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ABSTRACT

HYPERSPECTRAL UNMIXING: A THEORETICAL ASPECT AND

APPLICATIONS TO CRISM DATA PROCESSING

SEPTEMBER 2022

YUKI ITOH

B.Sc., THE UNIVERSITY OF TOKYO

M.Sc., THE UNIVERSITY OF TOKYO

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Mario Parente

Hyperspectral imaging has been deployed in earth and planetary remote sensing, and

has contributed the development of new methods for monitoring the earth environment

and new discoveries in planetary science. It has given scientists and engineers a new

way to observe the surface of earth and planetary bodies by measuring the spectroscopic

spectrum at a pixel scale.

Hyperspectal images require complex processing before practical use. One of the

important goals of hyperspectral imaging is to obtain the images of reflectance spectrum.

A raw image obtained by hyperspectral remote sensing usually undergoes conversion to

a physical quantity representing the intensity of light energy, called radiance. In order

to obtain the reflectance spectrum of surface, the contribution of atmosphere needs to

be addressed and then divided by a spectrum of “white reference.” Furthermore, the

obtained reflectance spectra of image pixels are likely to be the mixtures of multiple

species due to limited spatial resolution from orbits around planets.

Hyperspectral unmixing is an attempt to unmix those pixels – to identify substantial

components and estimate their fractional abundances. Hyperspectral unmixing has been

v



widely explored in the literature, but there are still many aspects yet to be studied. The

majority of research focuses on the development of methods to retrieve correct substantial

components and accurate fractional abundances. Their theoretical aspects are rarely

investigated. Chapter 2 will pursue a theoretical aspect of sparse unmixing, one of the

hyperspectral unmixing problems and derive its theoretical conditions that guarantee the

correct identification of substantial components.

Hyperspectral unmixing can also be used for other stages of hyperspectral data pro-

cessing. Chapter 3 explores the application of hyperspectral unmixing to the processing

of hyperspectral image acquired by the Compact Reconnaissance Imaging Spectrometer

for Mars (CRISM) onboard the Mars Reconnaissance Orbiter (MRO). In particular, new

atmospheric correction and de-noising methods for the CRISM data that use a hyper-

spectral unmixing to model surface spectra, are introduced. The new methods remove

most of the problematic systematic artifacts present in CRISM images and significantly

improve signal quality.

Chapter 4 investigates how hyperspectral images acquired from orbits can be com-

bined with ground exploration. In the recent rush of the launch of many Martian ground

rover missions, it is important to effectively integrate knowledge obtained by hyperspec-

tral remote sensing from orbits into ground exploration for facilitating Martian explo-

ration. In specific, this dissertation solves the problem of matching hyperspectral image

pixels obtained by the CRISM with ground mega-pixel images acquired by the Mast

Camera (Mastcam) installed on the Curiosity rover on Mars. A new systematic method-

ology to map the CRISM and Mastcam images onto high resolution surface topography

is developed.
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C H A P T E R 1

INTRODUCTION

Hyperspectral imaging splits incoming light of each pixel into continuous wavelength

components, allowing scientists and engineers to observe the electromagnetic spectrum

that is reflected/scattered at, emitted from, or passed through targets. The acquired

spectrum provides the abundant information of the targets, and it has been leveraged in

remote sensing from airplanes and satellites for detecting and mapping surface species of

the earth and planetary bodies.

Hyperspectral imagers collect and focus the incoming electromagnetic wave, and then

disperse it into hundreds of narrowly consecutive wavelength components by a spectro-

graph. The acquired image is considered as an image cube where the first two dimensions

represent the horizontal and vertical spatial coordinates, and the third represents the

wavelength of the spectrum of each image pixel. Fig. 1.1 shows an example of a hyper-

spectral image cube. The depth direction represents the wavelength direction. Pixels are

characterized by their spectra, which are interpreted as feature vectors and utilized by

machine learning and applied mathematical methods to further analyze.

One of the important missions in hyperspectral remote sensing is the acquisition of

the reflectance image cube of earth or planetary surface. Reflectance is the ratio of

the intensity of light reflected on the surface with respect to that of its incident light

energy. Different species show distinct reflectance spectra characterized by their shape

and absorption features. In addition, the reflectance spectrum is ideally a property

invariant to sensors and environmental conditions; therefore, it can be directly used for
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Figure 1.1. Hyperspectral image cube.

the identification of species by comparing it with the reflectance spectrum of known

species either measured in the laboratory or in the field.

The retrieval of the reflectance spectrum in the laboratory setting may be simple.

Hyperspectral imagers sense and record the intensity of light energy in a digitized integer

format. The retrieval of the reflectance spectrum in the laboratory can be performed

by the division of the raw integer values with the measurement of a “white reference,” a

material with a known refelectance spectrum that has mostly flat features over a targeted

wavelength region. On the other hand, the retrieval of the surface reflectance spectrum

in remote sensing from airplanes and spacecrafts involves complex processing steps. The

raw integer values are first converted to a physical quantity representing the intensity of

light energy per wavelength, called radiance. This procedure is called calibration. Then,

surface reflectance is retrieved by addressing interactions through atmosphere and on the

surface. These processing steps are necessary since it is challenging to obtain a white

reference measurement at the scale of remotely sensed image pixels and the atmospheric

interaction is unavoidable.

Furthermore, the obtained reflectance spectra of image pixels are likely to be the

mixtures of multiple species due to the limited spatial resolution of orbital measure-
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ments. Hyperspectral unmixing is an attempt to unmix these mixed pixels – to retrieve

substantial components (also called endmembers) and their fractional abundances. In

general, hyperspectral unmixing models surface mixing with a mathematical model that

integrates endmember spectra and their fractional abundances, and performs model in-

version. The simplest mixing model is the linear mixture model (LMM) that models

the observed spectrum with a non-negative linear combination of endmember spectra

weighted by their fractional abundances.

Hyperspectral unmixing has been widely explored in the literature to make the most

of acquired images [1]. The majority of research in the field of hyperspectral unmixing

focuses on the development of methods to retrieve correct endmembers and their accu-

rate fractional abundances. Their theoretical aspects are rarely investigated. Chapter 2

pursues a theoretical aspect of sparse unmixing. Sparse unmixing [2] is a semi-supervised

unmixing method that identifies endmembers present in the observation from the large

collection of spectra in the spectral database. Inspired by Tropp’s approach [3], we derive

the theoretical conditions of sparse unmixing formulated as non-negative lasso (Nlasso)

that guarantee the correct identification of substantial components. The chapter further

introduces approximately perfect recovery condition (APMRC) that practically performs

as good as a necessary and sufficient condition of Nlasso. A rigorous mathematical proof

of the necessity and sufficiency of the APMRC is also provided.

Hyperspectral unmixing can also be used for other stages of hyperspectral data pro-

cessing. Chapter 3 explores the application of hyperspectral unmixing to the processing

of hyperspectral image acquired by Compact Reconnaissance Imaging Spectrometer for

Mars (CRISM) [4] onboard the Mars Reconnaissance Orbiter (MRO). The traditional

atmospheric correction method “volcano scan correction,” successfully removes a large

part of the contribution of atmospheric gaseous absorption on the CRISM spectra, but

is known to cause several artifacts large enough to mask underlying surface spectral

features [5, 6]. The chapter first introduces simultaneous atmospheric correction and
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de-noising for CRISM (SABCOND). SABCOND models light transmission through the

Martian atmosphere by the Beer-Lambert’s law and surface interaction using an unmix-

ing model. An optimal atmospheric transmission spectrum is estimated by the inversion

of the model via a minimization problem that also takes noise into account. SABCOND

turns out to remove most of the problematic systematic artifacts present in the CRISM

images that would have been caused by the volcano scan correction and significantly

improve signal quality. The chapter also provides the algorithmic details of SABCOND.

The chapter further introduces the two-step SABCOND, aiming for more accurate

atmospheric correction. SABCOND sometimes suffers from artifacts due to its poor

initialization of the transmission spectrum. The two-step SABCOND addresses this issue

by using a more optimized initial transmission spectrum obtained by performing the

SABCOND on a spectrally unremarkable image that has atmospheric transmission similar

to that of the image of interest. Although the spectrally unremarkable image needs to be

manually selected, this methodology leads to more accurate atmospheric correction with

higher fidelity.

Chapter 4 then investigates how hyperspectral images acquired from orbits can be

effectively and precisely combined with ground observation. In the recent rush of the

launch of many Martian ground rover missions, it is important to effectively integrate

knowledge obtained by hyperspectral remote sensing from orbits into ground exploration

for facilitating Martian ground rover exploration. In specific, this dissertation solves the

problem of matching hyperspectral image pixels obtained by the CRISM with ground

mega-pixel images acquired by the Mast Camera (Mastcam) installed on the Curiosity

rover on Mars. In order to accurately map the image pixels of CRISM observation onto

Mastcam images, both images are projected onto surface topography based on a high res-

olution digital elevation model. It is necessary to recognize visible and invisible surface

for the Mastcam image projection onto the surface topography as many occlusions are

observed from the Mastcam viewpoint on the ground. A new rigid and fast algorithms
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to solve this visiblity problem are presented. In order to accurately map CRISM image

pixels, each CRISM pixel is directly mapped onto the high resolution surface topography

using the MRO trajectory and CRISM orientation data. We propose an algorithm to pre-

cisely project each of the pixel footprints onto the surface. Finally, these two projections

are combined, and the map projection of the CRISM image pixels onto the Mastcam

images is implemented.
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C H A P T E R 2

A THEORETICAL ASPECT OF HYPERSPECTRAL UNMIXING

This chapter will pursue the theoretical aspect of sparse unmixing [2] – the formulation

of hyperspectral unmixing as non-negative sparse modeling.1

2.1 Introduction

Sparse modeling has achieved significant recognition in a variety of research areas

such as signal processing, machine learning, computer vision, and pattern recognition.

Sparse models refer to the formulation of a signal of interest (or an approximation of it)

as the linear combination of a small number of elements (known as atoms) drawn from

a so-called sparsity dictionary (or dictionary for short). The sparse recovery problem

refers to the identification of the relevant dictionary atoms for a particular signal of

interest. Sparse modeling and recovery has a rich history in signal processing, and has

received significant attention recently due to the emergence of compressed sensing [9,10],

a framework for compressed signal acquisition that leverages sparse modeling.

We can further restrict the coefficients of the atoms to be non-negative. In general,

non-negativity is advantageous as it makes the model parameters more interpretable. For

instance, Lee and Seung present non-negative matrix factorization [11], which can learn a

part-based representation of faces or documents. Just adding non-negativity constraints

1This chapter is the compilation of the two pieces of research work [7] and [8].

6



on a linear model to decompose spectral data gives the model coefficients the meaning of

fractional abundances [12]. Non-negative constraints have been applied to independent

component analysis in face recognition tasks [13].

Many approaches have combined non-negativity and sparse modeling. By adding non-

negative constraints, several researchers [14,15] refined the performance of applying sparse

modeling on a face recognition task obtained by Wright et al. [16]. Non-negative least

squares (NNLS) has been traditionally used, sometimes accompanied with abundance

sum-to-one constraints, to extract the spectral components from hyperspectral pixels

(e.g., [12]), a process called spectral unmixing. Recently, NNLS has been combined with

sparsity with improvements in the unmixing performance [2, 17]. Other examples of

combining non-negativity and sparse modeling can be found in astronomical imaging [18],

proteomics [19], and economics [20]. It has been noted that sparse solutions can be

obtained by NNLS with subsequent thresholding [21–23].

Several contributions on theoretical analysis of non-negative sparse modeling ap-

proaches exist in the literature. Many of them [24–31] are devoted to modeling in the

absence of noise, focusing on questions such as the performance of convex optimization-

based approaches for sparse recovery and the uniqueness of the sparse solution. Other

works studied the theoretical performance of non-negative sparse modeling in the pres-

ence of noise [19–21]; however, those analyses focus on the specific case of either Gaussian

or sub Gaussian noise.

In contrast to the statistical noise modeling used in previous analyses [19–21], this

chapter considers the performance of non-negative sparse modeling under a more general

scenario, where the observed signals have an unknown arbitrary distortion. Although

analysis proposed here can be applied to the additive random noise to obtain existing

results, it is also immediately applicable to many other types of distortion, e.g., distortion

present due to nonlinear mixing of the individual components. In the case of spectral

unmixing, nonlinear mixing may come from nonlinear mixing of atoms [32,33] or spectral
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mismatches between the spectra of the minerals in the library and those involved in the

observation [34].

Under this general scenario, I will investigate the conditions for successful recon-

struction — or regression — of a signal using non-negative lasso by expanding previous

analyses on the general lasso. Some of these studies consider dictionaries drawn according

to a random distribution [35]. Others assume an arbitrary dictionary and pose conditions

for successful regression that require a combinatorial amount of computation: examples

include the spark, restricted isometry property, the restricted eigenvalue property, and

the irrepresentable condition [10, 36–39]. It is possible to relax the computational com-

plexity of the verification process, using tools such as coherence [3, 36, 40–42]; however,

all the aforementioned frameworks consider all possible combinations of atoms simulta-

neously, and therefore are found to often give very conservative assessments of regression

performance.

Derivation follows the line of Tropp’s work [3]. In contrast to the references above,

Tropp has performed an analysis based on the so-called exact recovery condition (ERC),

which provides conditions on successful reconstruction for all combinations of a fixed

subset of atoms. The ERC can be easily computed and is compatible with well-known

optimization-based and iterative greedy algorithms for sparse signal recovery and regres-

sion, and so it appears suitable for the analysis of non-negative versions. Furthermore,

because the ERC is focused on sparse signals featuring a specific support (i.e., a set of

indices for the signal’s nonzero entries), its guarantees are less pessimistic than those

provided by alternative approaches, which consider success for all sparse signals simul-

taneously, regardless of their support. Nonetheless, one could conceivably argue that

restricting the set of signals of interest to a fixed support with non-negative entries may

provide guarantees that are even closer to the actual performance of non-negative sparse

recovery. While the proposed conditions require a specific set of atoms as an input, they

are motivated by applications, such as hyperspectral unmixing, in which it is more useful

8



to determine whether a specific set of atoms can be identified via sparsity-based methods,

rather than provide guarantees on the recovery for all subsets, since many combinations

of atoms might never materialize.

This chapter is organized as follows. Section 2.2 describes background of this research

including mathematical notation throughout this chapter. Section 2.4 clarifies the contri-

bution of this chapter and Section 2.4 describes my contribution. Section 2.5 illustrates

an application of the MRCs to a hyperspectral unmixing task and Section 2.6 concludes

this paper.

2.2 Background

2.2.1 Mathematical notation

I specify the mathematical notation used in this chapter. The support of x ∈ RN is

the set of the indices associated with the non-zero elements of x, denoted by supp(x).

R(X) is the range of the matrix X. MT, M−1, and M† denote the transpose, inverse,

and pseudoinverse of the matrix M, respectively. ∥M∥∞,∞ is an (∞,∞) matrix operator

norm and gives the maximum ℓ1-norm of the row vectors of M.

I denote a subset of the column indices of A ∈ RL×N by Λ ⊆ {1, 2, . . . , N}, and the

subdictionary that is composed of atoms associated with indices in Λ by AΛ. Note that

all of the theorems are discussed on a subset Λ of the column indices as Tropp [3] did.

For any coefficient vector x ∈ RN , I denote the vector composed of the elements of x

indexed by Λ by xΛ. I also denote the whole column index set Ω = {1, 2, . . . , N}, and

the complement of Λ by Λc = Ω\Λ where \ is the difference of two sets.

2.2.2 Lasso and its model recovery condition

The lasso is an unconstrained optimization algorithm that regularizes a least-square

fit penalty with a sparsity-inducing cost on the coefficient vector. Lasso assumes the
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following linear model:

y =Ax + e, (2.1)

where y ∈ RL is an observation vector, A ∈ RL×N is a dictionary matrix where the

components aj (j = 1, . . . , N), called atoms, are stored in its columns, x ∈ RN is a

coefficient vector, e ∈ RL is an error vector, and ⪰ (and its variants) denotes element-

wise inequality. Lasso searches for the atoms that best describe the input signal as a

linear combination in a least square sense while reducing the number of contributing

atoms. The lasso is written as:

minimize
x

1

2
∥y −Ax∥22 + γ ∥x∥1 , (2.2)

where γ is a positive constant that controls the degree of sparsity. The weight γ could

be adaptively tuned for each element, e.g., as done in adaptive lasso [43]. An analysis of

the lasso was provided by Tropp [3] and hinges on the exact recovery coefficient (ERC),

defined as

ERC(Λ) := 1−max
n/∈Λ
∥A†Λan∥1, (2.3)

where Λ ⊆ {1, . . . , N} are indices for a subset of the columns of A and an denotes the

nth column of A. Note that it is implicitly assumed that the columns of AΛ are linearly

independent so that the pseudoinverse exists. Broadly speaking, the ERC evaluates

how far the atoms outside of Λ are from the subspace determined by the atoms in Λ.

When the columns of A have unit ℓ2-norm, the condition considers the minimum angle

between atoms outside of Λ and the subspace spanned by AΛ. Intuitively, a larger ERC

is preferred because it reduces correlation between AΛ and atoms outside the set. The

following theorem provides performance guarantees for the lasso that are specific to a

particular support Λ.

Theorem 2.1 [3, Theorem 8] Let Λ index a linearly independent collection of columns of

A for which ERC(Λ) ≥ 0. Suppose that y is an input signal whose ℓ2 best approximation
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yΛ = AΛA
†
Λy over AΛ satisfies the correlation condition

∥AT(y − yΛ)∥∞ ≤ γERC(Λ). (2.4)

Let x⋆ be the solution of the lasso (2.2) with parameter γ. We may conclude the following.

• supp(x⋆), is contained in Λ;

• the distance between x⋆ and the optimal coefficient vector cΛ = A†Λy (appropriately

zero-padded) satisfies

∥x⋆Λ − cΛ∥∞ ≤ γ∥(AT
ΛAΛ)−1∥∞,∞; (2.5)

• and supp(x⋆) contains the indices λ ∈ Λ for which

|cΛ(λ)| > γ∥(AT
ΛAΛ)−1∥∞,∞. (2.6)

In words, the theorem states that if the approximation error of the input over the group Λ

of columns of A is sufficiently uncorrelated with all other columns of A, then the solution

of the lasso does not pick any columns outside Λ, while picking columns corresponding

to all sufficiently large entries of the approximation coefficients for y in AΛ.

2.2.3 Non-negative lasso

Non-negative lasso assumes a linear model with non-negative coefficients,

y = Ax + e (x ⪰ 0) (2.7)

Hereinafter, this chapter assumes this model. Based on this model, the problem of

inferring atoms contributing the observation is considered. In particular, I focus on the

non-negative lasso (NLasso, also known as the non-negative Garrote in the statistics

literature [44]):

minimize
x

1

2
∥y −Ax∥22 + γ ∥x∥1

subject to x ⪰ 0.

(2.8)
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NLasso has been used as a regression method in hyperspectral unmixing [2, 45], as a

variable selection method in economics [20], and as a sparse recovery algorithm for face

recognition [14, 15, 46] and hyperspectral classification [47]. Many methods have been

proposed for solving (2.8) such as non-negativity constrained least angle regression and

selection [48], full regularization path [49], alternating direction algorithms [45], itera-

tive reweighted shrinkage [2], split Bregman [17], interior point [50], and multiplicative

updates [20].

2.3 Contribution of this chapter

Model recovery conditions (MRCs) for NLasso (2.8) are derived. The MRCs allow us

to predict if the correct atoms are identifiable via NLasso given a signal model for a specific

set of atoms with noise or nonlinearity. The MRCs are reminiscent of [23, Theorem 6]

due the fact that both results are based on the Karush-Kuhn-Tucker (KKT) conditions

for convex optimization solutions. The contribution of this chapter includes

1. the development of MRCs in geometrically interpretable forms that are directly

adopted to performance analysis of NLasso on any observation,

2. the development of an approximately perfect MRC which not only guarantees cor-

rect signal recovery but also provides a “practical converse” that guarantees the

failure of recovery in a practical sense.

The MRCs indicate whether a certain distortion to a linear observation is tolerable by

NLasso while succeeding in identifying the components of the dictionary being observed;

for the specific case of nonlinear mixing, my result predicts accurately whether NLasso

succeeds in component identification under nonlinear distortion, depending on its spe-

cific direction and magnitude. The approximately perfect MRC practically meets both

necessity and sufficiency. Although the approximately perfect MRC is imperfect in a
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rigorous mathematical sense, it is quite powerful and in the experiments provides perfect

prediction of the performance of NLasso. I also present some simplified variants of the

approximately perfect MRC, which can be considered as customizations of Tropp’s condi-

tions [3] and are rigorously proved mathematically. A criterion for perfect identification is

that the atoms present in the observation are exactly identified by the algorithm (i.e., no

missed atoms and no false alarms), without consideration for accuracy of the coefficient

estimate values involved.

This chapter also showcases how the theorem can be used in real applications. More

specifically, it can predict whether NLasso will succeed in selecting the correct materials

from a hyperspectral unmixing dictionary in the presence of deviations from the noiseless

linear model, including measurement nonlinearities, bias, mismatch, and noise. Experi-

ments show that the approximately perfect MRC practically gives perfect assessment of

the performance of NLasso.

2.4 Main results

2.4.1 ERC-based MRC

The first MRC I will introduce is from my earlier work [7]. Using Theorem 2.1, the

following theorem to guarantee the performance of NLasso is derived:

Theorem 2.2 (ERC-based MRC) Assume a signal model y = Axtrue + e, where the

abundance vector xtrue ⪰ 0, Λ = supp(xtrue) indexes a linearly independent collection

of columns of A, and e represents the effect of noise or nonlinear distortion during

acquisition. Let x̂ be the solution of NLasso with parameter γ. If the noise e obeys

∥ATP⊥Λe∥∞ ≤ γERC(Λ) (2.9)

where P⊥Λ is the projector onto the orthogonal complement of R(AΛ), and

xtrue
Λ ≻ γ∥(AT

ΛAΛ)−1∥∞,∞ −A†Λe, (2.10)
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then we have that supp(x̂) = Λ.

Proof: We begin by considering the solution x⋆ to the lasso with parameter γ for

the input y. By applying Theorem 2.1 and seeing that

∥AT(y − yΛ)∥∞= ∥AT(y −AΛA
†
Λy)∥∞

= ∥AT(Axtrue + e−AΛA
†
Λ(Axtrue + e))∥∞

= ∥AT(AΛx
true
Λ + e−AΛA

†
Λ(AΛx

true
Λ + e))∥∞

= ∥AT(AΛx
true
Λ + e−AΛx

true
Λ −AΛA

†
Λe)∥∞

= ∥AT(e−AΛA
†
Λe)∥∞ = ∥AT(I−AΛA

†
Λ)e∥∞

= ∥ATP⊥Λe∥∞. (2.11)

We have that (2.11) and (2.9) imply (2.4). Thus, we obtain the following results:

• The support of x⋆, supp(x⋆), is contained in Λ, and

• the distance between x⋆ and the optimal coefficient vector

cΛ =A†Λy = A†Λ(Axtrue + e) = A†Λ(AΛx
true
Λ + e)

=xtrue
Λ + A†Λe

(appropriately zero-padded) satisfies

∥x⋆ − xtrue
Λ −A†Λe∥∞ ≤ γ∥(AT

ΛAΛ)−1∥∞,∞. (2.12)

The result (2.12) implies that for each n ∈ Λ we have

|x⋆(n)− (xtrue(n) + w(n))| ≤ γ∥(AT
ΛAΛ)−1∥∞,∞,

−γ∥(AT
ΛAΛ)−1∥∞,∞≤x⋆(n)− xtrue(n)−w(n),

xtrue(n) + w(n)− γ∥(AT
ΛAΛ)−1∥∞,∞≤x⋆(n),

where w = A†Λe. Thus, from the condition (2.10), we have that x⋆(n) > 0 for all n ∈ Λ,

which implies that Λ ⊆ supp(x⋆). Furthermore, since supp(x⋆) ⊆ Λ, then we have that

14



supp(x⋆) = Λ and so it follows that x⋆ ≻ 0, i.e., the solution of the lasso is non-negative.

This implies that the solution of NLasso for the same input and parameter value obeys

x̂ = x⋆ (i.e., the solution of NLasso matches the solution of the unconstrained lasso), and

so supp(x̂) = supp(x⋆) = Λ = supp(xtrue).

The sufficient condition is composed of two inequalities; the first one (2.9) explains

how much deviation from linearity is allowed, and the second one (2.10) shows the min-

imum value of the coefficient to be detected. This condition is a demanding sufficient

MRC. More specifically, there are still many observations on which NLasso is successful,

but for which the condition is not met.

2.4.2 Fundamental results for NLasso

NLasso is equivalent to

minimize
x

1

2
∥y −Ax∥22 + γ1TNx

subject to x ⪰ 0,

(2.13)

where 1N is the N length vector with all elements being one. This minimization problem

becomes NNLS when γ = 0. First, I provide MRCs for which the subset of atoms Λ

contains the support of minimizers of NLasso. In particular, I will give a condition for

which a solution to the restricted NLasso

minimize
vΛ

1

2
∥y −AΛvΛ∥22 + γ1TJvΛ

subject to vΛ ⪰ 0,

(2.14)

also becomes a solution to the original NLasso (2.8). The condition is given by the

following theorem.

Theorem 2.3 Let Λ be a subset of column indices of the dictionary matrix A such that

|Λ| = J ≤ N . If the inequalities

(y −AΛv̂Λ)Taj < γ for all j ∈ Λc (2.15)

hold for all solutions v̂Λ ∈ RJ of the restricted NLasso (2.14) over the column subset Λ,

then all solutions to the general NLasso (2.8) have their supports contained in Λ.
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A proof of this theorem is found in Section 2.4.3. This theorem states a condition for

which the restricted NLasso (2.14) yields a global solution of the original problem (2.8).

Although this condition requires knowledge of the solutions of the restricted NLasso, the

theorem considers quite general cases:

1. the subdictionary AΛ can have linearly dependent columns,

2. the restricted NLasso over columns in Λ can have multiple minimizers,

3. the columns of A are not restricted to be normalized.

Thus, the theorem serves as a fundamental result to derive other practical MRCs in

subsequent sections. When atoms associated with indices in Λ are linearly independent

to each other, we can further assume the uniqueness of the solution because the restricted

problem has the unique solution.

The condition (2.15) is a sufficient but not necessary condition for the event supp(x̂) ⊆

Λ. However, (2.15) is quite close to a necessary condition, as shown in the following

theorem.

Theorem 2.4 Under the assumption of Theorem 2.3, if the support supp(x̂) of each

solution x̂ to the general NLasso (2.8) is contained in Λ, then the following condition

holds for all solutions v̂Λ ∈ RJ of the restricted NLasso (2.14) over the column subset Λ:

(y −AΛv̂Λ)Taj ≤ γ for all j ∈ Λc. (2.16)

The proof of this theorem is found in Section 2.4.3. This theorem indicates that the

condition (2.16) is a necessary condition for supp(x̂) ⊆ Λ. Hence, a necessary and

sufficient condition for the event supp(x̂) ⊆ Λ lies somewhere between (2.15) and (2.16).

More specifically, equalities need to be added to (2.15) only for some indices j to obtain

a necessary and sufficient condition. Nonetheless, it is worth noting that the cases in

which (2.16) holds with equality will be rare in practice. Therefore, the conditions (2.15)
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and (2.16) are practically identical, implying that (2.15) is a practically valid necessary

and sufficient condition for the event supp(x̂) ⊆ Λ.

Remark 2.5 Just like NLasso becomes NNLS when γ = 0, a restricted NNLS problem is

given by the minimization problem (2.14) when γ = 0. As a special case of Theorem 2.3,

we can define an optimal condition for NNLS specific to an index set Λ:

Corollary 2.6 Let Λ be a subset of column indices of the dictionary matrix A such that

|Λ| = J ≤ N . If the inequalities

(y −AΛv̂Λ)Taj < 0 for all j ∈ Λc (2.17)

hold for the solution v̂Λ ∈ RJ of the restricted NNLS problem over the column subset Λ,

then all solutions to the general NNLS have their supports contained in Λ.

I note in passing that the set of inequalities (2.17) is identical to one of the stopping

criteria introduced for non-negative orthogonal matching pursuit [51, 52], an alternative

algorithm for non-negative sparse signal recovery.

2.4.3 Proof of Theorems 2.3 and 2.4

Theorems 2.3 and 2.4 are proved together because they share assumptions. The next

two statements are proved:

(Theorem 2.3) (2.15) ⇒ supp(x̂) ⊆ Λ (2.18)

(Theorem 2.4) supp(x̂) ⊆ Λ ⇒ (2.16) (2.19)

where x̂ is a solution to NLasso.

Before proceeding with the proof, we first transform the event supp(x̂) ⊆ Λ into

an equivalent form. More specifically, supp(x̂) ⊆ Λ means that the solution of NLasso

is equivalent to a solution of the restricted problem (2.14), v̂Λ, with appropriate zero-

padding; this can be written as Ax̂ = AΛv̂Λ, where v̂Λ is an optimal solution of the
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restricted NLasso. The problem is first rewritten as

minimize
vΛ

1

2
∥y −AΛvΛ∥22 + γ1TJvΛ

subject to vΛ ⪰ 0.

(2.20)

Thus, we have supp(x̂) ⊆ Λ if and only if the following inequality holds:

1

2
∥y −Ax̂∥22 + γ1TN x̂<

1

2
∥y −A(x̂ + ∆x)∥22 + γ1TN (x̂ + ∆x) (2.21)

for every ∆x such that 0 < ∆xj for any j ∈ Λc and x + ∆x ⪰ 0 where ∆xj is the jth

element of x. In other words, the minimum cost achieved by the solution of the restricted

problem is less than any cost achieved by another x that involves an atom outside Λ. Let

the exact support of x̂Λ be Γ ⊆ Λ (|Γ| = M ≤ J). Then the inequality x + ∆x ⪰ 0 is

expressed as:

1) −xj ≤ ∆xj for all j ∈ Γ

2) 0 ≤ ∆xj for all j ∈ Γc,
(2.22)

which defines a region of interest for the vector ∆x. By canceling terms common to both

sides, the inequality (2.21) is transformed into

1

2
∥A(∆x)∥22 + γ1TN (∆x)− (y −AΛv̂Λ)TA(∆x) > 0

⇔ 1

2
∥A(∆x)∥22 +

∑
j∈Ω

∆xj
(
γ − aT

j (y −AΛv̂Λ)
)
> 0, (2.23)

where Ω = {1, 2, . . . , N} is the whole column index set as defined in Section 2.2.1. Next,

let us explore a property of v̂Λ. The Lagrangian of the restricted NLasso (2.20) above is

given by

LΛ(vΛ,λΛ) =
1

2
∥y −AΛvΛ∥22 + γ1TJvΛ − λT

ΛvΛ,

where λΛ is a vector of Lagrangian multipliers. From the KKT condition in Theorem

28.3 [53, p. 281], vΛ = v̂Λ and λ = λ̂ become a minimizer and a Kuhn-Tucker vector,

respectively, if and only if the following three conditions hold:

1) v̂Λ, λ̂Λ ⪰ 0 (2.24a)

2) λ̂Λ(n)v̂Λ(n) = 0 for all n (2.24b)

3) 0 = ∂LΛ(v̂Λ, λ̂Λ)/∂vΛ|vΛ=v̂Λ
. (2.24c)
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The third KKT condition (2.24c) is equivalently expressed as:

AT
Λ(AΛv̂Λ − y) + γ1J − λ̂Λ = 0

⇔ γ − aT
j (y −AΛv̂Λ) = λ̂Λ(j) for all j ∈ Λ

For j ∈ Γ, we have v̂Λ(j) > 0, leading to λ̂Λ(j) = 0 because of the second KKT con-

dition (2.24b). For j ∈ Λ \ Γ, we have v̂Λ(j) = 0, leading to λ̂Λ(j) ≥ 0. Thus we

have 
γ − aT

j (y −AΛv̂Λ) = 0 for j ∈ Γ

γ − aT
j (y −AΛv̂Λ) ≥ 0 for j ∈ Λ\Γ.

(2.25)

Considering the conditions above for v̂Λ, the inequality (2.23) is equivalently transformed

into

1

2
∥A(∆x)∥22 +

∑
j∈Λ\Γ

∆xj
(
γ − aT

j (y −AΛv̂Λ)
)

+
∑
j∈Λc

∆xj
(
γ − aT

j (y −AΛv̂Λ)
)
> 0,(2.26)

where the second term is always non-negative because of the non-negativity of the two

factors ((2.22) and (2.25)). Summarizing this discussion, supp(x̂) ⊆ Λ if and only if the

inequality (2.26) holds for all ∆x in the defined region (2.22).

We now prove the statement (2.18) for Theorem 2.3. Given the condition (2.15) is

true, then the summation of the third term on the left side in (2.26) becomes always

non-negative. Furthermore, because we are considering ∆x with a non-zero jth element

for any j ∈ Λc, the third term is always strictly positive. Therefore, (2.26) holds for every

∆x in the defined region (2.22). Because that condition is equivalent to supp(x̂) ⊆ Λ,

the statement (2.18) is proven.

Next, we prove the statement (2.19) for Theorem 2.4. We can prove this by the

principle of contradiction. Assume the inequality (2.26) is true for every ∆x in the

defined region and every solution v̂Λ. Suppose there exists a solution v̂Λ and an index

j′ ∈ Λc such that

(y −AΛv̂Λ)Taj′ > γ,
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which is the opposite of (2.16). The inequality (2.26) is true for ∆x′ such that only the

j′th element is greater than zero and the others are zero. Let such a ∆x′ be

∆x′ = [0, . . . 0, ∆xj′ , 0, . . . 0]T (∆xj′ > 0). (2.27)

The inequality (2.26) then becomes

1

2
∥aj′∥22(∆xj′)2 −

(
(y −AΛv̂Λ)Taj′ − γ

)
∆xj′ > 0. (2.28)

The left hand side is a quadratic function with regard to a scalar variable ∆xj′ . By

defining the quadratic equation’s coefficients as

bj′ =
1

2
∥aj′∥22 > 0 (2.29)

cj′ = (y −AΛv̂Λ)Taj′ − γ > 0, (2.30)

the quadratic inequality (2.28) becomes

∆xj′(bj′∆xj′ − cj′) > 0. (2.31)

Because both the coefficients bj′ and cj′ are positive, the left hand side becomes nega-

tive for sufficiently small ∆xj′ such that 0 < ∆xj′ < cj′/bj′ . Since ∆xj′ can take any

positive value, we can say that there exists a ∆xj′ that breaks the inequality (2.26).

This contradicts to the starting assumption. Thus, by the principle of contradiction, the

statement (2.19) is proven.

2.4.4 Approximately Perfect MRC for NLasso

This section provides MRCs for which the subset of atoms Λ exactly matches the

support of the minimizers of NLasso. We again assume that the atoms associated with

indices in Λ are linearly independent. First, I define a metric, positive subset coherence

(PSC):

PSC(Λ; j) := 1− 1TJA
†
Λaj . (2.32)
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a1

a2

aj /∈ Λ

PSC(Λ; j) > 0

PSC(Λ; j) < 0

O

AΛ = [a1 a2 ]

Figure 2.1. Illustration of geometric interpretation of PSC.

The PSC measures how positively aligned the jth atom aj in the library is to the convex

cone determined by the columns of AΛ. The index j is usually selected from outside

Λ. Figure 2.1 illustrates a geometric interpretation of PSC focusing on when the sign of

PSC changes. The PSC becomes positive when the orthogonal projection of aj onto the

subspace spanned by the column vectors of AΛ falls on the same side of the hyperplane

passing through the column vectors of AΛ as the origin; negative when the origin and the

column aj are on opposite sides of the aforementioned hyperplane; and zero when aj is

contained in this hyperplane. This PSC plays an important role in the next approximately

perfect MRC.

