details, and in section 4.7

we conclude the chapter.

4.1 Motivation

We recall that using observational data, only some ancestral relations as well

as certain causal edges can be learned. Moreover, many observationally equivalent

structures cannot be distinguished [132] and require interventional data for full causal

graph recovery, as discussed in the introduction chapter 1. As interventions are expen-

sive (require carefully controlled experiments) and performing multiple interventions

is time-consuming, an important goal in causal discovery is to design algorithms that

utilize simple (preferably, single variable) and fewer interventions [115]. However,

when there are latents or unobserved variables in the system, in the worst-case, it is

not possible to learn the exact causal DAG without intervening on every variable at

least once. Furthermore, multivariable interventions are needed in presence of latents,

as discussed in Chapter 2.

On the other hand, in a variety of applications, there is no one true causal struc-

ture, different entities participating in the application might have different causal
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Figure 4.1: Examples of
M causal graphs con-
structed from Lung Cancer
dataset [90]. Here, the
causal graphs differ only
in the presence of latents
(nodes with dotted square
box), but they could differ
elsewhere too.

structures [58, 106, 76]. For example, see figure 4.1. In these scenarios, generating a

single causal graph by pooling data from these different entities might lead to flawed

conclusions [113]. Allowing for interventions, we propose a new model for tackling

this problem, referred here as Collaborative Causal Discovery, which in its simplest

form states that: given a collection of entities, each associated with an individual un-

known causal graph and generating their own independent data samples, learn all the

causal graphs while minimizing the number of atomic (single variable) interventions

for every entity. An underlying assumption is that each entity on its own generates

enough samples in both the observational and interventional settings so that condi-

tional independence tests can be carried out accurately on each entity separately. To

motivate this model of collaborative causal discovery, let us consider two different

scenarios.

(a) Consider a health organization interested in controlling incidence of a particular

disease. The organization has a set of M individuals (entities) whose data it mon-

itors and can advise interventions on. Each individual is an independent entity

that generates its own set of separate data samples1. In a realistic scenario, it is

highly unlikely that all the M individuals share the same causal graph (e.g., see

1As is common in causal discovery, for the underlying conditional independence tests, the data
is assumed to be i.i.d. samples from the interventional/observational distributions.
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Figures 4.2a and 4.2b from [76]). It would be beneficial for the organization to

collaboratively learn all the causal graphs together. The challenge is, a priori the

organization does not know the set of possible causal graphs or which individual is

associated with which graph from this set.

(b) An alternate setting is where, we have M companies (entities) wanting to work

together to improve their production process. Each company generates their own

data (e.g., from their machines) which they can observe and intervene on [99].

Again if we take the M causal graphs (one associated with each company) it is

quite natural to expect some variation in their structure, more so because we do

not assume causal sufficiency (i.e., we allow for latents). Since interventions might

need expensive and careful experimental organization, each company would like to

reduce their share of interventions.

The collaborative aspect of learning can be utilized if we assume that there is

some underlying (unknown) clustering/grouping of the causal graphs on the entities.

Recently, Saeed et al. [113] studied a related model, where the observational data is

from a mixture of causal DAGs, and outline ideas that recover a union graph (up to

Markov equivalence) of these DAGs, without any interventions.

4.1.1 Our Contributions

We formally introduce the collaborative causal discovery problem in section 4.2.

We assume that we have a collection of M entities that can be partitioned into k

clusters such that any pair of entities belonging to two different clusters are separated

by large distance (see Definition 4.2.1) in the causal graphs. Due to presence of latents

variables, we use a family of mixed graphs known asmaximal ancestral graphs (MAGs)

to model the graphs on observed variables. Each entity is associated with a MAG.

In this chapter, we focus on designing algorithms that have worst-case guarantees

on the number of atomic interventions needed to recover (or approximately recover)
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(a) Causal DAG D1 (b) Causal DAG D2

Figure 4.2: Two possible diabetes incidence graphs for an individual from [76] dif-
fering in the causal edge between Physical Activity and Incidence of Diabetes. The
observed variables include: Diet, Body Mass Index (BMI), Physical Activity, Alcohol
(consumption), Incidence of Diabetes, and the unobserved variable (latent) is Eco-
nomic Status. The variable Incidence of Diabetes is observable but can’t be intervened
on, this is not an issue as it has no outgoing edges in the graphs. In this chapter, we
assume we do not know the underlying causal graphs or which individuals share the
same graph. As intervening on variables such as Diet, BMI might need expensive
and careful experimental organization, we ask the following question – given a collec-
tion of independent entities (in this diabetes example, they can refer to a collection
of people), can we collaboratively learn each entity’s causal graphs while minimizing
the number of interventions per entity?

the MAG of each entity. We assume that there are M MAGs one for each entity

over the same set of n nodes. Learning a MAG with atomic interventions, in worst

case requires n interventions (see Proposition 4.3.1). We show that this bound can be

substantially reduced if the M MAGs satisfy the property that every pair of MAGs

from different clusters have at least αn nodes whose direct causal relationships are

different. We further assume that entities belonging to same cluster have similar

MAGs in that every pair of them have at most βn (β < α) nodes whose direct causal

relationships are different. We refer to this clustering of entities as (α, β)-clustering

(Definition 4.2.2). A special but important case is when β = 0, in which case all

the entities belonging to the same cluster have the same causal MAG (referred to as

α-clustering, Definition 4.2.4). An important point to notice is that while we assume
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there is a underlying clustering on the entities, it is learnt by our algorithms. Similar

assumptions are common for recovering the underlying clusters, in many areas, for

e.g., crowd-sourcing applications [15, 17].

We first start with the observation that under (α, β)-clustering, even entities be-

longing to the same cluster could have a different MAG, which makes exact recovery

hard without making a significant number of interventions per entity. We present an

algorithm that using at most O(∆ log(M/δ)/(α−β)2) many interventions per entity,

with probability at least 1− δ (over only the randomness of the algorithm), can prov-

ably recover an approximate MAG for each entity. The approximation is such that

for each entity we generate a MAG that is at most βn node-distance from the true

MAG of that entity (see section 4.3). Here, ∆ is the maximum undirected degree of

the causal MAGs. Our idea is to first recover the underlying clustering of entities by

using a randomized set of interventions. Then, we distribute the interventions across

the entities in each cluster, thereby, ensuring that the number of interventions per

entity is small. By carefully combining the results learnt from these interventions

we construct the approximate MAGs. For the number of interventions, the linear

dependence on ∆ is not uncommon for learning causal graphs [88]. Moreover, most

real-world causal bayesian networks are known to have small maximum degrees (see

section 4.5).

Under the slightly more restrictive α-clustering assumption, we present algo-

rithms that can exactly recover all the MAGs using at most min{O(∆ log(M/δ)/α),

O(log(M/δ)/α + k2)} many interventions per entity (see section 4.4). Again, ran-

domization plays an important role in our approach.

Complementing these upper bounds, we give a lower bound using Yao’s minimax

principle [131] that shows for any (randomized or deterministic) algorithm Ω(1/α)

interventions per entity is required for this causal discovery problem. This implies

the 1/α dependence in our upper bound in the α-clustering case is optimal.
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Finally, a note about parameters. The (α, β)-clustering is universal, in the sense

that any collection of MAGs will satisfy the (α, β)-clustering property for some value

of α, β (with α > β). Ideally, we would like in our problem instance, α to be close to

1 and β to be close to 0. In most real-world applications, we would also expect k to

be relatively small and M � n, k.

In section 4.5, we show experiments on data generated from both real and syn-

thetic networks with added latents and demonstrate the efficacy of our algorithms for

learning the underlying clustering and the MAGs.

4.2 Our Model and Problem Statement

In this section, we introduce the collaborative causal discovery problem. We start

with some notations.

Notation Following the SCM framework [105], we represent the set of random

variables of interest by V ∪ L where V represents the set of endogenous (observed)

variables that can be measured and L represents the set of exogenous (latent) variables

that cannot be measured. Let |V | = n.

We assume that the causal Markov condition and faithfulness holds for both the

observational and interventional distributions [65]. We use conditional independence

(CI) tests of the form u |= v | Z or u |= v | do(w), Z, for some u, v, w ∈ V and Z ⊆ V

(see section 4.6 for more details).

Throughout this chapter, unless otherwise specified, a path between two nodes

is an undirected path. A path of only directed edges is called a directed path. u is

called an ancestor of v and v a descendant of u if u = v or there is a directed path

from u to v. A directed cycle occurs in G when u → v is in G and v is an ancestor

of u.
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Our Model We assume that we have access to M entities labeled 1, . . . ,M , each

of which can independently generate their own observational and interventional data.

Each entity i has an associated causal DAG Di over V ∪ Li, where Li represents the

latent variables of entity i. In modeling the problem of causal discovery, complications

arise in at least two ways:

(i) Latents. We allow some variables (called latents) in the causal DAG to be unob-

servable. As regular DAGs are not sufficient to represent the observed distribution

when there are latents, we use ancestral graphical models that have been proposed

as an elegant and useful surrogate for DAG models with latent variables [108].

A mixed graph containing directed (←) and bidirected (↔) edges is said to be

ancestral if it has no directed cycles, and whenever there is a bidirected edge u↔ v,

then there is no directed path from u to v or from v to u. An ancestral graph on V

(observables) is said to be maximal, if, for every pair of nonadjacent vertices u, v,

there exists a set Z ⊂ V with u, v /∈ Z such that u and v are m-separated (similar

to d-separation, see Definition 4.6.2) conditioned on Z. Every DAG with latents

(and selection variables) can be transformed into a unique maximal ancestral graph

(MAG) over the observed variables [108].

(ii) Uniqueness. Secondly, with just observational data, if the MAGs M1, . . . ,MM

are Markov equivalent, then, without additional strong assumptions they cannot be

distinguished, even if they are all structurally different. To overcome the problem

of being not identifiable within an equivalence class, we allow for interventions

on observed variables. In particular, we focus on atomic interventions, which are

the simplest and most commonly used intervention type, modeled through the do-

operator [103]. As it turns out, Maximal Ancestral Graphs (MAGs) are uniquely

identifiable using atomic interventions.2

2However, in the presence of latents, even with power of atomic interventions, the structure of a
causal DAG is not uniquely identifiable. (see, e.g., In Figure 4.4 in section 4.6). Similarly, we can
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Our objective will be to minimize these interventions. In particular, since each

of these entities independently generate their own data, so we aim to reduce the

number of interventions needed per entity. In causal discovery, minimizing the

number of interventions while ensuring that they are of small size is an active

research area [103, 115, 60, 59].

Given the M entities, letMi denote the MAG associated with entity i (the MAG

constructed from the DAG Di). Our goal is to collaboratively learn all these MAGs

M1, . . . ,MM while minimizing the maximum number of interventions per entity.

To facilitate this learning, we make a natural underlying clustering assumption

that partitions the entities based on their respective MAGs such that: (i) any two

entities belonging to the same cluster have MAGs that are “close” to each other, (ii)

any two entities belonging to different clusters have MAGs that are “far” apart. Before

stating this assumption formally, we need some definitions.

For MAGMi = (V,Ei), we denote the children (through outgoing edges), parent

(through incoming edges), and spouse (through bidirected edges) of a node u ∈ V as

chi(u) = {v | u→ v ∈ Ei}, pai(u) = {v | u← v ∈ Ei}, spi(u) = {v | u↔ v ∈ Ei}.

(4.1)

Also, define an incidence set for a vertex u ∈ V which contains an entry (v, type) for

every node v adjacent to u as

Ni(u) =


(v, tail) if u→ v ∈ Ei

(v, head) if u← v ∈ Ei

(v, bidirected) if u↔ v ∈ Ei

 . (4.2)

show that using single vertex interventions, we also cannot exactly recover a wider class of acyclic
graphs like ADMGs (Acyclic Directed Mixed Graphs).
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Note that |Ni(u)| is the undirected degree of u in Mi. We now define a distance

measure between MAGs that captures structural similarity between them.

Definition 4.2.1. Given two MAGs Mi = (V,Ei) and Mj = (V,Ej), define the

node-difference as the set: diff(Mi,Mj) = {u ∈ V | Ni(u) 6= Nj(u)}, and the node-

distance as the cardinality of this set: d(Mi,Mj) = |diff(Mi,Mj)| = |{u ∈ V |

Ni(u) 6= Nj(u)}|.

Intuitively, the node distance captures the number of nodes whose incidence re-

lationships differ. It is easy to observe that the node distance is a distance metric,

and captures a strong structural similarity between the graphs. Two graphsMi,Mj

are identical iff d(Mi,Mj) = 0. For e.g., in Figure 4.3, we have two MAGs that

satisfy d(M12,M13) = 2 as diff(M12,M13) = {x, z}, where d(M12,M21) = 3 as

diff(M12,M21) = {x, y, z}. We are now ready to define a simple clustering property

on MAGs.
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Figure 4.3: MAGs with (α = 0.75, β =
0.5)-clustering. Every pair of graphs in
C?

1 and C?
2 differ in at least 3(= 0.75× 4)

nodes, while pairs of graphs within clus-
ters differ by at most 2(= 0.5× 4) nodes.

Definition 4.2.2 ((α, β)-clustering). LetM1, . . . ,MM be a set of M MAGs. We say

that this set of MAGs satisfy the (α, β)-clustering property, with α > β ≥ 0, if there

exists a partitioning of [M ] into sets (clusters) C?
1 , . . . , C

?
k ⊂ [M ] (for some k ∈ N)

such that for all (i, j) ∈ [M ]× [M ]:

(i) if i and j belong to same set (cluster), then d(Mi,Mj) ≤ βn;

(ii) if i and j belong to different sets (clusters), then d(Mi,Mj) ≥ αn.

Under this definition, all the M MAGs could be different. See, e.g., Figure 4.3.

With right setting of α > β we can capture any set of possible M MAGs. Therefore,
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an algorithm such as FCI [119], that constructs PAGs might not be able to recover

the clusters, as all the PAGs could be different, and the node-distance between PAGs

does not correlate well with the node-distance between corresponding MAGs (e.g.,

see Figure 4.5 in section 4.6). We use the PAGs generated by FCI as a starting point

for all our algorithms and further refine them. We assume that PAGs generated are

correct (see section 4.6.2.1 for additional details).

Definition 4.2.3 (Partial Ancestral Graph (PAG)). Let [Mi] denote the Markov

equivalence class of the MAGMi and represented by the Partial Ancestral Graph (or

PAG) Ui = (V, Êi). Edges Êi have three kinds of endpoints given by arrowheads (←),

circles (◦−) and tails (−).

With this discussion, we introduce our collaborative causal graph learning problem

as follows:

Assumption: MAGsM1, . . . ,MM (associated with entities 1, . . . ,M respec-

tively) satisfying the (α, β)-clustering property

Access to each entity: Through conditional independence (CI) tests on ob-

servational and interventional distributions. Each entity generates their own

(independent) data samples.

Goal: LearnM1, . . . ,MM while minimizing the max. number of interventions

per entity.

An interesting case of the Definition 4.2.2 is when β = 0.

Definition 4.2.4 (α-clustering). We say a set of MAGs M1, . . . ,MM satisfy the

α-clustering property, if and only if they satisfy (α, 0)-clustering property.

Note that α-clustering is a natural property, wherein each cluster is associated

with a single unique MAG, and all entities in the cluster have the same MAGs, and

same conditional independences.
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4.3 Causal Discovery under (α, β)-Clustering Property

In this section, we present our main algorithm for learning all the causal MAGs

under the (α, β)-clustering property. Missing details from this section are presented

in section 4.6.3.

Outline All our algorithms are randomized, and succeed with high probability over

the randomness introduced by the algorithm. The idea behind all our algorithms is

to first learn the true clusters C?
1 , . . . , C

?
k using very few interventions. Once the true

clusters are recovered, the idea is to distribute the interventions across the entities in

each cluster and merge the results learned to recover the MAGs (section 4.3.2). For

our algorithms, a lower bound for α and upper bound for β is sufficient. In practice,

a clustering of the PAGs (generated from FCI algorithm) can provide guidance about

these bounds on α, β, or if we have additional knowledge that α ∈ [1 − ε, 1] and

β ∈ [0, ε] for some constant ε > 0, then, we can use binary search, that increases our

intervention bounds by log2(nε)/(1− 2ε)2 factor. It is important to note that none

of our algorithms require the knowledge of k.

Algorithm 11 Identify-OutNbr (Ui, u)
1: Input: node u ∈ V , PAG Ui of entity i
2: Output: chi(u)
3: chi(u) = {v | u→ v ∈ Ui}
4: for v ∈ Γi(u) such that u◦−◦v or u◦→v ∈ Ui do
5: if u 6⊥⊥ v | do(u) then
6: chi(u)← chi(u) ∪ {v}
7: end if
8: end for
9: Return chi(u)
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Algorithm 12 Identify-Bidirected (Ui, u)
1: Input: node u ∈ V , PAG Ui of entity i
2: Output: spi(u)
3: spi(u) = {v | u↔ v ∈ Ui}
4: for v ∈ Γi(u) such that u◦−◦v or u←◦v or u◦→v ∈ Ui do
5: if u |= v | do(u) and u |= v | do(v) then
6: spi(u)← spi(u) ∪ {v}
7: end if
8: end for
9: Return spi(u)

Helper Routines Let Γi(u) denote all nodes that are adjacent to u in the PAG

Ui, i.e., Γi(u) = {v | (u, v) ∈ Êi}. Given the PAG Ui, Algorithm Identify-OutNbr

identifies all the outgoing neighbors of any node u in Mi. We look at edges of the

form u◦−◦v or u◦→v in Ui incident on u, and identify if u → v using the CI-test

u |= v | do(u). This is based on the observation that any node v that is a descendant

of u (including chi(u)) satisfies u 6⊥⊥ v | do(u). Algorithm Identify-Bidirected

identifies all the bidirected edges incident on u. If there is an edge of the form u◦−◦v

or u←◦v or u◦→v in the PAG, and v 6∈ chi(u) and u 6∈ chi(v), then it must be a

bidirected edge.

Using these helper routines, we give an Algorithm RecoverG (in section 4.6.2)

that recovers any MAG Mi using n atomic interventions. Complementing this, we

show that n interventions are also required. The missing details are presented in

section 4.6.2.

Proposition 4.3.1. There exists a causal MAGM such that every adaptive or non-

adaptive algorithm requires Ω(n) many atomic interventions to recoverM.

4.3.1 Recovering the Clusters

From the (α, β)-clustering definition, we know that a pair of entities belonging

to the same cluster have higher structural similarity between their MAGs than a

pair of entities across different clusters. Let us start with a simplifying assumption
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that β = 0 (i.e., α-clustering). So, all the MAGs are separated by a distance of at

least αn. We make the observation that to identify that two MAGs, say Mi and

Mj belong to different clusters, it suffices to find a node u from the node-difference

set diff(Mi,Mj) and checking their neighbors using Algorithms Identify-OutNbr

and Identify-Bidirected. We argue that (see Claim 4.6.14, section 4.6.4.2), with

probability at least 1 − δ, we can identify one such node u ∈ diff(Mi,Mj) by sam-

pling 2 log(M/δ)/α nodes uniformly from V as |diff(Mi,Mj)| = d(Mi,Mj) ≥ αn.3

However, this approach will not succeed when β 6= 0 because now we have MAGs in

the same cluster that are also separated by non-zero distance.

Algorithm 13 (α, β)-BoundedDegree

1: Input: α > 0, β ≥ 0 (< α), confidence parameter δ > 0, PAGs U1, . . . ,UM of M
entities

2: Output: Partition of [M ] into clusters
3: Let S denote a uniform sample of 4 log(M/δ)

(α−β)2 nodes from V selected with replace-
ment.

4: for every entity i ∈ [M ] and u ∈ S do
5: chi(u)← Identify-OutNbr(Ui, u)
6: spi(u)← Identify-Bidirected(Ui, u)
7: pai(u)← Γi(u) \ (chi(u) ∪ spi(u))
8: Construct Ni(u) (defined in (4.2))
9: end for
10: Let P denote an empty graph on set of entities [M ]
11: for every pair of entities i, j do
12: Let Count(i, j) =

∑
u∈S 1{Ni(u) = Nj(u)}

13: if Count(i, j) ≥
(
1− α+β

2

)
|S| then

14: Include an edge between i and j in P
15: end if
16: end for
17: Return connected components in P

3For theoretical analysis, our intervention targets are randomly chosen, even with the knowledge
available from PAGs, because in the worst-case the PAGs might contain no directed edges to help
decide which nodes to intervene on. In practice, though if we already know edge orientations from
PAG we do not have to relearn them, and a biased sampling based on edges uncertainties in PAGs
might be a reasonable approach.
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Overview of Algorithm (α, β)-BoundedDegree We now build upon the above

idea, to recover the true clusters C?
1 , . . . , C

?
k when β 6= 0. As identifying a node

u ∈ diff(Mi,Mj) is not sufficient, we maintain a count of the number of nodes among

the sampled set of nodes S that the pair of entities i, j have the same neighbors, i.e.,

Count(i, j) =
∑

u∈S 1{Ni(u) = Nj(u)}. Based on a carefully chosen threshold value

for the Count(i, j), that arises through the analysis of our randomized algorithm,

we classify whether a pair of entities belong to the same cluster correctly.

Overall, the idea here is to construct a graph P on entities (i.e., the node set of

P is [M ]). We include an edge between two entities i and j if Count(i, j) is above

the threshold (1 − (α + β)/2)|S|. Using Lemma 4.3.2, we show that this threshold

corresponds to the case where if the entities are from same true clusters, then the

Count value corresponding to the pair is higher than the threshold; and if they are

from different clusters it will be smaller, with high probability. This ensures that

every entity is connected only to the entities belonging to the same true cluster. We

return the connected components in P as our clusters.

In Algorithm (α, β)-BoundedDegree, we construct a uniform sample S of size:

O(log(M/δ)/(α−β)2), and identify all the neighbors of S for every entity i ∈ [M ]. As

we use Identify-Bidirected to identify all the bi-directed edges, the total number

of interventions used by an entity for this step is at most ∆ · |S|. Combining all the

above, using the next lemma, we show that with high probability Algorithm (α, β)-

BoundedDegree recovers all the true clusters.

Lemma 4.3.2. If the underlying MAGsM1, . . . ,MM satisfy (α, β)-clustering prop-

erty with true clusters C?
1 , . . . , C

?
k and have maximum undirected degree ∆. Then, the

Algorithm (α, β)-BoundedDegree recovers the clusters C?
1 , . . . , C

?
k with probability

at least 1 − δ. Every entity i ∈ [M ] uses at most 4(∆ + 1) log(M/δ)/(α − β)2 many

atomic interventions.
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4.3.2 Learning Causal Graphs from (α, β)-Clustering

In this section, we outline an approach to recover a close approximation of the

causal MAGs of all the entities, after correctly recovering the clusters using Algo-

rithm (α, β)-BoundedDegree. First, we note that since the (α, β)-clustering allows

the MAGs even in the same cluster to be different, the problem of exactly learning

all the MAGs is challenging (with a small set of interventions) as causal edges learnt

for an entity may not be relevant for another entity in the same cluster.

In the scenarios mentioned in the introduction, we expect the clusters to be more

homogeneous, with many entities in the same cluster sharing the same MAG. We

provide an overview of Algorithm (α, β)-Recovery that recovers one such MAG

called dominant MAG for every cluster. Consider a recovered cluster C?
a , and a

partitioning S1
a, S

2
a, · · · of MAGs such that all MAGs in a partition Sia are equal for all

i. We call the MAGMdom
a corresponding to the largest partition Sdom

a as the dominant

MAG of C?
a . The dominant MAG of a cluster is parameterized by γa = |Sdom

a |/|C?
a |

(fraction of the MAGs in the cluster that belong to the largest partition). We defer

additional details of Algorithm (α, β)-Recovery to section 4.6.3.1.

Overview of Algorithm (α, β)-Recovery. After recovering the clustering using

Algorithm (α, β)-BoundedDegree, our goal is to learn the causal graphs. Using

Algorithm (α, β)-Recovery, we show that we can learn these graphs approximately

up to a distance approximation of βn.

In a cluster C?
a , we construct a partitioning of MAGs such that two MAGs belong

to a partition if they are equal. The MAG corresponding to the largest partition is

called the dominant MAG. Using our algorithm, we learn the dominant MAG correctly

and return it as an output. As all the MAGs in the cluster satisfy (α, β)-clustering

property, the dominant MAG is within a distance of βn from the true MAG and

therefore is a good approximation of the true MAG.
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For learning the dominant MAG, there are two steps. First, we select a node

uniformly at random for every entity and intervene on the node and its neighbors

to learn all the edges incident on the node. Next, we construct the dominant MAG

by combining the neighborhoods of each individual node. Let u be any node and Tu

denote the set of all entities which intervened on u in the first step. Now, among

all the neighborhoods identified by the entities in Tu, we do not know which of them

correspond to that of the dominant MAG. In order to identify this, we use a threshold-

based approach and assign a score to every entity in Tu. The score of an entity i is

the number of entities in Tu that has the same neighborhood of u as that of entity i.

Finally, we select the entity with the maximum score and assign the neighborhood of

the entity as the neighborhood of u for the dominant MAG (Lines 12-15 in Algorithm

(α, β)-Recovery). We argue that if the cluster size is large (see Theorem 4.3.3), the

neighborhoods of nodes using entities with maximum scores are equal to that of the

dominant MAG. This is because the dominant MAG has the largest partition size,

and if a sufficiently large number of entities (across all partitions) are assigned node

u, then, many of them will be entities from the dominant MAG partition.

