
University of Massachusetts Amherst University of Massachusetts Amherst

ScholarWorks@UMass Amherst ScholarWorks@UMass Amherst

Doctoral Dissertations Dissertations and Theses

October 2022

Modeling the Multi-mode Distribution in Self-Supervised Modeling the Multi-mode Distribution in Self-Supervised

Language Models Language Models

Haw-Shiuan Chang
University of Massachusetts Amherst

Follow this and additional works at: https://scholarworks.umass.edu/dissertations_2

 Part of the Artificial Intelligence and Robotics Commons

Recommended Citation Recommended Citation
Chang, Haw-Shiuan, "Modeling the Multi-mode Distribution in Self-Supervised Language Models" (2022).
Doctoral Dissertations. 2605.
https://doi.org/10.7275/31039789 https://scholarworks.umass.edu/dissertations_2/2605

This Open Access Dissertation is brought to you for free and open access by the Dissertations and Theses at
ScholarWorks@UMass Amherst. It has been accepted for inclusion in Doctoral Dissertations by an authorized
administrator of ScholarWorks@UMass Amherst. For more information, please contact
scholarworks@library.umass.edu.

https://scholarworks.umass.edu/
https://scholarworks.umass.edu/dissertations_2
https://scholarworks.umass.edu/etds
https://scholarworks.umass.edu/dissertations_2?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F2605&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F2605&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.7275/31039789
https://scholarworks.umass.edu/dissertations_2/2605?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F2605&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

MODELING THE MULTI-MODE DISTRIBUTION IN
SELF-SUPERVISED LANGUAGE MODELS

A Dissertation Presented

by

HAW-SHIUAN CHANG

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

September 2022

Robert and Donna Manning College of
Information and Computer Sciences

© Copyright by Haw-Shiuan Chang 2022

All Rights Reserved

MODELING THE MULTI-MODE DISTRIBUTION IN
SELF-SUPERVISED LANGUAGE MODELS

A Dissertation Presented

by

HAW-SHIUAN CHANG

Approved as to style and content by:

Andrew McCallum, Chair

Mohit Iyyer, Member

Hamed Zamani, Member

Weibo Gong, Member

Zihang Dai, Member

James Allan, Chair of the Faculty
Robert and Donna Manning College of
Information and Computer Sciences

DEDICATION

To my wife, for believing in me.

To all my family members, for supporting me.

To Andrew, my Ph.D. advisor, for allowing me to pursue this research direction.

ACKNOWLEDGEMENT

I am really fortunate to have Andrew McCallum as my Ph.D. advisor. He values long-

term and fundamental research and encourages his students to think big. Andrew believes in

my potential and gives me lots of autonomy in my Ph.D. journey, while always providing

very insightful guidance. Even if he disagrees with my arguments, he always respects my

viewpoints and gives me sufficient time and resources to justify my perspective. He really

cares about the development of his students and empathizes with the difficulties we face in

our lives and in the COVID pandemic. Completing this thesis won’t be possible without his

full support. He is a role model that would continue guiding me to become a respected and

considerate advisor for the rest of my life.

I am thankful to all the members of IESL (Andrew’s lab) and UMass NLP. Everyone is

super smart and nice. Their amazing research achievements teach me what a fundamental

and impactful research problem looks like. I want to especially thank Nicholas Monath

for his selfless help, Luke Vilnis for his support, Michael Boratko for his mathematical

guidance, Jay Yoon Lee for his insightful suggestions, and Nader Akoury for your generous

help. Thank you for making the journey so enjoyable. I would miss every joke, smile, and

whiteboard discussion in the lab. I would also like to thank the kindness from the whole

Amherst community in our everyday life.

I appreciate the opportunities to work with many amazing master’s and undergraduate

students, especially Ao Liu, Abdurrahman Munir, Johnny Tian-Zheng Wei, Aaron Traylor,

Yang Jiao, ZiYun Wang, Vikram Pawar, Amol Agrawal, Ananya Ganesh, Rheeya Uppaal,

Jiaming Yuan, Nikhil Agarwal, Alolika Gon, Hieu Phan, Purujit Goyal, Rohan Paul, Ruei-

Yao Sun, Ronald Seoh, and Zonghai Yao. Thank you for believing in my research vision.

v

Without your help, I cannot show the effectiveness of multiple embeddings in so many

applications.

I appreciate the help from the senior collaborators such as Erik Learned-Miller and

Mohit Iyyer during my Ph.D., and I am grateful to the help from my thesis committee

members (Andrew McCallum, Mohit Iyyer, Hamed Zamani, Weibo Gong, and Zihang Dai).

Thank you for your time and valuable advice on our work. I also learned a lot from the

advisors of my internship, including Shankar Vembu, Sunil Mohan, Xin Luna Dong, and

Andrey Kan. Thank you for your time and effort.

I also want to thank the professors/researchers who help me to start the Ph.D. journey.

Thank you, I-Chen Wu, for supervising my first research project, Yu-Chiang Frank Wang,

for teaching me how to do research and write research papers, Kuan-Ta Chen, for giving me

the courage to pursue my dream, Beverly P. Woolf, and Brendan O’Connor, for helping me

to find my Ph.D. advisor.

Finally, I would like to thank my family: My beloved wife, son, and daughter, for their

endless loving and caring. My mom and dad, for raising me in an environment that nurtures

my dream. My father-in-law and mother-in-law, for their support, especially when we

needed it the most.

vi

ABSTRACT

MODELING THE MULTI-MODE DISTRIBUTION IN
SELF-SUPERVISED LANGUAGE MODELS

SEPTEMBER 2022

HAW-SHIUAN CHANG

B.S., NATIONAL CHIAO TUNG UNIVERSITY

M.S., UNIVERSITY OF MASSACHUSETTS, AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Andrew McCallum

Self-supervised large language models (LMs) have become a highly-influential and

foundational tool for many NLP models. For this reason, their expressivity is an important

topic of study. In near-universal practice, given the language context, the model predicts a

word from the vocabulary using a single embedded vector representation of both context

and dictionary entries. Note that the context sometimes implies that the distribution over

predicted words should be multi-modal in embedded space. However, the context’s single-

vector representation provably fails to capture such a distribution. To address this limitation,

we propose to represent context with multiple vector embeddings, which we term facets.

This is distinct from previous work on multi-sense vocabulary embeddings, which employs

multiple vectors for the dictionary entries, not the context.

In this dissertation, we first present t he t heoretical l imitations of the s ingle context

embedding in LMs and how the theoretical analyses suggest new alternative softmax layers

vii

that encode a context as multiple embeddings. The proposed alternatives achieve better

perplexity than the mixture of softmax (MoS), especially given an ambiguous context,

without adding significant computational cost to LMs. Our approaches also let GPT-2

learn to properly copy the entities from the context, which increases the coherence of the

generated text without requiring any labels.

In addition to predicting the next word, we also use multiple CLS embeddings to improve

state-of-the-art pretraining methods for BERT on natural language understanding (NLU)

benchmarks without introducing significant extra parameters or computations, especially

when the training datasets are small. Furthermore, we show that our multi-facet embed-

dings improve the sequential recommendation, scientific paper embeddings, measurement

of sentence similarity, distantly supervised relation extraction, unsupervised text pattern

entailment detection, and cold-start citation recommendation. Finally, we use the multiple

vector embeddings to predict the future topics of a context, and build on the basis, we

propose a novel interactive language generation framework.

viii

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENT . v

ABSTRACT . vii

LIST OF TABLES . xiv

LIST OF FIGURES . xx

CHAPTER

1. INTRODUCTION . 1

1.1 Relation to Previous Work and Our Contributions . 3
1.2 Thesis Goal . 7
1.3 Thesis Outline . 8
1.4 Declaration of Collaborations . 12

2. BREAKING THE SOFTMAX BOTTLENECK FOR LANGUAGE
GENERATION . 14

2.1 Introduction . 14
2.2 Theoretical Limitations of the Single Embedding in the Softmax Layer and

Empirical Analyses . 18

2.2.1 Background . 18
2.2.2 Structural Weakness Theorems from Linear Dependency 19
2.2.3 Measuring Linear Dependency among Words . 20
2.2.4 Softmax Bottleneck in GPT-3 . 22

2.3 Multi-facet Softmax . 24

2.3.1 Method . 24

2.3.1.1 Mixture of Softmax . 25
2.3.1.2 Multiple Input Hidden States . 25

ix

2.3.1.3 Multiple Partitions . 26

2.3.2 Language Modeling Experiments . 27

2.3.2.1 Baselines . 28
2.3.2.2 Results . 28

2.4 Dynamic Partitioning . 30

2.4.1 Method . 31

2.4.1.1 Context Partition . 32
2.4.1.2 Reranker Partition . 33
2.4.1.3 Two-stage Reranker . 35
2.4.1.4 Local Context Word Embedding . 35
2.4.1.5 Hybrid Approach . 36

2.4.2 Experiments . 37

2.5 Applications on Sequential Recommendation . 40

2.5.1 Experiment Setup . 41
2.5.2 Results . 42

2.6 Related Work . 44
2.7 Chapter Conclusion . 46

3. IMPROVEMENT UNSUPERVISED SIMILARITY ESTIMATION BY
PREDICTING CLUSTER CENTERS . 48

3.1 Introduction . 48
3.2 Applications on the Representation of Sentences and Phrases 51

3.2.1 Method . 52

3.2.1.1 Self-supervision Signal . 52
3.2.1.2 Non-negative Sparse Coding Loss . 53
3.2.1.3 Sequence to Embeddings . 55

3.2.2 Experiments . 56

3.2.2.1 Experiment Setup . 57
3.2.2.2 Qualitative Evaluation . 57
3.2.2.3 Unsupervised Sentence Similarity . 58
3.2.2.4 Unsupervised Extractive Summarization 62
3.2.2.5 Unsupervised Phrase Similarity . 64

x

3.2.3 Related Work . 66

3.3 Applications on Relation Extraction . 67

3.3.1 Method . 69

3.3.1.1 Background and Problem Setup . 70
3.3.1.2 Objective Function . 71
3.3.1.3 Scoring Functions . 72

3.3.2 Experiments . 73

3.3.2.1 Relation Extraction . 74
3.3.2.2 Entailment Detection . 76

3.3.3 Related Work . 78

3.4 Applications on Citation and Authorship Prediction . 79

3.4.1 Method . 80

3.4.1.1 Background and Problem Formulation 80
3.4.1.2 Authorship and Citation Prediction . 81

3.4.2 Neural Architecture . 84
3.4.3 Experiments . 85

3.4.3.1 Evaluation Setup . 85
3.4.3.2 Comparing Methods . 85
3.4.3.3 Metrics . 86
3.4.3.4 Results and Discussion . 87

3.4.4 Related Work . 88

3.5 Chapter Conclusion . 89

4. INTERACTIVE LANGUAGE GENERATION . 90

4.1 Introduction . 90
4.2 Method . 93

4.2.1 Option Generator . 93

4.2.1.1 Model Prediction . 93
4.2.1.2 Model Training . 96

4.2.2 Conditional Text Generator . 96

xi

4.2.2.1 Model Prediction . 97
4.2.2.2 Model Training . 97

4.3 Experiments . 99

4.3.1 Datasets . 99
4.3.2 Option Generator Evaluation . 99

4.3.2.1 Automatic Evaluation Metrics . 100
4.3.2.2 Human Evaluation . 100
4.3.2.3 Option Generator Baselines . 101
4.3.2.4 Results . 101

4.3.3 Conditional Text Generator Evaluation . 103

4.3.3.1 Automatic Evaluation Metrics . 103
4.3.3.2 Human Evaluation . 104
4.3.3.3 Conditional Text Generator Baselines 104
4.3.3.4 Results . 105

4.3.4 Option Generator Comparison Using Generated Continuations 105

4.3.4.1 Automatic Evaluation Metrics . 105
4.3.4.2 Human Evaluation . 106
4.3.4.3 Results . 107

4.4 Related Work . 107
4.5 Chapter Conclusion . 108

5. CONTRASTIVE LEARNING ON TWO-TOWER MODELS 109

5.1 Introduction . 109
5.2 Applications on Natural Language Understanding Benchmarks 110

5.2.1 Method . 112

5.2.1.1 Multi-task Pretraining . 113
5.2.1.2 Quick Thoughts Loss . 113
5.2.1.3 Multiple CLS Embeddings . 114
5.2.1.4 Hard Negative . 115
5.2.1.5 Architecture-based Diversification . 116
5.2.1.6 Fine-Tuning . 117

5.2.2 Experiments . 118

5.2.2.1 Experiment Setup . 118
5.2.2.2 Main Results . 120

xii

5.2.2.3 Ablation Study . 120
5.2.2.4 Ensembling Analysis . 122

5.2.3 Related Work . 124

5.3 Applications on Scientific Paper Representation Benchmarks 125

5.3.1 Multi2SPE: Multi-Domain × Multi-CLS Scientific Paper
Encoder . 127

5.3.1.1 Multiple CLS Encoder . 127
5.3.1.2 Contrastive Citation Prediction Loss 128
5.3.1.3 Measuring Document Similarity with Multiple

Embeddings . 129

5.3.2 Multi-SciDocs . 129
5.3.3 Experiments and Analyses . 130

5.3.3.1 Results . 131
5.3.3.2 Ablation Studies . 131

5.3.4 Related Work . 132

5.4 Chapter Conclusion . 133

6. CONCLUSION AND FUTURE WORK . 134

6.1 Take Home Messages . 134
6.2 Limitations and Future Work . 135

BIBLIOGRAPHY . 139

APPENDICES

A. APPENDIX FOR CHAPTER 2 . 172
B. APPENDIX FOR CHAPTER 3 . 181
C. APPENDIX FOR CHAPTER 4 . 185
D. APPENDIX FOR CHAPTER 5 . 187

xiii

LIST OF TABLES

Table Page

1.1 Comparison to the previous work that demonstrates the effectiveness of
multiple embeddings. In each row, we only cite one representative
paper. Predicting embeddings means using a neural encoder rather than
a lookup table to generate the multiple embeddings from an input
sequence. Self-supervision means that the models do not require labels
annotated by humans. *The applications we include in this thesis
handle the text input except for the sequential recommendation in
Section 2.5. 3

1.2 Task summarization. The input specifies the data we required to train the
model. We focus on the self-supervised pretraining, but would also
show the benefits of multiple embeddings after using the labels to
fine-tune the pre-trained models. Please refer to Figure 1.1 to see the
meaning of embedding(s) 1 (E1) and embedding(s) 2 (E2). Each text
sequence in Chapter 2 usually only co-occurs with one item (e.g., a
word), while each text sequence in Chapter 3 and 4 usually co-occurs
with multiple items (e.g., words). In Chapter 5, a text sequence
co-occurs with other similar text sequences. 6

1.3 Method summarization. Chapter 2 trains the models using cross entropy
and softmax, a kind of one-tower co-occurrence learning. Chapter 3 and
4 train the models using the one-tower co-occurrence learning with
negative sampling. Chapter 5 studies the models using the two-tower
co-occurrence learning framework (i.e., contrastive learning). 7

1.4 Representative empirical result summary. The improvement ratio is the
improvement divided by the baseline score. Please refer to the
corresponding sections to see the setup of the experiments. 8

1.5 The contributions of other students to the chapters of this thesis. 12

xiv

2.1 Perplexity comparison between MFS (Ours) and baselines. #S, #I, #P are
the number of softmaxes (i.e., K), input hidden states, and partitions,
respectively. The top four baselines use a single softmax. OWT and
Wiki are the test set perplexity of OpenWebText and Wikipedia 2021,
respectively. The standard errors of all models are smaller than 0.02
perplexity. We also compare the number of parameters and the
inference time on one batch. 29

2.2 Perplexity of the GPT-2 Small in OpenWebText. The percentages of the
perplexity reduction compared to Softmax are presented in the
parentheses. 29

2.3 Prediction visualization using a context in each dataset. We show the top
three words with the highest prediction probabilities of each method. In
the last three rows, we visualize the outputs of the softmax grey boxes
in Figure 2.4 (d), which model different modes of the next word
distribution. The prediction target is boldfaced in the context and the
predictions. ## indicates there is no space before the word. 30

2.4 Comparison of perplexity (PPL) in a validation set of Wikipedia 2021 with
100k tokens. All models are built on GPT-2 Small, including CopyNet,
Pointer Generator, and Pointer Sentinel. R:100 means the reranker
partition using n = 100. Rs2:100 means the 2nd stage reranker uses
n = 100. R:20,100,500 means three layers of the ranker partition whose
n1, n2, and n3 values are 20,100, and 500, respectively. C means a
context partition. L means a local context embedding. Mi means
multiple input hiddent state (i.e., #I > 1). That is, Softmax + Mi refers
to Softmax + Multi-input. 38

2.5 Comparison of ROUGE 1 F1 between the generated text and the context or
continuation. We present the ROUGE scores of all tokens, uppercased
tokens, and proper nouns. Multi-softmax is the same as MoS and
Multi-softmax + Mi is the same as MFS w/o Multi-partition. 39

2.6 Prediction visualization of three input contexts. We show the top five words
with the highest prediction probabilities of each model. The reasonable
next word predictions are boldfaced. 40

2.7 The validation scores of the four datasets and their geometric average (G
mean). In all the model names with R, we use 3 reranker partitions with
n1 = 20, n2 = 100, n3 = 500. Due to the memory constraints of our
GPU, we haven’t had the results of Multi-Softmax + CLR at
Amazon-beauty. Other notations are the same as the notations used in
Table 2.4. 43

xv

3.1 Examples of the codebook embeddings predicted by our models with
different K. The embedding in each row is visualized by the three
words whose GloVe embeddings have the highest cosine similarities
(also presented) with the codebook embedding. 58

3.2 Pearson correlation (%) in the development and test sets in the STS
benchmark. The performance of all sentence pairs is indicated as All.
Low means the performance on the half of sentence pairs with lower
similarity (i.e., STSB Low). Our c means our codebook embeddings
and Our a means our attention vectors. * indicates a supervised method.
† indicates the methods which use training distribution to approximate
testing distribution. The best score with and without † are
highlighted. 61

3.3 The ROUGE F1 scores of different methods on CNN/Daily Mail dataset.
The results with † are taken from Zheng and Lapata [260]. The results
with * are taken from Celikyilmaz et al. [26]. 64

3.4 Performance of phrase similarity tasks. Every model is trained on a
lowercased corpus. In SemEval 2013, AUC (%) is the area under the
precision-recall curve of classifying similar phrase pairs. In Turney, we
report the accuracy (%) of predicting the correct similar phrase pair
among 5 or 10 candidate pairs. The results with † are taken from Yu and
Dredze [252]. 65

3.5 Distantly supervised relation extraction using different versions of the
universal schema. All numbers are %. CUSchema refers to
compositional universal schema. Trans is an abbreviation of
transformer. The best scores of the single models and ensemble models
are highlighted. *The performance of TAC 2013 and 2014 is copied
from Verga et al. [225]. 75

3.6 Example of sentence pattern pairs, its label, and our predictions in our
entailment experiment. Ours and Ours Diff are the predictions from
Ours (Trans). Freq Diff is the frequency difference baseline. 76

3.7 Comparison of entailment detection methods. AP and Acc are average
precision and accuracy, respectively. All numbers are %. Our methods
use a transformer as their encoder. 78

3.8 Results for cold-start authorship and citation prediction in our test set. AUC
is the area under the ROC curve. We highlight the best values of
cold-start recommendation methods with and without using weighted
average of CBOW. K=1 (no auto) is an extension from Bansal et al.
[14]. 87

xvi

4.1 Comparison of the option generators using automatic metrics. The best
numbers within each scope are highlighted. 102

4.2 Comparison of option generators using human judgment (mean ± standard
error). L and TP refer to likelihood and topic promotion,
respectively. 102

4.3 Comparison of all K topics for the input prompt using M = 2 words
closest to each topic. 102

4.4 The continuations that are generated by conditioning on all of K topics
from different option generators. The input prompt comes from STSb.
. 102

4.5 Comparison of conditional text generators. The numbers in Dist-1, Dist-2,
Recall, and Precision are percentages. Lower perplexity (PPL) and
inference time are better. The better performance between PPLM and
our method is highlighted. In human evaluation, we report the mean ±
standard error of each method. 104

4.6 Comparison of the continuations generated by different option generators
using automatic metrics. The values are percentages except in Word Hit.
Higher numbers are better except in Self-BLEU. The best numbers
within each scope are highlighted. 106

4.7 Comparison of the continuations generated by different option generators
using human judgment (mean ± standard error). F, NP, and A refer to
fluency, narrative promotion, and overall, respectively. 107

5.1 The macro average scores on the development set. All numbers are
percentages. The standard errors are shown as the confidence intervals.
We make the best scores of the model built on BERTBase boldface and
similar for the models built on BERTLarge. †The number is much higher
than 81.4, the GLUE score reported by Aroca-Ouellette and Rudzicz [6]
because we continue training from the pretrained BERT and we use
better fine-tuning hyperparameters. *The scores do not contain
ReCoRD in SuperGLUE.1 . 119

5.2 The macro average scores on the development set for our ablation study.
We highlight the best performance after excluding the ensemble
baselines, which require much more computation. The scores are
different in Table 5.1 because we use two pretraining random seeds
instead of four in the ablation study. SWA refers to Stochastic weight
averaging [92]. *SuperGLUE score does not contain ReCoRD. 122

xvii

5.3 The comparison of inference time and expected calibration error (ECE).
The confidence intervals are standard errors. *Only includes the
classification tasks (i.e., excludes STS-b). 123

5.4 The overlapping ratio of the top 20% most uncertain examples using
different uncertainty estimation methods. ENS is ensemble of Ours
(K=5, λ = 0.1) with different fine-tuning seeds. *Only includes the
classification tasks (i.e., excludes STS-b). 123

5.5 Results of our methods and baselines on Multi-SciDocs. All scores are
averaged over four random seeds. We show standard errors as their
confidence interval. Percentages indicate relative error reduction over
the baselines (SPECTER or SciNCL). 130

5.6 Ablation studies conducted on SPECTER and multiple domain training data.
All scores are averaged over four random seeds. Percentages indicate
relative error reduction over the baseline (3 CLS, λ = 0.1). 132

A.1 Perplexity comparison of different GPT-2 Small models on the words with
different types of analogy relations. The validation set (valid) includes
all four types of relations. 173

A.2 Prediction visualization using a context in each dataset. Each row visualizes
a model as in Table 2.3. The models are built on GPT-2 Medium in
OpenWebText and Wikipedia and on GPT-2 Small in the synthesized
dataset. MFS Avg shows the words that are closest to the average facet
embedding in MFS. See the details in Appendix A.2.3. We underline
the words that appear in the top predictions of both MFS and MFS Avg.
. 174

A.3 The loss improvement comparison between the Improvement Models and
Reference Models. The models are named using their number of
softmaxes, input hidden states, and partitions. Thus, S3I9P4 is MFS,
S3I9P1 is MFS w/o Multi-partition, S1I9P1 is Softmax + Multi-input,
S3I1P1 is MoS (3), and S1I1P1 is Softmax. Multi-mode Percentage is
the percentage of the contexts where the Improvement Models output
multimodal distribution. Multi-mode Loss Improvement refers to the
average improvement when Improvement Models outputs multimodal
distribution and Other Loss Improvement refers to the improvement of
the contexts where the facets of Improvement Models are close to each
other. Improvement Ratio divides Multi-mode Loss Improvement by
Other Loss Improvement. 175

xviii

D.1 Training and testing dataset statistics. Note: Since some papers are
categorized under multiple MAG fields in S2ORC, they are counted
more than once in this table. Unknown refers to the papers without
MAG information in S2ORC. 192

xix

LIST OF FIGURES

Figure Page

1.1 Illustration of the differences between the single embedding and the
proposed multiple embeddings in the two kinds of co-occurrence
learning. For the models studied in this thesis, the embedding(s) 1 (E1)
always come from a text encoder (a tower), while the embedding(s) 2
(E2) could come from a static item embedding table/matrix or also from
the text encoder (the second tower). Dot or L2 refers to dot products or
Euclidean distance. In Chapter 2, 3, and 4, we study the one-tower
co-occurrence learning. In Chapter 5, we study the two-tower
co-occurrence learning. 2

2.1 Comparison between the softmax layers using a single embedding and
multiple embeddings when the next word should be either woman or
king. In GPT-2 and multi-embedding GPT-2, the hidden states of the
context are visualized by the single facet and multiple facets ,
respectively. The word embeddings are visualized using •••••••••••. GPT-2
cannot output woman and king as the top two words because queen and
man are close to the middle of woman and king. The improvement in
this type of ambiguous context will be quantified in Appendix A.2.1.
. 15

2.2 Minimal eigenvalue ratios of different groups of N word embeddings.
Lower ratios indicate that the corresponding word embeddings are more
linearly dependent and thus the probabilities of the words cannot be
determined arbitrarily by the hidden state of the language models. The
number of parameters and the size of hidden states are shown in caption
beside every model name. 21

2.3 The next word probabilities outputted by GPT-3. Notice that this is a raw
probability before being modified using the temperature. 23

2.4 Comparison between different architectures. The #S , #I , and #P are the
number of softmaxes, input hidden states, and partitions, respectively.
The green boxes refer to embeddings/vectors. The vocab means the
embeddings of all words in the vocabulary. ⊕ refers to concatenation.
Lh, Lf , and Lπ are linear projection layers. 24

xx

2.5 Architecture of dynamic partitioning that computes LogitCLR in
Equation 2.11. The architecture combines the idea of the context
partition, reranker partition, and local context word embedding. Top n -
Context means the embeddings of the top n prediction words that are
not in the context. 32

2.6 Two-stage reranker baseline architecture. This architecture performs
similarly compared to the reranker partition approach but requires much
more training time. 34

3.1 The input phrase real property is represented by K = 5 cluster centers. The
previous work discovers the multiple senses by clustering the
embedding of observed co-occurring words. Instead, our compositional
model learns to predict the embeddings of cluster centers from the
sequence of words in the input phrase so as to reconstruct the (unseen)
co-occurring distribution well. 49

3.2 Our model for sentence representation. We represent each sentence as
multiple codebook embeddings (i.e., cluster centers) predicted by our
sequence to embeddings model. Our loss encourages the model to
generate codebook embeddings whose linear combination can well
reconstruct the embeddings of co-occurring words (e.g., music), while
not able to reconstruct the negatively sampled words (i.e., the
co-occurring words from other sentences). 52

3.3 Comparison of our attention weights and the output embeddings between
two similar sentences from STSB. A darker red indicates a larger
attention value in Equation 3.6 and the output embeddings are
visualized using the same way in Table 3.1. 61

3.4 Comparison between the multi-facet and compositional universal schema.
In our training loss, we encourage one of the facet embeddings from a
sentence pattern to be similar to its co-occurred entity pair. 68

3.5 An illustration of the proposed method. The training signal comes from the
co-occurrence matrices of the KB and training text corpus on the right.
On the lower left, we visualize our neural encoder, which captures the
compositional meaning of tokens in the sentence pattern, and our neural
decoder, which models the dependency among multiple facet
embeddings. When a sentence pattern co-occurs with an entity pair, the
training loss minimizes the distance between the entity pair embedding
and the closest facet embedding of the sentence pattern (e.g., 0.2
between si,2 and e1). Trainable parameters in our model are highlighted
using red borders. On the upper left, we visualize the embedding space
to establish the connection between our method and clustering. 70

xxi

3.6 Comparison of the asymmetric similarities.
Asym({s̃i,k}, {s̃j,m}) > Asym({s̃j,m}, {s̃i,k}) because the average
cosine distance on the left is smaller than that on the right. 72

3.7 The proposed learning framework. We train the components with red bolder
(i.e., F , A, and C) by minimizing the difference between our
predictions and the interaction matrices, Y a and Y c. During testing,
we encode an unseen paper using our neural model into K embeddings
(K = 5 in this case) and predict the relevancy scores by choosing the
best one among the K embeddings. 80

3.8 The architecture of our neural model and its predicted K = 5 paper
embeddings when its input is a lowercased robotics paper [49]. All the
embeddings of input papers (colored dots), authors (white dots), and
citing papers (black dots) are mapped to the same vector space. The
top-left purple box outputs paper embedding p

i,k
and the top-right

yellow box outputs paper embedding pa
i,k

for authorship prediction and
pc
i,k

for citation prediction. We manually tag each paper embedding
(e.g., security and surgery) according to the citing papers closest to
them for the visualization purpose. 83

4.1 Given an input prompt, the transformer-based language model (LM)
provides K = 10 topics that might be mentioned next and each topic is
represented by M = 3 words. The user could guide the generation
process by choosing a subset of topics. 91

4.2 Examples of our generated options and continuations. We highlight the
words in the continuation that are related to the chosen topics or to the
specified word. 91

4.3 Our model architectures for (a) conditional text generator and (b) option
generator. During testing, the information flows from the bottom to the
top. 94

4.4 Training our two components using the same sentence. (a) We randomly
pick n = 3 words in the actual continuation as our conditions for the
text generator, and the null labels mean their predicted probabilities are
ignored in our loss. (b) We visualize 5 out of K = 10 generated topics
in a normalized GloVe space. Red words are the ones that appear in the
continuation and pull the nearby cluster centers closer during
training. 95

xxii

5.1 Comparison of Multi-CLS BERT and the classic BERT ensemble.
Multi-CLS BERT only ensembles the multiple CLS embeddings in one
BERT encoder rather than ensemble multiple BERT encoders with
different parameter weights. 111

5.2 Our MCQT, SO, MLM, and TFIDF loss, which are a modification of
multi-task pretraining proposed in Aroca-Ouellette and Rudzicz [6].
The multi-CLS quick thought (MCQT) loss maximizes the CLS
similarities between a sequence (sentences 1 and 2) and the next
sequence (sentences 3 and 4) while minimizing the CLS similarities to
other random sequences and the sequence after the next one (sentences
5 and 6). Notice that sentence 4 is inputted before sentence 3 because
the sentence order is swapped for the SO loss. 112

5.3 The architecture of Multi-CLS BERT encoder that is built on BERTBase

model. The different linear layers are applied to the hidden states
corresponding to different CLS tokens to increase the diversity of the
resulting CLS embeddings. 116

5.4 An overview of our two-parted solution. 1) Multi2SPE is our modified
Multi-CLS BERT model that better utilizes multi-domain citation data
through multiple diversified CLS embeddings. 2) Multi-SciDocs is our
new benchmark for testing embeddings of scientific papers under
multi-domain settings. 126

5.5 The architecture of Multi2SPE and its similarity measurement during
training SMC

PA,PB . 128

A.1 Illustration of the MFS predictions given the Wikipedia context in the
second column of Table A.2. The green circles mean the facet
embeddings from MFS. The orange circle is the average of the facet
embeddings (MFS Avg). The blue circles are the word embeddings that
are close to the facet embeddings and MFS Avg. The word project is
highlighted because it is the next word in our ground truth. 174

A.2 An example for explaining the connection between our Theorem 1 and the
theorem from Demeter et al. [45]. 179

xxiii

CHAPTER 1

INTRODUCTION

Neural language models (LMs) are usually trained by a form of self-supervised co-

occurrence learning [105]: After encoding every input sequence into an embedding, we

encourage the embeddings of the co-occurred text and item closer with each other while

pushing the embeddings of dissimilar text and item farther away. For example, a next

word co-occurs with a context in a corpus. When training GPT-2 [177], we encourage the

embedding of the context close to the embedding of the next word1 in the output softmax

layer while pushing the context embedding away from the other word embeddings in the

vocabulary.

Although largely effective, the co-occurrence learning framework has a fundamental

limitation: One text could co-occur with various items but the single embedding of the

text might not be able to close to many different embeddings of the co-occurred items

simultaneously.

In this thesis, we study how to use multiple embedding representations to overcome the

limitation. Different embeddings often capture the different semantic aspects of the input or

different modes of the co-occurrence item distribution. Hence, we often call the predicted

multiple embeddings multi-facet embeddings, where a facet means a mode of co-occurrence

distribution or the embedding representing the mode.

In Figure 1.1, we illustrate the high-level architecture differences between the single

embedding and the proposed multiple embedding representations. In the one-tower co-

1To be more precise, GPT-2 uses word pieces. However, to make the discussion more concise, we would
use “word” to refer to word pieces in this thesis unless their differences influence our discussion.

1

Transformer 
Encoder

Transformer 
Encoder

Text Item

Transformer 
Encoder

Text 1

Two-Tower Co-occurrence LearningOne-Tower Co-occurrence Learning

Multiple
Embeddings

Single
Embedding

Dot or L2 Dot or L2

Text 2CLS CLS

Co-occurrence data: (Text, Item) Co-occurrence data: (Text 1, Text 2)

Lookup

Text Item Text 1

Dot or L2
Dot or L2

Text 2CLS1

Lookup

E2

Transformer 
Encoder

Transformer 
Encoder

Transformer 
Encoder

E13E12E11

E2E1 E2E1

E13E12E11

CLS2 CLS3 CLS1 CLS2 CLS3

E23E22E21

Transformer 
Encoder (+Decoder)

Figure 1.1: Illustration of the differences between the single embedding and the proposed
multiple embeddings in the two kinds of co-occurrence learning. For the models studied in
this thesis, the embedding(s) 1 (E1) always come from a text encoder (a tower), while the
embedding(s) 2 (E2) could come from a static item embedding table/matrix or also from the
text encoder (the second tower). Dot or L2 refers to dot products or Euclidean distance. In
Chapter 2, 3, and 4, we study the one-tower co-occurrence learning. In Chapter 5, we study
the two-tower co-occurrence learning.

occurrence learning framework on the left side, we encode the text into multiple embeddings

and maximize their dot products to the co-occurred item embedding. For example, in GPT-2,

we maximize the dot products of multiple hidden states and the embedding of the next word.

Notice that we only use a single embedding to represent each next word, so the goal of our

approach is not modeling the multiple senses of the words as in Miao et al. [147]. Instead,

our goal is to model the multiple possibilities of the next word given this text context. In the

two-tower co-occurrence learning framework on the right side (e.g., contrastive learning), we

are given two related texts (e.g., similar sentences or similar documents) and we maximize

the dot products of the multiple text embeddings.

2

Predicting Embeddings for Self-Supervision
each Input Sequence by Co-occurrence Transformer Input Text

Word Embedding [159] V V
Graph Embedding [53] V
RNN-based LM [248] V V V

LM for IR [134] V V V
LM for Entity Linking [138] V V

LM for RE [48] V V V
Sentence Embeddings [77] V

Style Transfer [140] V V V
Recommendation [108] V V
Object Detection [25] V V

Ours V V V V*

Table 1.1: Comparison to the previous work that demonstrates the effectiveness of multiple
embeddings. In each row, we only cite one representative paper. Predicting embeddings
means using a neural encoder rather than a lookup table to generate the multiple embeddings
from an input sequence. Self-supervision means that the models do not require labels
annotated by humans. *The applications we include in this thesis handle the text input
except for the sequential recommendation in Section 2.5.

1.1 Relation to Previous Work and Our Contributions

Multiple embedding representation has been previously proposed to improve several

models and applications such as word embedding [159, 9, 147], node embedding in a

graph [246, 128, 53], RNN-based LM [248, 68], LM for information retrieval (IR) [100,

134, 106], LM for relation extraction (RE) [48], LM for entity linking [138], sentence

embeddings [77], style transfer [140], sequential recommendation model [108, 234, 233,

124], and object detection model [25]. However, this thesis focuses on improving self-

supervised LMs that use a transformer to encode the text into multiple embeddings, and

most of the previous studies focus on a different setting. See a comparison in Table 1.1.

Narang et al. [158] and Tay et al. [218] recently show that the multiple embedding

representation is one of the few modifications of the modern transformer-based LM that are

effective in downstream applications. However, most of the state-of-the-art NLP models are

built on LMs, and LMs still nearly universally adopt the single embedding representation in

the co-occurrence learning framework due to the following concerns of the existing multiple

embedding approaches.

3

• Insufficient Theoretical Support: Even though Narang et al. [158] and Tay et al.

[218] demonstrate that multiple embeddings such as Mixture of Softmax (MoS) [248]

could indeed empirically improve LMs, Parthiban et al. [168] show that the current

softmax bottleneck theory [248] is not sufficient to explain its improvement on the

perplexity metric. This shows that we lack the understanding of why multiple em-

beddings work well, and in what cases, multiple embeddings would be significantly

better than single embedding.

• Optimization Difficulties: In many co-occurrence learning tasks, the co-occurrence

data is very sparse. For example, most of the contexts only appear once in a corpus,

so when training BERT, we usually can only observe one masked word. In the task,

training a LM to output diverse multiple embeddings representation is difficult because

multiple embeddings often collapse into an identical embedding, especially when the

LM is deep.

• Efficiency Cost: Some existing approaches such as MoS are computationally costly [94,

66, 249, 158], especially when the vocabulary size and hidden state size are large.

• Unknown Effectiveness and Applicability: Dubossarsky et al. [51] question the

effectiveness of multiple word embedding approaches for estimating word similarity.

Without knowing why multiple embeddings are better, we do not know we should use

multiple embeddings to replace the single embedding in which kinds of applications

or self-supervised LMs.

In this thesis, we propose several solutions to respond to the challenges. We briefly

summarize our contributions on addressing the above concerns as follows.

• Theoretical Support: We advance our understanding of softmax bottleneck by show-

ing that multimodal distribution must exist among a subset of the word embeddings

in a low dimensional subspace and make the single embedding in the softmax layer

not able to arbitrarily rank the words according to their probabilities in Section 2.2.

4

Furthermore, we establish a connection between the multi-facet embedding represen-

tation and clustering in Chapter 3; we propose to learn the multi-facet embedding

representation by predicting the cluster centers of the embeddings of co-occurred

items in Chapter 3 and Chapter 4.

• Optimization Techniques: We diversify facets (i.e., multiple embeddings) by using

non-negative sparse coding (NNSC) [89] in the one-tower co-occurrence learning

framework when modeling the distribution of the co-occurred word embeddings

in Section 3.2; when training BERT using two-tower co-occurrence learning (i.e.,

contrastive learning) in Chapter 5, we insert different linear layers for each facet

after some transformer layers and propose a novel way of aggregating the multiple

embeddings that prevents the facets from collapsing by forcing the weights of the

final linear layer to be different during the fine-tuning.

• Efficiency Improvement: MoS (mixture of softmax) [248] needs to compute the

dot product between every facet embedding and the embeddings of all the words

in the vocabulary. To save the computational resources, we split the vocabulary

into several partitions and only compute the dot product between each facet and a

partition of the word embeddings in Section 2.3.1.3 when predicting next/masked

words. In Section 2.4, we further show that when one partition is dynamically formed

by the words that have already been mentioned in the context or the words with high

probability, we can achieve better perplexity than MoS without adding significant

computational cost to GPT-2 (much faster than MoS). In Chapter 5, we use multiple

CLS embeddings to represent a text sequence and train the LM by contrastive learning.

The computation cost of multiple embeddings is not significantly higher than the

single embedding baseline because we do not need to compute the probabilities over

all words in the vocabulary in contrastive learning.

5

Chapter Application Input Embedding(s) 1 (E1) Embedding(s) 2 (E2)
2.3

Language Generation Corpus Multiple Hidden States of a Context
Next Word Embedding

2.4 Hidden State or Next Word Embedding
2.5 Sequential Recommendation Corpus (History) Multiple Embeddings of a Sequence Next Item Embedding
3.2 Sentence Similarity Corpus Multiple CLS of a Sentence Nearby Pre-trained Word Embeddings
3.3 Relation Extraction Corpus + NER + EL Multiple CLS of a Sentence Pattern Co-occurred Entity Pairs
3.4 Citation/Authorship Prediction Paper + Citation Multiple CLS of Paper’s Title+Abstract Embeddings of Citing Papers and Authors
4 Interactive Language Generation Corpus Multiple Hidden States of a Context Future Word Embeddings

5.2 Natural Language Understanding Corpus (+ Labels) Multiple CLS of a Sentence
Same as E1

5.3 Scientific Paper Representation Paper + Citation Multiple CLS of Paper’s Title+Abstract

Table 1.2: Task summarization. The input specifies the data we required to train the model.
We focus on the self-supervised pretraining, but would also show the benefits of multiple
embeddings after using the labels to fine-tune the pre-trained models. Please refer to
Figure 1.1 to see the meaning of embedding(s) 1 (E1) and embedding(s) 2 (E2). Each text
sequence in Chapter 2 usually only co-occurs with one item (e.g., a word), while each
text sequence in Chapter 3 and 4 usually co-occurs with multiple items (e.g., words). In
Chapter 5, a text sequence co-occurs with other similar text sequences.

• Effectiveness and Applicability: We demonstrate the effectiveness and wide appli-

cability of multi-facet embeddings on various transformer-based and self-supervised

LMs. We summarize the co-occurrence learning tasks in Table 1.2. Then, we summa-

rize the high-level training/testing methods and the text encoders each model used in

Table 1.3.

Our studies suggest that multiple embeddings are better than single embedding es-

pecially when the co-occurred item distribution is multimodal. In Section 3.2, we

discover that longer input text sequences are often more likely to have multiple aspects.

Different aspects could consistently attract the co-occurred items that are semantically

different, so the multimodal co-occurrence distribution is more likely to happen when

the text sequences are sentences or documents rather than phrases or words.

In addition to better predicting the co-occurrence probability, we demonstrate the

different advantages of multiple embeddings in different sections. For example, in

Section 2.4, we show that multiple embeddings can not only improve the next word

prediction (especially given ambiguous contexts) but also reduce the hallucinated

entity names generated by GPT-2. In Section 2.5, we show that multiple embeddings

improve the next product recommendation by learning to copy or exclude the products

6

Chapter Application Training Testing Encoder
2.3

Language Generation
E1s to E2 (Dot Product) E1s to E2 (Dot Product)

GPT-2
2.4

Dynamic Partitioning Dynamic Partitioning
2.5 Sequential Recommendation GPT-2-like
3.2 Sentence Similarity

E1s to E2 (L2)
E1s to E1s (Similarity) Transformer,

LSTM, or GRU
(not Pretrained)

3.3 Relation Extraction
3.4 Citation/Authorship Prediction E1s to E2 (L2)
4 Interactive Language Generation E1s to E2 (L2) Embeddings as Cluster Centers GPT-2

5.2 Natural Language Understanding
E1s to E1s (Dot Product)

Fine-tuning E1s BERT
5.3 Scientific Paper Representation E1s to E1s (Dot Product) SPECTER

Table 1.3: Method summarization. Chapter 2 trains the models using cross entropy and
softmax, a kind of one-tower co-occurrence learning. Chapter 3 and 4 train the models using
the one-tower co-occurrence learning with negative sampling. Chapter 5 studies the models
using the two-tower co-occurrence learning framework (i.e., contrastive learning).

in the input product history. In Chapter 3, we discover that multiple embeddings

could improve the sentence similarity estimation without supervision. In Chapter 4,

we show that multiple embeddings could be used as future topics to build a novel

interactive and topical-guided language generation framework. In Section 5.2, we

show that multiple CLS embeddings representation significantly outperforms the

state-of-the-art pre-trained single CLS embedding of BERT on the natural language

understanding (NLU) benchmarks, especially when only a limited amount of human

labels is available. Finally, in Section 5.3, we show that multiple CLS embeddings

improve SPECTER [42] on the benchmarks for evaluating the scientific document

embeddings, especially when the model is trained using the papers from multiple

domains.

1.2 Thesis Goal

The major goal of this thesis is to mitigate the concerns that prevent the multiple embed-

ding representation from becoming a mainstream pre-training approach and demonstrate

that the representation is effective and applicable to the various LMs that have different sizes

and that are pre-trained by different self-supervised learning tasks. Specifically, we want to

develop a set of pre-training techniques or architecture modifications for self-supervised

7

Chapter Application Dataset(s) Metric Baseline Impr. Ratio
2.3 Next Word Prediction

Wikipedia
Perplexity

GPT-2 Small
2.5%

2.4 Text Generation Proper Noun ROUGE-1 20.0%
2.5 Sequential Recommendation 4 datasets NDCG@10 SASRec [96] 14.4%
3.2 Sentence Similarity STSB Low Pearson Cor. SIF [7] 7.1%
3.3 Relation Extraction TAC2014 F1 CUSchema [225] 6.0%
3.4 Citation Prediction ML S2ORC MAP Bansal et al. [14] 30.1%
4 Future Topic Prediction Wikipedia Similarity to Words Kmeans-global 19.0%

5.2 Natural Language Understanding GLUE 100
Overall

BERTBase MTL [6] 4.2%
5.3 Scientific Paper Representation Multi-SciDocs SPECTER [42] 4.0%

Table 1.4: Representative empirical result summary. The improvement ratio is the improve-
ment divided by the baseline score. Please refer to the corresponding sections to see the
setup of the experiments.

LMs such that the LMs can learn to output the diverse embeddings without significantly

increasing the model size or computational costs.

There are several ways to use the multi-facet embeddings after pretraining, including

predicting co-occurrence probability according to the E1s and E2 in Figure 1.1, estimating

unsupervised text similarity based on their E1s, serving as the multiple options to help users

to inject their intentions to LMs, and classifying the input text after fine-tuning LMs through

E1. In the above usages, we want to show that the multi-facet embeddings outperform

the single embedding alternatives and understand where the improvement comes from

theoretically and/or empirically.

1.3 Thesis Outline

As shown in Table 1.3, some projects share the same applications and some use very

similar models architecture and training methods. In this thesis, we put the projects using

the similar training signal and similar methods into the same chapter. In Chapter 2, each

sequence usually co-occurs with one item. We introduce the multi-facet softmax (MFS),

its extensions using dynamic partitioning, and its applications. In Chapter 3 and Chapter 4,

each sequence usually co-occurs with multiple items. We describe multi-facet embedding,

its connection to clustering, and its applications. In Chapter 5, each sequence co-occurs

with other sequence(s). We investigate how to use multiple embeddings to improve state-

8

of-the-art models that use contrastive learning. Please see Table 1.4 for the summary of

representative results in every chapter.

In Section 2.2, we advance our understanding of softmax bottleneck and propose multi-

facet softmax (MFS) to improve mixture of softmax (MoS) [248]. Theoretically, we show

multimodal distribution must exist if many word embeddings lie on a low dimensional

subspace/hyperplane. Empirically, we show that multiple embeddings improve the quality

of predicting the next word using GPT-2 especially when the context is ambiguous, the next

word distribution has multiple modes, or the context comes from a rare language in our

corpus. The results are published in Chang and McCallum [32].

In Section 2.4, we unify three popular softmax alternatives: MFS/MoS, copying mecha-

nism/pointer network [74, 146, 72, 191], and reranker/verifier. We propose three dynamic

partitioning methods: context partition, reranker partition, and local word embedding, to

improve the softmax layer without inducing significant extra computational cost. We use

context partition and local word embedding to improve the pointer network and use the

reranker partition as a very efficient alternative of the reranker. Our experiments show that

one of the major improvement sources from these alternatives is their ability to model the

multimodal distribution and the proposed dynamic partitioning approaches can encourage

GPT-2 to copy more entity names from the context and accordingly improve the consistency

of generated text.

In Section 2.5, we replace the input word sequence with the input product sequence and

modify GRU4Rec [85] and SASRec [96], a GPT-2-like architecture, to recommend the next

product based on the previous shopping history. Our preliminary experiments show that our

softmax alternatives, especially the context partition, significantly improves the sequential

recommendation. The results further indicate that the context partition, which learns to copy

and exclude the previous context products, not only improve the datasets with duplicated

products in the record of each user but also the datasets without duplicated products.

9

In Section 3.2, we demonstrate that transformers can encode a sentence and predict the

cluster centers of its unseen nearby word embeddings well. By modeling the multimodal

distribution in a static word embedding space, we can estimate the word importance and

improve the unsupervised sentence similarity estimation based on the GloVe [174] space in

Section 3.2. We also discover that multiple embeddings do not outperform single embedding

when the input is a phrase rather than a sentence, which suggests that multimodal co-

occurrence distribution might not be prominent in some applications. The results are

published in Chang et al. [34].

Next, in Section 3.3, we modify the above approach to encode a sentence pattern or a

knowledge base (KB) relation and predict the cluster centers of their co-occurred entity pairs.

The cluster centers are the embeddings that represent sentence patterns and KB relations.

The similarity between the sentence pattern embeddings and the embeddings of KB relation

can be used to improve the distantly supervised relation extraction. Furthermore, we can

detect the entailment relation between sentence patterns using the similarity between their

embeddings. We publish the work in Paul et al. [171].

Similarly, the approach can also be used to encode the title and abstract of a paper and

predict the cluster centers of its citing papers or its authors. In Section 3.4, we show that the

improvement of multiple embeddings on the citation prediction is more significant than its

improvement on the authorship prediction. This finding verifies that the benefits of multiple

embeddings depend on the applications.

In Chapter 4, we use the above cluster center prediction model to predict the future

topics given a context prompt. Then, a user could choose a subset of the topics and ask a

conditional LM to generate the continuation that is more likely to contain the chosen topics.

We publish the work in Chang et al. [35].

In Chapter 5, we improve the state-of-the-art text encoders that are pre-trained using

two-tower co-occurrence learning (i.e., contrastive learning). In Section 5.2, we propose

Multi-CLS BERT that takes multiple CLS tokens with the input sentences of BERT and

10

show that multiple CLS embeddings improve the state-of-the-art pretraining method for

BERT [6] in GLUE [229] and SuperGLUE [228], especially when the finetuning dataset is

small. Our experimental analyses further suggest that Multi-CLS BERT could be viewed as

an efficient BERT ensemble model.