Theorem 2.7 (Approximately Perfect MRC for NLasso) Let Λ be a subset of the

column indices of the dictionary matrix A such that |Λ| = J ≤ min(L,N) and the atoms

associated with indices in Λ are linearly independent. Let x̂ be a solution to NLasso. The

support of x̂, supp(x̂), is equal to Λ if the following two conditions hold:
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1)Minimum coefficient condition (MCC):

A†Λy ≻ γ
(
AT

ΛAΛ

)−1
1J (2.33)

2)Non-linearity vs. Subset Coherence Condition (NSCC):

yTP⊥Λaj < γPSC(Λ; j) for all j ∈ Λc. (2.34)

Furthermore, the minimizer x̂ is equal to the appropriate zero-padding of the solution to

the restricted NLasso

v̂Λ = A†Λy − γ
(
AT

ΛAΛ

)−1
1J .

The proof of this theorem is found in Section 2.4.5. The MCC measures whether the

entries of the least squares solution (A†Λy) are sufficiently large. The NSCC specifies

the degree of nonlinear distortion that can be tolerated with respect to each PSC and

dictionary atom aj . The left hand side of (2.34) is the inner product between aj and

the orthogonal projection of y onto the orthogonal complement of R(AΛ). The latter

projection can be interpreted as nonlinear noise because it is considered as the deviation

of the observation y from the span of AΛ. Figure 2.2 shows a geometric interpretation

of the NSCC. As explained, the right hand side of (2.34) quantifies the alignment of aj

with the convex cone obtained from AΛ. Because γ is usually positive, a larger PSC

relaxes the upper bound of yTP⊥Λaj . Thus, it is preferable for aj to be less aligned to

the columns of AΛ.

The inequality (2.33) needs to strictly hold for mathematical rigor because of the

definition of the support (the set of indices that have non-zero entries). If we instead

allowed for equality in (2.33), we would not be able to guarantee that Λ exactly matches

the support of x̂ since some of the entries in v̂Λ might be zero-valued, cf. eq. (2.35),

although the solution x̂ would be still expressed in the same way, i.e., as the appropriate

zero-padding of the solution v̂Λ to the restricted NLasso. Nonetheless, equality can be

added in practice since the event for which the equations hold with equality is quite

rare, as described in the discussion of Section 2.4.2. This discussion is also true for the
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Λy

AΛ = [a1 a2 ]

aj /∈ Λ

a2

a1

O

Figure 2.2. Illustration of geometric interpretation of NSCC.

inequality (2.34); equality could be added to the inequality in practical settings.

Interestingly, Conditions (2.9) and (2.10) in Theorem 2.2 are similar to the NSCC

and MCC, but the former are not specific to particular indices j. This structure of the

condition is shared with the simplified sufficient conditions derived in Section 2.4.6.

Remark 2.8 Theorem 2.7 can be specialized to specific noise models. In the case of

random noise (e.g., Gaussian or subgaussian), it is possible to obtain the likelihood of the

NSCC being met in terms of the noise variance; such a result matches [23, Theorem 6].

Under a linear noise model (e.g., the distortion corresponds to a linear combination of

the atoms in lies in AΛ), the left hand side of (2.34) always becomes equal to zero, and it

suffices to require a non-negative PSC for each of the atoms indexed in Λc. In all other

cases, the NSCC allows us to distinguish between tolerable and intolerable distortions.

If the nonlinear distortion (i.e., the portion of the distortion in the space orthogonal to

R(AΛ)) forms obtuse angles with the atoms indexed by Λc, the NSCC will be satisfied

regardless of the magnitude of the nonlinearity. Conversely, for atoms for which these

angles are acute, the value of the PSC for the specific atom will dictate the tolerable
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magnitude of the projection of the nonlinear distortion onto the atom.

Remark 2.9 I note that meeting the MCC and NSCC will also depend on the value of

the trade-off parameter γ. Intuitively, the chance for false alarm increases as γ decreases

(promoting denser solutions) and missed detection is more likely to occur as γ increases

(promoting sparser solutions). The MCC provides an upper bound on γ needed to avoid

missed detections, while the NSCC provides a lower bound needed to prevent false alarms.

The bounds will depend on the observation y and support Λ, which indicates that the

performance of NLasso can be improved by adaptively optimizing γ. It is also easy to see

that one can formulate configurations (y,Λ) for which no value of γ meets both the MCC

and NSCC.

Remark 2.10 Theorem 2.7 can also be specialized to NNLS (e.g., γ = 0), providing the

following corollary.

Corollary 2.11 (Approximately Perfect MRC for NNLS) Let Λ be a subset of

column indices of the dictionary matrix A such that |Λ| = J ≤ min(L,N) and the atoms

associated with indices in Λ are linearly independent. Let x̂ be the solution of NNLS. The

support of x̂, supp(x̂), is equal to Λ if A†Λy ≻ 0 and maxj y
TP⊥Λaj < 0.

In this case, the MCC requires for the restricted least squares solution to be non-negative,

while the NSCC requires all angles between the atoms indexed in Λc and the nonlinear

distortion in the orthogonal space of R(AΛ) to be obtuse.

2.4.5 Proof of Theorem 2.7

Recall that the atoms associated with the index set Λ are linearly independent to each

other and the two conditions (2.33) and (2.34) hold. First let us consider the restricted

NLasso defined by (2.14). The problem (2.14) has the unique minimizer because the

objective function is strictly convex and the domain is a convex region. The Lagrangian
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of (2.14) is given by

L(vΛ,λ) =
1

2
∥y −AΛvΛ∥22 + γ1TJvΛ − λTvΛ,

where λ ∈ RJ is a Lagrange multiplier with λ ⪰ 0. According to [53, Theorem 28.3,

p. 281], v̂Λ and λ̂ are optimal if and only if they satisfy the KKT conditions

1) v̂Λ, λ̂ ⪰ 0 and λ̂(n)v̂Λ(n) = 0 for all n = 1, . . . , J

2) 0 = ∂L(vΛ, λ̂)/∂vΛ|vΛ=v̂Λ
.

Those conditions are true for v̂Λ = A†Λy − γ
(
AT

ΛAΛ

)−1
1J and λ̂ = 0. Taking the

uniqueness of the solution into consideration, we can conclude that the unique minimizer

of (2.14) is given by

v̂Λ = A†Λy − γ
(
AT

ΛAΛ

)−1
1J ≻ 0. (2.35)

By manipulating the inequality (2.34) and substituting (2.35), we have

(y −AΛA
†
Λy)Taj <γ(1− 1TJA

†
Λaj)

⇔
(
y −AΛA

†
Λy + γ(A†Λ)T1J

)T
aj <γ

⇔
{
y −AΛ

(
A†Λy − γ(AT

ΛAΛ)−11J
)}T

aj <γ

⇔
(
y −AΛv̂Λ

)T
aj <γ (∵ (2.35))

for all j ∈ Λc. Directly applying Theorem 2.3, we can assert that Λ contains the support

of x̂. Furthermore, since all the elements of the minimizer (2.35) are greater than zero,

Λ is the support of x̂. This completes the proof.

2.4.6 Simplified sufficient conditions for NLasso

Although these conditions are quite simple, they are still more elaborate than those

provided by Tropp [3] for general lasso. We can further simplify and introduce two
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sufficient conditions in this section. To start with, let us define the positive exact recovery

coefficient (PERC) by

PERC(Λ) := min
j∈Λc

PSC(Λ; j).

PERC is considered as the positive counterpart of the ERC, and PERC is interpreted as

the minimum of the right hand side in the NSCC (2.34). Note that (1−PERC) is equiv-

alent to non-negative irrepresentable constant of [23]. We can also take the maximum on

the left hand side of the inequality (2.34) after concatenating all aj , and then a modified

sufficient condition for the multiple NSCCs is written as

max
j∈Λc

aT
j P
⊥
Λy < γPERC(Λ), (2.36)

and is referred to as PERC-Max, leading to the next corollary.

Corollary 2.12 (PERC-Max MRC for NLasso) Under the assumptions of Theo-

rem 2.7, the support of x̂, supp(x̂), is equal to Λ if the two conditions, MCC (2.33)

and PERC-Max (2.36), hold. Furthermore, the minimizer x̂ is also given as in Theo-

rem 2.7.

We can still introduce another NSCC condition that is more strict than Corollary 2.12

but more relaxed than Theorem 2.2 by taking the absolute maximum value on the left

side of (2.36),

∥ATP⊥Λy∥∞ < γPERC(Λ). (2.37)

We refer this condition as PERC-absolute Max (PERC-AMax), leading to the next corol-

lary.

Corollary 2.13 (PERC-AMax MRC for NLasso) Under the assumptions of Theo-

rem 2.7, the support of x̂, supp(x̂), is equal to Λ if the two conditions, MCC (2.33) and

PERC-AMax (2.37), hold. Furthermore, the minimizer x̂ is also given as in Theorem 2.7.
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PERC-AMax is more demanding than PERC-Max. Additionally, it provides a broader

guarantee than Theorem 2.2, which assumes the linear model (3.7) and requires not only

the support of the true coefficient vector xtrue but also its values and the error term in

advance, while Corollary 2.13 can be applied to arbitrary vectors y and index sets Λ.

2.5 Application to hyperspectral unmixing

Hyperspectral imagers collect electromagnetic radiation over the Visible and Near

Infrared (VNIR) to Short Wave Infrared (SWIR) region (300-2600nm) with hundreds of

narrow contiguous bands. Each pixel position of a hyperspectral image (HSI) is associated

with a spectrum or spectral signature, an array of dimension equal to the number of bands,

which is used by practitioners to reveal the compositional characteristics of targets in a

variety of applications.

One of the tasks routinely performed in hyperspectral imaging is spectral unmix-

ing. Unmixing is a process to decompose an observed spectrum into pure constituent

signatures, which are usually called endmembers, associated with their fractional abun-

dances [1], [54]. The linear model (3.7) has been widely used in unmixing, where y

represents the observed spectrum, A is the dictionary matrix with atoms correspond-

ing to endmember spectra, and the coefficient vector x is interpreted as a fractional

abundance vector.

Recently, sparse unmixing [2] has been proposed for hyperspectral unmixing tasks

where one is given a large collection — the spectral library — of pure spectral signatures

to be used as candidate endmembers. The first goal for unmixing is to correctly identify

the library spectra that are combined to form the observed spectrum. One typically

expects that only a few endmembers in the collection are involved in the observation,

as the number of materials occupying the region subtended by a pixel is small in most

scenarios. Motivated by this observation, sparse unmixing [2] employs NLasso to detect
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endmembers and estimate abundances for hyperspectral images using a large library of

laboratory spectra.

Nonetheless, sparse unmixing faces several limitations in practical applications. An

observed spectrum could be composed by a nonlinear mixture of endmembers. The

atoms in the library might not match exactly the image endmembers (typical examples

are spectra of the same material acquired at different conditions). Moreover, the library

spectra are usually highly correlated, which intuitively seems undesirable for the non-

negative sparse modeling.

Given such complications, the theorems derived in this paper serve as a way to assess

the performance of NLasso in hyperspectral unmixing. Since we have not restricted the

definition of the “error” term e in the linear model equation (2.7), it could accommodate

any deviation from linearity, such as nonlinear mixing or spectral distortions.

I test the performance of NLasso in unmixing a real hyperspectral image of an oil

painting. In particular, I am interested in assessing the performance of the sparse mod-

eling approach in identifying the endmembers involved in each pixel of the HSI. This

example presents the typical complications of unmixing problems: the artist creates the

colors in the painting by mechanically mixing the paints (nonlinear mixing) and adding

water (nonlinear distortion of all pixel spectra). Further nonlinearities stem from the dif-

ferent density and thickness of the paint in different regions. I first describe the creation

of training data including endmembers and their true abundance maps. I then assess the

ability of the MRCs to predict the outcome of numerical computations using NLasso.

2.5.1 Data set

The data set used for this experiment is a hyperspectral image (HSI) of an oil painting

acquired by a Micro-Hyperspec® VNIR imaging sensor (E-Series).2 The imager captures

spectral information in the 400-1000nm wavelength region with 370 bands at 1.6nm inter-

2Micro-Hyperspec® is a registered trademark of Headwall Photonics, Inc.
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Figure 2.3. 500 × 308 pseudo RGB color image of a hyperspectral image of the oil
painting. R: band 125 (601nm), G: band 86 (536nm), B: band 49 (471nm).

vals. The image was acquired on Hyperspec Starter Kit manufactured by Headwall Inc.

Since the painting was larger than the field of view of the camera, I first separated the

whole area into three strip regions, acquired the images of them separately, and stitched

them together. The size of the resulting hyperspectral image is 3347×1233×370, where the

first two dimensions are the number of pixels in the spatial directions and the last dimen-

sion records the number of spectral bands. The image was converted to reflectance using

a Spectralon® reference.3 The image was then spatially downsampled to 500×308 by

averaging 4×4 neighboring pixels in order to improve its signal-to-noise ratio. Figure 2.3

shows a pseudo RGB rendition of the HSI.

The artist used acrylic paint in five distinct colors: red, blue, yellow, white, and green.

An HSI of the pure colors, which is shown on the lower right side in Figure 2.4, were

then acquired. The averaged spectra of the five colored areas can be considered as the

endmembers of the pixels depicting the painting: they are shown in Figure 2.4 and used

to construct a spectral library.

The artist did not provide in advance the information about true distribution of

the endmembers for each pixel. I will use the term “ground truth”, borrowed from

hyperspectral remote sensing, for such map. This information is required in order to

3Spectralon® is a registered trademark of Labsphere, Inc.
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Figure 2.4. Averaged endmember spectra. The image on the lower right is a pseudo
RGB color image of a hyperspectral image of endmembers.

assess the performance of the unmixing algorithm. Since the artist used 2 or 3 colors at

each location (single-endmember pixels are not present) we could generate the ground

truth by solving the following minimization problem for each pixel

minimize
x

1

2
∥y −Ax∥22

subject to x ⪰ 0, ∥x∥0 ≤ 3,

(2.38)

where y ∈ R370 is the spectral signal of each pixel, A ∈ R370×5 is the matrix of the

spectral library of five colors, and x ∈ R5 is the fractional abundance vector. In practice,

the solution by conducting least square minimizations for all possible combinations of

less than or equal to three endmembers and it is reasonable to select as the ground truth

the combination with the smallest number of endmembers among the ones that achieved

the least error. Figure 2.5 shows the ground truth at each pixel. The distribution map

in Figure 2.5 shows that not all the pixels are assigned to mixtures of three endmembers;

some pixels are to mixtures of only two endmembers, which means that any other third

endmember cannot help reduce the residual for these pixels. We could also interpret this

fact from the proposed theorems. The minimization problem (2.38) can be converted to

NLasso (2.8) with an appropriate trade-off parameter γ. I conjecture that a combination

of only two endmembers suffices to meet the APMRC in Theorem 2.7.
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Figure 2.5. The true distribution of the mixtures. The letters R, B, Y, W, and G are
the first letters of the pure colors.

Although the minimization problem above also produces abundance values for each

endmember at each pixel location, such information is discarded as the performance

evaluated here is the correct recovery of endmembers. Furthermore, while the artist

agrees that the retrieved distribution is largely accurate, a similar assessment would not

be possible for the abundances. I nevertheless report the abundances for all colors in

Figure 2.6 for the sake of completeness and to show that they show reasonable effects.

From Figure 2.6, one can see that the white color is dominant around the clouds in

Figure 2.3, the sky is mainly painted in white and blue, and the grass that can be found

around the bottom in Figure 2.3 consists of mainly green.

2.5.2 Theorem validation

This section evaluates the predictive power of the MRCs. The performance of NLasso

is predicted by four MRCs: Theorem 2.2 (ERC-based MRC), Theorem 2.7 (APMRC),

Corollary 2.12 (PERC-Max MRC), and Corollary 2.13 (PERC-AMax MRC). The algo-

rithm employed to produce numerical solutions for NLasso is the sparse unmixing by

variable splitting and augmented Lagrangian (SUnSAL) [45]. Then it is evaluated how

well the predictions of the MRCs match the result obtained by SUnSAL.

Table 2.1 shows the number of pixels that satisfy each of MRCs hold for a different

value of γ = 0.2, 0.1, 0.05. For each value of γ the table displays the confusion matrix
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Figure 2.6. The true abundance maps in the painting image: (a) red, (b) blue, (c)
yellow, (d) white, and (e) green.

between the prediction by each MRC and the SUnSAL result. In each row, the label

“True” refers to the points fulfilling the specific condition and “False” the ones violating

it. Similarly, in each column, the label ”Correct” (“Incorrect”) refers to points for which
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SUnSAL correctly identifies (fails to identify) the endmembers.

For all the MRCs, the values in the True-Incorrect cells are all zeros, indicating that

if the MRCs hold, the SUnSAL always succeeds. This is a confirmation for the sufficiency

of all the MRCs in all the theorems.

One remarkable fact is that the “False-Correct” cell of the APMRC is always zero,

which means the APMRC is always true when SUnSAL succeeds in detecting the correct

endmembers, confirming the necessity of the APMRC condition in practical settings. In

contrast, there are non-zero values in the False-Correct cells for the other MRCs, and the

values increase as the conditions become increasingly strict.

None of the pixels satisfy the strict conditions required by the ERC-based MRC. It

is worth noting that this application tests the limits of the theory of sparse recovery in

at least two ways. First, hyperspectral mixing processes can deviate significantly from

the linear model; second, spectra of different endmembers are very correlated. This

observation supports the utility of the APMRC, PERC-Max MRC and PERC-AMax

MRC as prediction tools for signal spaces in which previously proposed metrics would

not be applicable.

Figure 2.7 shows an interesting behavior in the performance of NLasso. In Figure 2.7

(a), the pixels where NLasso succeeds at identifying endmembers are shown in red, while

failures are shown in blue. Figure 2.7 (b) shows the distribution of the residual given by

the optimum value of (2.38). This residual is interpreted as the deviation from linearity;

therefore, one may expect that a large deviation is linked to failure of NLasso, but this

intuition does not bear out in practice. Deviations seem to be relatively high in the

horizontal belt near the bottom of the painting, but NLasso is able to detect the correct

endmembers in that area. The reason for this phenomenon is explained in Figure 2.8.

This figure focuses only on the region classified as the mixture of blue and green that

mostly overlaps with the horizontally belted region. Figure 2.8 shows the distribution

of the values yTP⊥Λaj where j indexes the red, yellow, and white colors, which are
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Table 2.1. Performance of MRCs on the painting data

γ = 0.2 γ = 0.1 γ = 0.05

SUnSAL retrieval SUnSAL retrieval SUnSAL retrieval

Correct Incorrect Correct Incorrect Correct Incorrect

Thm. 2.7
(APMRC)

True 56718
[pts]

0 70256 0 64459 0

False 0 97282 0 83744 0 89541

Cor. 2.12
(PERC-Max
MRC)

True 56053 0 67252 0 62547 0

False 665 97282 3004 83744 1912 89541

Cor. 2.13
(PERC-AMax
MRC)

True 46349 0 53122 0 32361 0

False 10369 97282 17134 83744 32098 89541

Thm. 2.2
(ERC-based
MRC)

True 0 0 0 0 0 0

False 56718 97282 70256 83744 64459 89541

associated with the subscripts r, y, and w, respectively. The values in the region of

interest in Figures 2.8 are always negative, while their corresponding PSC(Λ; j) are always

positive (PSC(Λ; r) = 0.141, PSC(Λ; y) = 0.151, and PSC(Λ;w) = 0.061), meaning the

NSCC conditions for the APMRC, PERC-Max MRC, PERC-AMax MRC are always

true. Even when the deviation is large, NLasso is successful if the residual is negatively

correlated with the signatures of all the other endmembers and PSC is positive and vice

versa. Although this does not always happen, this specific example demonstrates that

the direction of the deviation affects the performance of NLasso.

One final observation about Figure 2.7(b) is that the region of maximum deviation

from nonlinearity (green to yellow) corresponds with a region to which the artist con-

firmed having applied more than one layer of paint (this is called pentimento in art

jargon). This is consistent with our understanding of the radiative transfer aspects of

unmixing, e.g [54] and suggests the potential utility of unmixing techniques to aspects of

the artist painting style in addition to identifying the different pigments.
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Figure 2.7. (a) The distribution of correct model recovery of NLasso and (b) the distri-
bution of the deviation from the linear model.
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Figure 2.8. Mappings of the values of the left hand side of the NSCC for each atom in
Λc. The letters, r, y, and w, means the first letter of the three colors: red, yellow, and
white.
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2.6 Summary

This chapter explored several recovery conditions that guarantee the correct identifi-

cation of endmembers by the non-negative sparse modeling for mixed signals exhibiting

deviations from linearity. Those conditions reveal an interesting property of NLasso,

which is expressed by two conditions: minimum coefficient condition and nonlinearity

vs subset coherence condition. In particular, the approximately perfect recovery con-

dition (APMRC) can exactly predict the performance of NLasso in a practical sense.

The exactness was inferred from mathematical inspection and further verified through

experiments. These conditions are proven to be useful for analyzing the performance of

numerical solutions of NLasso.
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C H A P T E R 3

ATMOSPHERIC CORRECTION AND DE-NOISING OF

CRISM DATA

This chapter presents an application of hyperspectral unmixing to atmospheric cor-

rection and de-noising of CRISM data.1

3.1 Introduction

Since the beginning of its operations, the Compact Reconnaissance Imaging Spec-

trometer for Mars (CRISM) [4] onboard the Mars Reconnaissance Orbiter (MRO) has

made signicant contributions towards understanding many detailed aspects of the sur-

face mineralogy of Mars thanks to its high spectral and spatial resolution. CRISM has

reinforced and detailed previous findings made by OMEGA (Observatoire pour la Min-

eralogie, L’Eau, les Glaces et l’Activitié), such as the identification of phyllosilicates

including kaolinite, montmorillonite, muscovite, illite, chlorite, saponite, nontronite, and

hydrated silica [58–60]. Moreover, CRISM has confirmed the existence of opaline sil-

ica [61] and Fe-Mg carbonate [62–65], two minerals that were not previously discovered.

Many other minerals have been identified [66]. Mineral detections are compiled and sum-

marized in [67] and [68]. More recently, mineral detections and mapping derived from

CRISM images for Jezero crater [62,63,65,69–75] are supporting the Perseverance rover

1This chapter includes my research contribution [55], [56], and [57].
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mission [76] launched in 2020.

Raw image cubes acquired by CRISM require complex processing protocols before

they can be used for mineral identification [4, 77, 78]. In the current pipeline for CRISM

products, a raw image cube recorded in a 12-bit integer format undergoes calibration and

corrections to be converted to an apparent reflectance, I/F image cube [78]. I/F (I-over-

F) represents the ratio of light energy observed by CRISM instrument (radiance) by that

incident at the top of the atmosphere (irradiance). The I/F image is then processed to the

TRR3 I/F product (TRR: Targeted Reduced Data Record), with TRR3 filtering using

iterative kernel filter (IKF) and ratio shift correction (RSC) applied in order to remediate

outstanding noise and spatial stripes. Some data are further processed with photomet-

ric correction, atmospheric correction, repetitive filtering using RSC for de-spiking and

de-striping, smile correction, and empirical geometric normalization. Finally, visible and

near infrared (VNIR) and infrared (IR) images, are map projected and spectrally com-

bined, producing the TER/MTRDR data, currently the most advanced products avail-

able for CRISM (TER:Targeted Empirical Data Record, non-map projected version and

MTRDR: Map Projected Targeted Reduced Data Record) [78–80].

Despite of the development of such complex and sophisticated processing, artifacts

still persist in the corrected I/F spectra as residuals of the atmospheric correction process.

The so-called “volcano scan” correction, the atmospheric compensation method currently

used in the pipeline for CRISM IR images [77,80–82], is known to create some artifacts [6].

Several amendments [5, 83] are insufficient to remove them.

Other artifacts due to calibration errors are also observed. The current calibration

and correction pipeline for IR cubes was designed to operate at a range of IR detector

temperatures much smaller than the ones recorded in a large set of scenes. As a result,

CRISM IR images acquired at elevated IR detector temperatures, which already suffer

from more severe noise and higher frequency of bad pixels, can exhibit problematic ar-

tifacts after calibration. In some cases, the current processing pipeline also causes the
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emergence of spurious absorptions occasionally in small outcrops due to TRR3 filtering

on spike clusters regardless of IR detector temperature [84]. Leask et al. [84] showed that

the detection of perchlorate [85] is likely to be a false positive brought by such spurious

absorption features.

Practitioners successfully abate systematic, column-dependent distortions by spectral

ratioing [60–63, 86], i.e., by dividing the spectral signature of interest with a hopefully

unremarkable spectrum in the same column. The division carries, however, the risk of

changing the shape of the continuum of the spectrum that may cause the misinterpreta-

tion of spectral absorption features. Furthermore, spectral ratioing requires spatial aver-

aging as the division always amplifies random noise. This complicates the identification

of species in small deposits. Finally, the selection of unremarkable spectral denominators

relies on a manual and subjective inspection by the individual user.

This chapter investigates and proposes new methods for simultaneous atmospheric

correction and de-noising of CRISM IR images, particularly on the wavelength region

over 1.0 – 2.6 µm, where many mineral diagnostic features are present while observed

spectra are strongly affected by significant atmospheric gaseous absorption. The pro-

posed methods remove most of the residuals of the atmospheric correction endemic in

the volcano scan method and mitigates the outstanding noise even in images acquired at

elevated IR detector temperatures. The removal of systematic column-dependent arti-

facts, makes spectral ratioing unnecessary in most cases, which will expedite the analysis

of images.

I first propose simultaneous atmospheric correction and de-noising method using the

adaptive background (SABCOND) for CRISM published in [55]. SABCOND extracts

an atmospheric transmission spectrum directly from each image rather than estimating

it from the atmospheric parameters using radiative transfer models. The underlying

idea is that information regarding small static errors and time-varying and spatially-

varying atmospheric gaseous absorption detected at a certain instrument temperature is
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encoded in the spectra of each CRISM image column. On the other hand, the extraction

of the underlying atmospheric transmission spectrum from the image requires isolating

the atmospheric contribution from surface contributions, which are unknown a priori. I

address this issue by accurately modeling the surface reflectance using a modified version

of the hyperspectral unmixing with adaptive background [56]. I believe that the unmixing

model is suitable since it is specifically designed for geological exploration where observed

reflectance is expected to be mixed with smooth unremarkable spectra caused by dust and

aerosols. SABCOND estimates the surface mixing model and the transmission spectrum

in an iterative way. A de-noising stage is also integrated, where large noise spikes are

flagged and removed.

Second, I introduce a methodology, which I call two-step SABCOND, that utilizes

SABCOND twice, aiming for retrieving spectral signals with higher fidelity. The two-step

SABCOND can address some problems and concerns in the SABCOND, while it involves

additional manual and engaging procedures and applicability may be limited.

This chapter is organized as follows. Section 3.2 describes the background of this

work. Section 3.3 derives optimization algorithms internally used in the SABCOND.

Section 3.4 introduces the formulation of SABCOND, and Section 3.5 introduces the

formulation of the two-setp SABCOND. Finally, Section 3.6 concludes this chapter.

3.2 Background

3.2.1 CRISM

CRISM is a hyperspectral imager, observing the Martian surface at hundreds of nar-

row wavelength bands over the visible to infrared region. The instrument has two sets of

spectrographs and detector focal planes, for the VNIR wavelength region (0.362 – 1.053 µm)

and the IR wavelength region (1.002 – 3.920 µm), with their slit shared. The VNIR and

IR image cubes are simultaneously recorded during acquisition. The pitch of the spectral
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channels is as good as 6.5 nm to achieve fine mineral identifications and a total of 107

bands for the VNIR and 438 bands for the IR are measured. CRISM has several observa-

tion modes with different spatial resolutions and spectral samplings to achieve multiple

research objectives.

This study focuses on image cubes acquired in the Full Targeted Resolution (FRT),

the Half Resolution Long (HRL), the Half Resolution Short (HRS), the Full Resolution

Short (FRS), or Along Track Oversampled (ATO) modes, where the imager operates with

the highest spectral resolution. I focus on IR image cubes over 1.0 – 2.6 µm wavelength

region. This wavelength region has been used for many mineral identifications in the

literature, but it is significantly affected by artifacts caused by the volcano scan method

and occasionally by severe noise and other calibration errors. The proposed methods

here cannot be directly expanded into other wavelength regions. For instance, applying

the proposed method to the longer wavelength region (2.8 – 4.0 µm) of CRISM IR images

would require complementing it with the compensation of the thermal emission compo-

nent. For the VNIR wavelength region, artifacts and noise corrected by the proposed

method are scarcely present, because of little atmospheric gaseous absorption over this

range and a much lower noise level of the VNIR detector.

3.2.2 Volcano Scan Correction

The so-called volcano scan correction, is the atmospheric compensation method cur-

rently used in the pipeline for CRISM IR images [77, 80–82]. The technique was first

proposed for atmospheric correction by the OMEGA team [86, 87] and has been used

to produce the CRISM TER and MTRDR data products. It assumes a Beer-Lambert

model for the light interaction through the atmosphere and uses empirical transmission

spectra derived from the ratio of I/F spectra at the the summit and the base of Olym-

pus Mons. The atmospheric contribution is removed by dividing each of the I/F spectra

in the image by the empirically derived transmission spectra scaled appropriately by a
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factor estimated for each I/F spectrum.

Let us denote the observed signal (I/F) at one pixel by y ∈ RL×1 where L is the

number of wavelength channels, its associated surface reflectance by r ∈ RL×1, and its

atmospheric transmission spectrum by t ∈ RL×1. The Beer-Lambert law models the

transmission spectrum by:

ti = exp (−ki · l), (3.1)

where ti is the ith elements of t, ki is the absorption coefficient at the spectral band i,

and l is the path length. The absorption coefficient is assumed to be constant along the

path. Then the observed I/F spectrum is expressed as:

yi = exp(−ki · l) · ri, (3.2)

for all i = 1, . . . , L, where yi and ri are the ith elements of y and r.

The observed I/F spectra at the top and bottom of Olympus Mons ytop and ybtm ∈

RL×1 are expressed as:

ytopi = exp(−ki · ltop) · rtopi and ybtmi = exp(−ki · lbtm) · rbtmi ,

for all i = 1, . . . , L, where ytopi and ybtmi are the ith elements of ytop and ybtm, ltop and

lbtm are the path length associated with the two measurements, rtopi and rbtmi are the

ith spectral band of the surface reflectance spectra at top and bottom of the Olympus

Mons. The empirical transmission spectrum temp ∈ RL×1 is obtained by the following

simple division:

temp
i =

ybtmi

ytopi

= exp
(
−ki · (lbtm − ltop)

)
,

for all i = 1, . . . , L, where temp
i is the ith elements of temp. It is assumed that rtopi and

rbtmi are identical and they are canceled out by the division. Practically, their spectral

slopes are different and slope correction is additionally performed after the simple division

to compensate it.
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The atmospheric transmission component of the observation I/F spectrum y is ob-

tained by the appropriate exponential scaling of temp:

ti =
(
temp
i

)β
(i = 1, . . . , L), (3.3)

with

β =
l

lbtm − ltop ,

where l is the path length parameter for the observation y introduced in equation (3.1).

The volcano scan correction can be performed using the publicly available software,

CRISM Analysis Toolkit (CAT). CAT estimates the the scaling exponent β by taking

the difference between two reference spectral bands i1 and i2 to match the magnitude of

temp and the transmission component of y:

β =
log
(
yi1/yi2

)
log
(
temp
i1

/temp
i2

) .
Here, the numerator log

(
yi1/yi2

)
should only represent the difference in transmission

to measure the scale of the transmission component in the observation, and other com-

ponents such as its surface reflectance and emission should have the same value. In

addition, larger difference in transmission is preferred to minimize the impact of noise.

Therefore, a best practice is to select two close bands that have sufficiently large differ-

ence in transmission. Since reflectance and emission spectra are, in general, continuous

and slowly varying functions for CRISM wavelength samples, proximal bands are likely

to have close reflectance and emission values, and would minimize the risk of having

large difference in them. Such two bands can be found around 2.0 µm wavelength region,

where the CRISM I/F spectrum shows a sufficiently large, sharp triplet-like absorption

feature of carbon dioxide gas dominant in the Martian atmosphere. The sharpness of the

absorption allows the selection of two close bands that have sufficiently large difference in

transmission. In the first version of the volcano scan of the CRISM data, a spectral band

associated with (i1 = 1.890 µm) outside of the CO2 absorption and one (i2 = 2.011 µm)
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Figure 3.1. Triplet coupled with hump-shape artifacts. Dashed line segments on the
fourth and fifth spectra from the bottom show their inferred continuum level.

corresponding to a deep CO2 absorption are used. Later, McGuire et al. [5] proposed to

use i1 = 1.980 µm and i2 = 2.007 µm to avoid complication with surface spectral features

of hydrated phases, which is currently set as the default band set in the latest version

(currently 7.4) of CAT.

Under the assumption that the atmosphere is uniform and Beer’s law is sufficiently

valid at the wavelength sampling of CRISM, the empirical derivation would produce

sufficiently accurate transmission spectra. However, they are known to cause a number

of artifacts, such as the bowl-shape artifact over 2.0 µm wavelength region, the zig-zag

artifacts over the 1.1 – 1.7 µm wavelength region and under-correction over 2.6 µm [6].

While the bowl-shape artifact is partially addressed by the artifact correction present in

the current CRISM correction software [83], it now leaves triplet-over-hump like artifacts

(see Fig. 3.1) caused by the mismatch of the artifact patch in the ADR VS data and the

actual bowl-shape artifacts.

The latest version of CAT also includes the optimal selection of a transmission spec-

44



trum for each scene among multiple empirically derived transmission spectra in the An-

cillary Data Records (ADR) created for supporting different seasons and times. However,

the set of available transmission spectra, which are all derived from the region around

the Olympus Mons, only partially models temporal and spatial variations of atmospheric

conditions and thermally-induced random shifts of the central wavelength of the detec-

tors.

While these modifications led to significant improvements in the quality of the sig-

nal, a considerable amount of distortions remains due to atmospheric absorptions and

instrument artifacts. Furthermore, you cannot theoretically scale the empirical trans-

mission spectrum for obtaining the transmission component of an observed spectrum, as

performed in Eq. (3.3). Also, multiplicative calibration errors cannot be corrected by

the ADR transmission spectra since the errors are canceled out in the production of the

transmission spectra by division operation.

3.2.2.1 Theoretical limitation of the empirical volcano scan

This section describes a theoretical limitation of the empirical volcano scan method –

the violation of the log-linearity of the transmission spectrum empirically obtained from

the CRISM instrument:

log y = log t + log r, (3.4)

where y ∈ RL is an observed I/F spectrum vector, r ∈ RL is a surface reflectance spec-

trum vector, t ∈ RL is a transmission spectrum vector, and the operator log · represents

the element-wise logarithmic operation of a vector. Even in the uniform atmosphere, the

discretized atmospheric transmission spectrum sensed by the CRISM instrument does

not decay log-linearly with respect to path length since the CRISM sensing process in-

volves the convolution of gaseous absorption bands much narrower than the instrument’s

spectral response functions.

The violation of the log-linearity of the transmission was also discussed in [6] under
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the simulated Martian atmospheric condition. It may occur even under much simpler

conditions – the Beer-Lambert model with constant pressure and temperature without

scattering. The decomposition (3.4) is the basic principle that supports the empirical

volcano scan method. At a first look, the principle seems to be justified by assuming

the uniformity of the atmospheric transmission spectrum and the Beer-Lambert law for

radiative propagation. Even under this ideal condition, the principle itself does not

hold for the implementation using the CRISM measurements because of its insufficient

wavelength resolution.

The actual sensing process is expressed by the convolution of a continuous I/F spec-

trum with a spectral bandpass function. The spectral bandpass function models how

each detector element reacts to an input radiation spectrum. An ideal spectrometer

could perfectly split the light into wavelength components and its spectral response func-

tion would be a rectangle centered at the designed center wavelength of the channel.