As the entities satisfy (α, β)-clustering property, for all entities the recovered

MAGs (dominant MAGs) are close to the true MAGs, and within a distance of at

most βn. Note that any MAG from the cluster is within a distance of at most βn due

to (α, β)-clustering property, but naively generating a valid MAG from a cluster will

require n interventions on one entity from Proposition 4.3.1. Our actual guarantee

is somewhat stronger, as in fact, for the entities whose MAGs are dominant in their

cluster, we do recover the exact MAGs. We have the result:

Theorem 4.3.3. SupposeM1,M2, · · ·MM satisfy (α, β) clustering property. If γa >

1/2 and C?
a = Ω(n log(n/Mδ)(2γa − 1)2) for all a ∈ [k], then, Algorithm (α, β)-

Recovery recovers graphs M̂1, · · · M̂M such that for every entity i ∈ [M ], we have
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d(Mi,M̂i) ≤ βn with probability 1 − δ. Every entity uses at most (∆ + 1) + 4(∆ +

1) log(M/δ)/(α− β)2 many atomic interventions.

4.4 Causal Discovery under α-Clustering Property

In the previous section, we discussed the more general (α, β)-clustering scenario

where we manage to construct a good approximation to all the MAGs. Now, we show

that we can in fact recover all the MAGs exactly, if we make a stronger assumption.

Suppose the MAGs M1, . . . ,MM of the M entities satisfy the α-clustering prop-

erty (Defn. 4.2.4). Firstly, we can design an algorithm similar to Algorithm (α, β)-

BoundedDegree (see Algorithm α-BoundedDegree, Section 4.6.4.3) that recov-

ers the causal MAGs exactly with O(∆ log(M/δ)/α) many interventions per entity,

succeeding with probability 1 − δ. Note that this has a better 1/α term in the in-

tervention bound, instead of 1/α2 (when β = 0) term arising in Theorem 4.3.3. In

absence of latents, we can further improve it to O(log(M/δ)/α) many interventions

per entity (see Algorithm NoLatents in Section 4.6.4.2).

4.4.1 Recovering the Clusters

In this section, we present another approach (Algorithm α-General) with an

improved result that requires fewer number of interventions, even when ∆ is big,

provided that each cluster has at least Ω(n log(M/δ)) entities. Missing details of

Algorithm α-General are in Section 4.6.4.4.

Overview of Algorithm α-General First, using a similar approach as Algo-

rithm (α, β)-BoundedDegree, we construct a uniform sample S ⊆ V , and find all

the outgoing neighbors of nodes in S, for every entity i ∈ [M ]. Then, we construct a

graph on entities denoted by P , where we include an edge between a pair of entities

if the outgoing neighbors of the set of sampled nodes S, and the set of neighbors in

PAGs associated with the entities (obtained from FCI) are the same. However, due
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to the presence of bidirected edges, it is possible that the connected components of

P may not represent the true clusters C?
1 , . . . , C

?
k .

We make the observation that a pair of entities i, j that have an edge in this P

and from different true clusters, can differ only if there is a node u such that u has

a bidirected edge u ↔ v in Mi, and a directed edge u ← v in Mj (or vice-versa).

Intervening on both u and v will separate these entities, our main idea is to ensure

that this happens. First, we show how to detect if there are at least two true clusters

in any connected component of P . Then, we identify all the entities belonging to

these two clusters and remove the edges between these entities in P and continue.

More formally, let T1, . . . , Tk′ be the partition of [M ] provided by the k′ connected

components of P and some of these can contain more than one true cluster, hence

k′ ≤ k and we focus on detecting such events. Let π : [M ] → V denote a mapping

from the set of entities to the nodes in V such that π(i) is chosen uniformly at random

from V for every entity i. For every entity i, we intervene on the node π(i). To detect

that there are at least two clusters in a given subset Ta of entities, we show that there

are two entities i, j with an edge in P and for some node u ∈ S, we can identify the

neighbor v ∈ Γi(u) ∩ Γj(u) such that u ↔ v is an edge inMi and u ← v is an edge

in Mj (or vice-versa). As there are at least Ω(n log(M/δ)) entities in each of these

two true clusters in Ta, for some i, j ∈ Ta, we can show that π(i) = π(j) = v with

probability at least 1− δ.

After detecting the event that a component Ta of P contains entities from at

least two different true clusters (say, C?
b and C?

c ) due to an edge (u, v) as above,

we intervene on v for every entity in Ta. By intervening on v (and u ∈ S), we can

separate all entities in Ta that belong to true clusters C?
b and C?

c , and remove edges

between such entity pairs from P . We repeat this above procedure of refining P . In

each iteration, we will have removed all edges between every pair of entities belonging

to at least two different true clusters. Since there are at most k2 different true cluster
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pairs, after k2 iterations the connected components remaining correspond to the true

clusters (with high probability). This can be done without knowing the value of k, by

checking whether the connected components in P change or not after each iteration

of the above idea.

4.4.2 Learning Causal Graphs from α-Clustering

The idea of going from clusters to MAGs is simple and based on distributing the in-

terventions across the entities in the cluster. Since under α-clustering, entities belong-

ing to a cluster share the same MAG, combining the results is relatively simpler (see

Section 4.6.4.1). Combining the guarantees of α-General and α-BoundedDegree,

we have:

Theorem 4.4.1. If MAGsM1, . . . ,MM satisfy α-clustering property with true clus-

ters C?
1 , . . . , C

?
k such that minb∈[k] |C?

b | = Ω(n log(M/δ)). Then, there is an algorithm

that exactly learns all these MAGs with probability at least 1−δ. Every entity i ∈ [M ]

uses min {O(∆ log(M/δ)/α), O(log(M/δ)/α + k2)} many atomic interventions.

4.4.3 Lower Bound on the Number of Interventions

We now give a lower bound on the number of atomic interventions needed for

every algorithm that recovers the true clusters on the MAGsM1,M2, · · ·MM . Since

a lower bound under α-clustering is also a lower bound under (α, β)-clustering, we

work with the α-clustering property here. First, we show that to identify whether a

given pair of entities i, j belong to the same true cluster or not, every (randomized

or deterministic) algorithm must make Ω(1/α) interventions for both i and j.

Our main idea here is to use the famous Yao’s minimax theorem [131] to get lower

bounds on randomized algorithms. Yao’s theorem states that an average case lower

bound on a deterministic algorithm implies a worst case lower bound on randomized

algorithms. To show a lower bound using Yao’s minimax theorem, we construct a

distribution µ on MAG pairs and show that every deterministic algorithm requires
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Ω(1/α) interventions for distinguishing a pair of MAGs drawn from µ. The construc-

tion of this distribution is presented in Section 4.6.5. We summarize the result:

Theorem 4.4.2. Suppose the underlying MAGs M1, . . . ,MM satisfy α-clustering

property. In order to recover the clusters with probability 2/3, every (randomized or

deterministic) algorithm requires Ω(1/α) interventions for every entity in [M ].

4.5 Experimental Evaluation

In this section, we provide an evaluation of our approaches on data generated

from real and synthetic causal networks for learning MAGs satisfying (α, β)-clustering

property. We defer additional details, results, and evaluation for α-clustering to

Section 4.6.6.

Causal Networks We consider the following real-world Bayesian networks from

the Bayesian Network Repository which cover a wide variety of domains: Asia (Lung

cancer) (8 nodes, 8 edges), Earthquake (5 nodes, 4 edges), Sachs (Protein networks)

(11 nodes, 17 edges), and Survey (6 nodes, 6 edges). For the synthetic data, we use

Erdös-Rényi random graphs (10 nodes). We use the term “causal network” to refer

to these ground-truth Bayesian networks.

Parameters For each causal network, we start from the corresponding DAG, and

generate M MAGs (one for each entity) split into k clusters that satisfy the (α, β)-

clustering property through random changes to the graph. We also randomly intro-

duce two latents in each graph, and account for them in MAG constructions. For

more details, refer Section 4.6.6. We set number of entities M = 40, number of clus-

ters k = 2, α = 0.60, β = 0.20, and dominant MAG parameter γ = 0.90 for both the

clusters. For the synthetic data generated using Erdös-Rényi model, we use n = 10,

probability of edge 0.3.
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Evaluation of Clustering First, we focus on recovering the clustering using Al-

gorithm (α, β)-BoundedDegree. As a baseline, we employ the well-studied FCI

algorithm based on purely observational data [119]. After recovering the PAGs corre-

sponding to the MAGs using FCI, we cluster them by constructing a similarity graph

(similar to (α, β)-BoundedDegree) defined on the set of entities (refer Section 4.6.6

for more details). For Algorithm (α, β)-BoundedDegree, we first construct a sam-

ple S, and perform various interventions based on the set S for every entity to obtain

the clusters. We also implemented another baseline algorithm (Greedy) that uses

interventions, based on a greedy idea that selects nodes to set S in Algorithm (α, β)-

BoundedDegree by considering nodes in increasing order of their degree in the

PAGs returned by FCI. We use this ordering to minimize the no. of interventions as

we intervene on every node in S and their neighbors.

Metrics We use the following standard metrics for comparing the clustering per-

formance: precision (fraction of pairs of entities correctly placed in a cluster together

to the total number of pairs placed in a cluster together), recall (fraction of pairs of

entities correctly placed in a cluster together to the total number of pairs in the same

ground truth clusters), and accuracy (fraction of pairs of entities correctly placed or

not placed in a cluster to the total number of pairs of entities).

Causal FCI (α, β)-BoundedDegree (Alg. 13) Maximum
Network Precision Recall Accuracy Precision Recall Accuracy # Interventions

Earthquake 0.57± 0.18 0.94± 0.013 0.58± 0.18 0.78± 0.24 0.92± 0.03 0.77± 0.23 4
Survey 0.62± 0.21 0.94± 0.013 0.62± 0.2 0.64± 0.23 0.97± 0.02 0.63± 0.23 5
Asia 0.57± 0.18 0.94± 0.013 0.58± 0.18 0.92± 0.14 0.95± 0.03 0.91± 0.14 5
Sachs 0.52± 0.12 0.94± 0.01 0.52± 0.12 0.89± 0.20 0.96± 0.02 0.88± 0.19 6
Erdös-Rényi 0.62± 0.21 0.94± 0.02 0.62± 0.21 1.0± 0.00 0.95± 0.02 0.97± 0.013 6

Table 4.1: In this table, we present the precision, recall and accuracy values obtained
by our Algorithm (α, β)-BoundedDegree and using FCI. Each cell includes the
mean value along with the standard deviation computed over 10 runs. The last
column represents the maximum number of interventions per entity including both
Algorithms (α, β)-BoundedDegree and (α, β)-Recovery.
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Results In Table 4.1, we compare Algorithm (α, β)-BoundedDegree to FCI on

the clustering results. For Algorithm (α, β)-BoundedDegree, we use a sample S

of size 1, and observe in Figure 4.8 (Section 4.6.6), that this corresponds to about 3

interventions per entity. With increase in sample size, we observed that the results

were either comparable or better. We observe that our approach leads to consider-

ably better performance in terms of the accuracy metric with an average difference

in mean accuracy of about 0.25. This is because FCI recovers partial graphs, and

clustering based on the partial information results in poor accuracy. Because of the

presence of a dominant MAG with in each cluster, we observe that the correspond-

ing entities are always assigned to the same cluster, resulting in high recall for both

(α, β)-BoundedDegree and FCI. We observe a higher value of precision for our

algorithms, because FCI is unable to correctly classify the MAGs that are different

from the dominating MAG.

Algorithm (α, β)-BoundedDegree outperforms the Greedy baseline for the

same sample(S) size. For example, on the Earthquake and Survey causal networks,

Algorithm (α, β)-BoundedDegree obtains the mean accuracy values of 0.77 and

0.63 respectively, while Greedy for the same number of interventions obtained an ac-

curacy of only 0.487 and 0.486 respectively. For the remaining networks, the accuracy

values of Greedy are almost comparable to our Algorithm (α, β)-BoundedDegree.

After clustering, we recover the dominant MAGs using Algorithm (α, β)-Recovery,

and observe that the additional interventions needed are bounded by the maximum

degree of the graphs (see Theorem 4.3.3). This is represented in the last column

in Table 4.1. We observe that our collaborative algorithms use fewer interventions

for dominant MAG recovery compared to the number of nodes in each graph. E.g.,

in the Erdös-Rényi setup, the number of nodes n = 10, whereas we use at most 6

interventions per entity. Thus, compared to the worst-case, cutting the number of

interventions for each entity by 40%.
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4.6 Additional Details

In this section, we present missing details from sections 4.1-4.5.

4.6.1 Maximal Ancestral Graphs

Ancestral graphical models were introduced motivated by the need to represent

data generating processes that involve latent variables. In this chapter, we work

with a class of graphical models, the maximal ancestral graph (MAG), which are a

generalization of DAGs and are closed under marginalization and conditioning [108].

A maximal ancestral graph (MAG) is a (directed) mixed graph that may contain

two kinds of edges: directed edges (→) and bi-directed edges (↔). Before defining a

MAG, we need some preliminaries.

Consider a mixed graph G. Given an path π = 〈u, . . . , w, . . . , v〉, w is a collider

on π if the two edges incident to w in π are both into w, that is, have an arrowhead

into w; otherwise it is called a non-collider on π. Let S be any subset of nodes in

the graph G. An inducing path relative to S is a path on which every node not in S

(except for the endpoints) is a collider on the path and every collider is an ancestor

of an endpoint of the path.

Definition 4.6.1. A mixed graph is called a maximal ancestral graph (MAG) if

1. The mixed graph is ancestral, i.e., it has no directed cycles, and whenever there

is a bidirected edge u↔ v, then there is no directed path from u to v or v to u.

2. There is no inducing path between any two non-adjacent nodes.

It is straightforward to extend the notion of d-separation in DAGs to mixed graphs

using the notion of m-separation [108].

Definition 4.6.2. In a mixed graph, a path π between nodes u and v is m-connecting

relative to a (possibly empty) set of nodes Z with u, v /∈ Z if

1. every non-collider on π is not a member of Z;
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2. every collider on π is an ancestor of some member of Z.

u and v are said to be m-separated by Z if there is no m-connected path between u

and v relative to Z.

Conversion of a DAG to a MAG. The following construction gives us a MAGM

from a DAG D:

1. for each pair of variables u, v ∈ V , u and v are adjacent in M if and only if

there is an inducing path between them relative to L in D. The skeleton or

the undirected graph constructed from PAG U (obtained using FCI [119]) by

ignoring the directions of edges captures all the edges inM.

2. for each pair of adjacent variables u, v inM, orient the edge as u→ v inM if

u is an ancestor of v in D; orient it as u ← v inM if v is an ancestor of u in

D; orient it as u↔ v inM otherwise.

Several DAGs can lead to the same MAG (See Figure 4.4c). Essentially a MAG rep-

resents a set of DAGs that have the exact same d-separation structures and ancestral

relationships among the observed variables. By construction, the MAG is unique for

a given DAG.

As a further evidence to the claim that interventions are required, see Figure 4.5,

that gives an example of two MAGs separated by a distance of n
2
and have the same

Partial Ancestral Graph identified by FCI [133].

Conditional Independence (CI) Tests Conditional independence tests are an

important building block in causal discovery.

(i) CI-test in observational distribution: Given u, v ∈ V , Z ⊂ V check whether u

is independent of v given Z, denoted by u |= v | Z.
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Figure 4.4: Different DAGs with same MAG. It is easy to observe that, no single
vertex interventions can differentiate D1 from D2.

Figure 4.5: An example of MAGs M1 and M2 with large distance d(M1,M2) but
generating the same PAG.

(ii) CI-test in interventional distribution: Given u, v ∈ V , Z ⊂ V , and w ∈ V , check

whether u is independent of v given Z in the interventional distribution of w,

denoted by u |= v | Z, do(w) where do(w) is the intervention on the variable w.

The convergence rates of CI tests are well-known [98] which can be used to obtain

the required sample size bounds for any of the PAG estimation procedures for the

desired Type 1 error bound (omitted here). Note that in our experiments (section 4.5),

we do run CI tests on actual data samples generated by our model.
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4.6.2 Helper Routines

In this section, we present missing details about the helper routines from sec-

tion 4.3.

Claim 4.6.3. Suppose Di is the DAG and Mi is the corresponding MAG for some

entity i ∈ [M ]. Then, u 6⊥⊥ v | do(u) iff u is an ancestor of v in the graph Di.

Proof. We follow a proof similar to Lemma 1 in [88]. If u is an ancestor of v in the

graph Di using the path πuv, then, in the mutilated graph corresponding to do(u),

the path πuv remains intact. From d-separation [105], πuv can only be blocked by

conditioning on one of the nodes that are not end points. As we do not condition on

any variables in the CI-test u |= v | do(u) and therefore do not block the path πuv, we

have u 6⊥⊥ v | do(u).

Now, we consider the other direction. If u 6⊥⊥ v | do(u), then, there is at least a

path πuv between u and v that is not blocked. In the mutilated graph corresponding to

the interventional distribution do(u), the incoming edges into the node u are removed.

In the path πuv, the edge incident on u is an outgoing edge. If there is a collider on

πuv, we have blocked the path by not conditioning on it (from d-separation). As the

path is not blocked, it implies that there is no collider on the path. Therefore, the

path πuv is a directed path from u to v. Hence, the claim.

Claim 4.6.4. Given an entity i ∈ [M ], and a node u ∈ V , Algorithm Identify-

OutNbr identifies all outgoing edges of u in Mi (chi(u)) correctly using an inter-

vention on u.

Proof. We know that Ui = (V, Êi) represents the partial ancestral graph ofMi. We

observe that any outgoing edge (u, v) incident on a node u in the PAG Ui can be

of the form u◦−◦v or u◦→v. Otherwise, we already know that the edge is not an

outgoing edge from u. We claim that we can identify an outgoing edge (u, v) from a

node u correctly, if CI-test returns u 6⊥⊥ v | do(u) for every v ∈ Γi(u) satisfying the
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condition mentioned above. From Claim 4.6.3, we have that u 6⊥⊥ v | do(u) iff u is an

ancestor of v in Di, which implies u→ v is present inMi and v ∈ chi(u).

Claim 4.6.5. Given an entity i ∈ [M ], and a node u ∈ V , Algorithm Identify-

Bidirected identifies all bidirected edges incident on u in Mi (spi(u)) correctly

using atomic interventions on all nodes in Γi(u).

Proof. We observe that any bi-directed edge (u, v) incident on a node u ∈ V in

the PAG Ui can be of the form u◦−◦v or u←◦v or u◦→v. Otherwise, we already

know that the edge is not a bi-directed edge incident at u. In Algorithm Identify-

Bidirected, for every neighbor v of u in the PAG Ui satisfying the above condition,

we check if u |= v | do(u) and v |= u | do(v) is satisfied. From Claim 4.6.3, we know

that if u 6⊥⊥ v | do(u), then u is an ancestor of v in Di (similarly, v is an ancestor of

u in Di if u 6⊥⊥ v | do(v)). So, if u |= v | do(u) and u |= v | do(v), then, u is not an

ancestor of v or vice-versa, which implies u↔ v is present inMi, i.e., v ∈ spi(u). As

we perform an intervention for every neighbor of u in Ui, we have the claim.

Algorithm RecoverG For every u ∈ V , first identify outgoing neighbors using

Algorithm Identify-OutNbr and then identify all the bidirected edges incident on

u using Algorithm Identify-Bidirected.

Lemma 4.6.6. Algorithm RecoverG recovers all edges ofMi, for an entity i ∈ [M ]

using n atomic interventions.

Proof. Given an entity i ∈ [M ], we obtain the partial ancestral graph Ui from obser-

vational data. Using Algorithm RecoverG, we create interventions for every node

u ∈ V . For every node u, we correctly identify all the outgoing neighbors of u using

Algorithm Identify-OutNbr (Claim 4.6.4) and all the bidirected edges using Algo-

rithm Identify-Bidirected (Claim 4.6.5). Therefore, we have recovered all edges

ofMi using n atomic interventions.
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Figure 4.6: The MAGs used in the proof of Proposition 4.6.7.

Proposition 4.6.7. [Proposition 4.3.1 restated] There exists a causal MAGM such

that every adaptive or non-adaptive algorithm requires n many atomic interventions

to recoverM.

Proof. Suppose the set of nodes of an unknownMAGM is given by V = {v1, v2, · · · vn}.

We denote ALG by any adaptive or non-adaptive deterministic algorithm that recov-

ersM using the set of interventions S ⊆ V . For the sake of contradiction, let ALG

recoverM correctly and vi be the vertex that has not been intervened on, i.e., vi 6∈ S.

Construct the MAGsMi1,Mi2,Mi3 with edgesEi1 = {v1 → v2, v3 → v4, · · · , vi →

vi+1, · · · , vn−1 → vn}, Ei2 = {v1 → v2, v3 → v4, · · · , vi ← vi+1, · · · , vn−1 → vn}, Ei3 =

{v1 → v2, v3 → v4, · · · , vi ↔ vi+1, · · · , vn−1 → vn} respectively (see Figure 4.6).

Upon termination, ALG will have recovered one of the MAGsMi1,Mi2 orMi3.

As vi 6∈ S, we will argue that the true MAG is different from the recovered MAG. We

consider two cases:

1. If vi+1 ∈ S. First, we observe that for all three MAGsMi1,Mi2 andMi3, the

CI-test vi 6⊥⊥ vi+1. For MAGsMi1 andMi2, we have vi |= vi+1 | do(vi+1) while

vi 6⊥⊥ vi+1 | do(vi+1) for MAG Mi2. As these are the only possible CI-tests

for vertices vi and vi+1, the algorithm ALG cannot differentiate between Mi1

and Mi3. If ALG recovers Mi1, then, we can set M to be Mi3. This is a

contradiction.
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2. If vi+1 6∈ S. We observe that for all three MAGs Mi1,Mi2 and Mi3, the

CI-test vi 6⊥⊥ vi+1, and it is the only possible CI-test involving vertices vi and

vi+1. Therefore, the algorithm ALG cannot differentiate betweenMi1,Mi2 and

Mi3. If ALG recoversMi1, then, we can setM to beMi2,Mi3 and similarly

for other cases. This is a contradiction.

Therefore, to recoverM∈ {Mi1,Mi2,Mi3} correctly, we must have vi ∈ S. As i

is chosen arbitrarily, and for every i we can construct the MAGsMi1,Mi2,Mi3, such

that any adaptive or non-adaptive deterministic algorithm requires interventions on

every node.

We can extend the proof to include randomized algorithms, with success proba-

bility strictly greater than 1/2, by observing that when vi 6∈ S, ALG has at least two

MAGs amongMi1,Mi2,Mi3 that it cannot differentiate (as argued using two cases

above).

4.6.2.1 Handling Uncertainty in PAG Estimation

We assume throughout this chapter that the initial PAGs (fed to our algorithms)

are estimated correctly from observational data. We outline some reasons behind

such an assumption.

(a) PAG estimation is a very well-studied problem in causal discovery from both

a theoretical and practical perspective. Well known algorithms for recovering

PAGs, such as FCI (Fast Causal Inference), are known to be sound and com-

plete (see [120] and [133]). Also, recent variations of FCI such as Really

Fast Causal Inference (RFCI) have sped up the FCI procedure [42]. Today

FCI/RFCI procedures are commonly used in practice, with various implemen-

tations available [78].

(b) Note, for all our algorithms and bounds, all that we require from the PAGs is

that they have the correct (undirected) skeleton as their corresponding MAGs,
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i.e., we could just ignore all the directed edges in the initial PAGs and replace

them with edges before using them in our algorithms, and this would not change

our results.

(c) Finally, we could even relax our assumptions and tolerate error even in skele-

ton estimation. The idea is simple, and we sketch it here. Suppose the MAGs

M1,M2, · · ·MM satisfy the α-clustering assumption with true clusters C?
1 , C

?
2 , · · ·C?

k .

Now consider the setting where we have errors in the PAG skeleton estimation.

Let U1,U2, · · · UM be the true skeletons of the MAGs M1,M2, · · ·MM . Con-

sider for each MAG Mi, a corrupted counterpart Mcorr
i , with the guarantee

that d(Mi,Mcorr
i ) ≤ β/2n. These corrupted MAGs are only constructed for

the sake of proof, and are not actually present. Assume that the skeleton es-

timation is not precise and instead of U1,U2, · · · UM , it produces the skeletons

U corr
1 ,U corr

2 , · · · U corr
M , associated with these corrupted MAGsMcorr

1 ,Mcorr
2 , · · ·Mcorr

M .

By triangle inequality, it is easy to observe that the MAGs satisfy (α − β, β)-

clustering assumption. If β < α/2, then, using Algorithm (α, β)-BoundedDegree

on U corr
1 ,U corr

2 , · · · U corr
M with parameter α replaced by α− β will guarantee that

we recover the true clusters C?
1 , C

?
2 , · · ·C?

k . This follows because any pair of en-

tities i, j that were originally in the same true cluster will still remain together

in the same cluster, even under corruption, as their corrupted MAGs will be

at most βn < α/2n distance apart. Similarly, if i, j belonged to different true

clusters then they will still remain in different clusters, even under corruption,

as their corrupted MAGs will be > α/2n distance apart. Also, if the corrupted

MAGs satisfy the conditions in Theorem 4.3.3, we can recover the dominant

MAG. With the right set of parameters, this argument can also be extended

starting from an (α, β)-clustering.
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4.6.3 Causal Discovery under (α, β)-Clustering

In this section, we present an algorithm that recovers the underlying clusters

C?
1 , C

?
2 , · · · , C?

k provided they satisfy (α, β)-clustering property. After recovering the

clusters, in section 4.6.3.1, we give an algorithm that recovers an approximate MAG

for every entity with only few additional interventions.