In Section 5.3, we simplify Multi-CLS BERT and use the multiple CLS embeddings to

improve state-of-the-art scientific document encoders. The current evaluation benchmark

for the encoders is dominated by the computer science papers. To address the limitation,

we propose Multi-SciDocs, which tests the embedding qualities of the papers from multiple

domains. We show that our proposed encoder, Multi2SPE outperform SPECTER [42],

especially in Multi-SciDocs.

This thesis includes work from the following research papers. For more method details

and experiment details, please refer to their appendixes.

• Haw-Shiuan Chang, Amol Agrawal, Andrew McCallum. 2021. Extending Multi-

Sense Word Embedding to Phrases and Sentences for Unsupervised Semantic Appli-

cations. In AAAI ([34])

• Rohan Paul*, Haw-Shiuan Chang*, Andrew McCallum. 2021. Multi-facet Universal

Schema. In EACL (Oral) ([171])

• Haw-Shiuan Chang, Jiaming Yuan, Mohit Iyyer, Andrew McCallum. 2021. Chang-

ing the Mind of Transformers for Topically-Controllable Language Generation. In

EACL (Oral) ([35])

• Haw-Shiuan Chang, Andrew McCallum. 2022. Softmax Bottleneck Makes Lan-

guage Models Unable to Represent Multi-mode Word Distributions. In ACL ([32])

• Haw-Shiuan Chang*, Ruei-Yao Sun*, Kathryn Ricci*, Andrew McCallum. 2022.

Multi-CLS BERT: An Efficient Alternative to Traditional Ensembling. In submission

to EMNLP

11

Chapter Applications Other Main Contributors Their Contributions
2.3

Language Generation
None NA

2.4 Zonghai Yao and Alolika Gon Most implementation and running most experiments
2.5 Sequential recommendation Nikhil Agarwal Some implementation and running some experiments
3.2 Sentence Similarity Amol Agrawal Baseline implementation and running exploratory experiments
3.3 Relation Extraction Rohan Paul All implementation and running most of experiments
3.4 Citation/Authorship Prediction None NA
4 Interactive Language Generation Jiaming Yuan Implementing some evaluation metrics and conducting some evaluations

5.2 Natural Language Understanding Ruei-Yao Sun and Kathryn Ricci Some implementation and running some experiments
5.3 Citation Prediction Ronald Seoh All implementation, running all experiments, and writing half of the paper.

Table 1.5: The contributions of other students to the chapters of this thesis.

• Ronald Seoh*, Haw-Shiuan Chang*, Andrew McCallum. 2022. Multi-domain Paper

Encoder with Multiple CLS Tokens. In submission to EMNLP

Following work is not directly included, but they inspire some main ideas of this thesis.

• Haw-Shiuan Chang, ZiYun Wang, Luke Vilnis, Andrew McCallum. 2018. Distri-

butional Inclusion Vector Embedding for Unsupervised Hypernymy Detection. In

HLT/NAACL

• Haw-Shiuan Chang, Amol Agrawal, Ananya Ganesh, Anirudha Desai, Vinayak

Mathur, Alfred Hough, Andrew McCallum. 2018. Efficient Graph-based Word Sense

Induction by Distributional Inclusion Vector Embeddings. In TextGraphs-12

• Haw-Shiuan Chang, Abdurrahman Munir, Ao Liu, Johnny Tian-Zheng Wei, Aaron

Traylor, Ajay Nagesh, Nicholas Monath, Patrick Verga, Emma Strubell, Andrew

McCallum. 2016. Extracting Multilingual Relations under Limited Resources: TAC

2016 Cold-Start KB construction and Slot-Filling using Compositional Universal

Schema. In TAC/KBP

1.4 Declaration of Collaborations

Most of the projects in this thesis are collaboratively done by me and (former) UMass

master’s students. In all of the projects, I am a supervisor who provides the ideas and the

steps for implementing the ideas. My contributions might also include debugging the code,

12

designing the experiments, running experiments and analyses, surveying the related work,

writing a paper, and presenting the work. The master students’ contributions might include

writing preprocessing codes, implementing the ideas by modifying my codes or the codes of

state-of-the-art models, and running experiments to test the ideas. Please see Table 1.5 for

the details.

13

CHAPTER 2

BREAKING THE SOFTMAX BOTTLENECK FOR LANGUAGE
GENERATION

“The greater the ambiguity, the greater the pleasure.” — Milan Kundera

2.1 Introduction

Recently, researchers have found that transformer-based language models (LMs), such

as GPT-2, can predict the next word distribution better as their sizes grow [177, 21, 97].

Compared to greedily outputting the most probable next word, sampling the next word

from the predicted distribution allows LMs to generate more diverse and high-quality text

sequences [87]. By autoregressively sampling the next word, LMs can assist creative

writing [1], reduce the cost of building datasets [239, 126], generate codes [119], solve math

problems [41], etc. As a result, one natural question arises: Do modern language modeling

architectures still have restrictions in their ability to represent the appropriate distribution

over next words?

In this chapter, we discover that, when predicting the next word probabilities given an

ambiguous context, GPT-2 is sometimes incapable of assigning the highest probabilities

to the appropriate non-synonym candidates. For example, given the input prompt “After

debating whether to bow to the woman or the king first, the jester decided on the [MASK]”,

we would expect the distribution over the [MASK] fillers to put high probabilities on woman

or king or their synonyms. However, GPT-2 might incorrectly assign the second highest

probability to “queen” as in Figure 2.1.

In the final softmax layer of GPT-2, the log probabilities of the woman and king are

computed based on the dot product between a single hidden state embedding and the global

14

Output Word Embedding Space

GPT-2 Encoder

After debating whether to bow to the woman or the king first, the jester decided on the

… king … queen … man … woman …

Dot Product

Softmax

Vocabulary Size

GPT-2 + Multi-embedding Encoder

After debating … king first, the jester decided on the

Top prediction candidates of
GPT-2

Dot Product

Softmax

Weighted Sum

Top prediction candidates of
multi-embedding GPT-2

king

woman queen

man

Word Probability
king 0.70

queen 0.15
woman 0.05

man 0.02
… …

Word Probability
king 0.50

woman 0.40
queen 0.01
man 0.01
… …

… king … woman …

Figure 2.1: Comparison between the softmax layers using a single embedding and multiple
embeddings when the next word should be either woman or king. In GPT-2 and multi-
embedding GPT-2, the hidden states of the context are visualized by the single facet and
multiple facets , respectively. The word embeddings are visualized using •••••••••••. GPT-2 cannot
output woman and king as the top two words because queen and man are close to the middle
of woman and king. The improvement in this type of ambiguous context will be quantified
in Appendix A.2.1.

word embeddings of the woman and king, respectively. To have the highest but similar

dot products for the two options, the transformer encoder in GPT-2 wants to output the

hidden state that is close to the average of the woman embedding and the king embedding.

However, the words queen, king, woman, and man tend to form a parallelogram in the

embedding space [148, 54, 235]1, which means the man and queen also have a similar

average. Therefore, GPT-2 is forced to also output the man or queen when it wants to output

the woman or king.

The problem not only happens to GPT-2 or the words whose embeddings form a

parallelogram shape. Even though the hidden state embeddings of LMs are contextualized,

the embedding of each word in the softmax layer is global and static during the inference

1Section 3.3.1.1 provides more background knowledge about the parallelogram shape and the softmax
bottleneck.

15

time. Globally dissimilar words could all become the suitable next word in a context while

other interfering words might be between them, which makes the ideal next word embedding

distribution to have multiple modes and cannot be modeled by the single embedding

representation.

In this chapter, we propose theorems showing that given any LM using the output

softmax layer, when there are more than N word embeddings in a N − 1 dimensional

subspace/hyperplane (e.g., 4 embeddings in a two-dimensional plane), we can always find a

set of possible next words (e.g., woman and king) such that there are some other interfering

words between them (e.g., man or queen).

Recently, mixture of softmax (MoS) [248] regains attention as one of the few effective

architecture modifications for transformer LM [158, 218]. In the meanwhile, Parthiban

et al. [168] show that the softmax bottleneck [248] theory is not sufficient to explain the

improvement of MoS. Our theorems not only provide geometrical intuitions of why and

when the multiple embedding representation such as MoS would do better but also suggest

that the softmax bottleneck might not be completely solved even if we adopt a very large

hidden state size. For example, no matter how large the hidden state size is, as long as queen

- king = woman - man in the embedding space, the LMs cannot output a pair of words in

the longer diagonal of the parallelogram as the top two output words.

After better understanding why mixture of softmax (MoS) works well, we propose two

enhancements over MoS. The first enhancement considers the hidden states of multiple posi-

tions and multiple transformer layers when determining the probability in each softmax; the

second enhancement uses different contextualized embeddings to compute the probabilities

of different global partitions of words.

The resulting method, multi-facet softmax (MFS), significantly outperforms the MoS and

the GPT-2 with the softmax layer on the perplexity for predicting the next word, especially in

ambiguous context and non-English text in OpenWebText [177]. For details of our methods

and experiments, please see the appendix of Chang and McCallum [32].

16

MFS and MoS both use multiple softmaxes to break the softmax bottleneck and each

softmax needs to compute the dot product between the facet embedding and the embeddings

of all the words in the vocabulary. Although being able to handle the ambiguous contexts

better, the approaches are much more computationally expensive compared to the single

softmax baseline.

In Section 2.4, we propose three dynamic partitioning approaches to solve the problem:

context partition, reranker partitions, and local word embedding. The context partition

approach uses one facet to compute the logits of all the words in the context and uses another

facet to compute the logits of the rest of the words in the vocabulary. The reranker partition

approach uses another facet to re-estimate the logits of the top prediction words with the

highest probabilities. The local word embedding approach uses another facet to compute

the context-dependent word embeddings for all the words in the context.

The dynamic partitioning approaches are much more efficient compared to MoS and

we find that after using dynamic partitioning, the improvement of MoS would become very

small, which indicates that dynamic partitioning approaches can also solve the problem

caused by the multimodal distribution.

Sequential recommendation problem is very similar to language modeling. By replacing

the words with the products, predicting the next word based on the context becomes the task

of predicting the next product based on the shopping/interaction history of a user. Recently,

SASRec [96], a GPT-2-like architecture, has achieved good performance on the sequence-

aware recommendation tasks. Our preliminary experiments in Section 2.5 suggest that the

dynamic partitioning approaches significantly improve the SASRec and GRU4Rec [85] in

four datasets and also outperform RepeatNet [181], a strong pointer network baseline for

sequential recommendation.

17

2.2 Theoretical Limitations of the Single Embedding in the Softmax

Layer and Empirical Analyses

In this section, we first review the softmax layer of GPT-2 formally and explain why

queen - king = woman - man still tends to hold in contextualized LMs. Next, we present

our theoretical analyses, which generalize the woman and king example by showing that the

candidate words in a low dimensional subspace would induce the impossibility of ranking

some candidates on top of other candidates. Finally, we empirically study how serious the

limitations are in the language models with different sizes.

2.2.1 Background

The LMs typically use a softmax layer to predict PS(x|ct), the probability of the next

word x given the context at the tth position ct:

PS(x|ct) =
exp(hT

ctwx)∑
x′ exp(hT

ctwx′)
, (2.1)

where hct is the tth hidden state in the context c, and wx is the output word embedding for the

word x (i.e., the linear weights that project the hidden state to the logit of the word x). Yang

et al. [248] point out that the log probability distribution over all the words in the vocabulary

V is log (PS(x|ct)) |x∈V = hT
ctwx − log

(∑
x′ exp(hT

ctwx′)
)
|x∈V . The distribution is a

linear projection from the hidden state hct with dimension D, so the degree of freedom

in the distribution is only D (i.e., there cannot be more than D linearly independent log

distributions). We call this restriction softmax bottleneck thoery.

During training, the ideal output word embedding wx should be close to the hidden

states of the contexts hct that co-occur with the word x while far away from the other hidden

states. This objective is similar to the objective function of Word2Vec [148] except that the

context embeddings are contextualized [105, 115].

If a context ct has a higher chance to co-occur with queen compared to king, the context

also has a higher chance to co-occur with woman compared to man to a similar degree. This

18

is the main reason that makes queen - king = woman - man in the Word2Vec space [54].

Therefore, the same linear relations tend to hold in the output word embedding space of

GPT-2 as well [235].

2.2.2 Structural Weakness Theorems from Linear Dependency

In addition to words satisfying the analogy relations, the following theorems imply that

any linear dependency among the words causes the difficulties of LM in ranking the words

in an arbitrary order according to their logits (i.e., dot products between the hidden state and

the word embedding). For example, woman + king = queen + man makes a LM unable to

output woman and king as the top two words in Figure 2.1.

Theorem 1. If the nonzero output embeddings of N words in a set W are linearly dependent

and on one side of a plane through the origin, the single embedding representation cannot

produce positive logits for a subset of the word in W that are higher than all the logits of

the other words in W .

Here, we provide an intuitive justification: if N embeddings are in a subspace whose

dimension is smaller than N − 1, the N embeddings are going to be linearly dependent and

some set of words cannot have the top dot products due to the limited degree of freedom in

the subspace. In Appendix A.3, we formally prove the theorem by identifying the sets of

words that cannot be ranked top by the single embedding representation.

In practice, linear dependency holds approximately instead of exactly. For example,

woman = queen + man - king + ε. In this practical condition, the following theorem states

that the logits of the bottom words (i.e., man and queen) cannot be much smaller than the

logits of the top words (i.e., woman and king).

Theorem 2. Let the output word embeddings in the set W = {wi ̸= 0|i = 1...N}

satisfy w1 = a2w2 + ... + aNwN + ε, where the constant a2, ..., aN are neither all zero

nor all negative and ||ε|| < ϵ. Then, there must be a non-trivial partition P = {G,S}

19

of W such that there is no hidden state ||h|| ≤ r and a threshold τ ≥ rϵ that make

minwg∈G hTwg ≥ (1 + δ)τ and maxws∈S h
Tws < τ , where δ = 2

1+
∑

i=2...N |ai| .

In the king-woman example, (1 + δ) = (1 + 2
4
) = 1.5. Assuming ||ε|| < ϵ = 0.01 and

||h|| ≤ r = 20, we can get hTε ≤ 0.01 × 20 = 0.2. Then, we cannot find a hidden state

h such that hTwking ≥ 1.5× 0.01× 20 = 0.3 and hTwwoman ≥ 0.3 but hTwqueen < 0.2

and hTwman < 0.2 because hTwking + hTwwoman = hTwqueen + hTwman + hTε. The

formal proof can be found in Appendix A.3 and Section 2.2.3 estimates ϵ in LMs.

Even though, theoretically speaking, outputting woman and king as the top two words is

possible due to the appearance of ε, LMs may not successfully learn to output the optimal h

and the optimal hidden state for these four words could lead to the wrong probabilities of

the other words. Consequently, LMs sometimes still ranks queen or man higher than woman

or king in practice.

2.2.3 Measuring Linear Dependency among Words

Theorem 2 shows that when N words are linearly dependent after moving one of the

embeddings with a short distance ϵ, the LM with the output softmax layer cannot output

a large logit margin between two subsets of the N words. We want to measure ϵ in the

pretrained word embedding and compare the ϵ from different sets of words or from different

LMs.

Given a set of N words, we form a matrix by their word embeddings and estimate

the ϵ value by the minimal eigenvalue of the matrix. We first want to verify that the four

analogical words (e.g., queen, king, man, and queen) indeed have a smaller ϵ compared to a

randomly selected four words. Thus, we define the min eigenvalue ratio as ϵS
ϵR

, where ϵR is

the average of minimal eigenvalues from 1,000 sampled N word sets and ϵS is the average

of minimal eigenvalues from sets of words (e.g., analogical words from the Google analogy

dataset). We analyze the ratio instead of ϵ because the average word embedding magnitudes

in different LMs would affect the absolute value of ϵ.

20

0 5 10 15 20 25
N

0.0

0.2

0.4

0.6

0.8

1.0

M
in

 E
ig

en
va

lu
e

Ra
tio

Similar Words (GPT-2 Small)
Similar Words (GPT-2 XL)
Similar Words (GPT-J-6B)
Similar Stopwords (GPT-2 Small)
Similar Stopwords (GPT-2 XL)
Similar Stopwords (GPT-J-6B)
Analogous Words (GPT-2 Small)
Analogous Words (GPT-2 XL)
Analogous Words (GPT-J-6B)

(a) GPT-2 Small (0.1B, D=768), GPT-2 XL
(1.5B, D=1600), and GPT-J-6B (6B, D=4096)

0 5 10 15 20 25
N

0.0

0.2

0.4

0.6

0.8

1.0

M
in

 E
ig

en
va

lu
e

Ra
tio

Similar Words (T5 Small)
Similar Words (T5 11B)
Similar Stopwords (T5 Small)
Similar Stopwords (T5 11B)
Analogous Words (T5 Small)
Analogous Words (T5 11B)

(b) T5 Small (0.06B, D=512) and T5 11B (11B,
D=1024)

Figure 2.2: Minimal eigenvalue ratios of different groups of N word embeddings. Lower
ratios indicate that the corresponding word embeddings are more linearly dependent and
thus the probabilities of the words cannot be determined arbitrarily by the hidden state of
the language models. The number of parameters and the size of hidden states are shown in
caption beside every model name.

In addition to analogical words, we also test sets of N similar words, which are composed

by the nearest N − 1 words of every query word in the vocabulary, and test the N similar

stop words by finding the nearest N − 1 words of every query word in a stop word list.2

We plot the min eigen value ratio versus N in Figure 2.2 and compare the curves from

three GPT LMs and two T5 LMs [178]. All the ratios are below 0 and decrease as N

increase, which shows the analogical words and similar words indeed have significantly

smaller ϵ especially for a large N . The low minimal eigenvalues and our theory support the

recent empirical finds that LMs tend to be confused by the similar words [253]. This figure

also provides a potential explanation why the candidates often include stop words when

multiple embeddings outperform the single embedding in Table 2.3 and Table A.2.

2We find that some rare words or special characters might have nearly identical word embeddings due to
the lack of training instances, so we exclude the half of rarer word pieces in the vocabulary and exclude the
word pieces whose first character is not a space. The rarity of a word piece is determined by the l2 norm of its
word embedding.

21

Surprisingly, we find that a larger LM does not necessarily yield a larger ratio (i.e.,

embeddings of related words do not become more linearly independent as dimension or

the size of the LM increases). All the LMs have very similar ratios of similar stop words.

Compared to GPT-small, although GPT-J-6B [230] has a significantly higher ratio for

analogical words, its ratio for similar words is significantly lower. Besides, T5-11B has a

significantly lower ratios compared to T5-small. We need further investigation to understand

the reason of this empirical finding and whether a larger LM suffers less from the limitation

caused by the single embedding.

2.2.4 Softmax Bottleneck in GPT-3

We show the three predictions of GPT-3 [21] in Figure 2.3 to see if a huge language

model with a large hidden state size (12k) also suffers from the softmax bottleneck. In

Figure 2.3a, we replace the woman/king with the man/queen example because the problem

is more serious in this GPT-3 version than the woman or king example.

Figure 2.3a shows that although the incorrect answer king is not ranked higher than

queen and man, GPT-3 put around 66% probability on queen/latter, while the word man

only gets around 9%, which is not too much higher than the probability of the incorrect

answer king. In Figure 2.3b, we construct our prompt such that the next word should be

the five names we mentioned and each name should be similarly probable. However, we

can see that around 68% probability is concentrated in the word John and the word Alex

is not even in the top 5 list. In Figure 2.3c, we can see that GPT-3 completely change the

probability distribution after the order of the name changes. In Figure 2.3d, the next word

should be the five things we mentioned and each thing should receive similar probability.

However, we can see that one of the choices (scissors) still take around 67% probability. In

the meanwhile, the word balloons and toys receive less than 1% of probabilities. The results

suggest that the softmax bottleneck is still a problem for a very large language model. The

22

(a) The example where the next word should be either man or queen (or
their synonym such as former and latter).

(b) The example where the next word John, Alex, Mary, Kathryn, and
Jack should receive similar probabilities.

(c) Same as above except that the order of the names in the context is
different.

(d) The example where the next word plates, keys, scissors, toys, and
balloons should receive similar probabilities.

Figure 2.3: The next word probabilities outputted by GPT-3. Notice that this is a raw
probability before being modified using the temperature.

23

Input Hidden States (#I) 
Sec. 3.2

dot product

 

(c) Mixture of Softmax (Yang et al., 2018)

fct,2

(d) Multi-facet Softmax (Ours)

fct,3f1ct,1

f2ct,1

f3ct,1

f4ct,1

πct

vocab vocab

Softmax Softmax

Weighted Sum

Softmax

vocab

fct,1 fct,2 fct,3

πct

vocab vocab

Softmax Softmax

Weighted Sum

Softmax

vocab

(a) Softmax (b) Softmax
+ Multi-input

fct,1

Softmax

vocab

fct,1

Softmax

vocab

GPT-2 encoder
After debating whether to bow to the woman or the king first, the jester decided on the

qct
hctM

qct

layer M-2
⊕i,mhct-iM-m

Lf(.)

GELU(Lh(.))

Lπ(.)

layer M

Lπ(.)

Lf(.)

……

facets

dot product dot product dot product

Partitions (#P) 
Sec. 3.3

#S = 3

#I = 9

#P = 4

#I = 1

#S = 1

#P = 1

#S = 1

#P = 1

#I = 9

#S = 3

#P = 1

#I = 1

facets

Partition 1 2 3 4

W

H

Figure 2.4: Comparison between different architectures. The #S , #I , and #P are the num-
ber of softmaxes, input hidden states, and partitions, respectively. The green boxes refer to
embeddings/vectors. The vocab means the embeddings of all words in the vocabulary. ⊕
refers to concatenation. Lh, Lf , and Lπ are linear projection layers.

problem is especially serious when we want to get all the possible story developments by

sampling from the next word distribution.

2.3 Multi-facet Softmax

Using multiple embeddings is a natural solution of modeling a multimodal distribution.

For instance, we can use three embeddings to capture the high probability on the woman

and king but low probability on the man and queen in Figure 2.1.

Inspired by our geometric analysis on the limitation of the single embedding, we improve

the state-of-the-art multiple embedding solution, mixture of softmax (MoS) [248] by two

enhancements: multiple input hidden states and multiple partitions on the vocabulary.

2.3.1 Method

In the section, we review the mixture of softmax (MoS) in Section 2.3.1.1, explain our

first enhancement in Section 2.3.1.2, and explain our second enhancement in Section 2.3.1.3.

24

2.3.1.1 Mixture of Softmax

Yang et al. [248] propose mixture of softmax (MoS) to allow a LSTM-based [86] LM to

produce more linearly independent log probability distributions of the output words given

different contexts. As in Figure 2.4 (c), the MoS first uses multiple linear layers Lf
k to project

a hidden state hct into multiple facet embeddings fct,k = Lf
k(hct).3 The multiple facets

fct,k and softmaxes would lead to multiple probability distributions, and output probability

is the weighted average of the distributions:

PMoS(x|ct) =
K∑
k=1

πct,k

exp(fT
ct,k

wx)∑
x′ exp(fT

ct,k
wx′)

. (2.2)

The prior weights πct,k =
exp(Lπ

k (hct))∑
k′ exp(L

π
k′ (hct))

, where Lπ
k is another linear projection for dy-

namically generating the weights and the projection goes through a softmax to ensure∑K
k=1 πct,k = 1.

2.3.1.2 Multiple Input Hidden States

To model the multimodal distribution, the facets (i.e., the embeddings for different

softmaxes) should be able to move freely. For example, in Figure 2.1, we have three facets

but only have two modes, so the two embeddings are very close to the word king. However,

when we want to output three dissimilar top words such as the king, woman, and knight, one

of the facets should be moved to be near to the embedding of the knight.

Therefore, we want our solution to satisfy two properties: a) the linear transformation

matrix in Lf
k should have a full rank to avoid limiting the degree of freedom in each facet,

and b) the relative location of the facets should be context-dependent. MoS cannot satisfy

both properties. If the first one is satisfied, the input hidden state is uniquely determined

by a facet (e.g., hct = (Lf
1)

−1(fct,1)). Then, there exist a global transformation between

two facets (e.g., fct,2 = Lf
2

(
(Lf

1)
−1(fct,1)

)
), which violates the second property. That is,

3We remove the tanh layer in the original MoS to improve its performance on GPT-2.

25

assuming LM can move every facet freely (i.e., the facet’s degree of freedom is the same as

the dimension of the hidden state), LM cannot make the first two facets close to woman and

king in one context but make the two facets close to woman and knight in another context. In

other words, since the facet embeddings are the projection of a single hidden state, the total

degree of freedom in all facet embeddings cannot exceed the dimension of the hidden state.

Our solution to this issue is using more input hidden states to construct the facets. As the

orange box in Figure 2.4, we first concatenate a W ×H block of input hidden states into

⊕i=0...W−1,m=0...H−1h
M−m
ct−i

, where M −m is the transformer layer index and t − i is the

index of the ith to the last word in the context. The W ×H is fixed as 3×3 in this chapter.

We make its dimension the same as the original hidden state hM
ct using a linear layer Lh plus

a GELU activation function [83]. Then, we concatenate it with the original hidden state to

form a new input hidden state

qct = hM
ct ⊕GELU

(
Lh(⊕i,mh

M−m
ct−i

)
)
. (2.3)

The new input hidden state is passed through the linear transformation Lf
k to compute the

facets fct,k = Lf
k(qct) and our prior weights πct,k =

exp(Lπ
k (qct))∑

k′ exp(L
π
k′ (qct))

. Since the dimension of

qct is larger than the dimension of fct,k, the inverse function (Lf
k)

−1 no longer exists.

2.3.1.3 Multiple Partitions

The next word distribution could have many modes. However, using many softmaxes

significantly increases our computational burden because we need to compute the dot product

between each facet and all the word embeddings in our vocabulary.

Inspired by our analysis, we propose to split all the words in the vocabulary into multiple

partitions and use different facets for different partitions. For example, if we can put any

word from {queen, man, woman, king} into one partition and the rest of the words into

another partition, we no longer have queen - king = woman - man in either of the partitions.

In this method, each word only belongs to one partition, so we only need to compute one

26

dot product for each word. Thus, the extra computational cost only comes from the extra

linear projections for preparing the facets.

In this work, we simply let the jth facet handle the J × n + jth word (e.g., when the

number of partitions J = 4, the first partition includes the words with indexes 0, 4, 8, ...

). This simple global partitioning method reduces the chance of putting all the interfering

words and candidates in the same partition, while minimizing the extra computational cost in

our PyTorch implementation because PyTorch supports the dilated access without copying

the variable.

In many contexts ct, the distribution of the next word has only a single mode and the

global similarity between words may be useful. Using the multiple partitions alone might

lose the similarity information between words in different partitions. Therefore, we propose

to only replace the first softmax layer in MoS with the multiple partition method to learn the

global similarity of words in different partitions using the other softmaxes. The architecture

is illustrated in Figure 2.4 (d). Formally, we compute the probability using

PMP (x|ct) = πct,1

exp((f jx
ct,1)

Twx)∑
x′ exp((f

jx′
ct,1)

Twx′)
+

K∑
k=2

πct,k

exp(fT
ct,k

wx)∑
x′ exp(fT

ct,k
wx′)

, (2.4)

where jx is the partition index that the word x belongs to and f jx
ct,1 is the facet for the jxth

partition. Multi-facet softmax (MFS) is equipped with multiple input hidden states and

multiple partitions.

2.3.2 Language Modeling Experiments

We evaluate different LM architectures by comparing their capability of predicting the

next word in Wikipedia 2021 and a subset of OpenWebText [177]. The size of the training,

validation, and testing set are 96%, 2%, and 2% of the whole corpus, respectively. After

loading the pre-trained GPT-2 models, we train the GPT-2 Small for 1 epoch and GPT-2

Medium for 0.4 epochs.

27

2.3.2.1 Baselines

We set different numbers of softmaxes, input hidden states, and partitions in our MFS

framework to construct our baselines. The configuration of different baselines could be seen

in Table 2.1.

Softmax (GPT-2): Using a single softmax, input hidden state, and partition as in

Figure 2.4 (a) and Equation 2.1. The baseline is the same as the original GPT-2 except that

we add one more linear layer that converts the hidden state hM
ct to the facet embedding fct,1

as in other methods.

SigSoftmax [94]: The same as Softmax except when predicting the next word, Kanai

et al. [94] add some non-linearity into the softmax layer by multiplying the exponent and

sigmoid of the logits.

Softmax + Multi-input: Letting Softmax access multiple input hidden states as in

Figure 2.4 (b) and Equation 2.3. The method is similar to Tenney et al. [220], Fan et al. [58],

and Tay et al. [217].

MoS [248]: MoS (3) is the mixture of softmax with 3 facets/softmaxes, whose probability

comes from Equation 2.2. We also run the MoS with 4 softmaxes in GPT-2 Small and call

the model MoS (4).

DOC [214]: Similar to our enhancement using multiple input hidden states, direct output

connection (DOC) makes each of their facets coming from a different input hidden state.

Other configurations include Softmax + Multi-partition, which adds four partitions

into the softmax, MFS w/o Multi-partition, which uses only one partition in MFS and

could also be viewed as MoS + Multi-input, and MFS w/o Multi-input, which uses only

one input hidden state to generate all facets.

2.3.2.2 Results

Table 2.1 shows that applying MFS to GPT-2 Small achieves more than 15% of the

perplexity improvement between GPT-2 Small and GPT-2 Medium, while only increasing

28

Configuration GPT-2 Small GPT-2 Medium
Models ↓ #S #I #P Size Time OWT Wiki Size Time OWT Wiki

Softmax (GPT-2) 1 1 1 163.6M 84ms 18.72 24.06 407.3M 212ms 15.89 20.34
SigSoftmax [94] 1 1 1 163.6M 91ms 18.63 24.06 407.3M 221ms 16.07 20.65

Softmax + Multi-input 1 9 1 169.5M 87ms 18.50 23.89 417.8M 219ms 15.76 20.29
Softmax + Multi-partition 1 1 4 165.4M 88ms 18.77 24.08 410.5M 218ms 15.89 20.30

MoS [248] (4) 4 1 1 165.4M 152ms 18.61 23.77 410.5M 299ms 15.75 20.08
MoS [248] (3) 3 1 1 164.8M 130ms 18.63 23.81 409.4M 270ms 15.79 20.11

DOC [214] 3 3 1 164.8M 130ms 18.69 24.02 409.4M 270ms 15.88 20.34
MFS w/o Multi-partition 3 9 1 171.9M 133ms 18.37 23.56 422.0M 276ms 15.65 20.06

MFS w/o Multi-input 3 1 4 166.6M 134ms 18.60 23.72 412.6M 275ms 15.71 20.08
MFS (Ours) 3 9 4 175.4M 138ms 18.29 23.45 428.3M 283ms 15.64 20.02

Table 2.1: Perplexity comparison between MFS (Ours) and baselines. #S, #I, #P are the
number of softmaxes (i.e., K), input hidden states, and partitions, respectively. The top four
baselines use a single softmax. OWT and Wiki are the test set perplexity of OpenWebText
and Wikipedia 2021, respectively. The standard errors of all models are smaller than 0.02
perplexity. We also compare the number of parameters and the inference time on one batch.

Non-English English
Ratio in Corpus → 14% 86%

Softmax 13.50 (0.0%) 19.23 (0.0%)
MoS [248] (3) 13.19 (2.3%) 19.16 (0.4%)

MFS w/o Multi-partition 12.98 (3.8%) 18.91 (1.7%)
MFS (Ours) 12.83 (5.0%) 18.83 (2.1%)

Table 2.2: Perplexity of the GPT-2 Small in OpenWebText. The percentages of the perplexity
reduction compared to Softmax are presented in the parentheses.

5% of their size differences. Except for Softmax + Multi-partition, adding multiple input

hidden states or partitions in different configurations significantly boost the performance. In

Appendix A.2.3, we further show that the improvement of MFS over Softmax could even

become 3-5 times larger in the top 5-10% of the most ambiguous contexts compared to the

rest of the contexts, which suggests that some improvements indeed come from successfully

modeling multimodal distribution.

MFS usually doubles the perplexity improvements between MoS (3) and Softmax but

the running time of MFS remains similar to MoS (3) because MFS only needs a few more

linear layers, which is more efficient than adding one more softmax as in MoS (4). DOC

is worse than MoS (3). This may be due to a starvation problem: the facet from the last

hidden state hM
ct has the prior probability close to 1 and receives most of the gradients.

29

Corpus → OpenWebText Wikipedia 2021 Analogy in Templates (Appendix A.2.1)

Input Context

... The Elastic Endpoint Security
and Elastic SIEM solutions

mentioned in this post are now
referred to as Elastic

... law and chance working together
cannot generate CSI, either.

Moreover, he claims that CSI

I went to Paris and Germany before, and I love
one of the places more, which is Germany

Softmax (GPT-2) the 0.087, E 0.043, End 0.039 the 0.174, this 0.054, if 0.038 Paris 0.893, France 0.045, Germany 0.033
MFS (Ours) Elastic 0.220, the 0.089, EC 0.033 CSI 0.186, the 0.140, there 0.033 Paris 0.544, Germany 0.389, France 0.064

MFS Softmax 1 end 0.051, the 0.043, security 0.023 the 0.191, law 0.127, if 0.053 Paris 0.979, France 0.013, Germany 0.007
MFS Softmax 2 Elastic 0.652, EC 0.080, ES 0.046 the 0.191, there 0.049, this 0.047 Paris 1.000 Berlin 0.000 ##Paris 0.000
MFS Softmax 3 the 0.193, E 0.040, a 0.014 CSI 0.677, law 0.029, laws 0.019 Germany 0.852, France 0.139, China 0.004

Table 2.3: Prediction visualization using a context in each dataset. We show the top three
words with the highest prediction probabilities of each method. In the last three rows, we
visualize the outputs of the softmax grey boxes in Figure 2.4 (d), which model different
modes of the next word distribution. The prediction target is boldfaced in the context and
the predictions. ## indicates there is no space before the word.

Finally, compared with Softmax, the mixed results in SigSoftmax suggest that adding

non-linearity into the softmax layer without modeling the multimodal distribution might not

always improve the models [168].

OpenWebText is mostly composed of English text, but some non-English text in the

corpus allows us to compare the capability of different models in a multi-lingual setting.

Table 2.2 shows that multiple embeddings improve the perplexity of the non-English text

more than the perplexity of the English text. We hypothesize that the distribution of the next

non-English word is more likely to be multimodal because GPT-2 learns the global token

embeddings mostly in the English contexts, which could make the embeddings of similar

tokens in non-English contexts far away.

In Table 2.3, we present three contexts from the validation set of different datasets and

compare the top three predictions of MFS and Softmax on GPT-2 Small. In OpenWebText

and Wikipedia 2021, we can see that Softmax misses the correct answer in its top three

predictions.

2.4 Dynamic Partitioning

Given the context “Choosing between John and Alex, I decided to first talk to [MASK]”,

the LMs might output neither “John” nor “Alex” as the next word. The tendency of the

30

LMs would make its generated story keeps introducing the new characters or even become

incoherent and inconsistent [165, 198].

We suspect that the hallucination problem of LMs partially comes from the softmax

bottleneck. The embeddings of character names are usually similar to each other in the word

embedding space because they tend to co-occur with similar contexts. If many names are

approximately linear dependent, Theorem 2 shows that LMs cannot assign high probabilities

only to an arbitrary subset of the names.

In the above sections, we show that the multiple softmaxes and multiple partitions could

alleviate the issue. However, computing multiple softmaxes is time-consuming, and using

the multiple static random partitions has several limitations:

• If a LM outputs a facet embedding with a higher magnitude, all the words in the same

partition with positive logits would have higher probabilities. Predicting the probabilities

of a random set of words might result in overfitting.

• The multiple partitions break the structure of global word embeddings. Using many

partitions, we lose lots of similarity information between words in different partitions.

On the other hand, using too few partitions, we cannot make sure the candidates and the

interfering words are in different partitions.

• In MFS, we combine the multiple partitions with the multiple softmaxes as a remedy for

breaking the global word embedding structure, but using multiple softmaxes is slow and

does not completely solve the problems (see appendix A.2.1 and A.2.2 for examples).

2.4.1 Method

To overcome the problems, we propose to partition the vocabulary in dynamic ways.

One of its benefits is that we can avoid constantly breaking the global similarity information

among the word embeddings without using the expensive multiple softmaxes. In this chapter,

we study different ways to construct the partitions, including using the context words to form

a partition and putting the most likely next words in another partition. We also propose to

31

 

GPT-2 encoder……
After debating whether to bow to the king or the woman first, the jester decided on the

fct,E

Sum Concat

fct,1

Softmax

Global Word Embeddings

Context Top n -
Context Rest of Vocabulary

fct,Rfct,Cfct,L

Local Word
Embeddings

Context

qct

Lf1(.)

GELU(Lh(.))

Context Partition Reranker Partition

LfR(.)LfC(.)
LfE(.)

LfL(.)

Figure 2.5: Architecture of dynamic partitioning that computes LogitCLR in Equation 2.11.
The architecture combines the idea of the context partition, reranker partition, and local
context word embedding. Top n - Context means the embeddings of the top n prediction
words that are not in the context.

predict the embedding of the context words to further improve the performance. The results

of our experiments demonstrate the effectiveness of dynamic partitioning approaches.

2.4.1.1 Context Partition

In our previous examples, we notice that the desired candidates such as woman, king,

John, and Alex often appear in the context and we won’t see the interfering words such as

man, queen, or other names in the context. We can predict a facet embedding for a partition

that only contains the words in context. As a result, the magnitude of the facet corresponds

to the prior probability of copying the words from the context.

Specifically, the logit of the word x given the context ct is computed by

LogitC(x, ct) =

fT
ct,C

wx if x ∈ ct

fT
ct,1wx O/W

, (2.5)

32

where fct,C = Lf
C(qct) is the linear projection of the hidden state concatenation qct in

Equation 2.3. We use only one softmax to compute the final probability of predicting the

word x:

PDP (x|ct) =
exp(LogitDP (x, ct))∑
x′ exp(LogitDP (x

′, ct))
, (2.6)

where DP is a dynamic partitioning approach. For example, when computing the probability

using the context partition PC(x|ct), LogitDP = LogitC .

Notice that although the possible next words have been mentioned in the context in many

ambiguous contexts, this is not always the case. For example, in the context My favorite

actor is Ryan [MASK], the next word could be Reynolds, Gosling, or the last names of other

Ryan. Hence, using only the context partition does not completely solve the multimodal

distribution problem.

2.4.1.2 Reranker Partition

Some candidate words that the LM wants to output might not be in the context, but their

probabilities are usually higher than most of the words. Inspired by the idea of the reranker,

we first retrieve the top n words with the highest logits as the set Wct(n) using the facet

fct,1. Next, we use the n words to form a partition and update the logits of the n words by

the dot products between their word embeddings and a new facet fct,R = Lf
R(qct).

Similar to the context partition, we can compute the logit of x using

LogitR(x, ct) =

fT
ct,R

wx if x ∈ Wct(n)

fT
ct,1wx O/W

. (2.7)

Our hypothesis is that after using the reranker partitions, LMs could output the embed-

dings that are more likely to be the average of all the possible answers without worrying

about being accidentally close to other interfering words that are not in the top n word list.

When n is small, the reranker partition might not include the very likely next word.

When n is large, the reranker partition might not be able to separate the output candidates

33

 

GPT-2 encoder……
After debating whether to bow to the king or the woman first, the jester decided on the

Sum

fct,1

Softmax

qct

Global Word Embeddings

R Top nRest of Vocabulary

R Top n words (king, queen, woman, …)

<|endoftext|> king, queen, woman, …

fct,2

Local Word
Embeddings

R Top n

fct,3

fct,2

Concat

Figure 2.6: Two-stage reranker baseline architecture. This architecture performs similarly
compared to the reranker partition approach but requires much more training time.

and the interfering words. To alleviate the problem, we can have multiple reranker partitions

and use different facet embeddings for different partitions. Then, we can include more

words in the reranker partitions while the more likely words won’t be affected by the less

likely words. If we use 3 reranker partitions with sizes of n1, n2, and n3, and n1 < n2 < n3,

the logit of x becomes

LogitR(x, ct) =



fT
ct,R1wx if x ∈ Wct(n1)

fT
ct,R2wx if x /∈ Wct(n1) ∧ x ∈ Wct(n2)

fT
ct,R3wx if x /∈ Wct(n1) ∧ x /∈ Wct(n2) ∧ x ∈ Wct(n3)

fT
ct,1wx O/W

, (2.8)

where Wct(n1) is the set of top n1 words with the highest logits, and the logits are computed

by the facet embeddings for the partitions with the size larger than n1 (i.e., fT
ct,R2wx,

fT
ct,R3wx, and fT

ct,1wx in this case), and so on.

34

2.4.1.3 Two-stage Reranker

To know the effectiveness of this new facet on adjusting the probabilities of the top n

words, we also test the traditional two-stage reranker/verifier on GPT-2. After retrieving

the top n words using the first facet fct,1, the two-stage reranker appends the output facet

fct,2 for the context words4 and candidates to the input context. Next, the reranker uses their

hidden states to update their word embeddings as fct,3 and re-estimate the probabilities of

top n words as shown in Figure 2.6. In our implementation, training the two-stage reranker

that reranks top 20 words in each position is at least 5 times slower than training GPT-2.

2.4.1.4 Local Context Word Embedding

Although the dynamic partitioning alleviates the problem of softmax bottleneck, we still

use the global word embedding. Some sentences in the context might change the similarity

between words [200, 198]. For example, if the context contains “My father is my friend”,

“father” and “friend” should become more similar. Given the context “John and Mary are

good guys. Alex and Jane are bad guys. The person who attacks me is [MASK]”, “Alex”

and “Jane” should become more similar in some directions in the word embedding space

that corresponds to the bad things.

One solution is to predict the embeddings of the words in the context as in the two-stage

reranker. In contrast to the two-stage reranker, this solution does not need to feed the context

words into GPT-2 again. Instead, we only use another linear layer Lf
E() to convert the hidden

states of the context into the local context word embeddings, which minimizes the extra

computational cost. We compute the local embedding of the context word x by averaging all

the linear transformation of hidden state concatenations qcit
that correspond to the word x:

fct,E,x =

∑t
i=1 1cit=xL

f
E(qcit

)∑t
i=1 1cit=x

, (2.9)

4The motivation is helping GPT-2 to output the local word embedding of a candidate closer to the current
output facet if GPT-2 wants to increase the probability of the candidate.

35

where cit is the ith input words in the context ct, and 1cit=x = 1 if cit = x. Then, we can use

the local context word embeddings to compute the logits:

LogitL(x, ct) =

fT
ct,L

fct,E,x + fT
ct,1wx if x ∈ ct

fT
ct,1wx O/W

, (2.10)

where fct,L = Lf
L(qct).

Our local word embedding approach is similar to the pointer network [74, 146, 72, 191].

Our approach also compares the current hidden state and the previous hidden states to

estimate the probability of copying the words from the context. Nevertheless, there are still

several minor differences between our local embedding method and pointer networks. Hence,

we implement CopyNet [74], Pointer Generator [191], and Pointer Sentinel Network [146]

on top of GPT-2 and compare their performance.

2.4.1.5 Hybrid Approach

We find that combining the local context embeddings, context partitions, and reranker

partition leads to a good result with only modest computational cost. As shown in Figure 2.5,

we add the logits from global embeddings fT
ct,C

wx and the logits from local embedding

fT
ct,L

fct,E,x together if the word is in the context. If the word is in the top n word list

(assuming we only use one reranker partition) but not in the context word, we use the facet

for the reranker partition fct,R to compute the logit. Finally, the logits of the rest of the

words are computed using the facet fct,1:

LogitCLR(x, ct) =


fT
ct,C

wx + fT
ct,L

fct,E,x if x ∈ ct

fT
ct,R

wx if x /∈ ct ∧ x ∈ Wct(n)

fT
ct,1wx O/W

. (2.11)

To keep the modified softmax layer initially working almost the same as the original softmax

layer, we initialize the linear transformation weights of Lf
L() and Lf

E() as 10−10 ·I. The linear

36

weights for the facet embeddings other than for the local word embeddings are initialized as

the identity matrix I.

We can also combine the dynamic partitioning methods with multiple softmaxes or a

two-stage reranker at the cost of significantly increased computation time. When combining

with multi-softmax in our experiments, we only use the dynamic partitioning in the first

softmax. Besides, we use the two-stage reranker to revise the logits from the dynamic

partitioning methods.

2.4.2 Experiments

We conduct two experiments to verify the effectiveness of our dynamic partitioning

approaches in Wikipedia 2021. Both experiments train the models built on GPT-2 Small.

The language modeling experiment compares the perplexity for the next word prediction.

Since training the two-stage reranker for GPT-2 is very time-consuming, we only report its

performance after be trained for 0.15 epoch. To check whether the context partition and

multiple embeddings alleviate the new entity problem, the language generation experiment

compares the ROUGE 1 F1 scores between the generated text and the context words or

ground truth.

The results of the language modeling experiment are presented in Table 2.4. As we

can see, combining all the dynamic partition approaches (i.e., context partition, reranker

partition, and local word embedding) results in good performance. The trend after training

for 0.15 epochs and 0.4 epochs is the same. If only using one method, the context partition

is better than the two-stage reranker and reranker partition. After using all three dynamic

partitioning methods, adding the second-stage reranker or multiple softmaxes only improves

the performance a little, which suggests that the dynamic partitioning approaches can

achieve similar improvements compared to much more computationally expensive softmax

alternatives. Furthermore, the performance of the second-stage reranker using a sufficiently

37

Training Configuration Wiki
Epoch Model Names #S #I Context Local Emb Top n 2nd Stage PPL

0.15

Softmax 1 1 29.53
Multi-softmax (MoS) 3 1 29.34

CopyNet [74] 1 1 V 29.57
Pointer Generator [191] 1 1 V 29.07
Pointer Sentinel [146] 1 1 V 29.09

Softmax + Mi 1 9 29.33
Multi-Softmax + Mi 3 9 29.06

Softmax + R:100 + Mi 1 9 100 29.13
Softmax + R:20,100,500 + Mi 1 9 20,100,500 29.05

Softmax + Rs2:100 + Mi 1 9 V 28.89
Softmax + C + Mi 1 9 V 28.76
Softmax + L + Mi 1 9 V 28.94
CopyNet [74] + Mi 1 9 V 29.34

Pointer Generator [191] + Mi 1 9 V 28.79
Pointer Sentinel [146] + Mi 1 9 V 28.74

Softmax + CLR:20,100 + Mi 1 9 V V 20,100 28.46
Softmax + CLR:20,100 + Rs2:100 + Mi 1 9 V V 20,100 V 28.40

Multi-softmax + CLR:20,100 + Mi 3 9 V V 20,100 28.38

0.4

Softmax 1 1 28.19
Softmax + Mi 1 9 28.05

Softmax + R:20 + Mi 1 9 20 27.84
Softmax + C + Mi 1 9 V 27.53

Softmax + CL + Mi 1 9 V V 27.43
Softmax + CLR:20 1 1 V V 20 27.50

Softmax + CLR:20 + Mi 1 9 V V 20 27.22
Softmax + CLR:100 + Mi 1 9 V V 100 27.19

Multi-softmax + CLR:100 + Mi 3 9 V V 100 27.05

Table 2.4: Comparison of perplexity (PPL) in a validation set of Wikipedia 2021 with 100k
tokens. All models are built on GPT-2 Small, including CopyNet, Pointer Generator, and
Pointer Sentinel. R:100 means the reranker partition using n = 100. Rs2:100 means the
2nd stage reranker uses n = 100. R:20,100,500 means three layers of the ranker partition
whose n1, n2, and n3 values are 20,100, and 500, respectively. C means a context partition.
L means a local context embedding. Mi means multiple input hiddent state (i.e., #I > 1).
That is, Softmax + Mi refers to Softmax + Multi-input.

large n could be viewed as an upper bound of softmax layer alternatives, and the results

show that our methods is approaching the upper bound.

Although only using the reranker partition performs worse than only using the two-stage

reranker, the reranker partition is much more efficient. We find that n = 100 is better than

n = 20 and three reranker partitions with sizes of 20,100, and 500 perform slightly better

than only using one reranker partition with a size of 100.

In addition, the results suggest that using the local context word embeddings to replace

the global word embeddings in the context partition slightly degrades the language modeling

performance in Wikipedia. We suspect that this demonstrates the usefulness of the global

38

All Uppercase Proper Noun
Model Name Context Cont. Context Cont. Context Cont.
Softmax + Mi 25.73 25.33 14.22 6.99 13.20 6.65

Multi-softmax (MoS) 25.40 25.16 14.52 7.28 13.51 6.73
Multi-softmax + Mi 25.82 25.44 16.78 8.61 15.65 7.87
Softmax + C + Mi 26.38 25.61 17.73 8.17 16.66 7.55

Multi-softmax + C + Mi 26.42 25.34 17.91 8.43 16.69 7.98

Table 2.5: Comparison of ROUGE 1 F1 between the generated text and the context or
continuation. We present the ROUGE scores of all tokens, uppercased tokens, and proper
nouns. Multi-softmax is the same as MoS and Multi-softmax + Mi is the same as MFS w/o
Multi-partition.

similarity structure of word embeddings. The context partition, local word embedding,

CopyNet [74], Pointer Generator [191], and Pointer Sentinel [146] bring similar improve-

ments, which suggests that the main improvement of pointer networks on a transformer

comes more from breaking the softmax bottleneck rather than comparing the hidden states

at different positions.