Practically such perfect spectroscope is unattainable and a spectral bandpass function

is modeled as a function that peaks at the designed center wavelength of the channel,

drops toward both of the wings, and converging to zero. The measured I/F at the ith

wavelength channel, namely the ith element of y, is modeled as

yi =

∫
Ci
r(w)e−k(w)·lfi(w)dw, (3.5)

where yi is the ith element of the measured I/F spectrum vector y, r(w) and k(w)

are a continuous reflectance spectrum and a continuous absorption coefficient spectrum

as a function of wavelength w, respectively, fi(w) is the spectral bandpass function of

the ith channel (i = 1, . . . , L) satisfying
∫
fi(x)dx = 1, and Ci is the effective range of

fi(w) outside of which fi(w) sufficiently rolls off to zero and is thus negligible, namely∫
Ci fi(x)dx ≈ 1. In case of CRISM imager, the band pass function is modeled as the

summation of three Gaussian functions [4].

The right hand side of (3.5) is, in general, not log-linear with respect to l. The decou-

pling shown in (3.4) requires an additional assumption: r(w) and k(w) are approximately
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constant over the effective range. If this assumption should be true, r(w) and k(w) would

be reasonably taken out of the integration, making decoupling possible:

yi≈ r̄i · e−k̄i·l
∫
Ci
fi(w)dw ≈ r̄ie−k̄i·l · 1

where r̄i and k̄i are the approximated mean values of r(w) and k(w) over the range Ci,

respectively. Then, the transmission spectrum is empirically estimated by

temp
i =

∫
Ci e
−k(w)·lbtmfi(w)dw∫

Ci e
−k(w)·ltopfi(w)dw

≈ e−k̄i·(lbtm−ltop), (3.6)

for i = 1, . . . , L, where lbtm and ltop are the path lengths associated with the CRISM

measurements at the bottom and top of Olympus Mons, respectively. Finally, the trans-

mission spectrum for each pixel the scene is simply obtained by scaling with a single

scaling parameter β: ti = (temp
i )β (i = 1, . . . , L).

The assumption that r(λ) and k(λ) are approximately constant over Ci indicates that

their variation is sufficiently broader than the width of the effective range. Put another

way, the width of the effective range, which is roughly represented by the full-width-half-

maximum (FWHM) of the spectral response function, needs to be sufficiently smaller

than the scale of the variation of r(λ) and k(λ). While this may be valid for the surface

reflectance, this assumption is hardly true for the absorption coefficient spectrum of

the atmosphere. The absorption coefficient spectrum of CO2, which could be simulated

using the absorption line parameters in the HITRAN database [88], exhibits many much

narrower bands than the full-width-half-maximums of the CRISM wavelength channels.

Thus, the empirically derived transmission spectrum vector temp
i cannot be scaled to the

transmission spectrum vector with arbitrary path length. It will cause a static error when

the path length l is same over pixels.

The bowl-shape artifact around the 2.0 µm wavelength region might be explained by

this static error. Many isotopes of gaseous carbon dioxide have many narrow strong

absorption bands around this region. The absorption coefficient spectrum varies a lot

within one wavelength channel of CRISM. The approximated transmission spectrum (3.6)
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is not guaranteed to accurately model the transmission spectrum with arbitrary path

length. The similar pattern of the residual seen over the 1.0 – 2.0 µm region could be also

explained by this error. Further investigation is necessary on this aspect.

3.2.3 CRISM noise and artifacts

This section investigates four major issues observed in the current CRISM products:

1) a systematic effect caused either by atmospheric distortions or within the calibration

pipeline, 2) random noise, 3) interpolation bias, namely systematic spike trains created

in the calibration pipeline, which is informally known as bed-of-nails, and 4) the spectral

effect of water-ice aerosols. Here, I define an image frame as the image captured at the

detector array at a time, spanning the cross-track and wavelength directions, and a pixel

as an image cell in one image frame spanning the cross-track and wavelength dimensions.

If the image is binned in the cross-track dimension, the pixel refers to the binned cell,

not the detector element.

3.2.3.1 Atmospheric residuals

The residuals caused by atmospheric correction are large enough to obscure some

absorption features, such as the water absorption around 1.4 µm. Also, they appear

to be consistent not only in the along-track direction but also in the cross-track di-

rection over several pixels. Fig. 3.2 shows representative examples. Fig. 3.2 (a) and (b)

show some atmospherically corrected I/F spectra from the same column in the image

FRT00009312 07 IF166L TRR3, compared with the transmission spectrum used for their

correction by the volcano scan method. The transmission spectrum that minimizes arti-

facts is selected with an empirical optimization method implemented in the CAT software.

Triplet-like spikes around 2.0 µm, a relatively small spike around 1.44 µm, and small dual

spikes around 1.6 µm are likely to be residuals caused by atmospheric correction because

they coincide with absorption features shown in the atmospheric transmission spectrum
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Figure 3.2. I/F spectra atmospherically corrected using CAT 7.4 on TRR3 data – (a)
spectra in column 156 at line 170 and every 50 lines starting 50 to 450 from top to bot-
tom, compared with the transmission spectrum (green) used for correcting these spec-
tra (column 156 in ADR10000000000 1B815 VS00L 9); (b) zoomed version of (a) into the
1.0 – 1.8 µm wavelength region; (c) spectra in the image frame (200) over neighboring
columns from 153 to 159 from top to bottom; (d) the zoomed version of (c) into the
1.0 – 1.8 µm wavelength region. (s,l) in the legends represents image coordinate (sample
(column), line). All I/F spectra are offset for clarity.

49



1.0 1.5 2.0 2.5

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

I/
F

0.6

0.8

1

(a)

Legend for (a) and (b)

(s,l) = (156,170)

(s,l) = (156,50)

(s,l) = (156,100)

(s,l) = (156,150)

(s,l) = (156,200)

(s,l) = (156,250)

(s,l) = (156,300)

(s,l) = (156,350)

(s,l) = (156,400)

(s,l) = (156,450)

ADR_1B815_VS00L_9

1 1.2 1.4 1.6 1.8

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.2

0.21

0.9

0.95

1

T
ra

n
s
m

is
s
io

n(b)

1.0 1.5 2.0 2.5

Wavelength [ m]

0.14

0.15

0.16

0.17

0.18

0.19

I/
F

(c)

Legend for (c) and (d)

(s,l) = (153,200)

(s,l) = (154,200)

(s,l) = (155,200)

(s,l) = (156,200)

(s,l) = (157,200)

(s,l) = (158,200)

(s,l) = (159,200)

1.0 1.2 1.4 1.6 1.8

Wavelength [ m]

0.16

0.165

0.17

0.175

0.18

0.185

0.19

0.195

(d)

Figure 3.3. Same comparison as in Fig. 3.2 of the I/F spectra from the TER product of
the observation FRT00009312. Refer to Fig. 3.2 for an explanation of each panel.
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(green). Overall, the current atmospheric correction exhibits a similar fluctuation pattern

in the 1.0 – 1.7 µm and 2.0 µm regions of the corrected spectra along the cross-track col-

umn. Furthermore, Fig. 3.2 (c) and (d) indicate that the similar pattern of fluctuations

is also consistently observed across the cross-track direction over several pixels. This

suggests that the systematic pattern is likely to be the residual of atmospheric correction

rather than a calibration error, under the assumption of the uniformity of atmospheric

transmission.

These artifacts are not fully removed even in the most advanced TER products.

Fig. 3.3 shows the same analysis on the corresponding TER I/F product, as performed

in Fig. 3.2. One can still observe a similar fluctuation pattern on the spectra both along

the column and across several neighboring columns, although the shape of such a pattern

changes on the spectra in Fig. 3.2 due to additional processing made for the TER product.

Such artifacts are also observed in the simulation of the volcano scan correction using

radiative transfer modeling [6]. As discussed in [6] and Section 3.2.2, some are related

to the violation of the assumptions made in the empirical volcano scan method. The

empirical method requires that the atmospheric transmission spectrum at the Olympus

Mons be exponentially scaled to the one in the image to be corrected by a single expo-

nential factor. Differences in atmospheric conditions, such as the amounts of dust and ice

aerosols, the amount of water vapor, and temperature and pressure, from those at Olym-

pus Mons break this assumption, causing the artifacts. This problem is partly addressed

by the optimal selection of transmission spectrum from the several empirically derived

transmission spectra measured in different seasons and different atmospheric conditions,

although the small collection of the empirically derived spectra is unlikely to be sufficient

to fully consider temporal and spatial variations. Their inverted version, hump-shape

artifacts are also observed. Fig. 3.1 highlights that the continua around 2.0 µm is above

the continua of the whole spectra, a hump-shape artifact exists underneath the triplets.

While any triplet-like shapes would be easily recognized as artifacts, the hump/bowl-
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shape artifacts are more difficult to assess, as it only affects the continuum level of the

spectra. In addition, Wiseman et al. [6] showed that the absorption coefficient of carbon

dioxide for each wavelength channel is not constant along the optical path due to the

vertical variation of the Martian atmosphere.

3.2.3.2 Random noise

There are several sources of random noise in CRISM images. The behavior of noise

at each detector element over time can be observed within the profile in the along track

direction because the along-track direction is equivalent to the “time” direction as CRISM

is a pushbroom scanner. Fig. 3.4 shows representative examples of four different aspects

of the along-track dynamics of the noise – an example of a “good” detector and three

different kinds of “bad” detectors, together with a spectrum that intersects those profiles.

The residual2 profiles in the along-track direction of bad detectors are shown in black

and that of a good detector is in red in Fig. 3.4 (b)-(d). Each of the bad detectors shows

different time dependent behaviors: autoregressive random noise, random spikes, and

a telegraph pattern. The residual profile shown in black in Fig. 3.4 (b) is always larger

than zero and seems to be highly related to its previous residual, indicating a strong

autoregressive property. The black profile in Fig. 3.4 (c) shows mostly small variance

(but slightly larger than that of the good detector shown in red) and often corrupted

with spiky noise of various magnitudes. The occurrence of spikes seems to be random.

Finally, the black profile in Fig. 3.4 (d) shows a clear telegraph noise, exhibiting occasional

sudden step-like transitions between two levels. These different sources of noise, which

confirm and expand previous observations by [89], make holistic statistical modeling

difficult. Fortunately when we observe a spectral profile, as shown in Fig. 3.4 (a), these

various kinds of noise manifest themselves as spikes with varying magnitudes.

2The residual of the proposed atmospheric correction method, obtained by removing estimated atmo-
spheric and surface components from I/F signal, is considered to be a suitable approximation of the noise
in CRISM signals.
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Figure 3.4. (a) an I/F spectrum atmospherically corrected by the proposed method
and (b)-(d) the residual profiles in the along-track direction of some wavelength channels
used for the acquisition of the spectrum (a). The spectrum (a) is obtained at the image
coordinate (sample, line) of (117,275) in the scene image FRT00024C1A. Black profiles
in (b), (c), and (d) are associated with the bands 369 (1459.5 nm), 300 (1913.7 nm), and
369 (2098.5 nm) of the cross-track pixel number 117, respectively, which are supposed
to be “bad.” The red profiles in (b)-(d) are all from the band 342 (1637 nm), which
is supposed to be “good.” The black and red circles in (a) are associated with the
wavelength channels of the residual profiles. The blue vertical lines in (b)-(d) shows the
image frame number where the spectrum (a) is acquired.
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Figure 3.5. Comparison of non-Filtered I/F spectra atmospherically corrected by CAT
(red) with their column neighbors (gray), the mean of column neighbors (yellow), and
filtered I/F spectra atmospherically corrected by CAT (blue). The image coordinates
(sample, line) of these spectra are (a) (403,172) in FRT0000A546, (b) (386,166) in
FRT000174F4, and (c) (90,318) in HRL0000C0BA. Spurious features caused by the fil-
tering over BPs are highlighted in yellow.

3.2.3.3 Interpolation bias

Some pixels are corrupted with elevated noise. In some pixels, only the value indicat-

ing saturation (4095 in the 12-bit format) is recorded in the raw image cube and there-

fore, no information relevant to radiative energy is measured. Those pixels are marked

as “bad pixels” (BP), discarded, and replaced in the calibration by linear interpolation

in the same wavelength channel of the spatial neighbors in the cross-track direction in

each image frame [4,78]. If both sides of the neighboring pixels are not “bad”, then linear

interpolation is simply the mean of the neighbors.

The linear spatial interpolation of BPs sometimes causes small spikes, which we can
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call interpolation bias. In a CRISM image, the continuum shapes of spatially neighboring

spectra tend to be similar but their magnitudes do not completely align. In particular,

the magnitude of the continuum of the spectrum does not correspond to the average of

the continua of its two spatial neighbors. Every bad pixel (channel) that is replaced by

the average of the spatial neighbors will exhibit a spike whose peak is exactly equal to that

average. The overall effect of the interpolation is a ”train” of spikes of similar magnitude.

Fig. 3.5 shows three representative examples of the interpolation bias. The red spectrum

has BPs marked with purple dots. These BPs are replaced with the interpolation of cross-

track spatial neighbors, namely the mean (in yellow) of the two gray spectra, if the same

bands of both of the neighbors are not marked as BPs themselves. I note that not all

the BPs (purple dots) are aligned exactly at their spatial average with neighbors because

volcano scan correction is further applied to these spectra, or one of the neighbors could

also be BPs.

The interpolation bias can be alleviated by the filtering stage in the TRR3 processing

pipeline. The comparison of atmospherically corrected I/F spectra with (blue) or with-

out (red) filtering in Fig. 3.5 (a) shows that filtering largely removes isolated spikes over

1.6 – 2.6 µm. However, the filter is sensitive to the occurrence of many spectrally adjacent

BPs. A spurious artifact is created around 1.37 µm where there is a concentration of

BPs (highlighted in yellow). Fig. 3.5 (b) shows spike clusters are left over 1.4 – 2.0 and

2.2 – 2.6 µm after filtering (highlighted in yellow). Fig. 3.5 (c) shows a spurious absorp-

tion created by the filter over 2.0 – 2.2 µm by many adjacent BP’s (highlighted in yellow).

This phenomenon also explains the emergence of spike clusters and spurious absorptions

investigated by [84].

The interpolation bias often occurs when the spectral continuum or shape changes

rapidly in the spatial domain. In particular, it tends to happen in small areas that are

spectrally distinctive from its surroundings. The BPs and interpolation bias occur more

frequently on spatially binned images (HRL and HRS).
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Figure 3.6. Atmospherically corrected I/F spectra by CAT that exhibit the absorption
features of water ice aerosols. Their image coordinates (sample, line) are (a) (597,220)
in FRT0000B573 and (b) (247,230) in HRL0002422E.

3.2.3.4 Water ice aerosols

Depending on seasons and locations, the Martian atmosphere may contain water ice

aerosols, which may significantly affect acquired spectra [6]. It is reported that a signif-

icant amount of water ice aerosols is observed at low latitudes near Mars aphelion [90],

which corresponds to observation IDs A***, B***, C***, 18***, or 24***. Water ice

aerosol spectra are characterized by significant absorption features at 1.5 and 2.0 µm, a

shallow wide absorption over 2.3 µm, and a downward slope over 2.6 µm wavelength re-

gion toward longer wavelengths. The presence of water ice aerosols in CRISM I/F spectra

could be visually confirmed by the observation of both an absorption at 1.5 µm that may

look like a downward continuum shift and a depression around 2.0 µm (e.g., Fig. 3.6).

The depression around 2.0 µm may not be sufficient by itself to confirm the presence of

water ice aerosols because it could be a bowl-shape artifact [6,83]. The feature at 2.0 µm

can mask a mineral hydration feature at 1.9 µm. While some atmospheric transmission

spectra stored as “VS” in the ancillary data records (ADR) consider the presence of the

water ice aerosol, the set is not extensive.
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3.2.4 Linear mixture model with concave background

Linear mixing model (LMM) represents a single measured hyperspectral spectrum

y ∈ RL×1 (L is the number of spectral bands) as the linearly weighted sum of pure

endmember spectra according to their fractional abundances:

y = Ax + n (x ⪰ 0), (3.7)

where A ∈ RL×NA (NA is the number of endmembers) is a matrix storing endmember

spectra in its columns, x ∈ RNA×1 is the vector of the abundances of the endmembers,

n ∈ RL×1 is the vector of noise, and succeq represents element-wise inequality operation.

LMM is the most basic and traditional model for unmixing and has been widely used for

hyperspectral unmixing [1,91,92]. The LMM can be easily extended to a matrix form to

express the LMM for multiple observation spectra together:

Y = AX + N (X ⪰ 0), (3.8)

where Y ∈ RL×N (N is the number of observed spectra) is the matrix whose columns

stores observed spectra, X ∈ RNA×N is a matrix whose columns store abundances of

endmembers for the observed spectra, and N ∈ RL×N is a noise matrix.

The observation spectrum may have distortion from the linear combination of end-

members. Natural surfaces are easily covered with dust, which obscures observed signals.

In addition, inaccurate estimation of aerosols could cause difference in the continuum of

the spectra. Those effects could behave like additional endmembers in spectral mixture

and result in a distortion to spectral signals [93, 94]. Furthermore, unknown (spectrally

unremarkable) endmembers may be present in the library. LMM with concave back-

ground (LMM-CB) addresses these problems by augmenting the LMM with a concave

“background”:

y = Ax + b + n (x ⪰ 0,Cb ⪰ 0),

where b ∈ RL×1 is the vector of a concave spectrum and C ∈ R(L−2)×L is a concavity
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operator matrix the ith row of which is defined as:

Ci,j =


wi+1−wi+2 if j = i

wi+2−wi if j = i+ 1

wi −wi+1 if j = i+ 2

0 otherwise,

( j = 1, . . . , L ) (3.9)

for i = 1, . . . , L − 2, where wi is the center wavelength position of the ith wavelength

channel. It is assumed that the wavelength samples w1, w2, . . . , wL strictly monotonically

increase with respect to the spectral band indices. The ith row of the inequalities CB ⪰ 0

represents the window of three consecutive channels i, i+1, and i+2, and can be expressed

as:

bi(wi+1 − wi+2) + bi+1(wi+2 − wi) + bi+2(wi − wi+1) ≥ 0

⇔ bi+1 ≥
bi(wi+2 − wi+1) + bi+2(wi+1 − wi)

wi+2 − wi
,

where bi is the ith elements of b. This inequality restricts the middle point (wi+1, bi+1) to

be above the internal division at wi+1 obtained by both neighbors (wi, bi) and (wi+2, bi+2),

ensuring the concavity of the curvature over the three channels i, i + 1, and i + 2, i.e.,

the middle point of the three channels is above the line segment determined by the other

two adjacent points. The collection of these inequalities for all i = 1, . . . , L−2 constrains

the whole curvature of b to be concave. Note that, if spectral sampling is uniform, the

matrix C becomes much simpler, but the definition of C is more general and applicable

to non-uniform sampling, which you may encounter when you manually exclude some

badly behaving spectral bands, e.g., BP bands of CRISM.

The concave background spectra are interpreted as continuum components, which

are conventionally considered to be generally spectrally unremarkable and insignificant

for the presence of scientifically meaningful species in geological applications [95–97]. In

addition, the concave background spectra fit the contribution of unknown dust aerosols

prevalent on Mars that may give negative slopes in this wavelength region [6, 93, 98].

Although the dust aerosols residing in the atmosphere cannot be considered as a part of

surface, it improves the fit to the observed I/F spectra.
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Next, I convert the expression (3.9) into another format that can be easily handled in

optimization problems. Let us create a square matrix C̄ ∈ RL×L by augmenting the first

and last rows of C with cardinal vectors e1 = [1, 0, . . . , 0]T ∈ RL and eL = [0, . . . , 0, 1]T ∈

RL, respectively:

C̄ = [ e1 CT eL ]T .

Since C̄ is a tri-diagonal matrix whose diagonal elements are nonzero, it is invertible. Let

z = C̄b, namely, we have b = C̄−1z. Let

γ =

[ −∞
0L−2
−∞

]
,

where 0L−2 is an (L− 2)× 1 vector whose elements are all zeros. The constraint Cb ⪰ 0

is equivalently expressed as z ⪰ γ. Then LMM-CB can also be formulated as:

y = Ax + C̄−1z + n (x ⪰ 0, z ⪰ γ).

This format is useful as the term C̄−1z is easy to stack with the LMM term Ax. C̄−1 has

also an interesting geometric property. The ith column of C̄−1 is a triangular spectrum

that is based at the both edge (namely, the first and last elements of the ith column ci,

(ci)1 and (ci)L, are equal to zero) and topped at the ith element ((ci)i is the top of the

triangle). It controls the strict local concavity at the ith element over three successive

channels centered at i. This matrix C̄−1 can interpreted as a concave base matrix, as it

stacks all the substantial components (concave bases) for representing arbitrary concave

curvatures.

As performed for the LMM (3.8), LMM-CB can also be expressed in a matrix form:

Y = AX + C̄−1Z + N (X ⪰ 0,Z ⪰ Γ), (3.10)

where Z ∈ RL×N is a matrix whose columns stores the coefficients of the concave bases

and Γ ∈ RL×N is the N replication of γ in the column dimension: Γ = γ · 11×N , where

11×N is a 1×N vector whose elements are all ones.
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3.2.5 Related work

To improve upon the traditional volcano-scan technique, atmospheric-correction ap-

proaches based on forward modeling of radiative transfer using discrete ordinate radiative

transfer code (DISORT) have been proposed [99–103]. Input atmospheric parameters are

initialized/estimated from Martian climatological data measured by other instruments.

This method also considers scattering and absorption by dust and water ice aerosols.

The presence of noise and artifacts in CRISM products have compelled the devel-

opment of several de-noising approaches. For the previous iteration of CRISM targeted

observations (TRR2), the CRISM Iterative Recognition and Removal of Unwanted Spik-

ing (CIRRUS) [104] and a filtering based approach implemented within the mapping

method proposed by [105] were implemented. The major update of the CRISM targeted

products to version 3 (TRR3) provided an improvement in calibration with the addition

of TRR3 filtering [78,106]. In this new era, a denoising method [107] and a Complement

to CRISM Analysis Toolkit (CoTCAT) [108] were proposed to complement the TRR3

filtering. More recently, Kreisch et al. [103] implemented a simultaneous de-noising and

map-projecting method using a maximum likelihood for single scattering albedo obtained

by DISORT under that assumption that noise follows a Poisson distribution, combining

with prior processing using a median filter. He et al. [109] advanced this idea by injecting

hypothesis testing into maximum likelihood based de-noising method, which allows the

automatic evaluation of noise distribution.

3.3 Convex optimization algorithms for SABCOND

This section describes algorithms for efficiently solving convex optimization prob-

lems encountered in SABCOND. I starts with a brief introduction of alternating direc-

tion method of multipliers (ADMM), which has been widely used to solve minimiza-

tion problems in hyperspectral unmixing [45, 110–122]. I also review a technique called
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residual balancing, that balances the magnitude of a penalty term commonly used for

ADMM to practically achieve faster convergence. Then, I propose ADMM with general-

ized augmented terms (ADMM-GAT) and a modified residual balance technique tailored

for ADMM-GAT, which are subsequently applied to two convex optimization problems:

least absolute deviation (LAD) and constrained basis pursuit (CBP) problems that are

internally employed in SABCOND. Finally, it is shown that how convex optimization

problems in SABCOND can be equivalently transformed into CBP formats to enable the

utilization ADMM-GAT algorithms for CBP.

This section is organized as follows. Section 3.3.1 briefly reviews ADMM and its resid-

ual balancing technique. Section 3.3.2 describes the theory of ADMM-GAT, including

the new residual balancing technique (Section 3.3.2.1), the application of ADMM-GAT

to LAD and CBP (Section 3.3.2.2), a compromised version of the residual balancing for

batch processing of these two applications (Section 3.3.2.3), and then their pseudo codes

(Section 3.3.2.4). Finally, Section 3.3.3 shows the equivalent transformation of the several

convex optimization problems into the CBP formats.

3.3.1 ADMM

ADMM is an algorithm for solving convex optimization problems that combines the

dual ascent method and the augmented Lagrangian method [123]. ADMM solves prob-

lems expressed in the following format:

minimize
x,y

f(x) + g(z)

subject to Ax + Bz = c,
(3.11)

where x ∈ Rm, z ∈ Rn c ∈ Rp, A ∈ Rp×m, B ∈ Rp×n, and f and g are convex

functions with respect to x and z, respectively. ADMM considers a Lagrangian with an

augmentation term:

Lρ(x, z,y) = f(x) + g(z) + yT(Ax + Bz − c) +
ρ

2
∥Ax + Bz − c∥22, (3.12)
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where y ∈ Rp is a vector of Lagrangian multipliers and ρ (>0) is a scalar spectral penalty

parameter. ADMM iterates the following procedure until convergence:

x(k+1)← arg min
x

Lρ(x, z(k),y(k)) (3.13a)

z(k+1)← arg min
z

Lρ(x(k+1), z,y(k)) (3.13b)

y(k+1)←y(k) + ρ
(
Ax(k+1) −Bz(k+1) − c

)
, (3.13c)

where the superscript (k) indicates the number of iteration. The first two update equa-

tions (3.13a) and (3.13b) are the minimization of the augmented Lagrangian with respect

to primal variables. The equation (3.13c) is a dual ascent step. Similarly, the scaled form

of the augmented Lagrangian is

Lρd(x, z,d) = f(x) + g(z) + ρdT(Ax + Bz − c) +
ρ

2
∥Ax + Bz − c∥22,

where d = y/ρ is the vector of a scaled Lagrangian multipliers and its update scheme is

x(k+1)← arg min
x

Lρd(x, z(k),d(k)) (3.14a)

z(k+1)← arg min
z

Lρd(x(k+1), z,d(k)) (3.14b)

d(k+1)←d(k) +
(
Ax(k+1) −Bz(k+1) − c

)
. (3.14c)

The convergence of the ADMM algorithm can be assessed by the residual of primal

and dual feasibility conditions [123,124]:

r(k+1) =Ax(k+1) + Bz(k+1) − c

s(k+1) = ρATB
(
z(k+1) − z(k)

)
.

The primary residual evaluates how much the equality constraint in the primal prob-

lem (3.11) is violated. The dual residual is associated the amount of the violation of the

stationary condition of the Lagrangian without the augmented term. At the very optima,

both of the residual must be equal to zero and their magnitudes indicate the degree of

convergence of the minimization problem. Boyd et al. [123] show that the magnitude of

these primal and dual residuals can bound the difference between the current cost and
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the optimal cost. Therefore, if both ∥r(k+1)∥2 and ∥s(k+1)∥2 become smaller than the

pre-defined tolerance, the current cost is considered to be sufficiently close to the optimal

cost, and the iteration of the algorithm is stopped.

While the convergence of the algorithm can be theoretically verified for any ρ, the

rate of convergence is affected by ρ. Residual balancing [123,124] is a common heuristic

to automatically adjust ρ to practically achieve faster convergence, although convergence

is not guaranteed in general unless ρ is fixed after a finite number of iterations. Residual

balancing keeps the primal and dual residuals within the same order of magnitude. If the

primal residual becomes excessively larger than the dual residual, the residual balancing

increases ρ. If the dual residual becomes excessively larger than the primal residual, it

decreases ρ. Practically, the following operation is performed:

ρ←



τρ if ∥r(k+1)∥2 ≥ µ∥s(k+1)∥2

ρ/τ if ∥s(k+1)∥2 ≥ µ∥r(k+1)∥2

ρ otherwise,

(3.15)

where τ and µ are normally predefined hyper parameters. Typical values are τ = 10 and

µ = 2. This operation is intuitively interpreted as follows. ρ controls the balance between

the Lagrangian and the augmented term. If the primal residual Ax(k+1) + Bz(k+1) − c

is too large, then ρ is increased to strengthen the impact of the augmented term in

the augmented Lagrangian (3.12). Large dual residual indicates the augmented term is

weighted too much and it is reasonable to reduce its weight by decreasing the value of ρ.

3.3.2 ADMM-GAT

ADMM-GAT generalizes ADMM by introducing a different spectral penalty parame-

ter for each constraint. ADMM-GAT is briefly mentioned in Section 3.4.2 in [123], where

they only comment that you can allow a different spectral penalty parameter for each

constraint. They also mention that you can generalize it even more by replacing ρ with

a symmetric positive definite matrix P that allows a decomposition P = FTF, and re-
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place the equality constraint Ax + Bx − c = 0 by F(Ax + Bx − c) = 0, to cast it

as a standard ADMM. However, there is no further investigation on the benefits of the

generalizations and how F should be determined. In addition, it is not clear how residual

balancing, which turned out to practically speed up the convergence of ADMM, can be

implemented for ADMM-GAT. This section will investigate ADMM-GAT, which allows a

spectral penalty parameter for each constraint, and further provides a residual balancing

technique tailored to the ADMM-GAT.

ADMM-GAT considers the same minimization problem (3.11) as ADMM and defines

the augmented Lagrangian with a diagonal spectral penalty parameter matrix P ∈ Rp×p,

instead of the scalar penalty parameter ρ:

LP (x, z,y) = f(x) + g(z) + yT(Ax + Bz − c)

+
1

2
(Ax + Bz − c)TP(Ax + Bz − c). (3.16)

Letting r = Ax + Bz − c, the augmented term is also expressed as:

1

2
rTPr =

1

2

p∑
i=1

Pir
2
i , (3.17)

where Pi is the (i, i) element of P, and ri is the ith element of r. This indicates that Pi

only penalizes the ith element of the equality constraint r = 0, and therefore it is the

spectral penalty parameter dedicated to the ith constraint. I also note that LP can be

expressed using a square diagonal matrix F ∈ R×p whose (i, i) element Fii is equal to

√
Pi (therefore, FTF = P) as:

LP (x, z,y) = f(x) + g(z) + yT(Ax + Bz − c) +
1

2
∥F(Ax + Bz − c)∥22. (3.18)

This formulation does not replace the equality constraint r = 0 with Fr = 0, but it does

not make any difference in any case, especially when you consider its scaled form.

The scheme of the ADMM-GAT is same as that of ADMM in equations (3.13a),

64



(3.13b), and (3.13c), which is the iteration of the following problems:

x(k+1)← arg min
x

LP (x, z(k),y(k)) (3.19a)

z(k+1)← arg min
z

LP (x(k+1), z,y(k)) (3.19b)

y(k+1)←y(k) + P
(
Ax(k+1) −Bz(k+1) − c

)
, (3.19c)

Similarly, the scaled form of the augmented Lagrangian is

LPd(x, z,d) = f(x) + g(z) + dTP(Ax + Bz − c) +
1

2
(Ax + Bz − c)TP(Ax + Bz − c),

where d = P−1y is the vector of a scaled Lagrangian multipliers and its update scheme is

x(k+1)← arg min
x

LPd(x, z(k),d(k)) (3.20a)

z(k+1)← arg min
z

LPd(x(k+1), z,d(k)) (3.20b)

d(k+1)←d(k) +
(
Ax(k+1) −Bz(k+1) − c

)
. (3.20c)

Similar to ADMM, the convergence of ADMM-GAT can be verified by the primal and

dual residuals:

r(k+1) =Ax(k+1) + Bz(k+1) − c (3.21a)

s
(k+1)
P =ATPB(z(k+1) − z(k)). (3.21b)

The dual residual is obtained by taking the stationary condition of the problem (3.20a),

as shown in Section 3.3 in [123] for ADMM:

0 ∈ ∂x LP (x(k+1), z(k),y(k))

= ∂x f(x(k+1)) + ATy(k) + ATP
(
Ax(k+1) + Bz(k) − c

)
= ∂x f(x(k+1)) + AT

(
y(k) + P(Ax(k+1) + Bz(k+1) − c)

)
+ ATPB

(
z(k) − z(k+1)

)
= ∂x f(x(k+1)) + ATy(k+1) + ATPB

(
z(k) − z(k+1)

)
,

where ∂x represents the subgradient operator for a function with respect to x and

∂x LP (x(k+1), z(k),y(k)) and ∂x f(x(k+1)) are the subgradients of LP and f with respect
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to x at (x(k+1), z(k),y(k)) and x(k+1), respectively. Namely we have

ATPB
(
z(k+1) − z(k)

)
∈ ∂x f(x(k+1)) + ATy(k+1),

where the right hand side is identical to the stationary condition of the Lagrangian

without the augmented term with respect to x. Therefore, the left hand side is considered

to be the residual for the stationary condition.

ADMM-GAT is potentially beneficial over ADMM. If the elements of primal residual

r have large variation, it is likely that an optimal spectral parameter is different for each

element. ADMM-GAT allows the adjustment of the spectral penalty parameters for each

element, and could further speed up the convergence. In addition, a benefit is observed

for the optimization of the dual variable. As we can see from the update of the dual

variable, Eq. (3.13c) (or Eq. (3.19c)), ρ (or P) controls the learning rate of the dual

variable. If you have large diversity among the elements of the dual variable, a different

learning rate for each element of the dual variable would accelerate the algorithm toward

convergence.

3.3.2.1 Residual-balancing for ADMM-GAT

Since, in general, we do not know the optimal spectral penalty parameters in advance,

automatic adjustment methods, such as residual balancing, would be necessary to take

advantage of the generalization. Although residual balancing supports only ADMM with

a single spectral penalty parameter, its idea can be extended to ADMM-GAT to further

increase its convergence rate.

Residual balancing controls the balance of the primal residual and the dual residual.

A single scalar ρ is the only spectral penalty parameter affects both of them, and their

total magnitudes are evaluated. In ADMM-GAT, you could still think about balancing

the primal and dual residuals. We can evaluate the balance of the primal and dual

residuals for each spectral penalty parameter Pi. This can be realized by decomposing

the primal and dual variables with respect to Pi and then, assessing the balance of each
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pair of the primal and dual components associated with Pi.

The component of the primal residual associated with Pi can be directly observed

from the decomposition (3.17) of the augmented term of LP . Each Pi only penalizes the

ith element ri of r, Therefore, the component of r(k+1) associated with Pi is determined

to r
(k+1)
i . To obtain its counterpart in the dual residual, let us start with an expansion

of each element of the dual residual (3.21b) s
(k+1)
P with respect to Pi:(

s
(k+1)
P

)
j

=

p∑
i=1

Pi ·Aij · bi ·
(
z(k+1) − z(k)

)
(j = 1, . . . ,m),

where
(
s
(k+1)
P

)
j

is the jth element of s
(k+1)
P , Aij is the (i, j) element of A and bi is the

ith row of B. Therefore, we can expand s(k+1) with respect to Pi by stacking
(
s
(k+1)
P

)
j

for j = 1, . . . ,m in a column:

s
(k+1)
P =

p∑
i=1

Pi ·


Ai1

Ai2
...

Aim

 · bi · (z(k+1) − z(k)
)

=

p∑
i=1

Pi · aiT · bi ·
(
z(k+1) − z(k)

)
,

where ai = [ Ai1 Ai2 . . . Aim ] ∈ R1×m is the ith row of A. The ith component in

the summation is considered as the dual residual associated with Pi and denote it by

σ
(k+1)
Pi

= Pi · aiT · bi ·
(
z(k+1) − z(k)

)
. Then, in a similar way to the operation (3.15) for

ADMM, residual balancing for ADMM-GAT can be performed for each element Pi by

comparing the magnitudes of its associated primal and dual residuals:

Pi ←



τPi if
∣∣r(k+1)
i

∣∣ ≥ µ∥∥σ(k+1)
Pi

∥∥
2

Pi/τ if
∥∥σ(k+1)

Pi

∥∥
2
≥ µ

∣∣r(k+1)
i

∣∣
Pi otherwise,

for i = 1, . . . , p. Again, τ and µ are predefined hyper parameters. Typical values are

τ = 10 and µ = 2.

3.3.2.2 Examples of ADMM-GAT realizations

This section shows the two examples of the ADMM-GAT algorithm for LAD and

CBP. In these examples, the spectral penalty parameter matrix P is further replaced
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with ρP. This redundant generalization is beneficial when solving the collection of the

same problem with partially independent input parameters. With ρ = 1, it is easy to go

back to the original ADMM-GAT formulation.

3.3.2.2.1 ADMM-GAT for LAD

Least absolute deviation (LAD) is defined as:

LAD : minimize
x

∥h−Ax∥1,

where x ∈ Rn, A ∈ Rm×n, and h ∈ Rm. Letting z = Ax − h, the above problem is

reformulated as
minimize

x,z
∥z∥1

subject to Ax− z = h.