Firstly, using the next lemma, we show that the threshold used by Algorithm (α, β)-

BoundedDegree correctly identifies whether two entities belong to the same true

cluster or not. This implies that our algorithm (α, β)-BoundedDegree recovers the

clusters with high probability.

Lemma 4.6.8 (Lemma 4.3.2 restated). If the underlying MAGs M1, . . . ,MM sat-

isfy (α, β)-clustering property with true clusters C?
1 , . . . , C

?
k and have maximum undi-

rected degree ∆. Then, the Algorithm (α, β)-BoundedDegree recovers the clus-

ters C?
1 , . . . , C

?
k with probability at least 1 − δ. Every entity i ∈ [M ] uses at most

4(∆ + 1) log(M/δ)/(α− β)2 many atomic interventions.

Proof. Let Count(i, j) =
∑

u∈S 1{Ni(u) = Nj(u)} for distinct entities i, j. If i, j

belong to the same true cluster C?
t for some t ∈ [k], we have :

E[Count(i, j)] = E

[∑
u∈S

1{Ni(u) = Nj(u)}

]
≥ (1− β)|S|

Using Hoeffding’s inequality, with probability at least 1− exp (− Λ2

2|S|)

Count(i, j) ≥ E[Count(i, j)]− Λ

2

If i, j belong to different true clusters, then, we have :

E[Count(i, j)] = E

[∑
u∈S

1{Ni(u) = Nj(u)}

]
≤ (1− α)|S|
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Using Hoeffding’s inequality, with probability at least 1− exp (− Λ2

2|S|)

Count(i, j) < E[Count(i, j)] +
Λ

2

Set Λ = |S|(α− β) and |S| = 4 logM/δ
(α−β)2 .

Using union bound for every pair of entities in [M ], we have with probability at

least 1− δ:

if entities i, j ∈ C?
t (belong to the same true cluster) :

Count(i, j) ≥
(

1− α + β

2

)
|S|, and

if entities i, j 6∈ C?
b ∀b ∈ [k] (do not belong to the same true cluster) :

Count(i, j) <

(
1− α + β

2

)
|S|.

Therefore, every pair of entities from same true cluster satisfy the condition that

Count value is larger than (1− α+β
2

)|S| and will include an edge in P , while we do not

include an edge between pair of entities from different clusters. The resulting graph

P , will have k connected components and Algorithm (α, β)-BoundedDegree will

return the true clusters correctly.

As we intervene on all the neighbors of every node in S, it will increase the

interventions for every entity by a multiplicative ∆ + 1 factor. For an entity i, the

total number of interventional distributions constructed is

∑
u∈S

(1+ |Γi(u)|) ≤ |S|(∆+1) = 4(∆+1) log(M/δ)/(α−β)2 as max
i∈[M ],w∈V

|Γi(w)| ≤ ∆.

This completes the proof.
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4.6.3.1 Learning Causal Graphs from Clusters

In this section, we present the full-description of the Algorithm (α, β)-Recovery

that returns an approximate causal graph for every entity i ∈ [M ]. We also include

the brief overview from section 4.3.2 for clarity.

Overview of Algorithm (α, β)-Recovery Consider a cluster C?
a . We recover

the dominant MAG of this cluster, Mdom
a , by recovering all the neighbors of every

node and carefully merging them. Our idea is to assign a node, selected uniformly

at random, to every entity in C?
a , and recover the neighborhood of the node using

Algorithms Identify-OutNbr and Identify-Bidirected. If the clusters are large

such that |C?
a | � n (see Theorem 4.3.3 for a precise bound), we can show a large

number of entities Tu are assigned node u, and many of them will share the dominant

MAG. We maintain a count NCount(i, u) of the number of times the entity i agrees

with other entities in Tu about neighbors of u, and guarantee (with high probability)

that the entity with the highest count will be that of dominant MAG. After merging

the neighbors recovered for every node, we assign the resulting graph to every entity

in the cluster.

Consider the cluster C?
a for some a ∈ [k]. In the next claim, we show that if the

size of C?
a is sufficiently large, then, each node u ∈ V is assigned a large number of

entities by (α, β)-Recovery using the set Tu.

Claim 4.6.9. Consider a cluster C?
a such that γa > 1/2 and |C?

a | ≥
8n log(nM/δ)

(2γa−1)2 . Let

Tu denote the set of entities assigned to node u in Algorithm 14. Then, we have with

probability 1− δ, |Tu| ≥ 4 log(nM/δ)
(2γa−1)2 for every node u ∈ V .

Proof. For a node u ∈ V , and cluster C?
a , we have:

E[Tu] =
|C?

a |
n
≥ 8 log(nM/δ)

(2γa − 1)2
.
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Algorithm 14 (α, β)-Recovery
1: Input: α > 0, β ≥ 0 (< α), confidence parameter δ > 0, PAGs U1, . . . ,UM ofM entities
2: Output: M̂1,M̂2, · · · M̂M representing set of M MAGs.
3: Obtain clusters C?1 , C?2 , · · · , C?k using Algorithm 13.
4: for every cluster C?a where a ∈ [k] do
5: Let M̂dom

a be an empty graph on the set of nodes V .
6: For every entity i ∈ C?a , select a node u ∈ V uniformly at random and assign it to u

represented by the set Tu.
7: for every node u ∈ V do
8: for every entity i ∈ Tu do
9: chi(u)← Identify-OutNbr(Ui, u)
10: spi(u)← Identify-Bidirected(Ui, u).
11: pai(u)← Γi(u) \ (chi(u) ∪ spi(u)).
12: Construct Ni(u) (defined in (4.2)) and calculate NCount(i, u) =∑

j∈Tu:j 6=i 1{Ni(u) = Nj(u)}
13: end for
14: Let umax ← arg maxi∈Tu NCount(i, u).
15: Set neighbors of u in M̂dom

a to the set Numax(u).
16: end for
17: For every entity i ∈ C?a , set M̂i = M̂dom

a .
18: end for
19: Return M̂1,M̂2, · · · M̂M

Using Chernoff bound, with probability at least 1− exp (− log(nM/δ)/(2γa − 1)2) ≥

1− δ/nM , we have:

Tu ≥
E[Tu]

2
≥ 4 log(nM/δ)

(2γa − 1)2
.

Applying union bound for every node u ∈ V and a ∈ [k], gives us the claim.

Consider a partitioning of C?
a given by S1

a, S
2
a, · · ·Sta where each Sia for any i ∈ [t]

represents the maximal collection of MAGs that are equal. Formally, we have:

Sia = {Mp | Mp ∈ C?
a andMp =Mq ∀Mq ∈ Sia}.

Let |Sdom
a | ≥ |Sia| for every partition i ∈ [t] and doma denote an entity in Sdom

a .

We define:

Ga(u) = {j | j ∈ C?
a and Ni(u) = Ndoma(u)} and Ba(u) = C?

a \Ga(u).
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We can observe that:

|Ga(u)| ≥ |Sdom
a | and |Ba(u)| ≤ |C?

a | − |Sdom
a |.

Conditioned on the previous claim that each set Tu for all u ∈ V is large, we

argue that for any pair of entities i, j ∈ C?
a whereMi =Mdom

a , andMj 6=Mdom
a , the

NCount value calculated by (α, β)-Recovery of entity i for the node u is always

larger than that of entity j. Intuitively, after assigning the entities to nodes, we

observe that for every node u ∈ V , the set Tu contains a large number of entities

with the dominant MAG, i.e., |Tu ∩ Ga(u)| is large. Because dominant MAGs share

the same neighborhood (as they represent the same graph), we can show that the

NCount value of dominant MAG is larger than any other MAG in the cluster. We

formalize this statement using the following lemma.

Lemma 4.6.10. For every a ∈ [k], u ∈ V and any pair of entities i, j ∈ C?
a that

satisfy i ∈ Ga(u) and j ∈ Ba(u), we have with probability 1− δ,

NCount(i, u) > NCount(j, u).

Proof. From Algorithm 14, we know that NCount(i, u) =
∑

j 6=i,j∈Tu 1{Ni(u) =

Nj(u)} for an entity i ∈ Tu and a node u ∈ V . Consider the case i ∈ Ga(u).

Then, we have:

E[NCount(i, u)] = E

[ ∑
j 6=i,j∈Tu

1{Ni(u) = Nj(u)}

]

= E

[ ∑
j 6=i,j∈Tu

1{Ndoma(u) = Nj(u)}

]

= E[|Tu ∩Ga(u)|]

≥ |S
dom
a |
n

=
|Sdom
a |
|C?

a |
· |C

?
a |
n

= γa ·
|C?

a |
n
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Using Hoeffding’s inequality, with probability at least 1− exp (− Λ2

2|Tu|)

NCount(i, u) ≥ E[NCount(i, u)]− Λ

2
≥ γa ·

|C?
a |
n
− Λ

2

If i ∈ Ba(u), then, we have :

E[NCount(i, u)]

= E

[ ∑
j 6=i,j∈Tu

1{Ni(u) = Nj(u)}

]

= E

 ∑
j 6=i,j∈Tu∩Ga(u)

1{Ni(u) = Ndoma(u)}+
∑

j 6=i,j∈Tu∩Ba(u)

1{Ni(u) = Nj(u)}


= E

 ∑
j 6=i,j∈Tu∩Ba(u)

1{Ni(u) = Nj(u)}


= E[|Tu ∩Ba(u)|]

≤ |C
?
a | − |Sdom

a |
n

=

(
1− |S

dom
a |
|C?

a |

)
· |C

?
a |
n

= (1− γa) ·
|C?

a |
n

Using Hoeffding’s inequality, with probability at least 1− exp (− Λ2

2|Tu|)

NCount(i, u) < E[Count(i, u)] +
Λ

2
< (1− γa) ·

|C?
a |
n

+
Λ

2

Set Λ = |C?a |
n

(2γa−1) and |Tu| ≥ 4 log(nM/δ)
(2γa−1)2 . Then, for any pair of entities i, j ∈ C?

a

such that i ∈ Ga(u) and j ∈ Ba(u), we have, with a probability 1− δ/nM2:

NCount(i, u) > NCount(j, u).

Using union bound for every pair of entities in [M ] and u ∈ V , with probability

at least 1− δ, we have the final claim.
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From the previous Lemma 4.6.10, we know that NCount values are always larger

for the dominant MAG partition, and therefore merging the neighborhoods of all the

nodes gives us the dominant MAG. As dominant MAG is within a distance of at most

β ·n from every MAG in the cluster, the dominant MAG returned is a sufficiently good

approximation of the true MAG. We formalize this using the following statement.

Theorem 4.6.11 (Theorem 4.3.3 restated). SupposeM1,M2, · · ·MM satisfy (α, β)

clustering property. If γa > 1/2 and C?
a = Ω(n log(n/Mδ)

(2γa−1)2 ) for all a ∈ [k], then, Al-

gorithm (α, β)-Recovery recovers graphs M̂1, · · · M̂M such that for every entity

i ∈ [M ], we have d(Mi,M̂i) ≤ βn with probability 1− δ. Moreover, every entity uses

at most (∆ + 1) + 4(∆+1) log(M/δ)
(α−β)2 many atomic interventions.

Proof. From Lemma 4.6.10, we have that NCount(i, u) > NCount(j, u), which

implies umax ∈ Ga(u). Using Algorithm 14, every entity i in the cluster C?
a is assigned

the graph M̂i = Mdom
a . From the definition of (α, β)−clustering property, we have

that all entities i ∈ C?
a are such that d(Mi,M̂i) = d(Mi,Mdom

a ) ≤ βn.

Using Algorithm 14 we assign every entity to a single node u ∈ V , and perform

at most ∆ + 1 interventions to identify all the neighbors of u for every entity in

Tu. Therefore, we perform at most ∆ + 1 interventions per entity. For obtaining

clusters, from Lemma 4.3.2, we know that every entity performs at most 4(∆+1) log(M/δ)
(α−β)2

interventions. Hence, the theorem.

4.6.4 Discovery under α-Clustering Property

In this section, we present missing details from section 4.4. First, in section 4.6.4.1,

we present a meta algorithm that takes as input clusters of entities and returns the

causal MAGs for all the entities. Next, in sections 4.6.4.2-4.6.4.4, we present various

algorithms for learning causal MAGs, under α-clustering property.
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4.6.4.1 From α-Clustering to Learning Causal Graphs

Suppose that the underlying MAGs M1,M2, · · · ,MM satisfy the α-clustering

property, our algorithms are based on first accurately recovering these clusters. The

idea of going from clusters to MAGs is simple and is based on distributing the interven-

tions across the entities in the cluster. We now discuss a meta-algorithm that returns

the associated causal MAG of every entity given the true clustering. Our meta-

algorithm takes as input the true clusters C?
1 , C

?
2 , · · · , C?

k and recovers the MAGs

associated with each of them. In any cluster C?
b such that |C?

b | < n, our meta-

algorithm uses an additional dn/|C?
b |e many interventions for each entity in C?

b . For

clusters satisfying |C?
b | ≥ n, it uses an extra intervention per entity.

Meta-Algorithm Consider a true cluster C?
b (b ∈ [k]). Construct a mapping φ

that partitions the n nodes in V among all the entities in C?
b , such that no entity is

assigned to more than dn/|C?
b |e many nodes. By definition, all entities in C?

b have

the same PAG. Let U be the common PAG. Construct a MAGM from U as follows.

Consider an edge (u, v) in U . Let u = φ(i) and v = φ(j) where the entities i, j ∈ C?
b

are such that we intervene on node u in entity i and node v in entity j (i could be

equal to j). Now, if v ∈ chi(u), we add u → v into the graphM, else if u ∈ chj(v),

we add u ← v, and u ↔ v otherwise. We assign graph M for every entity in C?
b .

Repeating this procedure for every C?
b generates the M MAGs, one for each entity.

Lemma 4.6.12. Suppose there is an Algorithm A that recovers the true clusters

C?
1 , C

?
2 , · · · , C?

k of the underlying MAGs M1,M2, · · · ,MM satisfying α-clustering

property such that every entity i ∈ [M ] uses at most f(M) interventions. Then, there

is an algorithm that can learn all the MAGsM1,M2, · · · ,MM such that every entity

i ∈ [M ] uses at most f(M) + dn/Υe many interventions, where Υ = minb∈[k] C
?
b .

Proof. Consider a cluster C?
b for b ∈ [k]. As the mapping φ assigns every entity at

most dn/|C?
b |e many nodes to intervene on, we have that every entity in C?

b uses at
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most dn/|C?
b |e additional interventions. Therefore, over all true clusters, every entity

uses at most f(M) + dn/Υe many interventions.

Consider any cluster C?
b . The mapping φ in the Meta-Algorithm is well-defined

and satisfies the claim that for every node u ∈ V , there exists an entity in C?
b for

which we construct an interventional distribution do(u). Therefore, for cluster C?
b ,

we have n interventional distributions one for every node in V , and we use Algo-

rithm RecoverG to learn the MAG for this cluster (i.e., MAG for all the entities

in C?
b ). Repeating this for every cluster C?

1 , C
?
2 , · · · , C?

k , we obtain all the MAGs

M1,M2, · · · ,MM .

If the clusters are of size at least n, i.e., minb∈[k] |C?
b | ≥ n, then, we have the

following corollary from Lemma 4.6.12.

Corollary 4.6.13. Suppose there is an Algorithm A that recovers the true clusters

C?
1 , C

?
2 , · · · , C?

k of the underlying MAGsM1,M2, · · · ,MM satisfying the α-clustering

property such that every entity i ∈ [M ] uses at most f(M) interventions. Sup-

pose minb∈[k] |C?
b | ≥ n. Then, there is an algorithm that can learn all the MAGs

M1,M2, · · · ,MM such that every entity i ∈ [M ] uses at most f(M) + 1 many in-

terventions.

4.6.4.2 Causal Discovery without Latents

In this section, we present a randomized algorithm that recovers (with high prob-

ability) all the M MAGsM1, . . . ,MM when the underlying data generating process

for each of these entities do not have any latents (i.e., causal DAGs D1, . . . ,DM satisfy

causal sufficiency). This translates into the fact that the MAGsM1, . . . ,MM do not

have bidirected edges.

We first make the observation that to identify that two graphs, say Mi and

Mj belong to different clusters, it suffices to find a node u from the node-difference

set diff(Mi,Mj) and checking their outgoing neighbors using Algorithm Identify-
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OutNbr. We argue that, with probability at least 1 − δ, we can identify one

such node u ∈ diff(Mi,Mj) by sampling 2 log(M/δ)/α nodes uniformly from V

as |diff(Mi,Mj)| = d(Mi,Mj) ≥ αn.

In Algorithm NoLatents, we obtain a sample of nodes S and construct inter-

ventional distribution for every entity in [M ], and for every node in S. After finding

the outgoing neighbors for every entity i and node in S, we construct a graph P on

entities (i.e., the node set of P is [M ]). We include an edge between two entities if

they share the same outgoing neighbors for every u ∈ S. This ensures that every

entity is connected only to the entities belonging to the same true cluster, and we

return the connected components in P as our clusters.

Algorithm 15 NoLatents
1: Input: α > 0, confidence parameter δ > 0, PAGs U1, . . . ,UM of M entities.
2: Output: Partition of [M ] into clusters
3: Let S denote a uniform sample of 2 logM/δ

α
nodes from V selected with replacement.

4: for every entity i ∈ [M ] and u ∈ S do
5: chi(u)← Identify-OutNbr(i, u)
6: end for
7: Let P denote an empty graph on set of entities [M ]
8: for every pair of entities i, j do
9: if chi(u) = chj(u) and Γi(u) = Γj(u) for every u ∈ S then
10: Add an edge between entities i and j in P
11: end if
12: end for
13: Return connected components in P

Claim 4.6.14. Let S denote a set of 2 log(M/δ)/α nodes sampled with replacement

uniformly from V . Then, for every pair of entities i, j that belong to different true

clusters, we have with probability at least 1− δ, u ∈ diff(Mi,Mj) for some u ∈ S.

Proof. Let S denote a set of sampled nodes such that |S| = 2 log(M/δ)/α. Therefore,

we have
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Pr
u∼V

[u ∈ diff(Mi,Mj)] ≥ α, and

Pr
S∼V

[ ∀u ∈ S : u 6∈ diff(Mi,Mj)] ≤ (1− α)|S|

≤ e−α|S| ≤ δ

M2
.

Using union bound for every pair of entities in [M ] that belong to two different

clusters, we have:

∀i, j ∈ [M ], Pr
S∼V

[∀ u ∈ S, u 6∈ diff(Mi,Mj)] ≤ δ.

Therefore, for every pair of entities i, j ∈ [M ] belonging to different true clusters,

there exists u ∈ S such that :

Pr[u ∈ diff(Mi,Mj)] ≥ 1− δ.

Lemma 4.6.15. Assume causal sufficiency. If MAGsM1, . . . ,MM satisfy α-clustering

property with true clusters C?
1 , . . . , C

?
k , then Algorithm NoLatents exactly recovers

the clusters C?
1 , . . . , C

?
k with probability at least 1 − δ. Every entity i ∈ [M ] uses

2 log(M/δ)/α many atomic interventions.

Proof. Consider two entities i, j and their corresponding MAGsMi andMj respec-

tively. We first observe that if the PAGs of these two entities are different then

they belong to different clusters. Now consider the case where the PAGs for both

these entities are the same, i.e., Ui = Uj. Now if i and j belong to different true

clusters, then we claim that it suffices to find a node u from the node-difference set

diff(Mi,Mj) = {u | Ni(u) 6= Nj(u)} to notice this fact. As there are no latents

(causal sufficiency), we can identify whether u ∈ diff(Mi,Mj), by checking only the
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outgoing neighbors of u for entities i, j, i.e., diff(Mi,Mj) = {u | chi(u) 6= chj(u)}.

When we identify such a node u, the set of outgoing neighbors of node u are different

for entities i, j, and therefore must belong to different true clusters (by α-clustering

property). In order to identify at least one node u ∈ diff(Mi,Mj), we use sampling.

Let S denote the set of sampled nodes (with replacement) from V such that |S| =

2 log(M/δ)/α. In Algorithm NoLatents, we construct interventional distributions

for every node u ∈ S, for every entity i ∈ [M ]. Using these interventional distributions

we obtain the outgoing neighbors of nodes in S using Algorithm Identify-OutNbr.

From Claim 4.6.14, we have that for every pair of entities i, j belonging to different

true clusters, there exists u ∈ S such that:

Pr[chi(u) 6= chj(u)] = Pr[u ∈ diff(Mi,Mj)] ≥ 1− δ.

This implies that, with probability at least 1 − δ, for every i, j pair we have the

following: in the entity graph P there would not be an edge between i, j if they

belong to different true clusters, and there would be an edge if they belong to the

same true cluster. The resulting graph P , will have k connected components and

Algorithm NoLatents will return the true clusters correctly.

Hence, with probability at least 1−δ, we can recover all the true clusters C?
1 , . . . , C

?
k

using Algorithm NoLatents.

Theorem 4.6.16. Assume causal sufficiency. If MAGs M1, . . . ,MM satisfy α-

clustering property with true clusters C?
1 , . . . , C

?
k then Algorithm NoLatents exactly

recovers these clusters with probability at least 1−δ. Furthermore, if minb∈[k] |C?
b | ≥ n,

then there is an algorithm that exactly learns all these MAGs with probability at least

1− δ. Every entity i ∈ [M ] uses 2 log(M/δ)/α + 1 many atomic interventions.

Proof. From Lemma 4.6.15, we can recover the clusters correctly with probability at

least 1− δ. Using the Meta-Algorithm discussed in section 4.6.4.1, we can learn the
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graphs of every entity with a single additional intervention (see Corollary 4.6.13).

This establishes the result.

4.6.4.3 Causal Discovery with Latents: Bounded Degree MAGs

Throughout this section, we let :

∆ = max
i∈[M ],u∈V

|Γi(u)|.

We now discuss an algorithm that recovers clusters C?
1 , C

?
2 · · · , C?

k using ideas

developed in section 4.6.4.2 but now with latents in the system. In the presence

of latents, the collection of MAGsM1, . . . ,MM are mixed graphs that also contain

bidirected edges, which introduces issues, as bidirected edges cannot be detected

easily. For example, two entities i and j might be such that u↔ v could be present

inMi and u← v could be present inMj, in which case intervening on just u alone

will not suffice to distinguish i from j, we need interventions on both u and v. This is

the idea behind Algorithm α-BoundedDegree, which identifies all the outgoing and

bidirected edges incident on the set of sampled nodes (say S), for every entity in [M ].

Since from this we can compute all neighboring relations of u (Ni(u)), Algorithm α-

BoundedDegree then checks whether these neighborhoods are the same or not for

every node u ∈ S. We can now leverage the α-clustering property to argue that this

process succeeds with probability at least 1− δ.

As we use Algorithm Identify-Bidirected, to find all bidirected edges incident

on a node u ∈ S, we use an additional O(∆) atomic interventions (per entity) where

∆ = maxi∈[M ],u∈V Γi(u) is the maximum undirected degree in the PAGs U1, . . . ,UM .

Lemma 4.6.17. If the underlying MAGsM1, . . . ,MM satisfy α-clustering property

with true clusters C?
1 , . . . , C

?
k , then Algorithm α-BoundedDegree exactly recovers

the clusters C?
1 , . . . , C

?
k with probability at least 1 − δ. Every entity i ∈ [M ] uses at

most 2(∆ + 1) log(M/δ)/α many atomic interventions.
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Algorithm 16 α-BoundedDegree
1: Input: α > 0, confidence parameter δ > 0, PAGs U1, . . . ,UM of M entities
2: Output: Partition of [M ] into clusters
3: Let S denote a uniform sample of 2 logM/δ

α
nodes from V selected with replacement.

4: for every entity i ∈ [M ] and u ∈ S do
5: chi(u)← Identify-OutNbr(i, u)
6: spi(u)← Identify-Bidirected(i, u)
7: pai(u)← Γi(u) \ (chi(u) ∪ spi(u))
8: Construct Ni(u) (defined in (4.2))
9: end for
10: Let P denote an empty graph on set of entities [M ]
11: for every pair of entities i, j do
12: if Ni(u) = Nj(u) for every u ∈ S then
13: Include an edge between i and j in P
14: end if
15: end for
16: Return connected components in P

Proof. We follow a proof idea similar to Lemma 4.6.15. Again if two entities i, j have

different PAGs then they belong to different true clusters.

Consider two entities i, j belonging to different true clusters but having the same

PAG. Again it suffices to find a node u from the node-difference set diff(Mi,Mj) =

{u | Ni(u) 6= Nj(u)} to conclude that they belong to different clusters.

As there are latents (causal sufficiency), we cannot identify whether u ∈ diff(Mi,Mj),

by checking only the outgoing neighbors of u for entities i, j, and have to check the

set of bidirected edges incident on u as well. We can identify all the bidirected edges

incident on u for both i, j using Algorithm Identify-Bidirected. Identifying such

a node u, whose set of neighbors of node u are different for entities i, j, provides a

certificate that i, j belong to different true clusters (α-clustering property). In order

to identify at least one node u ∈ diff(Mi,Mj), we use sampling.

Let S denote the set of sampled nodes (with replacement) from V such that

|S| = 2 log(M/δ)/α. In Algorithm α-BoundedDegree, we construct interventional

distributions for every node u ∈ S and all the neighbors in the PAG given by Γi(u),

for every entity i ∈ [M ]. From these interventional distributions, we can compute
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Ni(u) and Nj(u) for all the nodes u ∈ S (using Algorithms Identify-OutNbr

and Identify-Bidirected).

From Claim 4.6.14, we have that for every pair of entities i, j belonging to different

true clusters, there exists u ∈ S such that:

Pr[Ni(u) 6= Nj(u)] = Pr[u ∈ diff(Mi,Mj)] ≥ 1− δ.