In the language generation experiment, we generate 6000 continuations with a length

of 50 given the prompts in Wikipedia and see how likely it would copy the words from

the context or generate the words that also appear in the actual continuation in Wikipedia.

Table 2.5 indicates that adding a context partition makes GPT-2 more likely to copy words

from the context, which increases the likelihood of generating the words in the actual

continuation, especially when the words are uppercased or proper nouns (i.e., entity names).

For example, compared to Softmax + Mi, Softmax + C + Mi is 26% more likely to copy

the proper nouns from the context and 14% more likely to generate the proper nouns in the

actual continuation. Multiple softmaxes also increase the chances of copying some names

from context, but the method adds much more computational resources and the ROUGE 1

differences are smaller.

In Table 2.6, we qualitatively demonstrate the advantages of the dynamic partitioning

methods. The softmax layer of GPT-2 is unable to properly learn to copy or exclude the

word from the input context. For example, GPT-2, MoS, and Pointer Sentinel + Mi [146]

39

Input Context

I like tennis, baseball, golf,
basketball, and

There are plates, keys,
scissors, toys, and balloons
in front of me, and I pick

up the

Choosing between John,
Alex, Mary, Kathryn, and
Jack, I decided to first talk

to

Softmax (GPT-2)
tennis 0.080, golf 0.053,

baseball 0.051, basketball
0.049, I 0.032 0.038

keys 0.059, pieces 0.057,
phone 0.031, balloons

0.024, key 0.023

the 0.121, them 0.088,
John 0.063, my 0.039,

Alex 0.032

Multi-softmax (MoS)
tennis 0.068, golf 0.066,

basketball 0.050, baseball
0.047, other 0.045

keys 0.075, pieces 0.050,
phone 0.026, key 0.025,

balloons 0.015

John 0.099, the 0.097,
them 0.083, Alex 0.055,

Mary 0.040

Pointer Sentinel + Mi [146]

tennis 0.103, baseball
0.063, golf 0.062,
basketball 0.052,
swimming 0.030

keys 0.078, plates 0.044,
scissors 0.029, pieces
0.029, balloons 0.029

the 0.132, them 0.053, my
0.049, John 0.044, Alex

0.043

Multi-softmax + CLR:100 + Mi
volleyball 0.097, football
0.085, soccer 0.073, soft

0.036, bad 0.031

keys 0.166, scissors 0.049,
toys 0.042, balloons 0.042,

pieces 0.035

John 0.139, the 0.113,
them 0.056, Alex 0.051,

Mary 0.032

Table 2.6: Prediction visualization of three input contexts. We show the top five words with
the highest prediction probabilities of each model. The reasonable next word predictions are
boldfaced.

are very likely to output I like tennis, baseball, golf, basketball, and tennis, which causes a

repetition problem, while Multi-softmax + CLR:100 + Mi can learn to exclude the sports

that have been listed. On the other hand, GPT-2 and MoS might output There are plates,

keys, scissors, toys, and balloons in front of me, and I pick up the phone, which causes a

hallucination problem, while Multi-softmax + CLR:100 + Mi can learn to copy the words

that have been mentioned.

In short, the results suggest that the dynamic partition approaches improve the next

word prediction and reduce the chances of keep generating new names. Nevertheless, we so

far only use the automatic metric now. We leave a more comprehensive evaluation of the

factuality of the generated text as future work.

2.5 Applications on Sequential Recommendation

The causal language modeling problem is a special case of the sequential prediction

problem. If we replace the input word sequence with the input product sequence, GPT-2

could be used to recommend the next product based on the previous shopping history.

Kang and McAuley [96] found that the architecture used in GPT-2 also reaches state-of-the-

40

art performance in sequential recommendation datasets and they call the model SASRec

(self-attentive sequential recommender).

In many sequential recommendation tasks, it is important to predict if the user would buy

the same product again. For example, one user might buy the same kind of snack again and

again or the user is not likely to watch a movie if the user has seen the movie before. In many

state-of-the-art recommendation systems, these tendencies are often considered using some

post-processing rules. For example, in the grocery category, the recently-bought products

should be shown to the users; while in the movie recommendation, the recently-seen movie

should be excluded from the recommendation list.

Setting the business intelligence rules are tedious and might not result in an optimal

performance. For example, a user usually won’t buy the same book twice. However, when

the user starts to buy a book twice, it might indicate that the user wants to give the book

to other people as a gift. This means that we should continue recommending such book.

Hence, properly learning to copy or not copy the items like our method should be a more

ideal solution. The proposed dynamic partitioning approaches address this need. If we often

observe the duplicated products in a user’s shopping record, the encoder can learn to always

output a facet embedding with high magnitude for the context partition, and vice versa.

2.5.1 Experiment Setup

We test our method on the four datasets: ML-1m [80], Amazon-beauty [143], Steam [96],

and Retailrocket5, where ML-1m is the MovieLens dataset with one million user ratings. We

use Hit@10 and NDCG@10 as our metrics. Our negative samples are all the other possible

items in the dataset, so the performance in each dataset highly depends on the number of

unique items in the dataset. Thus, we report the geometric average rather than the arithmetic

average to summarize their results.

5www.kaggle.com/retailrocket/ecommerce-dataset

41

RepeatNet [181] improves the performance of sequential recommendation datasets

with duplicated items by modifying the CopyNet [74]. One major difference is that their

probability of the history items completely comes from the copying mechanism. As a result,

their method can learn to copy or exclude the history items as we do, while one drawback

is that the output probabilities of the history items cannot leverage the global similarity

among the items in the embedding space. Since RepeatNet uses a GRU encoder rather than

a transformer, we also apply our approaches to GRU4Rec [85] in order to compare our

methods with RepeatNet more fairly.

To keep the capability of using nearest neighbor search during testing time, the multi-

softmax in this application uses max-pooling on the logits of every facet rather than using

the mixture of softmax. When using multiple input hidden states (Mi), we set the H as the

maximal layer of the encoder. Specifically, H = 2 for SASRec and H = 1 for GRU4Rec.

We use the evaluation framework/library called Recbole [259], which allows us to test

multiple datasets and settings conveniently and fairly. We use learning rate 0.001 and set

the training batch size as 128 for SASRec and as 64 for GRU4Rec and RepeatNet. All the

models using their default hyperparameters except that we decrease the dropout of SASRec

from 0.5 to 0.2 because we find that the change significantly improves the performance.

2.5.2 Results

By comparing Softmax + C and Softmax in Table 2.7, we can see that the context

partition improves the NDCG@10 of SASRec by 13% and GRU4Rec by 11% on average. In

ML-1m and Amazon-beauty datasets, one user does not interact with the same item twice, but

the context partition still improves the performance. This shows that softmax has difficulty

in learning to prevent copying products from the history, and the context partition can solve

the problem.

Similar to Table 2.4, RepeatNet is slightly worse than only using the context partition

Softmax + C, while Softmax + CLR usually further improves Softmax + C. Across the

42

ML-1m Amazon-beauty Steam
Model ↓ Final Layer ↓ Hit@10 NDCG@10 Hit@10 NDCG@10 Hit@10 NDCG@10

SASRec

Softmax 29.65 16.46 3.64 2.01 21.81 16.86
Softmax + Mi 29.92 16.79 3.50 1.84 22.80 17.58

Multi-Softmax (MoS) 29.14 16.34 3.43 1.80 23.30 18.16
Softmax + C 34.22 20.53 3.86 2.35 23.65 18.32

Softmax + C + Mi 34.74 20.68 3.50 2.10 24.03 18.63
Softmax + CLR 34.90 20.95 3.93 2.34 23.76 18.44

Softmax + CLR + Mi 35.35 20.95 3.77 2.28 23.96 18.59
Multi-Softmax + CLR 32.67 19.20 - - 23.91 18.52

GRU4Rec

Softmax 29.29 15.94 3.35 1.90 22.71 17.48
Softmax + Mi 29.55 16.45 3.85 2.08 21.83 16.93

Multi-Softmax (MoS) 28.54 15.81 3.82 2.04 22.43 17.69
Softmax + C 32.68 18.99 3.90 2.27 23.25 18.16

Softmax + C + Mi 35.05 20.73 3.74 2.15 23.40 18.27
Softmax + CLR 33.69 19.88 4.36 2.51 23.29 18.25

Softmax + CLR + Mi 33.94 20.13 4.39 2.55 23.39 18.27
Multi-Softmax + CLR 33.69 19.70 - - 23.21 18.24
RepeatNet 32.80 19.69 3.42 2.12 23.38 18.29

Retailrocket G mean
Model ↓ Final Layer ↓ Hit@10 NDCG@10 Hit@10 NDCG@10

SASRec

Softmax 50.94 37.97 18.61 12.06
Softmax + Mi 52.18 38.77 18.79 12.05

Multi-Softmax (MoS) 51.47 38.28 18.61 11.96
Softmax + C 52.09 39.65 20.08 13.68

Softmax + C + Mi 52.24 39.49 19.77 13.37
Softmax + CLR 52.49 40.07 20.34 13.80

Softmax + CLR + Mi 53.10 40.24 20.29 13.75
Multi-Softmax + CLR 53.21 40.11 - -

GRU4Rec

Softmax 52.12 38.58 18.46 11.95
Softmax + Mi 50.92 37.81 18.86 12.17

Multi-Softmax (MoS) 50.94 37.73 18.79 12.11
Softmax + C 52.30 39.90 19.84 13.29

Softmax + C + Mi 52.55 40.09 20.04 13.44
Softmax + CLR 53.48 40.62 20.68 13.87

Softmax + CLR + Mi 53.03 40.33 20.73 13.95
Multi-Softmax + CLR 52.56 40.15 - -
RepeatNet 52.34 40.54 19.25 13.26

Table 2.7: The validation scores of the four datasets and their geometric average (G mean).
In all the model names with R, we use 3 reranker partitions with n1 = 20, n2 = 100,
n3 = 500. Due to the memory constraints of our GPU, we haven’t had the results of
Multi-Softmax + CLR at Amazon-beauty. Other notations are the same as the notations used
in Table 2.4.

datasets, the improvements are pretty consistent no matter if we use SASRec or GRU4Rec,

if we use the multiple input hidden states, and if the performance is measured by Hit@10 or

NDCG@10.

We find that using multiple input hidden states (+ Mi) improves the performance of

three out of four datasets. We suspect that the results are sometimes worse because the

43

models overfit the sequential recommendation datasets that are much smaller than the

NLP pretraining corpus. Finally, the effectiveness of multiple softmaxes (Multi-Softmax)

depends on the dataset and the encoder. For example, Multi-Softmax (MoS) significantly

outperforms Softmax in Steam when we use the SASRec encoder but the improvement

becomes inconsistent when we use the GRU4Rec encoder.

2.6 Related Work

Yang et al. [248] propose the concept of softmax bottleneck, which points out that the

dot product in the softmax layer restricts the representation power of outputting arbitrary

conditional probabilities. It also proposes MoS to break the softmax bottleneck in an RNN-

based LM. Kanai et al. [94] and Ganea et al. [66] add nonlinearities into the softmax layer to

break the bottleneck more efficiently, but the approaches gain less improvement compared

to MoS.

A limitation of the aforementioned previous work is that they do not tell us which

kinds of sentences would be affected by the bottleneck more and whether the order of the

top few next words would be affected, which are main research questions of our work.

Contrary to the previous belief that a large hidden state dimension would eliminate the

softmax bottleneck, our theorems and empirical analyses suggest that some words in a

low dimensional subspace could still make the single embedding in the softmax layer

become a bottleneck of arbitrarily ranking the output words. Furthermore, our geometric

analyses provide an intuitive explanation about why breaking the bottleneck using multiple

embeddings leads to better performance compared to only adding the non-linearity.

Demeter et al. [45] also analyze the structural weakness of the softmax layer from a

geometric perspective. They discover that the words with high prior frequencies could

stop the LMs from assigning the high probabilities to rare words, which can be viewed as

a special case of our theory (See Appendix A.4). For instance, our work shows that the

44

softmax layer could still prevent the LMs from outputting some top words even if all the

possible next words have the same prior frequency.

Our theory is deeply connected to the mathematical work that counts the number of

possible rankings of points in an embedding space [43, 71]. Compared to the studies, our

work focuses more on analyzing the multimodal distribution in the word embedding space

and its implication to language models.

An alternative to model the multimodal distribution is to use multiple embeddings to

represent each output word [9, 147]. Compared to MoS or our approach that use multiple

embeddings to represent each hidden state of the context, their methods require many extra

parameters to store different senses of each output word. Another type of related model

[196, 62] dynamically routes the signals to different experts (i.e., feed-forward networks)

and Zhang et al. [258], Mittal et al. [154] use multiple embeddings in the attention layers.

The methods are similar to MoS and our approach, but they add the multiple embeddings

inside each layer of the transformer encoder while the proposed MFS is an alternative to the

output softmax layer.

Shwartz et al. [200] find that the text generator would be affected the global attributes

of characters’ names. Recently, Papalampidi et al. [165] and Shuster et al. [198] report

the incoherence and inconsistency of entities in language generation. Their mitigation

ways include viewing entity consistency as a controllable attribute [198] and tracking

the entity information in a longer context using a memory network [165]. However, the

approaches assume that the locations of entities have been known and need to add significant

computational overhead on top of the language generation model.

Our reranker approaches revise the generated next word, so they are related to other

ways of revising the text. Examples include using GAN [241], beam search and rerank

in translation [160], plug-and-play LM [44], iterative editing [11], coarse-to-fine genera-

tion [216], and non-autoregressive generation [121, 190]. Although some of the approaches

can revise the text toward a more consistent text as in Shuster et al. [198], they often need

45

to significantly increase the inference time. Furthermore, it remains unknown whether the

approaches can be used to mitigate the inconsistency problems of entities and improve the

unconditional and self-supervised language modeling without prior knowledge.

2.7 Chapter Conclusion

We summarize our theoretical, methodological, evaluational, and analytic contributions

in this chapter as follows.

• Theory: We show the softmax layer using a single embedding is sometimes not be able

to output an appropriate rank of probabilities on a set of words with linearly dependent

embeddings.

• Method: We propose multi-facet softmax (MFS) to improve MoS [248], and further

propose dynamic partitioning approaches that are better than MFS while being much more

efficient. All the proposed softmax alternatives can better handle ambiguous contexts

without re-training the LMs from scratch.

• Evaluation: In addition to achieving better perplexities, we show that dynamic partitioning

approaches can reduce the chance of generating new entities. Furthermore, we demon-

strate that our dynamic partitioning approaches can also significantly improve sequential

recommendation datasets.

• Analysis: Our comprehensive empirical analyses discover and explain several phenomena,

such as a) using multiple embeddings is usually better than the single embedding with

the non-linearity because the multiple embeddings can capture the multimodal distribu-

tion. b) the improvement is larger in ambiguous contexts or less common languages

because multimodal distributions are more prevalent given those contexts. c) the pointer

networks [191, 146] can significantly improve the transformer-based language model.

Furthermore, we can achieve similar improvement if we replace the hidden states of the

context words with their global word embedding. The findings suggest that the major

46

source of the improvement comes from reducing the necessity of modeling multimodal

distributions.

47

CHAPTER 3

IMPROVEMENT UNSUPERVISED SIMILARITY ESTIMATION BY
PREDICTING CLUSTER CENTERS

3.1 Introduction

In Chapter 2, we focus on breaking the softmax bottleneck to improve the next item

prediction for various applications. Since most of the input sequences only appear once

in the corpus, we usually can only observe one ground truth next word for each context.

The chance of observing the multimodal co-occurrence distribution in the training corpus is

sometimes limited.

In some co-occurrence learning paradigms, one input sequence often co-occurs with a

set of items. For example, one phrase co-occurs with a set of words in the nearby context;

one sentence co-occurs with words in the nearby sentences; one sentence pattern (e.g.,

“$ARG1, the partner $ARG2”) could co-occur with several entity pairs; one target paper

could co-occur with the citing papers that cite the target paper. When learning to predict the

co-occurrence, the common multimodal distribution makes the motivation of using multiple

embedding representations even stronger.

In this chapter, our goal is to learn multi-facet embeddings where each embedding is a

clustering center of the items co-occurring with the input word sequence. For example, the

multi-facet representation of real property is illustrated in Figure 3.1. Real property can be

observed in legal documents where it usually means real estate, while real property can also

mean a true characteristic in philosophic discussions.

To highlight the advantage of predicting multiple embeddings in this kind of co-

occurrence learning, we first explain the difficulties faced by the classic clustering-based

48

The company acquired the real property to save tax .
Input PhraseCo-occurring words

Our Transformer Model

Classic multi-sense approach: During testing,
clustering co-occurring words into centers

necessary

violation
belief

tax

dollars

acquired

save

houses

organization

company

building

The distribution of all possible co-occurring words of real property (input phrase)  
in a pre-trained word embedding space

Our approach: During training, minimize
the distance between the predicted cluster

centers and the co-occurring words.
During testing, directly predict the centers

Backward pass:  
Update the model
using backdrop

Forward pass:  
Predict cluster centers

Figure 3.1: The input phrase real property is represented by K = 5 cluster centers. The
previous work discovers the multiple senses by clustering the embedding of observed co-
occurring words. Instead, our compositional model learns to predict the embeddings of
cluster centers from the sequence of words in the input phrase so as to reconstruct the
(unseen) co-occurring distribution well.

approaches. The previous unsupervised multi-sense embeddings [111, 159, 9, 202] discover

those senses by clustering the observed neighboring words (e.g., acquired, save, and tax)

and an important facet, a mode with high probability, could be represented by several close

cluster centers. Notice that the approaches need to solve a distinct local clustering problem

for each phrase in contrast with the topic modeling like LDA [19], which clusters all the

words in the corpus into a global set of topics.

In addition to a phrase, we can also cluster the nearby words of a sentence which

appears frequently in the corpus. The cluster centers usually correspond to important aspects

rather than senses (see an example in Figure 3.2) because a sentence usually has multiple

aspects but only one sense. However, extending the clustering-based multi-sense word

embeddings to long sequences such as sentences is difficult in practice due to two efficiency

challenges. First, there are usually many more unique phrases and sentences in a corpus

49

than there are words, while the number of parameters for clustering-based approaches is

O(|V | × |K| × |E|), where |V | is the number of unique sequences, |K| is the number of

clusters, and |E| is the embedding dimensions. Estimating and storing such a large number

of parameters takes time and space. More importantly, much more unique sequences imply

much fewer co-occurring words to be clustered for each sequence, especially for sentences.

An effective model needs to overcome this sample efficiency challenge (i.e., sparseness in

the co-occurring statistics), but clustering approaches often have too many parameters to

learn the compositional meaning of each sequence without overfitting.

Nevertheless, the sentences (or phrases) sharing multiple words often lead to similar

cluster centers, so we should be able to solve these local clustering problems using much

fewer parameters to circumvent the challenges. As shown in Figure 3.1, instead of clustering

co-occurring words beside an input sequence at test time as in previous approaches, we learn

a mapping between the input sequence (e.g., phrases or sentences) and the corresponding

cluster centers during training so that we can directly predict those cluster centers using

a single forward pass of the neural network for an arbitrary unseen input sequence during

testing.

As in Chapter 2, we use the transformer to predict the multiple embeddings given a text

sequence. The main methodology differences are that we use clustering losses and negative

sampling instead of softmax to save the computation cost.

When learning the representation of sentences and phrases in Section 3.2, we find that

non-negative sparse coding (NNSC) clustering loss would lead to more diverse clustering

centers compared to Kmeans. When learning the representation of sentence patterns in

Section 3.3, we find that the Kmeans loss performs similarly compared to the NNSC loss

in our preliminary experiments, so we choose to use Kmeans due to its efficiency. When

predicting citation and authorship in Section 3.4, we also use Kmeans loss to allow the

efficient nearest neighbor search. Finally, we find that adding an autoencoder loss could

50

stabilize the training process of our models for relation extraction and citation/authorship

prediction.

To save computational resources and reduce optimization difficulties, all the methods in

this chapter do not use pretrained language models (LMs). We demonstrate the effectiveness

of our approaches by showing that multiple embeddings are significantly better than the

single embedding baselines and the widely-used or state-of-the-art methods that do not use

pretrained LMs.

In the following three sections, we describe three one-tower co-occurrence learning mod-

els, the intuitive reasons of why multiple embeddings are helpful in the tasks, experiments,

and their connections to previous work.

3.2 Applications on the Representation of Sentences and Phrases

In this section, we first describe our seq2seq transformer architecture and how to learn

multi-facet embedding (i.e., codebook embeddings) using the NNSC clustering loss. Then,

we evaluate whether the proposed multi-facet embeddings could improve the similarity

measurement between two sentences, between a sentence and a document (i.e., extractive

summarization), and between phrases.

The results demonstrate multi-facet embeddings significantly outperforms the classic

single embedding baselines when the input sequence is a sentence. We also demonstrate

several advantages of the proposed multi-facet embeddings over the embeddings of all the

words in a sequence. First, we discover that our model tends to use more embeddings to

represent an important facet or important words. This tendency provides an unsupervised

estimation of word importance, which improves various similarity measurements between

a sentence pair. Second, our model outputs a fixed number of facets by compressing long

sentences and extending short sentences. In unsupervised extractive summarization, this

capability prevents the scoring function from biasing toward longer or shorter sentences.

Finally, our experiments show that multiple embeddings do not improve the unsupervised

51

Beautiful music starts . The girl sings into a microphone . <eos> A star is born on the stage .

……
Transformer Encoder (TE)

L1
Distinct linear layers  

for each input position LK

Transformer Decoder (TD)
……

Sequence to Embeddings F(.)

Codebook
Embeddings F(It)

Nonnegative Sparse Coding Loss (Not Required for Testing)

Input Sentence (It)Co-occurring Words (Nt)

≅x
x

Co-occurring
Words W(Nt)

≆

Random
Words W(Nrt)

song

music
albums

television

girl

ladyBeautiful

microphone

describe

star

actor

starts

born

begin

A Pre-trained Word
Embedding Space

Coefficient
Matrix (MOt)

Coefficient
Matrix (MRt)boy

stage

Figure 3.2: Our model for sentence representation. We represent each sentence as multiple
codebook embeddings (i.e., cluster centers) predicted by our sequence to embeddings model.
Our loss encourages the model to generate codebook embeddings whose linear combination
can well reconstruct the embeddings of co-occurring words (e.g., music), while not able to
reconstruct the negatively sampled words (i.e., the co-occurring words from other sentences).

phrase similarity estimation, which suggests the difficulties of modeling multi-mode co-

occurrence distribution of the short input sequences.

For details of our methods and experiments, please see the appendix of Chang et al. [34].

3.2.1 Method

In this section, we first formalize our training setup and next describe our objective

function and neural architecture. Our approach is visually summarized in Figure 3.2.

3.2.1.1 Self-supervision Signal

We express tth sequence of words in the corpus as It = wxt ...wyt<eos>, where xt and yt

are the start and end position of the input sequence, respectively, and <eos> is the end of

sequence symbol.

52

We assume neighboring words beside each input phrase or sentence are related to some

facets of the sequence, so given It as input, our training signal is to reconstruct a set of co-

occurring words, Nt = {wxt−dt1
, ...wxt−1, wyt+1, ...wyt+dt2

}.1 In our experiments, we train

our multi-facet sentence embeddings by setting Nt as the set of all words in the previous

and the next sentence, and train multi-facet phrase embeddings by setting a fixed window

size dt1 = dt2 = 5.

Since there are not many co-occurring words for a long sequence (none are observed

for unseen testing sequences), the goal of our model is to predict the cluster centers of the

words that could "possibly" occur beside the text sequence rather than the cluster centers of

the actual occurring words in Nt (e.g., the hidden co-occurring distribution instead of green

and underlined words in Figure 3.2). The cluster centers of an unseen testing sequence are

predictable because the model could learn from similar sequences and their co-occurring

words in the training corpus.

To focus on the semantics rather than syntax, we view the co-occurring words as a set

rather than a sequence as in skip-thoughts [102]. Notice that our model considers the word

order information in the input sequence It, but ignores the order of the co-occurring words

Nt.

3.2.1.2 Non-negative Sparse Coding Loss

In a pre-trained word embedding space, we predict the cluster centers of the co-occurring

word embeddings. The embeddings of co-occurring words Nt are arranged into a matrix

W (Nt) = [wt
j]j=1...|Nt| with size |E| × |Nt|, where |E| is the dimension of pre-trained

word embedding, and each of its columns wt
j is a normalized word embedding whose

2-norm is 1. The normalization makes the cosine distance between two words become half

of their squared Euclidean distance.

1The self-supervised signal is a generalization of the loss for prediction-based word embedding like
Word2Vec [148]. They are the same when the input sequence length |It| is 1.

53

Similarly, we denote the predicted cluster centers ctk of the input sequence It as a |E|×K

matrix F (It) = [ctk]k=1...K , where F is our neural network model and K is the number of

clusters. We fix the number of clusters K to simplify the design of our prediction model

and the unsupervised scoring functions used in the downstream tasks. When the number

of modes in the (multimodal) co-occurring distribution is smaller than K, the model can

output multiple cluster centers to represent a mode (e.g., the music facet in Figure 3.2 is

represented by two close cluster centers). As a result, the performance in our downstream

applications is not sensitive to the setting of K when K is larger than the number of facets

in most input word sequences.

The reconstruction loss of k-means clustering in the word embedding space can be

written as ||F (It)M −W (Nt)||2 =
∑

j ||(
∑

k Mk,jc
t
k)−wt

j||2, where Mk,j = 1 if the

jth word belongs to the k cluster and 0 otherwise. That is, M is a permutation matrix

which matches the cluster centers and co-occurring words and allow the cluster centers to

be predicted in an arbitrary order.

Non-negative sparse coding (NNSC) [89] relaxes the constraints by allowing the coeffi-

cient Mk,j to be a positive value but encouraging it to be 0. We adopt NNSC in this work

because we observe that the neural network trained by NNSC loss generates more diverse

topics than k-means loss does. We hypothesize that it is because the loss is smoother and

easier to be optimized for a neural network. Using NNSC, we define our reconstruction

error as

Er(F (It),W (Nt)) = ||F (It)M
Ot −W (Nt)||2

s.t.,MOt = argmin
M

||F (It)M −W (Nt)||2 + λ||M ||1,∀k, j, 0 ≤ Mk,j ≤ 1, (3.1)

where λ is a hyper-parameter controlling the sparsity of M . We force the coefficient value

Mk,j ≤ 1 to avoid the neural network learning to predict centers with small magnitudes

which makes the optimal values of Mk,j large and unstable.

54

We adopt an alternating optimization strategy similar to the EM algorithm for k-means.

At each iteration, our E-step estimates the permutation coefficient MOt after fixing our

neural model, while our M-step treats MOt as constants to back-propagate the gradients

of NNSC loss to our neural network. A pseudo-code of our training procedure could be

found in Algorithm 1 in the appendix. Estimating the permutation between the prediction

and ground truth words is often computationally expensive [176]. Nevertheless, optimizing

the proposed loss is efficient because for each training sequence It, MOt can be efficiently

estimated using convex optimization (our implementation uses RMSprop [221]). Besides,

we minimize the L2 distance, ||F (It)M
Ot −W (Nt)||2, in a pre-trained embedding space

as in Kumar and Tsvetkov [109] and Li et al. [117] rather than computing softmax.

To prevent the neural network from predicting the same global topics regardless of the

input, our loss function for tth sequence is defined as

Lt(F) = Er(F (It),W (Nt))− Er(F (It),W (Nrt)), (3.2)

where Nrt is a set of co-occurring words of a randomly sampled sequence Irt . In our

experiment, we use SGD to solve F̂ = argminF

∑
t Lt(F). Our method could be viewed

as a generalization of Word2Vec [148] that can encode the compositional meaning of the

words and decode multiple embeddings.

3.2.1.3 Sequence to Embeddings

Our neural network architecture is similar to transformer-based sequence to sequence

(seq2seq) model [224]. We use the same encoder TE(It), which transforms the input

sequence into a contextualized embeddings

[ext
...eyte<eos>] = TE(wxt ...wyt<eos>), (3.3)

55

where the goal of the encoder is to map the similar sentences, which are likely to have

similar co-occurring word distribution, to similar contextualized embeddings.

Different from the typical seq2seq model [212, 224], our decoder does not need to make

discrete decisions because our outputs are a sequence of embeddings instead of words. This

allows us to predict all the codebook embeddings in a single forward pass as in Lee et al.

[113] without requiring an expensive softmax layer or auto-regressive decoding.2

To make different codebook embeddings capture different facets, we pass the embed-

dings of <eos>, e<eos>, to different linear layers Lk before becoming the input of the decoder

TD. The decoder allows the input embeddings to attend each other to model the depen-

dency among the facets and attend the contextualized word embeddings from the encoder,

ext
...eyte<eos>, to copy the embeddings of some keywords in the word sequence as our facet

embeddings more easily. Specifically, the codebook embeddings

F (It) = TD(L1(e<eos>)...LK(e<eos>), ext
...eyte<eos>). (3.4)

We find that removing the attention on the ext
...eyte<eos> significantly deteriorates our

validation loss for sentence representation because there are often too many facets to be

compressed into a single embedding. On the other hand, the encoder-decoder attention

does not significantly change the performance of phrase representation, so we remove the

connection (i.e., encoder and decoder have the same architecture) in models for phrase

representation.

3.2.2 Experiments

Quantitatively evaluating the quality of our predicted cluster centers is difficult because

the existing label data and metrics are built for global clustering. The previous multi-sense

2The decoder can also be viewed as another transformer encoder which attends the output of the first
encoder and models the dependency between predicted cluster centers.

56

word embedding studies often show that multiple embeddings could improve the single

word embedding in the unsupervised word similarity task to demonstrate its effectiveness.

Thus, our goal of experiments is to discover when and how the multi-facet embeddings

can improve the similarity measurement in various unsupervised semantic tasks upon the

widely-used general-purpose representations, such as single embedding and (contextualized)

word embeddings.

3.2.2.1 Experiment Setup

Our models only require the raw corpus and sentence/phrase boundaries, so we will only

compare them with other unsupervised alternatives that do not require any manual labels or

multi-lingual resources such as PPDB [172].

Our model is trained on English Wikipedia 2016 while the stop words are removed

from the set of co-occurring words. In the phrase experiments, we only consider noun

phrases, and their boundaries are extracted by applying simple regular expression rules to

POS tags before training. We use the cased version (840B) of GloVe embedding [174] as

the pre-trained word embedding space for our sentence representation and use the uncased

version (42B) for phrase representation.3 To control the effect of embedding size, we set the

hidden state size in our transformers as the GloVe embedding size (300).

3.2.2.2 Qualitative Evaluation

The cluster centers predicted by our model are visualized in Table 3.1 (as using girl and

lady to visualize the red cluster center in Figure 3.2).

The centers summarize the input sequence well and more codebook embeddings capture

more fine-grained semantic facets of a phrase or a sentence. Furthermore, the embeddings

capture the compositional meaning of words. For example, each word in the phrase civil

order does not mean initiatives, army, or court, which are facets of the whole phrase. When

3nlp.stanford.edu/projects/glove/

57

Input Phrase: civil order <eos>
Output Embedding (K = 1):
e1 | government 0.817 civil 0.762 citizens 0.748
Output Embeddings (K = 3):
e1 | initiatives 0.736 organizations 0.725 efforts 0.725
e2 | army 0.815 troops 0.804 soldiers 0.786
e3 | court 0.758 federal 0.757 judicial 0.736

Input Sentence: SMS messages are used in some countries as
reminders of hospital appointments . <eos>
Output Embedding (K = 1):
e1 | information 0.702, use 0.701, specific 0.700
Output Embeddings (K = 3):
e1 | can 0.769, possible 0.767, specific 0.767
e2 | hospital 0.857, medical 0.780, hospitals 0.739
e3 | SMS 0.791, Mobile 0.635, Messaging 0.631
Output Embeddings (K = 10):
e1 | can 0.854, should 0.834, either 0.821
e2 | hospital 0.886, medical 0.771, hospitals 0.745
e3 | services 0.768, service 0.749, web 0.722
e4 | SMS 0.891, sms 0.745, messaging 0.686
e5 | messages 0.891, message 0.801, emails 0.679
e6 | systems 0.728, technologies 0.725, integrated 0.723
e7 | appointments 0.791, appointment 0.735, duties 0.613
e8 | confirmation 0.590, request 0.568, receipt 0.563
e9 | countries 0.855, nations 0.737, Europe 0.732
e10 | Implementation 0.613, Application 0.610, Programs 0.603

Table 3.1: Examples of the codebook embeddings predicted by our models with different K.
The embedding in each row is visualized by the three words whose GloVe embeddings have
the highest cosine similarities (also presented) with the codebook embedding.

the input is a sentence, we can see that the output embeddings are sometimes close to the

embeddings of words in the input sentence, which explains why attending the contextualized

word embeddings in our decoder could improve the quality of the output embeddings.

3.2.2.3 Unsupervised Sentence Similarity

We propose two ways to evaluate the multi-facet embeddings using sentence similarity

tasks.

First way: Since similar sentences should have similar word distribution in nearby

sentences and thus similar codebook embeddings, the codebook embeddings of a query

sentence F̂u(S
1
q) should be able to well reconstruct the codebook embeddings of its similar

58

sentence F̂u(S
2
q). We compute the reconstruction error of both directions and add them as

a symmetric distance SC:

SC(S1
q , S

2
q) = Er(F̂u(S

1
q), F̂u(S

2
q))+ Er(F̂u(S

2
q), F̂u(S

1
q)), (3.5)

where F̂u(Sq) = [
cqk

||cqk||
]k=1...K is a matrix of normalized codebook embeddings and Er

function is defined in Equation 3.1. We use the negative distance to represent similarity.

Second way: One of the main challenges in unsupervised sentence similarity tasks is

that we do not know which words are more important in each sentence. Intuitively, if one

word in a query sentence is more important, the chance of observing related/similar words

in the nearby sentences should be higher. Thus, we should pay more attention to the words

in a sentence that have higher cosine similarity with its multi-facet embeddings, a summary

of the co-occurring word distribution. Specifically, our importance/attention weighting for

all the words in the query sentence Sq is defined by

aq = max(0,W (Sq)
T F̂u(Sq)) 1, (3.6)

where 1 is an all-one vector. We show that the attention vector (denoted as Our a in

Table 3.2) could be combined with various scoring functions and boost their performance.

As a baseline, we also report the performance of the attention weights derived from the

k-means loss rather than NNSC loss and call it Our a (k-means).

Setup: STS benchmark [27] is a widely used sentence similarity task. We compare the

correlations between the predicted semantic similarity and the manually labeled similarity.

We report Pearson correlation coefficient, which is strongly correlated with Spearman

correlation in all our experiments. Intuitively, when two sentences are less similar to each

other, humans tend to judge the similarity based on how similar their facets are. Thus, we

59

also compare the performance on the lower half of the datasets where their ground truth

similarities are less than the median similarity in the dataset, and we call this benchmark

STSB Low.

A simple but effective way to measure sentence similarity is to compute the cosine

similarity between the average (contextualized) word embedding [149]. The scoring function

is labeled as Avg. Besides, we test the sentence embedding from BERT and from skip-

thought [102] (denoted as CLS and Skip-thought Cosine, respectively).

In order to deemphasize the syntax parts of the sentences, Arora et al. [7] propose to

weight the word w in each sentence according to α
α+p(w)

, where α is a constant and p(w) is

the probability of seeing the word w in the corpus. Following its recommendation, we set

α to be 10−4 in this section. After the weighting, we remove the first principal component

of all the sentence embeddings in the training data as suggested by Arora et al. [7] and

denote the method as SIF. The post-processing requires an estimation of testing embedding

distribution, which is not desired in some applications, so we also report the performance

before removing the principal component, which is called Prob_avg.

We also test word mover’s distance (WMD) [110], which explicitly matches every word

in a pair of sentences. As we do in Prob_avg, we apply α
α+p(w)

to WMD to down-weight

the importance of functional words, and call this scoring function as Prob_WMD. When

using Our a, we multiple our attention vector with the weights of every word (e.g., α
α+p(w)

for Prob_avg and Prob_WMD).

Results: In Figure 3.3, we first visualize our attention weights in Equation 3.6 and

our output codebook embeddings for a pair of similar sentences from STSB to intuitively

explain why modeling co-occurring distribution could improve the similarity measurement.

Many similar sentences might use different word choices or using extra words to describe

details, but their possible nearby words are often similar. For example, appending in the

garage to A man is lifting weights does not significantly change the facets of the sentences

and thus the word garage receives relatively a lower attention weight. This makes its

60

Sentences A man is lifting weights in a garage . A man is lifting weights .
e1 | can 0.872, even 0.851, should 0.850 e1 | can 0.865, either 0.843, should 0.841
e2 | front 0.762, bottom 0.742, down 0.714 e2 | front 0.758, bottom 0.758, sides 0.691
e3 | lifting 0.866, lift 0.663, Lifting 0.621 e3 | lifting 0.847, lift 0.635, Lifting 0.610
e4 | garage 0.876, garages 0.715, basement 0.707 e4 | lifting 0.837, lift 0.652, weights 0.629

Output e5 | decreasing 0.677, decreases 0.655, negligible 0.649 e5 | decreasing 0.709, decreases 0.685, increases 0.682
Embeddings e6 | weights 0.883, Weights 0.678, weight 0.665 e6 | weights 0.864, weight 0.700, Weights 0.646

e7 | cylindrical 0.700, plurality 0.675, axial 0.674 e7 | annular 0.738, cylindrical 0.725, circumferential 0.701
e8 | configurations 0.620, incorporating 0.610, utilizing 0.605 e8 | methods 0.612, configurations 0.610, graphical 0.598
e9 | man 0.872, woman 0.682, men 0.672 e9 | sweating 0.498, cardiovascular 0.494, dehydration 0.485
e10 | man 0.825, men 0.671, woman 0.653 e10 | man 0.888, woman 0.690, men 0.676

Figure 3.3: Comparison of our attention weights and the output embeddings between two
similar sentences from STSB. A darker red indicates a larger attention value in Equation 3.6
and the output embeddings are visualized using the same way in Table 3.1.

Method Dev Test
Score Model All Low All Low

Cosine Skip-thought 43.2 28.1 30.4 21.2
CLS

BERT
9.6 -0.4 4.1 0.2

Avg 62.3 42.1 51.2 39.1

SC
Our c K1 55.7 43.7 47.6 45.4
Our c K10 63.0 51.8 52.6 47.8

WMD
GloVe 58.8 35.3 40.9 25.4

Our a K1 63.1 43.3 47.5 34.8
Our a K10 66.7 47.4 52.6 39.8

Prob_WMD
GloVe 75.1 59.6 63.1 52.5

Our a K1 74.4 60.8 62.9 54.4
Our a K10 76.2 62.6 66.1 58.1

Avg
GloVe 51.7 32.8 36.6 30.9

Our a K1 54.5 40.2 44.1 40.6
Our a K10 61.7 47.1 50.0 46.5

Prob_avg
GloVe 70.7 56.6 59.2 54.8

Our a K1 68.5 56.0 58.1 55.2
Our a K10 72.0 60.5 61.4 59.3

SIF†

GloVe 75.1 65.7 63.2 58.1
Our a K1 72.5 64.0 61.7 58.5
Our a K10 75.2 67.6 64.6 62.2

Our a (k-means) K10 71.5 62.3 61.5 57.2

Table 3.2: Pearson correlation (%) in the development and test sets in the STS benchmark.
The performance of all sentence pairs is indicated as All. Low means the performance on
the half of sentence pairs with lower similarity (i.e., STSB Low). Our c means our codebook
embeddings and Our a means our attention vectors. * indicates a supervised method. †
indicates the methods which use training distribution to approximate testing distribution.
The best score with and without † are highlighted.

similarity measurement from our methods, Our c and Our a, closer to the human judgment

than other baselines.

61

In Table 3.2, Our c SC, which matches between two sets of facets, outperforms WMD,

which matches between two sets of words in the sentence, and also outperforms BERT Avg,

especially in STSB Low. The significantly worse performance from Skip-thought Cosine

justifies our choice of ignoring the order in the co-occurring words.

All the scores in Our * K10 are significantly better than Our * K1, which demonstrates

the co-occurring word distribution is hard to be modeled well using a single embedding.

Multiplying the proposed attention weighting consistently boosts the performance in all

the scoring functions especially in STSB Low and without relying on the generalization

assumption of the training distribution. Finally, using k-means loss, Our a (k-means) K10,

significantly degrades the performance compared to Our a K10, which justify the proposed

NNSC loss.

3.2.2.4 Unsupervised Extractive Summarization

The classic representation of a sentence uses either a single embedding or the (contextu-

alized) embeddings of all the words in the sentence. In this section, we would like to show

that both options are not ideal for extracting a set of sentences as a document summary.

Table 3.1 indicates that our multiple codebook embeddings of a sentence capture its

different facets well, so we represent a document summary S as the union of the multi-facet

embeddings of the sentences in the summary R(S) = ∪T
t=1{F̂u(St)}, where {F̂u(St)} is the

set of column vectors in the matrix F̂u(St) of sentence St.

A good summary should cover multiple facets that well represent all topics/concepts in

the document [103]. The objective can be quantified as discovering a summary S whose

multiple embeddings R(S) best reconstruct the distribution of normalized word embedding

w in the document D [103]. That is,

argmax
S

∑
w∈D

α

α + p(w)
max
s∈R(S)

wTs, (3.7)

62

where α
α+p(w)

is the weights of words we used in the sentence similarity experiments [7].

We greedily select sentences to optimize Equation 3.7 as in Kobayashi et al. [103].

Setup: We compare our multi-facet embeddings with other alternative ways of modeling

the facets of sentences. A simple way is to compute the average word embedding as a

single-facet sentence embedding.4 This baseline is labeled as Sent Emb. Another way is

to use the (contextualized) embedding of all the words in the sentences as different facets

of the sentences. Since longer sentences have more words, we normalize the gain of the

reconstruction similarity by the sentence length. The method is denoted as W Emb. We

also test the baselines of selecting random sentences (Rnd) and first 3 sentences (Lead-3) in

the document.

The results on the testing set of CNN/Daily Mail [84, 191] are compared using F1 of

ROUGE [123] in Table 3.3. R-1, R-2, and Len mean ROUGE-1, ROUGE-2, and average

summary length, respectively. All methods choose 3 sentences by following the setting in

Zheng and Lapata [260]. Unsup, No Sent Order means the methods do not use the sentence

order information in CNN/Daily Mail.

In CNN/Daily Mail, the unsupervised methods which access sentence order information

such as Lead-3 have performance similar to supervised methods such as RL [26]. To

evaluate the quality of unsupervised sentence embeddings, we focus on comparing the

unsupervised methods which do not assume the first few sentences form a good summary.

Results: In Table 3.3, predicting 100 clusters yields the best results. Notice that our

method greatly alleviates the computational and sample efficiency challenges, which allows

us to set cluster numbers K to be a relatively large number.

The results highlight the limitation of classic representations. The single sentence

embedding cannot capture its multiple facets. On the other hand, if a sentence is represented

by the embeddings of its words, it is difficult to eliminate the bias of selecting longer or

4Although Equation 3.7 weights each word in the document, we find that the weighting α
α+p(w) does not

improve the sentence representation when averaging the word embeddings.

63

Setting Method R-1 R-2 Len

Unsupvised
No Sentence Order

Random 28.1 8.0 68.7
Textgraph (tfidf)† 33.2 11.8 -

Textgraph (BERT)† 30.8 9.6 -
W Emb (GloVe) 26.6 8.8 37.0

Sent Emb (GloVe) 32.6 10.7 78.2
W Emb (BERT) 31.3 11.2 45.0

Sent Emb (BERT) 32.3 10.6 91.2
Our c (K=3) 32.2 10.1 75.4
Our c (K=10) 34.0 11.6 81.3

Our c (K=100) 35.0 12.8 92.9

Unsupvised
Lead-3 40.3 17.6 87.0

PACSUM (BERT)† 40.7 17.8 -
Supervised RL* 41.7 19.5 -

Table 3.3: The ROUGE F1 scores of different methods on CNN/Daily Mail dataset. The
results with † are taken from Zheng and Lapata [260]. The results with * are taken from Ce-
likyilmaz et al. [26].

shorter sentences and a facet might be composed by multiple words (e.g., the input sentence

in Table 3.1 describes a service, but there is not a single word in the sentence that means

service).

3.2.2.5 Unsupervised Phrase Similarity

Recently, Dubossarsky et al. [51] discovered that the multiple embeddings of each word

may not improve the performance in word similarity benchmarks even if they capture more

senses or facets of polysemies. Since our method can improve the sentence similarity

estimation, we want to see whether multi-facet embeddings could also help the phrase

similarity estimation.

In addition to SC in Equation 3.5, we also compute the average of the contextualized

word embeddings from our transformer encoder as the phrase embedding. We find that the

cosine similarity between the two phrase embeddings is a good similarity estimation, and

the method is labeled as Ours Emb.

Setup: We evaluate our phrase similarity using SemEval 2013 task 5(a) English [107]

and Turney 2012 [223]. The task of SemEval 2013 is to distinguish similar phrase pairs

64

Method SemEval 2013 Turney (5) Turney (10)
Model Score AUC F1 Accuracy Accuracy

BERT
CLS 54.7 66.7 29.2 15.5
Avg 66.5 67.1 43.4 24.3

GloVe Avg 79.5 73.7 25.9 12.9
FCT LM† Emb - 67.2 42.6 27.6

Ours SC 80.3 72.8 45.6 28.8
(K=10) Emb 85.6 77.1 49.4 31.8

Ours SC 81.1 72.7 45.3 28.4
(K=1) Emb 87.8 78.6 50.3 32.5

Table 3.4: Performance of phrase similarity tasks. Every model is trained on a lowercased
corpus. In SemEval 2013, AUC (%) is the area under the precision-recall curve of classifying
similar phrase pairs. In Turney, we report the accuracy (%) of predicting the correct similar
phrase pair among 5 or 10 candidate pairs. The results with † are taken from Yu and Dredze
[252].

from dissimilar phrase pairs. In Turney (5), given each query bigram, each model predicts

the most similar unigram among 5 candidates, and Turney (10) adds 5 more negative phrase

pairs by pairing the reverse of the query bigram with the 5 unigrams.

Results: The performance is presented in Table 3.4. Ours (K=1) is usually slightly

better than Ours (K=10), and the result supports the finding of Dubossarsky et al. [51]. We

hypothesize that unlike sentences, most of the phrases have only one facet/sense, and thus

can be modeled by a single embedding well.

Even though being slightly worse, the performance of Ours (K=10) remains strong

compared with baselines. This implies that the similarity performance is not sensitive to

the number of clusters as long as sufficiently large K is used because the model is able to

output multiple nearly duplicated codebook embeddings to represent one facet (e.g., using

two centers to represent the facet related to company in Figure 3.1). The flexibility alleviates

the issues of selecting K in practice. Finally, the strong performance in Turney (10) verifies

that our encoder respects the word order when composing the input sequence.

65

3.2.3 Related Work

Topic modeling [19] has been extensively studied and widely applied due to its inter-

pretability and flexibility of incorporating different forms of input features [152]. Cao et al.

[23] and Srivastava and Sutton [204] demonstrate that neural networks could be applied to

discover semantically coherent topics. Instead of optimizing a global topic model, our goal

is to efficiently discover different sets of topics/clusters on the words beside each (unseen)

phrase or sentence.

Recently, Gupta et al. [76] and Gupta et al. [77] discover that global clustering could

improve the representation of sentences and documents. In our work, we show that a local

clustering could be used in several downstream applications, including word importance

estimation for measuring sentence similarity. Whether combining global clustering and

local clustering could lead to further improvement is an interesting future research direction.

Sparse coding on word embedding space is used to model the multiple facets of a

word [61, 8], and parameterizing word embeddings using neural networks is used to test

hypothesis [78] and save storage space [197]. Besides, to capture asymmetric relations

such as hypernyms, words are represented as single or multiple regions in Gaussian em-

beddings [226, 9] rather than a single point. However, the challenges of extending these

methods to longer sequences are not addressed in these studies.

One of our main challenges is to design a loss for learning to predict cluster centers while

modeling the dependency among the clusters. This requires a matching step between two sets

and computing the distance loss after the matching [52]. One popular loss is called Chamfer

distance, which is widely adopted in the auto-encoder models for point clouds [247, 130],

while more sophisticated matching loss options are also proposed [207, 13]. The goal of the

previous studies focuses on measuring symmetric distances between the ground truth set

and predicted set (usually with an equal size), while our loss tries to reconstruct the ground

truth set using much fewer codebook embeddings.

66

Other ways to achieve the permutation invariant loss for neural networks include sequen-

tial decision making [236], mixture of experts [248, 234], beam search [176], predicting the

permutation using a CNN [182], transformers [206, 75, 25] or reinforcement learning [237].

In contrast, our goal is to efficiently predict a set of cluster centers that can well reconstruct

the set of observed instances rather than directly predicting the observed instances.

3.3 Applications on Relation Extraction

Distant supervision assumes that a sentence pattern expresses a relation if the sentence

pattern co-occurs with an entity pair and the entity pair has the relation. For example, we

assume the sentence pattern “$ARG1, the partner of fellow $ARG2” is likely to express the

spouse relation if we observe a text clip “... Angelina Jolie, the partner of fellow Brad Pitt

...” in our training corpus and a knowledge base tells us that Angelina Jolie and Brad Pitt

has the spouse relation. Accordingly, we can infer that another entity pair is likely to have

the spouse relation if we observe the text “, the partner of fellow” between them in a new

corpus.