The scaled version of the generalized augmented Lagrangian of this problem is

LPd(x, z,d) = ∥z∥1 + ρdTFTF(Ax− z − h) +
ρ

2
∥F(Ax− z − h)∥22

= ∥z∥1 +
ρ

2
∥F(Ax− z − h + d)∥22 −

ρ

2
∥Fd∥22,

where ρ is a scalar spectral penalty parameter, F ∈ Rm×m is a diagonal spectral penalty

parameter matrix such that FTF = P, and d ∈ Rn is a vector of Lagrangian multi-

pliers. The ADMM-GAT algorithm solves the minimization problem by the alternating

optimization of the following

x(k+1)← arg min
x

ρ

2

∥∥∥F(Ax− z(k) − h + d(k)
)∥∥∥2

2

z(k+1)← arg min
z

∥z∥1 +
ρ

2

∥∥∥F(Ax(k+1) − z − h + d(k)
)∥∥∥2

2

d(k+1)←d(k) + (Ax(k+1) − z(k+1)), (3.22)

where k indicates the number of iteration. The update of x is an unconstrained last

square problem.

x(k+1)←
(
ATPA

)−1
ATP

(
h + z(k) − d(k)

)
. (3.23)
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Since P is a diagonal matrix, the minimization with regard to z becomes separable for

each element:

z(k+1)← soft

(
Ax(k+1) − h + d(k),

1

ρ
· diag(P−1)

)
, (3.24)

where diag(P−1) = [ 1/P1 1/P2 . . . 1/Pm ]T ∈ Rm and soft(·) is a function for performing

element-wise soft-thresholding of the vector of the first input (or matrix):

soft(x,κ) = xκ,

where xκ[i] =


0 if |x[i]| ≤ κ

sign(x[i]) ·
(
|x[i]| − κ

)
otherwise.

This algorithm converges much faster than the original ADMM especially when the so-

lution of the unconstrained problem is much differ from its constraint version. The

drawback is that the matrix inversion in the equation (3.23) needs updating whenever P

is updated.

3.3.2.2.2 ADMM-GAT for CBP

Constrained basis pursuit (CBP) de-nosing problem is defined as:

minimize
x

∥∥c1 ⊙ x
∥∥
1

subject to Gx = h and x ⪰ c2,

(3.25)

where x ∈ Rn, G ∈ Rm×n, h ∈ Rm, c1 ∈ Rn, c2 ∈ Rn, and ⊙ represents the element-wise

multiplication of the two operands. The problem is equivalent to its variable augmented

version:

minimize
x,z

∥∥c1 ⊙ z
∥∥
1

subject to Gx = h, z ⪰ c2, and x− z = 0,

(3.26)

which could be solved via alternating minimization. The scaled form of its generalized

augmented Lagrangian is defined as

LPd(x, z,d) =
∥∥c1 ⊙ z

∥∥
1

+ Iz⪰c2(z) + IGx=h(x) + ρdTFTF(x− z) +
ρ

2
∥F(x− z)∥22

=
∥∥c1 ⊙ z

∥∥
1

+ Iz⪰c2(z) + IGx=h(x) +
ρ

2
∥F(x− z + d)∥22 −

ρ

2
∥Fd∥22,
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where Iz⪰c2(z) is an indicator function of z that outputs zero if z ⪰ c2 and∞ otherwise,

IGx=h(x) is also an indicator one that outputs zero if Gx = h and ∞ otherwise, ρ is a

scalar spectral penalty parameter, F ∈ Rn×n is a diagonal matrix (such that FTF = P)

and d ∈ Rn is a vector of scaled Lagrangian multipliers. Likewise, the minimization is

performed via the repetition of three simplified problems:

x(k+1)← arg min
x

L(x, z(k),d(k)) (3.27a)

z(k+1)← arg min
z

L(x(k+1), z,d(k)) (3.27b)

d(k+1)←d(k) + x(k+1) − z(k+1), (3.27c)

where superscripts (k) and (k + 1) represent the number of iteration. The last equa-

tion (3.27c) is a dual-ascent step. Considering the top two problems are formulated

as

x(k+1)← arg min
x

ρ

2

∥∥∥F(x− z(k) + d(k)
)∥∥∥2

2
subject to Gx = h

z(k+1)← arg min
z

∥c1 ⊙ z∥1 + Iz⪰c2(z) +
ρ

2

∥∥∥F(x(k+1) − z + d(k)
)∥∥∥2

2
,

the first equation (3.27a) is analytically solved by

x(k+1)←
(
I−P−1GT

(
GP−1GT

)−1
G
) (

z(k) − d(k)
)

+ P−1GT
(
GP−1GT

)−1
h, (3.28)

and the equation (3.27b) can be also analytically solved by

z(k+1)← soft

(
max

(
x(k+1) + d(k), c2

)
,
c1
ρ
⊙ diag(P−1)

)
, (3.29)

where max(·) is a function for taking element-wise maximum of two vectors (or matrices).

3.3.2.2.3 Matrix form of CBP and LAD and their ADMM-GAT algorithms

Let us consider solving a collection of the problem in the same form. In case of CBP

you may have a set {h} = {h1,h2, . . .hN} with the other parameters, G, c1, and c2,

fixed. In case of LAD you may have a set {h} with the other parameters A fixed. In this

scenario, the LAD problem can be then expressed with a matrix form:

minimize
X

∥H−AX∥1,1,

70



where H = [h1 h2 . . .hN ] ∈ Rm×N and ∥ · ∥1,1 takes the sum of absolute values of all the

elements of a matrix. Similarly, CBP is also expressed with a matrix form:

minimize
X

∥∥C1 ⊙X
∥∥
1,1

subject to GX = H and X ⪰ C2,

(3.30)

where C1 = [ c1 c1 . . . c1︸ ︷︷ ︸
N

] and C2 = [ c2 c2 . . . c2︸ ︷︷ ︸
N

].

It is possible to separate this problem into each column of H and X, but it would be

more efficient to solve this as one problem to avoid redundantly performing matrix inver-

sion whenever the spectral penalty parameters are updated. The redundant formulation

of P with ρP is a compromised solution for this. P takes the variation over different

row dimensions and ρ does over different columns. The previous sections 3.3.2.2.1 and

3.3.2.2.2 saw that with the redundant formulation, ρ is taken outside of the matrix in-

version. By defining ρ for each column, ADMM-GAT can be efficiently performed. Let

ρi(i = 1, 2, . . . , N) as ρ for the ith column and ρ−1 =
[
ρ−11 ρ−12 . . . ρ−1N

]
∈ R1×N (and

ρ = [ρ1 ρ2 . . . ρN ] ∈ R1×N .). Then the update equations are straightforwardly obtained.

For the CBP problem, the update equations (3.28), (3.29), and (3.27c) become

X(k+1)←
(
I−P−1GT

(
GP−1GT

)−1
G
) (

Z(k) −D(k)
)

+ P−1GT
(
GP−1GT

)−1
H, (3.31a)

Z(k+1)← soft
(
max

(
X(k+1) + D(k),C2

)
, C1 ⊙

(
diag(P−1) · ρ−1

))
, (3.31b)

D(k+1)←D(k) + X(k+1) − Z(k+1), (3.31c)

where D is a matrix form of scaled Lagrangian multipliers. The update equations are

straightforwardly obtained. For the LAD problem, the update equations (3.23), (3.24),

and (3.22) becomes

X(k+1)←
(
ATPA

)−1
ATP

(
H + Z(k) −D(k)

)
, (3.32a)

Z(k+1)← soft
(
AX(k+1) −H + D(k),

(
diag(P−1) · ρ−1

))
, (3.32b)

D(k+1)←D(k) + (AX(k+1) − Z(k+1)). (3.32c)
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3.3.2.3 Residual balancing for ρP in a matrix form

The last section introduces the matrix forms of the two convex optimization problems,

LAD and CBP. This section discusses residual balancing for them. First, the matrix form

of ADMM is redefined. A general form of the matrix forms discussed in the last section

is the batch processing of the collection of the minimization problem (3.11):

minimize
x1,x2, ...,xN
z1,z2, ...,zN

N∑
l=1

(
f(xl) + g(zl)

)
subject to Axl + Bzl = c for l = 1, ..., N,

(3.33)

where xl ∈ Rm, zl ∈ Rn for l = 1, ..., N , c ∈ Rp, A ∈ Rp×m, B ∈ Rp×n, and f and g are

convex functions with respect to x and z, respectively. Let X ∈ Rm×N and Z ∈ Rn×N

be the concatenation of xl and zl for l = 1, ..., N , respectively as: X = [x1 x2 ... xN ]

and Z = [z1 z2 ... zN ]. The equality constraint in the problem (3.33) is expressed as:

AX + BZ = C,

where C ∈ Rp×N is C = [ c c . . . c ]︸ ︷︷ ︸
N

. Redefining the terms of the cost function with

respect to X and Z by:

F(X) =

N∑
l=1

f(xl) and G(Z) =

N∑
l=1

g(zl),

and the minimization problem (3.33) can be expressed in a matrix form:

minimize
X,Z

F(X) + G(Z)

subject to AX + BZ = C.
(3.34)

This transformation (3.34) using matrix variables is still separable across the column and

equivalent to the binding of the collection of the standard form of ADMM, as shown

in (3.33). As we saw in the last section, we can formulate its augmented Lagrangian with

a spectral parameter matrix ρlP for each column l = 1, ...N :

LρPFG(X,Z,Y) =F(X) + G(Z) + Tr
(
YT(AX + BZ−C)

)
+

1

2
Tr
(

(AX + BZ−C)TP(AX + BZ−C)Ω
)
, (3.35)
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where Ω ∈ RN×N is a diagonal matrix such that its (l, l) element Ωl,l is equal to ρl for

l = 1, . . . , N . The primal and dual residuals of this problem are obtained as:

R(k+1) =AX(k+1) + BZ(k+1) −C (3.36)

S(k+1) =
N∑
l=1

ρlA
TPB(z

(k+1)
l − z

(k)
l ) = ATPB(Z(k+1) − Z(k))Ω, (3.37)

which are also the binding of the residuals over columns. Residual balancing is performed

for both ρl (l = 1, ..., N) and Pi (i = 1, ..., p) by decomposing the primal and dual

residuals into their corresponding components. Since ρl and P cannot be separable, two

decompositions, one with respect to ρl (l = 1, ..., N) and the other with respect to Pi

(i = 1, ..., p) are considered to assess the balance of their assoicated primal and dual

residuals associated. To update ρl, the primal and dual residuals are decomposed with

respect to ρl and their corresponding components are compared.

The component of the primal residual associated with ρl can be observed by the

transformation of the augmented term in (3.35):

1

2
Tr
(

(AX + BZ−C)TP(AX + BZ−C)Ω
)

=
1

2

∥∥F(AX + BZ−C)Ω1/2
∥∥2
F
, (3.38)

where
∥∥·∥∥

F
is the Frobenius norm of a matrix inside and Ω1/2 ∈ RN×N is a diagonal

matrix such that its (l, l) element is equal to
√
ρl for l = 1, . . . , N (therefore, Ω1/2Ω1/2 =

Ω). This shows that ρl only contributes to the lth column r
(k+1)
l of R(k+1) and therefore,

r
(k+1)
l is the primal residual associated with ρl.

The dual residual (3.37) shows that ρl only affects the lth column s
(k+1)
l of S(k+1)

and the component of dual residual associated with ρl is

s
(k+1)
l = ρlA

TPB
(
z
(k+1)
l − z

(k)
l

)
= ρl

p∑
i=1

Pi · aiT · bi ·
(
z
(k+1)
l − z

(k)
l

)
,
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for l = 1, . . . , N . Thus, residual balancing operation for ρl can be performed as follows:

ρl ←



τρl if
∥∥r(k+1)

l

∥∥
2
≥ µ

∥∥s(k+1)
l

∥∥
2

ρl/τ if
∥∥s(k+1)

l

∥∥
2
≥ µ

∥∥r(k+1)
l

∥∥
2

ρl otherwise,

(3.39)

for (l = 1, . . . , N).

Next, the update of Pi for i = 1, ..., p is discussed. Similarly to ρl, the decompo-

sition (3.38) of the augmented term shows that Pi only affects the ith row ri
(k+1)

of

R(k+1). Thus, the primal residual assoicated with Pi is ri
(k+1)

. In a similar way shown

in Section 3.3.1, the component of the dual residual associated with Pi can be obtained

by the expansion of the dual residual matrix with respect to Pi:

S(k+1) =

p∑
i=1

Pi · aiT · bi ·
(
Z(k+1) − Z(k)

)
Ω,

where ai and bi is the ith row of A and B, respectively. The ith component in the

summation is the dual residual associated with Pi, and denoted by Σ
(k+1)
Pi

:

Σ
(k+1)
Pi

=Pi · aiT · bi ·
(
Z(k+1) − Z(k)

)
Ω.

The residual balancing for Pi can be performed by evaluating the magnitudes of the

associated primal and dual residuals:

Pi ←



τPi if
∥∥ri(k+1)∥∥

2
≥ µ

∥∥Σ(k+1)
Pi

∥∥
F

Pi/τ if
∥∥Σ(k+1)

Pi

∥∥
F
≥ µ

∥∥ri(k+1)∥∥
2

Pi otherwise,

(3.40)

for i = 1, . . . , p. Note that we could use different parameters τ and µ for the two update

rules above. It is recommended that the update of the second one uses the updated

spectral parameter of the first one. For example, if you perform the update of ρl first

and Pi second, the updated ρ
(k+1)
l will be used for the update of Pi.
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3.3.2.4 Pseudo codes of ADMM-GAT algorithms using the residual balanc-

ing for CBP and LAD

Below are the pseudo codes of CBP and LAD. Practically, the update of the spectral

penalty parameters ρi and P is not performed every iteration. Some of the parameters

in the update equations are pre-computed and updated only when ρi or P is changed. In

addition, tolerance is scaled in accordance with the size of the problem.

Algorithm 3.1 CBPADMM-GAT(G,H,C1,C2,ϵtol,kmaxiter)

Input: G ∈ Rm×n, H ∈ Rm×N , C1 ∈ Rn×N , C2 ∈ Rn×N

Output: X⋆ ∈ Rn×N

1: Set ρi = 1(i = 1, . . . , N) and P = I

2: Pre-compute
(
I−P−1GT

(
GP−1GT

)−1
G
)
, P−1GT

(
GP−1GT

)−1
H, and C1 ⊙

(
diag(P−1) · ρ−1

)
3: Set R,S ←∞ (R and S are the magnitude of primal and dual residuals, respectively.)
4: Initializations (if not given):

X(0)←P−1GT
(
GP−1GT

)−1
H

Z(0)← soft
(
max

(
X(0),C2

)
, C1 ⊙

(
diag(P−1) · ρ−1

))
D(0)←X(0) − Z(0).

5: Set k = 0 and ϵ← N ·m · ϵtol
6: while (k < kmaxiter) and ((R > ϵ) or (S > ϵ)) do
7: Minimize the augmented Lagrangian w.r.t. X (Eq. (3.31a)) :

X(k+1)←
(
I−P−1GT

(
GP−1GT

)−1
G
) (

Z(k) −D(k)
)
+P−1GT

(
GP−1GT

)−1
H

8: Minimize the augmented Lagrangian w.r.t. Z (Eq. (3.31b)) :

Z(k+1)← soft
(
max

(
X(k+1) +D(k),C2

)
, C1 ⊙

(
diag(P−1) · ρ−1

))
9: Dual ascent step (Eq. (3.31c))

D(k+1)←D(k) + (X(k+1) − Z(k+1))

10: Update primal residual: R(k+1) ← X(k+1) − Z(k+1)

11: Update dual residual: S(k+1) ← (diagP · ρ)⊙ (Z(k+1) − Z(k))
12: if mod (k, 10) = 0 or k = 1 then
13: for l ← 1 to N do
14: s

(k+1)
ρl ← ρl · diagP⊙

(
z
(k+1)
l − z

(k)
l

)
15: Update ρl by (3.39)
16: end for
17: for i ← 1 to n do
18: Σ

(k+1)
Pi

← Pi · ρ⊙
(
zi(k+1) − zi(k)

)
(updated ρ is used)

19: Update Pi by (3.40)
20: end for
21: if any change in ρ or P then

22: Update
(
I−P−1GT

(
GP−1GT

)−1
G
)
, P−1GT

(
GP−1GT

)−1
H, or C1 ⊙

(
diag(P−1) · ρ−1

)
23: end if
24: end if
25: k ← k + 1
26: end while
27: X⋆ ← Z(k)
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Algorithm 3.2 LADADMM-GAT(A,H,ϵtol,kmaxiter)

Input: A ∈ Rm×n, H ∈ Rm×N

Output: X⋆ ∈ Rn×N

1: Set ρi = 1(i = 1, . . . , N) and P = I

2: Pre-compute
(
ATPA

)−1
ATP,

(
diag(P−1) · ρ−1

)
3: Set R,S ←∞ (R and S are the magnitude of primal and dual residuals, respectively.)
4: Initializations (if not given):

X(0)←
(
ATPA

)−1
ATPH

Z(0)← soft
(
AX(0) −H,

(
diag(P−1) · ρ−1

))
D(0)←AX(0) − Z(0).

5: Set k = 0 and ϵ← N · n · ϵtol
6: while (k < kmaxiter) and ((R > ϵ) or (S > ϵ)) do
7: Minimize the augmented Lagrangian w.r.t. X (Eq. (3.31a)) :

X(k+1)←
(
ATPA

)−1
ATP

(
H+ Z(k) −D(k)

)
8: Minimize the augmented Lagrangian w.r.t. Z (Eq. (3.31b)) :

Z(k+1)← soft
(
AX(k+1) −H+D(k),

(
diag(P−1) · ρ−1

))
9: Dual ascent step (Eq. (3.31c))

D(k+1)←D(k) + (AX(k+1) − Z(k+1))

10: Update primal residual: R(k+1) ← AX(k+1) − Z(k+1)

11: Update dual residual: S(k+1) ← AT
(
(diagP · ρ)⊙ (Z(k+1) −Z(k))

)
12: if mod (k, 10) = 0 or k = 1 then
13: for l ← 1 to N do
14: s

(k+1)
ρl ← ρl ·AT ·

(
diagP⊙

(
z
(k+1)
l − z

(k)
l

))
15: Update ρl by (3.39)
16: end for
17: for i ← 1 to m do
18: Σ

(k+1)
Pi

← Pi · aiT ·
(
ρ⊙

(
zi(k+1) − zi(k)

))
(updated ρ is used)

19: Update Pi by (3.40)
20: end for
21: if any change in ρ or P then

22: Update
(
ATPA

)−1
ATP or

(
diag(P−1) · ρ−1

)
23: end if
24: end if
25: k ← k + 1
26: end while
27: X⋆ ← Z(k)
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3.3.3 Transformation of convex optimization into CBP

This section provides the equivalent transformation of three minimization problems:

constrained sparse LAD (CSLAD), constrained sparse weighted LAD, (CS-WLAD), and

weighted LAD (WLAD).

3.3.3.1 Transformation of CSLAD into CBP

CSLAD is a convex minimization problem such that

minimize
x

∥h−Gx∥1 + ∥λ⊙ x∥1

subject to x ⪰ γ,

where x ∈ Rn, h ∈ Rm, G ∈ Rm×n, λ ∈ Rn, and γ ∈ Rn. CSLAD comes down to CBP

with a variable conversion as follows. First, letting r = h−Gx, CSLAD is equivalently

transformed into:

minimize
x,r

∥r∥1 + ∥λ⊙ x∥1

subject to x ⪰ γ and r = h−Gx.

Then CSLAD is further equivalently converted to a general CBP form:

minimize
u

∥λ̂⊙ u∥1

subject to u ⪰ γ̂ and h = Ĝu,

where u =
[x
r

]
, Ĝ = [G IL ] , λ̂ =

[
λ

1m

]
, and γ̂ =

[ γ

− inf ·1m

]
.

This way the solver of CBP can be used for CSLAD.

In case of a matrix form:

minimize
X

∥H−GX∥1,1 + ∥Λ⊙X∥1,1

subject to X ⪰ Γ,
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where X ∈ Rn×N , H ∈ Rm×N , Λ ∈ Rn×N , and Γ ∈ Rn×N . Letting R = H −GX, we

have

minimize
X,R

∥R∥1,1 + ∥Λ⊙X∥1,1

subject to X ⪰ Γ and R = H−GX.

Then CSLAD is further equivalently converted to a matrix form of CBP:

minimize
U

∥Λ̂⊙U∥1,1

subject to U ⪰ Γ̂ and H = ĜU,

where U =

[
X

R

]
, Ĝ = [G IL ] , Λ̂ =

[
Λ

1m×N

]
, and Γ̂ =

[
Γ

− inf ·1m×N

]
.

3.3.3.2 Transformation of CS-WLAD to CBP

This section analyzes the reformulation o constrained sparse weighted LAD (CS-

WLAD) to a constrained basis pursuit (CBP) problem. CS-WLAD is:

minimize
x

∥λr ⊙ (h−Gx)∥1 + ∥λ⊙ x∥1

subject to x ⪰ γ,
(3.41)

where x ∈ Rn, h ∈ Rm, G ∈ Rm×n, λ ∈ Rn, and γ ∈ Rn, and λr ∈ Rm. The difference of

CS-WLAD from CSLAD is the weighted vector λr is multiplied to the ℓ1-error. Letting

r = h−Gx,

minimize
x,r

∥λr ⊙ r∥1 + ∥λ⊙ x∥1

subject to x ⪰ γ and r = h−Gx,

and this is further converted to

minimize
u

∥λ̂⊙ u∥1

subject to u ⪰ γ̂ and h = Ĝu,

where u =
[x
r

]
, Ĝ = [G Im ] , λ̂ =

[
λ

λr

]
, and γ̂ =

[ γ

− inf ·1m

]
.

In case of a matrix form:
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minimize
X

∥Λr ⊙ (H−GX)∥1,1 + ∥Λ⊙X∥1,1

subject to X ⪰ Γ,

where X ∈ Rn×N , H ∈ Rm×N , Λ ∈ Rn×N , Γ ∈ Rn×N , and Λr ∈ Rm×N . Letting

R = H−GX, we have

minimize
X,R

∥Λr ⊙R∥1,1 + ∥Λ⊙X∥1,1

subject to X ⪰ Γ and R = H−GX.

Then CSLAD is further equivalently converted a matrix form of CBP:

minimize
U

∥Λ̂⊙U∥1,1

subject to U ⪰ Γ̂ and H = ĜU,

where U =

[
X

R

]
, Ĝ = [G Im ] , Λ̂ =

[
Λ

Λr

]
, and Γ̂ =

[
Γ

− inf ·1m×N

]
.

The difference from CSLAD is very simple; just the lower block of Λ̂ is the only change.

You could use the original solver just changing the variable.

3.3.3.3 Transformation of WLAD to CBP

WLAD can be transformed into a CBP format using variable conversion. WLAD is

defined as:

WLAD : minimize
x

∥λr ⊙ (h−Ax)∥1,

where x ∈ Rn, A ∈ Rm×n, h ∈ Rm, and λr ∈ Rm is a weighted vector. With r = h−Ax,

the above problem is reformulated as a CBP problem:

minimize
s

∥c1 ⊙ s∥1

subject to Ks = h,

where

s =
[x
r

]
, c1 =

[
0n
λr

]
, and K = [A Im ] .
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In case of a matrix form:

minimize
X

∥Λr ⊙ (H−AX)∥1,1,

where X ∈ Rn×N , H ∈ Rm×N , and Λr ∈ Rm×N . Letting R = H−AX, we have

minimize
s

∥C1 ⊙ S∥1

subject to Ks = H,

where

S =
[
S

R

]
, C1 =

[
0n×N
Λr

]
, and K = [A Im ] .

The difference from LAD is very simple; just the lower block of C1 is the only change.

You could use the original solver just changing the variable.

3.4 Simultaneous Atmospheric Correction and De-noising

(SABCOND)

The proposed combined atmospheric correction and de-noising method aims to derive

a refined atmospheric transmission spectrum from the observed I/F spectra within the

image, while simultaneously detecting large noise. The computed transmission spectrum

is then used for atmospheric correction. The surface contribution and the transmission

spectrum and its scaling parameters are simultaneously determined through a minimiza-

tion process. In order to avoid interpolation bias and subsequent artifacts, the proposed

method is performed on I/F spectra produced by my own implementation of the calibra-

tion pipeline [78] without applying TRR3 filtering or interpolating BPs. First, I describe

the signal model adopted in the proposed method, including a spectral mixing model

for the surface and a model for atmospheric transmission, and then discuss the adopted

methodology to perform the estimation of the atmospheric transmission spectrum and

atmospheric compensation.
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3.4.1 Signal model

Let us denote the observed signal (I/F) at one pixel by y ∈ RL×1 where L is the

number of wavelength channels, its associated surface reflectance by r ∈ RL×1, and its

atmospheric transmission spectrum by t ∈ RL×1. Assuming that the spectral contribution

of the atmosphere is uniform along the optical path, the signal model under the Beer-

Lambert law is:

yi = t βi ri, (3.42)

for all i = 1, . . . , L, where yi, ti, and ri are the ith elements of y, t, and r, respectively, and

β is a scaling parameter that depends on the optical path length. Since I/F, transmission,

and surface reflectance are all assumed to be positive, the observed signal y is readily

converted to the logarithmic domain:

log (yi) = β log (ti) + log (ri), (3.43)

for all i = 1, . . . , L. In this domain, the transmission spectrum present in all pixels is

interpreted as an additive component to the surface reflectance. For the sake of simplicity,

let us express the element-wise logarithmic operation on a vector x (on a matrix X) as

logx (logX). Then the vector form of equation (3.43) will be

log y = β log t + log r. (3.44)

Let us collect the spectra in the same cross-track column and denote the lateral stacks

of the observed I/F and the surface reflectance spectra by Y ∈ RL×N and R ∈ RL×N

respectively, where N is the number of lines in the along-track direction. If we assume

that the atmospheric transmission spectrum is constant in the along-track direction, we

have

logY = log t · βT + logR, (3.45)

where β ∈ RN×1 is the concatenation of the β coefficients for all measurements in the

column. The whole image cube is not stacked together because measured atmospheric
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spectra are different depending on cross-track columns due to smile effects of the CRISM

instrument.

Next, I introduce a model for the surface reflectance. I transfer the LMM-CB (3.10)

to the logarithm of reflectance, and propose the logarithmic LMM-CB (LogLMM-CB):

logR = logA ·X + C̄−1Z (X ⪰ 0,Z ⪰ Γ), (3.46)

where logA ∈ RL×NA is the spectral library matrix whose columns correspond to the log-

arithm of endmember spectra (NA is the number of endmembers), X ∈ RNA×N is a matrix

whose elements stores their associated coefficients that would be related to abundances

of the endmembers, C̄−1Z is the background concave components as also in LMM-CB.

Although the LogLMM-CB is not straightforwardly justified from the LMM-CB, the goal

is not to accurately model mineral abundances but rather to accurately model the shape

of the surface spectrum to isolate the effect of the atmosphere. LogLMM-CB is proposed

because it is easier to handle in optimization. Whether or not it is physically validated,

the model would be acceptable as long as it can sufficiently accurately model the vari-

ation of the logarithmic reflectance of surface. I experimentally verified that the model

sufficiently fits the surface.

Combining the equations (3.45) and (3.46), the I/F signals can be modeled as

logY = log t · βT + logA ·X + C̄−1Z (X ⪰ 0,Z ⪰ Γ). (3.47)

3.4.1.1 Library

I construct a “global” spectral library rather than a small spectral library for each

image, aiming for wide applicability of the proposed method with little customization.

The spectral library A must be as large as possible to represent as many known endmem-

bers so that it can accurately model all the possible mixed surface spectra encountered

in the CRISM observations. This can be accomplished by using all the spectra of po-

tential mineral phases in publicly available spectral databases, such as CRISM spectral
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library [4], U.S. Geological Survey (USGS) spectral library [125], Reflectance Experi-

ment Laboratory (RELAB) spectral database [126], and the Minerals Identified through

CRISM Analysis (MICA) Library [67]. I select 686 spectra from the mineral group of the

CRISM spectral library, splib06, and all the spectra from the MICA library.

The library endmember spectra are convolved with CRISM spectral channels using

the ground calibrated band pass functions whose parameters are stored in the data labeled

as “SB” in the CRISM calibration data records (CDR) [4]. The convolved endmember

spectra are converted to logarithmic scale and normalized with respect to their ℓ2-norm

in the log-domain, where the ℓ2-norm of a vector is the square root of the mean of the

square of its elements. In my implementation, I further apply continuum removal to the

normalized logarithmic endmember spectra. The continuum of each spectrum here is

defined as the concave hull that minimally envelops it. An 1d convex hull computation

algorithm [127] is used. Now the term AX represents the continuum-removed absorption

features of the surface reflectance spectra. The removed continua are interpreted as a

part of the background term since they are concave. The continuum removal increases

the dissimilarity of the spectra in the library, also making computation faster. In addi-

tion, the continuum removal can be performed beforehand and cached for all WA files

and therefore, the computational burden accompanied with this pre-processing is small.

Although this continuum removal results in a different optimization problem and it may

have a different optimal solution, I confirmed that almost identical solutions are obtained

while reducing computational time.

The method operates in two modes depending on whether or not water ice aerosol

contributions are taken into account. In the mode with water ice aerosols, the absorption

efficiency of water ice is included into the library. Absorption efficiency of water ice aerosol

is computed using miepython3 based on a solution [128] of Mie scattering theory. The

input imaginary part of refractive index is obtained from the absorption coefficient data

3https://github.com/scottprahl/miepython
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reported in [129] with the relationship ka = 4πnk/λ where ka is the absorption coefficient,

nk is the imaginary part of the refractive index, and λ is the wavelength. The real part

of it is obtained from the Grenoble Astrophysics and Planetology Solid Spectroscopy and

Thermodynamics (GhoSST) database4 that was originally reported by [130] and linearly

interpolated to the wavelength samples of the absorption coefficients. Spherical shapes

are assumed for the particles and in total, 27 absorption efficiency spectra with several

different temperatures and nine different particle radii (0.5, 0.8, 1, 1.2, 1.5, 1.8, 2, 3, and

4 µm) are created. These spectra are convolved to CRISM wavelength channels as done

on the mineral spectra using CDR SB data and added to the library A.

3.4.2 Atmospheric correction and de-noising

Based on this model, we will estimate the true transmission spectrum given the obser-

vation Y and the library matrix A. It is reasonable to assume that the true log t could

fit the model sufficiently well. A straightforward way to assess the quality of fit is a loss

function defined by a norm of the error. In order to achieve robustness to various random

noise sources described in Section 3.2.3.2, I opt for the ℓ1-norm of the error, equivalent

to the absolute sum of the errors (ASE):

LASE(logY, log t,β,X,Z) =
∥∥logY − log t · βT − logA ·X− C̄−1Z

∥∥
1,1
, (3.48)

where ∥M∥1,1 represents the sum of absolute values of all the elements in M. The ℓ1-

norm of a vector is the sum of absolute values of its elements and ∥ · ∥1,1 is the equivalent

operator for matrices. Model inversion based on ℓ1-errors is known to be robust to

corruptions such as dense large random spikes, while the more commonly used ℓ2-errors

assume that the noise follows a Gaussian distribution and perform poorly in the presence

of such noise [131,132].

It is reasonable to assume that the number of endmembers composing each mixed

surface spectrum is small. Then, given a large global library matrix A, The goal is to

4http://ghosst.obs.ujf-grenoble.fr

84



find a combination of a small number of endmembers, in other words, a sparse X, the

transmission spectrum, and its scaling parameter that fit the model well enough in terms

of the ASE (3.48). Such a solution is approximately obtained by adding a ℓ1-norm penalty

on X, known as a sparsity promoting regularizer, to the minimizing function [2]. I define

a cost function:

f(logY, log t,β,X,Z) =LASE(logY, log t,β,X,Z) + ∥ΛA ⊙X∥1,1,

where ΛA ∈ RNA×N is a matrix of trade-off parameters controlling the sparsity of X.

Consider the minimization problem:

minimize
log t,X,β,Z

fZ(log t,β,X,Z)

subject to X ⪰ 0 and Z ⪰ Γ.
(3.49)

I note that sparsity constrained unmixing on CRISM images has been proposed for

the purpose of mineral mapping in the literature [133–135]. The proposed method differs

from them in a sense that the main goal is the removal of atmospheric residuals together

with large noise, and the sparsity constrained unmixing model is only internally used.

Furthermore, the formulation is novel in three aspects – 1) the effect of the atmosphere is

integrated and the method is combined with atmospheric correction, 2) the logarithmic

domain is considered, and 3) the ℓ1-norm is considered as a loss function.

The function to be optimized in Eq. (3.49) is non-convex, making it difficult to find

an optimal solution. I propose a variable splitting alternating optimization algorithm.

The variables are separated into two groups, (β,X,Z), which represents continuum and

surface contributions, and (log t), which represents the atmospheric transmission, so that

the minimization with regard to each group becomes easier to handle.

The algorithm alternates between three operations. First, surface and continuum pa-

rameters for all the spectra in the column are estimated using the current atmospheric

transmission spectrum. Then channels of logY exhibiting unusually high values in the

residual of the model (Eq. (3.48)) are flagged and approximated by the corresponding
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model estimate log t · βT + logA · X + C̄−1Z, the right hand side of Eq. (3.47) substi-

tuted by the current estimated parameters.5 Finally, a single atmospheric spectrum is

estimated from the surface and continuum spectra in the column. It is also important

to properly initialize the atmospheric transmission spectrum for this non-convex opti-

mization problem. I use the collection of the empirically derived transmission spectra in

the ADR distributed with the CAT software. The detailed description of the algorithm

to solve this minimization problem including the initialization of log t is presented in

Section 3.4.3.

After the minimization problem is solved, atmospherically corrected log I/F, logYcorr

is finally obtained by

logYcorr = logY − log t⋆ · β⋆T, (3.50)

where log t⋆ and β⋆ are the optimal solutions of the minimization problem (3.49). One

might be tempted to use the learned surface contribution, logA ·X⋆ + C̄−1Z⋆ where X⋆

and Z⋆ are the optimal solutions of the problem (3.49), as the best candidate outputs

for the atmospheric compensation algorithm. Indeed, they are smoother because they

are the linear combination of a smooth background and the endmember spectra in the

library A; however, they are likely to underestimate uncertainty present in the signal.

The proposed method models the surface spectra with moderate accuracy to achieve

the precise estimation of the transmission spectrum. Since the estimation of surface

model inside the algorithm is performed independently for each spectrum, it is possible

that some minor variations due to noise would be fit by the surface model, potentially

leading to the false detection of mineral species. On the other hand, the transmission

spectrum is less likely to experience such problems because it is collectively estimated

by using all the spectra in the column. In other words, the estimate of the surface need

only be accurate enough to contribute to the model of the transmission spectrum and

5Technically, it would be more precise to ignore these bands by removing their corresponding rows, but
I found that it only have minor effects and I just choose this approximation for simpler implementation.
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I am not interested in accurate estimation of surface mineral abundances at this stage.

The correction (Eq. (3.50)) retains small random noise fluctuations in the observation,

representing the uncertainty in the signal. In addition, I do not recommend to directly

interpret the estimated abundances X⋆ since multiple sets of abundance values could

model a spectral curve equally well enough in the presence of noise [136]. The surface

unmixing result would need careful validation but this effort is beyond the scope of this

contribution.

In case of the method with water ice, water ice components are also removed from

I/F:

logYcorr = logY − log t⋆ · β⋆T − logAice ·Xice, (3.51)

where logAice and Xice are the part of logA and X that correspond to water ice absorp-

tion efficiencies, respectively.