Hence, with probability at least 1 − δ, we can recover all the true clusters using

Algorithm α-BoundedDegree.

For an entity i, the total number of interventional distributions constructed is

∑
u∈S

(1 + |Γi(u)|) ≤ |S|(∆ + 1) = 2(∆ + 1) log(M/δ)/α as max
i∈[M ],w∈V

|Γi(w)| ≤ ∆.

Theorem 4.6.18. If the underlying MAGsM1, . . . ,MM satisfy α-clustering property

with true clusters C?
1 , . . . , C

?
k , then Algorithm α-BoundedDegree exactly recovers

these clusters with probability at least 1 − δ. Furthermore, if minb∈[k] |C?
b | ≥ n, then

there is an algorithm that exactly learns all these MAGs with probability at least 1−δ.

Every entity i ∈ [M ] uses at most 2(∆+1) log(M/δ)/α+1 many atomic interventions.

Proof. From Lemma 4.6.17, we can recover the clusters correctly with probability

at least 1 − δ. Using the Meta-Algorithm discussed in section 4.6.4.1, and from

Corollary 4.6.13, we can obtain an algorithm to learn the graphs of every entity with

an additional intervention per entity. This completes the proof.

4.6.4.4 Improved Algorithm for Recovering the Clusters

In this section, we present the missing details about Algorithm α-General, from

section 4.4.
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In Algorithm α-General, first, we obtain all the outgoing neighbors of the sam-

pled set of nodes S. Then, we construct a graph on set of entities, [M ] such that an

edge between a pair of entities i, j is included if they share same PAGs, i.e., Ui = Uj

and same outgoing neighbors for every node in S. However, it is possible that the

graph P can contain more than one true cluster. In the next lemma, we show that we

can detect this, and remove all the edges between entities belonging to two different

clusters using 2 interventions.

Lemma 4.6.19. Suppose a component Ta in Pitr for some itr ≥ 1 contains all the

entities from two true clusters C?
b , C

?
c . If minr∈[k] |C?

r | ≥ Ω(n logM/δ), then, we can

identify, with a probability 1 − δ/2k2, all the pairs of entities i′, j′ ∈ Ta such that

i′ ∈ C?
b and j′ ∈ C?

c (or vice-versa) using at most 2 interventions for every entity in

Ta .

Proof. We claim that if a component Ta containing C?
b and C?

c exists, then, we can

identify a pair of entities i, j that are joined by an edge in Pitr such that i ∈ C?
b and

j ∈ C?
c or vice-versa.

It suffices to find a node u from the node-difference set diff(Mi,Mj) = {u |

Ni(u) 6= Nj(u)} to conclude that they belong to different clusters. From Claim 4.6.14,

we know that when |S| = 2 log(2M/δ)/α, we can identify such a u ∈ diff(Mi,Mj)

with a probability 1− δ/2. We make the observation that a pair of entities i, j that

have an edge in this Pitr and from different true clusters, can differ only if there is

a node u ∈ diff(Mi,Mj) such that u has a bidirected edge u ↔ v in Mi, and a

directed edge u← v inMj (or vice-versa). Intervening on both u and v will separate

these entities, our main idea is to ensure that this happens.

Consider a mapping π : [M ] → V where π(i) is assigned a node from V selected

uniformly at random. Using this mapping, we ensure that there are two entities

i ∈ Ta ∩ C?
b , j ∈ Ta ∩ C?

c joined by an edge, such that π(i) = π(j) = v and u ↔ v in

Mi, u← v inMj (or vice-versa) for some u ∈ S. We have:
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Pr[ for any i ∈ Ta, π(i) 6= v] = 1− 1

n
, and

Pr[∀i ∈ C?
b : π(i) 6= v] =

(
1− 1

n

)|C?b |
.

Similarly, we have

Pr[∀j ∈ C?
c : π(j) 6= v] =

(
1− 1

n

)|C?c |
.

Pr[∀ i ∈ C?
b , j ∈ C?

c such that π(i) 6= v, π(j) 6= v] =

(
1− 1

n

)|C?b |+|C?c |
≤ δ

2M2
≤ δ

2k2

⇒ Pr[∃i ∈ C?
b ,∃j ∈ C?

c : π(i) = π(j) = v] ≥ 1− δ

2k2
.

As we intervene on π(i) for every entity i ∈ Ta, we know that there exists i ∈ C?
b , j ∈

C?
c , both in Ta and that are assigned v by π. Therefore, we can separate i, j and

remove the edge from Pitr. Now, we create an intervention on π(i) = π(j) = v for

every entity in Ta and separate all the entity pairs (i′, j′) joined by an edge in Pitr

that satisfy: u← v inMi′ and u↔ v inMj′ (or vice-versa). As we use at most two

interventions for every entity in Ta, the lemma follows.

Lemma 4.6.20. If the underlying MAGs satisfy α-clustering property with true clus-

ters C?
1 , . . . , C

?
k such that minb∈[k]C

?
b = Ω(n log(M/δ)) entities, the Algorithm α-

General exactly recovers the clusters C?
1 , . . . , C

?
k with probability at least 1 − δ.

Every entity i ∈ [M ] uses at most O(log(M/δ)/α + k2) many atomic interventions.

Proof. From Claim 4.6.14, with probability at least 1− δ/2, we have that the set of

sampled nodes S (where |S| = 2 log(2M/δ)/α) satisfy that for every pair of entities

from different clusters there is a node u ∈ S that can be used to identify that they
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Algorithm 17 α-General
Input: α > 0, confidence parameter δ > 0, PAGs U1, . . . ,UM of M entities
U1, . . . ,UM)
Output: Partition of [M ] into clusters
Let S denote a uniform sample of 2 log(2M/δ)

α
nodes from V selected with replacement.

for every entity i ∈ [M ] and u ∈ S do
chi(u)← Identify-OutNbr(i, u)

end for
Let P denote an empty graph on the set of entities [M ].
for every pair of entities i, j do

if chi(u) = chj(u) and Γi(u) = Γj(u) ∀u ∈ S then
Include an edge between i and j in P

end if
end for
itr← 1, P0 ← P
while True do
Pitr ← Pitr−1

Let T1, T2, · · · denote the components in Pitr.
For all i ∈ [M ], obtain interventional distribution on π(i) picked u.a.r from V .
if ∃ edge (i, j) ∈ Pitr in component Ta such that π(i) = π(j) then

Let v = π(i) = π(j)
if v ∈ spi(u), v 6∈ spj(u) (or vice-versa) for some u ∈ S then

Intervene on v for every entity in Ta.
Remove edge (i′, j′) from Pitr if v ∈ spi′(u), v 6∈ spj′(u) (or vice-versa)

for every i′, j′ ∈ Ta
end if

end if
if the set of edges in Pitr are same as the set of edges in Pitr−1 then

Return connected components in Pitr

end if
itr← itr + 1

end while

belong to different clusters. Using Lemma 4.6.19, we have that, in every iteration itr,

we remove all the edges in Pitr between entities that are part of the same component

but from different true clusters. After k2 iterations, we would have separated all the

pairs of entities between all the true clusters. In Algorithm α-General, we return

the connected components in Pitr when there is no change in the set of edges between

entities between Pitr−1 and Pitr.
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From Lemma 4.6.19, we have that, every entity performs at most |S|+ 2k2 inter-

ventions. As there are at most k2 iterations, and from Lemma 4.6.19, each iteration

fails with probability at most δ/2k2, using union bound, we have that at least one of

the iterations fails with probability at most δ/2.

Finally, using union bound for failure probability of calculating S correctly, and

failing in at least one of the iterations, we have, with probability at least 1 − δ,

Algorithm α-General recovers the true clusters.

From Lemma 4.6.20, we know that we can recover the clusters correctly with prob-

ability at least 1− δ. Using the Meta-Algorithm discussed in Appendix 4.6.4.1, and

from Corollary 4.6.13, we can obtain an algorithm to learn the graphs of every entity

with an additional intervention per entity. Combining it with guarantees obtained by

Algorithm α-BoundedDegree in Theorem 4.6.18, gives us the following result.

Theorem 4.6.21 (Theorem 4.4.1 restated). If MAGsM1, . . . ,MM satisfy α-clustering

property with true clusters C?
1 , . . . , C

?
k such that minb∈[k] |C?

b | = Ω(n log(M/δ)). Then,

there is an algorithm that exactly learns all these MAGs with probability at least

1− δ. Every entity i ∈ [M ] uses min {O(∆ log(M/δ)/α), O(log(M/δ)/α + k2)} many

atomic interventions.

4.6.5 Lower Bound on the Number of Interventions

In this section, we present a lower bound for the number of interventions required

by every entity to recover true clusters. First, we state Yao’s minimax theorem, which

will be used to prove the lower bound.

Theorem 4.6.22 (Yao’s minimax theorem [131]). Let X be a set of inputs to a

problem and A the set of all possible deterministic algorithms that solve the problem.

For any algorithm A ∈ A and x ∈ X , let cost(A, x) denote real-valued measure of cost

of an algorithm A on input x. Let ν, µ be distributions over A and X respectively.

Then,
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max
x∈X

E
A∼νA

[cost(A, x)] ≥ min
a∈A

E
X∼µX

[cost(a,X)]

Informally, the theorem states that to prove lower bounds on the cost of any

randomized algorithm, we have to find some distribution µ on inputs, such that every

deterministic algorithm A ∈ A has high cost.

Outline of the Lower Bound Our distribution µ places a probability of 1/2 for

pairs of MAGs that have distance zero and a probability of 1/2 equally distributed

among all pairs of MAGs with distance equal to αn. This ensures that both the

events considered are equally likely, and we show that to distinguish them, with

success probability at least 2/3 (over the distribution µ), every deterministic algorithm

must make Ω(1/α) interventions for both the MAGs. Then, we use Yao’s theorem

to translate this into a worst case lower bound for any randomized algorithm. In

particular, this means that any algorithm that is based on recovering the clusters to

construct the MAGs will require Ω(1/α) interventions for every entity in [M ].

Construction of the Hard Instances For the lower bound, consider the case

when M = 2, and assuming causal sufficiency, where we wish to identify the clusters

of two MAGsM1,M2. We observe that a lower bound on the number of interventions

required for every entity in the case of identifying two clusters will also extend for the

general case of identifying k clusters with latents.

Consider two MAGs M1,M2 on a node set V , with the promise that either

d(M1,M2) = 0 or d(M1,M2) = αn, and the goal is to identify which case holds.

Note that in the first case the two entities are in the same cluster (k = 1), and in the

second case they are in different clusters (k = 2).

Let V = {v1, . . . , vn} be the set of observable nodes of these MAGs. Consider the

node difference set of the MAGsM1,M2 given by diff(M1,M2) and let e ∈ {0, 1}n
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denote its characteristic vector where lth coordinate of e is 1 iff vl ∈ diff(M1,M2).

We can observe that, under the above promise, e is either 0n or has exactly αn

ones. Therefore, we have reduced our problem to that of finding whether the vector

e contains all zeros or not. Using this reduction, we focus on establishing a lower

bound for this modified problem.

We want to check if a given n-dimensional binary vector is a zero vector, i.e., 0n

or not, with a promise that if it is not a zero vector, then, it contains αn coordinates

with 1 in them. Using Lemma 4.6.23, we show that Ω
(

1
α

)
queries to co-ordinates of

x are required, for any randomized or deterministic algorithm to distinguish between

these two cases.

Lemma 4.6.23. Suppose we are given a vector x ∈ {0, 1}n with the promise that

either x = 0n or x contains αn ones. In order to distinguish these two cases with

probability more than 2/3, every randomized or deterministic algorithm must make at

least Ω(1/α) queries to the coordinates of the vector x.

Proof. It is easy to see that every deterministic algorithm for this problem requires

(1 − α)n + 1 queries. For obtaining a lower bound on the number of queries of any

randomized algorithm, we use Yao’s minimax theorem [131]. To do so, we construct

an input distribution µ on {0, 1}n and show that every deterministic algorithm on the

worst case requires at least q queries while succeeding with a probability 2/3. From

Yao’s minimax theorem (Thm 4.6.22), this implies that every randomized algorithm

requires at least q queries to output the correct answer with probability of success

2/3. We construct µ by using a probability of 1/2 for 0n vector and a probability of

1/2 equally distributed among all vectors in {0, 1}n containing exactly αn ones.

Suppose a deterministic algorithm (denoted by ALG) is used to identify whether

x = 0n or not. Let E(x) denote the event that the ALG answers correctly on x ∈

{0, 1}n, Q(x) denote the set of queries used by ALG such that |Q(x)| = q and L(x)

denote the coordinates of x that are non-zero.
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Consider the event E(x) when ALG answers correctly. We can write it as :

Pr
x∼µ

[E(x)]

= Pr[E(x) | Q(x) ∩ L(x) 6= φ] Pr[Q(x) ∩ L(x) 6= φ] + Pr[E(x) | Q(x) ∩ L(x) = φ] Pr[Q(x) ∩ L(x) = φ].

We calculate the probability that the coordinates queried are not part of the non-zero

coordinates of x, given by Q(x) ∩ L(x) = φ :

Pr
x∼µ

[Q(x) ∩ L(x) = φ]

= Pr[Q(x) ∩ L(x) = φ | x = 0n] Pr[x = 0n] + Pr[Q(x) ∩ L(x) = φ | x 6= 0n] Pr[x 6= 0n]

=
1

2
(Pr[Q(x) ∩ L(x) = φ | x = 0n] + Pr[Q(x) ∩ L(x) = φ | x 6= 0n])

=
1

2

(
1 +

(
n−q
αn

)(
n
αn

) ) =
1 + τ

2
, where τ =

(
n−q
αn

)(
n
αn

) .
Now, we calculate the probability that ALG answers correctly when the queries

Q(x) all return zero. We upper bound this probability by considering the case when

ALG answers ‘yes’, and the case when ALG answers ‘no’ separately. It is easy to

observe that E(x) is correct when ALG =‘yes’ iff x = 0n. Therefore, we have:

Pr[E(x) | Q(x) ∩ L(x) = φ]

≤ max


ALG answers ‘yes’︷ ︸︸ ︷

Pr[E(x), Q(x) ∩ L(x) = φ]

Pr[Q(x) ∩ L(x) = φ]
,

ALG answers ‘no’︷ ︸︸ ︷
Pr[E(x), Q(x) ∩ L(x) = φ]

Pr[Q(x) ∩ L(x) = φ]


≤ max

{
1/2

(1 + τ)/2
,

τ/2

(1 + τ)/2

}
≤ 1

1 + τ
.
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Pr
x∼µ

[E(x)] = Pr[E(x) | Q(x) ∩ L(x) 6= φ] Pr[Q(x) ∩ L(x) 6= φ] +

Pr[E(x) | Q(x) ∩ L(x) = φ] Pr[Q(x) ∩ L(x) = φ]

≤ Pr[Q(x) ∩ L(x) 6= φ] + Pr[E(x) | Q(x) ∩ L(x) = φ] Pr[Q(x) ∩ L(x) = φ]

≤
(

1− 1 + τ

2

)
+

1

1 + τ

1 + τ

2
= 1− τ

2
.

We know the probability of success for ALG is at least 2
3
. Therefore, we have

Prx∼µ[E(x)] ≥ 2
3
, which implies τ ≤ 2

3
.

Let H(x) denote the binary entropy function. Using the bound from ([93], Page

309) √
a

8b(a− b)
2aH(b/a) ≤

(
a

b

)
≤
√

a

2πb(a− b)
2aH(b/a).

We have

τ =

(
n−q
αn

)(
n
αn

) ≤√8(n− q)(n− αn)

2πn(n− q − αn)
2(n−q)H( αn

n−q )−nH(α)

=

√
4

π

(
1 +

qα

n− q − αn

)
2(n−q)(H( αn

n−q )−H(α))−qH(α).

We observe that q ≤ (1−α)n+1 for any algorithm, as we can identify whether x = 0n

or not trivially by querying more than (1− α)n+ 1 coordinates. Therefore,

τ ≤
√

4

π
(1− qα)2(n−q)(H( αn

n−q )−H(α))−qH(α)

≤
√

4

π
2−qα log e/2+(n−q)(H( αn

n−q )−H(α))−qH(α)

Using αn
n−q ≥ α and mean-value theorem, we have:

(n− q)
(
H

(
αn

n− q

)
−H(α)

)
≤ qαH ′

(
αn

n− q

)
= qα log

(
n− q
αn

− 1

)
≤ qα log(1− α)− qα logα.
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Substituting the above expression and expanding H(α), we have :

τ ≤
√

4

π
2−qα log e/2+qα log(1−α)−qα logα+qα logα+(1−α)q log(1−α)

≤
√

4

π
2−qα log e/2+q log(1−α)

≤
√

4

π
2−qα log e/2−qα ≤ 2

3
.

Therefore, for ALG to succeed with probability at least 2/3, we have

q ≥ Ω

(
1

α

)
.

Using this with Yao’s minimax theorem (Thm 4.6.22), we get that with every ran-

domized algorithm needs Ω(1/α) queries to succeed on this problem with probability

at least 2/3.

For the above problem of identifying whether a vector is zero or not, we can

replace each coordinate query by an intervention on the corresponding node for the

two entities (due to the equivalency between the two as explained above). Therefore,

from Lemma 4.6.23, we have the following corollary about recovering the clusters.

Corollary 4.6.24. Suppose we are given two MAGs M1 and M2 corresponding to

two entities, with the promise that either d(M1,M2) = 0 or d(M1,M2) = αn. In

order to distinguish these two cases with probability at least 2/3, every (randomized or

deterministic) algorithm must make at least Ω(1/α) interventions on both the entities.

Theorem 4.6.25 (Theorem 4.4.2 restated). Suppose the underlying MAGsM1, . . . ,MM

satisfy α-clustering property. In order to recover the clusters with probability 2/3, ev-

ery (randomized or deterministic) algorithm requires Ω(1/α) interventions for every

entity in [M ].

170



Proof. From Corollary 4.6.24, we have that to identify whether two MAGs belong

to the same cluster or not, we have to make at least Ω(1/α) interventions for every

entity. Therefore, to recover all the clusters, we have to make at least Ω(1/α) many

interventions for every entity i ∈ [M ].

Remark The lower bound for the number of interventions per entity is for the first

step of identifying the underlying clustering. Similar to our upper bounds, our lower

bound considers the worst-case, where the MAGs satisfy the α-clustering property

are all Markov equivalent. This implies that the PAGs obtained using FCI are iden-

tical and will not be helpful in identifying the clusters. In practice, the information

available in the PAGs could be useful to reduce the number of interventions.

4.6.6 Missing details from the Experimental Evaluation

In this section, we provide additional details about the experimental evaluation

discussed in section 4.5.

4.6.6.1 Learning MAGs under (α, β)-clustering property

(Synthetic) Data Generation We use following process for each of the five con-

sidered causal network (Asia, Earthquake, Sachs, Survey, and Erdős-Renyi). We

construct causal MAGs for M entities distributed among the clusters C?
1 , C

?
2 , · · ·C?

k

equally, i.e., |C?
i | = M/k for all i ∈ [k]. In our experiments, we set k = 2 (i.e., two

clusters), and start with k = 2 DAGs that are sufficiently far apart. To do so, we

create two copies of the original causal network D, and denote the DAG copies by

D1 and D2. For each of the DAGs D1 and D2, we select a certain number of pairs of

nodes randomly, and include a latent variable between them, that has a causal edge

to both the nodes. In our experiments, we used 2 latents per DAG. This results in

two new DAGs D′1 and D′2. To ensure αn node distance between clusters, we modify

D′2 using random changes until the two MAGs corresponding to the DAGs D′1 and D′2
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are separated by a distance of αn. These two MAGs, denoted by Mdom
1 and Mdom

2

form the dominant MAG for each of the two clusters.

Then, we create (1 − γ)M/k = (1 − γ)M/2 copies of the dominant MAG and

assign it to distinct entities in each cluster. Consider cluster C?
1 with dominant

MAG Mdom
1 , and corresponding DAG D′1. Note that each cluster has M/k = M/2

entities. For the remaining entities in C?
1 , we start with D1 and include 2 latent

variables between randomly selected pairs of nodes. Then, we repeat the previous

procedure, of performing a series of random insertions or deletions of edges to the

DAG until the distance between the corresponding MAG andMdom
1 increases to βn.

We follow the same procedure for cluster C?
2 with dominant MAGMdom

2 . Note that

in this construction different entities could differ both in latents and their observable

graphs. This construction ensures the entities satisfy (α, β)-clustering property. As

an example, see Figure 4.7 containing two dominant MAGs of the Causal Network

Earthquake.

dom dom

Figure 4.7: Dominant MAGs
of the causal network Earth-
quake constructed using the
described procedure.

Sample Set S Size For Algorithm (α, β)-BoundedDegree, we use different

sample sizes S ranging from 1 to 3. In Figure 4.8, we plot the mean value of the

maximum number of interventions per entity with change in sample set size.

With increase in sample set size, our Algorithm (α, β)-BoundedDegree requires

more interventions (see Lemma 4.6.8) and we observe the same in Figure 4.8. We

chose the smallest size |S| = 1 in our experiments, as increasing the size will increase

the number of interventions but did not lead to much improved clustering results. As
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Figure 4.8: Sample size vs. max-
imum number of interventions per
entity used by Algorithm (α, β)-
BoundedDegree.
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Figure 4.9: Sample size vs. max-
imum number of interventions
per entity used by Algorithm α-
BoundedDegree.

a sample set of size 1 roughly corresponds to around 3 interventions (across all causal

networks), we use that for results presented in Table 4.1.

Construction of Clusters from FCI Output Our first focus is on recovering the

true clustering using Algorithm (α, β)-BoundedDegree. As a baseline, we employ

the well-studied FCI algorithm [119]. We know that FCI returns the Partial Ancestral

Graph(PAG) corresponding to the causal MAG using only the observational data.

After recovering the PAGs corresponding to the MAGs using FCI, we cluster them

by constructing a weighted graph (similar to Algorithm (α, β)-BoundedDegree)

defined on the set of entities. For every pair of entities i, j, we calculate the number

of nodes nij that share the same neighborhood using the PAGs associated with them,

and assign the weight of the edge as nij. This weight captures the similarity between

two entities, and whether they belong to the same cluster or not. Now, we use

minimum-k-cut algorithm to partition the set of entities into k components or clusters.

In Algorithm (α, β)-BoundedDegree, we first construct a sample S, and perform

various interventions based on the set S for every entity to finally obtain the k clusters.
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Causal FCI α-BoundedDegree (Alg. 16) Maximum
Network Precision Recall Accuracy Precision Recall Accuracy # Interventions

Earthquake 0.79± 0.25 0.98± 0.02 0.79± 0.25 1± 0.00 1.0± 0.0 1.00± 0.00 3
Survey 0.79± 0.25 0.98± 0.02 0.79± 0.25 0.89± 0.20 1.0± 0.00 0.89± 0.20 4
Asia 0.84± 0.23 0.98± 0.02 0.84± 0.23 0.89± 0.20 1.0± 0.00 0.89± 0.20 4
Sachs 1.0± 0.00 1.0± 0.00 1.0± 0.00 0.79± 0.25 1.0± 0.00 0.79± 0.25 5
Erdös-Rényi 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 5

Table 4.2: In this table, we present the precision, recall and accuracy values obtained
by Algorithm α-BoundedDegree and FCI. Each cell includes the mean value along
with the standard deviation computed over 10 runs. The last column contains the
maximum number of interventions per entity required (including both Algorithm α-
BoundedDegree and the Meta-algorithm) for recovering the DAGs.

Setup We used a personal Apple Macbook Pro laptop with 16GB RAM and Intel i5

processor for conducting all our experiments. We use the FCI algorithm implemented

in [78]. For every causal network, each experiment took less than 10 minutes to finish

all the 10 runs.

4.6.6.2 Learning MAGs under α-clustering property

(Synthetic) Data Generation We use following process for each of the five con-

sidered causal network (Asia, Earthquake, Sachs, Survey, and Erdős-Renyi). We

construct causal DAGs for M entities distributed among the clusters C?
1 , C

?
2 , · · ·C?

k

equally, i.e., |C?
i | = M/k for all i ∈ [k]. Again we set k = 2. For each of the DAGs D1

and D2, we select a certain number of pairs of nodes randomly, and include a latent

variable between them, that has a causal edge to both the nodes. In our experiments,

we used 2 latents per DAG. This results in two new DAGs D′1 and D′2. To ensure

αn node distance between clusters, we modify D′2 using random changes until the

two DAGs D′1 and D′2 are separated by a distance of αn and are Markov equivalent.

Without Markov equivalence, we observe that FCI always recovers the underlying

clusters correctly in the α-clustering case.4 However, existence of Markov equivalent

4Again this is not true for (α, β)-clustering, as shown by our experiments results for that case,
because now difference in PAGs between two entities does not automatically imply that those two
entities must belong to different clusters.
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DAGs is a well-known problem in real-world graphs, a popular example to illustrate

this comes the “ breathing dysfunction” causal graph in Fig. 3 in [133]. We create

M/2 copies of the each of the two DAGs D′1 and D′2 and assign it to distinct entities

in each of the two clusters.

Parameters We present the following settings for the model parameters, α is at

least 0.60, M = 40. For the synthetic data generated using Erdös-Rényi model, we

use n = 10, probability of edge p = 0.30. We ran all of our experiments for 10 times

with the stated values and report the results.

Sample Set S Size For Algorithm α-BoundedDegree, we again tried different

set S sizes ranging from 1 to 3. In Figure 4.9, we plot the mean value of the maximum

number of interventions per entity with increase in sample size. It has a same trend as

with (α, β)-clustering (Figure 4.9). A sample size of 1 roughly corresponds to around

3 interventions, and we use that for the results presented in Table 4.2.