Universal schema [184] extends this assumption by treating every sentence pattern as a

relation, which means we assume that sentence patterns or relations in a knowledge base

are similar if they co-occur with the same entity pair. For example, we assume “$ARG1,

the partner of fellow $ARG2” and “$ARG1, the wife of fellow $ARG2” are similar if they

both co-occur with (Kristen Bell, Dax Shepard). Consequently, we can infer that “$ARG1,

the wife of fellow $ARG2” also implies spouse relation as “$ARG1, the partner of fellow

$ARG2” even if the knowledge base does not record the spouse relation between Kristen

Bell and Dax Shepard.

Compositional universal schema [225] realizes the idea by using a LSTM [86] to encode

each sentence pattern into an embedding and encouraging the embedding to be similar to

the embedding of the co-occurred entity pair. As in the lower part of Figure 3.4, the model

makes the embeddings of two sentence patterns similar if they co-occur with the same entity

67

Training Data

Neural Encoder Neural Encoder

Baseline: Compositional Universal Schema

CloseClose

Neural Encoder
and Decoder

Neural Encoder
and Decoder

Pattern Embedding 5

Entity Pair
Embedding

Close

Close

Multi-facet Universal Schema

Table Lookup

Table Lookup

Pattern Embedding 4
Pattern Embedding 3
Pattern Embedding 2
Pattern Embedding 1

Pattern Embedding 5
Pattern Embedding 4
Pattern Embedding 3
Pattern Embedding 2
Pattern Embedding 1

Entity Pair
EmbeddingPattern Embedding Pattern Embedding

co-occurSentence Pattern
$ARG1 moved in

with $ARG2

Sentence Pattern
$ARG1, the partner

of fellow $ARG2

Entity Pair
$ARG1 = Angelina Jolie

$ARG2 = Brad Pitt

co-occur

Figure 3.4: Comparison between the multi-facet and compositional universal schema. In
our training loss, we encourage one of the facet embeddings from a sentence pattern to be
similar to its co-occurred entity pair.

pair. Baldini Soares et al. [12] rely on a similar assumption and achieve state-of-the-art

results on supervised RE tasks by replacing the LSTM with a large pre-trained language

model.

Nevertheless, one sentence pattern could contain multiple facets, and each facet could

imply a different relation. In Figure 3.4, “$ARG1, the partner of fellow $ARG2” could

imply the entity pair has the spouse relation, the co-worker relation, or both. “$ARG1 moved

in with $ARG2” could imply the spouse relation, the parent relation, ..., etc. If we squeeze

the facets of a sentence pattern into a single embedding, the embedding is more likely to be

affected by the irrelevant facets from other patterns co-occurred with the same entity pair

(e.g., “$ARG1 moved in with $ARG2” might incorrectly imply the co-worker relation).

Another limitation is that single embedding representation can only provide symmetric

similarity measurement between two sentence patterns. Thus, an open research challenge is

68

to predict the entailment direction of two sentence patterns only based on their co-occurring

entity pair information.

To overcome the challenges, we propose multi-facet universal schema, where we assume

that two sentence patterns share a similar facet if they co-occur with the same entity pair. As

in Figure 3.4, we use a neural encoder and decoder to predict multiple facet embeddings

of each sentence pattern and encourage one of the facet embeddings to be similar to the

entity pair embedding. As a result, the facets that are irrelevant to the relation between

the entity pairs are less likely to affect the embeddings of entity pairs and other related

sentence patterns. For example, the parent facet of “$ARG1 moved in with $ARG2” could

be excluded when updating the embeddings of (Angelina Jolie, Brad Pitt).

In our experiments, we first compare the multi-facet embeddings with the single-facet

embedding in distantly supervised RE tasks. The results demonstrate that multiple facet

embeddings significantly improve the similarity measurement between the sentence patterns

and knowledge base relations. Besides RE, we also apply multi-facet embeddings to

unsupervised entailment detection tasks. In a newly collected dataset, we show that multi-

facet universal schema significantly outperforms the other unsupervised baselines.

For details of our methods and experiments, please see Paul et al. [171].

3.3.1 Method

Our method is illustrated in Figure 3.5. In Section 3.3.1.1, we first provide our problem

setup: We are given a knowledge base (KB) and a text corpus during training. Our goal

is to extract relations by measuring the similarity between KB relations and an (unseen)

sentence pattern or to detect entailment between two sentence patterns. In Section 3.3.1.2,

we describe our objective function, which encourages the embeddings of co-occurred entity

pairs to be close to the embeddings of their closest pattern facets. Finally, in Section 3.3.1.3,

we provide our scoring functions for distantly supervised RE and unsupervised entailment

tasks.

69

$ARG1 works
with $ARG2

Entity Pairs →
e1 eJej

1 1

……

……

0 1

Closest to e1

… …

0.2

Negative
Sample1 1

1 0

……

0 0

$ARG1 and his
successor $ARG2

ej+1

per:spouse

per:parent

(G
oo

gle
,

Fa
ce

boo
k)

(Bob
 Brya

n,

Mike
 Brya

n)

(Ang
elin

a J
oli

e,

Brad
 Pitt)

(Bara
ck

 O
bam

a,

Don
ald

 Tr
um

p)

01

co-occuri th Input pattern Si: $ARG1 ’s partner $ARG2

$ARG1

‘s

partner

$ARG2

<eos>

Transformer
encoder  

(TE)

si,1

si,2

si,3

si,4

si,5

L1d

L2d

L3d

L4d

L5d

Embeddings of $ARG1 ’s partner $ARG2  
and Entity Pair Embeddings

Transformer
decoder

(TD)
Lo

(Google, Facebook)

(Bob Bryan, Mike Bryan)

(Angelina Jolie, Brad Pitt)

(Barack Obama, Donald Trump)

Push Away

Pull Closer
KB

Training  
Corpus

Neural Encoder and Decoder

Co-occurrence Matrices

si,2

Visualize

Sentence
Patterns ↓

e1

Figure 3.5: An illustration of the proposed method. The training signal comes from the
co-occurrence matrices of the KB and training text corpus on the right. On the lower left,
we visualize our neural encoder, which captures the compositional meaning of tokens in the
sentence pattern, and our neural decoder, which models the dependency among multiple
facet embeddings. When a sentence pattern co-occurs with an entity pair, the training loss
minimizes the distance between the entity pair embedding and the closest facet embedding
of the sentence pattern (e.g., 0.2 between si,2 and e1). Trainable parameters in our model
are highlighted using red borders. On the upper left, we visualize the embedding space to
establish the connection between our method and clustering.

3.3.1.1 Background and Problem Setup

Our RE problem setup is the same as compositional universal schema [225]. First,

we run named entity recognition (NER) and entity linking (EL) on a raw corpus. After

identifying the entity pairs in each sentence, we prepare a co-occurrence matrix as in

Figure 3.5. Similarly, we represent the KB relations between entity pairs as a co-occurrence

matrix and merge the matrices from the KB and the training corpus. The merged matrix has

yi,j = 1 if the ith sentence pair or KB relation co-occurs with the jth entity pair and yi,j = 0

otherwise.

70

During testing, we use NER to extract an entity pair and the sentence pattern, which

might not have been seen in the training corpus. Next, we extract relations by computing the

similarity between the sentence pattern embeddings and the embeddings of the applicable

KB relations. Besides RE, we also detect the entailment between two sentence patterns by

comparing their embeddings.

3.3.1.2 Objective Function

We use a seq2seq model as in Section 3.2 to compute facet embedding (i.e., sentence

pattern embedding). When measuring the distance between the jth entity pair and the ith

sentence pattern, we compute the Euclidean distance between the entity pair embedding ẽj

and its closest facet embedding si,k of the ith sentence pattern. The distance is defined as

D({si,k}Kk=1, ẽj) =
K

min
k=1

min
0≤ηk≤1

||ẽj − ηksi,k||2, (3.8)

where the entity pair embedding is normalized (i.e., ||ẽj|| = 1). During testing, we ignore

the magnitude of facet embeddings, so we use ηk to eliminate the magnitude of facet

embeddings si,k during training. We do not allow negative ηk to prevent the gradient flow

from pushing si,k toward the inverse direction of ẽj and we ensure ηk ≤ 1 to avoid the

neural model from outputting si,k with a very small magnitude.

As in Figure 3.5, we minimize the distance D({si,k}Kk=1, ẽj) in our loss function when

the ith sentence pair co-occurs with the jth entity pair (i.e., yi,j = 1). For negative samples

(i.e., yi,j = 0), we maximize the distance instead. That is, our loss function is defined as

∑
(i,j)∈R

(2 · yi,j − 1)ri,jD({si,k}Kk=1, ẽj) + Ω, (3.9)

and the regularization term Ω in the loss function will be described in Appendix B.2. R is

a set that includes all positive and negative samples. Positive samples are (i, j) such that

71

Asym({s̃i,k}, {s̃j,m})
s̃i,k
s̃j,m

Asym({s̃j,m}, {s̃i,k})
s̃i,k
s̃j,m

Figure 3.6: Comparison of the asymmetric similarities. Asym({s̃i,k}, {s̃j,m}) >
Asym({s̃j,m}, {s̃i,k}) because the average cosine distance on the left is smaller than that
on the right.

yi,j = 1 and the negative samples are constructed by pairing a randomly selected sentence

pattern with the jth entity pair. To balance the influence of popular entity pairs (i.e., entity

pairs that co-occur with many sentence patterns) and rare entity pairs on our model, we set

the weight of each pair, ri,j ∝ 1∑
i yi,j

and
∑

(i,j)∈R ri,j

|R| = 1.

We generate the embeddings for KB relations in a similar way. We use a single token

to represent the relation and append an <eos> (e.g., per:spouse <eos>) to form the input

of our neural model. The KB relations usually co-occur with more entity pairs, so we set

the number of facet embeddings for KB relations Krel to be larger than the number of facet

embeddings for sentence patterns K.

3.3.1.3 Scoring Functions

In compositional universal schema, the similarity between the ith and jth sentence

patterns are measured by the symmetric cosine similarity s̃Ti,1s̃j,1, where s̃i,1 =
si,1

||si,1||
. When

using multiple embeddings to represent a sentence pattern, we can compute the asymmetric

similarity as

Asym({s̃i,k}, {s̃j,m}) =

∑K
m=1

K
max
k=1

(s̃Ti,ks̃j,m)

K
. (3.10)

72

In an example of Figure 3.6, a red square s̃i,k is close to all the blue points, which leads to a

high Asym({s̃i,k}, {s̃j,m}).

Between two sentence patterns with entailment relation, we empirically find that the

embeddings of a premise (the more specific pattern) often have some facet embeddings that

are far away from all the embeddings of its hypothesis (the more general pattern). Relying

on the tendency, we could detect the direction of the entailment relation. For example, the

ith sentence pattern (red squares) in Figure 3.6 is more likely to be premise if the ith and jth

(blue circles) sentence patterns have an entailment relation.

We suspect the reason is that more specific patterns could contain more words that are

similar to the words of other patterns expressing different relations. For example, “$ARG1

, the wife of fellow $ARG2” have a facet embedding for spouse relation and another facet

embedding for the co-worker relation because the pattern has high word overlapping with

“$ARG1 , the wife of $ARG2” and “$ARG1 and her fellow $ARG2”. Another possible reason

is that the articles in our corpus tend to use more specific patterns to express the relation

between a pair of entities [199].

When performing RE, we compute the symmetric similarity between ith sentence pattern

and jth KB relation Sim({s̃i,k}, {s̃j,m}) by

Asym({s̃i,k}, {s̃j,m}) + Asym({s̃j,m}, {s̃i,k})
2

. (3.11)

3.3.2 Experiments

We primarily compare our method with compositional universal schema (CUSchema)

[225] because CUSchema is one of the state-of-the-art RE methods in the small model regime

(without using large pre-trained language models) [31, 28]. We use distant-supervised RE

tasks to evaluate our symmetric similarity measurement in Section 3.3.2.1, and detect

entailment between sentence patterns to evaluate our asymmetric similarity measurement in

Section 3.3.2.2.

73

3.3.2.1 Relation Extraction

We follow the same training data and testing protocol in compositional universal schema

(CUSchema) [225]5 to highlight the benefit of predicting multiple facet embeddings, and

the relation extraction step in TAC KBP slot-filling tasks is used to compare the different

models.

Setup: The training data for our RE models are prepared by distant supervision without

requiring any manually labeled data. The relations in Freebase [20] are mapped to TAC

relations (e.g., org:city_of_headquarter) and the NER tagger and entity linker are run in a

raw text corpus. Then, the training data is cleaned using the methods in Roth et al. [187].

During testing, we are given a query containing the head entity and a query TAC relation

in the slot-filling tasks, and the goal is to extract the tail entity from the candidate sentences.

The NER tagger and query expansion are used to gather the candidate sentence patterns,

and we compute the similarity scores from different models between the candidate sentence

patterns and query relation. Finally, we compare the extracted second entity with the ground

truth using exact string matching and report the precision, recall, and F1 scores.

Following Verga et al. [225], we use TAC 2012 as our validation set to determine the

threshold score for each TAC relation. Each model’s hyperparameters are tuned separately

using the validation set (TAC 2012) to ensure a fair comparison.

We compare the following methods:

Ours (Trans): Our method that measures the similarity between the sentence pattern {s̃i,k}

and TAC relation {s̃j,m} using Sim({s̃i,k}, {s̃j,m}) in Equation 3.11. Trans is an abbrevia-

tion of the transformer encoder. We set K = 5 and Krel = 11 based on the validation set.

Ours (LSTM): The same as Ours (Trans) except that we use bi-LSTM as our encoder

instead.

Ours (Single-*): Our methods that use single facet embedding to represent each sentence

5https://github.com/patverga/torch-relation-extraction

74

Method
TAC 2012 (Validation) TAC 2013 TAC 2014
Prec Recall F1 Prec Recall F1 Prec Recall F1

USchema* 34.8 23.7 28.2 42.6 29.4 34.8 35.5 24.3 28.8
CUSchema (LSTM)* 27.0 32.7 29.6 39.6 32.2 35.5 32.9 27.3 29.8
Ours (Single-LSTM) 25.7 21.7 23.5 30.4 26.3 28.2 22.1 20.5 21.3
Ours (Single-Trans) 26.1 21.6 23.7 29.5 25.2 27.2 19.0 21.2 20.0

Ours (LSTM) 32.0 28.9 30.3 41.3 33.9 37.2 34.1 29.5 31.6
Ours (Trans) 33.6 27.7 30.4 42.5 33.2 37.3 34.6 28.5 31.3

USchema + CUSchema (LSTM)* 29.3 32.8 30.9 41.9 34.4 37.7 29.3 34.1 31.5
USchema + Ours (LSTM) 29.2 33.7 31.3 38.1 38.9 38.5 31.5 34.4 32.9
USchema + Ours (Trans) 30.4 33.9 32.1 39.0 38.8 38.9 32.0 34.0 33.0

Table 3.5: Distantly supervised relation extraction using different versions of the universal
schema. All numbers are %. CUSchema refers to compositional universal schema. Trans is
an abbreviation of transformer. The best scores of the single models and ensemble models
are highlighted. *The performance of TAC 2013 and 2014 is copied from Verga et al. [225].

pattern or KB relation. When setting K = Krel = 1, our decoder becomes the interleaving

feedforward layers and cross-attention layers attending to the output embeddings of the

encoder.

CUSchema (LSTM): Compositional universal schema [225]. The method is similar to

Ours (Single-LSTM) but uses a different loss function, neural architecture (no decoder), and

hyperparameter search procedure.

USchema: Universal schema [184] estimates every sentence pattern embedding by factoriz-

ing the co-occurrence matrices (i.e., replacing the bi-LSTM in CUSchema with a look-up

table).

USchema + *: Verga et al. [225] show that taking the maximal similarity between USchema

and CUSchema model improves the F1. We also apply the same merging procedure to our

model.

Results: In Table 3.5, the proposed method Ours (Trans) significantly outperform

CUSchema (LSTM) before and after combining with universal schema. As far as we know,

our proposed multi-facet embedding is the first method that outperforms compositional

universal schema using the same training signal in the distant-supervised RE benchmark

they proposed.

75

Premise (Specific Pattern) Hypothesis (General Pattern) Label Ours CUSchema Ours Diff Freq Diff
$ARG1 , the president of the $ARG2 $ARG1 , the leader of the $ARG2 Entailment 0.98 0.94 + +

$ARG1 ’s chairman , $ARG2 $ARG1 ’s leader , $ARG2 Entailment 0.95 0.87 + -
$ARG1 ’s father , $ARG2 $ARG1 ’s leader , $ARG2 Other 0.08 0.52 NA NA

$ARG1 worked with $ARG2 $ARG1 deal with $ARG2 Entailment 0.92 0.83 + -
$ARG1 had with $ARG2 $ARG1 deal with $ARG2 Other 0.96 0.88 NA NA
$ARG1 said the $ARG2 $ARG1 say the $ARG2 Paraphrase 0.93 0.92 NA NA

Table 3.6: Example of sentence pattern pairs, its label, and our predictions in our entailment
experiment. Ours and Ours Diff are the predictions from Ours (Trans). Freq Diff is the
frequency difference baseline.

Although the recall of USchema is low because it does not exploit the similarity be-

tween the patterns (e.g., “$ARG1 happily married $ARG2” is similar to “$ARG1 married

$ARG2”), USchema has a high precision because it also won’t be misled by the similarity

(e.g., “$ARG1, and his wife $ARG2” expresses the spouse relation but “$ARG1, his wife,

and $ARG2” does not) [225]. Thus, combining USchema and Ours (Trans) leads to the

best performance.

Ours (Trans) and Ours (LSTM) perform similarly. Furthermore, Ours (LSTM)

performs much better than Ours (Single-LSTM), which demonstrates the effectiveness

of using multiple embeddings. Notice that multiple facet embeddings could improve the

performance even after the training data have been cleaned. This indicates that our method

is complementary to the noise removal methods in Roth et al. [187].

3.3.2.2 Entailment Detection

Entailment is a common and fundamental relation between two sentence patterns. Some

examples could be seen in Table 3.6. Unsupervised hypernym detection (i.e., entailment at

the word level) is extensively studied [199], but we are not aware of any previous work on

unsupervised entailment detection at the sentence level, nor any existing entailment dataset

between sentence patterns. Thus, we create one.

Dataset Creation: We use WordNet [150] to discover the entailment candidates of

sentence pattern pairs and manually label the candidates. For each sentence pattern in the

training data of Verga et al. [225], we replace one word at a time with its hypernym based

76

on the WordNet hierarchy. The two sentence patterns before and after replacement form an

entailment candidate.

We label 1,500 pairs of the most popular sentence pattern, which co-occurs with the

highest number of unique entity pairs. Each candidate could be labeled as entailment,

paraphrase, or other. Finally, around 20% of the candidates are randomly chosen to form the

validation set, and the rest are in the test set.

In this dataset, only 22% and 10% of candidates are labeled as entailment and paraphrase,

respectively. This suggests that entailment relation between two sentence patterns is hard

to be inferred by only the hypernym relation (i.e., entailment relation at the word level) in

WordNet.

Setup: We evaluate entailment detection using the typical setup and metrics in hypernym

detection [199]. Negative examples include the candidates labeled as paraphrases and others.

We compare the average precision of different methods (i.e., AUC in the precision-recall

curve) [81]. In addition, we predict the direction of entailment relation in each pair (i.e.,

which pattern is the premise) and report the accuracy. Many hypotheses have the same

hypernyms such as the leader in Table 3.6, so we also report the macro accuracy of direction

detection averaged across every hypernym in the hypotheses.

The task is challenging because all the candidates have a word-level entailment relation

if their compositional meaning is ignored. Furthermore, we cannot infer the entailment

direction based on the tendency that longer sentence patterns tend to be more specific

because most of the candidate pairs in this dataset have the same length.

As described in Section 3.3.1.3, our models detect the direction by computing Ours

Diff as Asym({s̃i,k}, {s̃j,m})− Asym({s̃j,m}, {s̃i,k}) and predict the ith sentence pattern

to be premise if Ours Diff > 0. When performing entailment classification, we use as the

asymmetric similarity scores Asym({s̃i,k}, {s̃j,m}). We report the performance of Ours

(Trans), which is the same best model in the RE experiment.

77

Method
Classification Direction Detection

AP@all Micro Acc Macro Acc
Random 21.9 50.0 50.0
Freq Diff 21.4 54.5 47.3

CUSchema 31.2 50.0 50.0
Ours (Single) 23.6 50.0 50.0

Ours 37.8 63.1 55.4

Table 3.7: Comparison of entailment detection methods. AP and Acc are average precision
and accuracy, respectively. All numbers are %. Our methods use a transformer as their
encoder.

In entailment classification, we compare the results with cosine similarity from Ours

(Single-Trans) and CUschema. We also test the frequency difference, which is a strong

baseline in hypernym direction detection [33]. Freq Diff = Freq(Sj) - Freq(Si) where

Freq(Si) is the number of unique entity pairs co-occurred with the ith sentence pattern. The

baseline predicts Si to be premise if Freq Diff > 0 because more general sentence patterns

should co-occur with more entity pairs. As a reference, we also report the performance of

random scores.

Results: The quantitative and qualitative comparison are presented in Table 3.7 and Ta-

ble 3.6, respectively. Our model that uses multi-facet embeddings significantly outperforms

the other baselines. We hypothesize that a major reason is that the sentence patterns with an

entailment relation are often similar in some but not all of the facets, and our asymmetric

similarity measurement is better at capturing the facet overlapping.

3.3.3 Related Work

Relation extraction (RE) is widely studied. Han et al. [79] summarize the trend of recent

studies and point out one of the major challenges is the cost of collecting the labels. Distant

supervision [153] and its follow-up work enable us to collect a large amount of training data

at a low cost, but the violation of its assumptions often introduces substantial noise into the

supervision signal. Our goal is to alleviate the noise issue by representing every sentence

pattern using multiple embeddings.

78

Other noise reduction methods have also been proposed [187]. For instance, we can

adopt multi-instance learning techniques [250, 211, 4], global topic model [2], or both [186].

We can also reduce the noise by counting the number of shared entity pairs between a

sentence pattern and a KB relation [213, 208]. Nevertheless, the studies focus on mitigating

the noise caused by assuming similarity between the sentence patterns and KB relations that

co-occur with the same entity pairs, while our method can also reduce the noise from two

sentence patterns sharing the same entity pair. Besides, our method is complementary to

popular noise reduction methods because our improvement is shown in the training data that

have been cleaned [225].

Our method is conceptually related to some studies for lexical semantics. For example,

word sense induction or unsupervised hypernymy detection can be addressed by clustering

the co-occurring words [159, 9, 33]. However, the clustering-based methods do not apply to

RE because the co-occurring matrix for RE is much sparser.

3.4 Applications on Citation and Authorship Prediction

In Section 3.2, we find that the longer input sequence lengths often contain more facets

and might attract more interactions from diverse items. In this section, we want to test

the effectiveness of multiple embeddings on representing a short document, the title and

abstract of a paper. We choose two types of interactions/co-occurrence signals: citation

and authorship because a paper might be written by different types of authors or cited

by different types of papers. For instance, a multidisciplinary paper written by machine

learning (ML) researchers and biologists is about applying ML to a biomedical application.

To represent the paper as a single embedding, the existing systems are forced to average

embeddings of ML researchers and biologists, and the resulting paper embeddings might be

far away from both types of author embeddings.

In this section, we propose a content-based neural recommendation system that predicts

cluster centers from only the title and abstract of a paper and each cluster center is an

79

Paper 1

Paper i

title/abstract

(Ti)

Paper I

…

…

Neural
Model F

Authors (A) Citing Papers (C)
a1 aJaj

0

……

……

1 0

c1 cNcn

Best for a1

… …

1 0

Predicted
Multi-facet

Paper
Embedding

0.8

0 1

……

……

1 0

… …

1

Negative Sample Paper cn cites paper I

Author a1
writes paper I

pai,2T

loss
Ya Yc

Figure 3.7: The proposed learning framework. We train the components with red bolder
(i.e., F , A, and C) by minimizing the difference between our predictions and the interaction
matrices, Y a and Y c. During testing, we encode an unseen paper using our neural model
into K embeddings (K = 5 in this case) and predict the relevancy scores by choosing the
best one among the K embeddings.

embedding corresponding to a facet of the paper. To achieve the goal, we encourage the

multi-facet embeddings of papers to be similar during training if they are written by the

same author(s) or cited by the same paper(s). Our experiment results demonstrate that the

proposed multi-facet embeddings improve our authorship/citation prediction model.

3.4.1 Method

3.4.1.1 Background and Problem Formulation

As in Figure 3.7, the inputs of our authorship prediction problem are a training paper set

T = ∪I
i=1{Ti} and a I × J authorship matrix Y a = [yai,j]i,j , where Ti is the concatenation

of the title and abstract of the ith paper and yai,j = 1 if the jth author writes the ith paper

and yai,j = 0 otherwise. Our goal is to predict the likelihood that the jth author writes an

unseen paper based on its text (i.e., fill each value in an empty row).

Similarly, in our citation prediction problem, we are given T and a citation matrix

Y c = [yci,n]i,n, where yci,n = 1 if the nth paper cites the ith paper, and we want to compute

80

how likely we can properly add a new citation into the nth paper based on the existing

citations of the nth paper.

3.4.1.2 Authorship and Citation Prediction

To simplify the explanation, we first describe our loss for author prediction and extend

the loss to the citation prediction.

To predict the authorship of an unseen paper, we learn a neural encoder F a to map the

text of the paper to multiple embeddings, and train the model by encouraging the embedding

of its author aj and one of the paper embeddings to be close to each other.

We define author prediction loss LS(F a,A, T,Y a) as

∑
(i,j)∈Ra

rai,j
(
S(F a(Ti),aj)− yai,j

)2
, (3.12)

where S(F a(Ti),aj) is the predicted relevancy score that represent how likely the jth author

writes the ith paper. F a(Ti) = {pa
i,k
}Kk=1 is a set of K embeddings of the ith paper and pa

i,k

is the kth embedding predicted by our neural model. aj is the embedding of the jth author

and the trainable author embedding matrix A = [aj]
J
j=1.

For each positive sample (i, j) such that yai,j = 1, we create a negative sample by

replacing the ith paper with a randomly selected paper. Ra is a set that includes all positive

and negative samples. To avoid the model biased toward the authors who write many papers,

we set the weight of each pair rai,j to be proportional to the inverse of the paper number

written by the jth author, 1∑
i y

a
i,j

, as in Equation 3.9, and normalize the weights to make the

average of rai,j to be 1.

In the existing work like Bansal et al. [14], each paper is represented as a single em-

bedding F a(Ti) = {pa
i,1
} and S(F a(Ti),aj) = aT

j p
a
i,1

. Then, to increase relevancy scores

between each paper and its authors, Equation 3.12 encourages the paper embedding to be

the average of its author embeddings and encourages its author embeddings close to each

81

other. When the authors have diverse backgrounds, forcing the embeddings of the papaer

and its authors to be similar results in the loss of information.

To address the limitation, we represent each paper using K different embeddings. As

in Figure 3.7, we use a neural model to encode the title and abstract of an input paper and

output K embeddings. For each author, we select the output paper embedding that produces

the largest dot product to predict how likely the author writes the paper. Formally, the

predicted paper embedding for the jth author

S(F a(Ti),aj) = max(0,
K

max
k=1

aT
j p

a

i,k
). (3.13)

We truncate S(F a(Ti),aj) to 0 when aT
j p

a
i,k

< 0 to ensure the relevancy scores are positive

and let a larger magnitude of pa
i,k

yield larger scores.

Using K > 1 embeddings, we allow the embeddings of authors with different back-

grounds to be more diverse. For example, assuming a biomedical researcher and a ML

researchers co-author a ML paper with a biomedical application, the embedding of the

biomedical author could be close to a paper embedding and the ML author embedding could

be close to another paper embedding.

The same loss can be applied to our citation prediction problem LS(F c,C, T,Y c)

except that we train the citing paper embedding matrix C and the neural model F c by

factorizing the citation interaction matrix Y c. Multiple paper embeddings are also helpful

in this problem because a multidisciplinary paper could be cited by other papers in different

domains and with very different citing paper embeddings.

We perform multi-task learning by sharing the most of the parameters in F a and F c and

jointly completes the values of the authorship matrix and citation matrix by minimizing

α · LS(F a,A, T,Y a) + β · LS(F c,C, T,Y c) + ΩS(F,H , T) (3.14)

82

i th input query: increasing ros 1.x communication security for medical surgery robot <sep> robot systems … <eos>

communication

1.x

ros

increasing

…

<eos>

Trans
Encoder

(TE)

ei,1

ei,2

ei,3

ei,4

ei,<eos>

…

Gd1

Gd2

Gd3

Gd4

Gd5

Trans
Decoder

(TD)

Go1

Go2

Go3

Go4

Go5

Neural Encoder and Decoder Magnitude Estimator

pi,1

pi,2

pi,3

pi,4

pi,5

di,1

di,2

di,3

di,4

di,5

Trans
(TM)

Author
MLP

Citation
MLP

ρ

τ

Output: Fa(Ti)={pai,k}

Output: Fc(Ti)={pci,k}

Cryptobotics: Why Robots Need Cyber Safety

A novel solution for securing robot
communications based on the

MQTT protocol and ROS Context-aware Monitoring
in Robotic Surgery

Multi-UAV Collaboration for
Search and Rescue Missions

Localization of networked
robot systems subject to

random delay and packet loss

The role of security in human-robot
shared environments: A case study in

ROS-based surveillance robots

Surgeon Training in Telerobotic
Surgery via a Hardware-in-the-

Loop Simulator

Author
Pull closer

Query 
author/reviewer

Recommendation by
searching neighbors

Security

Communication
Security

Communication
Efficiency

Surgery

Rescue

F(Ti)={pi,k}

Pull closer writecite

Figure 3.8: The architecture of our neural model and its predicted K = 5 paper embeddings
when its input is a lowercased robotics paper [49]. All the embeddings of input papers
(colored dots), authors (white dots), and citing papers (black dots) are mapped to the same
vector space. The top-left purple box outputs paper embedding p

i,k
and the top-right yellow

box outputs paper embedding pa
i,k

for authorship prediction and pc
i,k

for citation prediction.
We manually tag each paper embedding (e.g., security and surgery) according to the citing
papers closest to them for the visualization purpose.

where we set α : β = 5 : 1 and ΩS(F,H , T) is an autoencoder regularization term as we did

in Equation 3.9 for the relation extraction model. Please see Appendix B.3 for the definition

of ΩS(F,H , T). The loss encourages some embeddings of two papers to be similar (i.e.,

the papers share some facets) if the papers are likely to be written by the same author or

cited by the same paper.

In the lower part of Figure 3.8, we visualize the predicted embeddings of the input

query paper and the nearby embeddings of citing papers. When a paper cites the query,

the embedding of the citing paper is pulled closer to the closest query paper embedding

during training. Having multiple embeddings lets the citing paper embedding be updated by

relevant facets of the query and ignore the irrelevant ones.

83

3.4.2 Neural Architecture

We modify the seq2seq architecture in Section 3.2 for our paper recommendation

applications. The main difference is that we let the output of transformer decoder ui,k

passes through K different linear layers Go
k: p

i,k
= Go

k(ui,k). We discover that this extra

layer is crucial to prevent multi-facet embeddings collapsing to a single embedding in

recommendation tasks.

As in Figure 3.8, we use a transformer to encode the input sequence and model the

compositional meaning of words. Then, we use another transformer as our decoder to

reduce the number of embeddings to K and also model the dependency among the output

embeddings. Notice that the transformers could be replaced by any encoder and we also try

bi-GRU [39] as in Bansal et al. [14].

In Equation 3.13, the higher magnitude of paper embedding pa
i,k

leads to higher relevancy

scores to authors, so predicting the magnitude of each paper corresponds to predicting its

prior interaction probability (i.e., how many authors who write the paper).

We concatenate p
i,k

with the input embedding of our decoder di,k, and feed these

embeddings to another 2-layer transformer TM . The output embedding of TM is passed to

two feed-forward networks with 3 layers to convert the embedding to two vectors, [ρi,k]Kk=1

and [τi,k]
K
k=1, as the magnitudes of paper embeddings for author prediction pa

i,k
and citation

prediction pc
i,k

, respectively. That is,

∀1 ≤ k ≤ K pa

i,k
= ρi,kpi,k

, and pc

i,k
= τi,kpi,k

, (3.15)

where each paper embedding has its own predicted magnitude, because the importance of

facets might be different.

84

3.4.3 Experiments

In this section, we evaluate the ability of our model to predict how likely each author

writes an unseen paper and each citing paper cites an unseen paper.

3.4.3.1 Evaluation Setup

To train our model, we collect 260,857 papers from S2ORC [132] that are in CS domain

and cited by at least one ML/AI related paper on ArXiv. After we remove the authors who

only write one paper and the citing papers that cite less than 5 papers in our paper set, the

dataset contains 681,714 authorship and 9,313,128 citation interactions.

As in Bansal et al. [14], we randomly choose 10% of papers that have at least 5 authors

as our test set and take the 10% of the rest of the papers as our validation set. The test and

validation set consist of 3,033 and 26,018 papers, respectively. The performance on the

validation and test set follow the same trend, so we only report the results on the test set.

The hidden size of our encoder and decoder are 200 dimensions. The hyperparameters

(except the K value) are determined by optimizing the performance of the K = 1 model in

the validation set.

3.4.3.2 Comparing Methods

The first type of methods we test is the variants of our models. The second type is based

on widely-used cosine similarity between document embeddings. The third type is the

combination of the above two types.

K=1: We compute S(F a(Ti),aj) in Equation 3.13 as our authorship relevancy. This baseline

extends the cold-start recommendation model in Bansal et al. [14] by training on authorship

and citation data, adding regularization loss ΩS(F, T) in Equation 3.14, and replacing the

GRU encoder with transformers. When K = 1, our transformer decoder falls back to 3

layers of attention to the output of our encoder plus feed-forward layers.

Similar to the authorship prediction, we compute the relevancy score for citation predic-

tion using S(F c(Ti), cn), where F c(Ti) = {pc
i,k
}Kk=1 is a set of embeddings of ith paper for

85

citation prediction, cn is the embedding for nth citing paper, and the scoring function S(.)

is defined in Equation 3.13.

K=1 (no auto): We do not use the autoencoder regularization during training by setting the

γ = 0 in Equation 3.14. Notice that the method is closer to the model in Bansal et al. [14]

than K=1.

K=5: Our method using 5 embeddings to represent each paper. We try K = 3 and K = 5

and find that both models outperform K = 1 with a similar margin, so we focus on

comparing K = 5 and K = 1.

K=1 (GRU) and K=5 (GRU): Our model that uses 2-layers of bidirectional GRU (bi-GRU)

instead of 3 layers of transformer as the text encoder.

CBOW Avg: We first downweight the words with high frequency (e.g., stop words) [7]

and compute the weighted average of CBOW (continuous bag of words) embedding [148]

of each paper as our paper embedding. Then, the relevancy score between a testing paper

and an author is computed by the average of cosine similarities between the testing paper

embedding and the embeddings of all papers written by the author. Similarly, we average

cosine similarities for citation prediction. We adopt CBOW from Bansal et al. [14], which

is trained on ACM papers.

CBOW Max: Same as CBOW (Uniform) Max except that we compute the paper embedding

using Equation B.4 [7] as in CBOW Avg.

K=* + CBOW *: We combine the relevancy scores from different cold-start recommenda-

tion variants (scold) and those from CBOW Avg/Max (sCBOW) using λscold+(1−λ)sCBOW .

The λ = 0.2 is determined by optimizing the MAP of K = 1 model in the authorship

prediction.

3.4.3.3 Metrics

Given a query author, models predict which papers the query author writes in the test

set. Similarly, given a citing paper, we predict which papers it cites in the test set. In other

86

Method
Authorship Citation

MAP AUC NDCG R@50 R@200 MAP AUC NDCG R@50 R@200
K=1 (no auto) 10.15 90.71 25.14 47.68 72.84 18.50 96.48 33.83 71.29 88.80

K=1 12.36 90.44 26.87 46.88 70.85 18.81 96.27 33.89 69.22 88.13
K=3 15.13 89.68 29.61 52.89 73.98 22.86 96.39 37.70 75.19 89.96
K=5 15.51 90.49 29.91 52.74 73.76 24.06 96.28 38.71 75.15 89.76

K=1 (GRU) 13.80 90.47 28.08 47.42 70.43 21.24 96.58 36.12 71.34 89.11
K=5 (GRU) 15.53 90.63 30.03 53.37 74.33 25.90 97.05 40.39 76.81 90.68
CBOW Avg 16.67 87.42 29.96 44.06 63.02 16.33 91.10 30.11 50.20 71.88
CBOW Max 20.37 88.29 33.45 46.97 65.58 15.46 91.26 29.34 49.34 72.79

K=1 + CBOW Avg 18.70 90.54 32.43 51.02 71.77 21.76 94.80 35.92 64.82 83.06
K=5 + CBOW Avg 19.66 90.35 33.34 53.07 72.47 23.66 94.76 37.71 67.91 84.08
K=1 + CBOW Max 22.61 90.89 36.00 54.32 73.11 22.17 94.62 36.27 64.73 83.72
K=5 + CBOW Max 23.23 90.63 36.57 55.79 73.44 24.13 94.54 38.10 67.94 84.48

K=1 (GRU) + CBOW Max 22.96 90.93 36.29 54.80 73.13 22.95 94.82 37.00 66.09 84.25
K=5 (GRU) + CBOW Max 23.69 90.82 37.05 56.49 74.12 24.42 94.85 38.42 68.81 85.06

Table 3.8: Results for cold-start authorship and citation prediction in our test set. AUC is
the area under the ROC curve. We highlight the best values of cold-start recommendation
methods with and without using weighted average of CBOW. K=1 (no auto) is an extension
from Bansal et al. [14].

words, we evaluate the relevancy scores in each column of the matrix using the following

classification/retrieval metrics and report the average across all columns.

MAP: Mean average precision (i.e., the area under the precision-recall curve) [261].

AUC: Average ROC-AUC (the area under the ROC curve) [81] across all columns.

NDCG: Average of normalized discounted cumulative gain [145] across all columns.

R@50 and R@200: Recall@N computes the recall of positive labels in the top N papers

with the highest relevancy scores. Recall@50 is a common metric for paper recommenda-

tion [14].

3.4.3.4 Results and Discussion

Table 3.8 presents the performance of different methods. The results justify the motiva-

tion of using multi-facet embedding because K=5 usually significantly outperforms K=1,

especially in the citation prediction task.

Cold-start recommendation methods work the best in the citation prediction, and docu-

ment similarity estimation (e.g., CBOW Avg) performs better in authorship prediction. The

87

hybrid methods consistently outperform only using document similarity estimation, which

suggests our methods capture signals missed by the document similarity estimation.

Multi-facet embedding improves citation prediction more than authorship prediction.

We hypothesize that this is due to the different nature of the interaction. When an author

writes an input paper, the input paper tends to be similar to the other papers this author

writes, so the document similarity estimation performs well in this task. On the other hand,

when a citing paper cites an input paper, the input paper tends to be related but not similar

to the other papers this citing paper cites [65] because the citation might be determined by

one of the facets in the input paper.

3.4.4 Related Work

Due to its practicality, scientific paper recommendation has a long history and rich

literature [15]. In addition to the classic methods based on collaborative filtering, recent work

also exploits the citation of the testing papers [95] and the manually defined tags/topics [254]

as additional information sources. Instead, we focus on a cold-start setting where the

recommendation is made only based on the title and abstract of the testing papers as in

Bansal et al. [14].

Citation recommendation is also studied widely [136, 59]. Collaborative filtering could

effectively recommend the new citations based on existing citations of the paper [144, 127],

but the method cannot recommend papers only based on its text. Bhagavatula et al. [17]

designs a content-based and scalable citation recommendation system by representing each

paper as a single embedding and performing efficient retrieval. However, the approach

cannot capture multiple facets of the paper, which degrades performance significantly in our

experiments.

A related type of recommendation systems clusters user and/or item embeddings globally

[189, 93, 137]. However, global clustering causes information loss because the embeddings

often need to be clustered differently when representing different items.

88

Multiple embeddings are also used to represent a graph node for node classification and

link prediction [246, 128, 53] or an interaction history for sequence-aware recommenda-

tion [108, 234].

3.5 Chapter Conclusion

In this chapter, we find that multiple embeddings are particularly helpful when the

input sequence is long enough to contain multiple facets/aspects and different facets would

attract different types of co-occurred items. If the input sequence is too short (e.g., phrase)

or each input sequence often co-occurs with the similar items (e.g., authorship), multiple

embeddings might bring smaller improvement on co-occurrence prediction or might not

improve the similarity estimation at all.

Furthermore, we show that multiple embeddings provide other benefits besides the

similarity estimation. By modeling the distribution better, we can use the clustering center

to estimate the importance of words, reduce the bias of selecting the long sentences in some

unsupervised summarization approaches, improve the distantly-supervised relation extrac-

tion performance of compositional universal schema, detect entailment relation between two

sentence patterns without any labels, and improve the cold-start prediction of citation and

authorship.

89

CHAPTER 4

INTERACTIVE LANGUAGE GENERATION

In Chapter 3, we design our loss function such that the multi-facet embeddings become

the clustering centers of the co-occurred item embeddings and we use the multiple em-

beddings to improve the similarity estimation. In this chapter, we show that the predicted

clustering centers could be viewed as the possible future topics that might be mentioned

after a prompt context and we build a novel interactive writing framework on the basis.

4.1 Introduction

Interactive writing assistants have wide applications in creative writing [185, 40, 1],

education [135], and gaming [227]. Nevertheless, the existing systems’ options usually do

not provide fine-grained control and/or require substantial human labor. To address these

limitations, we propose a framework that provides a set of future topics and guides the text

generation by the user-chosen topics.

The topic options are generated dynamically based on the input prompt to provide fine-

grained control, and our models are self-supervised without the need to define the attributes

or collect annotations. As depicted in Figure 4.1, a user can peek at the most probable K

topics (shown as bags of words) appearing after the input prompt and control the generation

by choosing the topics.

In Figure 4.2, we compare multiple generated sentences conditioned on different chosen

topic(s) or specified word(s). For example, if the user chooses a topic about humanity, life,

and spirituality, our system continues the input prompt “Barack Obama writes a new book”

with “on spirituality and the roles of religion in society”. Then, we can use the generated

90

Step 2: Might say these topics

Step 1: Let’s see what
language models would say

Step 3: Please
talk more about
these topics

1 book books novels
2 Essays Perspectives Perspective
3 University faculty undergraduate
4 Reid Sen. McConnell
5 humanity life spirituality
6 2011 2010 2009
7 know sure want
8 insistence disdain dismissive
9 election elections Democratic

10 U.S. States United

Input Prompt: “Barack
Obama writes a new book”

Output Continuation: “: The Future of a Democratic
Election. The book tells the story of the 2008 election.”

Transformer
-based

Language
Models

User

Step 4: Let me try.
What does this

continuation sound?

Figure 4.1: Given an input prompt, the transformer-based language model (LM) provides
K = 10 topics that might be mentioned next and each topic is represented by M = 3 words.
The user could guide the generation process by choosing a subset of topics.

Input Prompt: Barack Obama writes a new book

: The Future of a Democratic Election. The
book tells the story of the 2008 election.

Topic: election, elections, Democratic
Topic: book, books, novels Topic: humanity, life, spirituality

on spirituality and the role of
religion in society

Topic: God, Christ, eternal

, entitled My Living With God , and
writes that he will give the gift of grace

. In it he describes why many
Americans believe in political parties.

Topic: understand, know, realize
Word: story

Word: zombie

about the United States entitled I
Don't Care...You Bet I'm a Zombie.

Topic: American, America, U.S.
Topic: political, ideology, politics

. In the United States, many people
know the story of the human race

Figure 4.2: Examples of our generated options and continuations. We highlight the words in
the continuation that are related to the chosen topics or to the specified word.

text as the new input prompt and update the set of topics to include other more relevant

topics such as God, Christ, and eternal. The process can be repeated to create a plot tree.

91

A user can also control the generation by specifying word(s) if the user wants to see the

words that are not in the topic list or seeks a transition to a word that is not directly related

to the input prompt. For example, a user can ask our system to generate a sentence about

zombie. Consequently, the continuation of “Barack Obama writes a new book” becomes

“about the United States entitled I Don’t Care...You Bet I’m a Zombie”.

The system is realized by two components: an option generator and a conditional text

generator. The option generator is very similar to the models we developed in Chapter 3.

Given a prompt, the option generator suggests a set of K topics. After a user chooses a

subset of the topics and specifies some words, the embedding of every word or topic will

guide the conditional text generator to produce the continuation that is both consistent with

the existing prompt and relevant to the chosen topics and words.

Both components are self-supervised and use pretrained GPT-2 models [177] to encode

the input prompt. During training, the option generator predicts the cluster centers of future

words, which are in the continuation of the prompt, based on the contextualized embeddings

from GPT-2. The conditional text generator fine-tunes GPT-2 to predict the next words

given the prompt and a few subsequent words. Since both components’ input and output

only come from the prompt and its continuation, training the system only requires a raw

corpus, word tokenizers, and a list of stop words. This makes the proposed method suitable

for open-domain story generation and easily being fine-tuned for a specific domain.

In experiments, we demonstrate that our system recommends high-quality topics and

often generate sentences that follow the chosen topics. We compare our option generator

with global topic models such as LDA [19] or local topic models such as clustering the words

in the input prompt. The results show that the proposed method generates significantly more

topics that are plausible and promote the narrative. Moreover, we compare our conditional

text generator with PPLM (Plug and Play Language Models) [44] and demonstrate that

our generation is more fluent and relevant to the chosen topics. Our code is available at

https://github.com/iesl/interactive_LM.

92

4.2 Method

The proposed framework consists of two components: option generator and conditional

text generator. In Figure 4.3, we illustrate the two components and their interaction. First,

given the prompt x1, ..., xI inputted by a user, the option generator at the bottom of the

figure outputs K topics. After the user chooses two topics about book and election and

specifies one extra word story, the topics and word are passed to our text generator as the

generation guidance. Accordingly, the generator continues to write the next token ŷ1.

In the following sections, we introduce our model designs and the way to train each

component.

4.2.1 Option Generator

When we do not have labeled attributes in a corpus, we can create options by clustering

all the words in a corpus into topics [222]. The clustering could be done by topic modeling

approaches such as LDA [19]. The resulting topics are static (i.e., the clustering is performed

globally without considering the prompt). However, the prompt might have a narrow focus

and the related words of interest are all clustered into a single topic.

A simple remedy is to cluster only the words in the prompt rather than all the words in

the corpus. The topics are created dynamically and locally given a prompt and can capture

more fine-grained aspects in the continuations. However, the topics derived from the prompt

might provide less inspiration because the users have seen the prompt. Another major

drawback of the approach is that the generated topics might encourage the LM to generate

repetitive sentences or make a narrative circle inside a loop.

Motivated by the challenges, we propose an option generator that predicts the cluster

centers based on the prompt instead of clustering the words in the prompt during testing.

4.2.1.1 Model Prediction

The goal of our option generator is to predict the K cluster centers of words in the

possible continuations and use the cluster centers as the topics user could choose from. The

93

GPT2 Encoder

book, books,
novels

t5

Linear Layer

Weighted average
of GloVe

t7

election, elections,
Democratic

tw

story

Sample based
on probability

GloVe

GPT2 Encoder

Transformer

L1 L2 L3 L4 L5 L6 L7 L8 L9 L10

3. write

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

3. choose

2. show

1. write

4. show

(b) Option
Generator

(a) Conditional
Text Generator

User

book :newBarack …

…

bookObama newBarack writes a

Softmax

pw5 pw6…pw1 pf6 pf6 pf6
+ +++++

x1 x2 x3 x4 x5 x6

̂y 1

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

Closest M Words

Figure 4.3: Our model architectures for (a) conditional text generator and (b) option genera-
tor. During testing, the information flows from the bottom to the top.

goal is similar to Section 2.3 except that our model predicts multiple embeddings that are

close to a set of future words rather than close to the immediate next word.

As in Figure 4.3 (b), the option generator uses GPT-2 to encode the input prompt

x1, ..., xI and passes the output embedding to K different linear layers L1, ..., LK . To model

the dependency of clusters, a transformer [224] takes the K embeddings as input and predicts

the cluster centers c1, ...cK in GloVe [174] space. During testing, each predicted cluster

94

GloVe

-nullnullnull

- American … 2008 … election … of severe ...

African...

Leak information Randomly selected words

GPT2 Encoder + Lk + Transformer

c1

(b) Option Generator

AfricanObama firstBarack becomes the

(a) Conditional Text Generator

- American president in 2008 , in an election held

against the backdrop of severe economic problems caused by policies started or worsened under …

African

Tell GPT2 that the selected
words will appear in the future

2008 severe......

firstBarack …

American

AmericansAmerica

election

elections

2008

2009

2007

voters

Republicans
Democrats

economic

north

bus

A randomly
sampled word

Push
away

Pull closer

Push away

c2 c3 c4 c5 c6 c7 c8 c9 c10

Pull closer

x1 x2 x3 x4 x5 x6 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10

GPT2 Encoder + Softmax

A word in continuation

Figure 4.4: Training our two components using the same sentence. (a) We randomly pick
n = 3 words in the actual continuation as our conditions for the text generator, and the null
labels mean their predicted probabilities are ignored in our loss. (b) We visualize 5 out of
K = 10 generated topics in a normalized GloVe space. Red words are the ones that appear
in the continuation and pull the nearby cluster centers closer during training.

center is normalized by its L2 norm, and we use the M closest words in the normalized

GloVe space to represent the topic Ti, which users can choose.