3.4.2.1 Prior exclusion and post substitution of BPs

Some of the pixels in the image frames are severely corrupted by noise to an extent

that would negatively affect the performance of the proposed method. In my implemen-

tation, the significantly corrupted BPs detected at the early stage in the calibration are

still excluded from all the image frames ahead of processing, although it is possible to

apply the proposed method without any prior exclusion of BPs. The BP information is

extracted from CDR BP data derived from dark frame measurements prior (and post, if

it exists) scene measurements. These BPs are substituted with the model estimate after

the atmospheric correction and de-noising method is performed.
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3.4.3 Algorithm for minimization

This section details the algorithm to solve the minimization problem (3.49). The

minimization (3.49) is split into two easily solvable subproblems:β(k+1)

X(k+1)

Z(k+1)

 = arg min
β,X,B

X⪰0,Z⪰Γ

f(log t(k),β,X,Z) , (3.52)

and

log t(k+1) = arg min
log t

f(log t,β(k+1),X(k+1),Z(k+1)), (3.53)

where k indicates an iteration number. De-noising is performed between those two oper-

ations in the algorithm. The separation of the variable log t from the other ones makes

both of the problems solvable. Both of the subproblems (3.52) and (3.53) are convex

optimization problems [137] and have unique solutions, but their analytical solutions

cannot be calculated, and their numerical ones need to be computed. It is possible to

use any solver (CVX [138, 139], CPLEX6, etc.) to solve them. I implemented solvers

for the subproblems that employ ADMM-GAT (see Section 3.3 for details) for achieving

fast convergence to reasonably precise solutions. In order to achieve the smaller computa-

tional time for the subproblems (3.52) and (3.53), the variables of the problems, including

their dual variables, are initialized with their output variables in the last iteration (or the

current values). Algorithm 3.3 summarizes a general methodology in the pseudo code

format. The total number kmaxiter of iteration is currently fixed to 5.

3.4.3.1 Subproblem (3.52)

The problem (3.52) is cast into a matrix form of constrained sparse least absolute

deviation (CSLAD):

minimize
S

∥∥logY −G(k)S
∥∥
1,1

+
∥∥Λ̂⊙ S

∥∥
1,1

subject to S ⪰ Γ̂,

(3.54)

6https://www.ibm.com/analytics/cplex-optimizer

88



Algorithm 3.3

1: Construct the concave preserving operator C using (3.9)
2: Initialize atmospheric transmission spectrum (See Section 3.4.3.4)
3: for k ← 1 to kmaxiter do
4: Solve the subproblem (3.52) (See Section 3.4.3.1)
5: Denoising (See Section3.4.3.3)
6: Solve the subproblem (3.53) (See Section 3.4.3.2)
7: Update ΛA using (3.58) (See Section 3.4.3.5)
8: k ← k + 1
9: end for

10: Solve the subproblem (3.52) for final estimation

where

G(k) =
[
log t(k) logA C̄−1

]
,

S =

βT

X

Z

 , Λ̂ =

 01×N
ΛA

0L×N

 , and Γ̂ =

 01×N
0NA×N

Γ

 ,
where 01×N , 0L×N , and 0NA×N are 1 × N , L × N , and NA × N matrices whose ele-

ments are all zeros. This optimization problem is readily solved via any convex optimiza-

tion solvers such as CVX [138, 139] or CPLEX. My implementation utilizes alternating

direction method of multipliers (ADMM). Refer Section 3.3 for further details on my

implementation.

3.4.3.2 Subproblem (3.53)

The subproblem (3.53) is cast as a matrix form of least absolute deviation (LAD)

problem. The problem (3.53) is expressed as

minimize
log t

∥∥∥∥logY − log t ·
(
β(k+1)

)T
− logA ·X(k+1) − C̄−1Z(k+1)

∥∥∥∥
1,1

.

This problem is interpreted as a matrix form of least absolute deviation:

minimize
log t

∥∥∥∥(R(k+1)
log t

)T
− β · (log t)T

∥∥∥∥
1,1

, (3.55)

where R
(k+1)
log t = logY − logA ·X(k+1) − C̄−1Z(k+1).
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As with CSLAD, LAD can be solved via any convex optimization solvers. Again, refer

Section 3.3 for further details on my implementation.

3.4.3.3 De-noising step

The main purpose of the de-noising step is to flag large spikes as seen in Fig. 3.5, and

replace them with their estimated values. Large spike noise completely masks underlying

signal components, and it is legitimate to interpret data elements corrupted by large spike

noise as missing data. It should be replaced by a “good” estimate to minimize the effect

of the extreme noise to model fitting and also for data integrity.

Fortunately, model fitting via the minimization using ℓ1-error is less affected by large

spiky outliers, and therefore, the magnitude of the model fitting error,∣∣∣∣logY − log t(k) ·
(
β(k+1)

)T
− logA ·X(k+1) − C̄−1Z

∣∣∣∣,
would be a reasonable metric to detect the presence of large spiky outliers.7 I implement

the large noise detection by hard-thresholding on the magnitude of the residual. If the

element of the residual matrix is greater than a threshold value, it is considered to be

corrupted by large spike noise. The threshold value is empirically determined to be 0.015.

The best estimate for the missing data would be given by the signal model,

log t(k) ·
(
β(k+1)

)T
+ logA ·X(k+1) + C̄−1Z(k+1),

and data elements with large noise spikes are replaced with these values after each de-

noising step.

3.4.3.4 Initialization

Since the minimization problem (3.49) is a non-convex optimization problem, it is

heavily influenced by initialization. For example, let (log t⋆, β⋆, X⋆, Z⋆) be the minimizer

7Fitting with more commonly used ℓ2-error would be affected by large spike noise and proximal bands
to the spike may also have large residual values.
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of the problem (3.49). Then following transformation:

log t⋆ · β⋆T + logA ·X⋆ + C̄−1Z⋆

=
(
log t⋆ + C̄−1z′

)
· β⋆T + logA ·X⋆ + C̄−1

(
Z⋆ − z′ · β⋆T

)
,

where z′ ∈ RL×1 is an arbitrary vector that satisfies Z⋆ ⪰ z′ ·β⋆T, indicates that (log t⋆+

C̄−1z′, β⋆, X⋆, Z⋆ − z′β⋆T) is also a solution since it achieves the same cost. In this

solution, arbitrary concave components in the observed spectra are now integrated and

considered as part of the transmission, which could make the shape of the transmission

spectrum physically unreasonable. Therefore, it is crucial to initialize the transmission

spectrum accurately enough to obtain a reasonable solution. My implementation utilizes

the empirically obtained transmission spectra in the ADR that have been commonly used

in the volcano scan correction as the starting point of the initialization of the transmission

spectrum. While you could select a single transmission spectrum in the ADR data, I use a

more flexible model for the transmission – a non-negative linear combination of the ADR

transmission spectra. The flexibility created by the linear combination could represent

more temporal and spatial variations of the atmospheric transmission. To be precise, I

first solve the following minimization problem:

minimize
Φ,X,Z

∥∥logY − logTADR ·Φ− logA ·X− C̄−1Z
∥∥
1,1

+ ∥ΛA ⊙X∥1,1

subject to X ⪰ 0,Z ⪰ Γ,Φ ⪰ 0,

(3.56)

where TADR ∈ RL×NT (NT is the number of ADR transmission spectra) is the concate-

nation of all the transmission spectra in the ADR and Φ ∈ RNT×N is the weight of the

linear model. The difference here from the signal model used for SABCOND is that the

transmission component is expressed as the linear combination: logTADR ·Φ.

After the solution is obtained, de-noising is performed using the absolute value of the

residual, safeguarded with the standard deviation of the residual of each pixel. If the

absolute value of the residual is greater than 0.1 and the standard deviation of the pixel

is lower than 0.15, then the pixel is marked as a bad entry and replaced with its model

estimate. The rationale for the safeguarding with the standard deviation is to retain
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pixels that show small random variation and huge constant bias due to calibration or

processing errors.

Let the optimizers of the minimization (3.56) be X⋆, Z⋆, and Φ⋆. I will use these

solutions for initializing the transmission spectrum t. This step is similar to the sub-

problem (3.53) that optimizes the transmission spectrum given the scale parameters and

surface spectra of each observation. The initialization of the transmission spectrum can

also be performed in a similar way. Assuming that each of the transmission spectra in

logTADR have the same scale, the whole scale of the transmission component of the

observed spectrum with respect to each ADR transmission spectrum is obtained by the

summation of the weight of the linear model: 11×NT
Φ⋆, where 11×NT

is a 1 × NT vec-

tor with all the elements equal to unity. Then given the estimated scaling parameters

11×NT
Φ⋆ and the surface model, we can initialize the transmission spectrum by solving:

minimize
log t

∥∥logY − log t · (11×NT
Φ⋆)− logA ·X⋆ − C̄−1Z⋆

∥∥
1,1
. (3.57)

I note that the ADR transmission spectra are compensated with their artifact factors

stored in the same data beforehand. The artifact spectra that correct the bowl-shape ar-

tifact around the 2.0 µm region are subtracted from the transmission spectra of the ADR.

The artifact around the 2.0 µm wavelength region is too large and correlated with some

endmember spectra of water ice or hydrated minerals, violating one of the assumptions of

the proposed method. Integration of the artifact factors ahead of initialization prevents

the large bowl-shape artifact, eliminating the violation.

3.4.3.5 Prior determination of ΛA and its update scheme

ΛA controls a trade-off between the sparsity of X and model fitting in the subprob-

lem (3.52) (and (3.56) in the initialization step). Its optimal value depends on the amount

of atmospheric residual and random noise. The elements of the parameter matrix ΛA for

the initialization step are fixed to ℓ2-norm of their corresponding observation spectrum,
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namely

ΛA = 0.01 · sqrt
(
1NA×L · (logY ⊙ logY)

)
,

where sqrt() represents a function to perform element-wise square root operation of a

matrix. Considering that I/F values normally range between [0, 1], larger trade-off pa-

rameters are assigned for darker I/F spectra because noise is enhanced in the logarithmic

domain for low I/F values. It is found that this value is typical for a large set of images

after being tested. In the mode with water ice aerosols, the entries of ΛA associated

with the spectra of water ice is set to 0. This is applied to the wavelength region over

1.0 – 2.6 µm (bands 3 to 244).

It is expected that the atmospheric residual is large in the initialization (3.56) and

dramatically decreases after the initial log t is obtained by solving (3.57). The dramatic

decrease of the atmospheric residual changes the balance between the sparsity term and

the model fitting error. Using the same value ΛA in the subproblem (3.52) in the subse-

quent iteration would impose too much sparsity, leading to poor fitting. Therefore, it is

important to adjust the trade-off parameters at the end of each iteration. To keep their

balance, ΛA is updated using the ratio of the current model fitting error calculated with

the updated transmission spectrum by that before updated:

ΛA ← ΛA ·
∥∥R(k)

new

∥∥
1,1

/ ∥∥R(k)
old

∥∥
1,1

, (3.58)

where

R
(k)
old =

∣∣∣logY − log t(k−1) ·
(
β(k)

)T − logA ·X(k) − C̄−1Z(k)
∣∣∣

R(k)
new =

∣∣∣logY − log t(k) ·
(
β(k)

)T − logA ·X(k) − C̄−1Z(k)
∣∣∣.

This update is performed after every iteration.
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3.4.4 Modification of minimization problem and its update scheme for

GPU processing

The SABCOND applies to wavelength bands that are not marked as bad pixels (BP)

in the first stage of the bad pixel detection. In other words, such BPs are removed

before processing. Since BPs are different for different columns, the number of bands L

varies for columns, making it difficult to process multiple columns at once by stacking

together, and you need to process each column independently. (What I have in mind is

pagefun in MATLAB. To use pagefun, you need to stack matrices/vectors in another

dimension. There might be possible to use GPU by writing CUDA codes directly without

any modification of the algorithm.) To overcome this issue, I instead solve the following

problem

minimize
log t,β,X,Z

∥∥∥ΛR ⊙
(
logY − log t · βT − logA ·X− C̄−1Z

)∥∥∥
1,1

+ ∥ΛA ⊙X∥1,1 + ∥ΛC ⊙ Z∥1,1

subject to X ⪰ 0,Z ⪰ Γ,

(3.59)

where two new trade-off parameters ΛR ∈ RL×N and ΛC ∈ RL×N are introduced. While

ΛR and ΛC are generally considered as weight matrices, we can use them as one to flag

bad pixels. Before processing, elements in ΛR that correspond to BPs are substituted by

zeros, while the others are filled with ones. This operation allows to omit the contribution

of the BP bands to the minimization. In addition, currently, corresponding elements of

ΛC are set to infinity to disallow any contribution of the corresponding concave base.

This operation is necessary for exactly ignoring the BP bands. You can create any

concave curvature over non-BP bands without the concave base of BP bands. (the second

operation might not be necessary. It might be better not doing so to produce better

shape over band bands when interpolation is performed, however, this definitely causes

instability in the processing since you can make up whatever background shape over BP

bands as long as they are concave combined with non-BP bands.)

This way, users can mask bad pixels without changing the size of matrices, making
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it easy to stack columns together. This is a formulation trick rather than improving

the performance of the method. In addition, this method has another benefit. You can

completely ignore any severe spike noise detected in the later processing by changing the

value of its corresponding element of the flag matrices, while the version in Icarus paper

approximately excludes the bands from the minimization by substituting such noise with

its model values during the iteration.

The introduction of ΛR and ΛC does not add any significant computational cost to

the algorithm. In the end, it is just replacing an identity matrix with flag matrices.

You can still use the same framework, variable splitting and alternating minimization

approach. Let fΛ(log t,β,X,Z) be

fΛ(log t,β,X,Z) =
∥∥∥ΛR ⊙

(
logY − log t · βT − logA ·X− C̄−1Z

)∥∥∥
1,1

+ ∥ΛA ⊙X∥1,1 + ∥ΛC ⊙ Z∥1,1. (3.60)

The minimization problem (3.59) can be split into the two problems below:β(k+1)

X(k+1)

Z(k+1)

 = arg min
β,X,Z

X⪰0,Z⪰Γ

fΛ(log t(k),β,X,Z) , (3.61)

and

log t(k+1) = arg min
log t

fΛ(log t,β(k+1),X(k+1),Z(k+1)). (3.62)

The minimization problem (3.61) can be formalized as the CS-WLAD problem:

minimize
S

∥∥∥ΛR ⊙
(
logY −G(k)S

)∥∥∥
1,1

+ ∥Λ̂⊙ S∥1,1

subject to S ⪰ Γ̂,

(3.63)

where G(k) =
[
log t(k) logA C̄−1

]
,

S =

βT

X

Z

 , Λ̂ =

01×N
ΛA

ΛC

 , and Γ̂ =

 01×N
0NA×N

Γ

 .
The CS-WLAD can be further transformed to the CBP format. Refer to Section 3.3.3.2

for further details.
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The minimization problem (3.62):

minimize
log t

∥∥∥∥ΛR ⊙
(
logY − log t ·

(
β(k+1)

)T
− logA ·X(k+1) − C̄−1Z(k+1)

)∥∥∥∥
1,1

,

is straightforwardly regarded as the WLAD problem:

minimize
log t

∥∥∥∥ΛR ⊙
((

R
(k+1)
log t

)T
− β(k+1) · (log t)T

)∥∥∥∥
1,1

,

where R
(k+1)
log t = logY − logA ·X(k+1) − C̄−1Z(k+1).

WLAD can be further transformed to a CBP problem. Refer to Section 3.3.3.3 for more

details.

3.4.5 Results

I performed the proposed atmospheric correction and de-noising method on more than

one hundred CRISM images in North East Syrtis Major, Jezero Crater, and Columbia

Hills. In my environment (Intel Core i7 2.6GHz (quad core) CPU and 16GB RAM),

the computational time taken for each image is about one and half hours in the mode

without water ice aerosols and two hours when they are included. This excludes the

time for library convolution. I present some representative examples of the proposed

method, comparing them with the outcome of the current CRISM processing pipeline:

TER data products (when available) or TRR3 I/F images atmospherically corrected by

CAT. I validate the SABCOND with three approaches. The first is a visual check of the

spectra to investigate whether or not artifacts are removed or distortions introduced. In

the case of severe corruption due to elevated noise, I also compare the corrected spectra

with atmospherically corrected non-filtered I/F. Such I/F data can be obtained by using

I/F conversion implemented in CAT on TRR3 RA (radiance) data. I also perform inter-

image comparison with the expectation that spectra of pixels from overlapping images at

the same geographical locations should show similar spectral signatures if any overlapping

images are available. All the atmospherically corrected spectra used for comparisons to
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the proposed results are processed with CAT 7.4 using the empirical selection of the

transmission spectra and artifact correction. Photometric correction is not applied.

3.4.5.1 Removal of atmospheric residuals

Fig. 3.7 shows the comparison of I/F spectra corrected by CAT and those obtained

by the proposed method. From Fig. 3.7 (a) and (c), SABCOND significantly reduces

the residuals over the 1.0 – 1.7 µm and 2.0 µm wavelength regions that are consistently

observed for the spectra on the right. Furthermore, the 1.4 µm absorption feature is now

clearly seen in the first and fourth spectra from the top on the left, while it is severely

corrupted on their counterparts on the right. The appearance of that feature is plausible

since it coincides with clear hydrated silica-like spectra that have bigger 1.9 µm hydration

and 2.2 µm Al-OH bearing bands.

One may notice that the spectra in Fig. 3.7 (a) exhibit small high-frequency fluctua-

tions that cannot be seen on the spectra in Fig. 3.7 (c). These are small zero-mean random

noise components removed by TRR3 filtering for the input I/F of the CAT volcano scan,

while not for the input I/F data to the proposed method. Fig. 3.7 (b) shows that such

small Gaussian-like noise is significantly reduced by spatial averaging, which confirms

these fluctuations are not systematic artifacts. On the other hand, the systematic arti-

facts in the spectra in Fig. 3.7 (c) and (d) are not reduced with spatial averaging.

The proposed method also mitigates some consistent features in other wavelength

regions such as small spikes around 2.25, 2.30, 2.38, and 2.48 µm wavelengths. These

spikes could be calibration errors or systematic errors caused by the empirical volcano

scan method or minor variation in atmospheric conditions and the shift of the central

wavelength of CRISM spectral channels, but their exact origins are hard to precisely

identify.

Next I show some examples where a significant amount of water ice aerosols are

observed. Fig. 3.8 shows the comparison of corrected I/F spectra by the proposed method
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Figure 3.7. Comparison of I/F spectra atmospherically corrected by the proposed method ((a)
and (b)) and ones corrected using CAT 7.4 on TRR3 I/F data ((c) and (d)). (b) and (d) are
the 5×5 spatial averages of (a) and (c), respectively. Spectra are in the column (156) in the
observation FRT00009312 07 and their image coordinates are identical to the ones in Fig. 3.2.
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Figure 3.8. Comparison of I/F spectra atmospherically corrected by the proposed
method with water ice (in red) and by CAT (in blue). The spectra (a)-(d) are from
FRT0000B573 and their image coordinates (sample, line) are (a) (286, 307), (b) (550,202),
(c) (213, 57), and (d) (555,211) respectively. The spectra (e)-(k) are from HRL0000B8C2
and their image coordinates are (e) (289, 122), (f) (149,364), (g) ( 83,433), (h) (111,415),
(i) (138, 61), (j) (313,406), and (k) (276,265) respectively. The spectra (l) are from
FRT0000ABCB and their image coordinate is (265,460). The blue spectra are shifted
downward for ease of comparison.
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with water ice aerosols and those atmospherically corrected on TRR3 filtered I/F. The

images of these spectra are measured at low latitudes near aphelion. For a variety of

spectra, the proposed method successfully mitigates the depression at 2.0 µm and the

absorption at 1.5 µm caused by the water ice aerosol, together with other atmospheric

residuals, and hydrated features at 1.4 and 1.9 µm are restored if they are present.

Validation process follows several steps. The first step is direct comparison with

CAT corrected filtered TRR3 or TER3 images. Fig 3.9 (a) shows such a comparison.

The spectrum corrected by the proposed method (in red) shows clearer absorption bands

around 1.4, 1.9, and 2.0 µm wavelength regions than the CAT corrected spectrum in blue.

Since the proposed method substitutes model values to bad channels there is the potential

of creating fictitious absorptions if too many adjacent channels are bad. By comparing

the red spectrum with the corresponding spectrum without substitutions (in orange) I

can confirm the shape of the band at 2.3 µm. Another validation method, illustrated in

Fig. 3.9 (b), involves the spectra of a pixel at the same geographical location as the one in

Fig. 3.9 (a) from an overlapping image. The spectrum corrected by the proposed method

displays the same absorption bands as the one in Fig 3.9 (a). Furthermore, a similarly

shaped 1.9 µm absorption seems to be present in the spectrum in Fig. 3.9 (b), where the

corrupted wavelength channels for the spectrum in Fig. 3.9 (a) are non noisy, confirming

the shape of the water band in the spectrum of Fig. 3.9 (a).

The advantage of the substitution method is also shown in the spatial domain.

Fig. 3.10 shows a comparison of band images corrected by the proposed method and

by CAT. The yellow rectangle highlights where such artifacts occur. In this highlighted

area, sequential spatial columns are detected as BPs and are linearly interpolated with

neighboring columns in the CRISM calibration, which causes a smear. In contrast in

Fig. 3.10 (b), this type of smear cannot be seen and finer spatial patterns become distin-

guishable.
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Figure 3.9. Comparison of I/F spectra atmospherically corrected by the proposed
method with (red) or without (orange) bad entries substituted and with CAT on TRR3
I/F (blue) for the same (approximate) location in two overlapping images. (a) Spectra
are from (535,016) in FRT000174F4 and (b) Spectra are from (276,432) in FRT0001821C.
Spectra are shifted for ease of comparison.

3.4.5.2 Removal of noise and interpolation bias

This section investigates the performance of the proposed method in a scenario where

detector noise is elevated and spectra are severely corrupted by interpolation bias. The

first example in Fig. 3.11, shows a comparison of a spectrum corrected by the proposed

method (red) and two other spectra by volcano scan with (blue) and without (purple)

TRR3 filtering. Overall, the spikes around 2.0 µm are greatly reduced in the corrected

spectrum by the proposed method and the hydration band at 1.9 µm becomes clearer.

The observation ID 2422E indicates that the image was taken near aphelion. The small

absorption at 1.5 µm and a smooth depression around 2.0 µm on the blue spectrum in-

dicate the existence of water ice aerosols, which seems to be removed in the corrected

spectrum by the proposed method in addition to severe noise. Compared to the CAT-

corrected filtered spectrum (blue), the red spectrum seems to add an absorption feature

around 2.5 µm. The presence of this absorption is confirmed in the non-filtered spectrum
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(a) (b)

Figure 3.10. Comparison of two band images corrected with the proposed method (a)
and with CAT on filtered I/F (b). They are the band 302 (1.895 µm) of FRT0001821C.

(purple). When only the non-BP bands are plotted, an absorption around 2.5 µm can be

observed. Since this wavelength region is contaminated by many spikes due to interpola-

tion bias, I speculate that TRR3 filtering smoothed out the signal around 2.5 µm while

creating a band around 2.6 µm.

Fig. 3.12 (a) and (b) show results of the proposed method on the two spectra in-

troduced in Fig. 3.5 (b) and (c). The proposed method is only minimally affected by

interpolation bias (Fig. 3.12(a)) and does not show a spurious absorption around 2.1 µm

that is observed in the CAT corrected spectrum (Fig. 3.12(b)). The non corrupted spec-

trum (in purple) in Fig. 3.12(b) shows a depression around the 2.0 µm wavelength region.

I show that the depression is also an artifact by investigating multiple kinds of ratioed

I/F in the same manner as the method described in [84]. Under the assumption that the

transmission spectrum is uniform along each column, the contribution of the atmospheric

transmission could be removed by dividing a spectrum by another spectrally unremark-

able in the same spatial column, whether or not they are atmospherically corrected.

Fig. 3.12 (c) shows the ratios of four versions of the spectrum in Fig. 3.12 (b), with color

coding as explained in the caption. In all cases, I use as a denominator the geometric

mean spectrum of the same spatial column, which, as I carefully verified, only contains
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Figure 3.11. Comparison of I/F spectra corrected with the proposed method (red) with
those corrected with CAT on TRR3 I/F (blue) and with CAT on TRR3 I/F without filtering
(gray/purple/yellow). Yellow dots represent bad channels (BPs). Purple dots represent non cor-
rupted channels (non-BP). The image coordinate (sample line) of the spectrum is (191,359) in
HRL0002422E. Spectra are shifted for ease of comparison.

atmospheric contributions. The big absorption feature at 2.1 µm observed in the filtered

I/F (blue) with atmospheric correction is also in the one (light blue) without atmospheric

correction, indicating the feature is unlikely to be an artifact created by the volcano scan

correction. However, the feature can not be observed in the ratioed spectrum (green) of

the non-filtered I/F without atmospheric correction. The many downward spikes on the

green spectrum are due to interpolation bias. Therefore, the big absorption feature at

2.0 µm on the upper two spectra are likely to be an artifact created by TRR3 filtering

due to dense BPs. This artifact corresponds to the spurious feature observed by [84].

The ratioed spectrum (purple) of the non-filtered I/F with atmospheric correction shows

an absorption around 2.0 µm, which is an artifact caused by an error in the estimation of

the scaling parameter for the volcano scan correction.

SABCOND can also perform reasonable corrections in small outcrops. Fig. 3.13 (a)-

(d) show a comparison of the atmospherically corrected spectra with the same three

methods described in Fig. 3.11 of the same geographical location in four overlapping im-
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Figure 3.12. (a-b) Comparison of I/F spectra corrected with the proposed method
(red) with those corrected with CAT on TRR3 I/F (blue) and with CAT on TRR3 I/F
without filtering (gray/purple/yellow). Yellow and purple dots represent bad channels
(BPs) and non-BPs, respectively. (a) and (b) are from (386,166) in FRT000174F4 and
from (90,318) in HRL0000C0BA, respectively. Spectra are shifted for ease of comparison.
(c) Comparison of the ratioed I/F spectra performed in different ways. From the top to
bottom, a ratioed spectrum of filtered I/F atmospherically corrected by CAT (blue), a
ratio of filtered I/F (light blue), a ratio of non-filtered I/F (green), and a ratio of non-
filtered I/F atmospherically corrected by CAT (purple). These colors are only given for
non-BPs. Yellow dots represent BPs for each plot and the whole spectra are plotted in
gray. The image coordinate of these spectra is same as that of (b). Spectra are offset for
ease of comparison. .

104



0.12

0.14

0.16

0.18

I/
F

(a)

Our correction

CAT correction on TRR3 I/F

Good pixels of CAT correction on TRR3 RA I/F

Bad pixels of CAT correction on TRR3 RA I/F

CAT correction on TRR3 RA I/F

0.12

0.14

0.16

(b)

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6

Wavelength [ m]

0.1

0.12

0.14

0.16

I/
F

(c)

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6

Wavelength [ m]

0.12

0.14

0.16

0.18
(d)

(e)

Figure 3.13. Comparison of I/F spectra corrected with the proposed method (red) with
those corrected with CAT on TRR3 I/F (blue) and with CAT on TRR3 I/F without
filtering (gray/purple/yellow). Yellow dots represent bad channels (BPs). Purple dots
represent non corrupted channels (non-BP). Spectra in (a), (b), (c), and (d) are from
(552,209) in FRT000161EF, (294,163) in FRT000174F4, (474,190) in FRT00018781, and
(295,119) in FRT00017103, respectively. The blue and purple spectra are shifted down-
ward for ease of comparison. (e) a pseudo RGB map-projected image of FRT000161EF
with a zoomed-in image into a location associated with the spectra.

ages. SABCOND consistently produces bland spectra while the CAT-corrected spectra

shows a range of artifacts for different images. These spectra are affected by interpola-

tion bias since this is a spatially small distinctive region as shown in Fig. 3.13 (e). The

spectra corrected by the volcano scan using CAT exhibit anomalous shapes around the

2.0 µm wavelength region. The wide depression around 2.0 µm in the blue spectrum in

Fig. 3.13 (a) and leftover spiky absorptions and a little depression around 2.0 µm in the

blue spectra in Fig. 3.13 (b) and (c) is possibly a combination of the bowl-shape artifact

and artifacts created by TRR3 filtering. A water ice like shape shown in the blue spec-

trum in Fig. 3.13 (c) is probably caused by uncorrected water ice aerosols. Indeed, the

image with the observation ID 18781 from which the spectrum in Fig. 3.13 (c) is acquired
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near aphelion. We can validate these products in a way similar to the multiple ratio

method I previously described.
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Figure 3.14. Comparison of I/F spectrum corrected with the proposed method (red)
with those corrected with CAT on TRR3 I/F (blue) and with CAT on TRR3 I/F without
filtering (gray/purple/yellow). Yellow dots represent bad channels (BPs). Purple dots
represent non corrupted channels (non-BP). Spectra in (a), (b), (c), and (d) are from
(270,172), (269,194), (426, 15), and (161,170) in FRT000174F4, respectively. Spectra are
offset for ease of comparison.

Fig. 3.14 shows additional comparisons from the image FRT000174F4. The proposed

method still produces cleaner spectra, while the blue spectra are corrupted by atmospheric

residuals and artifact due to interpolation bias.

Fig. 3.15 (a) shows the comparison of I/F spectra corrected by the proposed method
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and CAT (identical to Fig. 11 (c) in the main text) and Fig. 3.15 (b) shows ratioed

I/F spectra of the same pixel processed in the four different approaches. In Fig. 3.15,

the corrected spectrum (red) is bland, while CAT correction creates a big depression

around the 2.0 µm wavelength region whether or not TRR3 filtering is applied or not.

Fig. 3.15 (b) shows that the depression present in I/F spectra corrected with CAT is an

artifact. The ratioed filtered I/F (darker blue) with atmospheric correction exhibits a

depression right at 2.0 µm while the ratioed filtered I/F (light blue) without atmospheric

correction does not, indicating the center of the depression around 2.0 µm is likely to be

an artifact caused by atmospheric correction. The 1.9 and 2.1 µm absorptions in the light

blue spectrum are likely to be caused by interpolation bias because the absorptions are

not observed in the ratioed non-filtered I/F (green) without atmospheric correction and

BPs with moderate interpolation bias are concentrated around these wavelength regions.

These 1.9 and 2.1 µm artifacts are likely to be identical to problematic spurious features

reported in [84]. Therefore, we can conclude that the combination of these artifacts – the

bow-shape one around at 2.0 µm and the spurious features at 1.9 and 2.1 µm – ends up

in a broad depression around 2.0 µm in the blue spectrum in Fig. 3.15 (a).

Figs. 3.16 and 3.17 show another comparison of the spectra at the same location

measured in different images. Those are inside the final candidate landing ellipses for

2020 Mars Rover in North East Syrtis and in Jezero crater. Fig. 3.16 shows that Mg/Fe-

carbonate features are seen on all the images. The interpolation bias is less problematic on

those spectra because the unit spans 10 or more pixels around it. In contrast, the spectra

in Fig. 3.17 shows smaller features. For different images, 1.9 and 2.3 µm absorptions are

consistently seen, although those of (b) and (c) are quite small and the continua of the

spectra look different. Such a difference may happen partly because those locations do

not match perfectly and have subpixel shifts, or because of the different conditions of

dust aerosols.

Finally, I compare spectra corrected by the proposed method and corrected by CAT
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Figure 3.15. (a) Comparison of I/F spectra corrected with the proposed method (red)
with those corrected with CAT on TRR3 I/F (blue) and with CAT on TRR3 I/F without
filtering (gray/purple/yellow). Yellow dots represent bad channels (BPs). Purple dots
represent non corrupted channels (non-BP). Spectra are from (552,209) in FRT000161EF
(same as Fig. 12 (a) in the main text). The blue and purple spectra are shifted down-
ward for ease of comparison. (b) Comparison of the ratioed I/F spectra performed in
different ways. From the top to bottom, a ratioed spectrum of filtered I/F atmospheri-
cally corrected by CAT (blue), a ratio of filtered I/F (light blue), a ratio of non-filtered
I/F (green), and a ratio of non-filtered I/F atmospherically corrected by CAT (purple).
These colors are only given for non-BPs. Yellow dots represent BPs for each plot and the
whole spectra are plotted in gray. Spectra are shifted for ease of comparison.
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Figure 3.16. Comparison of I/F spectra corrected with the proposed method (red) with
those corrected with CAT on TRR3 I/F (blue) and with CAT on TRR3 I/F without filter-
ing (gray/purple/yellow). Yellow dots represent bad channels (BPs). Purple dots repre-
sent non corrupted channels (non-BP). They are from (a) (342,231) in FRT000161EF, (b)
(632,190) in FRT0001642E, (c) (604,177) in FRT000165F7, (d) ( 46,127) in FRT00017103,
(e) ( 43, 180) in FRT000174F4, and (f) (217,207) in FRT00018781. The blue and purple
spectra are shifted downward for ease of comparison.
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Figure 3.17. Comparison of I/F spectra corrected with the proposed method (red) with
those corrected with CAT on TRR3 I/F (blue) and with CAT on TRR3 I/F without
filtering (gray/purple/yellow). Yellow dots represent bad channels (BPs). Purple dots
represent non corrupted channels (non-BP). Spectra in (a), (b), (c), and (d) are from (
25,154) in HRL000040FF, (115, 42) in FRT00005C5E, (623,460) in FRT0001EAE0, and
(360,472) in FRT0001FB74, respectively. The blue and purple spectra are shifted for
ease of comparison.
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at some locations of particular interest reported in the literature. Fig. 3.18 shows the

comparison of the spectra at the locations reported in [140] processed by the proposed

method and by the volcano scan correction using CAT. The spectra shown in the fig-

ure are averaged within the same spatial windows provided in a supplemental table file

in [140]. SABCOND produces spectral shapes comparable to ratioed spectra without

ratioing, while non-ratioed CAT-corrected spectra exhibit more noise and artifacts. The

comparison of ratioed spectra also shows that the proposed method removes some of the

spiky noise, such as 1.2 µm in the ratio of CAT-corrected spectrum in Fig. 3.18 (a) and

1.65 and 1.9 µm in the ratio of CAT-corrected spectrum in Fig. 3.18 (d). A remaining

concern would be the corrected spectra by SABCOND show slightly smaller absorption

bands in the ratioed spectra. Another concern would be that the corrected spectra by

SABCOND sometimes become unrealistically angular. For instance, the denominator

spectrum of (a) jarosite shows an angular shape around 1.65 µm.

3.4.6 Potential limitations

3.4.6.1 Too many bad pixels

Although SABCOND is robust to noise and less affected by BPs, the occurrence of too

many adjacent BPs in a spectrum could be problematic. Fig. 3.19 (a) shows an example

of such a case. The red spectrum has been corrected by the proposed method and the

BPs have been substituted with the corresponding model values. The spectrum shows a

2.5 µm wavelength absorption, which is the shape suggested by the model. The orange

spectrum, which has been corrected but with BP’s that have been simply omitted, reveals

that more than few sequential channels are bad. In such case, the shape of 2.5 µm cannot

be easily corroborated. An image that contains a measurement of the same geographical

location is shown in Fig 3.19 (b). The 2.5 µm wavelength region of that spectrum which

does not require substitution shows no absorption features. The procedure leads us to

reject the spectrum in Fig. 3.19 (a).
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Figure 3.18. Comparison of atmospherically corrected I/F spectra and ratioed spectra
corrected by the proposed method (red) and by volcano scan using CAT on TRR3 filtered
I/F (blue) of (a) jarosite, (b) polyhydrated sulfate, (c) serpentine, and (d) saponite. (a1)-
(d1) are the comparisons of I/F spectra and (a2)-(d2) are those of ratioed I/F spectra.
In (a1)-(d1), the two upper spectra (red and blue) are numerators and the two lower
ones are denominators (red and blue). Spectra are shifted for ease for comparison. Their
image coordinates and spatial average sizes are reported in [140].
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Figure 3.19. Comparison of I/F spectra atmospherically corrected by the proposed
method with (red) or without (orange) bad entries substituted and corrected with CAT
on TRR3 I/F (blue). Spectra are from (a) (255,270) in FRT000243C0 and (b) (518,126)
in FRS00029DA6. Spectra are shifted for ease of comparison.

Fig. 3.20 shows another potential limitation, by which actual spectral features could be

removed by the proposed technique. In this figure, an absorption at 1.46 µm, a depression

around 2.0 µm, and an absorption feature at 2.4 µm are removed by the proposed method.