Evaluation of Clustering We start by results on recovering the clustering using

Algorithm α-BoundedDegree. As a baseline, we again employ the well-studied

FCI algorithm [119]. After recovering the PAGs corresponding to the DAGs us-

ing FCI, we cluster them by constructing a similarity graph (similar to the case of

(α, β)-clustering discussed previously) defined on the set of entities. For Algorithm α-

BoundedDegree, we first construct a sample S, and perform various interventions

based on the set S for every entity to finally obtain the k clusters. We also imple-

mented another baseline algorithm (Greedy) that uses interventions, based on a

greedy idea that selects nodes to set S in Algorithm α-BoundedDegree by consid-

ering nodes in increasing order of their degree in the PAGs returned by FCI. We use

this ordering to minimize the number of interventions as we intervene on every node

in S and their neighbors. We use the same metrics as the (α, β)-clustering case.
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Results In Table 4.2, we compare Algorithm α-BoundedDegree to FCI on the

clustering results. For Algorithm α-BoundedDegree, we use a sample S of size 1,

and observe in Figure 4.9, that this corresponds to about 2 interventions per entity.

With increase in sample size, we observed that the results were either comparable or

better. We observe that our approach leads to considerably better performance in

terms of the accuracy metric with an average difference in mean accuracy of about

0.20. We observe that entities belonging to the same true cluster are always assigned

to the same cluster, resulting in high recall for both Algorithm α-BoundedDegree

and FCI. Further, the higher value of precision for our algorithm is because FCI

is unable to correctly detect that there are two clusters, as the DAGs are Markov

Equivalent which means that they result in the same PAGs.

Algorithm α-BoundedDegree outperforms the Greedy baseline for the same

sample (S) size. For example, on the Earthquake and Survey causal networks, Al-

gorithm α-BoundedDegree obtains the mean accuracy values of 1.0 and 0.89 re-

spectively, while Greedy for the same number of interventions obtained an accuracy

of only 0.74 and 0.64 respectively. On the remaining causal networks, the accuracy

values of Greedy are almost comparable to our Algorithm α-BoundedDegree.

After clustering, we recover the DAGs using the Meta-algorithm described in sec-

tion 4.6.4.1, and observe that only one additional intervention is needed. In the

last column in Table 4.2, we report the maximum number of interventions for re-

covering DAGs, which includes both the interventions used by the Algorithm α-

BoundedDegree and the Meta-algorithm. We observe that our collaborative ap-

proach uses fewer interventions for MAG recovery compared to the number of nodes

in each causal network. For example, in the Erdös-Rényi setup, the number of nodes

n = 10, whereas we use at most 5 interventions per entity. Thus, compared to the

worst-case, cutting the number of interventions for each entity by 50%.
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4.7 Conclusion

In this chapter, we introduced a new model for causal discovery to capture prac-

tical scenarios where there are multiple entities with different causal structures. Un-

der natural clustering assumption(s), we gave efficient provable algorithms for causal

learning with atomic interventions and demonstrate its empirical performance. Our

model can be extended to the setting where all interventions are non-adaptive, and

we plan to study it as part of future work. An interesting future direction would be

to use interventional equivalence classes of DAGs as part of the model, instead of

the clustering assumption. This might require extending the interventional equiva-

lence between DAGs studied in [65, 83] to the setting without the causal sufficiency

assumption and exploit that for learning.
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CHAPTER 5

NON-ADAPTIVE EDGE COUNTING AND SAMPLING
VIA BIPARTITE INDEPENDENT SET QUERIES

In this chapter, we study sub-linear query algorithms for estimating the number

of edges and sampling uniformly random edges in a simple, unweighted graph. In

section 5.1, we describe various query models for accessing any graph which facilitate

sub-linear query algorithms. In section 5.6, we describe our approach for estimating

the number of edges; in section 5.7, we extend some of our ideas for counting the

edges in a graph, to return a uniform sample among the set of edges; in section 5.8,

we give efficient algorithms for testing graph connectivity; in section 5.9, we conclude

the chapter with directions for future work.

5.1 Query Models for Graph Access

In this section, we present a brief discussion on various query models studied for

graph discovery in the sublinear algorithms literature. First, we present the Bipartite

Independent Set (BIS) query model, where access to G is via a Bipartite Independent

Set (BIS) oracle [22]. A query to this oracle takes as input two disjoint subsets

L,R ⊆ V and returns

BIS(L,R) =


‘1’ if there is no edge between L and R

‘0’ otherwise.

Local Query Models Prior work on sub-linear query graph algorithms has largely

focused on local queries, in particular, (i) vertex degree queries (ii) neighbor queries
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(output the ith neighbor of a vertex) and (iii) edge existence queries [54, 63, 114].

In the literature, the first two types of queries form the adjacency list query model,

while all three types of queries form the adjacency matrix query model. Under these

models, a variety of graph estimation problems have been well studied, including

edge counting and sampling [53, 63, 114, 126], subgraph counting [10, 31, 52], vertex

cover [23, 101], and beyond [110].

For a graph with n nodes and m edges, given access only to degree queries, Feige

[54] presented an algorithm for estimating m up to (2 ± ε) relative error with query

complexity O(
√
n · poly(1/ε, log n)). This work also showed that any (2 − o(1))-

approximation algorithm requires Ω(n) queries. In the adjacency list query model,

Goldreich and Ron [63] gave a (1±ε)-approximation algorithm, with query complexity

O(n/
√
m · poly(1/ε, log n)). Recently, Eden and Rosenbaum [53] gave algorithms for

near-uniform edge sampling with the same query complexity, and showed that this

complexity is nearly tight.

Global Query Models Motivated by the desire to obtain more query efficient

algorithms, Beame et al. [22] studied edge estimation using global queries that can

make use of information across the graph, including the BIS queries that we will focus

on, and the related Independent Set (IS) queries. IS queries were introduced in the

literature on query efficient graph recovery [1, 12]. They answer whether or not there

exist any edges in the induced subgraph on a subset of nodes S ⊆ V . We refer the

reader to the exposition in [22], which discusses applications of these global query

models in group testing [39, 48], computational geometry [13, 33, 56], fine-grained

complexity [46, 47], and decision versus counting complexity [47, 111, 121, 122].

In the IS query model, [22, 40] give a O(min{
√
m,n/

√
m} ·poly(log n, 1/ε)) query

algorithm for (1 ± ε) approximate edge counting. In the BIS model, numerous au-

thors [22, 47, 26] achieve (1 ± ε)-approximation for edge counting and near-uniform
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edge sampling using just poly(1/ε, log n) queries. This is exponentially smaller than

the query complexities in the IS and local queries models.

Extending the BIS query model to hypergraphs, Dell et al. [47] introduce the

coloured independence oracle which detects the presence of a size k hyperedge. They

give algorithms for hyperedge estimation and sampling using this generalized oracle.

Many other variants of global queries have been studied including Linear, OR and

Cut queries [16, 36, 112]. These queries have been applied to solving maximum

matching [84, 100], minimum cut [112], triangle estimation [24, 25, 47], connectiv-

ity [16], hitting sets [29], weighted edge estimation [30], problems related to linear

algebra [107], quantum algorithms [96], and full graph recovery [1, 12].

5.2 The Role of Adaptivity

For both local and global queries, most sub-linear time graph algorithms are adap-

tive, i.e., a query may depend on the answers to previous queries. In many cases, it

is desirable for queries to be non-adaptive. This allows them to be completed inde-

pendently, and might allow for the resulting algorithm to be easily implemented in

massively parallel computation frameworks [81]. Non-adaptive algorithms also lead

naturally to single-pass, rather than multi-pass, streaming algorithms. In fact, the

BIS query model can be seen as a very restricted subset of the more general Linear

query model, in which each query outputs the inner product of the edge indicator

vector with a query vector. This model has long been studied in the graph-streaming

literature [9, 95], in part due to its usefulness in giving single-pass algorithms. How-

ever, it has remained open whether non-adaptive algorithms can be given in more

restricted global query models.

For these reasons, Assadi et al. [16] and Chakrabarti and Stoeckl [36] have recently

sought to reduce query adaptivity under a variety of global query models, including

Linear, OR, Cut and BIS queries. These works study the single element recovery
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problem, which is a weaker variant of uniform edge sampling, requiring that the

algorithm return a single edge in G. Assadi et al. also study the problem of checking

connectivity, presenting a BIS query algorithm making Õ(n) queries and using three

rounds of adaptivity. They give a two-round algorithm in the stronger OR query

model, and show that even in this model, there is no non-adaptive algorithm for

connectivity making o(n2) queries.

We note that reducing query adaptivity is also a well-studied direction in the

closely related literature on group testing [49, 73]. IS and BIS oracles can be thought of

as tests if there is a single element in a group of edges, where that group is required to

be all edges incident on one node set (IS) or between two disjoint sets (BIS). Attempts

to minimize query adaptivity have also been made for sparse recovery [74, 79, 97],

sub-modular function maximization [18, 38], property testing [35] and multi-armed

bandit learning [8].

5.3 Results

In this section, we present our main results. First, in section 5.3.1, we present a

discussion of our results, comparing it with prior work. Next, in section 5.4, we present

an overview of all the techniques and summarize main ideas behind our approach.

5.3.1 Our Contributions

Our main result is the first non-adaptive algorithm for edge estimation up to (1±ε)

relative error, using poly(1/ε, log n) BIS queries. Formally, we show:

Theorem 5.3.1 (Theorem 5.6.5 restated). Given a graph G with n nodes and m

edges, there is an algorithm that makes O(ε−5 log5 n log5(log n) log(ε−1 log n)) non-
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adaptive BIS queries to G and returns an estimate m̂ satisfying: m(1 − ε) ≤ m̂ ≤

m(1 + ε),with probability at least 3/5.1

Prior methods for (1± ε) error edge estimation using BIS queries are based on a

binary search style approach [22, 47, 26], which is inherently adaptive, and this leads

to algorithms requiring Ω(log2 n) rounds of adaptivity. Beame et al. [22] present a non-

adaptive algorithm giving a O(log2 n) approximation factor for bipartite graphs, using

O(log3 n) queries. However, no non-adaptive results for general graphs or achieving

1± ε relative error for arbitrary ε > 0 were previously known. Even with adaptivity,

the best known algorithm due to [26] has a query complexity of O(ε−2 log11 n) and

succeeds with probability 1−1/n2. Therefore, our non-adaptive result improves upon

the current best known algorithms, for constant ε.

Our second result builds on our edge estimation approach, giving the first non-

adaptive BIS query algorithm that returns a near-uniformly sampled edge. Formally:

Theorem 5.3.2 (Theorem 5.7.10 restated). Given a graph G with n nodes, m edges,

and edge set E, there is an algorithm that makes:

O(ε−4 log6 n log(ε−1 log n)+ε−6 log5 n log6(log n) log(ε−1 log n)) non-adaptive BIS queries

which, with probability at least 1 − ε, outputs an edge from a probability distribution

P satisfying (1− ε)/m ≤ P (e) ≤ (1 + ε)/m for every e ∈ E.

Prior results for near-uniform edge sampling required Ω(log3 n) rounds of adaptiv-

ity [26, 47]. Additionally, even ignoring adaptivity, our results improves on the best

known query complexity of O(ε−2 log14 n), due to [26], for constant ε.

By combining Theorem 5.3.2 with prior work on sublinear query graph connec-

tivity, via edge sampling, we obtain a connectivity algorithm using two rounds for

adaptivity:

1Note that the success probability can be boosted in the standard way, by running multiple
independent instantiations of the algorithm and taking their median estimate.

182



Theorem 5.3.3 (Theorem 5.8.1 restated). Given a graph G with n nodes, there

is a 2-round adaptive algorithm that determines if G is connected with probability

at least 1 − 1/n using Õ(n log8 n) BIS queries, where Õ(·) ignores the logO(1) log n

dependencies.

Theorem 5.3.3 improves on a three-round algorithm of Assadi et al. [16] and is

tight: even in the stronger OR query model (which allows checking the presence of

an edge within an arbitrary subset of edges) no non-adaptive algorithm can make

o(n2) queries. Assadi et al. gave a two-round algorithm in this stronger OR query

model. Thus, Theorem 5.3.3 closes the gap between BIS queries and OR queries for

this problem. We note that there is a separation from the even stronger Linear

query model, where non-adaptive algorithms for connectivity and cut approximation

are well-known [9]. Understanding if there remain interesting separations between

the BIS and OR query models in terms of adaptivity would be very interesting.

5.4 Technical Overview

In this section, we present an overview of our non-adaptive BIS query algorithms

for edge estimation (Theorem 5.3.1) and near-uniform edge sampling (Theorem 5.3.2),

along with our 2-round algorithm for connectivity (Theorem 5.3.3).

5.4.1 Edge Estimation

A simple idea to estimate the number of edges in a graph via BIS queries is to

sample small random subsets of nodes and run BIS queries to check the presence of an

edge between them. The fraction of these queries that return ‘1’ (i.e., indicating the

presence of no edge) can then be used to estimate the number of edges. In particular,

for a graph containing m edges, if the random subgraphs have O(n/
√
m) nodes in

them, then we expect a ‘1’ answer with constant probability. Beame et al. [22] describe

a non-adaptive algorithm along these lines, which gives a O(log2 n) approximation
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for bipartite graphs using O(log3 n) queries. Unfortunately, going beyond this coarse

approximation factor is difficult since many dependencies due to common neighbors

arise and this increases the variance of the estimators. Beame et al. handle the issue

by using the coarse estimates to subdivide the graph into smaller sub-graphs, until

these divided graphs only contain O(logO(1) n) edges, at which point all their edges

can be discovered with few queries. This strategy yields a (1 ± ε) approximation,

however, it is inherently adaptive.

Our non-adaptive edge estimation algorithm takes a different approach. Suppose

we could sample each node with probability pv ≈ ε−2d(v)/m and compute the degree

of the sampled nodes then it is straightforward to show
∑

v I[v sampled] · d(v)/pv

equals 2m in expectation. Furthermore, an application of Bernstein bound implies

that it is a (1± ε) with sufficient probability. The challenge is showing that this type

of approach can be approximated in the BIS query model.

Subsampling Nodes. The first idea, drawn from work on streaming algorithms, is

to subsample the nodes of G at different rates of the form 1/γj where γ > 1 is constant

and j ∈ {0, 1, · · · , O(log n)}. At each rate, we will “recover” all sampled nodes (along

with a corresponding degree estimate) whose degree is roughly d(v) ≈ ε2m/γj. In

this way, each node will be recovered with probability roughly 1/γj ≈ ε−2d(v)/m, as

desired. We describe this subsampling procedure in Section 5.6.3, as part of our main

algorithm Edge-Estimator (Algorithm 20).

Recovering Heavy Nodes. The next challenge is to show that we can actually

recover the appropriate nodes and degree estimates at each sampling rate. If we

can approximate the degree of all nodes sampled at rate 1/γj up to additive error

O (ε3 ·m/γj), we will obtain a (1 ± ε) relative error approximation to the degree

of any node we hope to recover at that sampling rate, i.e., any node with degree

roughly ε2m/γj. Using these approximations, we can determine which nodes should

be recovered at that rate, and form our edge estimate.
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Degree Estimation via Neighborhood Size Estimation. To achieve such an

additive error approximation, we also use ideas from the sparse recovery and streaming

literature. In particular, we implement an approach reminiscent of the Count-Min

sketch algorithm [44]. The approach is described in detail in Section 5.6.2, where

we present Algorithm Estimate-Degree (Algorithm 19). First observe that when

sampling at rate 1/γj, conditioned on any node v being included in the sample, the

expected total degree of the sampled nodes other than v is O(m/γj). If we further

subdivide these nodes into Õ(1/ε3) random groups, the expected total degree of all

nodes other than v in any group is Õ (ε3 ·m/γj).

Now, if v is placed in group S, we can approximately upper bound its degree by

the total neighborhood size of S. This upper bound holds approximately as long as v

does not have too many neighbors in S, which it won’t with good probability. The

neighborhood size of S is in turn upper bounded by the degree of v plus the total

degree of other nodes in S, and thus by d(v) + Õ (ε3 ·m/γj) in expectation. So, in

expectation, this approach gives an additive Õ (ε3 ·m/γj) error approximation to the

degree of each sampled node v, with constant probability. Repeating this procedure

O(log n) times, and, as in the Count-Min sketch, taking the minimum degree estimate

for each node sampled at rate 1/γj, gives us high probability approximation for such

nodes.

Neighborhood Size Estimation. The final step is to implement an algorithm

that can estimate the neighborhood size of the random subset of nodes S, to be

used in our degree estimation procedure. We do this in Section 5.6.1, where we

present Algorithm Neighborhood-Size (Algorithm 18). This algorithm takes as

input two disjoint subsets L,R and returns a (1 ± ε)-approximation for the size of

the neighborhood of L in R. We highlight that this may be very different than the

number of edges connecting L to R – the neighborhood size is the number of nodes in

R with at least one edge to L. This difference is critical in removing the correlations
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discussed previously due to common neighbors. Such correlations lead to the adaptive

nature of prior algorithms [22, 47]. To estimate the size of the neighborhood of L

in R, we sample the nodes in R at different rates and ask BIS queries on L and the

sampled subset of R. Intuitively, when the sampling rate is the inverse of the size of

the neighborhood, we will observe a ‘1’ response with constant probability. We can

detect this and thus estimate the neighborhood size.

Non-adaptivity. The approach is inherently non-adaptive as all random sampling

of nodes and random subsets can be formed ahead of time, independently of any

query responses. The only catch is that to determine which nodes should be recov-

ered at each sampling rate, i.e., those nodes with degree d(v) ≈ ε−2 ·m/γj, we need a

coarse estimate to the edge count m in the first place. Fortunately, we can bootstrap

such an estimate starting with a very coarse O(log2 n)-relative error approximate

estimation, due to Beame et al. [22]. We then refine this estimate iteratively using

Algorithm Refine-Estimate (Algorithm 21). Each refinement improves the approx-

imation factor by ε, and after O(log1/ε log n), refinements our estimate will result in a

(1± ε)-approximation factor. The key observation here is that each refine step does

not require any additional BIS queries. Thus, our algorithm remains non-adaptive.

5.4.2 Uniform Edge Sampling and Connectivity

In the full version, we prove Theorem 5.3.2 by designing and analyzing a non-

adaptive algorithm for returning a near-uniform sample among the edges of the graph.

Our approach builds heavily on our edge estimation algorithm. If we knew the de-

gree d(v) of all vertices, then to sample a uniform edge, we could sample a vertex

v ∈ V with probability d(v)/
∑

w∈V d(w) and return a uniform neighbor among the

neighbors of v. We can observe that the probability that an edge (v, u) is sampled is

d(v)/
∑

w∈V d(w) ·1/d(v)+d(u)/
∑

w∈V d(w) ·1/d(u) = 1/m, i.e., this approach yields

a uniformly random edge sample.

186



Node Sampling. We implement the above approach approximately using BIS

queries in Algorithm Sampling. First note that recovered vertices in our edge estima-

tion algorithm are sampled with probabilities roughly proportional to their degrees.

We argue that we can select a random vertex from this set, which overall is equal to

any vertex v with probability approximately d(v)/
∑

w∈V d(w). To do so, we leverage

our degree estimates, and the fact that our edge count estimator, which is the sum

of scaled degrees of recovered vertices, is well-concentrated.

Random Neighbor Sampling. It remains to show how to return a random neighbor

of the sampled vertex. To do so, in the full version, we describe an algorithm that

takes as input two disjoint subsets L,R and returns a uniform neighbor among the

neighbors of L in R. By showing an equivalence between the substantially more

powerful OR queries and BIS queries in this specific setting, we argue that an existing

algorithm for OR queries can be extended to return a uniform neighbor using BIS

queries. An OR query takes as input a subset of pairs of vertices and returns ‘1’ iff

there is an edge in the subset queried. Building on this, in the full version, we present

Algorithm Uniform-Neighbor that takes as input the subset of nodes sampled

at any rate 1/γj as in our edge estimation algorithm, and approximately returns a

uniform neighbor for every vertex v sampled in this set. As before, we construct

Õ(1/ε4) random partitions of the sampled nodes. For every vertex v in a random

subset S, we return a uniform neighbor (obtained using the idea just described) of S

as the neighbor of v. If v has large degree compared to the total degree of nodes in

the partition, which it will if it is meant to be recovered at that sampling rate, this

output will most likely be a neighbor of v, and will be close to a uniformly random

one.

A Two-Round Algorithm for Connectivity. Our non-adaptive edge sampling

algorithm (Theorem 5.3.2) yields a two-round algorithm for graph connectivity (The-

orem 5.3.3), improving on a prior three-round algorithm of [16]. In particular, the
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algorithm of [16] selects O(log2 n) random neighbors per vertex, and contracts the

connected components of this random graph into supernodes. This random sampling

step can be performed using one round of Õ(n) BIS queries. They prove that in the

contracted graph on the supernodes, there are at most O(n log n) edges. Using this

fact, they then show how to identify whether all the supernodes are connected using

Õ(n) BIS queries and two additional rounds of adaptivity.

We follow the same basic approach: using a first round of Õ(n) queries to randomly

sample O(log2 n) neighbors per vertex and contract the graph into supernodes. Once

this is done, we observe that we have BIS query access to the contracted graph simply

by always grouping together the set of nodes in each supernode. So, we can directly

apply the non-adaptive sampling algorithm of Theorem 5.3.2 to sample edges from

the contracted graph. By a coupon collecting argument, drawing O(n log2 n) near-

uniform edge samples (with replacement) from the contracted graph suffices to recover

all O(n log n) edges in the graph, and thus determine connectivity of the contracted

graph, and, in turn, the original graph.

5.5 Preliminaries

Let G(V,E) denote the graph on vertex set V with edges E ⊆ V ×V . Let |V | = n

be the number of nodes and |E| = m be the number of edges . For any set of nodes

S ⊆ V , let E[S] ⊆ E denote the edges in the induced subgraph on S. For any two

disjoint sets of nodes L,R ⊆ V , let E[L,R] = {(u, v) ∈ E | u ∈ L, v ∈ R} denote the

edges between them. For any v ∈ V , let Γ(v) = {u | (v, u) ∈ E for some v ∈ V } be its

set of neighbours. Let d(v) = |Γ(v)| be its degree. For S ⊆ V , let Γ(S) =
⋃
u∈S Γ(u)

and let d(S) =
∑

u∈S d(u).

Definition 5.5.1 (OR query). An OR query takes as input a collection Eq of pairs of

vertices given by Eq = {(x1, y1), (x2, y2), · · · (xk, yk) | xi, yi ∈ V ∀i ∈ [k]} and satisfies

the following:
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OR(Eq) =


‘1’ if Eq ∩ E = φ

‘0’ otherwise.

Lemma 5.5.2 (Bernstein’s inequality). Let X1, X2, . . . Xn be independent random

variables. Suppose |Xi| ≤M ∀i ∈ [n]. Then:

Pr

[∣∣∣∣∣∑
i

Xi − E[Xi]

∣∣∣∣∣ ≥ t

]
≤ exp

(
− t2

2
∑

iE[(Xi − E[Xi])2] + 2
3
Mt

)

Fact 5.5.3. (
1 +

x

n

)n
≥ ex

(
1− x2

n

)
≥ ex for |x| ≤ n, n ≥ 1.

5.6 Non-adaptive algorithm for edge estimation

In this section, we present our non-adaptive algorithm for edge estimation using

BIS queries. In Section 5.6.1, we describe an algorithm that takes as input two disjoint

subsets L,R and returns an estimate of the size of the neighborhood |Γ(L)∩R|. Next,

in Section 5.6.2, we use this algorithm to give additive error approximations of degrees

of all the vertices in a given subset. Finally, in Section 5.6.3, using the approximate

degree estimates, we construct a (1 ± ε)-approximate estimator for m by sampling

nodes with probabilities roughly proportional to their degrees.

5.6.1 Estimating the size of neighborhood

Algorithm Neighborhood-Size takes as input two disjoint subsets L,R ⊆ V and

returns a (1± ε)-approximation of the size of neighborhood of L in R, i.e., |Γ(L)∩R|

using poly(1/ε, log n) BIS queries. We overview the analysis of this algorithm here,

before presenting the details in section 5.6.1.1.

The main idea is to sample subsets of vertices in R (denoted R̂1, R̂2, . . .) with

exponentially decreasing probability values 1/2, 1/4, 1/8, . . .. When the sampling rate

1/2i falls below 1/|Γ(L) ∩R|, we expect L to no longer have any neighbors in R̂i with
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good probability. In particular, we can return the inverse of the smallest probability

1/2i for which BIS(L, R̂i) = ‘1’, as a coarse estimate for |Γ(L) ∩R|.

To boost the accuracy of this estimate, we repeat the process T = O(ε−2 log(δ−1 ·

log n)) times, and at each sampling rate count the number of times the BIS query

BIS(L, R̂i) returns ‘1’. This count is denoted count(i) in Algorithm 18, and its

expectation can be written in closed form as E[count(i)] = T · (1 − 1/2i)|Γ(L)∩R|.

Suppose 2̂i ≤ |Γ(L) ∩R| < 2̂i+1, then, E[count(̂i)] = Θ(T ). Via a standard Chernoff

bound, it will be approximated to (1 ± ε) error with high probability by count(̂i).

Thus, we can compute an accurate estimate of the neighborhood size by inverting

our estimate of E[count(̂i)], as log(1−1/2î)(count(̂i)/T ). We identify the appropriate

î in line 12 of Algorithm 18, and compute the corresponding estimate in lines 13-14.