We choose to learn the cluster centers in GloVe space rather than GPT-2 or BERT [47]

space because the non-contextualized word embeddings are easier to visualize. Users can

easily understand the meaning of a cluster center by seeing nearby words. We normalize

GloVe space in this work to make the squared L2 distance equal to twice the cosine distance

between two embeddings.

Our architecture is similar to the one in Chapter 3, but we use a pretrained GPT-2

encoder rather than train a BERT-like transformer from scratch. Another difference is that

we ignore the connection between the second transformer and the output of GPT-2 to save

GPU memory for handling a longer input prompt.

95

4.2.1.2 Model Training

In Figure 4.4 (b), we visualize our training procedure. For each input prompt in the

training corpus, we run a forward pass through the transformers and get predicted cluster

centers c1, ...cK . Next, we collect 50 words in the continuation (except stop words) as

positive examples and match the words with cluster centers as in the E-step of the EM

algorithm [46]. By using the NNSC clustering loss in Equation 3.2, we minimize the

distances between the centers and their nearby positive examples by backpropagating the

gradients through the matching and updating our transformer models. We also randomly

sample some words as negative examples and maximize the distances between the cluster

centers and their nearby embeddings from negative examples.

Using Figure 4.4 (b) as an example, the orange cluster center is pulled closer toward

the embedding of 2008, which appears in the continuation. The green cluster center is

pushed away from the embedding of north, a randomly sampled word. Since each output

embedding ck is pulled by only the nearby embeddings of words in the continuation, the

output embedding will naturally become the cluster center of the nearby continuation word

embeddings. Notice that the related topics like Democrats and Republicans are not observed

in the prompt and continuation, but our model can predict a red cluster center close to them

because the model can learn from other similar input prompts whose continuation mentions

words like Democrats.

4.2.2 Conditional Text Generator

After the user chooses topic(s) or specifies word(s), each topic or word is converted to a

GloVe embedding. The component aims to generate the text given the input prompt and the

GloVe embeddings of the topics or words we prefer to see in the continuation.

Users only see the M words closest to the kth predicted cluster center ck from our option

generator, so we compute the kth topic embedding as

96

tk =

∑M
m=1 cos(ewm, ck)e

w
m

||
∑M

m=1 cos(ewm, ck)ewm||
, (4.1)

where ewm is the normalized GloVe embedding of the mth closet word and cos(ewm, ck) is the

cosine similarities between the mth word embedding and the embedding ck.

4.2.2.1 Model Prediction

During testing, the topic embeddings tk or embedding of the specified words are inserted

into GPT-2 encoder before xI , the last word piece in the prompt. The inserted embed-

dings nudge GPT-2 to generate the sentences containing the desired words with a higher

probability.

As Figure 4.3 (a) shows, the GloVe embeddings are first passed through a linear layer to

make their dimension become the same as the hidden state size of GPT-2. Then, the trans-

formed embeddings are added with special positional embeddings pf
I
, which are different

from those for the prompt pw
i

. The special positional embedding tells GPT-2 that the inserted

embeddings have a different meaning and where the conditional generation starts.

The GPT-2 encoder’s output goes through a softmax layer, which computes the probabil-

ity of each token being observed as the first word piece in the continuation y1. We adopt

top-k sampling [56], which reduces the chance of sampling words with low probability,

to pick the next word, and autoregressively sample one token ŷo at a time to generate the

continuation ŷ1, ..., ŷO.

4.2.2.2 Model Training

We train the generator using the continuation of a prompt and some randomly selected

non-stop words in the continuation as its generation conditions. Since the continuation

contains the randomly-selected words, the generator would be heavily penalized if it ignores

the conditions by assigning low probabilities to the selected words in all the continuation

positions.

97

An example is illustrated in Figure 4.4 (a). Given an input prompt in the training set,

we randomly pick a number n from 0 to K and sample n words from the next O = 25

words (except stop words). Next, the normalized GloVe embeddings of n words are inserted

to the GPT-2 encoder before the last word piece in the prompt, and we ignore the output

probabilities corresponding to the inserted positions during training. To speed up the training,

we conduct the future word insertion in multiple positions of each training text sequence.

We insert the future words just before the text that might contain the words rather than

at the beginning as in the classic seq2seq model, because we do not want the model to learn

to generate the continuation based on the future topics that have not yet be specified by the

users (e.g., GPT-2 should not know that it will see election in the future when it learns to

generate Barack Obama ... during training).

By allowing the LM to see the upcoming words earlier, we leak partial label information

to the LM input. Consequently, GPT-2 learns to utilize the information and generate the

sentence containing the desired words to achieve a lower perplexity loss. Notice that the

training method allows us to specify our topical preference without significantly scarifying

generation efficiency and fluency, but it cannot guarantee to generate all the desired topics,

especially when we specify multiple ones.

One concern of the method is that the LM cannot see all possible sets of topics or words

users might specify during training. Besides, each GloVe embedding used to supervise LM

comes from a single word, but we ask the LM to condition on average GloVe embedding

of the top M words during testing. Nevertheless, we observe that the LM is often able to

generalize well in our experiments because similar words have similar GloVe embeddings,

lots of training instances could be easily prepared by the self-supervised method, and our

option generator usually provides the topics mentioned in the continuation in our training

corpus.

98

4.3 Experiments

We evaluate two components separately, and both evaluations include automated metrics

and human judgment. Throughout the evaluation, the number of topics K = 10 and the

length of generations is 50 word pieces. We find that fixing K = 10 works well in our

experiments. If the possible continuations cover more than 10 topics, our option generator

tends to output the important topics. If they cover fewer topics, our option generator tends

to output the related topics that are not explicitly mentioned in the prompt or the duplicated

topics.

4.3.1 Datasets

We use 90% of English Wikipedia 2016 as our training set for both components, 5% as

our validation set to determine the hyperparameters such as the number of epochs, and the

remaining 5% as our test set to perform the automated evaluation.

For human evaluation, we collect labels from Amazon Mechanical Turk (MTurk). We

randomly sample sentences from the training set of STS benchmark (STSb) [27] as our

input prompts. Compared with Wikipedia, the sentences from STSb are easier to understand

for annotators because a large portion of sentences in Wikipedia involves terminologies,

depends on a longer context, or might even just be a list of names.

In STSb, we sample 24 sentences as our prompts, and each method generates one

continuation for each input prompt. Each generated continuation or topics will be scored by

three different workers.

4.3.2 Option Generator Evaluation

We evaluate the topics from different option generators by judging whether the topics

will appear in the continuation and whether the topics would promote the narrative. The

goal is to have topics that are relevant and provide new information. The topics that are

too similar to the prompt words might be redundant and not helpful because the users have

already seen the prompt.

99

4.3.2.1 Automatic Evaluation Metrics

• Sim: If the generated topics T can help users to write the continuation, the embedding

of every non-stop word in the actual continuation should be similar to the embeddings

of a generated topic. Thus, we compute

Sim(Ȳ , T) =
O′∑
o=1

K
max
k=1

(tk)
T eȳo, (4.2)

where Ȳ = {ȳo}O
′

o=1 is a set of non-stop words in the continuation and O′ = 25. tk is

the normalized embedding of kth topic in T from Equation 4.1 and eȳo is the oth word

in Ȳ .

• Sim Short: When computing Sim, we use the input prompts containing around 180

words on average. To examine the topic quality at the start of writing, where the

authors might need assistance the most, we also report Sim(Ȳ , T) on short input

prompts (with 35 words on average).

• Sim Diff: The options that are helpful to users should be sufficiently different from

the words in the input prompt to promote the narrative and avoid generating repeated

content. Thereby, we also evaluate methods using Sim Diff = Sim(Ȳ , T) - Sim(X̄, T),

where X̄ = {x̄i}I
′

i=1 are the non-stop words in the input prompt.

4.3.2.2 Human Evaluation

Our questionnaire shows the prompt and asks which generated topics are likely to

appear in a reasonable continuation and which topics promote the narrative. For each

method, we report the average number of its topics that are likely to appear (L), promote

the topic (TP), and both (L&TP). For example, an MTurk worker is shown three topics

generated by a method given a prompt: ABC. The worker thinks A is likely to appear

in the continuation and AB promote the topic. Then, L=|{A}|=1, TP=|{AB}|=2, and

L&TP=|{A} ∩ {AB}|=|{A}|=1 for this prompt.

100

4.3.2.3 Option Generator Baselines

We compare our generator with two types of methods.1 The first type performs the

clustering globally and selects the most relevant topics to the input prompt from the static

set of clusters. We cluster all the words into J = 150 topics by LDA [19] (LDA-global)

and into J = 1000 topics by Kmeans on the normalized GloVe embedding space [222]

(Kmeans-global). We also randomly sample K words from the whole vocabulary as our

cluster centers (Sample-global).

Similar to Equation 4.1, we find the M words with the closest embeddings to each

cluster center to represent the topic and compute the topic embedding tj as the weighted

average embedding of M words in the jth topic. Among all J cluster centers, we pick the

K topics with the closest tj to the prompt embedding, where the prompt embedding is the

average embedding of all words in the input prompt.

The second type of methods discovers the K topics from the input prompt. We cluster

non-stop words in the prompt using non-negative sparse coding [89] (NNSC-local) and

Kmeans (Kmeans-local). We also sample K non-stop words from the prompt and call it

Sample-local. Similar to Equation 4.1, we represent each topic using M words and compute

the weighted average of their embeddings tk as the input of our text generator. Notice that

the locally clustering methods produce similar results when the prompts come from STSb

due to their short lengths, so we only test Kmeans-local in our human evaluation.

4.3.2.4 Results

In Table 4.1, we show that local methods generate the options more relevant to the input

prompt than the global methods due to significantly higher Sim and Sim Short. Our method

performs better compared to other local methods, especially in Sim Diff, which highlights

the high novelty of our generated topics. The improvement on Sim Short is larger than that

1Another alternative is to generate many continuations and cluster the words in the generation. However,
the method takes time, which might be prohibited by limited computational resources and the real-time
interaction requirement.

101

Scope Method Sim Sim Short Sim Diff

Global
Sample 14.63 14.42 0.16
LDA 36.86 36.02 -2.82

Kmeans 40.65 39.91 -3.40

Local

Sample 41.50 41.23 -12.51
NNSC 46.70 42.80 -15.94

Kmeans 47.94 43.89 -16.12
Ours 48.38 46.29 0.45

Table 4.1: Comparison of the option generators using automatic metrics. The best numbers
within each scope are highlighted.

Scope Method L TP L&TP

Global
LDA 5.76 ± 0.50 6.24 ± 0.33 5.26 ± 0.31

Kmeans 6.94 ± 0.36 6.13 ± 0.30 5.96 ± 0.31

Local
Kmeans 8.65 ± 0.16 5.31 ± 0.50 5.14 ± 0.50

Ours 7.85 ± 0.25 6.96 ± 0.26 6.75 ± 0.28

Table 4.2: Comparison of option generators using human judgment (mean ± standard error).
L and TP refer to likelihood and topic promotion, respectively.

Input Prompt The study also found that skin cancer nearly tripled in Norway and Sweden since the 1950s.
LDA-global Kmeans-local Ours

1 population, households 6 company, companies 1 Norway, Sweden 6 also, however 1 research, scientific 6 1980s, 1970s
2 patients, treatment 7 Norwegian, Norway 2 tripled, doubled 7 since, Since 2 tissues, tissue 7 even, though
3 psychology, research 8 story, book 3 nearly, almost 8 Sweden, Finland 3 patients, diagnosis 8 susceptibility, pathogenic
4 police, prison 9 hospital, Hospital 4 cancer, skin 9 study, studies 4 DNA, gene 9 decreased, increased
5 chemical, carbon 10 Icelandic, Iceland 5 1950s, 1940s 10 found, discovered 5 orange, purple 10 Sweden, Norway

Table 4.3: Comparison of all K topics for the input prompt using M = 2 words closest to
each topic.

Input Prompt The study also found that skin cancer nearly tripled in Norway and Sweden since the 1950s.
Generator

Generated Text
Option Text

LDA-global Ours A study of the Norwegian police has confirmed the cancer case. The law in Norway was the subject of the
Kmeans-local Ours The study also found that skin cancer nearly tripled in Norway and Sweden since the 1950s. As well, skin

Ours PPLM In this study, a study was conducted conducted in Italy and in Finland. From the 1990s to the 1970s, there
None GPT-2 The study also revealed that only 20% of the deaths in Norway were caused by a sudden cardiac response
Ours Ours Recent studies have shown that melanin causes a decrease in genetic susceptibility in people in Norway,

Table 4.4: The continuations that are generated by conditioning on all of K topics from
different option generators. The input prompt comes from STSb.

on Sim because our method could suggest the related topics that are not explicitly mentioned

in the short prompt (e.g., U.S. in Figure 4.1).

The human evaluation results are presented in Table 4.2. Our method wins in terms of

generating relevant topics that promote the narrative. The Kmeans-local performs better

102

in L because most of the words in the input prompts could be mentioned again in the next

sentence. However, it often leads to the redundant topics that are too similar to the prompt.

Table 4.3 compares the options generated by different methods while Table 4.4 compares

the text generated using different option generators and text generators. In Table 4.3, we

can see that most topics in Kmeans-local do not promote the narrative, which makes the

generated continuation become a copy of the input prompt in Table 4.4. Notice that the

high redundancy problem is hard to be solved by a conditional text generator because the

relatedness between the prompt and the generated text is hard to be controlled [192].

4.3.3 Conditional Text Generator Evaluation

To demonstrate our text generator’s effectiveness, we use our option generator to prepare

the topic embeddings and randomly select n topics as our conditions to simulate the user’s

choice, where n is a random number from 1 to K. The sentences generated by different

methods are compared.

4.3.3.1 Automatic Evaluation Metrics

We match the union of M ×K top words in the chosen topics with the words in the

generated continuations and count the number of tokens that are matched exactly (token),

the number of matched word types (word), and the number of topics that contain at least one

matched word (topic) to measure the relevancy between the continuations and the chosen

topics. Notice that the scores are underestimated because the generation might mention

words in different morphological variations or other words related to the topics.

The fluency of the generated text is measured using the perplexity [195] of the original

GPT-2 (with 345M parameters) without being fine-tuned on Wikipedia. Dist-n [116] is

the ratio between the number of unique n-grams and the number of all n-grams in the

continuations, where n=1 or 2. Higher Dist-n implies more diverse generations. The average

inference time per input prompt is also presented.

103

Text Automatic Metrics Inference Human Judgement
Generation Relevancy Hit Quality Time Relevancy Fluency

Method Token Word Topic PPL (↓) Dist-1 Dist-2 s (↓) Recall Precision Score
PPLM 1.48 0.99 0.77 18.49 40.29 80.83 17.74 30.56 ± 2.96 56.01 ± 4.41 3.83 ± 0.13
Ours 2.36 1.79 1.40 16.39 37.98 79.65 1.02 41.46 ± 3.47 56.41 ± 4.41 4.07 ± 0.10

GPT-2 1.27 0.84 0.64 14.24 39.80 80.22 1.00 24.49 ± 2.77 48.69 ± 4.61 4.15 ± 0.11

Table 4.5: Comparison of conditional text generators. The numbers in Dist-1, Dist-2, Recall,
and Precision are percentages. Lower perplexity (PPL) and inference time are better. The
better performance between PPLM and our method is highlighted. In human evaluation, we
report the mean ± standard error of each method.

4.3.3.2 Human Evaluation

We present the prompt and the generated continuation and ask the worker to score the

generation’s fluency from 1 (not fluent at all) to 5 (very fluent). Next, we show K topics

and ask which topics are mentioned in the generation. Treating the worker’s choices as

prediction and the topics our model conditions on as ground truth, we report the average

precision and recall of the prediction.

4.3.3.3 Conditional Text Generator Baselines

We compare our method with PPLM (Plug and Play Language Models) [44] due to its

strong performance against the weighted decoding approach from Ghazvininejad et al. [69]

when the condition is a bag of words.

The condition for PPLM is the union of the top M words in the chosen topics and each

word’s weight is neglected. We use our generation model without conditioning on any word

(i.e., n = 0) during testing2 as the base model of PPLM. We also present the performance

of the base model itself as a reference to know the significance of our improvement (denoted

as GPT-2).

2We find the model performs similarly compared with GPT-2 with no condition during training.

104

4.3.3.4 Results

Table 4.5 indicates that our model outperforms PPLM in all metrics except in Dist-1

and Dist-2. We suspect that our model generates slightly less diverse sentences in order to

make the generation more relevant to the given topics.

The generation might mention a topic even if it is not chosen as a condition, so we

achieve similar precision compared to PPLM in human evaluation. The recall of PPLM

means that only around 30% of given topics are mentioned. The low recall indicates the

difficulty of mentioning multiple randomly selected topics in the next 50 word pieces

while keeping the sentence fluent. By contrast, achieving 40% on recall demonstrates the

effectiveness of our conditional text generator.

Compared with PPLM, our model requires an additional training step but achieves low

inference time and high relevancy to the given topics/words once the training is finished.

The benefits make it preferable in our interactive writing application.

4.3.4 Option Generator Comparison Using Generated Continuations

To see whether the proposed option generator improves the quality of the continuations,

we use all of K topics from different methods to guide our conditional text generator and

compare their generated continuations. In addition to all the methods we described in

Section 4.3.2.3, we also present the results of our text generator without conditioning on any

topics (i.e., n = 0) as a reference and call the method None.

4.3.4.1 Automatic Evaluation Metrics

• BLEU: For each generated text guided by the set of K topics, we report BLEU-2 [166]

between the generation and the actual continuation containing O = 25 words. We

adopt the smoothing method 3 in Chen and Cherry [36] because there is sometimes no

bigram overlapping between the predicted continuation and the actual continuation.

105

Scope Method BLEU BLEU Diff Word Hit Self-BLEU (↓) Dist-1 Dist-2

Global
Sample 7.39 5.66 0.34 9.45 47.60 86.79
LDA 7.19 4.87 2.01 13.06 36.02 78.73

Kmeans 7.12 4.65 1.30 12.23 36.62 81.49

Local

Sample 8.38 2.71 2.93 18.03 35.76 77.00
NNSC 8.44 3.24 2.94 17.20 35.43 76.71

Kmeans 8.32 3.06 2.96 16.97 35.39 77.10
Ours 8.38 5.55 3.02 15.97 36.18 78.71

NA None 8.50 5.59 - 13.17 39.69 80.17

Table 4.6: Comparison of the continuations generated by different option generators using
automatic metrics. The values are percentages except in Word Hit. Higher numbers are
better except in Self-BLEU. The best numbers within each scope are highlighted.

• BLEU Diff: Similar to Sim Diff, BLEU Diff is the BLEU score between the generation

and the continuation minus the BLEU score between the generation and the input

prompt.

• Word Hit: If the generated topics are not relevant to the input prompt, our conditional

text generator might have difficulty in mentioning the related words in the continuation.

We report how many unique word types representing K topics are mentioned in the

generated continuation.

• Self-BLEU: The metric computes the average pairwise BLEU scores of 3 genera-

tions [263]. Lower Self-BLEU implies the options encourage more diverse genera-

tions.

4.3.4.2 Human Evaluation

We show the continuation guided by all topics and ask how fluent the sentence is (F),

how helpful the sentence can promote the narrative (NP), and the overall quality of the

generation (A). The worker can choose from 5 options, and 5 means very fluent, very helpful,

and excellent, respectively.

106

Scope Method F NP A

Global
LDA 3.07 ± 0.17 2.82 ± 0.16 3.06 ± 0.13

Kmeans 3.65 ± 0.13 3.42 ± 0.14 3.42 ± 0.12

Local
Kmeans 3.71 ± 0.13 3.56 ± 0.15 3.39 ± 0.13

Ours 3.85 ± 0.14 3.64 ± 0.15 3.67 ± 0.14

Table 4.7: Comparison of the continuations generated by different option generators using
human judgment (mean ± standard error). F, NP, and A refer to fluency, narrative promotion,
and overall, respectively.

4.3.4.3 Results

The automatic evaluation results are presented in Table 4.6. As expected, the options

generated by the local methods lead to the continuations that are more similar to the actual

continuation (i.e., higher BLEU score) compared to that generated by the global methods.

Global topics encourage the generated text to be unrelated to the input prompt, so leading to

more diverse sentences (i.e., lower Self-BLEU and higher Dist-1 and Dist-2).

Our method performs better in most metrics than the other local methods, especially in

BLEU Diff, while achieving comparable BLEU, which means our generated options often

result in the relevant and diverse continuations that are sufficiently different from the prompt.

Furthermore, the human evaluation results in Table 4.7 show that our method outperforms

other baselines in all metrics.

4.4 Related Work

Different interactive writing assistants provide different forms of options to let users

express their preferences. The options could be manually defined classes (e.g., senti-

ment) [99, 44], semantic frames [222], or event structures such as (subject, verb, object,

modifier) [141, 215, 5]. The forms of options allow users to control the attributes of the

generated text but require labels or classifiers that map the text to the attributes/options.

The options could also be a single query word at the beginning [10], the article title [245],

politeness [161] or specificity [192] of the text, or the length of the generated sentence [222].

107

However, the options cannot provide fine-grained control on topical directions of the gener-

ated contents.

A related research direction is the multi-stage story generation. To make a long story

more coherent, recent work proposes to generate a skeleton and then generate the full text

guided by the skeleton. The skeleton could be a sequence of SRL frames [57], a sequence

of event structure (subject, verb, object, preposition, modifier) [5], a story premise [56], or

a story summary [38]. Users can revise the skeleton to control the generated text, but the

approaches assume the existence of the skeleton extractor or labels in the training corpus.

Besides, the systems cannot suggest options given the partial text, which is one of the main

focuses of our interactive writing assistant.

The skeleton could also be multiple keyphrases. The keyphrases are extracted based

on word frequency [90, 242, 216], an off-the-shelf keyword extraction method [173, 70,

251, 180, 256], a sentence compression dataset and reinforcement learning [243], or image

caption datasets and ConceptNet [122]. Most of the studies focus on modeling the long-term

dependency among the keyphrases and/or forcing the generation to contain the keyphrases.

Instead, we focus on allowing users to determine the topical directions of the generation.

Compared with conditioning on keyphrases, our interactive writing assistant is especially

helpful when users do not know the exact phrases they want to see or when the given

keyphrase extractor does not detect the desired topics.

4.5 Chapter Conclusion

In this chapter, we propose an interactive writing assistant that generates topic options

given an input prompt and generates the continuation of the prompt given the topics chosen

by a user. We decompose the framework into two components and propose a novel model

for each component. The automated evaluation and human evaluation indicate that our

system generates many topics that are related to but different from the prompt, and generates

the sentences that are fluent and relevant to the chosen topics.

108

CHAPTER 5

CONTRASTIVE LEARNING ON TWO-TOWER MODELS

5.1 Introduction

The improvements of multiple embeddings in Chapter 3 suggest that the text sequence

co-occurred with various words in the nearby sentences, entity pairs, or citing papers. They

also suggest multiple embeddings can represent the multimodal co-occurred distribution

well. Nevertheless, we only studied the models that do not use a pre-trained language

model (LM) for the one-tower co-occurrence learning, but the state-of-the-art models in

the sentence representation and citation prediction all use two-tower contrastive learning

and pre-trained LM. In this chapter, we want to study how to use multiple embeddings to

improve the state-of-the-art models based on the BERT encoder in these applications.

In Section 5.2, we propose Multi-CLS BERT, a novel ensembling method for CLS-based

prediction tasks that is almost as efficient as a single BERT model. Multi-CLS BERT uses

multiple CLS tokens with a parameterization and objective that encourages their diversity.

Thus instead of fine-tuning each BERT model in an ensemble (and running them all at test

time), we need only fine-tune our single Multi-CLS BERT model (and run the one model at

test time, ensembling just the multiple final CLS embeddings).

To test its effectiveness, we build Multi-CLS BERT on top of a state-of-the-art pretraining

method for BERT [6]. In experiments on GLUE and SuperGLUE we show that our Multi-

CLS BERT reliably improves both overall accuracy and confidence estimation. When only

100 training samples are available in GLUE, the Multi-CLS BERTBase model can even

outperform the corresponding BERTLarge model. We analyze the behavior of our Multi-CLS

109

BERT, showing that it has many of the same characteristics and behavior as a typical BERT

5-way ensemble, but with nearly 4-times less computation and memory.

In Section 5.3, we find that a scientific paper encoder with multiple CLS tokens is able

to better specialize to multiple domains. We present Multi2SPE, a simplified variant of the

proposed Multi-CLS BERT, which encourages each of multiple CLS tokens to learn diverse

ways of aggregating token embeddings, then summing them together to create a single

vector representation. We further propose a new multi-domain benchmark, Multi-SciDocs,

to test vector encoders for scientific papers. We show that our encoder reduces the error by

up to 25% in multi-domain citation prediction, while adding only negligible computation to

the forward pass of a classic BERT encoder.

5.2 Applications on Natural Language Understanding Benchmarks

BERT (Bidirectional Encoder Representations from Transformers) [47] is one of the

most widely-used language model (LM) architectures for natural language understanding

(NLU) tasks. We often fine-tune the pretrained BERT or its variants such as RoBERTa [131]

so that the LMs learn to aggregate all the contextualized word embeddings into a single CLS

embedding for a downstream text classification task.

During fine-tuning, different initializations and different training data orders significantly

affect BERT’s generalization performance, especially with a small training dataset [50, 255,

155]. One simple and popular solution to the issue is to fine-tune BERT model multiple

times using different random seeds and ensemble their predictions to improve its accuracy

and confidence estimation. Although very effective, the memory and computational cost of

ensembling a large LM is often prohibitive [244, 120]. Naturally, we would like to ask, “Is

it possible to ensemble BERT models at no extra cost?”

To answer the question, we propose Multi-CLS BERT, which enjoys the benefits of

ensembling without sacrificing efficiency. Specifically, we input the multiple CLS tokens

to BERT and encourage the different CLS embeddings to aggregate the information from

110

 BERT VS

([CLS] + BERT)*5[CLS]*5 + BERT

Proposed  
Multi-CLS BERT

Classic  
5 BERT Ensemble

C
L
S

BERT
C
L
S

Fine-tuning: Once

Inference: Once

Fine-tuning: 5 Times

Inference: 5 Times

Figure 5.1: Comparison of Multi-CLS BERT and the classic BERT ensemble. Multi-CLS
BERT only ensembles the multiple CLS embeddings in one BERT encoder rather than
ensemble multiple BERT encoders with different parameter weights.

different aspects of the input text. As shown in Figure 5.1, the proposed Multi-CLS BERT

shares all the hidden states of the input text and only ensembles different ways of aggregating

the hidden states. Since the input text is usually much longer than the number of inputted

CLS embeddings, Multi-CLS BERT is almost as efficient as the original BERT.

Allen-Zhu and Li [3] discovered that the key of an effective ensembling model is the

diversity of individual models and the models trained using different random seeds have more

diverse predictions compared to simply using dropout [205, 64] or averaging the weights

of the models during training [63]. To ensure the diversity of CLS embeddings without

fine-tuning Multi-CLS BERT using multiple seeds, we propose several novel diversification

techniques. For example, we insert different linear layers into the transformer encoder for

different CLS tokens. Furthermore, we propose a novel re-parametrization trick to prevent

the linear layers from learning the same weights during fine-tuning.

We test the effectiveness of these techniques by modifying the multi-task pretraining

method proposed by Aroca-Ouellette and Rudzicz [6], which combines four self-supervised

losses. In our experiments, we demonstrate that the resulting Multi-CLS BERT can signifi-

111

Sent1 Sent2

BERT Transformer + Linear Layers (Sec. 2.5)

[CLS0] [C1] S11 [MASK]…[C2] [C3] [C4] [C5] S12 [SEP] S21 [SEP]…

[CLS0] c11-2 h11-2 hn+31-2c21-2 c31-2 c41-2 c51-2 h21-2 hn+11-2 hn+21-2 hn+m+21-2

Sent4 Sent3

BERT Transformer + Linear Layers

[C1] [C2] [C3] [C4] [C5] …S41

c13-4 c23-4 c33-4 c43-4 c53-4 …

Sent5 Sent6

BERT Transformer + Linear Layers

[C1] [C2] [C3] [C4] [C5] …S51

c15-6 c25-6 c35-6 c45-6 c55-6 …

Hard Negative SequenceEasy Negative Sequences

MLM
Loss

TFIDF
Loss

… …

Multi-CLS Quick Thoughts Loss SO
Loss

Other Sentences in the Batch

BERT +  
Linear Layers

Input Tokens

Facet embeddings  
in the batch

Postive Sequence

A Sampled Sequence in a Batch

…

…

Sent5
Sent6

Positive
Pairs

Hard
Negative

Pairs

Part 3

Sent1
Sent2

Part 1

…

Sent3
Sent4

Part 2
…

…

[CLS0]

[CLS0]

[CLS0]

[CLS0]

CLS Embedding

Figure 5.2: Our MCQT, SO, MLM, and TFIDF loss, which are a modification of multi-task
pretraining proposed in Aroca-Ouellette and Rudzicz [6]. The multi-CLS quick thought
(MCQT) loss maximizes the CLS similarities between a sequence (sentences 1 and 2) and
the next sequence (sentences 3 and 4) while minimizing the CLS similarities to other random
sequences and the sequence after the next one (sentences 5 and 6). Notice that sentence 4 is
inputted before sentence 3 because the sentence order is swapped for the SO loss.

cantly improve the accuracy on GLUE [229] and SuperGLUE [228], especially when the

training sizes are small. Similar to the BERT ensemble model, we further show that multiple

CLS embeddings significantly reduce the expected calibration error, which measures the

quality of prediction confidence, on the GLUE benchmark.

5.2.1 Method

In sections 5.2.1.1 and 5.2.1.2, we first review its state-of-the-art pretraining method

from Aroca-Ouellette and Rudzicz [6]. In Section 5.2.1.3, we modify one of its losses, quick

thoughts (QT), to pretrain our multiple embedding representation. In Section 5.2.1.4, we

encourage the CLS embeddings to capture the fine-grained semantic meaning of the input

sequence by adding hard negatives during the pretraining. To diversify the CLS embeddings,

we modify the transformer encoder in Section 5.2.1.5 and propose a new reparametrization

method during the fine-tuning in Section 5.2.1.6.

112

5.2.1.1 Multi-task Pretraining

After testing many self-supervised losses, Aroca-Ouellette and Rudzicz [6] find that

combining the masked language modeling (MLM) loss, TFIDF loss, sentence ordering (SO)

loss [210], and quick thoughts (QT) loss [133] could lead to the best performance.

The MLM loss is to predict the masked words and the TFIDF loss is to predict the impor-

tance of the words in the document. Each input text sequence consists of multiple sentences.

They swap the sentence orders in some input sentences and use the CLS embedding to

predict whether the order is swapped in the SO loss. Finally, QT loss is used to encourage

the CLS embeddings of the consecutive sequences to be similar.

To improve the state-of-the-art pretraining method, we modify the multi-task pretraining

method by using multiple CLS embeddings to represent the input sequence and using non-

immediate consecutive sentences as the hard negative. Our training method is illustrated in

Figure 5.2.

5.2.1.2 Quick Thoughts Loss

Two similar sentences tend to have the same label in a downstream application, so

pretraining should aim to pull the CLS embeddings of these similar sentences closer. The QT

loss achieves this goal by assuming consecutive text sequences are similar and encouraging

their CLS embeddings to be similar.

Aroca-Ouellette and Rudzicz [6] propose an efficient way of computing QT loss in a

batch by evenly splitting each batch with size B into two parts. The first part contains B/2

text sequences randomly sampled from the pretrained corpus, and the second part contains

each of the B/2 sentences that are immediately subsequent to those in the first part. Then,

for each sequence in the first part, they use the consecutive sequence in the second part as

the positive example and the other B/2− 1 sequences as the negative examples. We can

write the QT loss for the sequences containing sentences 1, 2, 3, and 4 as

113

LQT (s
1−2, s3−4) = − log(

exp(LogitQT
s1−2,s3−4)∑

s exp(LogitQT
s1−2,s)

), (5.1)

where s is the sentences in the second part of the batch, LogitQT
s1−2,s3−4 = (c1−2

||c1−2||)
T c3−4

||c3−4|| is

the score for classifying sequence s3−4 as the positive example, c1−2

||c1−2|| is the L2-normalized

CLS embedding for sentences 1 and 2. The normalization is intended to stabilize the

pretraining by limiting the gradients’ magnitudes.

5.2.1.3 Multiple CLS Embeddings

A text sequence could have multiple facets; two sequences could be similar in some

facets but dissimilar in others, especially when the text sequences are long. The QT loss

squeezes all facets of a sequence into a single embedding and encourages all facets of two

consecutive sequences to be similar, potentially causing information loss.

Some facets might better align with the goal of a downstream application. For example,

the facets that contain more sentiment information would be more useful for sentiment

analysis. To preserve the diverse facet information during pretraining, we propose multi-CLS

quick thoughts loss (MCQT). The loss integrates two ways of computing the similarity of

two sequences. The first way computes the cosine similarity between the most similar facets,

and the second computes the cosine similarity between the summations of all facets. We

linearly combine the two methods as the logit of the two input sequences:

LogitMC
s1−2,s3−4 = λmax

i,j
(

c1−2
i

||c1−2
i ||

)T
c3−4
j

||c3−4
j ||

+ (1− λ)(

∑
i c

1−2
i

||
∑

i c
1−2
i ||

)T
∑

j c
3−4
j

||
∑

j c
3−4
j ||

. (5.2)

where λ is a constant hyperparameters; c1−2
k and c3−4

k are the CLS embeddings of sentences

1-2 and sentences 3-4, respectively.

The first term only considers the most similar facets to allow some facets to be dissimilar.

Furthermore, the term implicitly diversifies CLS embeddings by considering each CLS

embedding independently. In contrast, the second term encourages the CLS embeddings to

114

work collaboratively, as in a typical ensemble model, and also let every CLS embedding

receive gradients more evenly. Notice that we sum the CLS embeddings before the nor-

malization so that the encoder could predict the magnitude of each CLS embedding as its

weight in the summation.

To show that the proposed method can improve the state-of-the-art pretraining methods,

we keep the MLM loss and TFIDF loss unchanged. For the sentence ordering (SO) loss,

we project the K hidden states hc
k into the embedding hSO with the hidden state size D for

predicting the sentence order: hSO = LSO(⊕kh
c
k), where ⊕kh

c
k is the concatenation of K

hidden states with size K ×D.

5.2.1.4 Hard Negative

For a large transformer-based LM, distinguishing the next sequence from random

sequences could be easy. The LM can achieve low QT loss by outputting nearly identical

CLS embeddings for the sentences with the same topic while ignoring the fine-grained

semantic information [167]. In this case, using multiple CLS embeddings might become

underutilized.

The hard negative is a common method of adjusting the difficulties of the contrastive

learning [12, 42]. Our way of collecting hard examples is illustrated in the bottom-left block

of Figure 5.2. To efficiently add the hard negatives in the pretraining, we split the batch into

three parts. For each sequence in the first part, we would use its immediate next sequence in

the second part as the positive example, use the sequence after the next one in the third part

as the hard negative, and use all the other sequences in the second or the third part as the

easy negatives. We select such sequence after the next one as our hard negatives because the

sequence usually share the same topic with the input sequence but is more likely to have

different fine-grained semantic facets compared to the immediate next sequence.

After adding the hard negative, the modified QT loss of the three consecutive sequences

becomes

115

[CLS0] [C1] S1 …[C2] [C3] [C4] [C5]

[CLS0] h1 h3hc5 h2

L4,1 L4,2 L4,3 L4,4 L4,5

BERTbase Encoder +
Linear Layers

[MASK]

……

S2

…

1-4 Transformer Layers}
……

L8,1 L8,2 L8,3 L8,4 L8,5

……

hc1 hc2 hc3 hc4

9-12 Transformer Layers}

HkMC LO,k GELU Layernorm

c5c1 c2 c3 c4

Finetuning Pretraining

cMCFT

H1MCLO,1
FT H2MCLO,2

FT H3MCLO,3
FT H4MCLO,4

FT H5MCLO,5
FT

CLS Embeddings

Figure 5.3: The architecture of Multi-CLS BERT encoder that is built on BERTBase model.
The different linear layers are applied to the hidden states corresponding to different CLS
tokens to increase the diversity of the resulting CLS embeddings.

LMCQT (s
1−2, s3−4, s5−6) =

− log

 exp(LogitMC
s1−2,s3−4)∑

s∈{s3−4,...,s5−6,...}
exp(LogitMC

s1−2,s)

− log

 exp(LogitMC
s5−6,s3−4)∑

s∈{s3−4,...,s1−2,...}
exp(LogitMC

s5−6,s)

 ,

(5.3)

where MCQT refer to multi-CLS quick thoughts, {s3−4, ..., s5−6, ...} are all the sequences

in the second and the third part, and {s3−4, ..., s1−2, ...} are all the sequences in the first and

the second part.

5.2.1.5 Architecture-based Diversification

Initially, we simply input multiple special CLS tokens ([C1], ..., [CK]) after the original

CLS token, [CLS0], and take the corresponding hidden states as the CLS embeddings, but

we found that the CLS embeddings quickly become almost identical during the pretraining.

Subsequently, instead of using the same final transformation head HQT for all CLS

hidden states, we use a different linear layer LO,k in the final head HMC
k to transform the

116

hidden state hc
k for the kth CLS. We set the bias term in LO,k to be the constant 0 because

we want the differences between the CLS to be dynamic and context-dependent.

Nevertheless, even though the resulting CLS embeddings ck = HMC
k (hc

k) are differenti-

ated, the hidden states hc
k before the transformation head usually still collapse into almost

identical embeddings.

To solve the collapsing problem, we insert multiple linear layers Ll,k into the transformer

encoder. In Figure 5.3, we illustrate our encoder architecture built on the BERTBase model.

After the 4th transformer layer, we insert the layers L4,k to transform the hidden states

before inputting them to the 5th layer. Similarly, we insert L8,k between the 8th transformer

layer and 9th transformer layer. For BERTLarge, we insert Ll,k(.) after layer 8 and layer 16.

Notice that although the architecture looks similar to the adapter [88] or prefix-tuning [118],

our purpose is to diversify the CLS embeddings rather than freezing parameters to save

computational time.

5.2.1.6 Fine-Tuning

To avoid overfitting and increasing computational overhead, we pool multiple CLS

hidden states into the single CLS embedding for downstream task fine-tuning. As a result,

we can use the same classifier architecture on top of Multi-CLS BERT and BERT, which

also simplifies their comparison.

We discover that simply summing all the CLS hidden states still usually makes the hidden

states and the inserted linear layers (e.g., LO,k) almost identical after fine-tuning. To avoid

collapsing, we aggregate the CLS hidden states by proposing a novel re-parameterization

trick:

cMCFT =
∑
k

(
LFT
O,k(h

c
k)
)
, (5.4)

where LFT
O,k(h

c
k) = (WO,k− 1

K

∑
k′ WO,k′)h

c
k, and WO,k is the linear weights of LO,k. Then,

if all the LFT
O,k become identical (i.e., ∀k,WO,k =

1
K

∑
k′ WO,k′), LFT

O,k(h
c
k) = 0 = cMCFT .

117

However, gradient descent would not allow the model to constantly output the zero vector,

so LFT
O,k remains different during the fine-tuning.

5.2.2 Experiments

The parameters of neural networks are more restricted as more training samples are

available [139] and the improvement of deep ensemble models comes from the diversity of

individual models [63], so the benefits of ensembling are usually more obvious when the

training set size is smaller. Therefore, in addition to using the full training dataset, we also

test the settings where the models are trained by 1k samples [255] or 100 samples from each

task in GLUE [229] or SuperGLUE [228]. Another benefit of the 1k- and 100-sampling

settings is that the average scores would be significantly influenced by most datasets rather

than by only a subset of relatively small datasets [24].

5.2.2.1 Experiment Setup

To accelerate the pretraining experiments, we initialize the weights using the pretrained

BERT models [47] and continue the pretraining using different loss functions on Wikipedia

2021 and BookCorpus [262].

All of the methods are based on uncased BERT as in Aroca-Ouellette and Rudzicz [6].

We compare the following methods:

• Pretrained: The pretrained BERT model released from Devlin et al. [47].

• MTL: Pretraining using the four losses selected in Aroca-Ouellette and Rudzicz [6]: MLM,

QT, SO, and TFIDF. We remove the continue learning procedure used in ERNIE [210]

because we find that simply summing all the losses leads to better performance (see our

ablation study in Section 5.2.2.3).

• Ours (K=5, λ): The proposed Multi-CLS BERT method using 5 CLS tokens. We show

the results of setting λ = {0, 0.1, 0.5, 1} in Equation 5.7. We reduce the maximal sentence

length by 5 to accommodate the extra 5 CLS tokens.

118

GLUE SuperGLUE
Configuration ↓ Model Name ↓ Model Size ↓ 100 1k Full 100* 1k* Full

BERT
Base

Pretrained 109.5M 55.71 71.67 82.05 57.18 61.55 65.04
± 0.62 ± 0.15 ± 0.08 ± 0.43 ± 0.37 ± 0.36

MTL 109.5M 59.29 73.26 83.30† 57.50 62.94 66.33
± 0.27 ± 0.13 ± 0.07 ± 0.41 ± 0.36 ± 0.33

Ours (K=1) 111.3M 57.84 73.28 83.40 57.31 63.35 66.29
± 0.32 ± 0.13 ± 0.07 ± 0.35 ± 0.18 ± 0.18

Ours (K=5, λ = 0) 118.4M 61.54 74.14 83.41 58.29 63.71 66.80
± 0.32 ± 0.12 ± 0.07 ± 0.33 ± 0.26 ± 0.25

Ours (K=5, λ = 0.1) 118.4M 61.80 74.10 83.47 58.20 63.61 66.74
± 0.35 ± 0.13 ± 0.05 ± 0.31 ± 0.27 ± 0.26

Ours (K=5, λ = 0.5) 118.4M 60.49 74.02 83.47 58.41 63.78 66.80
± 0.35 ± 0.12 ± 0.08 ± 0.38 ± 0.25 ± 0.24

Ours (K=5, λ = 1) 118.4M 59.86 73.75 83.43 57.84 63.56 66.39
± 0.34 ± 0.14 ± 0.07 ± 0.40 ± 0.22 ± 0.22

BERT
Large

MTL 335.2M 61.39 75.30 84.13 59.03 65.21 69.16
± 0.37 ± 0.27 ± 0.11 ± 0.54 ± 0.38 ± 0.37

Ours (K=1) 338.3M 59.19 75.35 84.59 57.35 64.67 69.24
± 0.43 ± 0.21 ± 0.07 ± 0.42 ± 0.43 ± 0.41

Ours (K=5, λ = 0) 350.9M 63.19 75.73 84.51 59.46 65.43 69.56
± 0.49 ± 0.26 ± 0.05 ± 0.44 ± 0.38 ± 0.31

Ours (K=5, λ = 0.1) 350.9M 64.24 76.27 84.61 59.88 65.58 70.03
± 0.40 ± 0.12 ± 0.08 ± 0.43 ± 0.26 ± 0.25

Ours (K=5, λ = 0.5) 350.9M 63.02 75.95 84.49 59.42 65.84 69.79
± 0.42 ± 0.10 ± 0.08 ± 0.34 ± 0.25 ± 0.25

Ours (K=5, λ = 1) 350.9M 62.07 75.85 84.61 58.74 65.00 69.04
± 0.45 ± 0.17 ± 0.07 ± 0.50 ± 0.29 ± 0.27

Table 5.1: The macro average scores on the development set. All numbers are percentages.
The standard errors are shown as the confidence intervals. We make the best scores of the
model built on BERTBase boldface and similar for the models built on BERTLarge. †The
number is much higher than 81.4, the GLUE score reported by Aroca-Ouellette and Rudzicz
[6] because we continue training from the pretrained BERT and we use better fine-tuning
hyperparameters. *The scores do not contain ReCoRD in SuperGLUE.1

• Ours (K=1): We set K = 1 in our method to verify the effectiveness of using multiple

embeddings. During fine-tuning, the CLS embedding is a linear transformation of the

single facet CLS = LO,1(h
f
1).

The GLUE and SuperGLUE scores are significantly influenced by the pretraining random

seeds [193] and fine-tuning random seeds [50, 255, 155]. To stably evaluate the performance

of different pretraining methods, we pretrain models using four random seeds and fine-tune

each pretrained model using four random seeds, and report the average performance on the

development set across all 16 random seeds. To further stabilize the fine-tuning process and

reach better performance, we follow the fine-tuning suggestions from Zhang et al. [255]

and Mosbach et al. [155], including training longer, limiting the gradient norm, and using

Adam [101] with bias term and warmup.

119

5.2.2.2 Main Results

Our results are presented in Table 5.1. We can see that Ours (K=5) is consistently

better than other baselines and that the improvement is larger in datasets with fewer training

samples. For example, in GLUE 100, it achieves 61.80 on average using BERTBase with

118.4M parameters, which outperforms MTL using BERTLarge with 335.2M parameters

(61.39). MTL significantly improves the scores of original BERT model (Pretrained),

confirming the effectness of the QT, SO, and TFIDF losses. Compared to MTL, Ours

(K=1) is slightly better in GLUE 1k and GLUE Full, but worse in GLUE 100.

We observe that λ = 0.1 usually performs well, which justifies the inclusion of both the

highest logit and average logit in Equation 5.7. The λ = 0 model has significantly worse

performance only in BERTLarge model. This suggests that the benefits of Multi-CLS BERT

depend on our pretraining method and maximizing the highest logit stabilizes the pretraining

of a larger model.

5.2.2.3 Ablation Study

In our ablation studies, we would like to test the effectiveness of the design choices in

our baseline MTL and our best model, Ours (K=5, λ = 0.1). The model variants we test

include:

• MLM only: Removing the QT, SO, and TFIDF losses in MTL. That is, we simply

continue training Pretrained using only the MLM loss.

• CMTL+: The best pretrained method reported in Aroca-Ouellette and Rudzicz [6]. It uses

the continual learning method [210] to weight each loss in MTL.

• MLM+SO+TFIDF: MTL without the QT loss.

• No Inserted Layers: Removing the Ll,k(.) in the transformer encoder from our method.

1In SuperGLUE 100 and 1k, we exclude the ReCoRD dataset because the performance of all models is
much worse than the most frequent class baseline.

120

• No Hard Negative: Removing the hard negatives described in Section 5.2.1.4 from our

method.

• Sum Aggregation: Simply summing the facets (i.e., using LO,k to replace LFT
O,k in Equa-

tion 5.5).

• Default: Ours (K=k, λ = 0.1), where k = {1, 3, 5, 10}.

• SWA: Stochastic weight averaging [188, 92] averages the weights along the optimization

trajectory.

• Ensemble on Dropouts: Running the forward pass of Ours (K=1) with dropout using 5

different seeds and averaging their prediction probabilities for each class in each task.

• Ensemble on FT Seeds: Fine-tuning Ours (K=1) or Ours (K=5, λ = 0.1) using 5

different seeds and averaging their prediction probabilities.

Our results are presented in Table 5.2. We can see that continuing training using

MLM only loss degrades the performance, which indicates that our improvement does not

come from training BERT longer. Removing QT loss results in mixed results. The better

performance of MTL compared to CMTL+ suggests that the continual training technique

used in Aroca-Ouellette and Rudzicz [6] is harmful with our evaluation settings.

Removing the inserted layers (No Inserted Layers) or removing the re-parametrization

trick (Sum Aggregation) makes the performance of Ours (K=5, λ = 0.1) close to the Ours

(K=1) baseline. This result highlight the importance of diversity of CLS embeddings. The

performance of Ours (K=3) and Ours (K=10) is usually better than Ours (K=1), but are

worse than Ours (K=5). In both BERTBase and BERTLarge models, removing hard negatives

degrades the GLUE scores but slightly increases the SuperGLUE scores.

In GLUE 100 and 1k, we do not get good results by using other efficient ensembling

methods such as SWA and Ensemble on Dropouts. This suggests that the gradient descent

trajectory and different dropout maps might not produce prediction diversity sufficient for

an effective BERT ensemble model [63].

121

GLUE SuperGLUE*
Model ↓ Model Description ↓ K ↓ 100 1k 100 1k

Baselines
(BERT
Base)

Pretrained 1 56.85 71.68 57.90 62.14
MLM only 1 55.38 70.74 57.39 61.77

CMTL+ 1 58.65 72.57 56.88 62.63
MLM + SO + TFIDF 1 60.35 72.65 57.88 62.60

MTL 1 59.53 73.12 57.51 62.95

Ours
(BERT
Base)

No Inserted 1 58.06 73.18 57.97 63.34
Layers 5 60.12 73.35 56.46 62.00

No Hard 1 58.44 73.30 57.19 63.33
Negative 5 61.77 74.18 58.89 63.86

Sum Aggregation 5 58.87 73.94 57.41 63.82

Default

1 57.76 73.30 57.53 63.22
3 61.09 73.95 57.85 63.31
5 62.62 74.49 58.82 63.86

10 60.99 73.59 58.25 62.82
SWA 1 57.31 72.91 - -

Ensemble on Dropouts 1 58.45 72.86 - -

Ensemble on FT Seeds
1 60.07 75.20 - -
5 63.34 75.35 - -

Ours
(BERT
Large)

No Hard 1 60.36 75.69 58.47 65.04
Negative 5 63.23 75.77 60.33 65.75

Default
1 60.01 76.03 57.38 65.10
5 64.33 76.38 59.99 65.51

Table 5.2: The macro average scores on the development set for our ablation study. We
highlight the best performance after excluding the ensemble baselines, which require much
more computation. The scores are different in Table 5.1 because we use two pretraining
random seeds instead of four in the ablation study. SWA refers to Stochastic weight
averaging [92]. *SuperGLUE score does not contain ReCoRD.