While the 2.0 µm depression correction can be justified as a bowl-shape distortion, 1.46 µm

and 2.4 µm are more problematic. However, those features are present everywhere along

the column, which makes SABCOND consider them as systematic column-dependent

artifacts. While I cannot confirm that the features are atmospheric, the fact that they

are present through the columns suggests that they are not due to surface contributions

and therefore they can be corrected.

3.4.6.2 Unrealistic spectral edge drop

The background component C̄−1Z in the spectral model can model any concave cur-

vature. When you encounter a downward spike around the edge of a spectrum, the

spike is unlikely to be detected. Rather, it is well modeled as a part of the background
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Figure 3.20. Comparison of I/F spectra corrected with the proposed method (red) with
those corrected with CAT on TRR3 I/F (blue) and with CAT on TRR3 I/F without
filtering (gray/purple/yellow). Yellow dots represent bad channels (BPs). Purple dots
represent non corrupted channels (non-BP). Spectra are from (391,449) in FRT00003192.
Spectra are shifted for ease of comparison.

component. Figure 3.21 shows such an example.

3.4.6.3 Problems related to the initial transmission spectrum

Since the SABCOND uses the transmission spectra in the ADR to initialize the image

transmission spectrum, an image transmission spectrum that is dramatically different

from those in the ADR library could also be an issue. The non-convex optimization may

not recover from a poor initialization. So far on all the images I have tested initialization

using the ADR transmission appears to work well on many images; however, in some

cases, problems are found.

3.4.6.3.1 Kiserite issue

Kieserite has a big and broad absorption band around 2.0 µm, which significantly

conflicts with the triplet absorption of CO2 in the Martian atmosphere. The current

collection of initial transmission spectra often causes a big hash artifacts in the first

iteration; therefore, you need to do something aggressive, using a relatively large sparsity
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Figure 3.21. An example of edge drop

constraint to satisfactory ignore this feature. On the other hand, the large constraint also

causes the underestimation of important mineral absorption features. The big absorption

feature of Kieserite around 2.0 µm is strongly affected by this problem. Since any common

residual is considered as a column-dependent artifact, features that are commonly present

and cannot be properly modeled via the surface model are absorbed into the estimated

transmission spectrum, causing inverted features on the corrected spectra.

This problem is pointed out by Dr. Milliken in the collaboration research [141].

The problem especially happened in FRT00017D33. The data used there was produced

instead by modifying the current algorithm; atmospheric transmission is obtained by

processing only lines 1 – 100 where kieserite is scarcely present, instead of using all the

lines. Fig. 3.22 shows the example of the inverted kieserite feature. You can see the feature

is inverted for the red and blue spectra. The blue has the inverted version of kieserite

feature. To overcome this issue, you need a better atmospheric transmission spectrum

in the first place. That allows users to use a milder sparsity constraint, mitigating the

115



1000 1200 1400 1600 1800 2000 2200 2400 2600

Wavelength [nm]

0.095

0.1

0.105

0.11

0.115

0.12

0.125

0.13

0.135

I/F

Spectra FRT00017D33

Spectrum FRT00017D33: c=403,l=45:49
Spectrum FRT00017D33: c=403,l=350:354

Figure 3.22. An example of inverted kieserite feature

underestimation of mineral features.

3.4.6.3.2 Detector edge issue

Toward cross-track edge columns of the detector array, the transmission spectra in the

ADR looks to deviate more from what it should be, causing mismatch in the absorption

features over 1.2 – 1.6 µm wavelength region. The absorption over there is underestimated,

causing angular shape over this region, or you might see slight absorption there. Fig. 3.23

shows examples of this issue.

3.4.6.3.3 Overcorrection in half resolution images

You need to aggressively remove the artifacts in the first iteration by using the large

sparsity promoting parameter ΛA. This might overcorrect underlying mineral absorptions

as we saw in the kieserite inverting feature issue.

This is also potentially problematic for other HRL images. HRL images are binned,

so the random noise present the data would be smaller that in full resolution images.

This would change the balance between the residual term and sparsity term in the cost
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Figure 3.23. Examples of Cross track edge issue

function controlled by the sparsity promoting trade-off parameter. However, the artifacts

caused by the atmospheric transmission using ADR data are not any smaller. Therefore,

still you need to aggressively remove the artifacts in the first iteration by using the large

sparsity promoting parameter. If you do not use a strong enough sparsity promoting

parameter, the model overfits to the atmospheric residual and it cannot be removed,

while you can keep surface features.
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Figure 3.24. An example of 40FF problem

117



Fig. 3.24 illustrates this problem. The yellow spectrum is the original TRRB I/F

before atmospheric correction and de-noising is applied, the blue and red spectra are

processed with

ΛA = 0.01 · sqrt
(
1NA×L · (logY ⊙ logY)

)
ΛA = 0.001 · sqrt

(
1NA×L · (logY ⊙ logY)

)
,

respectively. The blue spectrum crawls under the yellow spectrum over the 1.4 – 2.0 µm

wavelength region since the trade-off parameter is so large that some “olivine” features

are underestimted, while the red spectrum has the same level at 1.8 µm, but causing a

hump-shape artifact over 2.0 µm. If you find any overcorrection, it may be a good idea to

play around with smaller ΛA to see if there is any better optimal solution that alleviates

overcorrection while sufficiently removing the atmospheric residual.

3.4.6.4 Presence of water and carbon dioxide ice

Finally, SABCOND could lead to erroneous results in scenes where water and carbon

dioxide ice are present on the surface. In particular, in the presence of water ice aerosols,

the proposed method cannot discriminate ice aerosols from surface ice. The extension of

the technique to such images will be the subject of a future publication.

3.5 Two-step SABCOND

This section describes the two-step SABCOND, a methodology for higher fidelity

correction using SABCOND.

3.5.1 Motivation

SABCOND initializes the transmission spectrum using the empirically derived trans-

mission spectra that are also used in volcano scan method. As shown in Section 3.4.6.3,
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this causes several problems. More accurate initialization of the transmission spectrum

would solve these problems. Fortunately, it is possible to simulate the transmission

spectrum through the Martian atmosphere for a specific time and geographical location

using atmospheric statistics obtained from Mars Climate Database (MCD) [142,143] and

universal absorption line parameters of gaseous molecules in the atmosphere from the

HITRAN (High Resolution Transmission) database [88].

Unfortunately, I experimentally found that the original simulated transmission spec-

trum is insufficient to accurately represent the CRISM absorption spectrum since it turns

out to create another multiplicative error in the correction. In order to resolve this prob-

lem, a two-step approach is proposed. First, a spectrally bland image that has atmo-

spheric statistics and calibration residuals similar to those of the image of interest is

selected. The simulated transmission spectrum is first created for the bland image using

the HITRAN and the MCD, and then optimized by running the SABCOND on it. This

optimized spectrum is then used as an initial estimate of the atmospheric transmission

for the image to correct.

3.5.2 Background

3.5.2.1 MCD

MCD is a database of atmospheric statistics computed from the Global Climate Model

(GCM) of the Martian atmosphere. The GCM models various kinds of atmospheric pro-

cesses on Mars, is extensively validated with observational data, and is considered to be

the compilation of the state-of-the-art knowledge of the Martian atmospheric conditions.

MCD v5.3 is the latest version at this time of writing, and its full version is available

upon request from its developers. MCD allows us to obtain atmospheric statistics at a

given time and a geographical location up to the altitude of 300 km.
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3.5.2.2 HITRAN

HITRAN database is the compilation of the molecular spectroscopic parameters de-

rived from experiments and computations. The central component of the database is line-

by-line spectroscopic parameters of gaseous molecules to derive high resolution molecular

absorption and radiance over microwave to ultraviolet region through atmospheric paths.

Its comprehensive coverage of the molecular spectroscopic data enables modeling of trans-

mission, absorption, and radiance through atmospheric paths in different environments,

and extensively deployed for dealing with radiative transfer problems in the atmosphere

of Earth, Mars, and other planets.

3.5.3 Methodology

3.5.3.1 Bland image selection and inter-image spectral ratioing

A bland image is a spectrally unremarkable image where no or little absorption fea-

tures diagnostic to mineral detection are observed throughout the image and only con-

tinuum components are present. Such spectrally unremarkable continuum components

would be well modeled by the concave background. You can ignore absorption com-

ponents on such a bland image, allowing SABCOND to perform aggressive correction

without being careful not to overcorrect absorption features.

Spectral blandness can be evaluated by looking at the spectra directly or by spectral

parameter maps. We can transfer the idea used for deriving the atmospheric transmission

spectra for volcano scan correction. The regions at the top and bottom of the Olympus

Mons are assumed to be spectrally bland in the volcano scan correction. Spectra of

these regions are characterized by the upward slope towards from 1.0 µm and to 2.3 µm

region and expected only to have concave curvature without absorption features. Images

that have the same spectral characteristic would indicate spectral blandness and become

candidates.

A bland image that can be paired with the image of interest should have not only
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the same atmospheric statistics, but also the same multiplicative errors as the image of

interest so that its optimized atmospheric transmission spectrum can sufficiently remove

both the residual of atmospheric correction and the calibration errors. The bland image

needs to be carefully selected since absorption features present in the bland image and

the mismatch of the atmospheric transmission or calibration errors could be the source

of new artifacts. I currently select the bland image in an empirical way.

First, candidates of the bland image are pre-selected using the meta information of

the images. Geographical proximity (including latitude, longitude, and elevation) and

seasonal proximity are indicators of the similarity of the atmospheric statistics. The sim-

ilarity of calibration errors can be evaluated by the temporal proximity of the acquisition

of the two images. If the two images are taken within a short interval of time, it also

means they are in the same season. Therefore, spatially and temporally close images

become candidates of the bland image. In addition, elevation should be close as it is

related to the path length of the transmission.

Once the candidates are selected, we can utilize the spectral ratioing technique to more

quantitatively determine the similarity of the atmospheric condition and the calibration

errors of the image to be corrected and the candidates of the bland image. If ratioing of

spectra of the same column from the two images shows no atmospheric residual features,

and only features relevant to surface are observed, it is reasonable to say the atmospheric

transmission and calibration errors of the two images are similar and canceled out by the

ratioing. A scaling might be applied on the spectrum of the bland image to consider the

difference in the path length.

3.5.3.2 Simulation of the atmospheric transmission spectrum on the bland

image

The atmosphere is first divided into 30-40 vertical layers, and the atmospheric statis-

tics - pressure, temperature, volume mixing ratios of the molecules, carbon dioxide, car-
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bon monoxide, and water vapor, that are dominant in the Martian atmosphere and have

significant absorption are obtained from the MCD. For each layer, the atmospheric statis-

tics are assumed to be constant, and gaseous absorption coefficient α(λ) (λ: wavelength)

is computed based on the Voigt profile using the line-by-line parameters of the molecules

obtained by the HITRAN database. In order to accurately model the absorption coeffi-

cient, I set the resolution to be ultra high at 0.0001 cm−1. Then optical of each layer is

computed by e−αl (l: the thickness of the layer), and the total absorption is obtained by

multiplying the optical depths of all the layers. Currently the effects of dusts and aerosols

are not considered. Once the ultra high resolution transmission spectrum is obtained, it is

then convolved with CRISM channels using the instrument’s spectral response functions.

3.5.3.3 Two-step atmospheric correction

The simulated transmission spectrum at CRISM resolution is now used as an initial

estimate of the transmission spectrum, and SABCOND is performed on the bland image.

Because the little amount of spectral absorption features is expected on the bland image

and its unremarkable surface spectra would be well modeled by the background concave

function C̄−1Z, it is expected that the contribution of the library in the mixing model (??)

is minimal. To avoid overfitting the library endmembers to the surface mixing model, I

utilize large values for the trade-off parameters ΛA for the sparsity constraint in the cost

function fΛ in Eq. (3.60) in the optimization problem (3.49). The optimized transmission

spectrum on the bland image is expected to have much less errors for the correction of the

image of interest even at the first iteration. The output transmission spectrum is then

used as the initial estimate for the correction using SABCOND on the image of interest.

3.5.4 Preliminary results

I tested the new approach for the correction of HRL000040FF (40FF) acquired over

Jezero crater where the NASA Perseverance rover touched down this year.
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3.5.4.1 Bland image selection

1200 1440 1910 2310 2600
Wavelength [nm]

-1.2

-0.4

Lo
ga

rit
hm

ic
 R

at
io

ed
 I/

F

(a) 40FF / 40A2

1200 1440 1910 2310 2600
Wavelength [nm]

-1.1

-0.3
(b) 40FF / 3D3C

1200 1440 1910 2310 2600
Wavelength [nm]

-0.9

-0.1
(c) 40FF / 37AE

Figure 3.25. Inter-image spectral ratioing with scaled dividends. Logarithmic ratioed
I/F spectra are shown. Three figures show the subtraction of the mean logarithmic
spectrum over lines 1 to 400 at column 148 of 40FF by the mean of ones from all lines
of the same column of the candidate bland images ( (a) 40A2, (b) 3D3C, and (c) 37AE).
3D3C and 37AE are FRT images and binned to the half resolution beforehand. The
gray spectra demonstrate the logarithmic ratioed I/F spectra obtained by incrementing
the scale of bland image spectra from 0.8 to 1.2 by 0.025 from bottom to top. The red
spectra are the subtraction associated with the optimally scaled bland image spectra,
where the optimal scaling values are manually determined to (a) 0.975, (b) 0.8875, (c)
1.125 by visual inspection.

The scene 40FF is located at 77.418◦E 18.505◦N and covers the west side of the Jezero

crater near Nili Fossae, located around the boundary of Isidis Planitia and Syrtis Major.

The elevation is around −2400 m, intermediate value of the low land, Isidis Plantia, and

a high land, Syrtis Major.

From the meta information of the 40FF image, three images, HRL000040A2, FRT00003D3C,

and FRT000037AE are pre-selected as candidates of the bland image. FRT00003D3C is

located at 90.889◦E 11.764◦N inside the Isidis Planitia, while HRL000040A2 scenes is lo-

cated at 155.919◦E 8.790◦N in Elysium Planitia. FRT000037AE is at 74.688◦E 24.694◦N
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in Nili Fossae.

It is almost impossible in many cases to select a perfect bland image. One might

need to compromise some aspects. 40A2 is measured just one Earth day before 40FF

and almost perfectly satisfies the condition of the temporal and seasonal proximity. In

addition, 40A2 is the mean altitude of −2600 m, quite close to the mean elevation of

40FF, and it is spectrally quite bland, while it is not geographically close to 40FF. 3D3C

is much closer to 40FF than 40A2, and spectral blandness and uniformity is at extreme.

However, its mean elevation −3580 m is much lower than that of 40FF. In addition, it

is taken 20 Earth days before 40FF, and thus the temporal proximity condition may be

violated. 37AE best meets the spatial proximity condition, while temporal proximity

condition (more than 30 Earth days in advance) may be violated and its mean elevation

−800 m is a little deviated from that of 40FF. In addition, spectral blandness may be

violated.

Among these candidates, the best bland image is then selected using the inter-image

spectral ratioing. Fig. 3.25 demonstrates the spectral ratioing of a spectrum obtained

from 40FF by the scaled column means from the three candidates of the bland image.

All operations, such as averaging and scaling are performed after the logarithmic trans-

formation of I/F spectra. Note that ratioing operation, namely division, is equivalent

to subtraction and scaling is simply performed by multiplication after the logarithmic

conversion. The gray spectra show that changing the scale of the bland image spectra

changes the shape of residuals and indicates an optimal scaling that minimizes the resid-

ual would exist. The red spectra are the logarithmic ratioed I/F spectra obtained by the

optimally scaled bland image spectra. The optimal scaling values are determined to min-

imize atmospheric contribution, mainly the triplet shape around at 2.0 µm wavelength.

The optimal values for 40A2, 3D3C, and 37AE are 0.975, 0.8875, and 1.125, respectively.

These values generally agree with our intuition; the 3D3C scene covers an area at much

lower altitude than the 40FF scene and has more atmospheric absorption. Therefore,
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Figure 3.26. The vertical profile of atmospheric statistics at the scene 40A2.

scaling by the value well below 1 is necessary to match the atmospheric transmission of

40FF. The 37AE scene covers an area at higher altitude than 40FF and has less atmo-

spheric absorption. Thus, scaling by the value well above 1 is required. The 40A2 scene

covers an area at altitude close to 40FF and thus only a little scaling is required.

Overall 40A2 seems to be the best bland image. After the subtraction by the optimal

scaling, the red spectrum in Fig. 3.25 (a) shows the least amount of errors. In particular,

the triplet at 2.0 µm is almost perfectly canceled out, much less significant than the water-

bearing band at 1.91 µm. On the other hand, the red spectra in Fig. 3.25 (b) and (c) show

more errors, and residuals here and there obscure the underlying absorption bands and

spectral shapes. These residuals is possibly caused by the mismatch of calibration errors.

In particular, the red spectrum in Fig. 3.25(b) shows that the triplet at 2.0 µm are still

present and as significant as the water-bearing band, indicating the mismatch of the

absorption around this wavelength range.
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Figure 3.27. Simulated transmission spectrum. Blue: the original simulated trans-
mission spectrum at 0.0001 cm−1 wavenumber resolution. Red: convolution using the
spectral response function of CRISM at column 148.

3.5.4.2 Creation of transmission spectrum for the bland image

Fig. 3.26 shows the vertical profile of the atmospheric statistics – pressure, tempera-

ture, and the volume mixing ratio of carbon dioxide, water vapor, and carbon monoxide

at the center of the geographical location of 40A2. The profile is obtained until the pres-

sure drops small enough since the pressure indicates the density of the atmosphere. The

sufficiently small atmospheric density indicates little contribution to atmospheric absorp-

tion that can be ignored. You might notice that the vertical slicing may look rough.

This is a compromise of the computational time versus accuracy. Using these parameters

and absorption line parameters obtained from HITRAN database, I simulate the trans-

mission spectrum (Fig. 3.27). Absorption line broadening depends on temperature and

pressure, so it is important to divide the atmosphere into the vertical layer so that each

layer has approximately constant statistics. The figure shows that the original simulated

transmission spectrum has extremely narrow absorption bands compared to the CRISM

wavelength sampling.
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3.5.4.3 Processing on the bland image

Fig. 3.28 shows the atmospheric correction of the bland image 40A2 using the sim-

ulated transmission spectrum. The simulated transmission spectrum cause a significant

artifacts at 2.0 µm. In addition, it seems that the over-correction occurs around 1.35 µm.

After the update of the transmission spectrum, these artifacts are successfully removed.
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Figure 3.28. Correction of the spectra CRISM at column 148 of 40A2. Spectra are
averaged over lines 1 to 480. Gray: the I/F spectrum before atmospheric correction. Blue:
the corrected I/F spectrum at the first iteration using transmission spectrum optimized
on 40A2. Red: the corrected I/F spectrum after the update of the transmission spectrum

Fig. 3.29 shows the result of the correction of the image of interest, 40FF, using the

transmission spectrum optimized on 40A2, compared with the correction using the ADR

transmission spectrum. Although you see a small triplet residuals over 2.0 µm in the

correction using the 40A2-optimized transmission, residualistic features are much smaller

and less frequent. In addition, the potential under-correction at 2.6 µm is also addressed.

Fig. 3.30 shows correction results after the second iteration. The new two-step approach

retains the overall spectral continuum absorption band shapes and only correcting minor

errors, while the original SABCOND using the ADR transmission spectra is doing rather
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Figure 3.29. Correction of the CRISM spectra at column 148 of 40FF. Spectra are aver-
aged over lines 1 to 400. (a) Gray: the I/F spectrum before atmospheric correction. Blue:
the corrected I/F spectrum at the first iteration using transmission spectrum optimized
on 40A2. (b) Gray: the I/F spectrum before atmospheric correction. Blue: the corrected
I/F spectrum at the first iteration using ADR transmission spectra.
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Figure 3.30. Correction of the spectra CRISM at column 148 of 40FF. Spectra are aver-
aged over lines 1 to 480. (a) Gray: the I/F spectrum before atmospheric correction. Blue:
the corrected I/F spectrum at the first iteration using transmission spectrum optimized
on 40A2. (b) Gray: the I/F spectrum before atmospheric correction. Blue: the corrected
I/F spectrum at the first iteration using ADR transmission spectra.
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drastic – changing the spectral continuum shape and absorption bands. It also smooths

out the water vapor absorption around 2.6 µm, changing the continuum level, leading to

a potential underestimation of any absorption around at 2.5 µm if present.
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3.6 Summary

This chapter proposed a new atmospheric correction and de-noising method (SAB-

COND) for CRISM IR images of non-icy surfaces over the 1.0 – 2.6 µm wavelength range.

SABCOND estimates the atmospheric transmission spectrum from the image itself by

solving the minimization problem that unifies light propagation through the atmosphere

and surface mixing, while large random noise spikes are simultaneously detected and

removed. Experimental results show that SABCOND significantly mitigates column-

dependent systematic artifacts that could be caused by the volcano scan method using

CAT, while successfully detecting and removing severe noise. Compared with CAT-

correction, SABCOND provides a significant improvement over the 1.1 – 1.7 µm and

1.9 – 2.1 µm wavelength regions where the strong atmospheric absorptions of carbon diox-

ide are present. SABCOND has been applied to a large number of images of non-icy

surfaces. The technique is also able to contend well with adverse conditions like ele-

vated detector temperatures and water ice aerosols. Validations reveal that SABCOND

retrieves consistent spectral shapes for the same location in different overlapping images

even in the presence of elevated noise. Another validation using ratioed spectra clarified

that SABCOND corrects for artifacts created in the calibration, such as interpolation

bias. Second, this chapter proposed two-step SABCOND, aiming for more accurate cor-

rection with higher fidelity. The two-step SABCOND is applied to an image in Jezero

crater and shows its potential in correcting images with more fidelity, further solving

some problems encountered in the SABCOND.

This chapter also provided an advancement in the optimization algorithm by intro-

ducing the formulation of alternating direction method of multipliers using generalized

augemented term (ADMM-GAT) together with associated residual balancing.

This chapter also advanced the understanding of noise and artifacts present in the

CRISM IR images. We discovered the mechanism of the occurrence of interpolation bias

formally reported by [84]. We also succeeded in extracting three different kinds of noise
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patterns present in CRISM scene images – an autoregressive pattern, random spikes and

a telegraph pattern. We presented a new theoretical limitation of the empirical volcano

scan method.
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C H A P T E R 4

MUTUAL MAP PROJECTION OF CRISM AND MASTCAM

IMAGES VIA HIGH-RESOLUTION DIGITAL ELEVATION

MODEL

4.1 Introduction

Martian ground rover missions heavily rely on orbital measurements/images, includ-

ing selecting the initial touchdown locations, designing their traverses to achieve scien-

tific goals, and ensuring the safety of operations [144]. The Mars Science Laboratory

(MSL) Curiosity Rover, which landed on the floor of the Gale crater on Mars in 2012,

is the NASA’s rover for the MSL mission, aiming for investigating the modern and past

habitability environment of Mars [145]. This mission takes full advantage of ultra-high

spatial resolution images acquired by the High Resolution Imaging Science Experiment

(HiRISE) [146], and hyperspectral images acquired by the CRISM [4] (both on the MRO)

for mission planning, safety assessment, and scientific analysis [144,145]. HiRISE images

have the spatial resolution as fine as 0.25 m and their derived elevation model has 1 m

resolution. These ultra-high resolution images are even useful for determining a more

precise traverse to guide rovers even after they landed. Besides, the CRISM spectro-

scopic images provide the abundant information of surface mineralogy, guiding scientific

measurements and analysis.

These orbital images are also often introduced and compared to complement the geol-
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ogy, mineralogy, geochemistry, or organics investigations at the ground for post scientific

analysis. In order to incorporate orbital images to ground observation, it is necessary to

geographically link both data to each other accurately. Furthermore, an automatic and

systematic method for resolving the geographic matching problem would help increase the

efficiency of the scientific analysis. This chapter investigates one of such methods, in par-

ticular, presenting a method for pixel-level mapping between ground images acquired by

Mast camera (Mastcam) [147] installed on the Curiosity rover and hyperspectral images

acquired by CRISM via the HiRISE-derived digital terrain model (DTM).

The new method takes full advantage of the camera model of the Mastcam instru-

ment and the sensor model of CRISM. The camera/sensor models allows us to find

a precise location of each pixel in the geographic map when surface topography is

given. The projection that mutually maps CRISM and Mastcam image pixels is achieved

by combining the projection of Mastcam images and CRISM images onto the surface.

MSL Gale DEM Mosaic 10m.tif (MSL Gale DEM Mosaic), available on the Annex of the

PDS Cartography & Imaging Sciences Node USGS website [148], is used as a surface

model in this research. The field-of-view of Mastcam images on the MSL Gale DEM

Mosaic is evaluated with the camera model. A novel method to compute the viewshed

of the Mastcam image is introduced. Additionally, the precise footprints of CRISM pix-

els are computed from its sensor model and the DEM Mosaic. The two projections are

finally combined together to build the mutual map projection between the Mastcam and

CRISM images.

The contribution of this chapter is as follows:

1. I propose a novel pixel-to-pixel projection of Mastcam images using a high resolution

DEM model using the camera model.

2. I introduce a general viewshed algorithm for a camera based on CAHV model is

introduced.
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3. To the best of our knowledge, our proposed approach is the first to project the

footprint of CRISM pixels onto the high resolution DEM model.

4. To the best of our knowledge, our proposed approach is the first to provide a precise

map projection of CRISM image pixels onto Mastcam images.

4.2 Background

4.2.1 Mastcam cameras

The Mastcam instrument suite [147, 149] consists of a set of two mega-pixel cameras

(left and right) mounted on the 2 m mast of the Curiosity rover. It consists of two optical

megapixel CCD cameras, one on the left and the other on the right of the mast. Both of

the cameras can take RGB images and also have the capability of taking multispectral

images over visible to near infrared wavelength regions. The acquisition mode – either

RGB or multispectral modes – are switched by rotating their internal filter-wheel. In the

multispectral mode, multiple images are collected with different filters. Users are required

to merge them by themselves. Right and Left cameras have different focal lengths and

different spatial resolution. The right camera has higher spatial resolution, but the lower

spatial field-of-view (FOV), while the Left camera has lower spatial resolution and a wider

FOV.

The primary task of the Mastcam is to record the images of landscapes or atmosphere

to study the geology, topography, geomorphology, mineralogy, and meteorology of the

field site. The high resolution of the Mastcam (left: 450 µm at 2 m distance and 22 cm

at 1 km and right: 150 µm at 2 m and 7.4 cm at 1 km) enables the observation of fine

details of the Martian surface that cannot be obtained from orbits over a wide range of

distances. The acquired Mastcam images are also used for supporting rover operations,

including the selection of interesting locations.
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4.2.2 CAHV/CAHVOR models

CAHV [150] and its extension, CAHVOR [151] are camera models extensively de-

ployed in planetary rover missions, such as the 1997 Mars Pathfinder (MPF) Mission,

the 2003 Mars Exploration Rover (MER) mission, 2012 MSL Rover Curiosity, and Mars

2020 Perseverance rover.

CAHV encodes internal and external camera parameters, simplifying the projection

of points onto the image plane. CAHV model consists of four camera parameters ( c,

a, h, v); c ∈ R3 is the position vector for the camera center position in the reference

coordinate system, a ∈ R3 is the unit direction vector for the line of sight of the camera

in the reference coordinate system, and h ∈ R3×1 and v ∈ R3×1 are the vectors relating

to horizontal and vertical information of the image plane of the camera. For a given

object position vector, p defined in the reference coordinate system, the projection onto

the camera image expressed as (x, y) is performed by

x =
h · (p− c)

a · (p− c)
and y =

v · (p− c)

a · (p− c)
, (4.1)

where · represents the inner product of two vectors. Yakimovsky and Cunningham [150]

provide a decomposition of h and v with physical understandable parameters:

h = hsh
′ + hca and v = vsv

′ + vca,

where h′ ∈ R3×1 and v′ ∈ R3×1 are the unit direction vectors in the reference coordinate

system, respectively pointing in the x and y direction of the image plane, hs and vs are

the focal length expressed as the number of pixels, and (hc, vc) is the coordinate in the

camera image plane where the line of sight intersects with the plane. Note that a, h′, and

v′ are orthogonal to each other. Fig. 4.1 illustrates the geometric relationship of these

parameters.

There exist identity relationships between the parameters, hc, vc, hs, and vs, which
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Figure 4.1. CAHV model

can be written as follows [152]:

a · h = a · (hs h′ + hc a) = hs ·
(
a · h′

)
+ hc · ∥a∥22 =hc

a · v = a · (vs v′ + vc a) = vs ·
(
a · v′

)
+ vc · ∥a∥22 = vc∥∥a× (hs h

′ + hc a)
∥∥
2

=
∥∥hs · (a× h′

)
+ hc · (a× a)

∥∥
2

=hs∥∥a× (vs v
′ + vc a)

∥∥
2

=
∥∥vs · (a× v′

)
+ vc · (a× a)

∥∥
2

= vs,

where × represents the cross product of the vectors, and orthogonality between a, h′, and

v′ is used and the fact that a, h′, and v′ are all unit vectors. These relations are identities

obtained by the definition of the parameters. h′ and v′ can be also easily obtained once

the above scalar parameters are obtained from the definition:

h′ =
h− hc a

hs
and v′ =

v − vc a
vs

.

The inverse projection of the equation (4.1), namely recovering the vector p given the

image coordinate (x, y), was discussed in [150] and described here. Let pC = (p − c),
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representing a direction vector associated with the image plane coordinate (x, y). Then

we can express the relation (4.1) with PC :

xa · pC = h · pC and ya · pC = v · pC

⇔ (xa− h) · pC = 0 and (ya− v) · pC = 0. (4.2)

The equations (4.2) indicate that pC is orthogonal to both of the vectors (xa − h) and

(ya − v). Such a vector can be obtained by taking a cross product of these vectors.

Namely, we have

pC =a +
x− hc
hs

h′ +
y − vc
vs

v′. (4.3)

You might need to normalize the derived pointing vector. The normalization factor is

just the squared sum of the coefficients of the mutually independent vectors:√
1 +

(x− hc)2
h2s

+
(y − vc)2

v2s
.

The equation (4.3) indicates that pC points in the same direction as a with respect to

the plane defined by the camera image plane basis vectors h′ and v′.

CAHVOR [151] is an extension of the CAHV model with two additional parameters

(the optical axis unit vector o, and the radial distortion parameter r = (ρ0, ρ1, ρ2)).

Consideration of the distortion of the optical axis and the radial distortion are integrated

into the camera projection operation. The operation is as follows. First, the pointing

vector pC = (p−c) is decomposed into two components – one parallel to the optical axis

unit vector o and its perpendicular one λ:

pC = ξo + λ,

where ξ is the scalar coefficient of the optical axis component. ξ and λ are obtained by

the following relationships:

ξ = pC · o and λ = pC − ξo.
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Figure 4.2. CAHV model

The radial distortion occurs along the vector λ, and its magnitude depends on that of the

radial component. Precisely, CAHVOR model defines it by the tangent of the angular

distance, (tanα = λ/ξ, where λ = ∥λ∥2), of pC from the optical axis o. Then, the

amount of distortion µ is obtained by

µ = ρ0 + ρ1τ + ρ2τ
2, (4.4)

where τ = tan2 α. Finally, the pointing vector is modified as

p′C = pC + µλ = ξo + (1 + µ)λ, (4.5)

and the projection of the CAHV model (4.1) is applied to p′C . Note that µ represents the

ratio factor of the distortion on the radial component. Fig. 4.2 illustrates the geometric

relationship of the CAHVOR model parameters.

It is possible to perform the projection operation above without introducing the pa-
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rameter ξ by normalization along the optical axis:

p̂C =
pC

(pC · o)
.

p̂C lies on the ray that originated from c in the direction of pC . Therefore, it is still

projected onto the same coordinate in the camera image plane as pC . This normalization

operation sets ξ = 1, and its radial component is obtained by simple subtraction

λ̂= p̂C − o.

Then, using λ̂2 = ∥λ̂∥22, the magnitude of optical distortion is obtained by

µ = ρ0 + ρ1λ̂
2 + ρ2λ̂

4.

Finally, the projection (4.1) is applied to the modification p̂′C of p̂C :

p̂′C = p̂C + µλ̂ = o + (1 + µ)λ̂. (4.6)

Inverse projection for CAHVOR model, namely recovering the pointing vector pC

from the camera image coordinate, is not as straightforward as that for the CAHV model.

An analytical solution may not exist, but a numerical solution can be obtained. It is also

discussed in [151] and described here in two different ways.

First, p̂′C is obtained by the same way used for the inverse projection of the CAHV

model (4.3):

p′C =a +
x− hc
hs

h′ +
y − vc
vs

v′. (4.7)

Recall from equation (4.5), that distortion can also be expressed using any λ′ such that

λ′ = kλ where k is a nonzero scalar,

p′C = pC + µλ = pC + µ′λ′, (4.8)

where µ′ = µ/k. Considering that this distortion operation does not change the magni-

tude of the component in the optical axis direction, we have

ξ=pC · o = p′C · o.
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Let us consider a specific λ′, the radial component of p′C , obtained by λ′ = p′C − ξo.

By definition, we have λ′ = (1 + µ)λ. The equation (4.8) indicates µλ = µ′λ′ and

therefore we have µλ = µ′(1 + µ)λ. Comparing the coefficients on its both sides we

obtain µ+ 1 = 1
1−µ′ . Thus, substituting this into λ′ = (1 + µ)λ, we have λ = (1− µ′)λ′.

Let τ ′ = λ′·λ′
ξ2

, we have τ = (1− µ′)2τ ′. Finally, we obtain the following by substituting

the above results back into the equation (4.4)

1

1− µ′ − 1 = ρ0 + ρ1τ
′(1− µ′)2 + ρ2τ

′2(1− µ′)4

⇔ (1 + ρ0)(1− µ′) + ρ1τ
′(1− µ′)3 + ρ2τ

′2(1− µ′)5 − 1 = 0.

Solving this with respect to µ′ by any numerical method such as a Newton method or a

bisection method, we have pC = p′C − µ′λ′.

This could be simpler when normalization along optical axis is performed in the first

place. First, p′C is obtained by the equation (4.7). Then normalize this vector with

respect to o:

p̂′C =
p′C

p′C · o
.

Since p̂′C is the outcome of the equation (4.6), we can express it as

p̂′C =o + (1 + µ)λ

⇔ p̂′C −O = (1 + ρ0 + ρ1λ
2 + ρ2λ

4)λ.

The right hand side is the vector in the direction of λ and so is the left hand side.

Therefore, by taking the magnitude on both sides, we have

∥p̂′C − o∥2 = (1 + ρ0 + ρ1λ
2 + ρ2λ

4)λ.

Subsequently, any numerical method can be used to get λ and p̂C is obtained by

p̂C = o + λ
p̂′C − o

∥p̂′C − o∥2
.
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(a) TIN (b) RSG with Step Model (c) RSG with Triangulation

Figure 4.3. Illustration of different types of DTMs. The bottom row illustrates the discrete
sampling of each type of DTMs together and the interpolation of the surface using the samples,
and the upper row shows the 3D view of the DTMs.

4.2.3 Digital terrain model (DTM) / Digital elevation model (DEM)

Terrain is a continuous topographical surface, expressed as a function defined on a ge-

ographical coordinate system. A digital terrain model (DTM) (or digital elevation model

(DEM))1, commonly deployed in the geographical information system, is a representa-

tion of terrain using a finite set of discrete elevation data on a two-dimensional space

associated with a certain geographical map projection [153,154]. DTM/DEM models the

terrain/surface by some interpolation using the set of elevation data points. Two sub

classes of the DTM model are usually considered, triangulated irregular network (TIN)

and regular squared grid (RSG), based on how the discrete elevation data are sampled

and on how the terrain is modeled [154]. TIN is a class of the DTM model, where the

1This dissertation does not differentiate DTM and DEM and they are used interchangeably.

142



elevation samples are arbitrarily scattered on the 2-D map-projected space and forms

the terrain by making the samples being vertices of triangles (see Fig. 4.3 (a)). The RSG

model is the other, where the elevation data is uniformly sampled on the regular grid on

the map-projected space. The interpolation of the surface could be achieved in different

ways (see Fig. 4.3 (b-c)).