There is one edge case handled in line 13: if |Γ(L) ∩ R| = 1 we will have î = 0, and

count(̂i) = 0. The final error bound for Algorithm 18 is stated below.

Algorithm 18 Neighborhood-Size: Estimating the neighborhood size of L in R
Input: L,R ⊆ V , approximation error ε, failure probability δ.
Output: ηest(L) as an estimate of |Γ(L) ∩R|.

1: Initialize ηest(L)← 0.
2: for i = 0, 1, . . . log2 n do
3: count(i)← 0.
4: for t = 1, 2, . . . T = 2e8 ln(log n/δ) · ε−2 do
5: R̂ti ← {u ∈ R | u is included independently with probability 1/2i}.
6: count(i) = count(i) + BIS(L, R̂ti)
7: end for
8: end for
9: if count(0) = T then
10: return ηest(L) = 0.
11: else
12: Set î← max

{
i | count(i)

T < (1−ε)
2e2

}
.

13: if î = 0 then return ηest(L) = 1.
14: else return ηest(L) = log

(1−1/2î)
(count(̂i)/T ).

15: end if
16: end if
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5.6.1.1 Approximation Guarantees of Algorithm Neighborhood-Size

For any i ∈ {0, 1, . . . , log2 n} let R̂i denote a set constructed by sampling vertices

of R with probability 1/2i. In Algorithm 18, we construct T = O(ε−2 log(δ−1 · log n))

such sets, each denoted by R̂t
i ∀ t ∈ [T ]. Let count(i) =

∑T
t=1 BIS(L, R̂t

i) denotes

the number of times the BIS query BIS(L, R̂t
i) returns ‘1’. For any t ∈ [T ], we define:

p(i) = Pr
[
BIS(L, R̂t

i) = ‘1’
]

= Pr
[
Γ(L) ∩ R̂t

i = φ
]
and p̂(i) =

count(i)

T
.

Suppose L satisfies:

2i
∗ ≤ |Γ(L) ∩R| < 2i

∗+1 for some i∗ ∈ {0, 1, . . . , log2 n}.

Claim 5.6.1. We have the following bounds:

p(i∗) ≥ 1

2e2
, p(i∗ − 2) >

1

2e8
, and p(i∗ − 2) ≤ 1

e4
.

Proof.

p(i) = Pr
[
Γ(L) ∩ R̂t

i = φ
]

= Pr[u 6∈ R̂t
i ∀u ∈ R ∩ Γ(L)] =

∏
u∈R∩Γ(L)

Pr[u 6∈ R̂t
i]

=

(
1− 1

2i

)|Γ(L)∩R|

.

We can lower bound p(i∗) by

p(i∗) =

(
1− 1

2i∗

)|Γ(L)∩R|

≥
(

1− 1

2i∗

)2i
∗+1

≥ e−2

(
1− 2i

∗+1

22i∗

)
(using inequality 5.5.3)

≥ 1

2e2
for i∗ ≥ 2.

p(i∗) ≥ 1

8
for i∗ = 1.
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If i = i∗ − 2, we have:

p(i) =

(
1− 1

2i

)|Γ(L)∩R|

≤
(

1− 1

2i

)2i
∗

≤ e−2i
∗−i

=
1

e4

p(i) =

(
1− 1

2i

)|Γ(L)∩R|

≥
(

1− 1

2i∗−2

)|Γ(L)∩R|

>

(
1− 1

2i∗−2

)2i
∗+1

≥ e−8

(
1− 2i

∗+1

22i∗−4

)
≥ 1

2e8
for i∗ ≥ 5,

where we used the inequality 5.5.3, for the penultimate inequality.

For i∗ ≤ 4, the inequality is satisfied. So, we have: p(i∗ − 2) > 1/2e8.

Claim 5.6.2. For sufficiently small ε, with probability at least 1− δ, we have:

count(i) ≥ 1− ε
2e2

· T ∀i ≥ i∗ and count(i∗ − 2) <
1− ε
2e2

· T.

Proof. As count(i) =
∑T

t=1 BIS(L, R̂t
i), we have: E[count(i)] = T · p(i). Using

Claim 5.6.1, we have:

T = 2e8 ln(log n/δ)·ε−2 ≥ 4 ln(log n/δ) · ε−2

p(i∗ − 2)
≥ 4 ln(log n/δ) · ε−2

p(i∗)
, as p(i∗) ≥ p(i∗ − 2).

Suppose i ∈ {i∗, i∗ − 2}. Then, we have:

Pr [|p̂(i)− p(i)| ≥ ε · p(i)] = Pr [|T · p̂(i)− T · p(i)| ≥ T · ε · p(i)]

= Pr [|count(i)− E[count(i)]| ≥ εE[count(i)]]

≤ 2 exp

(
−ε

2Tp(i)

2

)
≤ δ

log n
(Using Chernoff bound).

192



Using Claim 5.6.1, we get:

count(i∗) ≥ (1− ε) · T · p(i∗) ≥ (1− ε)
2e2

· T

count(i∗ − 2) < (1 + ε) · T · p(i) ≤ (1 + ε)

e4
· T

=⇒ count(i∗ − 2) <
(1 + ε)

e4
· T ≤ (1− ε)

2e2
· T, when ε ≤ e2/2− 1

e2/2 + 1
.

From the definition, we can observe that p(i) ≥ p(i∗) ∀i ≥ i∗. So, the concentration

around expected values for count(i) obtained using Chernoff bounds will hold for all

i ≥ i∗. Using union bound on at most log n sampling levels, we have, with probability

1− δ:

count(i∗ − 2) <
(1− ε)

2e2
· T and count(i) ≥ (1− ε)

2e2
· T ∀i ≥ i∗.

Lemma 5.6.3. Algorithm 18 uses O(ε−2log n log(δ−1 · log n)) BIS queries and returns

an estimate ηest(L) of |Γ(L) ∩R| such that with probability at least 1− δ,

(1− ε) · |Γ(L) ∩R| ≤ ηest(L) ≤ (1 + ε) · |Γ(L) ∩R| .

Proof. If |Γ(L) ∩ R| = 0, then, count(i) = T for every i ∈ {0, 1, 2, · · · , log n}. So,

î = 0, as none of the values count(i), for any i will be below the threshold value of

(1− ε)T/2e2. So, the estimate ηest(L) = 0 returned is exact.

Suppose |Γ(L) ∩ R| = 1. When we sample with probability 1/2i when i = 0, we

obtain R̂t
i = R, for every t ∈ [T ]. As BIS(L,R) = ‘1’, we have count(i) = 0, and our

estimate ηest(L) = 1 is exact. For the remainder of the proof, we assume i∗ ≥ 1.

From Algorithm 18, we define î = arg max{i | count(i) < (1− ε)T/2e2}+1. From

Claim 5.6.2, this implies: î ≥ i∗ − 2. Therefore, with probability at least 1 − δ, we

have:

i∗ − 2 ≤ î ≤ i∗ − 1.
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Now, we argue that ηest(L) defined by:

ηest(L) := log(1−1/2î) p̂(̂i) obtains a (1± ε) approximation for |Γ(L) ∩R|.

(1− ε)p(̂i) ≤ p̂(̂i) ≤ (1 + ε)p(̂i)

log(1−1/2î)(1− ε) · p(̂i) ≤ log(1−1/2î) p̂(̂i) ≤ log(1−1/2î)(1 + ε) · p(̂i)

|Γ(L) ∩R|+ log(1−1/2î)(1− ε) ≤ log(1−1/2î) p̂(̂i) ≤ |Γ(L) ∩R|+ log(1−1/2î)(1 + ε)

⇒ |Γ(L) ∩R| − 2̂i · ε ≤ log(1−1/2î) p̂(̂i) ≤ |Γ(L) ∩R|+ 2̂i · ε

⇒ |Γ(L) ∩R| − 2i
∗−2 · ε ≤ log(1−1/2î) p̂(̂i) ≤ |Γ(L) ∩R|+ 2i

∗−1 · ε

⇒ (1− ε/4) · |Γ(L) ∩R| ≤ log(1−1/2î) p̂(̂i) ≤ (1 + ε/2) · |Γ(L) ∩R|.

Therefore, ηest(L) := log(1−1/2î) p̂(̂i) is a (1 ± ε)-relative error approximation of

|Γ(L) ∩R|.

The total number of BIS queries used by Algorithm 18 is:

O(log n · T ) = O(ε−2 log n log(log n/δ)).

5.6.2 Finding good approximation for degrees of vertices

We now describe how to use the Neighborhood-Size algorithm to estimate the

degrees of all vertices in a given subset S ⊆ V up to additive error depending on the

total degree of S. Our approach is inspired by the count-min sketch algorithm [44].

We randomly partition S into subsets S1, S2, . . . , Sλ where λ = O(ε−3 log2 n). The

choice of the parameter λ is based on the analysis in Section 5.6.3. For each Si, we

estimate the size of the neighborhood of Si in V \ Si using Neighborhood-Size.

We then return this neighborhood size estimate as the degree estimate for all vertices

in Si. For v ∈ Si, |Γ(Si)∩ V \ Si| is nearly an overestimate for d(v), as long as v has
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few neighbors in Si, which it will with high probability. Additionally, it is not too

large an overestimate – we can observe that |Γ(Si) ∩ V \ Si| − d(v) ≤ d(Si \ v). I.e.,

the error in the overestimate is at most the total degree of the other nodes in Si. In

expectation, this error is at most d(S)
λ

= O
(
d(S) · ε3

log2 n

)
due to our random choice of

Si.

As in the count-min sketch algorithm, to obtain high probability estimates, we

repeat the process T = O(log n) times and assign the minimum among the neighbor-

hood estimates as the degree estimate of d(v). The full approach is given in Algorithm

19 (Estimate-Degree) and the error bound in the Lemma 5.6.4 below.

Lemma 5.6.4. Suppose S ⊆ V . Then, Algorithm 19 uses O(ε−5 log4 n log(ε−1 log n))

BIS queries and with probability 1 − O(1/ log n), returns degree estimates d̂(v) for

every vertex v ∈ S satisfying:

d(v)(1− ε) ≤ d̂(v) ≤ d(v) +
ε3

log2 n
· d(S).

Algorithm 19 Estimate-Degree: Obtain additive approximate degree estimates
Input: S is a subset of V , ε is approximation error.
Output: Degree estimates of vertices in S.

1: Scale ε← ε/3 and initialize d̂(v)← n for every v ∈ S.
2: for t in {1, 2, . . . , O(log n)} do
3: Consider a random partitioning of S into St1, St2, . . . Stλ where λ = O(ε−3 log2 n).
4: for every partition Sta where a ∈ [λ] do
5: ηest(S

ta)← Neighborhood-Size(Sta, V \ Sta, ε, δ), where δ = O(1/ log4 n).
6: d̂(v)← min{d̂(v), ηest(S

ta)} ∀v ∈ Sta.
7: end for
8: end for
9: return d̂(v) for every v ∈ S.

5.6.2.1 Proof of Lemma 5.6.4

Consider a vertex v ∈ S. It is easy to observe that in any partition Sta containing

v, where t ∈ [T ] and a ∈ [λ], the degree of v outside the partition (denoted by
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d(v, V \Sta)) is upper bounded by the total size of the neighborhood of Sta (denoted

by |Γ(Sta) ∩ V \ Sta|) which is upper bounded by the total degree of vertices present

in the partition (denoted by d(Sta)). Similar to the analysis of count-min sketch,

a simple, yet important observation is that the total degree of the partition except

for vertex v, i.e., d(Sta \ {v}) is less than c · d(S)/λ for some constant c and results

in the additive approximation factor of O(d(S)/λ). Now, we present the proof of

Lemma 5.6.4:

Proof. Given S ⊆ V . Consider a vertex v ∈ Sta for some a ∈ {1, 2 . . . , λ} and

t ∈ {1, 2, · · · , T}. For each call to neighborhood size estimation, we set the failure

probability to be δ = O(ε3/ log4 n). From Lemma 5.6.3, we have with probability

1− δ:

(1− ε)|Γ(Sta) ∩ (V \ Sta)| ≤ ηest(S
ta) ≤ (1 + ε)|Γ(Sta) ∩ (V \ Sta)|

We can observe that d(v, V \ Sta) = |Γ(v) ∩ (V \ Sta)| ≤ |Γ(Sta) ∩ (V \ Sta)|.

Therefore:

d(v, V \ Sta) ≤ ηest(S
ta)

1− ε
.

Consider the following:

E[d(v, Sta)] = E

[∑
u∈V

1{u ∈ Γ(v) ∩ Sta}

]
=
d(v)

λ
=

d(v)ε3

c log2 n
≤ εd(v), as c > 1.

From Markov’s inequality, with probability at least 1/2, we have: d(v, Sta) ≤

2εd(v).

Combining the above, with probability 1/2− δ, we have:

ηest(S
ta)

1− ε
≥ d(v, V \ Sta) = d(v)− d(v, Sta) ≥ d(v)(1− 2ε),

=⇒ ηest(S
ta) ≥ (1− 3ε)d(v).
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E
[
d(Sta \ {v})

]
= E

 ∑
u∈S\{v}

d(u)1{u ∈ Sta}

 =
∑

u∈S\{v}

d(u) Pr[u ∈ Sta]

=
∑

u∈S\{v}

d(u) · 1

λ

≤ d(S) · ε3

c log2 n
, for some constant c > 1

≤ d(S) · ε3

log2 n
.

From Markov’s inequality, it follows that:

Pr

[
d(Sta \ {v}) ≥ d(S) · 2ε3

log2 n

]
≤ E[d(Sta \ {v})]

d(S) · 2ε3

log2 n

=
1

2
.

So, with probability at least 1/2, we have:

d(Sta) = d(v) + d(Sta \ {v})

≤ d(v) + d(S) · 2ε3

log2 n

=⇒ ηest(S
ta) ≤ |Γ(Sta) ∩ (V \ Sta)| ≤ d(Sta, V \ Sta) ≤ d(Sta)

ηest(S
ta) ≤ d(v) + d(S) · 2ε3

log2 n
.

Using union bound on all possible sets Sta for all t ∈ [T ] and a ∈ [λ], with

probability at least 1−T ·λ ·δ ≥ 1−1/2 log n, the neighborhood estimates are (1±ε)-

relative approximations. By taking minimum of all the T = O(log n) estimates, we

argue that d̂(v) is a good approximation of d(v). We take minimum of all the T

estimates containing v and obtain the final degree estimate, given by:

d̂(v) = min
t∈T

ηest(S
ta).
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We observe that:

Pr
[
d̂(v) < (1− 3ε)d(v)

]
= Pr

[{
min
t∈T

ηest(S
ta)

}
< (1− 3ε)d(v)

]
=
∏
t∈T

Pr
[
ηest(S

ta) < (1− 3ε)d(v)
]

≤
(

1

2

)T
≤ 1

2n4
, and

Pr

[
d̂(v) > d(v) + d(S) · 2ε3

log2 n

]
= Pr

[{
min
t∈T

ηest(S
ta)

}
> d(v) + d(S) · 2ε3

log2 n

]
=
∏
t∈T

Pr

[
ηest(S

ta) > d(v) + d(S) · 2ε3

log2 n

]

≤
(

1

2

)T
≤ 1

2n4
.

By taking a union bound on all the vertices in S and the event that neighborhood

estimates are accurate, the total failure probability is at most 1/2 log n + 1/n3 ≤

1/ log n. Therefore, for every vertex v ∈ Sta, we have with probability at least

1− 1/ log n:

(1− 3ε)d(v) ≤ ηest(S
ta) ≤ d(v) + d(S) · 2ε3

log2 n
.

Set ε = ε/21/3 to appropriately scale the value of ε for the final guarantees. Algo-

rithm 19 uses O(ε−3 log2 n · T ) many calls to the sub-routine Neighborhood-Size,

i.e., Algorithm 18. From Lemma 5.6.3, we know that Algorithm 18 uses

O(ε−2 log n log(δ−1 log n)) BIS queries, where we set δ = O(ε3/ log4 n). Therefore, the

query complexity of Algorithm 19 is O(ε−5 log4 n log(ε−1 log n)).

5.6.3 Edge Estimation

In this section, we describe the algorithm Edge-Estimator that obtains a (1±ε)-

approximation for the number of edgesm. The constants used c1, c2 satisfy c1 ≤ c2/10
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and c2 ≥ 50, and we do not explicitly mention them for the sake of brevity. Missing

details are presented in the full version.

Our Approach. A naive strategy to estimate the number of edges (denoted by

m) is to sample roughly Õ(ε−2) nodes uniformly, and estimate m given the degrees

of the sampled nodes. However, the variance of such an estimator depends on the

maximum degree, which could be as high as O(n). To fix this issue, we sample

vertices at different rates. Our sampling rates are given by the sequence 1/γj where

γ > 1 is a constant, j ∈ {0, 1, · · · , log n}. We use the term jth level to refer to the

sampling rate γ−j. It is easy to observe that when a vertex v is sampled at rate

Õ(ε−2d(v)/m), its contribution is Õ(ε2m). In other words, if d(v) ≈ ε2m/γj, for

some sampling level j, we can use it in our estimator. However, there are three main

challenges in implementing this approach which we detail below.

Approximate degrees. Algorithm Estimate-Degree returns degree estimates

that are approximate with an additive approximation error of Õ (ε3m/γj) at sampling

level j. To include a vertex v, we have to ensure that this error term is small and

given by O(εd(v)). When d(v) = Ω̃(ε2m/γj), the returned degree estimate d̂(v) will

be a (1± ε)-approximation to the actual degree d(v). Observe that this corresponds

to the threshold we mentioned earlier. Therefore, our goal is to identify all vertices at

every level j that pass the threshold of Ω̃(ε2m/γj). When that happens, we say that

the vertex v has been recovered at level j and can be safely included in our estimator.

Knowledge of m. As we do not know the value of m, we start with an O(log2 n)-

relative error approximate estimate, obtained by the Algorithm CoarseEstimator

in Beame et al. [22]. We repeatedly refine the approximate estimate using Algo-

rithm Refine-Estimate, until we get a (1 ± ε)-relative error approximation of m.

Each refinement improves the approximation factor from the previous stage by a mul-

tiplicative factor of ε. We note that each refinement does not require any additional

BIS queries and uses the approximate degree estimates obtained previously.
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Boundary Vertices. It is possible that some vertices have degrees close to the

threshold values at each sampling level. We denote such vertices Vboundary and refer

to them as boundary vertices. For such boundary vertices, as we use approximate

degree estimates, they might be recovered at a level different from its true level

(defined with respect to exact degrees). Such a scenario could potentially affect the

contribution of the recovered vertex in our estimator by an additional multiplicative

factor dependent on γ and the difference between recovered level and true level. As

a result, our estimator might not be a (1± ε)-relative error approximation anymore.

We get around this limitation by dividing the region between any two consecutive

levels into B buckets and shifting the boundaries of all the levels by a random shift

selected uniformly from the first B buckets. We account for this by changing the

sampling rates to γ−µ(j) where µ(j) encodes the random shift.

With the random shift of the level boundaries, we ensure that every vertex will

lie close to the boundary with probability at most ε. Moreover, we argue that ev-

ery boundary vertex is recovered at its true level or level adjacent to its true level.

Therefore, the total contribution of Vboundary to our edge estimator is O(εm).

5.6.3.1 Overview of Algorithm Edge-Estimator

Random Boundary Shift. Let ε denote the approximation parameter, B = 2/ε

denote the total number of buckets between two consecutive levels and γ = 1/(1− ε)

the probability of sampling parameter. The region between two consecutive levels

is divided into B buckets with the boundaries of buckets proportional to the values

given by {[1/γB, 1/γB−1), · · · , [1/γ2, 1/γ), [1/γ, 1)}. We select a random integer offset

for shifting our levels, denoted by s, which is selected uniformly at random from

[0, B). Now, the level boundaries are located at values proportional to γ−µ(j) where

µ(j) = j ·B − s and 0 ≤ j ≤ L. Observe that the number of sampling levels is given

by L = 1
B
· logγ n+ 1 ≤ 1

2
log n+ 1.
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Algorithm 20 Edge-Estimator: Non-adaptive algorithm for estimating edges
Input: V set of n vertices and ε > 0 error parameter.
Output: Estimate m̂ of number of edges in G.

1: Scale ε← ε
600 log1/ε logn

and initialize γ ← 1/(1− ε) and B ← 2/ε.
2: Let s be an integer selected uniformly at random from the interval [0, B).
3: Let µ(j)← −s+ j ·B for every integer j in the interval

[
0, 1

B
· logγ n+ 1

]
.

4: Initialize S0 ← V and construct S1 by sampling vertices in S0 with probability
1/γµ(1).

5: Construct S2 ⊇ . . . ⊇ SL for L = 1
B
· logγ n where each Sj is obtained by sampling

vertices in Sj−1 ∀j ≥ 2, independently with probability 1/γB.
6: for j = 0, 1, . . . L do
7: Run Estimate-Degree (Sj) to obtain the estimates d̂j(v) for all v ∈ Sj

satisfying:

(1− ε)d(v) ≤ d̂j(v) ≤ d(v) +
c1ε

3 ·m
log n · γµ(j)

.

8: end for
9: Let m̄0 be the O(log n)-approximate estimate from the Algorithm CoarseEsti-

mator in Beame et al. [22] on a random partition of V .
10: Set m̄0 ← max{2, 16 log n · m̄0}, so that we have m ≤ m̄0 ≤ (64 log2 n) ·m.
11: for t = 1, 2, · · · , T = 2 log1/ε log n do
12: m̄t is assigned the output of Refine-Estimate that takes as input approx-

imate degree values d̂j(v) ∀v ∈ Sj ∀j ∈ [L], the previous estimate m̄t−1 and the
iteration t.

13: end for
14: return m̂← m̄T .

In Algorithm Edge-Estimator, we construct sets V = S0 ⊇ S1 ⊇ · · · ⊇ SL

where a set Sj (for all j ≥ 2) is obtained by sampling vertices in Sj−1 with probability

1/γB. The set S1 is obtained by sampling vertices in V with probability 1/γ−s+B.

Our sampling scheme results in each vertex being included in a set Sj with probability

1/γµ(j). We can easily show that with constant probability, d(Sj) = O(m log n/γµ(j)),

for all j. Using Algorithm 19, we obtain approximate degree estimates of vertices in Sj

for every sampling level j ≤ L with an approximation error of O
(
ε3/ log2 n · d(Sj)

)
=

O
(
mε3/γµ(j) log n

)
. By starting with a bad estimate m̄0 for the total number of

edges m and initialized to a O(log2 n)-approximate estimate, we refine it to obtain

an improved estimate m̄1. We repeat this process T = 2 log1/ε log n times, such that
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the estimate m̄t−1 is used to construct an improved estimate m̄t. Finally, we return

the estimate m̄T as our final estimate for m.

Algorithm 21 Refine-Estimate: Refines the current estimate of number of edges

Input: m̄ satisfying m ≤ m̄ ≤ m(1 + α), approximate degree values d̂j(v) ∀v ∈
Sj ∀j ∈ [L] obtained using Algorithm 20, m̄0, and iteration t.
Output: Estimate m̂ satisfying m ≤ m̂ ≤ m(1 + ε · α) of number of edges in G.

1: Initialize m̂← 0.
2: Initialize r(v)← 0 for all v (indicator if v has been recovered yet).
3: for j = 0, 1, . . . L do
4: for v ∈ Sj do
5: if r(v) = 0 and d̂j(v) ≥ m̄

γµ(j) · c2ε
2

logn
then

6: m̂← m̂+ γµ(j) · d̂(v)

7: ̂̀(v)← j and r(v)← 1.
8: end if
9: end for
10: end for
11: if t < T = 2 log1/ε log n then
12: m̂ = m̂/2 + (ε log log n)t m̄0. .We normalize m̂ so that we have m̂ ≥ m.
13: else
14: m̂ = m̂/2.
15: end if
16: return m̂.

Overview of Algorithm Refine-Estimate. Suppose we are given an initial es-

timate m̄ satisfying m ≤ m̄ ≤ (1 + α)m for some unknown approximation factor α

satisfying ε ≤ α ≤
(
n
2

)
. We set the threshold value for recovering a vertex at a level

j as m̄
γµ(j) · c2ε

2

logn
where c2 is a constant. So, when a vertex v with degree estimate

d̂j(v) (obtained from Algorithm 20) satisfies d̂j(v) ≥ m̄
γµ(j) · c2ε

2

logn
, we set the level of

recovery ̂̀(v) = j and recovered flag r(v) = 1. From construction, we can observe

that once a vertex is recovered at a particular level it is not available to be recovered

at higher level later. Our estimator is the summation of terms γµ(̂̀(v)) · d̂(v) for every

v satisfying r(v) = 1. We normalize m̂ to ensure that the final estimate returned

satisfies m ≤ m̂ (see the full version for additional details).
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Using Bernstein’s inequality, we argue that in iteration t, we can improve the

approximation factor of the previous estimate m̄t−1 by a multiplicative factor of ε in

the new estimate m̄t. After T = O(log1/ε log n) iterations, the edge estimate will be

a (1± ε)-relative error approximation satisfying:

Theorem 5.6.5. Given a graph G with n nodes and m edges, there is an algorithm

that makes O(ε−5 log5 n log5(log n) log(ε−1 log n)) non-adaptive BIS queries to G and

returns an estimate m̂ satisfying: m(1−ε) ≤ m̂ ≤ m(1+ε),with probability at least 3/5.

5.6.3.2 Proof of Theorem 5.6.5

First, we show that our degree estimates are calculated accurately at every level

with constant probability of success.