On the other hand, ensembling the models that are fine-tuned using different random

seeds indeed boosts the performance at the expense of high computational costs. The

ensembled Multi-CLS BERT (Ensemble on FT Seeds K=5) still outperforms the ensembled

K=1 baseline, but ensembling makes their performance differences smaller. These results

imply that the improvements of Multi-CLS BERT overlap with the improvements of a BERT

ensemble model.

5.2.2.4 Ensembling Analysis

We compare the inference time and expected calibration error (ECE) [157] of using

multiple CLS embeddings, using a single CLS embedding, and ensembling BERT models

with different fine-tuning seeds in Table 5.3. A lower ECE means a better class probability

122

Inference GLUE* (ECE)
Time (s) 100 1k

Ours (K=1) 0.2918 25.22 19.32
± 0.0002 ± 1.99 ± 1.64

Ours (K=5, λ = 0.1) 0.3119 15.46 17.01
± 0.0004 ± 1.79 ± 1.64

Ensemble of Ours (K=1) 1.4590 13.85 10.80
± 0.0012 ± 0.97 ± 0.88

Table 5.3: The comparison of inference time and expected calibration error (ECE). The
confidence intervals are standard errors. *Only includes the classification tasks (i.e., excludes
STS-b).

GLUE* 100 GLUE* 1k
Multi-CLS vs ENS 32.57 41.35

Dropout vs ENS 37.17 45.53
Least vs ENS 39.57 48.85
ENS vs ENS 38.67 50.14

Table 5.4: The overlapping ratio of the top 20% most uncertain examples using different
uncertainty estimation methods. ENS is ensemble of Ours (K=5, λ = 0.1) with different
fine-tuning seeds. *Only includes the classification tasks (i.e., excludes STS-b).

estimation. For example, if a model outputs class 1 with 0.9 probability for 100 samples,

ECE = 0 means that 90 samples among them are indeed class 1.

Table 5.3 shows that Ours (K=5) is much faster than the BERT ensemble and almost as

efficient as Ours (K=1), because a BERT ensemble needs to run for multiple forward passes

and we reduce the maximal sentence length by 5 in Ours (K=5). Additionally, the ECE of

Ours (K=5) is lower than Ours (K=1) but not as low as the ECE from ensembling BERT

models with different fine-tuning seeds. That is, without significantly increasing inference

time, ensembling multiple CLS embeddings improves the output confidence, even though

not as much as ensembling BERT models.

Next, we analyze the correlation of uncertainty estimation from different methods in

Table 5.4. When ensembling BERT models with different dropout maps (Dropout) or

different fine-tuning seeds (ENS), we can estimate the prediction uncertainty by the variance

of the prediction probability from each individual BERT model. We can also use one

minus prediction probability as the uncertainty (Least). In Multi-CLS, we measure the

123

disagreement among the CLS embeddings as the uncertainty2 and would like to see how

many top-20% most uncertain samples from the disagreement of CLS embeddings are also

the top-20% most uncertain samples for a BERT ensemble model.

Table 5.4 reports the ratio of the number of the overlapping uncertain samples from

two estimation methods to the number of 20% samples in the development set. We can

see that the ratio from Multi-CLS BERT and the BERT ensemble model (Multi-CLS vs

ENS) is close to the ratios from other uncertainty estimations and the BERT ensemble

model (Dropout vs ENS, Least vs ENS, and ENS vs ENS). This shows that different CLS

embeddings can classify the uncertain samples differently, as is the case for the different

BERT models in a BERT ensemble model.

In short, we find that a) ensembling the original BERT leads to greater improvement than

ensembling the Multi-CLS BERT and b) the disagreement of different CLS embeddings

highly correlates with the disagreement of the BERT models from different fine-tuning

seeds. Both findings support our perspective that Multi-CLS BERT is an efficient ensembling

method.

5.2.3 Related Work

Due to its effectiveness, ensembling BERT in a better or more efficient way has recently

attracted researchers’ attention. Nevertheless, the existing approaches often need to rely

on distillation [244, 142, 264] or still require significant extra computational cost during

training and testing [104, 120].

Some recent vision models can also achieve ensembling almost without extra computa-

tional cost by sharing the weights [238], partitioning the model into subnetworks [82, 257],

or partitioning the embeddings [112]. However, it is unknown if the approaches are applica-

ble to the pretraining and fine-tuning of language models.

2See Appendix D.1.3 for details

124

Similar to Multi-CLS BERT, mixture of softmax (MoS) [248] also uses multiple em-

beddings to improve the pretraining loss. Recently, Narang et al. [158], Tay et al. [218]

have found that MoS is one of the few modifications that can improve on the original BERT

architecture on the NLU benchmarks. Nevertheless, Narang et al. [158] also point out that

MoS requires significant extra training cost to compute the multiplication between each

hidden state and all the word embeddings in the vocabulary.

Another approach represents a document using sentence embeddings [91, 156] or con-

textualized word embeddings [100, 134] for information retrieval applications. However,

the goal of this approach is to improve the representation of a relatively long document and

it is unknown if its benefits could be extended to the GLUE tasks that require fine-tuning

and often involve only one or two sentences.

5.3 Applications on Scientific Paper Representation Benchmarks

With an ever-increasing amount of research publications, it has become virtually es-

sential to develop NLP methods that would allow researchers to efficiently process the

wealth of scientific knowledge. Leveraging pretrained language models and citation graphs,

SPECTER [42] brings sizeable improvement over the previously state-of-the-art paper

encoders and similarity estimation models such as SciBERT [16] and Citeomatic [17].

Recently, SciNCL [163] has introduced more sophisticated positive and negative sampling

strategies to improve SPECTER further.

Despite all the progress made so far, what is yet missing from literature is examining

whether existing encoders can effectively represent the scientific papers across diverse

subject areas.

In previous work [17, 16, 42], the training and evaluation data primarily consist of

scientific papers from specific subject areas such as computer science and medicine. While

these choices might be due to non-technical reasons such as the lack of open access articles

[175] or insufficient number of users from certain domains, it naturally makes us wonder

125

Multi-domain

citation graph training

Multi2SPE
(BERT +

linear layers)

CLS

1

BERT

Single domain-dominated
evaluation

CLS

2

CLS

3

CLS

1

Multi-SciDocs

Single domain-dominated
citation graph training

2

GOOD? 🤔
1

Figure 5.4: An overview of our two-parted solution. 1) Multi2SPE is our modified Multi-
CLS BERT model that better utilizes multi-domain citation data through multiple diversified
CLS embeddings. 2) Multi-SciDocs is our new benchmark for testing embeddings of
scientific papers under multi-domain settings.

whether we can represent papers from more diverse scientific domains using a single encoder

and whether we could improve state-of-the-art models under the multi-domain settings.

In this section, we lay out our two-parted solution to overcome this limitation: the first

part is our scientific paper encoder, Multi2SPE, a varient of Multi-CLS BERT. This is built

upon the intuition that extracting embeddings through just one CLS token is limiting, when

more ideal ways of mixing contextualized word embeddings could be different for each

subject area. For the second part, we introduce the Multi-SciDocs benchmark, to better

understand the capabilities of scientific document representations in handling multi-domain

settings.

Comparing Multi2SPE and the single-CLS baselines on Multi-SciDocs suggests that

training Multi2SPE on single domain-dominated citation graphs already boosts the scores on

multi-domain tasks; with more balanced multi-domain training, Multi2SPE provides even

bigger improvements.

126

5.3.1 Multi2SPE: Multi-Domain × Multi-CLS Scientific Paper Encoder

The improvements in Section 3.4 suggest that the citing paper distribution is sometimes

multi-mode and the multiple embedding is helpful in citation recommendation. However,

our performance is not state-of-the-art because we use one-tower co-occurrence learning

and our encoder does not start from a pre-trained LM. In this section, we would like to

improve the BERT-based model using multiple CLS embeddings.

Since one CLS embedding corresponds to merely a single scheme of aggregating word

embeddings, it might be sufficient for the documents from one domain but may be far from

ideal for other domains. We address this observation by prepending multiple CLS tokens

to input documents and introducing small architectural additions that encourage each CLS

embedding to learn a distinctive way of mixing word embeddings together for the final

document representation.

5.3.1.1 Multiple CLS Encoder

With multiple CLS tokens ([CLS_1], ..., [CLS_K]), we insert linear layers Ll,k

at the sequence positions of each CLS embeddings as shown in Figure 5.5, to encourage the

CLS embeddings to pay attention to different contextualized word embeddings. Similarly

to Multi-CLS BERT, we insert additional linear transformations after the 4th, 8th, and 12th

BERT layers.

We also adopt the re-parameterization trick used during the fine-tuning stage of Multi-

CLS BERT to ensure that all the added linear transformations at each BERT layer are

different and not similar to each other:

Ll,k(h
c
l,k) = (Wl,k −

1

K

∑
k′

Wl,k′)h
c
l,k + bl,k, (5.5)

Ll,k is the linear transformation for kth CLS token at the layer l, Wl,k − 1
K

∑
k′ Wl,k′ is the

linear projection weights and bl,k is the bias term. To prevent Wl,k − 1
K

∑
k′ Wl,k′ = 0, the

gradient descent tend to learn different Wl,k for different k.

127

[CLS1] wA1 …

L4,1 L4,2 L4,3

Multi2SPE
(BERTBase +

Linear Layers)

……

wA2

1-4 Layers}
……

L8,1 L8,2 L8,3

…… 9-12 Layers}
cA1 cA2 cA3

L12,1 L12,2 L12,3

cA

wB1

L4,1 L4,2 L4,3

……

……

L8,1 L8,2 L8,3

……

cB1 cB2 cB3

L12,1 L12,2 L12,3

cB

…

SPA,PB

MC

λ

1-λ

Most similar pair

PA PB

Paper
Embedding

CLS
Embedding

[CLS2] [CLS3] [CLS1] [CLS2] [CLS3]

Figure 5.5: The architecture of Multi2SPE and its similarity measurement during training
SMC
PA,PB .

5.3.1.2 Contrastive Citation Prediction Loss

Existing state-of-the-art scientific paper encoders such as SPECTER [42] and SciNCL

[163] use training signals coming from a contrastive citation prediction task: their objective

function is to encourage the embedding of each query paper to be close to those of the paper

cited by them, and be far away the papers they did not cite, P−.

Similarly, we minimize the cross entropy loss of a given query paper PQ, a cited paper

P+, and a paper not cited, P−:

LPQ,P+,P− = − log

 exp(SMC
PQ,P+)∑

P∈{P+,P−}
exp(SMC

PQ,P)

 , (5.6)

where SMC
PQ,P+ is the similarity between the query paper PQ and the cited paper P+ from

the multiple CLS encoder. It is also the logit score for predicting the paper P+ as the cited

paper.

128

5.3.1.3 Measuring Document Similarity with Multiple Embeddings

One typical use of document embeddings is to perform a nearest neighbor search for

retrieving candidates similar to the query document. While it would be possible to use each

of CLS embeddings separately as in Section 3.4, or concatenate them together to encode

each document, we would significantly increase the computational costs of the retrieval

process. Instead, during inference, we simply take the summation of CLS embeddings from

paper A to be its final paper representation cA =
∑

k c
A
k and cAk = L12,k(h

c,A
12,k).

During the contrastive training (Section 5.3.1.2), we compute the similarity between two

papers SMC
PA,PB using dot products between their paper embeddings (cA)T (cB) and the most

similar CLS embeddings maxi,j(c
A
i)

TcBj :

SMC
PA,PB = λmax

i,j
(cAi)

TcBj + (1− λ)(cA)T (cB), (5.7)

where cA =
∑

k c
A
k and λ is the hyperparameter for controlling the dependency between the

CLS embeddings. Smaller λ makes similarity measurement in training and testing more

consistent and encourages the CLS embeddings to collaborate with each other. Larger λ

encourages each of the CLS embeddings to become more meaningful paper embeddings

on their own. The NLU experiments suggests that setting λ > 0 can greatly stabilize the

BERTLarge model while slightly improving BERTBase.

5.3.2 Multi-SciDocs

Cohan et al. [42] proposed SciDocs as a comprehensive benchmark for evaluating

scientific paper embeddings. SciDocs introduces 12 metrics from 7 tasks, but we have

discovered that the domain distributions of 5 tasks are heavily biased toward computer

science (CS) papers.3 The only exceptions are MeSH (Medical Subject Headings) [125],

3Please see Appendix D.2.3 for detailed statistics.

129

MAG multi. cite multi. co-cite Avg
F1 MAP nDCG MAP nDCG

SPECTER 78.90 78.14 88.06 65.97 73.46 76.90
80.24 81.57 90.12 69.12 75.97 79.40

Multi2SPE ± 0.18 ± 0.13 ± 0.07 ± 0.08 ± 0.07 ± 0.04
(3 CLS, λ = 0.1) 6.35% 15.71% 17.29% 9.25% 9.45% 10.82%

SciNCL 79.59 82.45 90.56 69.94 76.62 79.83
80.73 83.25 91.05 71.10 77.51 80.73

Multi2SPE ± 0.27 ± 0.21 ± 0.12 ± 0.32 ± 0.24 ± 0.19
(3 CLS, λ = 0.1) 5.58% 4.57% 5.16% 3.86% 3.80% 4.44%

(a) Single domain (CS) training

MAG multi. cite multi. co-cite Avg
F1 MAP nDCG MAP nDCG

SPECTER 79.99 79.30 88.73 68.59 75.60 77.97
81.36 84.08 91.54 71.79 78.15 81.10

Multi2SPE ± 0.29 ± 0.10 ± 0.06 ± 0.22 ± 0.17 ± 0.06
(3 CLS, λ = 0.1) 6.85% 23.08% 24.96% 10.18% 10.45% 14.20%

SciNCL 80.27 85.18 92.15 73.02 79.08 81.94
81.04 85.73 92.46 74.05 79.85 82.63

Multi2SPE ± 0.05 ± 0.29 ± 0.17 ± 0.25 ± 0.19 ± 0.18
(3 CLS, λ = 0.1) 3.90% 3.73% 3.98% 3.82% 3.69% 3.81%

(b) Multiple domain training

Table 5.5: Results of our methods and baselines on Multi-SciDocs. All scores are averaged
over four random seeds. We show standard errors as their confidence interval. Percentages
indicate relative error reduction over the baselines (SPECTER or SciNCL).

which covers the papers from the biomedical domain and MAG (Microsoft Academic

Graph) [203], which is a document classification task into 19 subject areas.

Thus, for a better measurement of multi-domain performance, we have created the

multi-domain (co-)citation prediction tasks. We refer to the collection of 3 multi-domain

tasks, multi. cite, multi. co-cite, and MAG as Multi-SciDocs.

For multi. (co-)cite datasets, we randomly sample the query papers from S2ORC [132],

avoiding a certain domain from being the majority of query papers. For each query, we

collect 500 negative papers and up to 5 positive papers. The task is to assign higher similarity

scores to the positive papers and lower scores to the negative papers. In both datasets, the

negative samples come from randomly sampled papers. In the multi. cite dataset, the

positive samples are the papers cited by the query paper. In the multi. co-cite dataset, the

positive samples and the query paper are both cited by another paper.

5.3.3 Experiments and Analyses

In the experiments, we evaluate Multi2SPE and the corresponding baselines with Multi-

SciDocs. SPECTER and SciNCL are our single [CLS] token baselines: both use identical

neural architectures and loss functions, but differ in sampling methods used to create their

contrastive triples. Since we found training datasets in previous literature to be potentially

limiting in handling papers from various scientific domains, we build our own multi-domain

130

training datasets that follow the same sampling methods of SPECTER and SciNCL, but are

more balanced in terms of the domain distribution.4

5.3.3.1 Results

Our main results are shown in Table 5.5. We can see that Multi2SPE has consistently

outperformed the baselines in all training cases. The scores from MAG show that Multi2SPE

is better capable of classifying the texts into diverse subject domains. In multi-domain

citation prediction, its error reductions are up to 25%. We hypothesize that the large

improvement partially comes from the prevalent cross-domain citations in both our training

and evaluation data. We note that the overall gains are smaller for SciNCL. We suspect that

SciNCL’s sampling method reduces the number of cross-domain citations in the dataset,

which would have helped increase the diversity in CLS embeddings.

5.3.3.2 Ablation Studies

In Table 5.6, we start by examining the effect of λ, the hyperparameter for controlling

dependencies between CLS embeddings. While the differences are relatively small for

λ = 0.0, we observe noticeable performance drops as we increase λ to 0.5 and 1.0. Our

intuition is that it is generally more beneficial to encourage all embeddings to become a

meaningful whole together, rather than directing each of them to stand on their own.

In the second set of our ablation studies, we quantify the performance benefits of each

architectural changes we introduced in Section 5.3.1.1. We can see that multiple CLS tokens

are crucial, as having just one CLS leads to clear performance drop. Increasing the number

of CLS tokens from 3 to 5 leads to mixed results. Their overall similar performance suggests

that the quality of Multi2SPE is not sensitive to the number of CLS tokens. Lastly, we

4Please see Appendix D.2.3 for the comparison of domain distribution of SPECTER/SciNCL single-domain
datasets and our multi-domain datasets.

131

MAG cite co-cite
F1 MAP MAP

Multi2SPE (3 CLS, λ = 0.1) 81.36 84.08 71.79

CLS Embedding Independence

→ λ = 0.0
81.06 84.09 71.90
-1.64% 0.11% 0.39%

→ λ = 0.5
80.70 83.05 71.46
-3.53% -6.45% -1.18%

→ λ = 1.0
79.78 83.69 71.18
-8.49% -2.40% -2.15%

Architectural Changes

→ 1 CLS token
80.32 83.32 70.30
-5.57% -4.76% -5.30%

→ 5 CLS tokens
80.83 84.03 72.59
-2.84% -0.30% 2.84%

→ No linear layer injection in BERT
80.82 83.54 71.12
-2.88% -3.38% -2.39%

→ No re-parameterization trick
80.89 83.79 71.11
-2.55% -1.82% -2.42%

Table 5.6: Ablation studies conducted on SPECTER and multiple domain training data. All
scores are averaged over four random seeds. Percentages indicate relative error reduction
over the baseline (3 CLS, λ = 0.1).

observe that both the linear layer injection to BERT and the re-parameterization trick have

clear contributions to our models’ better performance.

5.3.4 Related Work

Many studies focus only specific scientific NLP tasks such as citation recommenda-

tion [17, 59, 60, 136] and paper recommendation [15, 254]. Instead, our goal is improving a

general-purpose scientific paper encoder such as SPECTER [42] and SciNCL [163].

One common type of approaches for building scientific document encoders uses global

topic distribution to model different facets of each paper [151, 98, 231, 129]. However, the

classic approach lacks the ability to capture the compositional meaning of words compared

to the neural based approaches and thus results in suboptimal performance [14].

Another line of efforts relies on pre-defined facets [29, 30, 162] or topics [254] for

specific domains of interest, and measure paper similarities based on those facets/topics.

Recently, Mysore et al. [156] suggests encoding a paper into multiple sentence embeddings

to allow the users to search similar papers using partially constructed query papers. In

132

contrast, Multi-CLS BERT automatically learn to identify the facets that are helpful to the

citation prediction task and combine all the facets into a single embedding to improve the

similarity measurement and nearest neighbor search over the single CLS baseline while

maintaining similar level of computational costs.

5.4 Chapter Conclusion

In this chapter, we propose representing the input text using K CLS embeddings rather

than using the single CLS embedding in BERT. Compared to BERT, Multi-CLS BERT sig-

nificantly increases the GLUE and SuperGLUE scores and reduces the expected calibration

error in GLUE. Compared to SPECTER, Multi2SPE significantly improves the scores of

Multi-SciDocs, which is proposed to measure the embeddings quality of the papers from

multiple domains. Moreover, their only added cost is to reduce the maximal text length by

K and add a little extra time for computing the inserted linear transformations. Therefore,

we recommend the wide use of multiple CLS embeddings for the almost free performance

gain.

133

CHAPTER 6

CONCLUSION AND FUTURE WORK

“Life is a matter of choices, and every choice you make makes you.” –John C. Maxwell

Language models (LMs) often encounter diverse choices when predicting the next word.

This thesis first theoretically shows that the choices sometimes constitute a multimodal

distribution, which cannot be modeled by a single hidden state embedding. Inspired by the

theory, we propose several alternatives to softmax that uses multiple embeddings to capture

the modes in the next word distribution or to estimate the probabilities of words in different

partitions. The diverse embeddings improve the qualities of the generated model and allow

a user to peek the future topics in a novel interactive language generation framework.

By assuming similar input text sequences would induce similar choice distribution, we

use the choice clusters predicted by LMs to represent the input text sequence and improve

the supervised downstream fine-tuning and unsupervised sentence similarity estimation.

The results demonstrate that in many co-occurrence learning tasks, the single embedding

representation limits the choices of LMs and we can design efficient multiple embedding

representation to overcome the limitation.

6.1 Take Home Messages

• For both casual language models such as GPT-2 and bidirectional language models

such as BERT, we propose architectures and loss functions that overcome the bot-

tleneck of single embedding. Our proposal is effective in various applications and

metrics, and efficient in terms of both computational cost and model size.

134

• We theoretically identify limitations of output softmax layer and empirically show

that the multi-mode distribution is not rare in GPT-2 Small.

• Our analyses demonstrate that using multiple CLS embeddings in BERT can be

viewed as an efficient way to ensemble multiple BERT encoders.

• In sequential recommendation, learning to copy or exclude the items in the input

history can significantly improve not only the datasets with duplicated items but also

the datasets without duplicated items.

• When using multiple facet embeddings to represent a text sequence, we find that the

predicted embeddings are easy to collapse to identical embeddings. In different model

architectures, we often need different modifications of losses and architectures to

diversify the outputted embeddings.

• The learned facet embeddings could be useful in many different ways. In addition

to predicting the co-occurred item (e.g., a next word or cited paper), the multiple

embeddings could provide asymmetric similarity, estimate the word importance

without supervision, reduce issues caused by variable-length sentences, predict the

future topics, improve the performance of BERT especially in a few shot setting, and

reduce the expected calibration error of a BERT model.

• We consistently observe performance improvement by adopting multiple embeddings

on various kinds of models if a) the number of possible co-occurred items such as

vocabulary size is large, b) the multimodal distribution is common in our training

signal, and c) the facet embeddings are properly diversified.

6.2 Limitations and Future Work

Multi-facet embedding representation can be viewed as a general tool to improve the

deep learning models trained by self-supervised co-occurrence learning. In this thesis,

we develop several variants of the multi-facet embeddings and demonstrate their effec-

135

tiveness in important applications. Nevertheless, as most of the other tools that improve

deep learning models, our understanding to multi-facet embedding is still limited and the

challenges/concerns we mentioned in Section 1.1 are not completely solved. Here, we list

some open problems in each concern for the future work of the thesis.

• Optimization Difficulties: In each of the applications, we usually must develop different

tricks to diversify the facets and improve the performance. For example, we aggregate

the facet embeddings using mixture of softmax in Section 2.3, NNSC or Kmeans loss

in Chapter 3 and Chapter 4, and substracting the average facets during fine-tuning in

Chapter 5.

We still do not know why some methods are only applicable in some applications. For

example, when pretraining BERT model in Chapter 5, we find that aggregation by mix-

ing average and maximal outperforms mixture of softmax, NNSC loss, and even the

aggregation way we used in the fine-tuning stage.

• Insufficient Theoretical Support: Although we have developed theory that highlights

the limitation of single embedding and motivates our multiple embedding alternatives,

our theory does not explain all fundamental weaknesses in the softmax layer. There are

several alternatives to single embedding representation in Euclidean space, such as box

embeddings [170], hyperbolic embeddings [37], energy networks [114], and our multiple

embedding representation. There are also other theoretical findings such as Bhattacharjee

and Dasgupta [18], which studies the minimal number of dimensions of an embedding

space that can robustly reconstruct any co-occurrence relation. Nevertheless, I am not

aware of a systematic study on the relations of these alternatives and a general theory for

the limitations of single embeddings that can guide us to choose these alternatives in a new

dataset. Furthermore, most of the multiple embedding approaches (and probably other

softmax alternatives) require some tricks, which are usually developed by trial and error.

Given a new problem, we do not know exactly which existing tricks might perform better

in the task of interest and if there exists a better trick to be discovered.

136

In addition, we do not have an accurate estimation of how often multimodal distributions

happen in the next word prediction, how many multimodal distributions can be modeled

by our current approaches, and how much our proposed approaches can solve the issues

caused by the global and static word similarity. We do not know why we need to use

modeling multimodal distribution in NLG applications to explain the performance gain,

while some of our NLU approaches are more like an efficient ensembling method. We

are not exactly sure why our improvement in GLUE and SuperGLUE tasks are smaller

compared to classic ensembling approaches when more training data is available. Finally,

we empirically observe that the training methods that lead to more diverse facets seem to

also make the facet embeddings less depend on the input. There might be some theories

that can explain this observation.

• Unknown Effectiveness and Applicability:

In some applications, after trying several tricks, we still cannot make the performance of

multiple embeddings surpass the single embedding baseline. Examples of the applications

include the phrase similarity estimation in Section 3.2.2.5, paper reviewer affinity estima-

tion1, and cold-start recommendation given a small training dataset such as CiteUlike [232].

We suspect that the possible reasons are as follows. a) Our encoder cannot learn to output

diverse facet embeddings. This might be due to the sparsity of the training signal and/or

the limited diversity of the co-occurred items (i.e., the distributions of the co-occurred

text are mostly single-modal). b) There are some distribution shifts between training and

testing, and the shift makes the model overfit the training distribution or context-dependent

word similarity that is less generalizable compared to global word similarity. At testing

time, some minor modes in the distribution are actually outliers we should ignore. c) There

may be still some other tricks we haven’t discovered to improve the quality and diversity

1Our single embedding baseline in this problem is a part of the state-of-the-art affinity estimation used by
various machine learning top conferences and OpenReview.

137

of the multiple embedding representation. Thus, the next question is how can we know

when the multiple embedding representation will benefits which applications.

Due to time limitation, we haven’t fine-tuned the hyperparameters for our sequential

recommendation experiment in Section 2.5 and we also do not know if the improvement

persists after being combined with the second stage reranker, which is commonly used in

industry. We haven’t tested if Multi-CLS BERT can improve the generalization ability of

the BERT under a distribution shift as the classic ensemble models [164, 219].

We would like to know whether multiple embeddings, especially the dynamic partitioning,

could improve the consistency of generated text while reduce its repetition in summariza-

tion and dialogue generation. We are curious about if our approaches can sample more

diverse next items from the predicted multimodal distribution for sequential recommenda-

tion, code generation, and math question answering. Furthermore, we plan to apply our

approach to information retrieval models to discover the facets in a query.

Finally, our experiments focus on the relatively small language models such as GPT-2

Small and BERT base. In future, it would also be interesting to investigate if our proposed

softmax alternatives can also improve very large LM such as GPT-3 or the extreme

classification models that process the data other than the natural language.

138

BIBLIOGRAPHY

[1] N. Akoury, S. Wang, J. Whiting, S. Hood, N. Peng, and M. Iyyer. STORIUM:
A Dataset and Evaluation Platform for Machine-in-the-Loop Story Generation.
In Proceedings of the 2020 Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 6470–6484, Online, 2020. Association for Com-
putational Linguistics. doi: 10.18653/v1/2020.emnlp-main.525. URL https:
//aclanthology.org/2020.emnlp-main.525. 14, 90

[2] E. Alfonseca, K. Filippova, J.-Y. Delort, and G. Garrido. Pattern learning for relation
extraction with a hierarchical topic model. In Proceedings of the 50th Annual Meeting
of the Association for Computational Linguistics (Volume 2: Short Papers), pages
54–59, Jeju Island, Korea, 2012. Association for Computational Linguistics. URL
https://aclanthology.org/P12-2011. 79

[3] Z. Allen-Zhu and Y. Li. Towards understanding ensemble, knowledge distillation
and self-distillation in deep learning. ArXiv preprint, abs/2012.09816, 2020. URL
https://arxiv.org/abs/2012.09816. 111

[4] S. Amin, K. A. Dunfield, A. Vechkaeva, and G. Neumann. A data-driven approach for
noise reduction in distantly supervised biomedical relation extraction. In Proceedings
of the 19th SIGBioMed Workshop on Biomedical Language Processing, pages 187–
194, Online, 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.
bionlp-1.20. URL https://aclanthology.org/2020.bionlp-1.20. 79

[5] P. Ammanabrolu, E. Tien, W. Cheung, Z. Luo, W. Ma, L. J. Martin, and M. O.
Riedl. Story realization: Expanding plot events into sentences. In The Thirty-Fourth
AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innova-
tive Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI
Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York,
NY, USA, February 7-12, 2020, pages 7375–7382. AAAI Press, 2020. URL https:
//aaai.org/ojs/index.php/AAAI/article/view/6232. 107, 108

[6] S. Aroca-Ouellette and F. Rudzicz. On Losses for Modern Language Models.
In Proceedings of the 2020 Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 4970–4981, Online, 2020. Association for Com-
putational Linguistics. doi: 10.18653/v1/2020.emnlp-main.403. URL https:
//aclanthology.org/2020.emnlp-main.403. xvii, xxiii, 8, 11, 109, 111,
112, 113, 118, 119, 120, 121, 187, 188

139

[7] S. Arora, Y. Liang, and T. Ma. A simple but tough-to-beat baseline for sentence em-
beddings. In 5th International Conference on Learning Representations, ICLR 2017,
Toulon, France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net,
2017. URL https://openreview.net/forum?id=SyK00v5xx. 8, 60, 63,
86, 181, 182, 183

[8] S. Arora, Y. Li, Y. Liang, T. Ma, and A. Risteski. Linear algebraic structure of
word senses, with applications to polysemy. Transactions of the Association for
Computational Linguistics, 6:483–495, 2018. doi: 10.1162/tacl_a_00034. URL
https://aclanthology.org/Q18-1034. 66

[9] B. Athiwaratkun and A. Wilson. Multimodal word distributions. In Proceed-
ings of the 55th Annual Meeting of the Association for Computational Linguis-
tics (Volume 1: Long Papers), pages 1645–1656, Vancouver, Canada, 2017. As-
sociation for Computational Linguistics. doi: 10.18653/v1/P17-1151. URL
https://aclanthology.org/P17-1151. 3, 45, 49, 66, 79

[10] J. Austin. The book of endless history: Authorial use of GPT2 for interactive story-
telling. In R. E. Cardona-Rivera, A. Sullivan, and R. M. Young, editors, Interactive
Storytelling - 12th International Conference on Interactive Digital Storytelling, ICIDS
2019, Little Cottonwood Canyon, UT, USA, November 19-22, 2019, Proceedings, vol-
ume 11869, pages 429–432. Springer, 2019. doi: 10.1007/978-3-030-33894-7_47.
URL https://doi.org/10.1007/978-3-030-33894-7_47. 107

[11] A. Awasthi, S. Sarawagi, R. Goyal, S. Ghosh, and V. Piratla. Parallel iterative edit
models for local sequence transduction. In Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 4260–
4270, Hong Kong, China, 2019. Association for Computational Linguistics. doi:
10.18653/v1/D19-1435. URL https://aclanthology.org/D19-1435. 45

[12] L. Baldini Soares, N. FitzGerald, J. Ling, and T. Kwiatkowski. Matching the blanks:
Distributional similarity for relation learning. In Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics, pages 2895–2905, Florence,
Italy, 2019. Association for Computational Linguistics. doi: 10.18653/v1/P19-1279.
URL https://aclanthology.org/P19-1279. 68, 115

[13] L. Balles and T. Fischbacher. Holographic and other point set distances for
machine learning, 2019. URL https://openreview.net/forum?id=
rJlpUiAcYX. 66

[14] T. Bansal, D. Belanger, and A. McCallum. Ask the GRU: Multi-task learning for
deep text recommendations. In RecSys, 2016. xvi, 8, 81, 84, 85, 86, 87, 88, 132, 184

[15] J. Beel, B. Gipp, S. Langer, and C. Breitinger. paper recommender systems: a
literature survey. International Journal on Digital Libraries, 17(4):305–338, 2016.
88, 132

140

[16] I. Beltagy, A. Cohan, and K. Lo. SciBERT: Pretrained contextualized embeddings
for scientific text. In EMNLP, 2019. 125

[17] C. Bhagavatula, S. Feldman, R. Power, and W. Ammar. Content-based citation
recommendation. In Proceedings of the 2018 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers), pages 238–251, New Orleans, Louisiana, 2018.
Association for Computational Linguistics. doi: 10.18653/v1/N18-1022. URL
https://aclanthology.org/N18-1022. 88, 125, 132

[18] R. Bhattacharjee and S. Dasgupta. What relations are reliably embeddable in eu-
clidean space? In Algorithmic Learning Theory, pages 174–195. PMLR, 2020.
136

[19] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet alloca-
tion. In T. G. Dietterich, S. Becker, and Z. Ghahramani, editors, Ad-
vances in Neural Information Processing Systems 14 [Neural Information
Processing Systems: Natural and Synthetic, NIPS 2001, December 3-8,
2001, Vancouver, British Columbia, Canada], pages 601–608. MIT Press,
2001. URL https://proceedings.neurips.cc/paper/2001/hash/
296472c9542ad4d4788d543508116cbc-Abstract.html. 49, 66, 92,
93, 101

[20] K. D. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor. Freebase:
a collaboratively created graph database for structuring human knowledge. In
J. T. Wang, editor, Proceedings of the ACM SIGMOD International Conference
on Management of Data, SIGMOD 2008, Vancouver, BC, Canada, June 10-12,
2008, pages 1247–1250. ACM, 2008. doi: 10.1145/1376616.1376746. URL
https://doi.org/10.1145/1376616.1376746. 74

[21] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Nee-
lakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger,
T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse,
M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish,
A. Radford, I. Sutskever, and D. Amodei. Language models are few-shot learners.
In H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, editors, Advances
in Neural Information Processing Systems 33: Annual Conference on Neural In-
formation Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual,
2020. URL https://proceedings.neurips.cc/paper/2020/hash/
1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html. 14, 22, 180

[22] X. Cai, J. Huang, Y. Bian, and K. Church. Isotropy in the contextual embedding space:
Clusters and manifolds. In 9th International Conference on Learning Representations,
ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021. URL
https://openreview.net/forum?id=xYGNO86OWDH. 180

141

[23] Z. Cao, S. Li, Y. Liu, W. Li, and H. Ji. A novel neural topic model and its supervised
extension. In B. Bonet and S. Koenig, editors, Proceedings of the Twenty-Ninth AAAI
Conference on Artificial Intelligence, January 25-30, 2015, Austin, Texas, USA, pages
2210–2216. AAAI Press, 2015. URL http://www.aaai.org/ocs/index.
php/AAAI/AAAI15/paper/view/9303. 66

[24] D. Card, P. Henderson, U. Khandelwal, R. Jia, K. Mahowald, and D. Jurafsky. With
little power comes great responsibility. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing (EMNLP), pages 9263–9274,
Online, 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.
emnlp-main.745. URL https://aclanthology.org/2020.emnlp-main.
745. 118

[25] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and S. Zagoruyko. End-to-
end object detection with transformers. ArXiv preprint, abs/2005.12872, 2020. URL
https://arxiv.org/abs/2005.12872. 3, 67

[26] A. Celikyilmaz, A. Bosselut, X. He, and Y. Choi. Deep communicating agents for
abstractive summarization. In Proceedings of the 2018 Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), pages 1662–1675, New Orleans, Louisiana,
2018. Association for Computational Linguistics. doi: 10.18653/v1/N18-1150. URL
https://aclanthology.org/N18-1150. xvi, 63, 64

[27] D. Cer, M. Diab, E. Agirre, I. Lopez-Gazpio, and L. Specia. SemEval-2017 task 1:
Semantic textual similarity multilingual and crosslingual focused evaluation. In Pro-
ceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017),
pages 1–14, Vancouver, Canada, 2017. Association for Computational Linguistics.
doi: 10.18653/v1/S17-2001. URL https://aclanthology.org/S17-2001.
59, 99

[28] A. Chaganty, A. Paranjape, P. Liang, and C. D. Manning. Importance sampling for
unbiased on-demand evaluation of knowledge base population. In Proceedings of the
2017 Conference on Empirical Methods in Natural Language Processing, pages 1038–
1048, Copenhagen, Denmark, 2017. Association for Computational Linguistics. doi:
10.18653/v1/D17-1109. URL https://aclanthology.org/D17-1109. 73

[29] T. Chakraborty, A. Krishna, M. Singh, N. Ganguly, P. Goyal, and A. Mukherjee.
Ferosa: A faceted recommendation system for scientific articles. In Pacific-Asia
Conference on Knowledge Discovery and Data Mining, 2016. 132

[30] J. Chan, J. C. Chang, T. Hope, D. Shahaf, and A. Kittur. Solvent: A mixed initiative
system for finding analogies between research papers. Proceedings of the ACM on
Human-Computer Interaction, 2(CSCW):1–21, 2018. 132

142

[31] H. Chang, A. Munir, A. Liu, J. T. Wei, A. Traylor, A. Nagesh, N. Monath,
P. Verga, E. Strubell, and A. McCallum. Extracting multilingual relations un-
der limited resources: TAC 2016 cold-start KB construction and slot-filling us-
ing compositional universal schema. In Proceedings of the 2016 Text Anal-
ysis Conference, TAC 2016, Gaithersburg, Maryland, USA, November 14-15,
2016. NIST, 2016. URL https://tac.nist.gov/publications/2016/
participant.papers/TAC2016.UMass_IESL.proceedings.pdf. 73

[32] H.-S. Chang and A. McCallum. Softmax bottleneck makes language models unable to
represent multi-mode word distributions. In Proceedings of the 60th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pages
8048–8073, 2022. 9, 11, 16

[33] H.-S. Chang, Z. Wang, L. Vilnis, and A. McCallum. Distributional inclusion vector
embedding for unsupervised hypernymy detection. In Proceedings of the 2018
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long Papers), pages 485–
495, New Orleans, Louisiana, 2018. Association for Computational Linguistics. doi:
10.18653/v1/N18-1045. URL https://aclanthology.org/N18-1045. 78,
79

[34] H.-S. Chang, A. Agrawal, and A. McCallum. Extending multi-sense word embedding
to phrases and sentences for unsupervised semantic applications. In Proceedings of
the Twenty-Seventh AAAI Conference on Artificial Intelligence, 2021. 10, 11, 52

[35] H.-S. Chang, J. Yuan, M. Iyyer, and A. McCallum. Changing the mind of transformers
for topically-controllable language generation. In Proceedings of the 16th Conference
of the European Chapter of the Association for Computational Linguistics: Main
Volume, pages 2601–2611, Online, 2021. Association for Computational Linguistics.
doi: 10.18653/v1/2021.eacl-main.223. URL https://aclanthology.org/
2021.eacl-main.223. 10, 11

[36] B. Chen and C. Cherry. A systematic comparison of smoothing techniques for
sentence-level BLEU. In Proceedings of the Ninth Workshop on Statistical Ma-
chine Translation, pages 362–367, Baltimore, Maryland, USA, 2014. Associa-
tion for Computational Linguistics. doi: 10.3115/v1/W14-3346. URL https:
//aclanthology.org/W14-3346. 105

[37] B. Chen, X. Huang, L. Xiao, Z. Cai, and L. Jing. Hyperbolic interaction model
for hierarchical multi-label classification. In The Thirty-Fourth AAAI Conference
on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications
of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on
Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA,
February 7-12, 2020, pages 7496–7503. AAAI Press, 2020. URL https://aaai.
org/ojs/index.php/AAAI/article/view/6247. 136

143

[38] G. Chen, Y. Liu, H. Luan, M. Zhang, Q. Liu, and M. Sun. Learning to predict
explainable plots for neural story generation. ArXiv preprint, abs/1912.02395, 2019.
URL https://arxiv.org/abs/1912.02395. 108

[39] K. Cho, B. van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk,
and Y. Bengio. Learning phrase representations using RNN encoder–decoder for
statistical machine translation. In Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP), pages 1724–1734, Doha, Qatar,
2014. Association for Computational Linguistics. doi: 10.3115/v1/D14-1179. URL
https://aclanthology.org/D14-1179. 84

[40] E. Clark, A. S. Ross, C. Tan, Y. Ji, and N. A. Smith. Creative writing with a machine
in the loop: Case studies on slogans and stories. In 23rd International Conference on
Intelligent User Interfaces, 2018. 90

[41] K. Cobbe, V. Kosaraju, M. Bavarian, J. Hilton, R. Nakano, C. Hesse, and J. Schulman.
Training verifiers to solve math word problems. ArXiv preprint, abs/2110.14168,
2021. URL https://arxiv.org/abs/2110.14168. 14

[42] A. Cohan, S. Feldman, I. Beltagy, D. Downey, and D. Weld. SPECTER: Document-
level representation learning using citation-informed transformers. In Proceed-
ings of the 58th Annual Meeting of the Association for Computational Linguistics,
pages 2270–2282, Online, 2020. Association for Computational Linguistics. doi:
10.18653/v1/2020.acl-main.207. URL https://aclanthology.org/2020.
acl-main.207. 7, 8, 11, 115, 125, 128, 129, 132, 190

[43] T. M. Cover. The number of linearly inducible orderings of points in d-space. SIAM
Journal on Applied Mathematics, 15(2):434–439, 1967. 45

[44] S. Dathathri, A. Madotto, J. Lan, J. Hung, E. Frank, P. Molino, J. Yosinski, and
R. Liu. Plug and play language models: A simple approach to controlled text
generation. In 8th International Conference on Learning Representations, ICLR
2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020. URL
https://openreview.net/forum?id=H1edEyBKDS. 45, 92, 104, 107

[45] D. Demeter, G. Kimmel, and D. Downey. Stolen probability: A structural weakness of
neural language models. In Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 2191–2197, Online, 2020. Association for
Computational Linguistics. doi: 10.18653/v1/2020.acl-main.198. URL https:
//aclanthology.org/2020.acl-main.198. xxiii, 44, 172, 178, 179, 180

[46] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incom-
plete data via the em algorithm. Journal of the Royal Statistical Society: Series B
(Methodological), 39(1):1–22, 1977. 96

144

[47] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota, 2019. Association for Computational
Linguistics. doi: 10.18653/v1/N19-1423. URL https://aclanthology.org/
N19-1423. 95, 110, 118

[48] N. Ding, X. Wang, Y. Fu, G. Xu, R. Wang, P. Xie, Y. Shen, F. Huang, H. Zheng,
and R. Zhang. Prototypical representation learning for relation extraction. In 9th
International Conference on Learning Representations, ICLR 2021, Virtual Event,
Austria, May 3-7, 2021. OpenReview.net, 2021. URL https://openreview.
net/forum?id=aCgLmfhIy_f. 3

[49] R. Dóczi, F. Kis, B. Sütő, V. Póser, G. Kronreif, E. Jósvai, and M. Kozlovszky.
Increasing ros 1.x communication security for medical surgery robot. In 2016 IEEE
International Conference on Systems, Man, and Cybernetics (SMC), 2016. xxii, 83

[50] J. Dodge, G. Ilharco, R. Schwartz, A. Farhadi, H. Hajishirzi, and N. Smith. Fine-
tuning pretrained language models: Weight initializations, data orders, and early
stopping. ArXiv preprint, abs/2002.06305, 2020. URL https://arxiv.org/
abs/2002.06305. 110, 119

[51] H. Dubossarsky, E. Grossman, and D. Weinshall. Coming to your senses: on controls
and evaluation sets in polysemy research. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing, pages 1732–1740, Brussels, Bel-
gium, 2018. Association for Computational Linguistics. doi: 10.18653/v1/D18-1200.
URL https://aclanthology.org/D18-1200. 4, 64, 65

[52] T. Eiter and H. Mannila. Distance measures for point sets and their computation.
Acta Informatica, 34(2):109–133, 1997. 66

[53] A. Epasto and B. Perozzi. Is a single embedding enough? learning node
representations that capture multiple social contexts. In L. Liu, R. W. White,
A. Mantrach, F. Silvestri, J. J. McAuley, R. Baeza-Yates, and L. Zia, editors,
The World Wide Web Conference, WWW 2019, San Francisco, CA, USA, May 13-
17, 2019, pages 394–404. ACM, 2019. doi: 10.1145/3308558.3313660. URL
https://doi.org/10.1145/3308558.3313660. 3, 89

[54] K. Ethayarajh, D. Duvenaud, and G. Hirst. Towards understanding linear word analo-
gies. In Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics, pages 3253–3262, Florence, Italy, 2019. Association for Computational
Linguistics. doi: 10.18653/v1/P19-1315. URL https://aclanthology.org/
P19-1315. 15, 19

145

[55] W. Falcon, J. Borovec, A. Wälchli, N. Eggert, J. Schock, J. Jordan, N. Skafte,
Ir1dXD, V. Bereznyuk, E. Harris, T. Murrell, P. Yu, S. Præsius, T. Addair, J. Zhong,
D. Lipin, S. Uchida, S. Bapat, H. Schröter, B. Dayma, A. Karnachev, A. Kulka-
rni, S. Komatsu, Martin.B, J.-B. SCHIRATTI, H. Mary, D. Byrne, C. Eyzaguirre,
cinjon, and A. Bakhtin. Pytorchlightning/pytorch-lightning: 0.7.6 release. 2020.
doi: 10.5281/zenodo.3828935. URL https://doi.org/10.5281/zenodo.
3828935. 191

[56] A. Fan, M. Lewis, and Y. Dauphin. Hierarchical neural story generation. In Pro-
ceedings of the 56th Annual Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 889–898, Melbourne, Australia, 2018.
Association for Computational Linguistics. doi: 10.18653/v1/P18-1082. URL
https://aclanthology.org/P18-1082. 97, 108, 185

[57] A. Fan, M. Lewis, and Y. Dauphin. Strategies for structuring story generation.
In Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics, pages 2650–2660, Florence, Italy, 2019. Association for Computational
Linguistics. doi: 10.18653/v1/P19-1254. URL https://aclanthology.org/
P19-1254. 108

[58] A. Fan, T. Lavril, E. Grave, A. Joulin, and S. Sukhbaatar. Addressing some limitations
of transformers with feedback memory. ArXiv preprint, abs/2002.09402, 2020. URL
https://arxiv.org/abs/2002.09402. 28

[59] M. Färber and A. Jatowt. Citation recommendation: Approaches and datasets.
ArXiv preprint, abs/2002.06961, 2020. URL https://arxiv.org/abs/2002.
06961. 88, 132

[60] M. Färber and A. Sampath. Hybridcite: A hybrid model for context-aware citation
recommendation. In Proceedings of the ACM/IEEE Joint Conference on Digital
Libraries in 2020, pages 117–126, 2020. 132

[61] M. Faruqui, Y. Tsvetkov, D. Yogatama, C. Dyer, and N. A. Smith. Sparse overcom-
plete word vector representations. In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the 7th International Joint Conference
on Natural Language Processing (Volume 1: Long Papers), pages 1491–1500, Beijing,
China, 2015. Association for Computational Linguistics. doi: 10.3115/v1/P15-1144.
URL https://aclanthology.org/P15-1144. 66

[62] W. Fedus, B. Zoph, and N. Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. ArXiv preprint, abs/2101.03961, 2021.
URL https://arxiv.org/abs/2101.03961. 45

[63] S. Fort, H. Hu, and B. Lakshminarayanan. Deep ensembles: A loss landscape
perspective. ArXiv preprint, abs/1912.02757, 2019. URL https://arxiv.org/
abs/1912.02757. 111, 118, 121

146

[64] Y. Gal and Z. Ghahramani. Dropout as a bayesian approximation: Representing
model uncertainty in deep learning. In M. Balcan and K. Q. Weinberger, editors,
Proceedings of the 33nd International Conference on Machine Learning, ICML
2016, New York City, NY, USA, June 19-24, 2016, volume 48 of JMLR Workshop
and Conference Proceedings, pages 1050–1059. JMLR.org, 2016. URL http:
//proceedings.mlr.press/v48/gal16.html. 111

[65] L. Galke, F. Mai, I. Vagliano, and A. Scherp. Multi-modal adversarial autoencoders
for recommendations of citations and subject labels. In Proceedings of the 26th
Conference on User Modeling, Adaptation and Personalization (UMAP), 2018. 88

[66] O. Ganea, S. Gelly, G. Bécigneul, and A. Severyn. Breaking the softmax bottleneck
via learnable monotonic pointwise non-linearities. In K. Chaudhuri and R. Salakhutdi-
nov, editors, Proceedings of the 36th International Conference on Machine Learning,
ICML 2019, 9-15 June 2019, Long Beach, California, USA, volume 97 of Pro-
ceedings of Machine Learning Research, pages 2073–2082. PMLR, 2019. URL
http://proceedings.mlr.press/v97/ganea19a.html. 4, 44