DEM data used in this study is MSL Gale DEM Mosaic 10m.tif (MSL Gale DEM Mo-

saic), available on the Annex of the PDS Cartography & Imaging Sciences Node USGS

website [148]. The MSL team created the MSL Gale DEM Mosaic for facilitating sci-

ence and engineering operations by combining multiple kinds of DEM products generated

from High Resolution Stereo Camera (HRSC) [155], Mars Reconnaissance Orbiter (MRO)

Context Camera (CTX) [156], and HiRISE by stereo vision [157], which are all tied to a

Mars Orbiter Laser Altimeter (MOLA) DTM [158]. The elevation hMars are calculated

from the MOLA areoid and it is considered as topography defined in [158] as:

hMars = RMars −Rareoid,

where RMars is the radius at the terrain of Mars, the length from the center of the Mars,

and Rareoid is the radius of the areoid, considered as the radius at the sea level of Mars.

This DEM Mosaic uses the RSG model and saved in a single-layered raster image format.

Equirectangular projection, which projects a body onto a plane with the grid of latitudes

and longitudes, is used for the creation of the grid of the image. Standard parallel, which

is the only parameter of the equirectangular projection and defines the latitude where

the no distortion is achieved, is set to zero. The vertical and horizontal axes of the image

represent northing and easting, respectively, counting coordinate values by meter from

the zero longitude and latitude point in the projected map. The resolution of the image

is one meter per pixel in each direction, same as that of HiRISE-based DEM products,

the highest resolution obtained from the orbit at the time of this writing. The projection

information for converting to a geographic coordinate is stored in the image header or its

LABEL file (with the extension .LBL) accompanied with the image.
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4.2.4 Geographic and projected coordinate systems

The correct interpretation of the DEM/DTM requires the understanding of geographic

and projected coordinate systems. A geographic coordinate system (GCS) is a coordinate

system that defines the location of a celestial body in the three dimensional space. Most

common representation is a spherical coordinate system using planetocentric latitude,

longitude, and elevation. The elevation is defined as the radius subtracted by a reference

radius, such as geoid and areoid. Geoid is the earth surface that has the constant grav-

itational potential equal to that at the sea level, which defines the zero elevation. The

mass distribution of the earth creates the variation of the radius on the geoid around the

earth body. Areoid is the analogue of the geoid to Mars. The planetocentric latitude

and longitude define the north-south and east-west location in the geographic coordinate

system. The spherical coordinate system can converted to a Cartesian coordinate sys-

tem. Let the spherical coordinate of a point p be (r, φ, θ) where r is the radius, φ is the

planetocentric latitude, and θ is the planetocentric longitude. The Cartesian coordinate

(x, y, z) of p is computed as follows:

x= r cosφ cos θ

y= r cosφ sin θ

z= r sinφ,

where +x looks in the direction to (φ, θ) = (0, 0), +y to (φ, θ) = (0, π/2), and +z to

φ = π/2.

A projected coordinate system is a map representation of a three dimensional celestial

body projected onto a two dimensional flat plane. The most common projected coordinate

system to represent the region of Mars at low latitudes is the equirectangular coordinate

system. The equirectangular projection projects a body onto a plane with the grid of

latitudes and longitudes with auxiliary spacing. As mentioned in the last section, the

MSL Gale DEM Mosaic is also saved using this projection. A point p = (r, φ, θ) in
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the geographic coordinate system is projected onto the coordinate (northing, easting)

obtained by:

northing =R · (φ− φref)

easting =R · (θ − θref) · cos θsp,

where R is a reference radius, φref and θref are reference latitude and longitude at which

northing and easting become zeros, respectively, and θsp is a standard parallel, a latitude

at which pixel smearing do not happen. Parameters used for the projection, such as the

reference radius and the standard parallel, are usually attached with the data. It is easy

to obtain the associated latitude and longitude given northing and easting.

The Curiosity Rover orientation is defined on the map coordinate system of the

equirectangular projection whose +x, +y, and +z directions represent northing, east-

ing, and nadir directions, respectively. It can be converted into the geographic Cartesian

coordinate system. Suppose that the Martian body is modeled as a sphere. Northing,

easting, and nadir directions in the equirectangular projection are equivalent to north,

east, and negative radial direction in the local tangential coordinate system at latitude

φ and longitude θ on the sphere. The nadir looking vector is identical to the negative of

the normal vector of the tangential plane. Its representation in the Cartesian coordinate

system is obtained as:

enadir = −er = −
(

cosφ · cos θ cosφ · sin θ sinφ
)
.

Next, the north looking vector on the tangential plane is derived. Consider when θ = 0,

and the north direction of the local tangential plane is evaluated simply in the zx plane

in the Cartesian coordinate system: (− sinφ, 0, cosφ). By rotating θ about +z axis, the

north looking vector is obtained as:

enorth =
(
− sinφ · cos θ − sinφ · sin θ cosφ

)
.

Finally, the basis vector in the east direction is the one perpendicular to both:

eeast =
(
− sin θ cos θ 0

)
.
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Then the Curiosity Rover orientation is converted to the geographic Cartesian coordinate

by multiplying a 3× 3 matrix
[
enorth eeast enadir

]
from the left.

The shape of Mars may be modeled as a spheroid with an equatorial radius and a

polar radius. First I derive the difference of the local tangential plane of the sphere and

the spheroid. The tangential plane of the sphere is perpendicular to the planetocentric

latitude, and that of the spheroid is perpendicular to the planetodetoic latitude. Since

both of the sphere and spheroid are rotation invariant around the z-axis, I only consider it

in the vertical cross section. Let the equatorial and polar radii be Re and Rp, respectively,

and the vertical cross-section of the sphere and spheroid that passes through the origin

is an ellipse, expressed as

x′2

R2
e

+
y′2

R2
p

= 1,

where x′ and y′ axes represent the horizontal and vertical axes, respectively. Taking the

derivative, we have

x′

R2
e

dx′ +
y′

R2
p

dy′ = 0⇔
[ x′
R2
e

y′

R2
p

] [ dx′
dy′

]
= 0.

Therefore, the tangential line at (x′1, y
′
1) on the ellipse is

[ x′1
R2
e

y′1
R2
p

] [x′ − x′1
y′ − y′1

]
= 0 ⇔

[ x′1
R2
e

y′1
R2
p

] [x′
y′

]
= 1.

This indicates that
[ x′1
R2
e

y′1
R2
p

]
is the normal vector for the tangential plane. Any point on

the ellipse is expressed with a parameter ψ as (Re cosψ, Rp sinψ). For the planetocentric

latitude (φ), we have the following relationship:

tanφ =
Rp sinψ

Re cosψ
=
Rp
Re

tanψ.

The planetodetoic latitude (φ′) is the angle between the normal vector to the tangential

plane with the x-axis and we have

tanφ′ =

y′1
R2

p

x′1
R2

e

=

Rp sinψ
R2

p

Rp cosψ
R2

e

=
Re
Rp

tanψ.

146



By combining the two equations above, we have the relationship between the planeto-

centric and planetodetoic latitudes:

tanφ′ =
(
Re
Rp

)2

tanφ. (4.9)

For the spheroidal Mars, the rover orientation on the equirectangular map projection

coordinate system is converted to the geographic Cartesian coordinate system as follows.

First, the planetodetoic latitude φ′ is obtained from the planetocentric latitude φ by the

equation (4.9). Similarly performed for the spherical Mars, northing, easting, and nadir

direction on the map projection are equivalent to the north, east, and nadir directions

on the local tangential plane of the spheroid. These are simply obtained by replacing the

latitude of the result of the spheroid:

enadir =
(
− cosφ′ · cos θ − cosφ′ · sin θ − sinφ′

)
enorth =

(
− sinφ′ · cos θ − sinφ′ · sin θ cosφ′

)
eeast =

(
− sin θ cos θ 0

)
.

4.2.5 Viewshed algorithms

It is important to address the visible area on the surface from the camera position to

know geographical locations imaged at camera pixels. Identifying viewshed, the region

that is visible from a certain viewpoint, is a classical and essential research problem in

the fields of geographic information systems (GIS) data processing since 1980s. The eval-

uation of the viewsheds from Martian rovers is also important in facilitating exploration

on Mars and the analysis of acquired images [159].

Viewsheds can be represented in a continuous way or in a discrete way [153,154]. The

continuous viewshed representation partitions the entire continuous terrain into visible

and invisible regions. This requires gap filling between the finite elevation samples to be

explicitly defined. This representation is well-suited with the TIN model, where a terrain

is modeled as a polyhedron created by the tessellation of triangles. Continuous visibility
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can be obtained by solving how the triangles intersect and overlay to each other when

viewed from a viewpoint. The analytical solution exists for this problem since the visible

area of a triangle obstructed by any planar triangle is always expressed as a polygon.

The discrete viewshed representation is simpler. It also partitions the continuous

terrain into the finite number of areas, and the visibility of each partitioned area is

represented by that of one or multiple representative points in it. In other words, point

visibility is evaluated on the representative points to determine the visibility of each

partitioned area. This representation is commonly used for the RSG model since its grid

is dense and each area is small enough relative to the scale of the whole region of interest,

and therefore, testing the visibility of discrete elevation data points would be sufficient

to determine that of their whole occupying square cell areas, pixels.

The discrete visibility algorithm has drawn huge interests in the field of GIS data

processing, partly because more and more RSG DTM data become available in the raster

image format, and partly because the orderly structure of the RSG can be taken advantage

of. Blelloch’s method [160] and R3 algorithm [161] are the oldest of such methods,

which evaluate if the line-of-sight (LOS), a line segment from the viewpoint to each

pixel center of the DTM, is obstructed by the surface topography. R3 assesses the line

of sight projected onto the 2d grid and if the LOS is above or below of the grid at

all the intersections. Blelloch described a method, similar to the one later called R2

algorithm [162], that evaluates all the LOS’s to the boundary pixels first, and estimates

the visibility of the inside pixels by that of the intersections of the LOS’s to the boundary

pixels with the inside pixels. R3 algorithm is considered as the most ideal algorithm due

to its exhaustive evaluation of LOS’s at the expense of computational cost. Researchers

have developed viewshed algorithms, such as R2 [163], XDraw [163], and reference plane

method [164] that run faster than R3 by approximation. Van Krevald [165] developed a

radial sweeping algorithm with a dedicated tree data structure to reduce a computational

complexity. Viewshed algorithms are also available in commercial softwares such as in
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Viewshed tool in ArcGIS® deployed in [159].

Some refinements of the traditional algorithms [166–168] are all in the realm of the

traditional algorithm Family. In addition, most of development on the algorithmic aspects

of viewshed computation occurred back in 1990s, and most of the recent advancement

of the viewshed algorithms is related to the efficient implementation of the algorithms

by optimizing I/O-efficiency [169–174] and by parallelization [173–180]. I/O efficiency

refers to the optimization of data transfer between the external storage to main memory.

As DTM data keep increasing in size, it may be impossible to load and keep all the

DTM data of interest into main memory. In such a case, the data transfer operation

from the storage to the main memory is required during the computation. Access to

the external storage is generally much slower than accessing main memory; therefore,

the minimization of the number of times of accessing the storage is necessary to reduce

the computational time. Parallelization of the algorithms is also a key in reducing the

amount of the computational time.

4.2.6 SPICE system

The SPICE system [181, 182], developed at NASA’s Navigation and Ancillary Infor-

mation Facility (NAIF), provides NASA’s standard integrated platform that facilitates

the computation of observation geometry parameters of measurements in space missions

and the production and archiving of source and derived ancillary data files. The SPICE

system consists of the low-level data files, called SPICE kernel files, and SPICE Toolkit,

the application interface (API) that allows us handling of the files and retrieving observa-

tion geometry parameters from them. The SPICE Toolkit, originally written in Fortran

77, is now available in multiple computer programming languages (C, IDL, MATLAB,

and Java Native language). The software is freely available, and the archived SPICE

data files of many space missions are publicly accessible at the NASA PDS NAIF node
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website.2

The computation of observation geometry is a complex and challenging task [182].

First both observers and targets are moving; they may be rotating, or revolving. In

addition, it is required to load correct ephemerides, a table that records the trajectory of

astronomical bodies or satellites over time. Furthermore, light time and stellar aberra-

tion corrections needs to be assessed, and you must deal with the conversion of multiple

different coordinate systems between an observing instrument centered system, one for

the spacecraft/body that boards the instrument, target body centered coordinate system,

etc. SPICE system provides a simple interface to deal with such a complicated problem.

For example, with the UTC time of a measurement and several parameters such as the

spacecraft and instrument identification numbers given, the position and orientation of

the spacecraft and onboard instruments, and the measurement geometry on the observa-

tion target is calculated with the simple interface by loading appropriate SPICE kernel

files.

4.2.7 Related works

The Mastcam cameras has been used for acquiring the images of landscapes or atmo-

sphere on the ground. Mastcam image products are not accompanied with image data

that associate pixels with geographic coordinates. Thus, the map projection between

Mastcam images and orbital images requires additional custom processing. Researchers

have partially attempted map projection between Mastcam and geo-referenced HiRISE

images in the literature. Stack et al. [183] attempted the overlay of geological units evalu-

ated from HiRISE images on Mastcam images. The projection is performed by manually

matching features on the orbital images to the rover images. Nachon et al. [184] proposed

a more systematic way using the ArcGIS® software and the information of the camera

position and orientation attached to each Mastcam image product. Nachon’s method

2naif.jpl.nasa.gov/naif/
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outputs a viewshed, a union of visible areas by the camera given its position, though

pixel-level matching is not supported.

CRISM spectroscopic images have been giving an additional dimension to scientific

analysis. Mineralogical maps derived from CRISM images have been taking a significant

role in rover operations and determining its traverse, for example, by identifying and

mapping clay and sulfate layers in the Gale crater. Since the pixel footprints of the

CRISM on the ground is no smaller than 18 m, quite large relative to a scale observed at

the ground, they were normally only interpreted at a regional scale.

Recently, the more precise comparison of the CRISM mineral detections with ground

measurements is undertaken. Fraeman et al. [185] compared CRISM spectral measure-

ments with the Mastcam images to show the confirmation of mineral detection from the

orbit and at the ground. Frizzell et al. [186] further attempted matching CRISM image

pixels with Mastcam images, although the work seems immature. The difficulty of the

mapping of the CRISM spectral measurements onto the ground lies in the differences in

the viewing angle and in the spatial resolution. Gold et al. [187] address this problem by

developing an interactive virtual reality system, Planetary Visor, that integrates orbital

images on the simulated terrain observed from the ground. It projects CRISM pixel foot-

prints obtained from Derived Data Record (DDR) [4], on the 3D terrain, and allows users

to view the terrain from arbitrary perspectives including any virtual rover perspective,

helping the integrative understanding of surface using both ground and orbital CRISM

observations. DDR data provides the latitude and longitude coordinate and elevation of

each pixel center of the CRISM image and Planetary Visor approximates a pixel footprint

with a polyhedron shape.
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4.3 Mutual map projection of Mastcam images using DTM

This section describes a new method to perform mutual map projection between

Mastcam image coordinate and the MSL Gale DEM Mosaic image. The projection of a

Mastcam image to DTM is composed of several steps. The first step is to prune DTM

pixels that are projected to outside of the image using the CAHV/CAHVOR model. The

second step is to eliminate pixels hidden by topographical surface occlusions. This step is

closely related to so called visibility problem (or, viewshed) and could be computationally

intensive due to the high resolution of DTM data. To reduce the computation, only the

DTM pixels selected in the first step are tested for visibility. It is essential to reduce the

number of pixels to be tested for visibility in the first step as many as possible.

The third step is to construct a mapper data structure that allows us to point a cor-

responding DTM pixels given Mastcam camera image pixels, or a corresponding camera

image pixels given DTM pixels. The mapper is based on the nearest neighbor method.

Nearest neighbor may not give precise footprints; if a camera image pixel is much smaller

than the resolution of DEM, the precise footprint of the camera image pixels on the DTM

image may be much smaller than one pixel. However, the eventual goal for this chapter

is to perform mutual mapping between Mastcam image pixels and CRISM image pixels.

Since CRISM pixel footprints are much larger than the pixel size of HiRISE DEM pixels,

such errors are less problematic.

4.3.1 Pruning of DEM pixels outside of the camera image

Here I start with the first step: the pruning of DTM pixels that are projected out-

side of the camera image. I take the full advantage of the CAHV/CAHVOR model

parameters attached with all the Mastcam images. As described in Section 4.2.2, the

CAHV/CAHVOR model allows us a simple way to project a point in geographic co-

ordinate system onto the camera image plane coordinate system. It not only provides

information on whether a point is inside the field of view (FOV) of the acquired image,

152



c

Camera Image Plane

a

Valid image region

p− c

p

x

y (xp, yp)

x

y (xp, yp)

1

−0.5

−0.5
0

Valid image region

Scam − 0.5

Lcam − 0.5

1

0

Camera image planeP

Figure 4.4. Illustration of the valid image region and the image pixel coordinate system on the
camera image plane. The rectangle region surrounded by the solid black line segments are the
valid image region.

but also which pixel in the image the point falls into. Let C be a camera center point

and denote its positional vector by its lowercase bold type c. Let P be a point in the

geographic coordinate (I denote its positional vector by p). Let (x, y) be the coordinate in

the camera image plane and (xP , yP ) be the xy coordinate associated with the projection

of P . With the CAHV model, the equation (4.1) is performed to obtain (xP , yP ). In case

of CAHVOR model, a series of the operations described in Section 4.2.2 is performed.

Let the number of horizontal and vertical pixels be Scam and Lcam, respectively. A point

P is projected inside or on the border of the image if its projection (xP , yP ) satisfies the

following three conditions: 
−0.5 ≤ xP ≤ Scam − 0.5

−0.5 ≤ yP ≤ Lcam − 0.5

(p− c) · a > 0,

(4.11a)

where I assume the coordinate of the center of the most upper left pixel in the camera

image is (0, 0) and the pitch of pixels is equal to 1 (see Fig. 4.4). The first two conditions

test whether the projection falls within the valid rectangle region of the image, inside or

on the border of the black rectangle in Fig. 4.4. The additional constraint (p− c) ·a ≥ 0

ensures that P is in the same side as a is pointing with respect to the plane that passes

C and is perpendicular to a. Also note that rounding (xP , yP ) tells you the image pixel

bin that P falls into.
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Let us define the set of points that satisfy the the above projection as S. The set

S may be insufficient as the set of all the contributing pixels. Since I construct topo-

graphic surface by the triangulation of the HiRISE DEM based on the RSG model, a

pixel projected outside of the region defined by (4.10a) and (4.11a) is considered to be

contributing the camera image, if it is one of the vertices of a triangle partially inside

the camera image region. Such points are retrieved using the set S. Precisely, any point

at least one of eight surrounding neighbors of which belongs to the set S needs to be

added as a potentially contributing pixels. Figure 4.5 (a) shows potential DEM pixels

contributing a Mastcam image (0475ML001888). The pixels in the half-transparent yel-

low region satisfy the conditions (4.10a) and (4.11a). This region has a cone-like shape

topped at the camera center. Figure 4.5 (b) gives us a close look of this region. The yel-

low region are surrounded by half-transparent orange and blue pixels. The orange pixels

are the pixels one/some of whose vertices is/are vertex(es) of the potentially contributing

triangles. Slightly more pixels are marked by the bluish color for evaluating the visibility

of the pixels in the edge area.

4.3.2 Viewshed computation

Next, the visibility of the points are tested. The problem here is a partial viewshed

algorithm restricted within the field of view (FOV) of the camera on the RSG DEM

model. Here I propose a new method for detecting viewshed of the Mastcam image.

First, it assumes a specific model for the terrain. All of the previous methods descended

from the R3 algorithm evaluate only the intersection of the LOS’s to the grid, the part

of the terrain that is not on the grids is not defined. The method here explicitly defines

the terrain by the triangulation of the RSG DEM and rigorously assesses if the LOS’s is

obstructed by any of the triangles. The proposed method can be used with geographic

coordinate systems, including a celestial body centered rectangular coordinate system,

allowing us a rigid handling of the curvature of the body. In contrast, all the previous

154



8.135 8.14 8.145 8.15
Easting [m] #106

-3

-2.95

-2.9

-2.85

-2.8

-2.75

N
or

th
in

g 
[m

]

#105

(a)

8.14488 8.1449 8.14492 8.14494 8.14496 8.14498 8.145
Easting [m] #106

-2.743

-2.7428

-2.7426

-2.7424

-2.7422

-2.742

-2.7418

-2.7416

-2.7414

-2.7412

N
or

th
in

g 
[m

]

#105

(b)

Figure 4.5. A viewshed on the MSL DEM Mosaic of the image associated with sequential
ID 1888 taken by the Mastcam Left camera on sol 475 : (a) a whole viewshed and (b)
a close look around the camera. The cross represents the position of the Rover, and the
solid yellow regions are visible from the Mastcam. The semi-transparent color indicates
the potentially visible regions based only on the camera projection. The background gray
scale image is Mars MSL Gale Merged Orthophoto Mosaic 25cm v3 available on the Annex of
the PDS Cartography & Imaging Sciences Node USGS website. The bottom region in
(a) that do not have valid DEM data is masked in black.

viewshed algorithm on the RSG model assume that elevations are considered as heights

measured vertically from the base plane where the projected coordinate system is defined.

The curvature of the planetary body could be only approximately applied as vertical

displacements to elevation data points. This method is as accurate as the R3 algorithm

and even more restrictive since it is equivalent in testing more intersections of the LOS’s

with diagonal line segments created by the tessellation.

When the topographic surface is constructed by the tessellation of triangles, the LOS

test, the visibility of a point p, can be tested by assessing if the line segment PC intersects
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Algorithm 4.1 Näıve viewshed algorithm on the triangulated RSG DEM model

1: for all Triangles in {T} do
2: Get M−1 from Eq. (4.12)
3: for all Points in {P} do
4: Get (s, t, u) by Eq. (4.13)
5: if s, t, u > 0 and s+ t+ u > 1 then
6: P is marked as invisible
7: end if
8: end for
9: end for

any triangle. This problem is broken down into a series of test, whether a line segment

intersects with a triangle. Let us denote the triangle by T , and its vertices by V1, V2, V3

and their 3-D position vectors by v1,v2,v3 ∈ R3×1, respectively. Let us also express the

triangle T by T = △V1V2V3 and define a 3× 3 matrix:

M= [v1 − c v2 − c v3 − c ] , (4.12)

Line segment PC intersects with △V1V2V3 if

s, t, u > 0 and s+ t+ u > 1

where [ s
t
u

]
= M−1(p− c) (4.13)

s, t, u > 0 guarantees that a ray CP intersects △V1V2V3, and s+ t+ u > 1 confirms that

the P is the other side of △V1V2V3 with regard to C.

Let us denote the whole set of DEM sample points after pruning by {P} and the

whole set of triangles created by these DEM sample points by {T}. Using the above

test, one may come up with a näıve algorithm (Algorithm 4.1) by performing the above

test for all combinations of triangles and Points. It is tedious to perform this test for

all the combinations of points and triangles. I here propose a novel method to reduce

the computational burden by prior-binning of the points using CAHV model projection.

Consider linear projection using a CAHV model. The projection of any triangle onto the
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image plane defined by the CAHV parameters is a triangle. A line PC passes through a

triangle △V1V2V3 if and only if the projection of P onto the image plane falls within that

of the triangle. Therefore, you do not need to test all the points for each triangle. It is

sufficient to test all the points within the rectangle that minimally encloses the triangle.

The coordinate (xVi , yVi) of the projection of Vi in the image plane defined in the CAHV

model is obtained by the CAHV projection (4.1)

xVi =
h · (pVi − c)

a · (pVi − c)
and yVi =

v · (pVi − c)

a · (pVi − c)
, (4.14)

where pVi is the positional vector associated with Vi. The rectangular region minimally

enclosing △V1V2V3 is then expressed as

MinEncRect△V1V2V3 =
{

(x, y) |xVmin < xP < xVmax and yVmin < yP < yVmax

}
,

where

xVmin = min (xV1 , xV2 , xV3), xVmax = max (xV1 , xV2 , xV3)

yVmin = min (yV1 , yV2 , yV3), yVmax = max (yV1 , yV2 , yV3).
(4.15)

Using the results above, one may come up with Algorithm 4.2 by inserting a screening

operation before performing the LOS test. Line 9 is simply performed by testing xvmin ≤

xP ≤ xvmax and yvmin ≤ yP ≤ yvmax. It is worth noting that only the CAHV part of

the model is used even when you use CAHVOR model. This is because the the radial

distortion in the CAHVOR model projection could change the geometric relationship of a

line and a triangle. Algorithm 4.2 is still inefficient because the screening test at Lines 8-9

need to be performed on all of the points. Therefore, its computational complexity is not

reduced from Algorithm 4.1.

In order to effectively use this idea, I first segment the camera image region into

two dimensional pixel bins. Let us define the pixel bin structure Bin with the size of

L× S and represent the (i, j) bin with Bin[i][j]. Bin[i][j] occupies a rectangular region

satisfying i− 0.5 ≤ x < i+ 0.5 and j − 0.5 ≤ y < j + 0.5 on the xy image plane. In the

prior binning step, all the points are binned according to their projection coordinates as a
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Algorithm 4.2 Viewshed algorithm with image plane screening

1: for all Triangles {T} do
2: for Vi ∈ {V1, V2, V3} do
3: Get (xVi , yVi) by Eq. (4.14)
4: end for
5: MinEncRect△V1V2V3 is obtained by Eq. (4.15)
6: Get M−1 from Eq. (4.12)
7: for all Points {P} do
8: Get (xP , yP ) by Eq. (4.1)
9: if (xP , yP ) ∈ MinEncRect△V1V2V3 then

10: Get (s, t, u) by Eq. (4.13)
11: if s, t, u > 0 and s+ t+ u > 1 then
12: P is marked as invisible.
13: end if
14: end if
15: end for
16: end for

pre-processing. A point P is first projected on the camera image plane and its projection

coordinate (xP , yP ) is obtained. The coordinate are then rounded to:

(iP , jP ) =
(
⌊xP + 0.5⌋ , ⌊yP + 0.5⌋

)
,

where ⌊x⌋ rounds down to its nearest integer, and P is sorted to Bin[jP ][iP ]. Note

that points that falls outside of the binned region are collected to the closest bins by

rounding their coordinate values on the projected plane. Then, instead of performing

the screening operation as performed in Algorithm 4.2, only the points in the bins that

intersect the rectangle minimally enclosing each triangle are tested for the visibility. After

MinEncRect△V1V2V3 is obtained by the operation (4.15), the minimum and maximum

indices of intersecting bins are obtained simply by rounding the edge coordinates of

MinEncRect△V1V2V3 . The LOS test is performed on only the points in Bin[j][i] for all

i ∈ RT i and j ∈ RTj , where

RT i =
[
⌊xVmin + 0.5⌋ , ⌊xVmax + 0.5⌋

]
RTj =

[
⌊yVmin + 0.5⌋ , ⌊yVmax + 0.5⌋

]
.

The whole processing is summarized in Algorithm 4.3. While Algorithm 4.2 performs a
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Algorithm 4.3 Viewshed algorithm with CAHV model prior binning

Prior Binning

1: for all Points {P} do
2: Get (xP , yP ) by Eq. (4.1)
3: (iP , jP ) =

(
⌊xP + 0.5⌋ , ⌊yP + 0.5⌋

)
and add P to Bin[jP ][iP ]

4: end for

Main Loop

1: for all Triangles {T} do
2: for Vi ∈ {V1, V2, V3} do
3: Get (xVi , yVi) by Eq. (4.14)
4: end for
5: Get xVmin, xVmax, yVmin, yVmax by Eq. (4.15)
6: Get M−1 from Eq. (4.12)
7: for j ∈

[
⌊yVmin + 0.5⌋ , ⌊yVmax + 0.5⌋

]
do

8: for i ∈
[
⌊xVmin + 0.5⌋ , ⌊xVmax + 0.5⌋

]
do

9: for P ∈ Bin[j][i] do
10: Get (s, t, u) by Eq. (4.13)
11: if s, t, u > 0 and s+ t+ u > 1 then
12: P is marked as invisible and removed from Bin[j][i]
13: end if
14: end for
15: end for
16: end for
17: end for

for loop over all points independently for each triangle, Algorithm 4.3 just does it over

points in the bins whose indices are in the ranges RT i and RTj . Since the sizes of the

triangles composing surface are expected to be small, the range RT i and RTj should be

much smaller than the image size, so is the number of points inside these bins. This is

especially beneficial when the camera is looking at a distant target, where the surface

triangles look even smaller. This way, prior binning can effectively reduce the number of

points to be tested for each triangle.

This method is more efficient than R3, yet more restrictive in the sense that it also

tests for a diagonal line segment of the RSG DEM model. While the R3 algorithm is

equivalent to divide the image by azimuth angles to reduce the number of intersections

to be tested by taking advantage of the regular DEM structure, this proposed method

divides also in the vertical direction, reducing the number of points to be tested for
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the triangle more effectively. In addition to that, this method does not use the regular

grid structure; therefore, the algorithm can be used even after the conversion to another

coordinate system, such as a body centered rectangular coordinate system, allowing us

to rigorously deal with the celestial body curvature. Once a point is marked as visible,

then the points do not need to be assessed for visibility again. This dynamic removal

of invisible points may also be implemented for the former näıve algorithms and help

speeding up the processing.

Algorithm 4.3 can be further generalized by allowing arbitrary size for bins. Let us

define two factors KS and KL such that 1/KS and 1/KL become the horizontal and

vertical side length of the bins, respectively. Given a projection coordinate (x, y), the

index (i, j) of the bin which (x, y) is sorted into is obtained by:

(i, j) =
(
⌊KS(x+ 0.5)⌋ , ⌊KL(y + 0.5)⌋

)
, (4.16)

which and given MinEncRect△V1V2V3 , the range of the indices associated with its inter-

secting bins are

RT i =
[
⌊KS(xVmin + 0.5)⌋ , ⌊KS(xVmax + 0.5)⌋

]
(4.17)

RTj =
[
⌊KL(yVmin + 0.5)⌋ , ⌊KL(yVmax + 0.5)⌋

]
. (4.18)

A generalized version of Algorithm 4.3 can be obtained by replacing Line 3 with Eq. (4.16)

and Lines 7-8 with Eqs. (4.18) and (4.17).

Until here, we have focused on point visibility. Namely, visibility is only tested at

the center of the pixel. DEM pixels are not points, but rather occupy square areas in

the map centered at their discrete samples. Fig. 4.6 shows an illustration of the surface

of one pixel when the terrain is modeled by triangulation. The surface within a pixel

may be partially visible, and the visibility of the center of the pixel may not represent

the visibility of the whole pixel. Thus, it would be more appropriate to assess the visible

region of the surface in the pixel. However, such an approach is computationally intensive

on the highly dense RSG DEM model. I use an approximation of the pixel visibility. Not
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Figure 4.6. Illustration of continuous representation of the terrain of a single pixel.

only the center of the pixel, four vertices of the pixel on the topographic surface are

tested for point visibility, and I consider a pixel to be visible if one of the five points

are visible from the surface. Fig. 4.5 shows the viewshed of a Mastcam image. The solid

yellow regions are the visible pixels from the camera.

4.3.2.1 Implementation

It is necessary to construct an appropriate data structure to realize the prior binning.

When implementing in C, the structure can be realized via a linked list containing the

two-dimensional bins as elements. First a 2-D array is created, where each element

corresponds the bins, and points to the linked list of DEM samples falls in it. The

element of the linked list has the column and row indices of the DEM samples in the

DEM image, and its radius value as members. The implementation using the linked

list is convenient for adding and removing its bin elements. Since the number of DEM

samples for each bin is not known in advance and removal operation is performed in the

algorithm, the linked list is best suited for the algorithm.
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4.3.3 Geo-referencing of camera image pixels

Until now, I consider the projection from the DEM pixels to camera image pixels.

This section considers the opposite – projection from camera image pixels to the DEM

surface. It is assumed that each camera pixel is represented by its center point and we

can consider geo-referencing of the center of the pixels. For the pointing vector associated

with each pixel center, its depth – distance from the camera center to the geo-location of

the pixel – is evaluated. The depth of a pixel is obtained as the distance to the closest

intersection of its associated pointing vector/ray starting from the camera center with the

terrain. This operation requires similar problems encountered in the viewshed algorithm,

testing if the ray intersects with triangles of the surface. Applying a similar strategy

used for computing a viewshed, a ray needs to be tested for intersection only with some

triangles among all. In case of CAHVOR model, prior binning is employed and the pixel

index associated with pointing vectors are stored in the bins. In the main iteration, the

intersection all the pointing vectors stored in the bins intersecting the rectangle minimally

enclosing the triangle projected on the image plane is tested. If the obtained distance is

smaller the current value in the distance matrix, distance is updated. Let us consider the

pixel index (i′, j′). Let pC(i′, j′) be its associated pointing vector. By applying CAHV

projection (4.1), we have its coordinate (x(i′,j′), y(i′,j′)) on the CAHV image plane as

x(i′,j′) =
h · pC(i′, j′)
a · pC(i′, j′)

and y(i′,j′) =
v · pC(i′, j′)
a · pC(i′, j′)

. (4.19)

The binning operation is performed with this coordinate value. Testing the intersection

of the ray with a triangle △V1V2V3 is performed as follows. First M is obtained by the

equation (4.12). Second, the computation similar to the equation (4.13) is performed:[ s
t
u

]
= M−1pC(i′, j′). (4.20)

The ray pC(i′, j′) intersects if and only if s, t, u > 0, and if so, the intersection is expressed

as

c +
1

s+ t+ u
pC(i′, j′).
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Algorithm 4.4 Map projection of camera pixel centers (CAHVOR)

Prior Binning

1: for all Image pixel indices (i′, j′) do
2: Get (xPC(i′,j′), yPC(i′,j′)) by Eq. (4.19)
3: (i(i′,j′), j(i′,j′)) =

(⌊
xPC(i′,j′) + 0.5

⌋
,
⌊
yPC(i′,j′) + 0.5

⌋)
4: Add (i′, j′) to Bin[j(i′,j′)][i(i′,j′)]
5: end for

Main Loop

1: for all Triangles {T} do
2: for Vi ∈ {V1, V2, V3} do
3: Get (xVi , yVi) by Eq. (4.14)
4: end for
5: Get xVmin, xVmax, yVmin, yVmax by Eq. (4.15)
6: Get M−1 from Eq. (4.12)
7: for j ∈

[
⌊yvmin + 0.5⌋ , ⌊yvmax + 0.5⌋

]
do

8: for i ∈
[
⌊xvmin + 0.5⌋ , ⌊xvmax + 0.5⌋

]
do

9: for (i′, j′) ∈ Bin[j][i] do
10: Get (s, t, u) for pC(i′, j′) by Eq. (4.20)
11: if s, t, u > 0 then
12: d = 1/(s+ t+ u)
13: if d < D[j′][i′] then
14: D[j′][i′] = d
15: end if
16: end if
17: end for
18: end for
19: end for
20: end for

Suppose pC(i′, j′) has the unit length, its coefficient pC(i′, j′) becomes the depth. Com-

putation is performed for all the triangles and the depth of pixels are updated in the

pre-allocated depth map D[·][·] if the newly obtained distance is shorter than the current

value. The whole algorithm is summarized in Algorithm 4.4.

The prior binning step is unnecessary for the CAHV model since camera pixel centers

are exactly aligned on the CAHV image plane. The potentially intersecting pixel center

rays are selected by directly rounding the coordinate at the border of the minimally

enclosing rectangle of triangles. The whole procedures are shown in Algorithm 4.5.