Claim 5.6.6. With probability 3/4, for all levels j ∈ {1, 2, · · · , L}, we have:

d(Sj) ≤
8m · L
γµ(j)

.

Proof. As every vertex is included in Sj with probability 1/γµ(j), we get:

E[d(Sj)] =

∑
v∈V d(v)

γµ(j)
=

2m

γµ(j)

Therefore, by Markov’s Inequality, Pr[d(Sj) ≥ 8m · L/γµ(j)] ≤ 1/(4L). Taking a

union bound over all the levels, with probability at least 3/4,

d(Sj) ≤ 8m · L/γµ(j) ≤ 8m · log n/γµ(j)for every level j ∈ [L].

Combining Claim 5.6.6 and Lemma 5.6.4, for sufficiently large n, we have:
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Corollary 5.6.7. The degree estimates returned by Algorithm 19 for each sampling

level j ∈ [L], satisfy the following with probability at least 0.70:

(1− ε)d(v) ≤ d̂j(v) ≤ d(v) +
c1ε

3m

γµ(j) log n
∀v ∈ Sj.

Proof. From Lemma 5.6.4, we have that, for every j ∈ [L], with probability at least

1−O(1/ log n), the approximate degree estimates satisfy:

(1− ε)d(v) ≤ d̂j(v) ≤ d(v) +
ε3

log2 n
· d(Sj) ∀v ∈ Sj.

From Claim 5.6.6, we know that d(Sj) ≤ 8m · log n/γµ(j), for every level j ∈ [L],

with probability at least 3/4. Combining both of them, we have the claim about the

approximate degree estimates.

Using union bound, we have that the total failure probability is at most 1/4 +

O(L · 1/ log n) ≤ 0.30, as L = O(log n). Hence, the corollary.

For each vertex v ∈ S for some subset S ⊆ V , we associate a level `(v) such that

the actual degree of v is a large fraction of the total degree of S, i.e., `(v) is the

minimum j ∈ {0, 1, · · · , L} satisfying d(v) ≥ m̄
γµ(j) · c2ε

2

logn
. The value m̄

γµ(j) · c2ε
2

logn
is called

threshold for level `(v), and it depends on the estimate m̄ for the number of edges m.

Definition 5.6.8 (Actual Level). For every vertex v ∈ V , we associate a level `(v)

defined as

`(v) = arg min
j∈{0,1,··· ,L}

d(v) ≥ m̄

γµ(j)
· c2ε

2

log n
.

The vertices that lie close to the threshold of a level and within a γ-multiplicative

factor are called the boundary vertices and are defined as below:
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Definition 5.6.9 (Boundary vertices). The vertices closer to the boundary are de-

noted by the set:

Vboundary = {v | d(v) ∈
[

m̄ · c2ε
2

γµ(`(v)) log n
,

m̄ · c2ε
2

γµ(`(v))−1 log n

)
or

d(v) ∈
(

m̄ · c2ε
2

γµ(`(v)−1)+1 log n
,

m̄ · c2ε
2

γµ(`(v)−1) log n

)
}.

Claim 5.6.10. For any vertex v ∈ V , with probability 1 − ε, there is some j ∈

{0, 1, · · · , L} such that:

m̄

γµ(j)−1
· c2ε

2

log n
≤ d(v) ≤ m̄

γµ(j−1)+1
· c2ε

2

log n
.

In other words, Pr[v ∈ Vboundary] ≤ ε.

Proof. For notational convenience, let σ = m̄·c2ε2
logn

. Note that for any v ∈ V there is

some j such that σ
γµ(j) ≤ d(v) < σ

γµ(j−1) . We claim that every such vertex will not

lie close to the edges of the interval
[

σ
γµ(j) ,

σ
γµ(j−1)

)
, i.e., d(v) 6∈

[
σ

γµ(j) ,
σ

γµ(j)−1

)
and

d(v) 6∈
[

σ
γµ(j−1)+1 ,

σ
γµ(j−1)

)
. We will show that both events occur with probability at

most 1/B, giving the claim via a union bound.

For any v, there is a unique i such that d(v) ∈
[
σ
γi
, σ
γi−1

)
. Thus, the claim only

fails to hold if i = µ(j) for some j or i = µ(j − 1) + 1 for some j. For the first case,

when i = µ(j) = j · B − s for some j is satisfied only if s = j · B − i, which occurs

with probability 1/B since s is selected uniformly at random from {0, 1, . . . , B − 1}.

Similarly, i = µ(j − 1) + 1 = (j − 1) ·B + 1− s only if s = (j − 1) ·B + 1− i, which

again occurs with probability 1/B. Using union bound, we have:

Pr

[
d(v) ∈

[
σ

γµ(j)
,

σ

γµ(j)−1

)
or d(v) ∈

[
σ

γµ(j−1)+1
,

σ

γµ(j−1)

)]
≤ 2

B
= ε.

Hence, the claim.
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Definition 5.6.11 (Recovered Level). A vertex v is recovered at level ̂̀(v) iff

̂̀(v) = arg min
j∈[L]

d̂j(v) ≥ m̄

γµ(j)
· c2ε

2

log n
.

We associate the following sets with the set of recovered vertices:

R = {v ∈ V | r(v) = 1},Rbad = {v ∈ R | ̂̀(v) 6= `(v)}, and Rboundary = R∩Vboundary.

Here, Rbad represents set of recovered vertices v at a level ̂̀(v) different from `(v).

Recall that `(v) represents the level at which the vertex v is recovered if we knew the

degree d(v) exactly.

Using the next claim, we argue that if v is included in the set of sampled vertices

at level `(v), i.e., v ∈ S`(v), then, it will be recovered at that level, provided degree

estimates satisfy Corollary 5.6.7.

Claim 5.6.12. Suppose v ∈ S`(v) and v 6∈ Vboundary satisfying:

(1− ε)d(v) ≤ d̂̂̀(v)(v) ≤ d(v) +
c1ε

3 ·m
log n · γµ(̂̀(v))

, then, we have ̂̀(v) = `(v).

Proof. As v 6∈ Vboundary, and v ∈ S`(v), from the definition of boundary vertices, we

have:

m̄

γµ(`(v))−1
· c2ε

2

log n
≤ d(v) ≤ m̄

γµ(`(v)−1)+1
· c2ε

2

log n
.

This implies:

d̂`(v)(v) ≥ (1− ε)d(v) ≥ (1− ε) · m̄

γµ(`(v))−1
· c2ε

2

log n

= (1− ε)γ · m̄

γµ(`(v))
· c2ε

2

log n

=
m̄

γµ(`(v))
· c2ε

2

log n
,
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as γ = 1/(1− ε), and so in Algorithm Refine-Estimate (Alg. 21), v will be

recovered, and ̂̀(v) = `(v) as long as it hasn’t been recovered at a prior level.

At any prior level j ≤ `(v)− 1, from Lemma 5.6.4, we have:

d̂j(v) ≤ d(v) +
c1ε

3 ·m
log n · γµ(j)

≤ m̄

γµ(`(v)−1)+1
· c2ε

2

log n
+

c1ε
3 ·m

log n · γµ(j)

≤ m̄

γµ(j)
· c2ε

2

log n
·
(

1

γ · γ(`(v)−1−j)·B +
c1ε

c2

)
≤ m̄

γµ(j)
· c2ε

2

log n

(
1

γ
+
c1ε

c2

)
=

m̄

γµ(j)
· c2ε

2

log n

(
1− ε+

c1ε

c2

)
<

m̄

γµ(j)
· c2ε

2

log n
,

as long as we set c1 < c2. Thus, v will be rejected at any level j < `(v).

The following corollary is immediate from the previous Claim 5.6.12, as every

vertex that is not at the boundary is recovered at the actual level.

Corollary 5.6.13. If all the degree estimates of sampled vertices at every level are

good approximations, i.e., satisfy the Corollary 5.6.7, then, Rbad ⊆ Rboundary ⊆

Vboundary.

For a vertex v that lies in the boundary, i.e., v ∈ Vboundary, it is possible that v is

recovered at a level far away from `(v). Using the next claim, we argue that it will

be recovered in the adjacent levels if it has not been recovered at `(v).

Claim 5.6.14. Suppose v ∈ S`(v)+1 and v ∈ Vboundary satisfying:

(1−ε) ≤ d̂̂̀(v)(v) ≤ d(v)+
c1ε

3 ·m
log n · γµ(̂̀(v))

, then, we have ̂̀(v) ∈ {`(v)+1, `(v), `(v)−1}.
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Proof. For notational convenience, let σ = m̄·c2ε2
logn

. As v ∈ S`(v)+1, we have v ∈ S`(v)−1

and v ∈ S`(v) from construction.

First, we observe that ̂̀(v) ≤ `(v) + 1, because,

d̂̂̀(v)(v) ≥ (1− ε)d(v) ≥ (1− ε) σ

γµ(`(v))
≥ (1− ε)γB σ

γµ(`(v)+1)
≥ σ

γµ(`(v)+1)
.

The last inequality follows from (1 − ε)γB ≥ (1 − ε)(1 + ε)B ≥ 3 − 3ε ≥ 1, when

ε ≤ 2
3
.

As v ∈ Vboundary, we have the following cases:

(a) d(v) ∈
(

σ
γµ(`(v)−1)+1 ,

σ
γµ(`(v)−1)

)
. We use proof by contradiction. Suppose ̂̀(v) ≤

`(v)− 2. Then:

d̂̂̀(v)(v) ≤ d(v) +
c1ε

3 ·m
log n · γµ(̂̀(v))

<
m̄

γµ(`(v)−1)
· c2ε

2

log n
+

c1ε
3 ·m

log n · γµ(̂̀(v))

=
m̄

γµ(̂̀(v))
· c2ε

2

log n
·
(

1

γ(`(v)−1−̂̀(v))·B
+
c1ε

c2

)
≤ m̄

γµ(̂̀(v))
· c2ε

2

log n

(
1

γB
+
c1ε

c2

)
=

m̄

γµ(̂̀(v))
· c2ε

2

log n

(
(1− ε)B +

c1ε

c2

)
≤ m̄

γµ(̂̀(v))
· c2ε

2

log n

(
e−2 +

c1ε

c2

)
≤ m̄

γµ(̂̀(v))
· c2ε

2

log n
.

The last inequality follows because c1 ≤ c2(1− e−2). Therefore, ̂̀(v) > `(v)− 2.

(b) d(v) ∈
[

σ
γµ(`(v)) ,

σ
γµ(`(v))−1

)
. Using a similar argument, we obtain that ̂̀(v) ≥ `(v).

For the sake of contradiction, let ̂̀(v) ≤ `(v)− 1. Then:
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d̂̂̀(v)(v) ≤ d(v) +
c1ε

3 ·m
log n · γµ(̂̀(v))

<
m̄

γµ(`(v))−1
· c2ε

2

log n
+

c1ε
3 ·m

log n · γµ(̂̀(v))

=
m̄

γµ(̂̀(v))
· c2ε

2

log n
·
(

γ

γ(`(v)−̂̀(v))·B
+
c1ε

c2

)
≤ m̄

γµ(̂̀(v))
· c2ε

2

log n

(
2

γB
+
c1ε

c2

)
=

m̄

γµ(̂̀(v))
· c2ε

2

log n

(
2(1− ε)B +

c1ε

c2

)
≤ m̄

γµ(̂̀(v))
· c2ε

2

log n

(
2e−2 +

c1ε

c2

)
≤ m̄

γµ(̂̀(v))
· c2ε

2

log n
.

The last inequality follows because c1 ≤ c2(1−2e−2). Therefore, ̂̀(v) > `(v)−1.

Therefore, we have `(v)− 2 < ̂̀(v) ≤ `(v) + 1.

Definition 5.6.15 (Random variables). Let X̂(v) be the random variable with X̂(v) =

γµ(̂̀(v)) · d̂(v) if v is recovered at level ̂̀(v) and X̂(v) = 0 otherwise. We define X(v)

similarly, assuming we run Algorithm 21 with exact degrees, i.e., X(v) = γµ(`(v)) ·d(v)

if v is recovered at its actual level `(v) and X(v) = 0 otherwise.

In the analysis that follows next, we will argue that for most of the vertices in

R, except for those in Rboundary, the X̂(v) and X(v) are close to each other, i.e.,

1 ± ε approximations of each other. Separately, we show that the contribution of∑
v∈Rboundary

X̂(v) is small. As X(v) values do not contain any degree approximations,

they are easier to handle and we will show concentration for
∑

v∈RX(v). As a result,

the concentration will also hold for the actual estimate
∑

v∈R X̂(v).

Throughout the remaining section, unless explicitly stated otherwise, we will as-

sume that the degrees are good approximations. Formally stated, we define E0 as the

event indicating all the degree estimates at every sampling level satisfy Corollary 5.6.7.

Note that Pr[E0] ≥ 0.70 (from Corollary 5.6.7).
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Claim 5.6.16. With probability at least 1− 1/11 log log n, we have:

∑
v∈Rboundary

X̂(v) ≤ 572εm log log n and
∑

v∈Rboundary

X(v) ≤ 44εm log log n.

Proof. For the sake of brevity, we omit that all the expected values include condi-

tioning on the event E0.

Consider a vertex v ∈ Rboundary. We have that the probability a vertex v ∈

Rboundary is recovered at a level ̂̀(v) satisfying ̂̀(v) ∈ {`(v) + 1, `(v), `(v)− 1} (From

Claim 5.6.14):

Pr[v ∈ Rboundary] = Pr[v ∈ Vboundary] · Pr[v ∈ R | v ∈ Vboundary]

=
∑

̂̀(v)∈{`(v)+1,`(v),`(v)−1}

Pr[v ∈ Vboundary] · Pr[v ∈ Ŝ̀(v)].

Therefore, we have:

E[X̂(v)] =
∑

̂̀(v)∈{`(v)+1,`(v),`(v)−1}

γµ(̂̀(v))d̂̂̀(v) Pr[v ∈ Vboundary] · Pr[v ∈ Ŝ̀(v)]

≤ ε ·
∑

̂̀(v)∈{`(v)+1,`(v),`(v)−1}

d̂̂̀(v)

≤ 3ε ·
(
d(v) +

c1ε
3m

γµ(`(v)−1) log n

)
(using Corollary 5.6.7)

= 3ε ·

(
d(v) +

(
1

1− ε

)B
· c1ε

3m

γµ(`(v)) log n

)

≤ 3ε · (d(v) + 5εd(v)) , because d(v) ≥ c2ε
2m̄

γµ(`(v)) log n

≥ c1ε
2m

γµ(`(v)) log n

≤ 18ε · d(v)

⇒ E

 ∑
v∈Rboundary

X̂(v)

 ≤ 18ε ·
∑
v∈V

d(v) ≤ 36εm.

210



Using Markov’s inequality, we have
∑

v∈Rbad
X̂v ≤ 572εm log n, with probability

≥ 1− 1/22 log log n.

Similarly, we can bound the sum:

E

 ∑
v∈Rboundary

X(v)

 ≤∑
v∈V

ε · d(v) ≤ 2εm.

Using Markov’s inequality, we have, with probability 1−1/22 log log n,
∑

v∈Rbad
X(v) ≤

44εm log log n. Taking a union bound for both the events, gives us the claim.

Claim 5.6.17. E[X(v)] = d(v) ∀v ∈ V . Also, E[
∑

v∈V X(v)] = 2m.

Proof. By Claim 5.6.12, X(v) is nonzero which requires that v ∈ S`(v). As v is

included in S`(v) with probability 1/γµ(`(v)). Therefore, we have:

E[X(v)] = γµ(`(v)) · d(v) · 1/γµ(`(v)) = d(v)

E

[∑
v∈V

X(v)

]
=
∑
j∈[L]

∑
v∈V ∩Sj

E [X(v)] =
∑
v∈V

d(v) = 2m.

Claim 5.6.18.
∣∣∣∑v∈R\Rboundary

X̂(v)−
∑

v∈R\Rboundary
X(v)

∣∣∣ ≤ ε·
∑

v∈R\Rboundary
X(v).

Proof. Consider a vertex v ∈ R \ Rboundary. From Claim 5.6.12, we have ̂̀(v) =

`(v) provided v ∈ S`(v). As we have already conditioned on the event E0, from

Corollary 5.6.7, we have:

(1− ε)d(v) ≤ d̂`(v)(v) ≤ d(v) +
c1ε

3m

γµ(`(v)) log n

(1− ε)γµ(`(v))d(v) ≤ γµ(`(v))d̂`(v)(v) ≤ γµ(`(v))d(v) + γµ(`(v)) · c1ε
3m

γµ(`(v)) log n

⇒ (1− ε)X(v) ≤ X̂(v) ≤ X(v) +
c1ε

3m

log n
.

211



As m̄ ≥ m and c2 > c1, we have:

d(v) ≥ m̄ · c2ε
2

γµ(`(v)) log n
≥ m · c2ε

2

γµ(`(v)) log n

⇒ m · c1ε
3

log n
≤ m · c2ε

3

log n
≤ γµ(`(v)) · εd(v) = εX(v).

Therefore,

(1− ε)X(v) ≤ X̂(v) ≤ (1 + ε)X(v).

Thus, if X̂(v) is nonzero, (1 − ε)X̂(v) ≤ X(v) ≤ (1 + ε)X̂(v), which gives the

claim after summing up over all the terms.

Claim 5.6.19. The variables X(v) ∀v ∈ V are independent and bounded given by

X(v) ≤ 2m̄ · c2ε
2

log n

Proof. Since the vertices are included independently in the sets S0, . . . , SL, the in-

dependence of X(v) follows immediately. Additionally, since `(v) is the smallest

j ∈ {0, 1, . . . L} for which d(v) ≥ m̄
γµ(j) · c2ε

2

logn
(See the definition of `(v) in Claim

5.6.12), we obtain d(v) ≤ m̄
γµ(`(v)−1) · c2ε

2

logn
. Thus, if X(v) is nonzero,

X(v) = γµ(`(v)) · d(v) ≤ γBm̄ · c2ε
2

log n
≤ 1

(1− ε)B
· m̄ · c2ε

2

log n
≤ 2m̄ · c2ε

2

log n
.

Combining Claims 5.6.17 and 5.6.19 we obtain:

Claim 5.6.20. With probability at least 1−1/n, |
∑

vX(v)−2m| ≤ max{ε, ε ·α}·2m.
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Proof. By Claims 5.6.19 and 5.6.17, we have:

∑
v∈V

E[(X(v)− d(v))2] =
∑
v

E[X(v)2]− 2d(v)E[X(v)] + d(v)2

≤
∑
v

E[X(v)2]

≤ 2m̄ · c2ε
2

log n
·
∑
v∈V

E[X(v)] =
2m̄ · 2m · c2ε

2

log n
.

If α > 1, then, m ≤ m̄ ≤ m(1 + α) ≤ 2mα. From Bernstein’s inequality

(Lemma 5.5.2), we have:

Pr

[∣∣∣∣∣∑
v

X(v)− 2m

∣∣∣∣∣ ≥ ε′α ·m

]
≤ exp

(
− ε′2α2 ·m2

2·2m̄·2m·c2ε2
logn

+ 2
3
· 2m̄·c2ε2

logn
·mε′α

)

≤ exp

(
− ε′2α2 ·m2 log n

2 · 4mα · 2m · c2ε2 + 2
3
· 4mα · c2ε2 ·mε′α

)
= exp

(
− ε′2α2 log n

16c2ε2α + 8
3
· c2ε2 · ε′α2

)
≤ 1

n
, because,

ε′2α2

16c2ε2α + 8
3
· c2ε2 · ε′α2

≥ 1, as 1 ≥ ε′ ≥ ε

(
56c2

3

)1/2

.

If α ∈ [ε′, 1], then, m̄ ≤ 2m. From Bernstein’s inequality (Lemma 5.5.2), we have:

Pr

[∣∣∣∣∣∑
v

X(v)− 2m

∣∣∣∣∣ ≥ ε′ ·m

]
≤ exp

(
− ε′2 ·m2

2·2m̄·2m·c2ε2
logn

+ 2
3
· 2m̄·c2ε2

logn
·mε′

)

≤ exp

(
− ε′2 ·m2 log n

2 · 4m · 2m · c2ε2 + 2
3
· 4m · c2ε2 ·mε′

)
≤ exp

(
− ε′2 log n

64c2ε2 + 16
3
· c2ε2

)
≤ 1

n
, because,

ε′2

64c2ε2 + 16
3
· c2ε2

≥ 1, as 1 ≥ ε′ ≥ ε

(
208c2

3

)1/2

.

Combining both the statements, and scaling ε gives us the lemma.
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Note that Claim 5.6.20 basically gives us what we want, after adjusting constants

on α and scaling up our estimate appropriately. We formalize this using the below

lemma:

Lemma 5.6.21. Suppose the input m̄ to Algorithm Refine-Estimate satisfies m ≤

m̄ ≤ m(1 + α) for some approximation factor ε ≤ α ≤ (n2)
m
. Then, with probability

1− 1/11 log log n− 1/n:

2m(1− ε log log n− ε · α) ≤
∑
v∈V

X̂(v) ≤ 2m(1 + ε · log log n+ ε · α).

Proof. We note that for the vertices that are not recovered, i.e., r(v) = 0, we have

X̂(v) = 0, and therefore need to only consider vertices in R. From Claim 5.6.18, we

have: ∣∣∣∣∣∣
∑

v∈R\Rboundary

X̂(v)−
∑

v∈R\Rboundary

X(v)

∣∣∣∣∣∣ ≤ ε ·
∑

v∈R\Rboundary

X(v)

Combining it with
∑

v∈Rboundary
X̂(v) ≤ 572εm log log n from Claim 5.6.16, we

have:

∑
v∈R

X̂(v) ≤ (1 + ε)
∑

v∈R\Rboundary

X(v) +
∑

v∈Rboundary

X̂(v)

≤ (1 + ε)
∑
v∈V

X(v) + 572εm log log n

≤ 2m(1 + ε · α + ε · log log n),

where the last step follows by scaling ε (with a constant) appropriately. From

Claim 5.6.16, we have
∑

v∈Rboundary
X(v) ≤ 44εm log log n. Therefore, we get:

∑
v∈V

X(v) ≤
∑

v∈R\Rboundary

X(v) + 44εm log log n.
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Similarly, we have:

∑
v∈R

X̂(v) ≥ (1− ε)
∑

v∈R\Rboundary

X(v) +
∑

v∈Rboundary

X̂(v)

≥ (1− ε)
∑

v∈R\Rboundary

X(v)

≥ (1− ε) ·
∑
v∈V

X(v)− (1− ε)44εm log log n

≥ 2m(1− ε log log n− ε · α) ≥ 2m(1− α · ε log log n).

The last step follows by scaling ε appropriately. Using union bound, we get the

final probability claim. Hence, the lemma.

In Algorithm Refine-Estimate, we start with an estimate m̄0 for the number of

edges, due to Beame et al.[22]. The estimate for the number of edges m̄0 satisfies m ≤

m̄0 ≤ m(1 + α0), for some α0. As m ≤ m̄0 ≤ O(m log2 n), the approximation factor

α0 could be as large as O(log2 n). In Lemma 5.6.21, we showed that we can improve

our estimator by ε · (α + log log n) multiplicative factor. We call this multiplicative

improvement as refinement. In the next theorem, we argue that our Algorithm 20

which performs repeated refinements results in a (1± ε)-approximation.

Theorem 5.6.22 (Theorem 5.6.5 restated). Given a graph G with n nodes and m

edges, there is an algorithm that makes O(ε−5 log5 n log5(log n) log(ε−1 log n)) non-

adaptive BIS queries to G and returns an estimate m̂ satisfying: m(1 − ε) ≤ m̂ ≤

m(1 + ε),with probability at least 3/5.

Proof. We denote ε′ = O(ε log log n). As m ≤ m̄0 ≤ O(m log2 n), the approximation

factor α0 could be as large as O(log2 n). From Lemma 5.6.21, we have that each

refinement improves the approximation factor to m(1+ε ·α+ε · log n) ≤ m(1+ε′α0) ≤

m+ ε′mα0. Therefore, after O(log1/ε′ log n) refinements, we expect the upper bound

in the approximation to reduce from α0 ·m to O(ε′ ·m). However, each refinement
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worsens the lower bound from m to m(1− ε′ · α). In order to maintain the invariant

that the input to Algorithm 21 always satisfies m̄1 = m̂ ≥ m, we normalize it by

adding ε′m0. This implies that m̂ ≤ m + 2ε′mα0, and the new approximation factor

α1 ≤ 2ε′α0. Continuing this, after T − 1 = 3 log1/ε′ log n refinements, we will have

m̂T ≤ m + (2ε′)Tmα0. By scaling ε = O(ε/ log log n), we have, ε′ ≤ 1/c for some

integer constant c > 2 and m̂T ≤ m + ε · m. So, the final estimate m̂ returned

satisfies:

m(1− ε) ≤ m̂ ≤ m(1 + ε)

For each level of sampling, we use Algorithm 19 to return degree estimates which

requires O(ε−5 log4 n log(ε−1 log n)) BIS queries and O(ε−5 log5 n log(ε−1 log n)) in to-

tal including all the L levels (without scaling of ε). As we have scaled by setting ε =

O(ε/ log1/ε log n), the total number of BIS queries isO(ε−5 log5 n log5(log n) log(ε−1 log n)).

Recall that we have conditioned on the event E0 that our degree estimates are

accurate. Using union bound, the total probability of failure across O(log1/ε log n) =

O(log log n) refinements is:

Pr[¬E0] + (1/10 log log n+ 1/n) · log log n

≤ 0.30 + 1/11 + log log n/n ≤ 2/5 for sufficiently large n.

Hence, the theorem.