[67] J. Gao, D. He, X. Tan, T. Qin, L. Wang, and T. Liu. Representation degeneration
problem in training natural language generation models. In 7th International Con-
ference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9,
2019. OpenReview.net, 2019. URL https://openreview.net/forum?id=
SkEYojRqtm. 180

[68] Y. Gao, C. Herold, W. Wang, and H. Ney. Exploring kernel functions in the softmax
layer for contextual word classification. In Proceedings of the 16th International Con-
ference on Spoken Language Translation, Hong Kong, 2019. Association for Compu-
tational Linguistics. URL https://aclanthology.org/2019.iwslt-1.
24. 3, 180

[69] M. Ghazvininejad, X. Shi, J. Priyadarshi, and K. Knight. Hafez: an interactive poetry
generation system. In Proceedings of ACL 2017, System Demonstrations, pages
43–48, Vancouver, Canada, 2017. Association for Computational Linguistics. URL
https://aclanthology.org/P17-4008. 104

[70] S. Goldfarb-Tarrant, H. Feng, and N. Peng. Plan, write, and revise: an inter-
active system for open-domain story generation. In Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational
Linguistics (Demonstrations), pages 89–97, Minneapolis, Minnesota, 2019. As-
sociation for Computational Linguistics. doi: 10.18653/v1/N19-4016. URL
https://aclanthology.org/N19-4016. 108

[71] I. Good and T. Tideman. Stirling numbers and a geometric, structure from voting
theory. Journal of Combinatorial Theory, Series A, 23(1):34–45, 1977. 45

147

[72] E. Grave, A. Joulin, and N. Usunier. Improving neural language models with a contin-
uous cache. In 5th International Conference on Learning Representations, ICLR 2017,
Toulon, France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net,
2017. URL https://openreview.net/forum?id=B184E5qee. 9, 36

[73] A. Grivas, N. Bogoychev, and A. Lopez. Low-rank softmax can have unargmaxable
classes in theory but rarely in practice. In Proceedings of the 60th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pages
6738–6758, 2022. 179

[74] J. Gu, Z. Lu, H. Li, and V. O. Li. Incorporating copying mechanism in sequence-to-
sequence learning. In Proceedings of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pages 1631–1640, Berlin,
Germany, 2016. Association for Computational Linguistics. doi: 10.18653/v1/
P16-1154. URL https://aclanthology.org/P16-1154. 9, 36, 38, 39, 42

[75] J. Gu, Q. Liu, and K. Cho. Insertion-based decoding with automatically inferred
generation order. Transactions of the Association for Computational Linguistics, 7:
661–676, 2019. doi: 10.1162/tacl_a_00292. URL https://aclanthology.
org/Q19-1042. 67

[76] V. Gupta, A. Saw, P. Nokhiz, H. Gupta, and P. Talukdar. Improving document
classification with multi-sense embeddings. In ECAI, 2020. 66

[77] V. Gupta, A. Saw, P. Nokhiz, P. Netrapalli, P. Rai, and P. P. Talukdar. P-SIF: doc-
ument embeddings using partition averaging. In The Thirty-Fourth AAAI Confer-
ence on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Appli-
cations of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Sympo-
sium on Educational Advances in Artificial Intelligence, EAAI 2020, New York,
NY, USA, February 7-12, 2020, pages 7863–7870. AAAI Press, 2020. URL
https://aaai.org/ojs/index.php/AAAI/article/view/6292. 3,
66

[78] R. Han, M. Gill, A. Spirling, and K. Cho. Conditional word embedding and hypothesis
testing via Bayes-by-backprop. In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pages 4890–4895, Brussels, Belgium,
2018. Association for Computational Linguistics. doi: 10.18653/v1/D18-1527. URL
https://aclanthology.org/D18-1527. 66

[79] X. Han, T. Gao, Y. Lin, H. Peng, Y. Yang, C. Xiao, Z. Liu, P. Li, J. Zhou, and
M. Sun. More data, more relations, more context and more openness: A review
and outlook for relation extraction. In Proceedings of the 1st Conference of the
Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th
International Joint Conference on Natural Language Processing, pages 745–758,
Suzhou, China, 2020. Association for Computational Linguistics. URL https:
//aclanthology.org/2020.aacl-main.75. 78

148

[80] F. M. Harper and J. A. Konstan. The movielens datasets: History and context. Acm
transactions on interactive intelligent systems (tiis), 5(4):1–19, 2015. 41

[81] T. Hastie, R. Tibshirani, and J. H. Friedman. The Elements of Statistical Learning:
Data Mining, Inference, and Prediction, 2nd Edition. Springer Series in Statistics.
Springer, 2009. ISBN 9780387848570. doi: 10.1007/978-0-387-84858-7. URL
https://doi.org/10.1007/978-0-387-84858-7. 77, 87

[82] M. Havasi, R. Jenatton, S. Fort, J. Z. Liu, J. Snoek, B. Lakshminarayanan, A. M.
Dai, and D. Tran. Training independent subnetworks for robust prediction. In 9th
International Conference on Learning Representations, ICLR 2021, Virtual Event,
Austria, May 3-7, 2021. OpenReview.net, 2021. URL https://openreview.
net/forum?id=OGg9XnKxFAH. 124

[83] D. Hendrycks and K. Gimpel. Gaussian error linear units (gelus). ArXiv preprint,
abs/1606.08415, 2016. URL https://arxiv.org/abs/1606.08415. 26

[84] K. M. Hermann, T. Kociský, E. Grefenstette, L. Espeholt, W. Kay, M. Suleyman,
and P. Blunsom. Teaching machines to read and comprehend. In C. Cortes, N. D.
Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in Neural Infor-
mation Processing Systems 28: Annual Conference on Neural Information Processing
Systems 2015, December 7-12, 2015, Montreal, Quebec, Canada, pages 1693–1701,
2015. URL https://proceedings.neurips.cc/paper/2015/hash/
afdec7005cc9f14302cd0474fd0f3c96-Abstract.html. 63

[85] B. Hidasi, A. Karatzoglou, L. Baltrunas, and D. Tikk. Session-based recom-
mendations with recurrent neural networks. In Y. Bengio and Y. LeCun, edi-
tors, 4th International Conference on Learning Representations, ICLR 2016, San
Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings, 2016. URL
http://arxiv.org/abs/1511.06939. 9, 17, 42

[86] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation, 9
(8):1735–1780, 1997. 25, 67

[87] A. Holtzman, J. Buys, L. Du, M. Forbes, and Y. Choi. The curious case of neural
text degeneration. In 8th International Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020. URL
https://openreview.net/forum?id=rygGQyrFvH. 14

[88] N. Houlsby, A. Giurgiu, S. Jastrzebski, B. Morrone, Q. de Laroussilhe, A. Gesmundo,
M. Attariyan, and S. Gelly. Parameter-efficient transfer learning for NLP. In K. Chaud-
huri and R. Salakhutdinov, editors, Proceedings of the 36th International Conference
on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA,
volume 97 of Proceedings of Machine Learning Research, pages 2790–2799. PMLR,
2019. URL http://proceedings.mlr.press/v97/houlsby19a.html.
117

149

[89] P. O. Hoyer. Non-negative sparse coding. In Proceedings of the 12th IEEE Workshop
on Neural Networks for Signal Processing, 2002. 5, 54, 101

[90] D. Ippolito, D. Grangier, C. Callison-Burch, and D. Eck. Unsupervised hierarchical
story infilling. In Proceedings of the First Workshop on Narrative Understanding,
pages 37–43, Minneapolis, Minnesota, 2019. Association for Computational Lin-
guistics. doi: 10.18653/v1/W19-2405. URL https://aclanthology.org/
W19-2405. 108

[91] D. Iter, K. Guu, L. Lansing, and D. Jurafsky. Pretraining with contrastive sentence
objectives improves discourse performance of language models. In Proceedings of the
58th Annual Meeting of the Association for Computational Linguistics, pages 4859–
4870, Online, 2020. Association for Computational Linguistics. doi: 10.18653/v1/
2020.acl-main.439. URL https://aclanthology.org/2020.acl-main.
439. 125

[92] P. Izmailov, D. Podoprikhin, T. Garipov, D. P. Vetrov, and A. G. Wilson. Averaging
weights leads to wider optima and better generalization. In A. Globerson and R. Silva,
editors, Proceedings of the Thirty-Fourth Conference on Uncertainty in Artificial
Intelligence, UAI 2018, Monterey, California, USA, August 6-10, 2018, pages 876–
885. AUAI Press, 2018. URL http://auai.org/uai2018/proceedings/
papers/313.pdf. xvii, 121, 122

[93] K. Ji, R. Sun, X. Li, and W. Shu. Improving matrix approximation for recommenda-
tion via a clustering-based reconstructive method. Neurocomputing, 173:912–920,
2016. 88

[94] S. Kanai, Y. Fujiwara, Y. Yamanaka, and S. Adachi. Sigsoftmax: Reanalysis of
the softmax bottleneck. In S. Bengio, H. M. Wallach, H. Larochelle, K. Grau-
man, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information
Processing Systems 31: Annual Conference on Neural Information Processing Sys-
tems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pages 284–294,
2018. URL https://proceedings.neurips.cc/paper/2018/hash/
9dcb88e0137649590b755372b040afad-Abstract.html. 4, 28, 29, 44

[95] A. Kanakia, Z. Shen, D. Eide, and K. Wang. A scalable hybrid research paper
recommender system for microsoft academic. In L. Liu, R. W. White, A. Mantrach,
F. Silvestri, J. J. McAuley, R. Baeza-Yates, and L. Zia, editors, The World Wide
Web Conference, WWW 2019, San Francisco, CA, USA, May 13-17, 2019, pages
2893–2899. ACM, 2019. doi: 10.1145/3308558.3313700. URL https://doi.
org/10.1145/3308558.3313700. 88

[96] W.-C. Kang and J. McAuley. Self-attentive sequential recommendation. In 2018
IEEE International Conference on Data Mining (ICDM), pages 197–206. IEEE, 2018.
8, 9, 17, 40, 41

150

[97] J. Kaplan, S. McCandlish, T. Henighan, T. B. Brown, B. Chess, R. Child, S. Gray,
A. Radford, J. Wu, and D. Amodei. Scaling laws for neural language models.
ArXiv preprint, abs/2001.08361, 2020. URL https://arxiv.org/abs/2001.
08361. 14

[98] M. Karimzadehgan, C. Zhai, and G. Belford. Multi-aspect expertise matching for
review assignment. In Proceedings of the 17th ACM conference on Information and
knowledge management, 2008. 132

[99] N. S. Keskar, B. McCann, L. R. Varshney, C. Xiong, and R. Socher. CTRL: A
conditional transformer language model for controllable generation. ArXiv preprint,
abs/1909.05858, 2019. URL https://arxiv.org/abs/1909.05858. 107

[100] O. Khattab and M. Zaharia. Colbert: Efficient and effective passage search via
contextualized late interaction over BERT. In J. Huang, Y. Chang, X. Cheng, J. Kamps,
V. Murdock, J. Wen, and Y. Liu, editors, Proceedings of the 43rd International ACM
SIGIR conference on research and development in Information Retrieval, SIGIR 2020,
Virtual Event, China, July 25-30, 2020, pages 39–48. ACM, 2020. doi: 10.1145/
3397271.3401075. URL https://doi.org/10.1145/3397271.3401075.
3, 125

[101] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In Y. Bengio
and Y. LeCun, editors, 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings,
2015. URL http://arxiv.org/abs/1412.6980. 119, 184

[102] R. Kiros, Y. Zhu, R. Salakhutdinov, R. S. Zemel, R. Urtasun, A. Torralba, and
S. Fidler. Skip-thought vectors. In C. Cortes, N. D. Lawrence, D. D. Lee,
M. Sugiyama, and R. Garnett, editors, Advances in Neural Information Pro-
cessing Systems 28: Annual Conference on Neural Information Processing Sys-
tems 2015, December 7-12, 2015, Montreal, Quebec, Canada, pages 3294–3302,
2015. URL https://proceedings.neurips.cc/paper/2015/hash/
f442d33fa06832082290ad8544a8da27-Abstract.html. 53, 60

[103] H. Kobayashi, M. Noguchi, and T. Yatsuka. Summarization based on embedding
distributions. In Proceedings of the 2015 Conference on Empirical Methods in
Natural Language Processing, pages 1984–1989, Lisbon, Portugal, 2015. Association
for Computational Linguistics. doi: 10.18653/v1/D15-1232. URL https://
aclanthology.org/D15-1232. 62, 63

[104] S. Kobayashi, S. Kiyono, J. Suzuki, and K. Inui. Diverse lottery tickets boost
ensemble from a single pretrained model. In Challenges & Perspectives in Creating
Large Language Models, 2022. URL https://openreview.net/forum?
id=rCzgE3zHL-q. 124

151

[105] L. Kong, C. de Masson d’Autume, L. Yu, W. Ling, Z. Dai, and D. Yogatama.
A mutual information maximization perspective of language representation learn-
ing. In 8th International Conference on Learning Representations, ICLR 2020,
Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020. URL https:
//openreview.net/forum?id=Syx79eBKwr. 1, 18, 180

[106] W. Kong, S. Khadanga, C. Li, S. Gupta, M. Zhang, W. Xu, and M. Bendersky.
Multi-aspect dense retrieval. 2022. 3

[107] I. Korkontzelos, T. Zesch, F. M. Zanzotto, and C. Biemann. SemEval-2013 task
5: Evaluating phrasal semantics. In Second Joint Conference on Lexical and
Computational Semantics (*SEM), Volume 2: Proceedings of the Seventh Inter-
national Workshop on Semantic Evaluation (SemEval 2013), pages 39–47, At-
lanta, Georgia, USA, 2013. Association for Computational Linguistics. URL
https://aclanthology.org/S13-2007. 64

[108] M. Kula. Mixture-of-tastes models for representing users with diverse interests.
ArXiv preprint, abs/1711.08379, 2017. URL https://arxiv.org/abs/1711.
08379. 3, 89

[109] S. Kumar and Y. Tsvetkov. Von mises-fisher loss for training sequence to sequence
models with continuous outputs. In 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net,
2019. URL https://openreview.net/forum?id=rJlDnoA5Y7. 55

[110] M. J. Kusner, Y. Sun, N. I. Kolkin, and K. Q. Weinberger. From word embeddings
to document distances. In F. R. Bach and D. M. Blei, editors, Proceedings of the
32nd International Conference on Machine Learning, ICML 2015, Lille, France,
6-11 July 2015, volume 37 of JMLR Workshop and Conference Proceedings, pages
957–966. JMLR.org, 2015. URL http://proceedings.mlr.press/v37/
kusnerb15.html. 60

[111] J. H. Lau, P. Cook, D. McCarthy, D. Newman, and T. Baldwin. Word sense in-
duction for novel sense detection. In Proceedings of the 13th Conference of the
European Chapter of the Association for Computational Linguistics, pages 591–
601, Avignon, France, 2012. Association for Computational Linguistics. URL
https://aclanthology.org/E12-1060. 49

[112] S. Lavoie, C. Tsirigotis, M. Schwarzer, K. Kawaguchi, A. Vani, and A. Courville.
Simplicial embeddings in self-supervised learning and downstream classification.
ArXiv preprint, abs/2204.00616, 2022. URL https://arxiv.org/abs/2204.
00616. 124

152

[113] J. Lee, Y. Lee, J. Kim, A. R. Kosiorek, S. Choi, and Y. W. Teh. Set transformer: A
framework for attention-based permutation-invariant neural networks. In K. Chaud-
huri and R. Salakhutdinov, editors, Proceedings of the 36th International Conference
on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA,
volume 97 of Proceedings of Machine Learning Research, pages 3744–3753. PMLR,
2019. URL http://proceedings.mlr.press/v97/lee19d.html. 56

[114] J.-Y. Lee, D. Patel, P. Goyal, and A. McCallum. Structured energy network as a
dynamic loss function. case study. a case study with multi-label classification. 2021.
136

[115] B. Li, H. Zhou, J. He, M. Wang, Y. Yang, and L. Li. On the sentence embeddings from
pre-trained language models. In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP), pages 9119–9130, Online, 2020.
Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.733.
URL https://aclanthology.org/2020.emnlp-main.733. 18

[116] J. Li, M. Galley, C. Brockett, J. Gao, and B. Dolan. A diversity-promoting objective
function for neural conversation models. In Proceedings of the 2016 Conference of the
North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, pages 110–119, San Diego, California, 2016. Association
for Computational Linguistics. doi: 10.18653/v1/N16-1014. URL https://
aclanthology.org/N16-1014. 103

[117] L. H. Li, P. H. Chen, C.-J. Hsieh, and K.-W. Chang. Efficient contextual repre-
sentation learning with continuous outputs. Transactions of the Association for
Computational Linguistics, 7:611–624, 2019. doi: 10.1162/tacl_a_00289. URL
https://aclanthology.org/Q19-1039. 55

[118] X. L. Li and P. Liang. Prefix-tuning: Optimizing continuous prompts for genera-
tion. In Proceedings of the 59th Annual Meeting of the Association for Computa-
tional Linguistics and the 11th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 4582–4597, Online, 2021. Associa-
tion for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.353. URL
https://aclanthology.org/2021.acl-long.353. 117

[119] Y. Li, D. Choi, J. Chung, N. Kushman, J. Schrittwieser, R. Leblond, T. Eccles,
J. Keeling, F. Gimeno, A. Dal Lago, T. Hubert, P. Choy, C. de Masson d’Autume,
I. Babuschkin, X. Chen, P.-S. Huang, J. Welbl, S. Gowal, A. Cherepanov, J. Molloy,
D. Mankowitz, E. Sutherland Robson, P. Kohli, N. de Freitas, K. Kavukcuoglu, and
O. Vinyals. Competition-level code generation with alphacode. ArXiv preprint,
abs/2203.07814, 2022. URL https://arxiv.org/abs/2203.07814. 14

[120] C. Liang, P. He, Y. Shen, W. Chen, and T. Zhao. Camero: Consistency regular-
ized ensemble of perturbed language models with weight sharing. ArXiv preprint,
abs/2204.06625, 2022. URL https://arxiv.org/abs/2204.06625. 110,
124

153

[121] Y. Liao, X. Jiang, and Q. Liu. Probabilistically masked language model capable of
autoregressive generation in arbitrary word order. In Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics, pages 263–274, Online,
2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.24.
URL https://aclanthology.org/2020.acl-main.24. 45

[122] B. Y. Lin, W. Zhou, M. Shen, P. Zhou, C. Bhagavatula, Y. Choi, and X. Ren. Com-
monGen: A constrained text generation challenge for generative commonsense rea-
soning. In Findings of the Association for Computational Linguistics: EMNLP 2020,
pages 1823–1840, Online, 2020. Association for Computational Linguistics. doi:
10.18653/v1/2020.findings-emnlp.165. URL https://aclanthology.org/
2020.findings-emnlp.165. 108

[123] C.-Y. Lin and E. Hovy. Automatic evaluation of summaries using n-gram co-
occurrence statistics. In Proceedings of the 2003 Human Language Technology Con-
ference of the North American Chapter of the Association for Computational Linguis-
tics, pages 150–157, 2003. URL https://aclanthology.org/N03-1020.
63

[124] Y.-C. Lin. Breaking the softmax bottleneck for sequential recommender systems
with dropout and decoupling. ArXiv preprint, abs/2110.05409, 2021. URL https:
//arxiv.org/abs/2110.05409. 3

[125] C. E. Lipscomb. Medical subject headings (MeSH). Bulletin of the Medical Library
Association, 88(3):265, 2000. 129

[126] A. Liu, S. Swayamdipta, N. A. Smith, and Y. Choi. Wanli: Worker and ai collaboration
for natural language inference dataset creation. ArXiv preprint, abs/2201.05955, 2022.
URL https://arxiv.org/abs/2201.05955. 14

[127] H. Liu, X. Kong, X. Bai, W. Wang, T. M. Bekele, and F. Xia. Context-based
collaborative filtering for citation recommendation. IEEE Access, 3:1695–1703, 2015.
88

[128] N. Liu, Q. Tan, Y. Li, H. Yang, J. Zhou, and X. Hu. Is a single vector enough?:
Exploring node polysemy for network embedding. In A. Teredesai, V. Kumar, Y. Li,
R. Rosales, E. Terzi, and G. Karypis, editors, Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, KDD 2019,
Anchorage, AK, USA, August 4-8, 2019, pages 932–940. ACM, 2019. doi: 10.1145/
3292500.3330967. URL https://doi.org/10.1145/3292500.3330967.
3, 89

[129] X. Liu, T. Suel, and N. D. Memon. A robust model for paper reviewer assignment. In
A. Kobsa, M. X. Zhou, M. Ester, and Y. Koren, editors, Eighth ACM Conference on
Recommender Systems, RecSys ’14, Foster City, Silicon Valley, CA, USA - October
06 - 10, 2014, pages 25–32. ACM, 2014. doi: 10.1145/2645710.2645749. URL
https://doi.org/10.1145/2645710.2645749. 132

154

[130] X. Liu, Z. Han, X. Wen, Y. Liu, and M. Zwicker. L2G auto-encoder: Understanding
point clouds by local-to-global reconstruction with hierarchical self-attention. In
Proceedings of the 27th ACM International Conference on Multimedia, MM 2019,
Nice, France, October 21-25, 2019, pages 989–997, 2019. doi: 10.1145/3343031.
3350960. URL https://doi.org/10.1145/3343031.3350960. 66

[131] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettle-
moyer, and V. Stoyanov. Roberta: A robustly optimized bert pretraining approach.
ArXiv preprint, abs/1907.11692, 2019. URL https://arxiv.org/abs/1907.
11692. 110

[132] K. Lo, L. L. Wang, M. Neumann, R. Kinney, and D. Weld. S2ORC: The semantic
scholar open research corpus. In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages 4969–4983, Online, 2020. Asso-
ciation for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.447. URL
https://aclanthology.org/2020.acl-main.447. 85, 130, 183, 190

[133] L. Logeswaran and H. Lee. An efficient framework for learning sentence representa-
tions. In 6th International Conference on Learning Representations, ICLR 2018, Van-
couver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings. OpenRe-
view.net, 2018. URL https://openreview.net/forum?id=rJvJXZb0W.
113

[134] Y. Luan, J. Eisenstein, K. Toutanova, and M. Collins. Sparse, dense, and at-
tentional representations for text retrieval. Transactions of the Association for
Computational Linguistics, 9:329–345, 2021. doi: 10.1162/tacl_a_00369. URL
https://aclanthology.org/2021.tacl-1.20. 3, 125

[135] L. Luo, W. Cai, S. Zhou, M. Lees, and H. Yin. A review of interactive narra-
tive systems and technologies: a training perspective. Simulation, 91(2):126–147,
2015. doi: 10.1177/0037549714566722. URL https://doi.org/10.1177/
0037549714566722. 90

[136] S. Ma, C. Zhang, and X. Liu. A review of citation recommendation: from textual
content to enriched context. Scientometrics, pages 1–28, 2020. 88, 132

[137] X. Ma, H. Lu, Z. Gan, and Q. Zhao. An exploration of improving prediction
accuracy by constructing a multi-type clustering based recommendation framework.
Neurocomputing, 191:388–397, 2016. 88

[138] X. Ma, Y. Jiang, N. Bach, T. Wang, Z. Huang, F. Huang, and W. Lu. MuVER:
Improving first-stage entity retrieval with multi-view entity representations. In
Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing, pages 2617–2624, Online and Punta Cana, Dominican Republic, 2021.
Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.205.
URL https://aclanthology.org/2021.emnlp-main.205. 3

155

[139] D. J. MacKay. Probable networks and plausible predictions-a review of practical
bayesian methods for supervised neural networks. Network: computation in neural
systems, 6(3):469, 1995. 118

[140] F. Mai and J. Henderson. Bag-of-vectors autoencoders for unsupervised conditional
text generation. ArXiv preprint, abs/2110.07002, 2021. URL https://arxiv.
org/abs/2110.07002. 3

[141] L. J. Martin, P. Ammanabrolu, X. Wang, W. Hancock, S. Singh, B. Harrison, and
M. O. Riedl. Event representations for automated story generation with deep neural
nets. In S. A. McIlraith and K. Q. Weinberger, editors, Proceedings of the Thirty-
Second AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th innovative
Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on
Educational Advances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana,
USA, February 2-7, 2018, pages 868–875. AAAI Press, 2018. URL https://www.
aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17046. 107

[142] Y. Matsubara, L. Soldaini, E. Lind, and A. Moschitti. Ensemble transformer for
efficient and accurate ranking tasks: an application to question answering systems.
ArXiv preprint, abs/2201.05767, 2022. URL https://arxiv.org/abs/2201.
05767. 124

[143] J. J. McAuley, C. Targett, Q. Shi, and A. van den Hengel. Image-based recom-
mendations on styles and substitutes. In R. Baeza-Yates, M. Lalmas, A. Moffat,
and B. A. Ribeiro-Neto, editors, Proceedings of the 38th International ACM SIGIR
Conference on Research and Development in Information Retrieval, Santiago, Chile,
August 9-13, 2015, pages 43–52. ACM, 2015. doi: 10.1145/2766462.2767755. URL
https://doi.org/10.1145/2766462.2767755. 41

[144] S. M. McNee, I. Albert, D. Cosley, P. Gopalkrishnan, S. K. Lam, A. M. Rashid, J. A.
Konstan, and J. Riedl. On the recommending of citations for research papers. In
Proceedings of the 2002 ACM conference on Computer supported cooperative work,
2002. 88

[145] F. McSherry and M. Najork. Computing information retrieval performance measures
efficiently in the presence of tied scores. In ECIR, 2008. 87

[146] S. Merity, C. Xiong, J. Bradbury, and R. Socher. Pointer sentinel mixture models.
In 5th International Conference on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017.
URL https://openreview.net/forum?id=Byj72udxe. 9, 36, 38, 39,
40, 46

156

[147] N. Miao, H. Zhou, C. Zhao, W. Shi, and L. Li. Kernelized bayesian softmax for
text generation. In H. M. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc,
E. B. Fox, and R. Garnett, editors, Advances in Neural Information Processing
Systems 32: Annual Conference on Neural Information Processing Systems 2019,
NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pages 12487–12497,
2019. URL https://proceedings.neurips.cc/paper/2019/hash/
967c2ae04b169f07e7fa8fdfd110551e-Abstract.html. 2, 3, 45

[148] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed
representations of words and phrases and their compositionality. In C. J. C.
Burges, L. Bottou, Z. Ghahramani, and K. Q. Weinberger, editors, Advances
in Neural Information Processing Systems 26: 27th Annual Conference on
Neural Information Processing Systems 2013. Proceedings of a meeting held
December 5-8, 2013, Lake Tahoe, Nevada, United States, pages 3111–3119,
2013. URL https://proceedings.neurips.cc/paper/2013/hash/
9aa42b31882ec039965f3c4923ce901b-Abstract.html. 15, 18, 53,
55, 86, 172

[149] D. Milajevs, D. Kartsaklis, M. Sadrzadeh, and M. Purver. Evaluating neural word
representations in tensor-based compositional settings. In Proceedings of the 2014
Conference on Empirical Methods in Natural Language Processing (EMNLP), pages
708–719, Doha, Qatar, 2014. Association for Computational Linguistics. doi: 10.
3115/v1/D14-1079. URL https://aclanthology.org/D14-1079. 60

[150] G. A. Miller. WordNet: An electronic lexical database. MIT press, 1998. 76

[151] D. Mimno and A. McCallum. Expertise modeling for matching papers with reviewers.
In SIGKDD, 2007. 132

[152] D. M. Mimno and A. McCallum. Topic models conditioned on arbitrary features
with dirichlet-multinomial regression. In UAI, 2008. 66

[153] M. Mintz, S. Bills, R. Snow, and D. Jurafsky. Distant supervision for relation
extraction without labeled data. In Proceedings of the Joint Conference of the 47th
Annual Meeting of the ACL and the 4th International Joint Conference on Natural
Language Processing of the AFNLP, pages 1003–1011, Suntec, Singapore, 2009.
Association for Computational Linguistics. URL https://aclanthology.
org/P09-1113. 78

[154] S. Mittal, S. C. Raparthy, I. Rish, Y. Bengio, and G. Lajoie. Compositional atten-
tion: Disentangling search and retrieval. In International Conference on Learning
Representations, ICLR, 2022. 45

[155] M. Mosbach, M. Andriushchenko, and D. Klakow. On the stability of fine-tuning
BERT: misconceptions, explanations, and strong baselines. In 9th International
Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May
3-7, 2021. OpenReview.net, 2021. URL https://openreview.net/forum?
id=nzpLWnVAyah. 110, 119, 188

157

[156] S. Mysore, A. Cohan, and T. Hope. Multi-vector models with textual guidance for
fine-grained scientific document similarity. In NAACL, 2022. 125, 132

[157] M. P. Naeini, G. F. Cooper, and M. Hauskrecht. Obtaining well calibrated probabilities
using bayesian binning. In B. Bonet and S. Koenig, editors, Proceedings of the Twenty-
Ninth AAAI Conference on Artificial Intelligence, January 25-30, 2015, Austin, Texas,
USA, pages 2901–2907. AAAI Press, 2015. URL http://www.aaai.org/
ocs/index.php/AAAI/AAAI15/paper/view/9667. 122, 189

[158] S. Narang, H. W. Chung, Y. Tay, L. Fedus, T. Fevry, M. Matena, K. Malkan, N. Fiedel,
N. Shazeer, Z. Lan, Y. Zhou, W. Li, N. Ding, J. Marcus, A. Roberts, and C. Raffel.
Do transformer modifications transfer across implementations and applications? In
Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing, pages 5758–5773, Online and Punta Cana, Dominican Republic, 2021.
Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.465.
URL https://aclanthology.org/2021.emnlp-main.465. 3, 4, 16,
125

[159] A. Neelakantan, J. Shankar, A. Passos, and A. McCallum. Efficient non-parametric
estimation of multiple embeddings per word in vector space. In Proceedings of the
2014 Conference on Empirical Methods in Natural Language Processing (EMNLP),
pages 1059–1069, Doha, Qatar, 2014. Association for Computational Linguistics.
doi: 10.3115/v1/D14-1113. URL https://aclanthology.org/D14-1113.
3, 49, 79

[160] N. Ng, K. Yee, A. Baevski, M. Ott, M. Auli, and S. Edunov. Facebook FAIR’s
WMT19 news translation task submission. In Proceedings of the Fourth Conference
on Machine Translation (Volume 2: Shared Task Papers, Day 1), pages 314–319,
Florence, Italy, 2019. Association for Computational Linguistics. doi: 10.18653/v1/
W19-5333. URL https://aclanthology.org/W19-5333. 45

[161] T. Niu and M. Bansal. Polite dialogue generation without parallel data. Transactions
of the Association for Computational Linguistics, 6:373–389, 2018. doi: 10.1162/
tacl_a_00027. URL https://aclanthology.org/Q18-1027. 107

[162] M. Ostendorff, T. Ruas, T. Blume, B. Gipp, and G. Rehm. Aspect-based doc-
ument similarity for research papers. In Proceedings of the 28th International
Conference on Computational Linguistics, pages 6194–6206, Barcelona, Spain
(Online), 2020. International Committee on Computational Linguistics. doi: 10.
18653/v1/2020.coling-main.545. URL https://aclanthology.org/2020.
coling-main.545. 132

[163] M. Ostendorff, N. Rethmeier, I. Augenstein, B. Gipp, and G. Rehm. Neighborhood
contrastive learning for scientific document representations with citation embeddings.
ArXiv preprint, abs/2202.06671, 2022. URL https://arxiv.org/abs/2202.
06671. 125, 128, 132

158

[164] D. Pace, A. Russo, and M. Shanahan. Learning diverse representations for fast
adaptation to distribution shift. ArXiv preprint, abs/2006.07119, 2020. URL https:
//arxiv.org/abs/2006.07119. 138

[165] P. Papalampidi, K. Cao, and T. Kocisky. Towards coherent and consistent use
of entities in narrative generation. ArXiv preprint, abs/2202.01709, 2022. URL
https://arxiv.org/abs/2202.01709. 31, 45

[166] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu. Bleu: a method for automatic
evaluation of machine translation. In Proceedings of the 40th Annual Meeting
of the Association for Computational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA, 2002. Association for Computational Linguistics. doi: 10.3115/
1073083.1073135. URL https://aclanthology.org/P02-1040. 105

[167] V. Papyan, X. Han, and D. L. Donoho. Prevalence of neural collapse during the
terminal phase of deep learning training. Proceedings of the National Academy of
Sciences, 117(40):24652–24663, 2020. 115

[168] D. G. Parthiban, Y. Mao, and D. Inkpen. On the softmax bottleneck of recurrent
language models. In Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI
2021, Thirty-Third Conference on Innovative Applications of Artificial Intelligence,
IAAI 2021, The Eleventh Symposium on Educational Advances in Artificial Intelli-
gence, EAAI 2021, Virtual Event, February 2-9, 2021, pages 13640–13647. AAAI
Press, 2021. URL https://ojs.aaai.org/index.php/AAAI/article/
view/17608. 4, 16, 30

[169] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf, E. Yang, Z. De-
Vito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and
S. Chintala. Pytorch: An imperative style, high-performance deep learning li-
brary. In H. M. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. B.
Fox, and R. Garnett, editors, Advances in Neural Information Processing Sys-
tems 32: Annual Conference on Neural Information Processing Systems 2019,
NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pages 8024–8035,
2019. URL https://proceedings.neurips.cc/paper/2019/hash/
bdbca288fee7f92f2bfa9f7012727740-Abstract.html. 191

[170] D. Patel, P. Dangati, J.-Y. Lee, M. Boratko, and A. McCallum. Modeling label space
interactions in multi-label classification using box embeddings. In International
Conference on Learning Representations, 2022. 136

[171] R. Paul, H.-S. Chang, and A. McCallum. Multi-facet universal schema. In Pro-
ceedings of the 16th Conference of the European Chapter of the Association for
Computational Linguistics: Main Volume, pages 909–919, Online, 2021. Associ-
ation for Computational Linguistics. doi: 10.18653/v1/2021.eacl-main.77. URL
https://aclanthology.org/2021.eacl-main.77. 10, 11, 69

159

[172] E. Pavlick, P. Rastogi, J. Ganitkevitch, B. Van Durme, and C. Callison-Burch. PPDB
2.0: Better paraphrase ranking, fine-grained entailment relations, word embeddings,
and style classification. In Proceedings of the 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th International Joint Conference on Natural
Language Processing (Volume 2: Short Papers), pages 425–430, Beijing, China,
2015. Association for Computational Linguistics. doi: 10.3115/v1/P15-2070. URL
https://aclanthology.org/P15-2070. 57

[173] N. Peng, M. Ghazvininejad, J. May, and K. Knight. Towards controllable story
generation. In Proceedings of the First Workshop on Storytelling, pages 43–49, New
Orleans, Louisiana, 2018. Association for Computational Linguistics. doi: 10.18653/
v1/W18-1505. URL https://aclanthology.org/W18-1505. 108

[174] J. Pennington, R. Socher, and C. Manning. GloVe: Global vectors for word rep-
resentation. In Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 1532–1543, Doha, Qatar, 2014.
Association for Computational Linguistics. doi: 10.3115/v1/D14-1162. URL
https://aclanthology.org/D14-1162. 10, 57, 94, 182

[175] H. Piwowar, J. Priem, V. Larivière, J. P. Alperin, L. Matthias, B. Norlander, A. Farley,
J. West, and S. Haustein. The state of oa: a large-scale analysis of the prevalence and
impact of open access articles. PeerJ, 6:e4375, 2018. 125

[176] K. Qin, C. Li, V. Pavlu, and J. Aslam. Adapting RNN sequence prediction
model to multi-label set prediction. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long and Short Papers), pages 3181–3190,
Minneapolis, Minnesota, 2019. Association for Computational Linguistics. doi:
10.18653/v1/N19-1321. URL https://aclanthology.org/N19-1321. 55,
67

[177] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever. Language models
are unsupervised multitask learners. 2019. 1, 14, 16, 27, 92

[178] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li,
and P. J. Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research, 21(140):1–67, 2020. URL
http://jmlr.org/papers/v21/20-074.html. 21

[179] S. Rajaee and M. T. Pilehvar. A cluster-based approach for improving isotropy in
contextual embedding space. In Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th International Joint Conference
on Natural Language Processing (Volume 2: Short Papers), pages 575–584, Online,
2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.acl-short.73.
URL https://aclanthology.org/2021.acl-short.73. 180

160

[180] H. Rashkin, A. Celikyilmaz, Y. Choi, and J. Gao. PlotMachines: Outline-conditioned
generation with dynamic plot state tracking. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Processing (EMNLP), pages 4274–4295,
Online, 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.
emnlp-main.349. URL https://aclanthology.org/2020.emnlp-main.
349. 108

[181] P. Ren, Z. Chen, J. Li, Z. Ren, J. Ma, and M. de Rijke. Repeatnet: A repeat
aware neural recommendation machine for session-based recommendation. In The
Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-First
Innovative Applications of Artificial Intelligence Conference, IAAI 2019, The Ninth
AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019,
Honolulu, Hawaii, USA, January 27 - February 1, 2019, pages 4806–4813. AAAI
Press, 2019. doi: 10.1609/aaai.v33i01.33014806. URL https://doi.org/10.
1609/aaai.v33i01.33014806. 17, 42

[182] S. H. Rezatofighi, R. Kaskman, F. T. Motlagh, Q. Shi, D. Cremers, L. Leal-Taixé,
and I. Reid. Deep perm-set net: learn to predict sets with unknown permutation and
cardinality using deep neural networks. ArXiv preprint, abs/1805.00613, 2018. URL
https://arxiv.org/abs/1805.00613. 67

[183] M. T. Ribeiro, T. Wu, C. Guestrin, and S. Singh. Beyond accuracy: Behavioral
testing of NLP models with CheckList. In Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics, pages 4902–4912, Online, 2020.
Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.442.
URL https://aclanthology.org/2020.acl-main.442. 172

[184] S. Riedel, L. Yao, A. McCallum, and B. M. Marlin. Relation extraction with matrix
factorization and universal schemas. In Proceedings of the 2013 Conference of the
North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, pages 74–84, Atlanta, Georgia, 2013. Association for Com-
putational Linguistics. URL https://aclanthology.org/N13-1008. 67,
75

[185] M. Roemmele and A. S. Gordon. Creative help: A story writing assistant. In
H. Schoenau-Fog, L. E. Bruni, S. Louchart, and S. Baceviciute, editors, Interactive
Storytelling - 8th International Conference on Interactive Digital Storytelling, ICIDS
2015, Copenhagen, Denmark, November 30 - December 4, 2015, Proceedings,
volume 9445, pages 81–92. Springer, 2015. doi: 10.1007/978-3-319-27036-4_8.
URL https://doi.org/10.1007/978-3-319-27036-4_8. 90

[186] B. Roth and D. Klakow. Feature-based models for improving the quality of noisy
training data for relation extraction. In Q. He, A. Iyengar, W. Nejdl, J. Pei, and
R. Rastogi, editors, 22nd ACM International Conference on Information and Knowl-
edge Management, CIKM’13, San Francisco, CA, USA, October 27 - November
1, 2013, pages 1181–1184. ACM, 2013. doi: 10.1145/2505515.2507850. URL
https://doi.org/10.1145/2505515.2507850. 79

161

[187] B. Roth, T. Barth, M. Wiegand, and D. Klakow. A survey of noise reduction methods
for distant supervision. In Proceedings of the 2013 workshop on Automated knowledge
base construction, 2013. 74, 76, 79

[188] D. Ruppert. Efficient estimations from a slowly convergent robbins-monro process.
Technical report, Cornell University Operations Research and Industrial Engineering,
1988. 121

[189] B. M. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Recommender systems for large-
scale e-commerce: Scalable neighborhood formation using clustering. In Proceedings
of the fifth international conference on computer and information technology, 2002.
88

[190] N. Savinov, J. Chung, M. Binkowski, E. Elsen, and A. van den Oord. Step-unrolled
denoising autoencoders for text generation, 2021. 45

[191] A. See, P. J. Liu, and C. D. Manning. Get to the point: Summarization with
pointer-generator networks. In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pages 1073–
1083, Vancouver, Canada, 2017. Association for Computational Linguistics. doi:
10.18653/v1/P17-1099. URL https://aclanthology.org/P17-1099. 9,
36, 38, 39, 46, 63

[192] A. See, S. Roller, D. Kiela, and J. Weston. What makes a good conversation?
how controllable attributes affect human judgments. In Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers),
pages 1702–1723, Minneapolis, Minnesota, 2019. Association for Computational
Linguistics. doi: 10.18653/v1/N19-1170. URL https://aclanthology.org/
N19-1170. 103, 107

[193] T. Sellam, S. Yadlowsky, J. Wei, N. Saphra, A. D’Amour, T. Linzen, J. Bastings,
I. Turc, J. Eisenstein, D. Das, I. Tenney, and E. Pavlick. The multiberts: BERT
reproductions for robustness analysis. ArXiv preprint, abs/2106.16163, 2021. URL
https://arxiv.org/abs/2106.16163. 119

[194] R. Sennrich, B. Haddow, and A. Birch. Neural machine translation of rare words
with subword units. In Proceedings of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pages 1715–1725, Berlin,
Germany, 2016. Association for Computational Linguistics. doi: 10.18653/v1/
P16-1162. URL https://aclanthology.org/P16-1162. 185

[195] I. V. Serban, A. Sordoni, Y. Bengio, A. C. Courville, and J. Pineau. Building
end-to-end dialogue systems using generative hierarchical neural network models.
In D. Schuurmans and M. P. Wellman, editors, Proceedings of the Thirtieth AAAI
Conference on Artificial Intelligence, February 12-17, 2016, Phoenix, Arizona, USA,
pages 3776–3784. AAAI Press, 2016. URL http://www.aaai.org/ocs/
index.php/AAAI/AAAI16/paper/view/11957. 103

162

[196] N. Shazeer, A. Mirhoseini, K. Maziarz, A. Davis, Q. V. Le, G. E. Hinton, and J. Dean.
Outrageously large neural networks: The sparsely-gated mixture-of-experts layer.
In 5th International Conference on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017.
URL https://openreview.net/forum?id=B1ckMDqlg. 45

[197] R. Shu and H. Nakayama. Compressing word embeddings via deep compositional
code learning. In 6th International Conference on Learning Representations, ICLR
2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceed-
ings. OpenReview.net, 2018. URL https://openreview.net/forum?id=
BJRZzFlRb. 66

[198] K. Shuster, J. Urbanek, A. Szlam, and J. Weston. Am i me or you? state-of-the-art
dialogue models cannot maintain an identity, 2021. 31, 35, 45

[199] V. Shwartz, E. Santus, and D. Schlechtweg. Hypernyms under siege: Linguistically-
motivated artillery for hypernymy detection. In Proceedings of the 15th Conference
of the European Chapter of the Association for Computational Linguistics: Volume
1, Long Papers, pages 65–75, Valencia, Spain, 2017. Association for Computational
Linguistics. URL https://aclanthology.org/E17-1007. 73, 76, 77

[200] V. Shwartz, R. Rudinger, and O. Tafjord. “you are grounded!”: Latent name artifacts
in pre-trained language models. In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP), pages 6850–6861, Online, 2020.
Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.556.
URL https://aclanthology.org/2020.emnlp-main.556. 35, 45

[201] M. Sigman and G. A. Cecchi. Global organization of the wordnet lexicon. Proceed-
ings of the National Academy of Sciences, 99(3):1742–1747, 2002. 172

[202] S. P. Singh, A. Hug, A. Dieuleveut, and M. Jaggi. Context mover’s distance &
barycenters: Optimal transport of contexts for building representations. In S. Chiappa
and R. Calandra, editors, The 23rd International Conference on Artificial Intelligence
and Statistics, AISTATS 2020, 26-28 August 2020, Online [Palermo, Sicily, Italy],
volume 108 of Proceedings of Machine Learning Research, pages 3437–3449. PMLR,
2020. URL http://proceedings.mlr.press/v108/singh20a.html.
49

[203] A. Sinha, Z. Shen, Y. Song, H. Ma, D. Eide, B.-J. Hsu, and K. Wang. An overview
of microsoft academic service (mas) and applications. In Proceedings of the 24th
international conference on world wide web, pages 243–246, 2015. 130

[204] A. Srivastava and C. Sutton. Autoencoding variational inference for topic models.
In 5th International Conference on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017.
URL https://openreview.net/forum?id=BybtVK9lg. 66

163

[205] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout:
a simple way to prevent neural networks from overfitting. The journal of machine
learning research, 15(1):1929–1958, 2014. 111

[206] M. Stern, W. Chan, J. Kiros, and J. Uszkoreit. Insertion transformer: Flexible
sequence generation via insertion operations. In K. Chaudhuri and R. Salakhutdinov,
editors, Proceedings of the 36th International Conference on Machine Learning,
ICML 2019, 9-15 June 2019, Long Beach, California, USA, volume 97 of Proceedings
of Machine Learning Research, pages 5976–5985. PMLR, 2019. URL http://
proceedings.mlr.press/v97/stern19a.html. 67

[207] R. Stewart, M. Andriluka, and A. Y. Ng. End-to-end people detection in crowded
scenes. In 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2016, Las Vegas, NV, USA, June 27-30, 2016, pages 2325–2333. IEEE Computer
Society, 2016. doi: 10.1109/CVPR.2016.255. URL https://doi.org/10.
1109/CVPR.2016.255. 66

[208] Y. Su, H. Liu, S. Yavuz, I. Gür, H. Sun, and X. Yan. Global relation embedding
for relation extraction. In Proceedings of the 2018 Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), pages 820–830, New Orleans, Louisiana,
2018. Association for Computational Linguistics. doi: 10.18653/v1/N18-1075. URL
https://aclanthology.org/N18-1075. 79

[209] Y. Su, T. Lan, Y. Wang, D. Yogatama, L. Kong, and N. Collier. A contrastive
framework for neural text generation. ArXiv preprint, abs/2202.06417, 2022. URL
https://arxiv.org/abs/2202.06417. 180

[210] Y. Sun, S. Wang, Y. Li, S. Feng, H. Tian, H. Wu, and H. Wang. ERNIE 2.0: A
continual pre-training framework for language understanding. In The Thirty-Fourth
AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innova-
tive Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI
Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York,
NY, USA, February 7-12, 2020, pages 8968–8975. AAAI Press, 2020. URL https:
//aaai.org/ojs/index.php/AAAI/article/view/6428. 113, 118,
120

[211] M. Surdeanu, J. Tibshirani, R. Nallapati, and C. D. Manning. Multi-instance multi-
label learning for relation extraction. In Proceedings of the 2012 Joint Conference
on Empirical Methods in Natural Language Processing and Computational Natu-
ral Language Learning, pages 455–465, Jeju Island, Korea, 2012. Association for
Computational Linguistics. URL https://aclanthology.org/D12-1042.
79

164

[212] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with
neural networks. In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence,
and K. Q. Weinberger, editors, Advances in Neural Information Processing
Systems 27: Annual Conference on Neural Information Processing Systems
2014, December 8-13 2014, Montreal, Quebec, Canada, pages 3104–3112,
2014. URL https://proceedings.neurips.cc/paper/2014/hash/
a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html. 56

[213] S. Takamatsu, I. Sato, and H. Nakagawa. Reducing wrong labels in distant super-
vision for relation extraction. In Proceedings of the 50th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pages 721–
729, Jeju Island, Korea, 2012. Association for Computational Linguistics. URL
https://aclanthology.org/P12-1076. 79

[214] S. Takase, J. Suzuki, and M. Nagata. Direct output connection for a high-rank
language model. In Proceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, pages 4599–4609, Brussels, Belgium, 2018.
Association for Computational Linguistics. doi: 10.18653/v1/D18-1489. URL
https://aclanthology.org/D18-1489. 28, 29

[215] P. Tambwekar, M. Dhuliawala, L. J. Martin, A. Mehta, B. Harrison, and M. O.
Riedl. Controllable neural story plot generation via reward shaping. In S. Kraus,
editor, Proceedings of the Twenty-Eighth International Joint Conference on Artificial
Intelligence, IJCAI 2019, Macao, China, August 10-16, 2019, pages 5982–5988.
ijcai.org, 2019. doi: 10.24963/ijcai.2019/829. URL https://doi.org/10.
24963/ijcai.2019/829. 107

[216] B. Tan, Z. Yang, M. Al-Shedivat, E. Xing, and Z. Hu. Progressive generation of
long text with pretrained language models. In Proceedings of the 2021 Conference
of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pages 4313–4324, Online, 2021. Association for
Computational Linguistics. doi: 10.18653/v1/2021.naacl-main.341. URL https:
//aclanthology.org/2021.naacl-main.341. 45, 108

[217] Y. Tay, M. Dehghani, V. Aribandi, J. P. Gupta, P. Pham, Z. Qin, D. Bahri, D. Juan,
and D. Metzler. Omninet: Omnidirectional representations from transformers. In
M. Meila and T. Zhang, editors, Proceedings of the 38th International Conference
on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event, volume 139 of
Proceedings of Machine Learning Research, pages 10193–10202. PMLR, 2021. URL
http://proceedings.mlr.press/v139/tay21b.html. 28

[218] Y. Tay, M. Dehghani, S. Abnar, H. W. Chung, W. Fedus, J. Rao, S. Narang, V. Q.
Tran, D. Yogatama, and D. Metzler. Scaling laws vs model architectures: How
does inductive bias influence scaling?, 2022. URL https://arxiv.org/abs/
2207.10551. 3, 4, 16, 125