Using depth, it is easy to calculate the geo-location of the pixel in the reference
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Algorithm 4.5 Map projection of camera pixel centers (CAHV)

Main Loop

1: for all Triangles {T} do
2: for Vi ∈ {V1, V2, V3} do ▷ The three vertices of the triangle
3: Get (xVi , yVi) by Eq. (4.14)
4: end for
5: Get xVmin, xVmax, yVmin, yVmax by Eq. (4.15)
6: Get M−1 from Eq. (4.12)
7: for j ∈

[
⌈yVmin + 0.5⌉ , ⌊yVmax + 0.5⌋

]
do

8: for i ∈
[
⌈xVmin + 0.5⌉ , ⌊xVmax + 0.5⌋

]
do

9: Get (s, t, u) for pC(i, j) by Eq. (4.20)
10: d = 1/(s+ t+ u)
11: if d < D[j][i] then
12: D[j][i] = d
13: end if
14: end for
15: end for
16: end for

coordinate system. It is also possible to obtain other photometric parameters, such as

emission angles. The emission angle is the angle between the normal vector of the reflected

surface in the zenith direction and the vector of reflected light. If you approximate the

emission angle associated with the measurement of each pixel by the angle of the normal

of the triangle that intersect the pointing vector of the pixel center with the negative of

the pointing vector, it is easily obtained. The emission angle is useful for recognizing

the topography captured by the camera especially for distant targets. Fig. 4.7 shows

an example of the result of geo-referencing of the camera pixels. It is observed that the

MSL Gale DEM Mosaic captures the topography quite well especially for distant targets,

although there might be large errors at a close range. Using the geo-reference, it is also

simple to get the nearest DEM pixel for each camera image pixel.

4.3.4 Correction of the orientation of the Curiosity rover

Although the position of the Curiosity rover is corrected in the localization effort, the

correction of the orientation is not performed. The uncorrected error causes the angular

difference of the Mastcam image and estimated range or emission angle maps using the
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(a) RGB image

(b) Image of depth

(b) Image of emission angles

Figure 4.7. Geo-referencing of the MASTCAM image
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DTM model. The orientation can be corrected by using manually selected ground control

points (GCP) between the Mastcam image and the range/emission angle maps. Once

GCPs are obtained, pixel pointing vectors are obtained from the camera imgage pixels of

GCPs on the Mastcam image and on the range/emission angle maps, respectively. The

camera orientation is fixed so that the associated pixel pointing vectors match as much

as possible. Let the true coordinate of the GCPs in the Mastcam image be (xtruen , ytruen )

and that obtained by the projection with the uncorrected orientation be (xprojn , yprojn ) for

n = 1, . . . , NGCP, where NGCP is the number of GCPs. Their corresponding pointing

vector are pC(xtruen , ytruen ) and pC(xprojn , yprojn ). The correction is considered in the

I consider the correction of the orientation first in the 3-D camera coordinate sys-

tem where the +x, +y, and +z directions correspond a, h′, and v′, respectively. The

horizontal and vertical correction angles around the v′ and h′, respectively, are evaluated.

The horizontal correction angle α is obtained by the horizontal angular deviation

between pC(xtruen , ytruen ) and (xprojn , yprojn ). Let the component of pC(xprojn , yprojn ) that

does not include vertical component be
[
pC(·, ·)

]
v′⊥

, we have

[
pC(xprojn , yprojn )

]
v′⊥

=pC(xprojn , yprojn )− (pC(xprojn , yprojn ) · v′)v′[
pC(xtruen , ytruen )

]
v′⊥

=pC(xtruen , ytruen )− (pC(xtruen , ytruen ) · v′)v′.

Then the vertical deviation angle αn derived from the GCP indexed by n is:

αn =

[
pC(xprojn , yprojn )

]
v′⊥
·
[
pC(xtruen , ytruen )

]
v′⊥∥∥∥[pC(xprojn , yprojn )

]
v′⊥

∥∥∥∥∥∥[pC(xtruen , ytruen )
]
v′⊥

∥∥∥ .
α is estimated from αn (n = 1, . . . , NGCP):

α =
1

NGCP

NGCP∑
n=1

αn.

Finally, the sign of α is obtained by

sgn
(([

pC(xtruen , ytruen )
]
v′⊥
−
[
pC(xprojn , yprojn )

]
v′⊥

)
· h′
)
,

where sgn(·) is the function to get the sign of the input. Similarly, the vertical correction

angle β is obtained. Let the component of pC(xprojn , yprojn ) that does not include horizontal
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component be
[
pC(·, ·)

]
h′⊥

, we have

[
pC(xprojn , yprojn )

]
h′⊥

=pC(xprojn , yprojn )− (pC(xprojn , yprojn ) · h′)h′[
pC(xtruen , ytruen )

]
h′⊥

=pC(xtruen , ytruen )− (pC(xtruen , ytruen ) · h′)h′.

Then the horizontal deviation angle βn derived from the GCP indexed by n is:

βn =

[
pC(xprojn , yprojn )

]
h′⊥
·
[
pC(xtruen , ytruen )

]
h′⊥∥∥∥[pC(xprojn , yprojn )

]
h′⊥

∥∥∥∥∥∥[pC(xtruen , ytruen )
]
h′⊥

∥∥∥ .
β is estimated from βn (n = 1, . . . , NGCP):

β =
1

NGCP

NGCP∑
n=1

βn.

The sign of β is obtained by

sgn
(([

pC(xtruen , ytruen )
]
h′⊥
−
[
pC(xprojn , yprojn )

]
h′⊥

)
· v′
)
.

The correction angles are then converted to the ones for the rover’s pitch, yaw, and

roll angles. Using α and β, you could easily form a rotation matrix for the orientation

correction in the 3d camera coordinate system:

Rcorr
cam =


cosα − sinα 0

sinα cosα 0

0 0 1




cosβ 0 sinβ

0 1 0

− sinβ 0 cosβ

 .

Let the rotation matrix Rcorr
nav in the Rover navigation frame, we have a following rela-

tionship:

RnavR
corr
navRcam = RnavRcamR

corr
cam ⇔ Rcorr

nav = RcamR
corr
camR

T
cam,

where Rcam is the rotation matrix from the camera frame to the rover navigation frame

defined by Rcam = [a h′ v′ ]. The corrected rotation matrix from the rover navigation

frame to its reference frame is RnavR
corr
nav and the corrected yaw, pitch, and roll angles

are obtained from this rotation matrix. Figure 4.8 shows an example of the correction

using the method presented here. You can see that a significant displacement occurs with
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(a) RGB image (b) Image of emission angles before
orientation correction

(c) Image of emission angles after
orientation correction

Figure 4.8. Orientation correction of the MASTCAM image using GCPs

the projection when not correction is performed. The blue crosses in Figure 4.8 (a) and

red crosses in Figure 4.8 (b) are the manually obtained GCPs. Figure 4.8 (c) shows the

image of emission angles after correction. The image now matches well the RGB image.

4.3.5 Mutual mapper structure

Now we have the viewshed of the Mastcam image on the MSL Gale DEM Mosaic,

and the centers of pixels of the Mastcam image are geo-referenced with the DEM. Two

types of mutual mapping are considered – point-to-point and area-to-are mutual map

projections. Point-to-point mutual map projection defines a one-to-one correspondence
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between a single point in the camera image plane and a single point on the DEM model.

It can be implemented by directly using the formula and the CAHV/CAHVOR model

projcetion (refer Section 4.2.2). Given a point on the visible region of the terrain de-

fined by the DEM, we can easily obtain its camera image coordinate by performing the

CAHV/CAHVOR model projection. On the other hand, given a camera image pixel,

you can easily obtain the geo-location of the center of the pixel as an outcome from the

algorithms in Section 4.3.3, although it might be computationally intensive to obtain the

geo-location of arbitrary points on the camera image.

Area-to-area mutual mapping interprets each pixel as a square area and locates a

corresponding area of the other image given a pixel of one image. This is more complicated

since a pixel of the camera may corresponds to discontinuous regions on the DEM. An

image pixel pointing to a surface at a close distance may be smaller than a DEM pixel,

which requires a polygonal expression to rigorously handle its corresponding area on the

DEM. Instead of such a rigorous area-to-area mapping, I consider mutual mapping of two

images at pixel level, pixel-to-pixel mutual map projection. Given a pixel of one image,

the pixel-to-pixel mutual map projection resolves the corresponding pixels of the other.

There exists an asymmetry in this projection; a pixel of DEM does not have one-to-one

correspondence with a pixel of the camera image. A single DEM pixel close to the camera

center may correspond to multiple camera image pixels, while multiple DEM pixels may

correspond to a single camera image pixel when the DEM pixels are far from the camera.

This asymmetry in the nearest pixel projection needs to be properly handled.

I propose a pixel-to-pixel mapper structure that facilitates the mapping operation.

I first create two 2D-arrays, DEM2Mastcam for the projection from the DEM to a

Mastcam image and Mastcam2DEM for that from the Mastcam image to the DEM.

DEM2Mastcam has the size of the DEM image, and each element stores its corre-

sponding camera pixels. Mastcam2DEM has the size of the Mastcam image, and each

element stores its corresponding DEM pixels. The 2-D arrays DEM2Mastcam and
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Mastcam2DEM could not be implemented with the standard layered image format as

each element is likely to be different in length. In my implementation with MATLAB®,

cell arrays are used. For interoperability, a binary format may be necessary. Using this

nearest mapper data structure, a mapping operation is performed by simply selecting

camera image pixels of the given DEM pixel, or selecting DEM pixels image pixels of the

given camera image pixel.

In order to perform the pixel-to-pixel mutual map projection, you might want to a

forward-backward projection. Consider a projection of a Mastcam image pixel with a

small depth. You can easily locate its corresponding DEM pixel by selecting a element of

Mastcam2DEM. It is likely that the DEM pixel is associated with multiple Mastcam

image pixels. The pixels of the Mastcam image corresponding to the DEM pixel are

obtained by referring DEM2Mastcam. This forward-backward projection gives pixel-

to-pixel matching between two images.

The construction of this data structure is performed as follows. The CAHV/CAHVOR

projection of the visible DEM pixels returns you camera image pixel indices that they

belong to. The nearest camera image pixels for each of the DEM pixel centers are

obtained by rounding the coordinate values in the projected image plane, and first stored

into the array structure of DEM2Mastcam. In order to solve the asymmetry, the

nearest DEM pixels for the camera image pixels obtained in Section 4.3.3 are used. The

camera image pixels are then sorted by their nearest DEM pixels and added to the element

of DEM2Mastcam. Mastcam2DEM is created in a similar way. First, the nearest

DEM pixels of the camera image pixels obtained in Section 4.3.3 are first stored into the

element of Mastcam2DEM. Then the visible DEM pixels are sorted with respected to

their nearest camera pixels and added to the element of Mastcam2DEM.
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4.4 A new CRISM map projection on MSL Gale DEM Mo-

saic

CRISM map projection is traditionally performed using the information of geographic

coordinates stored in the DDR data [4]. The DDR data is a multi-layer image whose layers

have the same size as the observation image, containing latitude, longitude, emission

angles, incident angles, elevation from MOLA, etc., of the center of pixels. The latitude

and longitude can be directly used for the map projection of CRISM images. Commonly,

the CRISM images are projected to a map of their expected spatial resolution, 18 m per

pixel for full resolution images and 36 m for half resolution images.

However, since the platform of the CRISM instrument is moving and also experiencing

the rotation around the Gimbal axis during the acquisition, pixel footprints may be

different in size for different lines and may be overlapping for a series of lines, depending

on its motion and rotation. Such variations of the pixel footprints and overlapping are not

considered with the projection using DDR data. It may be less problematic to capture

the regional/broad-scale mineralogy of the Martian surface, but it may be a significant

problem when matching the CRISM observation with ground rover measurements.

Kreisch et al. [103] handle the overlapping of CRISM image pixels using the pixel

spread function of the CRISM image to derive a higher resolution image map projected

image. They target CRISM along-track oversampled (ATO) observation products that

intentionally acquire highly overlapping pixels. They model the terrain using the latitude,

longitude, and elevation in the DDR data.

This section considers projecting the CRISM image directly onto the high-resolution

MSL Gale DEM Mosaic and assesses the footprint on the high resolution DTM. The

direct projection of the CRISM image onto such a high-resolution DEM model has never

been attempted. A new method and representation of CRISM map projection that could

allows more precise map projection are presented. The fine sampling of the DEM also
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allows more accurate representation of the footprint of CRISM pixel.

Kreisch et al. [103] defines the pixel spread function on the plane that is perpendicular

to the line-of-sight and passes the pixel center in the geographic coordinate system. The

proposed method simplifies the processing by the use of the CAHV model.

This idea is similar to “inverse-orthorectification” [188], which was also applied to the

map projection of a CRISM image [189]. Rice et al. [189] shares the same objective as

my method – improving the accuracy of the map projection of the CRISM image.

4.4.1 Overall methodology

The movement of the CRISM instrument is approximately handled by equally di-

viding one exposure time into N small periods. At each small period, the position and

orientation of the CRISM are assumed to be fixed, and the spatial footprints of CRISM

pixels at each period n ∈ (n = 1, 2, . . . , N) are evaluated by map projection using its

sensor model. The total spatial footprint of each CRISM pixel over one exposure is then

obtained by summing up its spatial footprint of N periods. Let us call the total spatial

footprint of one exposure a pixel footprint function (PFF) and that of one small period

an instantaneous PFF (IPFF). In my implementation, N = 7 is typically used.

The computation of IPFF on the DEM is performed by projecting DEM samples

onto the image plane of the CRISM. The reference DEM model, MSL Gale DEM Mosaic

has one meter spatial resolution, significantly higher that of CRISM; therefore, it would

be sufficient to assess the projection of its center of DEM pixels to represent them to

approximate the IPFF at the DTM pixel resolution.

The projection onto the CRISM image plane is achieved by a pseudo CAHV model

derived from the sensor model of the CRISM recorded in SPICE instrumental kernel (ik).

The pseudo CAHV model consists of four basic camera parameters (c, a, h, v) and the

coordinate of the center of arbitrary sampled pixels on the image plane coordinate system

to consider the non-linearity of the pixel sampling of the CRISM pixels. The sampling
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Figure 4.9. Illustration of the pseudo CAHV model for CRISM and the IPFF of each pixel
sample.

is defined based on the angular distance from the boresight vector, and therefore, all the

pixel centers are not exactly aligned on the integer grids at the same time for any CAHV

parameters, although the non-linearity is small since the FOV of the CRISM is quite

small. Section 4.4.2 describes the derivation of the pseudo CAHV model in detail.

Each IPFF is modeled as a Gaussian function on the image plane of the pseudo CAHV

model. For DEM pixels whose projection falls within the IPFF of a CRISM pixel, its

response value is calculated based on their image plane coordinate. Section 4.4.3 describes

the derivation of the Gaussian IPFF and the calculation of IPFF on the DEM in detail.

Fig. 4.9 illustrates the psuedo CAHV for CRISM and IPFF. The boresight vector is

the axis vector (a), the cross-track and along-track directions represent the horizontal

and vertical axes of the image plane. The pointing vectors of the pixel centers are equally

sampled according to their (line-of-sight) angles from the boresight vector around the

vertical axis, and their horizontal coordinates are computed by CAHV projection. The

CRISM imager is a pushbroom imager and the vertical coordinate values of these pixel

centers are considered to 0.
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The projection using the pseudo CAHV model is repeated N times for one line of

the image, which is then repeated for all lines. I develop an adhoc method to effectively

narrow the DEM region on which the CAHV projection is performed. Section 4.4.4

describes the detail of the narrowing method.

Finally, in order to store the PFF of CRISM pixels of the multiplie lines, a dedi-

cated data structure needs to be constructed. Section 4.4.5 introduces such a structure

convenient for storing the PFFs of CRISM image pixels.

Additionally, there might exist a mismatch between the pointing of CRISM and the

referenced DEM model. Such a mismatch can be observed as a displacement between

a scene image registered with the DEM and a CRISM map projected image based on

the pointing of CRISM and the DEM model. Normally the residual displacement are

corrected by a general image registration method as a post processing. The map projected

image, which is derived from the pointing of CRISM and the DEM model, are warped

to another image with interpolation, using a distortion model with ground control points

(GCP). However, this post-processing do not tell how to correct the PFF of each CRISM.

Section 4.4.6 describes a method to directly correct the pointing of CRISM instrument

during the measurement using GCPs.

4.4.2 Pseudo CAHV model for CRISM

To construct the pseudo-CAHV model for the CRISM image, CAHV parameters

are derived by trigonometric geometry. CAHV parameter is defined on the CRISM

instrument-fixed coordinate, and converted later to another coordinate system when nec-

essary. According to the SPICE ik kernel, the CRISM instrument-fixed coordinate defines

the camera center as the origin, the boresight vector as the positive Z direction, and detec-

tor cross-track direction as the X axis, and the X axis is determined to satisfy right-hand

rule, which corresponds to the along-track direction, the parameter FOV REF VECTOR

in the ik kernel file. By definition, the camera center c = (0, 0, 0), and the camera axis
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Figure 4.10. Trigonometry of the pseudo CAHV model for CRISM

a = (0, 0, 1). The horizontal and vertical directions of the camera image is defined as

h′ = (1, 0, 0) and v′ = (0, 1, 0).

Let us remind v = vsv
′ + vca. vc is the vertical index in the camera image where

the camera Axis intersects. It is reasonable to set vc = 0 so that the camera axis passes

the pixel vertical center. vs is determined from the parameter FOV REF ANGLE in the

SPICE ik kernel by

vs =
0.5

tan (FOV REF ANGLE)
.

This makes the size of the vertical size of the pixel one, and (-0.5,0.5) is considered as the

vertical region of the CRISM pixels. Refer to Fig. 4.10(a) for the sketch of the geometric

relationship.

The horizontal direction is more complicated. Similarly, we have h = hsh
′+hca. The

pixel sampling in the cross-track direction is slightly different for different wavelength

bands of the CRISM image cube, so it may require different CAHV models for different

bands. Here I take a reference band bref (by default it would be 223 for VNIR and 247

for IR in detector row numbers). According to the SPICE ik kernel file, the line-of-sight

angle of sample s from the boresight vector is modeled as aref0 + aref1 s, where aref0 and aref1

are the constants for each wavelength band recorded in the kernel file. hc is obtained
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where the line-of-sight angle becomes zero:

hc = −a
ref
0

aref1

.

It is reasonable to set hs so that the pixel center is sampled approximately at the interval

of one in the camera image plane. This is accomplished by taking a reference sample sref

θref = aref0 + aref1 sref

hs =
sref − hc
tan θref

.

This makes the projection of sample sref exactly to (sref , 0). See Fig. 4.10(b) for the

sketch of the geometric relationship.

With this model, the center of CRISM pixel s is projected onto the image plane as

follows. First, the line-of-sight angle of pixel s is obtained by

θs = aref0 + aref1 s.

Next, the pointing vector pC(s) associated with the center of pixel s is obtained by a

simple rotation from the boresight vector a around the Y axis:

pC(s) = RY (θs)a,

where RY (θ) is a rotation matrix around the Y axis defined as

RY (θ) =


cos θ 0 sin θ

sd0 1 0

− sin θ 0 cos θ

 .

Then the coordinate of the center of CRISM pixel s is obtained by CAHV model projec-

tion

ms =
h · pC(s)

a · pC(s)
and ys = 0.
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4.4.3 IPFF

The spatial transfer function (STF) for the CRISM is modeled as a Gaussian function.

Kreisch et al. [103] estimated it from the spectral transfer function recorded in the pre-

flight calibration data. I derived it from the modulation transfer function (MTF) shown

in [4, Fig. 28]. I model the STF of pixel s in the image plane of the pseudo CAHV model

as the Gaussian centered at the coordinate of the center of the pixel. The variance is

estimated from the MTF function since it represents the Fourier transform of the STF in

the pixel coordinate domain. The unit length in the image plane is almost equivalent to

the pixel pitch, so the estimated variance would be a good approximation of that of STF

in the image plane. I refer the MTF of VNIR in at 1000 nm [4, Fig. 28]. Considering that

the pixel pitch of CRISM detectors is 27 µm, 9.25 cycle/mm means that the period of the

target sinusoidal curve has 1000/9.25 ≊ 108 µm, equivalent to the length of four detectors.

Since the unit length of the pseudo image plane coordinate is approximately equivalent

to one pixel pitch, 9.25 cycle/mm is equivalent to 0.25 Hz. Similarly, 18.5 cycle/mm is

equivalent to 0.5 Hz. The point spread function (PSF) at pixel s can be modeled as a

two dimensional isotropic Gaussian function on the image plane [103]:

PSFs(x, y) =
1

2πσ2
exp

(
1

2σ2
(
(x−ms)

2 + y2
))
,

where σ is the standard deviation of the Gaussian function. The line spread functions

(LSF) in both of the x and y directions are also Gaussians with the same sigma. MTF

is the modulus of the Fourier Transform of the LSF:

MTFs(k) = e−2π
2σ2k2 .

From [4, Fig. 28], we have MTF(1/4) = 0.8 and MTF(1/2) = 0.4. Then σ is approxi-

mately obtained as σ = 0.43.

The instantaneous pixel footprint function (IPFF) is obtained by the convolution of
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the PSF with a rectangular area of a detector element:

IPFFs(x, y) =

∫ ∞
−∞

∫ ∞
−∞

PSFs(x− α, y − β)Rects(α, β)dαdβ

IPFFs(x, y) =

∫ 0.5

−0.5

∫ ms+0.5

ms−0.5
PSFs(x− α, y − β)dαdβ

=

{
ϕ

(
x′ + 0.5

σ

)
− ϕ

(
x′ − 0.5

σ

)}{
ϕ

(
y + 0.5

σ

)
− ϕ

(
y − 0.5

σ

)}
,

where Rects(x, y) is a rectangular shape function associated with pixel s

Rects(x, y) =


1 if ms − 0.5 ≤ x ≤ ms + 0.5 and − 0.5 ≤ y ≤ 0.5

0 otherwise,

x′ = x −ms and ϕ(x) is the cumulative normal distribution function. With σ = 0.43,

I experimentally verified that the IPFFs(x, y) is well approximated by a Gaussian with

σ̃ = 0.53.

IPFFs(x, y)≈ 1

2πσ̃2
exp

(
1

2σ̃2
(
(x−ms)

2 + y2
))
. (4.21)

The IPFF decays away from the center. It is reasonable to cut-off the IPFF if its response

is sufficiently small. The valid region of IPFFs is defined as

SIPFFs =
{

(x, y)
∣∣ |yP | < kσ̃ and |xP −ms| < kσ̃

}
,

where k is a coefficient defining the valid region. I use k = 4 for my implementation.

Using this definition of IPFF on the image plane, IPFF on the MSL Gale DEM Mosaic

is evaluated by projecting the center of DEM pixels onto the plane. First, the coordinate

on the camera image plane of the center of DEM pixels is obtained by the projection,

and IPFF is computed if it falls within the valid area of the IPFF function. This process

is summarized in Algorithm 4.6.

4.4.4 Pre-processing of the DEM image

The CRISM instrument collects one line of an image at one time. With its position

and orientation fixed, the FOV of CRISM covers a long and narrow area of the surface.
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Algorithm 4.6 Evaluation of IPFF

Input: P (p): DEM sample point (positional vector); k: parameter for valid IPFF region
Output: IPFFs(xP , yP ): IPFF value at P
1: xP = h · (p− c)/a · (p− c) and yP = v · (p− c)/a · (p− c)
2: If (xP , yP ) ∈ SIPFFs then Get IPFFs(xP , yP ) by Eq. (4.21), otherwise

IPFFs(xP , yP ) = 0.

In order to speed up the projection, it is necessary to effectively restrict the region

of the DEM image for evaluating IPFF beforehand. I develop a practical method for

pre-processing that restricts the search region. First I start from a simple statement.

Let the upper and lower bounds of the radius of the region of interest as rmax and rmin

respectively. Let us consider two pointing vectors p1 and p2 from a camera associated with

their projection p
(cam)
1 and p

(cam)
2 onto the camera image plane. Define the intersection of

a vector from the camera pointing in the direction of pi with a celestial body of radius r

be pi(r) and its equirectangular projection is p
(equi)
i (r). Any point on the line segment on

the camera image plane determined by p
(cam)
1 and p

(cam)
2 would be projected within or on

the rectangular region minimally enclosing p
(equi)
1 (rmin), p

(equi)
1 (rmax), p

(equi)
2 (rmin), and

p
(equi)
2 (rmax) in the map of the equirectangular projection. This statement is theoretically

inaccurate considering the spherical or ellipsoidal body of a celestial body and the non-

linearity of the equirectangular projection. Practically, around the Gale crater region,

this statement holds due to the low degree of non-linearity of the projection at a low

latitude.

Based on this assumption, we can effectively restrict the search region of the DEM

image. The valid regions of the IPPFs on the CAHV image plane is a rectangle region

defined by

ms − kσ̃ < x < ms + kσ̃ and −kσ̃ < y < kσ̃.

Let the vertices composing this rectangle be vi (i = 1, 2, 3, 4). Given rmax and rmin, the

search region of the DEM image for getting IPPFs is the rectangle region of the DEM

image minimally enclosing eight points: v
(equi)
i (rmin), v

(equi)
i (rmax) (i = 1, 2, 3, 4). The
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Figure 4.11. Pre-processing of the DEM image for the projection of CRISM

union of these rectangles for all CRISM pixels becomes the total region to be evaluated

for IPFF.

Figure 4.11 displays the result of the pre-processing using the upper and lower bounds

and subsequent projection for obtaining IPFFs for all CRISM samples. The background

image is the DEM image in the gray scale. The blue region is the union of the minimally

enclosing rectangles obtained from the upper and lower bounds of the radius. The yellow

region is the union of the actual IPFFs for all CRISM samples. The yellow region

is completely placed inside the blue region with some margins, showing that the pre-

processing is not overcutting the region for the evalution of IPFF. The CRISM FOV

on the ground is a narrow long area and due to its observation geometry, the slip looks

slanted on the equirectangular projection map, which makes the assumption made for

this pre-processing more likely to be valid.
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4.4.5 A new representation of CRISM image map projection on hires-

olution DEM model

A standard image format is inconvenient for recording the PFF-based projection of

a CRISM image as there are likely to exist overlaps betweem PFFs, and one DEM pixel

may belong to the PFF of an arbitrary number of CRISM pixels.

I propose a new data format for storing the new structure of the map projection result

based on PFF. In the new data format, the PFF of each pixel of the CRISM image is

retained independently. Each PFF image would be a small one layer image storing the

response of PFF, rectangular minimally enclosing the PFF, attached with supporting

information of the vertical and horizontal range. This can be realized by three binary

image. The first image is multilayer image storing the sample and line offset from the

original reference DEM image where each PFF starts and the number of samples and

lines of each PFF. The second image is the vector format of the PFF concatenated. The

third image stores the byte offset of each PFF in the second image.

4.4.6 Correction of CRISM instrument pointing

One may observe displacement of the CRISM map projected image with respect to

the MSL Gale Ortho Mosaic image since they are processed using different pipelines.

I consider adjusting displacement by correcting the pointing direction of the CRISM

instrument. Using a map projected image, we could get ground control points (GCP) that

relate pixels of a CRISM image to ones in the MSL Gale Ortho Mosaic whose geographic

coordinates are retrieved by MSL Gale DEM Mosaic. For each GCP, the orientation of the

CRISM at the time associated with the GCP of CRISM is corrected by rotation to point

the geographical coordinate of the GCP of the MSL Gale Ortho Mosaic. The correction

of the orientation of the CRISM at the other times are interpolated (extrapolated) using

bilinear spherical interpolation(extrapolated). Due to the resolution difference between

MSL Gale Ortho Mosaic and the CRISM image, accurate GCPs may be difficult to
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obtain. More accurate correction would be necessary. Let the areographic coordinate

(planetocentric latitude, longitude) of the GCPs in the reference MSL Ortho Mosaic image

be (φtrue
n , θtruen ) and that obtained by the projection with the uncorrected orientation be

(φproj
n , θprojn ) for n = 1, . . . , NGCP, where NGCP is the number of GCPs. Let the CRISM

pixel (sample, line) associated with the GCP be (xn, yn). Let the start time of the

measurement of line l be t
(start)
l and the exposure time be texp. Assume that the GCP is

associated with the center of the CRISM sample pixel at the time of its half exposure,

namely at tn = t
(start)
yn + texp / 2. By definition, we have

pC(xn, 0, tn) ∥ p(φproj
n , θprojn )− c(tn),

where pC(xn, 0, tn) is the pointing vector associated with the center of the CRISM sam-

ple xn at time tn, p(φproj
n , θprojn ) is the positional vector at the areographic coordinate

(φproj
n , θprojn ), and c(tn) is the camera center at time tn. The true pointing vector is

ptrue
C (xn, 0, tn) ∥ p(φtrue

n , θtruen )− c(tn).

The orientation of the CRISM instrument is corrected to align pC(xn, 0, tn) to ptrue
C (xn, 0, tn).

This rotation is defined by the unit-length rotation axis vector ωn:

ωn =
pC(xn, 0, tn)× ptrue

C (xn, 0, tn)∥∥pC(xn, 0, tn)× ptrue
C (xn, 0, tn)

∥∥ ,
and the rotation angle αn:

αn = cos−1
(

pC(xn, 0, tn) · ptrue
C (xn, 0, tn)∥∥pC(xn, 0, tn)

∥∥∥∥ptrue
C (xn, 0, tn)

∥∥
)
.

Let us denote the quaternion3 obtained from the axis vector ωn and the angle αn by qn.

Assume that the GCPs are sorted with respect to their time stamps tn. The rotation

quaternion for correcting the orientation of the CRISM instrument at arbitrary time t is

obtained by bilinear spherical interpolation/extrapolation using the collection of reference

rotation quaternions {(tn, qn)} for n = 1, . . . , NGCP of the GCPs. Special attentions must

be paid on the frame in which each vector, quaternion, and rotation matrix are defined.

3Quaternion is a numbering system extended from the complex number. It is useful to represent 3-D
rotation without any singularity point unlike euler angles.
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Figure 4.12. Example of the PFF of one CRISM pixel.

4.4.7 Presentation of the results

Fig. 4.12 shows an example of the PFF of one pixel of CRISM on the MSL Gale DEM

Mosaic. The Gaussian is slightly smeared along the direction of the movement. This way,

it is possible to precisely pinpoint the pixel footprints of the CRISM. The PFF of the

CRISM pixels is a fundamental result of the map projection for deriving geo-referenced

images of associated CRISM images or its derived map products. Fig. 4.13 shows the

PFFs of one line of CRISM measurements.

One way to geo-reference the CRISM detector image is highest PFF mapping, where

each of the pixel of the DEM grid is filled with the CRISM pixel that has the highest

PFF value. Fig. 4.14 shows the result of the highest PFF mapping, compared with the

common DDR-based projection. While the DDR-projection suffers from pixel aliasing,

the proposed method shows CRISM pixel shapes perpendicular to the movement of the

imager, more accurate footprints of pixels, although information regarding the Gaussian

spatial response function is lost.

Fig. 4.15 (a) shows the displacement of the map projection of CRISM image using

the raw SPICE observation geometry together with the DTM data. It clearly shows a

displacement between the map-projected CRISM image and MSL Ortho Mosaic image.
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Zoomed-in of the red rectangle

Figure 4.13. PFF of one line of a CRISM image

Such a displacement is usually addressed after the image is geo-referenced, but this does

not correct the PFF of CRISM pixels. In order to obtain more accurate PFFs, we can fix

the mismatch by directly correcting the orientation of the CRISM using manually selected

ground control points (GCP). Fig. 4.15 (b) shows the geo-referenced CRISM image using

the corrected orientation and that the correction clearly improves the accuracy of map

projection.

4.5 Mutual map projection between CRISM and Mastcam

Using the mutual map projection between the CRISM and MSL Gale DEM Mosaic

and that between the Mastcam image and the DEM Mosaic, the PFF of CRISM pixels on

the Mastcam image will be derived. The PFF of CRISM pixels on the MSL Gale DEM

Mosaic is projected onto the Mastcam image using the map projection structure from the

MSL DEM Mosaic to the Mastcam image. Denote the PFF of the CRISM pixel (s, l) at

DEM pixel (xdem, ydem) as PFFs,l(xdem, ydem) and the PFF of the CRISM pixel (s, l) at

Mastcam image pixel (xmst, ymst) as PFFs,l(xmst, ymst). Denote the (xdem, ydem) element
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Figure 4.14. Comparison of the geo-referencing of CRISM data using the proposed
method (a) and using DDR data on an 18 m grid (b). Band 13 (1.08 µm) of the CRISM
FRT0000B6F1 image is used.

of the mapper structure DEM2Mastcam by DEM2Mastcam(xdem, ydem). Then the

value of PFFs,l(xdem, ydem) is assigned to all the Mastcam pixels in DEM2Mastcam(xdem, ydem).

If multiple PFFs,l(xdem, ydem) are assigned to one Mastcam pixel, then the value of

PFFs,l(xmst, ymst) is obtained by averaging all the values of PFFs,l(xdem, ydem) to that

Mastcam pixel.

Fig. 4.16 shows an integrated system that relates the CRISM measurement to Mast-

cam data together with a geo-referenced map projection view. Using the PFF of the

CRISM on the DEM and on the Mastcam image, it is easy to match the CRISM im-

age pixel both on the map-projected image and on the Mastcam image. This automatic

processing facilitates matching the CRISM measurement to the pixels in the Mastcam

image, potentially aiding the scientific analysis.
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Figure 4.15. Evaluation of the displacement of the CRISM image FRT0000B6F1 geo-referenced
to the MSL Gale DEM Mosaic without (a) and with (b) orientation correction. The background
image is the MSL Ortho Mosaic image registered with MSL Gale DEM Mosaic down-sampled
to 10 m resolution and the front color-scaled image is band 13 (1.08 µm) of the geo-referenced
CRISM.
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Figure 4.16. Concept of the interactive view of the mutual map projection of CRISM
and Mastcam.
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C H A P T E R 5

CONCLUSION

This dissertation explored different aspects of hyperspectral unmixing. First, I inves-

tigated a theoretical aspect of sparse unmixing, a semi-supervised unmixing method that

identifies endmembers present in the observation from the large collection of spectra in

the spectral database. In specific, I derived a theoretical conditions that guarantee the

correct recovery of endmembers for the sparse unmixing formulated as a non-negative

lasso (NLasso) problem. I further introduced approximately perfect recovery condition

(APMRC) that practically performs as a necessary and sufficient condition of Nlasso.

A rigorous mathematical proof of the necessity and sufficiency of the APMRC is also

provided.

Then I explored the application of hyperspectral unmixing. First, I applied it to

the processing of hyperspectral image acquired by the Compact Reconnaissance Imaging

Spectrometer for Mars (CRISM) onboard the Mars Reconnaissance Orbiter (MRO). In

specific, I developed a new atmospheric correction and de-noising method for CRISM im-

ages, simultaneous atmospheric correction and de-noising for CRISM (SABCOND). SAB-

COND models light interaction through the Martian atmosphere by the Beer-Lambert’s

law and surface reflection using an unmixing model. An optimal atmospheric transmis-

sion spectrum is estimated by solving a minimization problem that also takes noise into

account. A dedicated solver in which a generalized version of ADMM is developed to

efficiently solve the SABCOND. I showed that SABCOND successfully removed most of

the problematic systematic artifacts in CRISM images that would have been caused by
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the traditional atmospheric correction, volcano scan correction, and accurately detects

and removes large noise spikes. It can also remove the contribution of water ice aerosols,

and successfully works on noisy images. In addition, I further introduced a two-step

SABCOND to overcome some of the problems still left for the SABCOND. The two-step

SABCOND requires manual processing, but I showed that the two-step SABCOND can

further improve the signal quality and fidelity of the corrected spectral signals.

Lastly, I investigated how hyperspectral images acquired from orbits can be precisely

combined with ground observation. In specific, I mapped hyperspectral images obtained

by the CRISM onto ground mega-pixel images acquired by the Mast Camera (Mastcam)

installed on the Curiosity rover on Mars at pixel level. I project both of the CRISM

and Mastcam images onto a high resolution digital elevation model, and successfully link

the images at pixel level. In this procedure, I devise a new fast and exact algorithm to

detect invisible surface points from the Mastcam camera that takes most advantage of the

CAHV/CAHVOR model, and a new map projection method for CRISM data using their

sensor model and ephemerides using the psuedo CAHV model projection. The projection

involves some manual corrections since the required accuracy of surface topography, their

localizations, spacecraft trajectories and instrumental orientation is quite demanding.

However proposed map projection methods shows what could be achieved in the future

when more and more accurate and high-resolution data become available.
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