5.7 Non-adaptive algorithms for uniform sampling

In this section, we describe algorithms for sampling a near -uniform edge in the

graph. In Section 5.7.1, we discuss connections between OR queries (Definition 5.5.1)

and BIS queries, and outline an algorithm that takes as input two disjoint subsets

L,R and returns a uniform vertex in |Γ(L) ∩ R|. Next, in Section 5.7.2, we use this

algorithm to return uniform neighbors for every vertex in a given subset sampled from
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V . Finally, in Section 5.7.3, we combine these neighbors obtained for each vertex,

and return a near -uniform sample among the edges of the graph.

5.7.1 Identifying uniform neighbor of a subset of vertices

We will describe connections between OR queries (Definition 5.5.1) and BIS

queries that give us algorithms for sampling uniformly an edge from the neighborhood

of a subset of vertices L in another disjoint subset R. This is similar to Section 5.6,

where we discussed algorithms for counting the number of edges in the neighborhood

of a set L in another disjoint subset R.

In [16], the authors discuss various algorithms for the well-studied single element

recovery problem using OR-queries. In the single element recovery problem, we are

given a boolean vector, and we want to identify a non-zero index (also called element)

of the vector.

Definition 5.7.1 (Single Element Recovery [16]). Given a boolean vector x ∈ {0, 1}N ,

return a non-zero element from the support of x, denoted by supp(x).

Lemma 5.7.2 (Lemma 4.3 from [16] restated). Suppose x ∈ {0, 1}N is a boolean

vector. There is a non-adaptive randomized algorithm that recovers a uniform element

j ∈ supp(x) with probability 1− δ and uses O(log2N log(1/δ)) OR queries.

Simulating a BIS query using OR query. We start with an observation that any

BIS query can be simulated using a single OR query. An OR query (Definition 5.5.1)

takes as input a subset S ⊆ V × V of pairs of vertices and returns if an edge of the

graph is present among the subset. Therefore, a BIS query BIS(L,R) is equivalent

to an OR query of the subset S = {(u, v) | u ∈ L, v ∈ R}.

Now, we will show a connection in the other direction for the problem of single

element recovery, i.e., we show that OR queries used for finding single element recovery

can be simulated using appropriate BIS queries.
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Suppose we are given two disjoint subsets L,R ⊆ V , and we want to output a

neighbor of L in R, i.e., a vertex in the set Γ(L)∩R. Intuitively, this is equivalent to

finding a non-zero element (corresponds to a neighbor vertex) in the vector defined

over the subset R for a given subset L.

Simulating an OR query using BIS query for finding a neighbor. Let xR ∈

{0, 1}R denote a vector such that ith element of the vector corresponds to the the

ithe vertex vi in R (according to some fixed ordering of vertices). If vi ∈ Γ(L) ∩ R

for some i ∈ {1, 2, · · · , |R|}, then, xR[i] = 1, otherwise it is 0. Let Q denotes the

set of OR queries used to recover a uniform element from xR using the algorithm

from Lemma 5.7.2. Each of the OR queries q ∈ Q is defined over a subset Rq ⊆

{v1, v2, · · · v|R|} and can be replaced with a corresponding BIS query BIS(L,Rq)

with the same output. Therefore, we can restate Lemma 5.7.2 in terms of BIS queries

as follows:

Lemma 5.7.3. Suppose L,R ⊆ V are disjoint subsets. There is a non-adaptive

randomized algorithm that recovers a uniform neighbor u ∈ Γ(L)∩R with probability

1− δ and uses O(log2 |R| log(1/δ)) BIS queries.

5.7.2 Identifying uniform neighbour for each vertex

In this section, given a subset S ⊆ V , we describe an algorithm that returns a

uniform neighbor for every vertex in S based on the ideas from Section 5.7.1.

Overview of Algorithm Uniform-Neighbor. Our algorithm extends Estimate-

Degree by also returning a uniform neighbor for every vertex in S, along with the

degree estimates. Consider a vertex v contained in the partition Sta. Along with

the estimating the neighborhood size of the partition containing a vertex v, we also

return a uniform neighbor from the set Γ(Sta) ∩ V \ Sta using Lemma 5.7.3 from

Section 5.7.1. So, we will have a set of T = O(log n) neighbors for every vertex. By

selecting the neighbor corresponding to the partition Stmin(v)a containing v, we ensure
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that the neighbor is a uniform neighbor of v with high success probability. Here, the

partition Stmin(v)a where tmin(v) ∈ [T ], corresponds to the random partition with the

minimum neighborhood estimate size and is used for degree estimate of v, i.e., d̂(v).

Algorithm 22 Uniform-Neighbor: Uniform neighbor for each vertex in a given
subset S

Input: Subset S ⊆ V .
Output: Degree estimates and a uniform neighbour for each vertex v ∈ S.

1: Initialize d̂(v)← n for every v ∈ S.
2: for t in {1, 2, . . . , T = O(log n)} do
3: Consider a random partitioning of S into St1, St2, . . . Stλ where λ =
O(ε−4 log2 n).

4: for every partition Sta where a ∈ [λ] do
5: Let zta is sample returned using Lemma 5.7.3 where L = Sta, R = V \Sta

and δ = O(ε/ log n4).
6: ηest(S

ta)← Neighborhood-Size(Sta, V \ Sta).
7: for v ∈ Sta do
8: if d̂(v) > ηest(S

ta) then
9: d̂(v)← ηest(S

ta).
10: tmin(v)← t.
11: end if
12: end for
13: end for
14: end for
15: Uj(v) = ztmin(v)a for every v ∈ S.
16: return d̂(v),Uj(v) for every v ∈ S.

We extend Lemma 5.7.3 and obtain the following corollary:

Corollary 5.7.4. If v ∈ Sta for some t ∈ [T ], a ∈ [λ], then, for every neighbor

w ∈ Γ(v) ∩ V \ Sta, we have:

Pr[w = zta] =
1

|Γ(Sta) ∩ V \ Staj |

Proof. From Lemma 5.7.3, we know that any vertex w ∈ Γ(Sta)∩ V \ Sta will satisfy

:

Pr[w = zta] =
1

|Γ(Sta) ∩ V \ Staj |
.

As Γ(v) ∩ V \ Sta ⊆ Γ(Sta) ∩ V \ Sta, we have the corollary.
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Lemma 5.7.5. Suppose S ⊆ V . Then, Algorithm 22 uses O(ε−4 log5 n log(ε−1 log n))

BIS queries and with probability 1 − O(ε/ log n), returns degree estimates d̂(v) for

every vertex v ∈ S satisfying:

d(v)(1− ε) ≤ d̂(v) ≤ d(v) +
ε4

log2 n
· d(S).

Proof. For every random partition, we use Lemma 5.7.3 to return a uniform neighbor.

This step uses O(log2 n log(1/δ)) BIS queries and succeeds with probability at least

1 − δ, where δ = O(ε/Tλ log n), T = O(log n), and λ = O(ε−4 log2 n). The total

number of random partitions considered is O(T · λ) = O(ε−4 log3 n). Following the

proof of Lemma 5.6.4, we get the lemma.

5.7.3 Identifying a uniform edge in the graph

In this section, we give an algorithm that returns an edge sample from a dis-

tribution that is close to the uniform distribution. Our algorithm extends Algo-

rithm Edge-Estimator and is based on the following idea. Suppose we know the

degrees of all the vertices, denoted by d(v) ∀v ∈ V , in the graph. In order to sample a

uniform edge, we can sample a vertex v with probability d(v)/
∑

w∈V d(w) and return a

uniform neighbor among the neighbors of v. We can observe that the probability that

an edge e = (v, u) is sampled is d(v)/
∑

w∈V d(w)·1/d(v)+d(u)/
∑

w∈V d(w)·1/d(u) =

1/m.

In order to extend the above idea to our setting, there are two challenges. First, we

do not know the degrees (or approximate degrees) of all the vertices. This is because

the set of recovered vertices, i.e., with (1 ± ε)-approximate degree estimates known

is a subset of the sampled vertices at each level of sampling. Secondly, each vertex is

recovered at a different level and is therefore sampled with different probabilities. In

order to return a uniform edge based on the previously discussed idea, we must return
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Algorithm 23 Sampling: Non-adaptive algorithm for sampling uniform edges
Input: V set of n vertices and ε > 0 error parameter.
Output: Edge of the graph sampled from a (near)-uniform distribution.

1: Scale ε← ε
600 log1/ε logn

and initialize γ ← 1/(1− ε) and B ← 2/ε.
2: Let s be an integer selected uniformly at random from the interval [0, B).
3: Let µ(j)← −s+ j ·B for every integer j in the interval

[
0, 1

B
· logγ n

]
.

4: Initialize S0 ← V and construct S1 by sampling vertices in S0 with probability
1/γµ(1).

5: Construct S1 ⊇ S2... ⊇ SL for L = 1
B
·logγ n where each Sj is obtained by sampling

vertices in Sj−1 ∀j ≥ 2, independently with probability 1/γB.
6: for j = 0, 1, . . . L do
7: Run Uniform-Neighbor (Algorithm 22) on Sj, to obtain the degree esti-

mates d̂j(v) satisfying (1− ε)d(v) ≤ d̂j(v) ≤ d(v) + c1ε3·m
logn·γµ(j) for all v ∈ Sj.

8: Let U(v) denote the neighbor returned by Algorithm 22 for vertex v ∈ Sj.
9: end for
10: Let m̄0 be the O(log n)-approximate estimate from the Algorithm CoarseEsti-

mator in Beame et al. [22] on a random partition of V .
11: Set m̄0 ← max{2, 16 log n · m̄0}, so that we have m ≤ m̄0 ≤ (64 log2 n) ·m.
12: for t = 1, 2, · · · , T = 2 log1/ε log n do
13: m̄t is assigned the output of Refine-Estimate that takes as input approx-

imate degree values d̂j(v) ∀v ∈ Sj ∀j ∈ [L], the previous estimate m̄t−1 and the
iteration t.

14: end for
15: For every v recovered, let ̂̀(v) denote the level at which v was recovered by T th

iteration of Refine-Estimate. Include all the recovered vertices in R.
16: Let vsampled be the vertex drawn from the distribution such that a vertex v in R

is selected with probability proportional to γµ(̂̀(v)) · d̂̂̀(v)(v).
17: return edge (vsampled,U(vsampled)).

a single vertex among the set of recovered vertices with probability proportional to

its degree.

We address these two challenges by, amongst the recovered vertices, returning

vertex v with probability proportional to γ ̂̀(v) · d̂(v) where ̂̀(v) is the level at which

it is recovered, and d̂`(v)(v) is the degree estimate at the level of recovery. From

Section 5.6.3, we know that our estimator
∑

v is recovered X̂(v) =
∑

v is recovered γ
̂̀(v) ·d̂(v)

is concentrated around 2m (See Lemma 5.6.21) and we will be able to return a near -

uniform sample.
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Overview of Algorithm Sampling. Our algorithm is an extension of Algo-

rithm Edge-Estimator (Algorithm 20) and the differences are highlighted in blue.

During the process of constructing the edge estimator, by repeated refinements,

let ̂̀(v) denote the level at which a vertex v is recovered at the last, i.e., T =

O(log1/ε log n)th refinement iteration, and the corresponding degree estimate d̂̂̀(v)(v).

Let R denote the set of all recovered vertices, i.e., X̂(v) 6= 0, in the last refinement

iteration. Then, we draw a vertex v from the distribution such that it is selected

with probability proportional to γµ(̂̀(v)) · d̂̂̀(v)(v). From our earlier discussion, this

approach will result in a near -uniform sample.

5.7.3.1 Proof of Theorem 5.3.2

Claim 5.7.6. With probability 1− 2ε, for all levels j ∈ {1, 2, · · · , L}, we have:

d(Sj) ≤
m · L
εγµ(j)

.

Proof. As every vertex is included in Sj with probability 1/γµ(j), we get:

E[d(Sj)] =

∑
v∈V d(v)

γµ(j)
=

2m

γµ(j)

Therefore, by Markov’s Inequality, Pr[d(Sj) ≥ m · L/εγµ(j)] ≤ 2ε/L. Taking a union

bound over all the levels, with probability at least 1− 2ε,

d(Sj) ≤ m · L/εγµ(j) ≤ m · log n/εγµ(j)for every level j ∈ [L].

By setting λ = O(ε−4 log2 n), a multiplicative factor of 1/ε more than that in

section 5.6, we ensure that the exact guarantees hold with probability 1−ε. Combining

Claim 5.7.6 and Lemma 5.7.5, for sufficiently large n, we have:
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Corollary 5.7.7. The degree estimates returned by Algorithm 22 for each sampling

level j ∈ [L], satisfy the following with probability at least 1− ε:

(1− ε)d(v) ≤ d̂j(v) ≤ d(v) +
c1ε

3m

γµ(j) log n
∀v ∈ Sj.

For the remaining portion of this section, we will condition on the event that

Corollary 5.7.7 is satisfied. In the proof of the main Theorem 5.7.10, we account for

the failure probability of this event.

In the next lemma, we show that if a vertex is recovered at level j (recall the thresh-

old value for recovery from Section 5.6.3), the neighbor returned by Algorithm 22,

given by Uj(v) is equal to any neighbor of v with probability 1/d̂(v). From Sec-

tion 5.6.3, we know that approximate degree of v obtained from the set S, denoted

by d̂j(v), when `(v) = j is a (1±ε)-approximation of d(v), therefore, we have returned

a neighbor of v with probability (1± ε)/d(v).

Lemma 5.7.8. Suppose v ∈ Sj satisfies the following: d̂(v) ≥ m
γµ(j) · c2ε

2

logn
. Then, for

every w ∈ Γ(v), we have with probability 1− ε:

(1− ε) 1

d̂(v)
≤ Pr[Uj(v) = w] ≤ (1 + ε)

1

d̂(v)
.

Proof. From Lemma 5.6.3, we know that:

(1− ε)|Γ(Stmin(v)a)∩V \Stmin(v)a| ≤ ηest(S
tmin(v)a) ≤ (1 + ε)|Γ(Stmin(v)a)∩V \Stmin(v)a|.

Moreover, our degree estimates in Algorithm 22 are obtained by d̂(v) = ηest(S
tmin(v)a).

Consider a vertex w ∈ Γ(v). If w ∈ Γ(v) \ Stmin(v)a, we have:

Pr [Uj(v) = w] =
1

|Γ(Stmin(v)a) ∩ V \ Stmin(v)a|

(1− ε) · 1

d̂(v)
≤ Pr [Uj(v) = w] ≤ (1 + ε) · 1

d̂(v)
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If w ∈ Γ(v)∩Stmin(v)a, then, it is never returned. In iteration tmin(v) ∈ [T ], w ∈ S

is assigned to one of the λ random partitions, we observe that such an event happens

with probability:

Pr[w ∈ Stmin(v)a ∩ Γ(v)] =
1

λ
=

ε4

c log2 n
≤ ε, for some constant c > 1.

It is possible that Uj(v) 6∈ Γ(v) ∩ (V \ Stmin(v)a), which is a failure event for us, as

no neighbor of v will be returned. We will argue that probability for such an event

occurring is small.

From the analysis in Lemma 5.6.4 and Corollary 5.7.7, with probability at least

1− 1/n3 and for an appropriate choice of c2, we have:

d(Stmin(v)a \ {v}) ≤ c1m · ε3

γµ(j) log n
≤ εd̂(v) (as we are given d̂(v) ≥ m

γµ(j)
· c2ε

2

log n
).

Pr[Uj(v) 6∈ Γ(v) ∩ (V \ Stmin(v)a)] ≤ |Γ(Stmin(v)a \ {v}) ∩ V \ Stmin(v)a|
|Γ(Stmin(v)a) ∩ V \ Stmin(v)a|

≤ d(Stmin(v)a \ {v})
|Γ(Stmin(v)a) ∩ V \ Stmin(v)a|

≤ (1 + ε) · d(Stmin(v)a \ {v})
d̂(v)

≤ ε(1 + ε) = 2ε.

By union bound, failure probability is at most 1/n3 + ε ≤ 2ε. Scaling ε appropri-

ately, gives us the lemma.

In the next lemma, we show that if a vertex is not in Vboundary, then, it is recovered

with the required probability of d̂(v)/2m (upto 1 ± ε factor). Otherwise, we argue

that the probability of returning it is not too large.

Lemma 5.7.9. For any vertex v, with probability at least 1− ε, we have:
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1. (1− ε)
d̂̂̀(v)

(v)

2m
≤ Pr[vsampled = v] ≤ (1 + ε)

d̂̂̀(v)
(v)

2m
if v 6∈ Vboundary.

2. Pr[vsampled = v] ≤
15(1+ε)d̂̂̀(v)

(v)

2m
if v ∈ Vboundary.

Proof. We condition on the event that the (1−ε)2m ≤
∑

v∈R X̂(v) ≤ (1+ε)2m, which

happens with probability at least 1− ε (follows from Corollary 5.7.7, Lemma 5.6.21,

and Theorem 5.6.5).

From Claim 5.6.12, we know that a vertex not lying at the boundary will be

recovered at level `(v), i.e., ̂̀(v) = `(v). Consider a vertex v ∈ V \ Vboundary, we have:

Pr[v ∈ R] = Pr[v ∈ Ŝ̀(v)] =
1

γµ(̂̀(v))

From construction, for any vertex v ∈ R, we have that

Pr[vsampled = v | v ∈ R] =
γµ(̂̀(v))d̂̂̀(v)(v)∑

w∈R γ
µ(̂̀(v))d̂̂̀(w)(w)

≤ (1 + 2ε)
γµ(̂̀(v))d̂̂̀(v)(v)

2m
.

Similarly, we get:

Pr[vsampled = v | v ∈ R] ≥ (1− ε)
γµ(̂̀(v))d̂̂̀(v)(v)

2m
.

Combining both the above statements and scaling ε = ε/2, we get:

(1− ε)
d̂̂̀(v)(v)

2m
≤ Pr[vsampled = v] ≤ (1 + ε)

d̂̂̀(v)(v)

2m
.

Now, consider a vertex v ∈ Vboundary. From Claim 5.6.14, if included in we know

that ̂̀(v) ∈ {`(v)−1, `(v), `(v) + 1}, provided it is included in their corresponding set

Ŝ̀(v).
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Pr[v ∈ R] ≤
∑

̂̀(v)∈{`(v)−1,`(v),`(v)+1}

Pr[v ∈ Ŝ̀(v)] ≤
3

γµ(`(v)−1)

Pr[vsampled = v] = Pr[vsampled = v | v ∈ R] · Pr[v ∈ R] ≤ 3(1 + 2ε)γµ(̂̀(v))

γµ(`(v)−1)
·
d̂̂̀(v)(v)

2m

≤
15(1 + 2ε)d̂̂̀(v)(v)

2m

Hence, the lemma.

Theorem 5.7.10. Given a graph G with n nodes, m edges, and edge set E, there is an

algorithm that makes O(ε−4 log6 n log(ε−1 log n) + ε−6 log5 n log6(log n) log(ε−1 log n))

non-adaptive BIS queries which, with probability at least 1− ε, outputs an edge from

a probability distribution P satisfying (1− ε)/m ≤ P (e) ≤ (1 + ε)/m for every e ∈ E.

Proof. Consider an edge e = (v, u). Then, the edge e = (v, u) can be returned by

Algorithm 23 if either v or u is the vertex sampled vsampled and the other vertex is

the neighbor returned by Algorithm 22. From Lemmas 5.7.8 and 5.7.9, we have:

Pr[e is returned by Algorithm 23]

= Pr[vsampled = v] · Pr[U(v) = u] + Pr[vsampled = u] · Pr[U(u) = v]

⇒ Pr[vsampled = v] = Pr[vsampled = v | v ∈ V \ Vboundary] Pr[v ∈ V \ Vboundary]

+ Pr[vsampled = v | v ∈ Vboundary] Pr[v ∈ Vboundary]

≤ (1 + ε)2
d̂̂̀(v)(v)

2m
+ ε ·

15(1 + 2ε)d̂̂̀(v)(v)

2m

≤ (1 +O(ε)) ·
d̂̂̀(v)(v)

2m

Therefore, we have:

226



Pr[e is returned by Algorithm 23]

≤ (1 +O(ε)) ·
d̂̂̀(v)(v)

2m
· 1

d̂̂̀(v)(v)
+ (1 +O(ε)) ·

d̂̂̀(u)(u)

2m
· 1

d̂̂̀(u)(u)

≤ (1 +O(ε)) · 1

m
.

The total number of additional (other than those used for edge estimation) BIS queries

used is O(log n · Q) where Q is the queries used by Algorithm 22 to return a (near)

uniform sample. From Claim 5.7.5, we have that Q = O(ε−4 log5 n log(ε−1 log n)).

In Algorithm 22, as we partition each sampled subset Sj, for every j ∈ L, into an

additional 1/ε factor many partitions as compared to Algorithm 19. Therefore, we use

a total of O(ε−4 log6 n log(ε−1 log n) + ε−6 log5 n log6(log n) log(ε−1 log n)) BIS queries

for edge estimation.

Using union bound, we have that the failure probability in Lemma 5.7.9 and Corol-

lary 5.7.7 is at most O(ε). Scaling the ε appropriately, gives us a failure probability

of ε. Hence, the theorem.

5.8 Graph Connectivity

In this section, we present Algorithm Connectivity-BIS that uses 2-rounds of

adaptivity to determine the connectivity of an input graph G. This improves upon

on a prior three-round algorithm of [16]. In particular, the algorithm of [16] selects

O(log2 n) random neighbors per vertex, and contracts the connected components of

this random graph into supernodes. This random sampling step can be performed

using one round of Õ(n) BIS queries. They prove that in the contracted graph on the

supernodes, there are at most O(n log n) edges. Using this fact, they then show how

to identify whether all the supernodes are connected using Õ(n) BIS queries and two

additional around of adaptivity.
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We follow the same basic approach: using a first round of Õ(n) queries to randomly

sample O(log2 n) neighbors per vertex and contract the graph into supernodes. Once

this is done, we observe that we have BIS query access to the contracted graph simply

by always grouping together the set of nodes in each supernode. So, we can directly

apply the non-adaptive sampling algorithm of Theorem 5.3.2 to sample edges from

the contracted graph. By a coupon collecting argument, drawing O(n log2 n) near-

uniform edge samples (with replacement) from the contracted graph suffices to recover

all O(n log n) edges in the graph, and thus determine connectivity of the contracted

graph, and, in turn, the original graph.

Algorithm Connectivity-BIS:

1. For every node v ∈ V , sample O(log2 n) edges uniformly with replacement,

from the neighborhood Γ(v), using Lemma 5.7.3. Let the resulting set of edges

sampled be denoted by E ′ ⊆ E and the connected components in the subgraph

G(V,E ′) be S1, S2, · · ·Sp.

2. Let Gsup(V sup, Esup) where Esup ⊆ V sup×V sup denotes the supergraph obtained

from G(V,E ′) by collapsing the connected components S1, S2, · · ·Sp into single

supernodes s1, s2, · · · sp respectively, given by:

V sup = {si | Si where i ∈ [p] is a connected component in G(V,E ′)}

Esup = {(si, sj) | ∃x ∈ Si, y ∈ Sj where i 6= j such that (x, y) ∈ E}.

3. Run Algorithm 23 (with any constant value for ε) onGsup to draw T = O(n log2 n)

uniform superedge samples with replacement, from Esup . If the resulting graph

Gsup is connected, output ‘Yes’. Otherwise, output ‘No’.

Theorem 5.8.1. Given a graph G with n nodes, there is a 2-round adaptive algorithm

that determines if G is connected with probability at least 1 − 1/n using Õ(n log8 n)

BIS queries, where Õ(·) ignores the logO(1) log n dependencies.
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Proof. We have: |Esup| = O(n log n) (see Lemma 6.5 in [16]). From Theorem 5.7.10,

we have for constant ε < 0.5:

Pr[(si, sj) ∈ Esup is returned] ≥ (1− ε) · (1− ε)
|Esup|

≥ (1− 2ε) · c · 1

n log n

⇒ Pr[(si, sj) is not returned] = (1− Pr[(si, sj) ∈ Esup is returned])T

≤ e−
2c
3
· 1
n logn

·T ≤ 1

n4
.

By union bounding over at most O(n log n) many superedges, the total failure prob-

ability is at most 1/n2. Similarly, union bounding over the failure probability of

recovering O(n log2 n) edges in the first step, we have that the failure probability is at

most 1/n2. Therefore, Algorithm Connectivity-BIS recovers all the edges in Esup

with probability at least 1− 1/n.

From Lemma 5.7.3, the total number of BIS queries required in the first round

of our algorithm is O(n · log2 n · log3 n) = O(n log5 n). Setting ε to be any constant

value, from Theorem 5.7.10, the total number of BIS queries required is O(n log5 n)+

Õ(n log2 n · log6 n) = Õ(n log8 n), where Õ(·) ignores the log log n dependencies.

Hence, the theorem.

5.9 Conclusion

In this chapter, we presented non-adaptive algorithms for edge estimation and

sampling using BIS queries. It would be interesting to see if there is a better de-

pendence on ε than that obtained by our algorithms, when we consider non-adaptive

algorithms for edge estimation. Using Independent Set (IS) queries, adaptive al-

gorithms for edge estimation with optimal query complexity O(min{
√
m,n/

√
m} ·

poly(log n, 1/ε)) were obtained only recently [40, 22]. It would be interesting to see if

we can extend our techniques to study non-adaptive algorithms for edge estimation

using IS queries or in the standard adjacency list model. We believe that adaptivity
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plays a role similar to that of number of passes for streaming algorithms, and optimiz-

ing for the rounds of adaptivity could be a good future direction, even for problems

that might already have query optimal adaptive sub-linear time algorithms.
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