165

[219] D. Teney, E. Abbasnejad, S. Lucey, and A. van den Hengel. Evading the simplicity
bias: Training a diverse set of models discovers solutions with superior ood general-
ization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 16761–16772, 2022. 138

[220] I. Tenney, P. Xia, B. Chen, A. Wang, A. Poliak, R. T. McCoy, N. Kim, B. V. Durme,
S. R. Bowman, D. Das, and E. Pavlick. What do you learn from context? probing
for sentence structure in contextualized word representations. In 7th International
Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May
6-9, 2019. OpenReview.net, 2019. URL https://openreview.net/forum?
id=SJzSgnRcKX. 28

[221] T. Tieleman and G. Hinton. Lecture 6.5-rmsprop: Divide the gradient by a running
average of its recent magnitude. COURSERA: Neural networks for machine learning,
4(2):26–31, 2012. 55, 185

[222] L. Tu, X. Ding, D. Yu, and K. Gimpel. Generating diverse story continuations with
controllable semantics. In Proceedings of the 3rd Workshop on Neural Generation
and Translation, pages 44–58, Hong Kong, 2019. Association for Computational
Linguistics. doi: 10.18653/v1/D19-5605. URL https://aclanthology.org/
D19-5605. 93, 101, 107

[223] P. D. Turney. Domain and function: A dual-space model of semantic relations and
compositions. Journal of Artificial Intelligence Research, 2012. 64

[224] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin. Attention is all you need. In I. Guyon,
U. von Luxburg, S. Bengio, H. M. Wallach, R. Fergus, S. V. N. Vish-
wanathan, and R. Garnett, editors, Advances in Neural Information Process-
ing Systems 30: Annual Conference on Neural Information Processing Sys-
tems 2017, December 4-9, 2017, Long Beach, CA, USA, pages 5998–6008,
2017. URL https://proceedings.neurips.cc/paper/2017/hash/
3f5ee243547dee91fbd053c1c4a845aa-Abstract.html. 55, 56, 94

[225] P. Verga, D. Belanger, E. Strubell, B. Roth, and A. McCallum. Multilingual rela-
tion extraction using compositional universal schema. In Proceedings of the 2016
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages 886–896, San Diego, California,
2016. Association for Computational Linguistics. doi: 10.18653/v1/N16-1103. URL
https://aclanthology.org/N16-1103. xvi, 8, 67, 70, 73, 74, 75, 76, 79

[226] L. Vilnis and A. McCallum. Word representations via gaussian embedding. In Y. Ben-
gio and Y. LeCun, editors, 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings,
2015. URL http://arxiv.org/abs/1412.6623. 66

[227] N. Walton. AI dungeon, 2020. URL https://play.aidungeon.io/. 90

166

[228] A. Wang, Y. Pruksachatkun, N. Nangia, A. Singh, J. Michael, F. Hill, O. Levy, and
S. R. Bowman. Superglue: A stickier benchmark for general-purpose language
understanding systems. In H. M. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-
Buc, E. B. Fox, and R. Garnett, editors, Advances in Neural Information Processing
Systems 32: Annual Conference on Neural Information Processing Systems 2019,
NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pages 3261–3275,
2019. URL https://proceedings.neurips.cc/paper/2019/hash/
4496bf24afe7fab6f046bf4923da8de6-Abstract.html. 11, 112, 118

[229] A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. R. Bowman. GLUE: A
multi-task benchmark and analysis platform for natural language understanding. In
7th International Conference on Learning Representations, ICLR 2019, New Orleans,
LA, USA, May 6-9, 2019. OpenReview.net, 2019. URL https://openreview.
net/forum?id=rJ4km2R5t7. 11, 112, 118

[230] B. Wang and A. Komatsuzaki. Gpt-j-6b: A 6 billion parameter autoregressive
language model, 2021. 22

[231] C. Wang and D. M. Blei. Collaborative topic modeling for recommending scientific
articles. In C. Apté, J. Ghosh, and P. Smyth, editors, Proceedings of the 17th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, San
Diego, CA, USA, August 21-24, 2011, pages 448–456. ACM, 2011. doi: 10.1145/
2020408.2020480. URL https://doi.org/10.1145/2020408.2020480.
132

[232] H. Wang, B. Chen, and W.-J. Li. Collaborative topic regression with social regular-
ization for tag recommendation. In IJCAI, 2013. 137

[233] S. Wang, L. Hu, Y. Wang, Q. Z. Sheng, M. A. Orgun, and L. Cao. Modeling
multi-purpose sessions for next-item recommendations via mixture-channel purpose
routing networks. In S. Kraus, editor, Proceedings of the Twenty-Eighth International
Joint Conference on Artificial Intelligence, IJCAI 2019, Macao, China, August 10-
16, 2019, pages 3771–3777. ijcai.org, 2019. doi: 10.24963/ijcai.2019/523. URL
https://doi.org/10.24963/ijcai.2019/523. 3

[234] T. Wang, K. Cho, and M. Wen. Attention-based mixture density recurrent networks
for history-based recommendation. In Proceedings of the 1st International Workshop
on Deep Learning Practice for High-Dimensional Sparse Data, 2019. 3, 67, 89

[235] Y. Wang, L. Cui, and Y. Zhang. How can bert help lexical semantics tasks?
ArXiv preprint, abs/1911.02929, 2019. URL https://arxiv.org/abs/1911.
02929. 15, 19

167

[236] S. Welleck, Z. Yao, Y. Gai, J. Mao, Z. Zhang, and K. Cho. Loss functions for
multiset prediction. In S. Bengio, H. M. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information Process-
ing Systems 31: Annual Conference on Neural Information Processing Systems
2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pages 5788–5797,
2018. URL https://proceedings.neurips.cc/paper/2018/hash/
fb3f76858cb38e5b7fd113e0bc1c0721-Abstract.html. 67

[237] S. Welleck, K. Brantley, H. D. III, and K. Cho. Non-monotonic sequential text
generation. In K. Chaudhuri and R. Salakhutdinov, editors, Proceedings of the 36th
International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long
Beach, California, USA, volume 97 of Proceedings of Machine Learning Research,
pages 6716–6726. PMLR, 2019. URL http://proceedings.mlr.press/
v97/welleck19a.html. 67

[238] Y. Wen, D. Tran, and J. Ba. Batchensemble: an alternative approach to efficient
ensemble and lifelong learning. In 8th International Conference on Learning Repre-
sentations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net,
2020. URL https://openreview.net/forum?id=Sklf1yrYDr. 124

[239] P. West, C. Bhagavatula, J. Hessel, J. D. Hwang, L. Jiang, R. L. Bras, X. Lu,
S. Welleck, and Y. Choi. Symbolic knowledge distillation: from general language
models to commonsense models. ArXiv preprint, abs/2110.07178, 2021. URL
https://arxiv.org/abs/2110.07178. 14

[240] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac, T. Rault,
R. Louf, M. Funtowicz, J. Davison, S. Shleifer, P. von Platen, C. Ma, Y. Jernite, J. Plu,
C. Xu, T. Le Scao, S. Gugger, M. Drame, Q. Lhoest, and A. Rush. Transformers:
State-of-the-art natural language processing. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Processing: System Demonstrations,
pages 38–45, Online, 2020. Association for Computational Linguistics. doi: 10.
18653/v1/2020.emnlp-demos.6. URL https://aclanthology.org/2020.
emnlp-demos.6. 191

[241] Q. Wu, L. Li, and Z. Yu. Textgail: Generative adversarial imitation learning for
text generation. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 35, pages 14067–14075, 2021. 45

[242] Z. Wu, M. Galley, C. Brockett, Y. Zhang, X. Gao, C. Quirk, R. Koncel-Kedziorski,
J. Gao, H. Hajishirzi, M. Ostendorf, et al. A controllable model of grounded response
generation. ArXiv preprint, abs/2005.00613, 2020. URL https://arxiv.org/
abs/2005.00613. 108

168

[243] J. Xu, X. Ren, Y. Zhang, Q. Zeng, X. Cai, and X. Sun. A skeleton-based model for
promoting coherence among sentences in narrative story generation. In Proceedings
of the 2018 Conference on Empirical Methods in Natural Language Processing, pages
4306–4315, Brussels, Belgium, 2018. Association for Computational Linguistics. doi:
10.18653/v1/D18-1462. URL https://aclanthology.org/D18-1462.
108

[244] Y. Xu, X. Qiu, L. Zhou, and X. Huang. Improving bert fine-tuning via self-ensemble
and self-distillation. ArXiv preprint, abs/2002.10345, 2020. URL https://arxiv.
org/abs/2002.10345. 110, 124

[245] R. Yan. i, poet: Automatic poetry composition through recurrent neural networks
with iterative polishing schema. In S. Kambhampati, editor, Proceedings of the
Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI 2016,
New York, NY, USA, 9-15 July 2016, pages 2238–2244. IJCAI/AAAI Press, 2016.
URL http://www.ijcai.org/Abstract/16/319. 107

[246] L. Yang, Y. Guo, and X. Cao. Multi-facet network embedding: Beyond the general
solution of detection and representation. In S. A. McIlraith and K. Q. Weinberger,
editors, Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence,
(AAAI-18), the 30th innovative Applications of Artificial Intelligence (IAAI-18), and
the 8th AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-
18), New Orleans, Louisiana, USA, February 2-7, 2018, pages 499–506. AAAI Press,
2018. URL https://www.aaai.org/ocs/index.php/AAAI/AAAI18/
paper/view/16326. 3, 89

[247] Y. Yang, C. Feng, Y. Shen, and D. Tian. Foldingnet: Point cloud auto-encoder
via deep grid deformation. In 2018 IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018,
pages 206–215. IEEE Computer Society, 2018. doi: 10.1109/CVPR.2018.00029.
URL http://openaccess.thecvf.com/content_cvpr_2018/html/
Yang_FoldingNet_Point_Cloud_CVPR_2018_paper.html. 66

[248] Z. Yang, Z. Dai, R. Salakhutdinov, and W. W. Cohen. Breaking the softmax
bottleneck: A high-rank RNN language model. In 6th International Confer-
ence on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April
30 - May 3, 2018, Conference Track Proceedings. OpenReview.net, 2018. URL
https://openreview.net/forum?id=HkwZSG-CZ. 3, 4, 5, 9, 16, 18, 24,
25, 28, 29, 44, 46, 67, 125, 173, 179

[249] Z. Yang, T. Luong, R. Salakhutdinov, and Q. V. Le. Mixtape: Breaking the softmax
bottleneck efficiently. In H. M. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-
Buc, E. B. Fox, and R. Garnett, editors, Advances in Neural Information Processing
Systems 32: Annual Conference on Neural Information Processing Systems 2019,
NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pages 15922–15930,
2019. URL https://proceedings.neurips.cc/paper/2019/hash/
512fc3c5227f637e41437c999a2d3169-Abstract.html. 4, 180

169

[250] L. Yao, S. Riedel, and A. McCallum. Collective cross-document relation extraction
without labelled data. In Proceedings of the 2010 Conference on Empirical Methods
in Natural Language Processing, pages 1013–1023, Cambridge, MA, 2010. Asso-
ciation for Computational Linguistics. URL https://aclanthology.org/
D10-1099. 79

[251] L. Yao, N. Peng, R. M. Weischedel, K. Knight, D. Zhao, and R. Yan. Plan-and-write:
Towards better automatic storytelling. In The Thirty-Third AAAI Conference on Arti-
ficial Intelligence, AAAI 2019, The Thirty-First Innovative Applications of Artificial
Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 -
February 1, 2019, pages 7378–7385. AAAI Press, 2019. doi: 10.1609/aaai.v33i01.
33017378. URL https://doi.org/10.1609/aaai.v33i01.33017378.
108

[252] M. Yu and M. Dredze. Learning composition models for phrase embeddings. Trans-
actions of the Association for Computational Linguistics, 3:227–242, 2015. doi:
10.1162/tacl_a_00135. URL https://aclanthology.org/Q15-1017. xvi,
65

[253] A. Zagoury, E. Minkov, I. Szpektor, and W. W. Cohen. What’s the best place
for an AI conference, vancouver or _______: Why completing comparative ques-
tions is difficult. In Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI
2021, Thirty-Third Conference on Innovative Applications of Artificial Intelligence,
IAAI 2021, The Eleventh Symposium on Educational Advances in Artificial Intelli-
gence, EAAI 2021, Virtual Event, February 2-9, 2021, pages 14292–14300. AAAI
Press, 2021. URL https://ojs.aaai.org/index.php/AAAI/article/
view/17681. 21, 180

[254] D. Zhang, S. Zhao, Z. Duan, J. Chen, Y. Zhang, and J. Tang. A multi-label classifica-
tion method using a hierarchical and transparent representation for paper-reviewer
recommendation. ACM Transactions on Information Systems (TOIS), 38(1):1–20,
2020. 88, 132

[255] T. Zhang, F. Wu, A. Katiyar, K. Q. Weinberger, and Y. Artzi. Revisiting few-sample
BERT fine-tuning. In 9th International Conference on Learning Representations,
ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021. URL
https://openreview.net/forum?id=cO1IH43yUF. 110, 118, 119, 188

[256] Y. Zhang, G. Wang, C. Li, Z. Gan, C. Brockett, and B. Dolan. POINTER: Con-
strained progressive text generation via insertion-based generative pre-training.
In Proceedings of the 2020 Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 8649–8670, Online, 2020. Association for Com-
putational Linguistics. doi: 10.18653/v1/2020.emnlp-main.698. URL https:
//aclanthology.org/2020.emnlp-main.698. 108

170

[257] Z. Zhang, V. R. Gao, and M. R. Sabuncu. Ex uno plures: Splitting one model
into an ensemble of subnetworks. ArXiv preprint, abs/2106.04767, 2021. URL
https://arxiv.org/abs/2106.04767. 124

[258] Z. Zhang, N. Shao, C. Gao, R. Miao, Q. Yang, and J. Shao. Mixhead: Breaking
the low-rank bottleneck in multi-head attention language models. Knowledge-Based
Systems, page 108075, 2022. 45

[259] W. X. Zhao, S. Mu, Y. Hou, Z. Lin, Y. Chen, X. Pan, K. Li, Y. Lu, H. Wang,
C. Tian, et al. Recbole: Towards a unified, comprehensive and efficient framework
for recommendation algorithms. In Proceedings of the 30th ACM International
Conference on Information & Knowledge Management, pages 4653–4664, 2021. 42

[260] H. Zheng and M. Lapata. Sentence centrality revisited for unsupervised summariza-
tion. In Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics, pages 6236–6247, Florence, Italy, 2019. Association for Computational
Linguistics. doi: 10.18653/v1/P19-1628. URL https://aclanthology.org/
P19-1628. xvi, 63, 64

[261] M. Zhu. Recall, precision and average precision. Department of Statistics and
Actuarial Science, University of Waterloo, Waterloo, 2:30, 2004. 87

[262] Y. Zhu, R. Kiros, R. S. Zemel, R. Salakhutdinov, R. Urtasun, A. Torralba, and
S. Fidler. Aligning books and movies: Towards story-like visual explanations by
watching movies and reading books. In 2015 IEEE International Conference on
Computer Vision, ICCV 2015, Santiago, Chile, December 7-13, 2015, pages 19–
27. IEEE Computer Society, 2015. doi: 10.1109/ICCV.2015.11. URL https:
//doi.org/10.1109/ICCV.2015.11. 118

[263] Y. Zhu, S. Lu, L. Zheng, J. Guo, W. Zhang, J. Wang, and Y. Yu. Texygen: A
benchmarking platform for text generation models. In K. Collins-Thompson, Q. Mei,
B. D. Davison, Y. Liu, and E. Yilmaz, editors, The 41st International ACM SIGIR
Conference on Research & Development in Information Retrieval, SIGIR 2018, Ann
Arbor, MI, USA, July 08-12, 2018, pages 1097–1100. ACM, 2018. doi: 10.1145/
3209978.3210080. URL https://doi.org/10.1145/3209978.3210080.
106

[264] S. Zuo, Q. Zhang, C. Liang, P. He, T. Zhao, and W. Chen. Moebert: from
bert to mixture-of-experts via importance-guided adaptation. ArXiv preprint,
abs/2204.07675, 2022. URL https://arxiv.org/abs/2204.07675. 124

171

APPENDIX A

APPENDIX FOR CHAPTER 2

A.1 Appendix Overview
To demonstrate the wide applicability of our approaches, we conduct more experiments

in Appendix A.2. Next, we provide the proof of our theorems in Appendix A.3, and show
that the softmax weakness studied by Demeter et al. [45] is a special case of our theory in
Appendix A.4. Finally, we list some future work of Chapter 2 in Appendix A.5.

A.2 More Experiments
We conduct the following synthetic experiments to analyze the pros and cons of multi-

facet softmax and confirm the source of the improvement comes from modeling multimodal
distribution.

A.2.1 Evaluation on Ambiguous Templates
We synthesize a dataset using templates [183] to verify whether the softmax layer in

the original GPT-2 really has difficulty in learning to output the bimodal distribution in
Figure 2.1 and whether the multiple embedding methods could overcome the problem. First,
we collect the four words with semantic analogy relations in Google analogy dataset [148].
Next, we insert two out of the four words into our manually written templates to form the
contexts. For example, given the context “I went to Paris and Germany before, and I love
one of the places more, which is”, the GPT-2 learns to predict either Paris or Germany. The
prediction of MFS and the softmax baseline for this example is compared in the last column
of Table 2.3.

The two words can be either the diagonal words (e.g., king and woman) or the edge word
(e.g., king and queen) in the parallelogram. Finally, we create a dataset with 122k training
contexts, 250k validation contexts, and 122k testing contexts, where the word pairs in the
testing set are unseen in the training set to see whether the model could learn to output the
bimodal distribution in a general way.1

1The setting is realistic because any related words could become the next word in some ambiguous contexts
and all the words are related in a certain way [201]. We cannot expect the training corpora to contain the
ambiguous contexts with so many possible next words.

172

Table A.1: Perplexity comparison of different GPT-2 Small models on the words with
different types of analogy relations. The validation set (valid) includes all four types of
relations.

Diagonal (e.g., king or woman) Edge (e.g., king or queen)
Analogy Relation Types → capital- capital- city-in-

family
capital- capital- city-in-

family
Models ↓ valid common world state valid common world state

Softmax (GPT-2) 2.30 3.30 2.00 2.25 2.95 2.11 2.42 1.91 2.26 2.38
MoS [248] (3) 1.75 2.18 1.60 1.85 2.82 1.87 2.26 1.70 2.04 2.27

MFS w/o Multi-partition 1.72 2.13 1.59 1.82 2.52 1.84 2.23 1.72 1.96 2.16
MFS (Ours) 1.74 2.15 1.59 1.82 2.63 1.92 2.28 1.78 2.00 2.24

We load the models pre-trained on OpenWebText and continue fine-tuning the models
on the last word of each sentence for 10 epochs. We report the testing performance of the
best model selected by the validation loss. Since the sets of the word pairs in the training
and testing set are disjoint, updating the output word embedding would make GPT-2 solve
the task by memorizing/overfitting the training set quickly and lead to much worse testing
performance. Thus, we freeze the output word embedding during the training.

Table A.1 indicates that when the possible next words are the diagonal words, the
Softmax model performs much worse compared to other multiple embedding alternatives.
In the edge word dataset, the multiple embedding solutions are still better but have a much
smaller gap. MFS w/o Multi-partition slightly improves MoS. We hypothesize the reason
is that multiple input hidden states could help the facets to be moved more freely. Finally,
multiple partitions seem to cause slight overfitting in this bimodal distribution prediction
task.

A.2.2 Adversarial Template Analysis
To test whether the proposed methods still can effectively utilize the information from

the global word embeddings, we design an adversarial template to create the contexts that
can only be completed by averaging the global word embeddings. For example, “Miami is
not in Wisconsin but is in [MASK]=Florida”.

In this task, the validation perplexity of Softmax, MoS, MFS w/o Multi-partition,
and MFS are 2.50, 2.59, 2.54, and 2.88, respectively. Since multiple embeddings are not
required, it is not surprising that Softmax performs the best. Nevertheless, the differences
are smaller than the differences in Table A.1. We believe that the similar losses are due to
the fact that multiple embeddings are a generalization of the single embedding, so GPT-2
could learn to generate the same embedding for all facets to mimic the behavior of single
embedding if required.

The significantly worse performance of MFS here is caused by the multiple partition
technique. This result supports our motivation of combining multiple partitions with multiple
softmaxes and shows that multiple partitions handle ambiguous contexts better (as shown in
Table A.3) by sacrificing some global word embedding structures. Nevertheless, a corpus
usually has more ambiguous contexts than the adversarial context tested here, so using
multiple embeddings and multiple partitions performs better in Wikipedia and OpenWebText
overall.

173

Table A.2: Prediction visualization using a context in each dataset. Each row visualizes
a model as in Table 2.3. The models are built on GPT-2 Medium in OpenWebText and
Wikipedia and on GPT-2 Small in the synthesized dataset. MFS Avg shows the words that
are closest to the average facet embedding in MFS. See the details in Appendix A.2.3. We
underline the words that appear in the top predictions of both MFS and MFS Avg.

Corpus → OpenWebText Wikipedia 2021 Similar Nouns in Templates

Input Context

... "Part of the Clinton inevitability
strategy was to lock down the usual
suspects in left-liberal policy," said

Dan Nexon, a Georgetown
professor who served as one of
those informal Sanders advisers.

Nex

... The projective line over the dual
numbers was described by Josef

Grünwald in 1906. This ring includes a
nonzero nilpotent "n" satisfying. The
plane of dual numbers has a project

There are the militia and the enemy in front
of a woman, and she decides to pursue the

militia

Softmax (GPT-2) He 0.014, But 0.011, The 0.007 finite 0.062, hom 0.059, project 0.034 enemy 0.860, militia 0.111, Militia 0.005
MFS (Ours) Nex 0.013, He 0.012, But 0.011 project 0.096, hom 0.049, dual 0.046 enemy 0.535, militia 0.433, enemies 0.029
MFS Avg ", He, But, The, In, And, (, It hom, dual, finite, non, ", complex, unit militia, enemy, Militia, enemies, militias

MFS Softmax 1 But 0.005, He 0.004, The 0.002 project 0.201, dual 0.075, finite 0.030 enemy 0.772, militia 0.189, Militia 0.017
MFS Softmax 2 Nex 0.260, " 0.028, He 0.023 hom 0.093, unit 0.040, non 0.037 militia 0.938, Militia 0.062, militias 0.000
MFS Softmax 3 He 0.025, But 0.022, The 0.014 finite 0.065, map 0.041, plane 0.030 enemy 1.000, enemies 0.000, foe 0.003

project

finite

hom

map

dual

non unit

plane

favgctfct,1

fct,2

fct,3

MFS
Softmax 1

MFS
Softmax 2

MFS
Softmax 3

MFS Avg

f1ct,1
f2ct,1

f3ct,1 f4ct,1

Figure A.1: Illustration of the MFS predictions given the Wikipedia context in the second
column of Table A.2. The green circles mean the facet embeddings from MFS. The orange
circle is the average of the facet embeddings (MFS Avg). The blue circles are the word
embeddings that are close to the facet embeddings and MFS Avg. The word project is
highlighted because it is the next word in our ground truth.

174

Table A.3: The loss improvement comparison between the Improvement Models and Refer-
ence Models. The models are named using their number of softmaxes, input hidden states,
and partitions. Thus, S3I9P4 is MFS, S3I9P1 is MFS w/o Multi-partition, S1I9P1 is Softmax
+ Multi-input, S3I1P1 is MoS (3), and S1I1P1 is Softmax. Multi-mode Percentage is the
percentage of the contexts where the Improvement Models output multimodal distribution.
Multi-mode Loss Improvement refers to the average improvement when Improvement Models
outputs multimodal distribution and Other Loss Improvement refers to the improvement of
the contexts where the facets of Improvement Models are close to each other. Improvement
Ratio divides Multi-mode Loss Improvement by Other Loss Improvement.

Corpus → OpenWebText Wikipedia 2021
Improvement Model S3I9P4 S3I9P4 S3I9P4 S3I9P1 S3I1P1 S3I9P4 S3I9P4 S3I9P4 S3I9P1 S3I1P1

Reference Model S3I9P1 S3I1P1 S1I1P1 S1I9P1 S1I1P1 S3I9P1 S3I1P1 S1I1P1 S1I9P1 S1I1P1
Multi-mode Percentage (%) 10.03 10.03 10.03 4.81 3.24 5.85 5.85 5.85 2.66 3.05

Multi-mode Loss Improvement 0.0248 0.0474 0.0649 0.0203 0.0110 0.0282 0.0644 0.1000 0.0472 0.0295
Other Loss Improvement 0.0035 0.0158 0.0211 0.0086 0.0064 0.0033 0.0128 0.0219 0.0136 0.0100

Improvement Ratio 7.01 3.00 3.08 2.34 1.71 8.63 5.04 4.57 3.47 2.94

A.2.3 Analysis of Improvement on Multimodal Distribution
To confirm that the perplexity improvements actually come from modeling the multi-

modal distribution, we define a metric to measure how multi-mode a distribution is, and
then we can compare the perplexity improvement from multimodal distributions and the
improvement from the distributions that are close to a single-mode distribution.

For the method with multiple embeddings, we first compute the weighted average of all
the facets favg

ct =
∑K

k=1 πct,kfct,k, where we lower the influence of kth facet embedding fct,k

with lower prior weight πct,k and fct,1 =
1
J

∑J
j=1 f

j
ct,1 if J partitions are used. Figure A.1

illustrates favg
ct and fct,k using the example in the second column of Table A.2.

We visualize the new average facet using the words that are closest to the favg
ct in the

MFS Avg row of Table A.2. We can see that the prediction of MFS Avg is different from
MFS but similar to Softmax. This means there are indeed some other words between the
actual next word and the other possibilities, which makes the prediction of MFS multi-mode.

Next, to quantify the difference between MFS and MFS Avg, we define multi-mode
ratio as

∑T
b=1 PM (yb|ct)∑T
b=1 PM (xb|ct)

, where PM could be either PMoS from equation 2.2 or PMP from equa-
tion 2.4. {y1, ..., yT} is the set of words with embeddings closest to favg

ct and {x1, ..., xT}
is the set of words with highest PM(xb|ct). Using the Wikipedia context in Table A.2 as
an example, the word project is retrieved by MFS but not by MFS Avg, so its multi-mode
ratio for T = 2 is PMFS(hom|ct)+PMFS(dual|ct)

PMFS(project|ct)+PMFS(hom|ct) =
0.049+0.046
0.096+0.049

≈ 0.66. Figure A.1 illustrates
the relation between the MFS Softmax k and MFS Avg.

175

When the ratio is closer to 1, the context is less ambiguous and the prediction is closer
to a single-mode distribution. We set T = 20 and call the prediction with multi-mode ratio
smaller than 0.9 multimodal distribution and in Table A.3,2 we compare the loss (i.e., log of
the perplexity) improvements in the multimodal distributions and the improvements in the
nearly single-mode distributions.

Table A.3 shows that all the multiple embedding approaches have larger loss improve-
ments when outputting multimodal distributions. The table shows the results based on
GPT-2 Small and the same analysis using GPT-2 Medium also show the same trend. As we
use multiple input hidden states and partitions, the differences would be enlarged. Especially
when we compare MFS and MFS w/o Multi-partition, the loss improvements of highly
ambiguous context is 7 or 8 times larger than the other loss improvements, which means a
large portion of the overall improvement lies on a small percentage of ambiguous contexts.
For the multimodal distribution in Wikipedia, the loss improvement between MFS and
Softmax could reach 0.10, which is close to the improvement between GPT-2 Small and
Medium (0.16). Thus, we expect that if the corpus has more ambiguous contexts, MFS
could achieve larger overall loss improvement.

A.3 Proof of Theorems
To prove Theorem 1, we first introduce a lemma. Assuming in the word embedding of

GPT-2, woman + king = queen + man, we want to show that GPT-2 cannot output woman
and king as the top two words in this lemma. This means we cannot find a hidden state
h and a threshold τ > 0 such that hTwoman≥ τ and hTking≥ τ but hTqueen< τ and
hTman< τ . This example could be generalized into the following Lemma and Theorems.
We can generalize the example as follows:

Lemma 1. Let the output word embeddings in the set W = {wlj ̸= 0|j = 1...L} ∪ {wrj ̸=
0|j = 1...R} satisfy −al1wl1 − ...−alLwlL = ar1wr1 + ...+arRwrR , where their coefficient
−al1 , ...,−alL , ar1 , ..., arR are all positive constants and −al1 − ...− alL ≥ ar1 + ...+ arR .
Then, there is no hidden state h and a threshold τ > 0 that make min

wg∈G
hTwg ≥ τ and

max
ws∈S

hTws < τ , where G = {wlj |j = 1...L} and S = {wrj |j = 1...R}.

Proof. To prove by contradiction, we assume there is a h such that ∀wlj ∈ G,hTwlj ≥ τ
and ∀wrj ∈ S,hTwrj < τ . Thus, we can get −al1h

Twl1 − ... − alLh
TwlL ≥ −al1τ −

... − alLτ ≥ (ar1 + ... + arR)τ > ar1h
Twr1 + ... + arRh

TwrR , which contradicts to
−al1wl1 − ...− alLwlL = ar1wr1 + ...+ arRwrR .

We can rephrase the condition and the conclusion to have our Theorem 1.

2We also tried T=5 or 10 and the trends are similar. If we set the threshold smaller than 0.9, the improvement
ratios (e.g., MFS over MoS) would increase but the multi-mode percentages would decrease.

176

Theorem 3. If the nonzero output embeddings of N words in a set W are linearly dependent
and on one side of a plane through the origin, the single embedding representation cannot
produce positive logits to a subset of the word in W that are higher than all the logits of the
other words in W .

Proof. Let the set W = {wi ̸= 0|i = 1...N} contain the embeddings of the N words. Based
on the premise, we can write 0 = a1w1 + ...+ aNwN and minwi∈W hT

0wi > 0, where h0

is a normal vector of the plane. At least one of the ai is negative. Otherwise, we will get the
contradiction 0 = hT

0 0 = a1h
T
0w1 + ...+ aNh

T
0wN ≥ (a1 + ...+ aN)minwi∈W hT

0wi > 0.
Similarly, at least one of ai is positive. We can move all the terms in 0 = a1w1 + ... +
aNwN with negative ai to the left as −al1wl1 − ...− alLwlL = ar1wr1 + ... + arRwrR . If
−al1 − ...− alL ≥ ar1 + ...+ arR , we choose G = {wlj |j = 1...L}. Otherwise, we choose
G = {wrj |j = 1...R}

If we can have a hidden state such that the positive logits of words in G are always larger
than the logits of the other words in W (let’s call the complementary set S), there must
exist τ > 0 that can make min

wg∈G
hTwg ≥ τ and max

ws∈S
hTws < τ , which violates our Lemma

1.

Notice that Theorem 3 does not cover the situations where the target top words have
the negative logits (i.e., some logits in G are negative). In the single softmax model, we
believe the situations rarely happen in the LMs empirically. If some logits of the target top
words are still positive, the words that are somehow similar to those words are very likely to
also be positive, which would be ranked higher than the target top words with the negative
logits. If the logits of all the target top words are negative, the logits of all the words would
be negative. Then, the word embeddings with smaller magnitudes tend to have the logits
closer to 0, so having the larger logits than the other negative logits. This means the prior
probability of the words would be inversed when the hidden states sometimes produce the
all negative logits. If LM always use negative logits to compute probability, Lemma 1 and
Theorem 3 still hold if we set τ < 0 and switch the choices of G and S.

Next, we would like to generalize our Theorem 1 by using a more practical condition
where the word embeddings are almost linearly dependent. Notice that the theorem needs
to assume the magnitude of the hidden state is limited. Otherwise, the margin could be
arbitrarily magnified. In practice, the magnitude is not arbitrarily large in GPT-2 and BERT
because a too large magnitude of hidden state could magnify the gradients too much to have
a stable training process.

Theorem 4. Let the output word embeddings in the set W = {wi ̸= 0|i = 1...N}
satisfy w1 = a2w2 + ... + aNwN + ε, where the constant a2, ..., aN are neither all zero
nor all negative and ||ε|| < ϵ. Then, there must be a non-trivial partition P = {G,S}
of W such that there is no hidden state ||h|| ≤ r and a threshold τ ≥ rϵ that make
minwg∈G hTwg ≥ (1 + δ)τ and maxws∈S h

Tws < τ , where δ = 2
1+

∑
i=2...N |ai| .

Proof. We can first move all the terms with negative ai to the left as w1 − al1wl1 − ... −
alLwlL = ar1wr1 + ... + arRwrR + ε. We perform proof by contradiction, so we assume
the logits of the words in G can always be larger than (1 + δ)τ and the logits of the words
in S can always be smaller than τ .

177

Case 1: 1 − al1 − ... − alL ≥ ar1 + ... + arR , so 1 − al1 − ... − alL ≥ 1+
∑

i=2...N |ai|
2

.
We choose G = {w1,wl1 , ...,wlL} and S = {wr1 , ...,wrR}. Thus, we can get hTε ≤
||h||||ε|| ≤ rϵ ≤ τ and

hTw1 − al1h
Twl1 − ...− alLh

TwlL (A.1)
≥(1− al1 − ...− alL)(1 + δ)τ (A.2)

=(1− al1 − ...− alL)(1 +
2

1 +
∑

i=2...N |ai|
)τ (A.3)

≥(1− al1 − ...− alL)(1 +
1

1− al1 − ...− alL
)τ (A.4)

=(1− al1 − ...− alL + 1)τ (A.5)
≥(ar1 + ...+ arR + 1)τ (A.6)

>ar1h
Twr1 + ...+ arRh

TwrR + hTε, (A.7)

which contradict with w1 − al1wl1 − ...− alLwlL = ar1wr1 + ...+ arRwrR + ε.
Case 2: 1 − al1 − ... − alL < ar1 + ... + arR . We choose G = {wr1 , ...,wrR} and

S = {w1,wl1 , ...,wlL}. Therefore,

ar1h
Twr1 + ...+ arRh

TwrR (A.8)

≥(ar1 + ...+ arR)(1 +
2

1 +
∑

i=2...N |ai|
)τ (A.9)

>(ar1 + ...+ arR)(1 +
1

ar1 + ...+ arR
)τ (A.10)

=(ar1 + ...+ arR + 1)τ (A.11)
>(1− al1 − ...− alL + 1)τ (A.12)

>hTw1 − al1h
Twl1 − ...− alLh

TwlL − hTε. (A.13)

A.4 Connection to Demeter et al. [45]
The theory in Demeter et al. [45] is as follows: “Let C be the convex hull of the

embeddings {xi} of a vocabulary V . If an embedding xi for word wi ∈ V is interior to C,
then the maximum probability P (wi) assigned to wi using a dot-product softmax is bounded
by the probability assigned to at least one word wi whose embedding is on the convex hull”

178

xi

xr1

xr2

ali xi =  
ar1 xr1 + ar2 xr2

Figure A.2: An example for explaining the connection between our Theorem 1 and the
theorem from Demeter et al. [45].

The theory is a special case of our Lemma 1 if we only consider the hidden states that
would lead to the positive logit of the interior word wi. To see that, we first find a constant
ali > 1 such that alixi intersects with one supporting hyperplane of the convex hull. This
intersection point could be expressed by

∑
j arjxrj , where the word embeddings xrj are

vertexes of C and
∑

j arj = 1. As a result, we satisfy the condition of our Lemma 1:
alixi =

∑
j arjxrj and ali >

∑
j arj . Please see an illustration in Figure A.2 for an example.

Then, Lemma 1 suggests that the logit hTxi cannot be larger than the logits of all the word
embeddings hTxrj . This means at least one of the hTxrj on the convex hull would lead a
larger prediction probability, which is also the conclusion of the theory in Demeter et al.
[45].

Grivas et al. [73] discover that Transformer-based language models usually do not have
any word embedding inside a convex hull formed by other word embeddings. Nevertheless,
our empirical analyses in Section 2.2.3 and Appendix A.2.1 suggest that the Transformer-
based langugae models, even a very large one, indeed suffer from the softmax bottleneck
characterized by our theories, a generalized theory of Demeter et al. [45] and Yang et al.
[248].

179

A.5 Future Work
This chapter studies a general limitation of LMs and proposes solutions. The proposed

theory can help us to understand that some types of mistakes or biases of LMs could come
from softmax bottleneck and their incapability of modeling the correct distribution. For
example, there are 60% of male characters and 40% of female characters in our training
corpus. The language generation model might be forced to assign more than 60% probability
to male characters as being much more likely to output king than woman in Figure 2.1.
We want to more systematically investigate whether modeling multimodal distribution
could help LMs to reduce the undesired bias and to better distinguish similar words [253].
Generally speaking, our study deepens our understanding of the weaknesses of modern LMs
and we believe the knowledge can help us to design a better LM that increases the positive
impacts and reduces the negative impacts in the future.

The hidden state size of GPT-3 175B [21] is huge (12,288). An interesting question
is whether some sets of output word embeddings in GPT-3 are still in a low-dimensional
subspace and whether the softmax bottleneck is still a prominent problem on the road of
pursuing general intelligence when such a large hidden state dimension is used. We also
would like to know if models using multiple facets could reach similar performance by a
smaller hidden state size.

Recently, Gao et al. [67], Rajaee and Pilehvar [179], Cai et al. [22], Su et al. [209] point
out the structure in the contextual embedding space prevents it from having an isotropic
property. Our study and Demeter et al. [45] show that the structure in the word embedding
space only models the global similarity between words and prevents the LM from outputting
arbitrary context-dependent word distributions. We would like to know if we can discover
a new LM architecture with a better contextual/word embedding space that could better
model context-dependent word similarities and balance it with the global word similarities.
In addition, our finding might be one of the reasons that we can improve the language
generation quality by encouraging hidden states to be more isotropic [209].

Gao et al. [68] show that a mixture of kernel functions outperform MoS. Mixtape [249] is
another efficient solution to the softmax bottleneck, whose hidden state for each word is the
weighted average of the facets where the weights are dynamically predicted. If only using
one softmax (i.e., K = 1), our multiple partition method could be viewed as a special case
of Mixtape that uses a global and binarized weight to prevent complications of predicting
weights of each word. Our results indicate that multiple partitions need to be combined with
multiple softmax layers in order to gain consistent performance improvement. A potential
future direction is to compare MFS with mixture of kernel functions and Mixtape on the
transformer-based LMs or combine MFS with mixture of kernel functions and Mixtape to
gain further improvements.

The results in Kong et al. [105] suggest that predicting n-gram could be better than
predicting individual words in BERT in some applications. The total number of possible
n-gram is several orders of magnitude higher than the number of individual tokens in the
vocabulary. In addition, the linear dependency among n-gram might be common. For
example, the embedding of the brown color + a dog may be similar to the embedding of the
brown dog.

180

APPENDIX B

APPENDIX FOR CHAPTER 3

B.1 Training Algorithms
We summarize training procedure for our sentence representation model in algorithm 1,

and our relation extraction model in algorithm 2.

B.2 Regularization by Autoencoder for Relation Extraction
In this section, we describe the regularization term Ω defined in Equation 3.9.
The co-occurrence matrix between the sentence patterns and entity pairs is very sparse

because most of the sentence patterns only co-occur with a few entity pairs. The sparsity
might make the training process of multi-facet embeddings sensitive to the hyperparameters.

We discover that adding a simple autoencoder regularization is an effective way to
stabilize the training. This regularization term aims to make the average of our facet
embeddings of a sentence pattern similar to the weighted average of our word embeddings
in that sentence pattern. The regularization is a kind of autoencoder because it reconstructs
the weighted average embeddings of words in the input sentence pattern using the output
facet embeddings. The regularization term Ω is defined as

γ
∑

(i,j)∈Rauto

(2 · 1i=j − 1)||saw′
j − µ(Si)||2, (B.1)

where γ is a weight for the regularization term, Rauto = ∪I
i=1{(i, i), (i, q)} is the set of all

positive and negative training pairs, I is the number of sentence patterns, and q is a randomly
selected index of sentence patterns which serves as our negative example, 1i=j = 1 if i = j

and 0 otherwise, µ(Si) =
∑K

k=1 si,k
K

is the average of facet embeddings of the sentence pattern
Si. saw

′
j is a weighted average embedding of words in the jth sentence pattern that passes

through a linear transformation H . Weighting each word embedding by a smoothed inverse
frequency provides a better text similarity measurement [7] because the frequently occurring
words often do not contribute much to the semantic meaning (e.g., stop words). Similarly ,
we compute

saw
′

j = Hsawj = H
∑
w∈Sj

ν

ν + p(w)
w, (B.2)

181

Algorithm 1: Training using NNSC loss
Input :Training corpus, sequence boundaries, and pre-trained word embedding.
Output :F
Initialize F
foreach It,W (Nt),W (Nrt) in training corpus do

Run forward pass on encoder and decoder to compute F (It)
Compute
MOt = argminM ||F (It)M −W (Nt)||2 + λ||M ||1∀k, j, 0 ≤ Mk,j ≤ 1,

Compute
MRt = argminM ||F (It)M −W (Nrt)||2 + λ||M ||1∀k, j, 0 ≤ Mk,j ≤ 1,

Run forward pass to compute Lt in equation 3.2
Treat MOt and MRt as constants, update F by backpropagation

end

Algorithm 2: Training procedure (using batch size = 1)
Input :Sentence patterns and KB relations S, co-occurrence matrix {yi,j}, entity

pair embeddings from USchema, and pre-trained word embeddings.
Output :Our neural encoder and decoder
Initialize the entity pair embeddings using the embeddings learned by USchema.
Initialize the word embeddings of our neural encoder using pre-trained word
embeddings and randomly initialize other parameters

foreach Si in training corpus do
Run forward pass on the neural encoder and decoder to compute facet
embeddings {si,k}Kk=1

Collect positive examples (i.e., {j|yi,j = 1}) and negative examples for the ith
sentence pattern or KB relation

foreach Positive and negative examples (i, j) do
Compute ẽj =

ej
||ej ||

Compute ηk = min(1,max(0,
ẽTj si,k
||si,k||2

)),∀1 ≤ k ≤ K

Select kbestth facet embedding by kbest = argmink ||ẽj − ηksi,k||2
Add (2 · yi,j − 1)ri,j||ẽj − ηkbestsi,kbest||

2 to the loss
end
Add the autoencoder loss Ω in equation B.1 using pre-trained word embeddings
Update neural encoder and decoder, entity pair embeddings, and H by
backpropagation

end

where H linearly transforms the word embedding into the entity pair embedding space.
ν = 10−4 is a constant set suggested in Arora et al. [7], p(w) is the frequency of the word w
divided by the number of words in the corpus, and w is the pretrained embedding of word
w. We use 840B GloVe [174] as our word embedding in this work.

182

B.3 Regularization by Autoencoder for Authorship/Citation Prediction
Most of the papers are only written by a few authors and cited by a few papers, so

the interaction matrix is still very sparse even after jointly considering the authorship and
citation information. If an author writes two papers and both papers are only cited by another
paper, the papers are forced to have the same embedding even though the two papers have
very different keywords in their titles and abstracts. This sparsity might encourage the
embeddings of papers and authors in a small research subdomain to be collapsed into almost
identical vectors.

To learn more diverse paper embeddings (especially within small subdomains), we
compute a weighted average of word embeddings in each paper, project the average into
the same space of author and citation embeddings, and encourage the average of our paper
embeddings predicted by our neural model to be close to the average word embedding.

Since the words in the paper are both input and output of our neural model, the loss
term ΩS(F,H , T) in Equation 3.14 is called autoencoder regularization. The autoencoder
regularization is defined as

γ
∑

(i,j)∈Rauto

(
(paw′

j
)Tµ(F (Ti))− 1i=j

)2
, (B.3)

where Rauto = ∪I
i=1{(i, i), (i, ji)} and ji is a randomly selected number between 1 and

number of papers I . 1i=j = 1 if i = j and 0 otherwise. µ(F (Ti)) =
∑K

k=1 pi,k

K
is the average

of multi-facet embeddings, γ is a hyperparameters, and we set α : β : γ = 5 : 1 : 10 in our
experiments. paw′

j
is the weighted average embedding of words in the jth paper, which will

be defined in the next paragraph.
As in Appendix B.2, we use inverse frequency to weight the word embedding Arora

et al. [7]

paw′

j
= Hpaw

j
= H

∑
w∈Tj

ν

ν + p(w)
w, (B.4)

where H is a trainable matrix that linearly transforms the word embedding into the author
and citation embedding space. ν is a constant set to be 10−4 as suggested in Arora et al.
[7], p(w) is the probability of seeing the word w in the corpus, and w is the pretrained
embedding of word w.

B.4 Experiment Setup Details for Authorship/Citation Prediction
We test the methods on ML/AI related domains, so we only include papers from

S2ORC [132] that are in the CS domain and cited by at least one ML/AI related paper
on ArXiv. ML/AI related papers on ArXiv refer to the papers from the following ArXiv
categories: Artificial Intelligence (cs.AI), Computation and Language (cs.CL), Computer
Vision and Pattern Recognition (cs.CV), Information Retrieval (cs.IR), Information Theory
(cs.IT), Learning (cs.LG), Multiagent Systems (cs.MA), Neural and Evolutionary Computing
(cs.NE), Robotics (cs.RO), and Machine Learning (stats.ML).

183

In training and the authorship prediction evaluation, we assume the author with the same
name in S2ORC is the same person. We hypothesize that the resulting noise won’t bias
toward a particular method.

B.5 Implementation Details for Authorship/Citation Prediction
We initialize the token embedding of text encoder using the pretrained word embedding

before training but allow the word embedding inside the text encoder to be updated during
training. In the experiments, we use the same 200-dimensional CBOW embeddings as Bansal
et al. [14] and the baseline CBOW Avg.

The pretrained word embedding w in equation B.4 is fixed during training and only
the linear transformation matrix H is updated. To stabilizing training, we apply L2 regu-
larization with weights 10−6 to the author embeddings, citing paper embeddings, and all
parameters of neural models. We use Adam [101] and one 1080ti GPU to optimize our
neural model in a week.

In our preprocessing step, text in the titles and abstracts are tokenized into words using
Spacy1. The words that appear less than 5 times are mapped to <unk> and the length of the
input to the text encoder is truncated to 512 words. When the abstract is not available in our
training or testing corpus, we only use the paper title as our input. Before passing the input
to the Transformer encoder, we add the word embeddings, position embeddings, and type
embeddings together, where we give different types to the words in the title and the words
in the abstract to help the Transformer to distinguish the title and abstract.

1https://spacy.io/

184

APPENDIX C

APPENDIX FOR CHAPTER 4

C.1 Implementation Details
The training algorithm for our option generator could be seen in Algorithm 3. During

training, the input prompt is tokenized into word pieces, and the actual continuation is
tokenized into words. We run the byte pair encoding [194] to get word pieces required by
GPT2 and run Spacy tokenizer1 to get words required by GloVe. The two tokenization
results are aligned to collect the training examples.

C.2 Experiment Details
We truncate the probabilities after the top 40 in top-k sampling [56]. In all the exper-

iments, we set M = 5 words to represent each topic, although the figures and tables use
M = 2 or M = 3 due to the space limit. We set K = 10. Our Transformer decoder for
option generation has 5 layers.

In the following subsections, we describe the details about our baselines, the automatic
evaluation, and human evaluation.

C.2.1 Baselines
We adopt the default hyper-parameters of LDA in gensim2. The cluster centers of

Kmeans are optimized using random initialization and EM algorithm for at most 300
iterations.3 We use RMSprop [221] to optimize NNSC for 2,000 iterations.

PPLM uses the default hyperparameters for conditioning on a bag of words in its GitHub
repository4. We try several different hyperparameters in PPLM and also try to apply PPLM
to the original GPT2 with 117M parameters and to the GPT2 that is fine-tuned on Wikipedia.
They produce similar relevancy and perplexity, which are significantly worse than ours in
automated evaluation.

1spacy.io/

2https://radimrehurek.com/gensim/models/ldamulticore.html

3https://scikit-learn.org/stable/modules/generated/sklearn.cluster.
KMeans.html

4https://github.com/uber-research/PPLM

185

Algorithm 3: Training procedure for our option generator (using batch size = 1)
Input :Training corpus, stop word list, pretrained GPT2 encoder, and pre-trained

word embeddings.
Output :Neural option generator
Initialize our encoder using a pretrained GPT2 model and randomly initialize the
other parameters

foreach x1, ..., xI in training corpus do
Run forward pass of our model given x1, ..., xI to compute the cluster centers
c1, ...cK

Collect the positive examples ȳ1, ..., ȳO (i.e., non-stop words after xI) and their
word embeddings eȳo

Collect the negative examples ȳ′1, ..., ȳ
′
O (i.e., a randomly sampled continuation

without stop words) and their word embeddings eȳ′o
L = 0
foreach ȳo in the positive example do

Estimate â1, ..., âK = argmin
0≤a1,...,aK≤1

||
K∑
k=1

akck − eȳo||2 + λ
K∑
k=1

ak using

RMSprop

L = L+ ||
K∑
k=1

âkck − eȳo||2

end
foreach ȳ′o in the negative example do

Estimate b̂1, ..., b̂K = argmin
0≤b1,...,bK≤1

||
K∑
k=1

bkck − eȳ
′

o ||2 + λ
K∑
k=1

bk using

RMSprop

L = L− ||
K∑
k=1

b̂kck − eȳ
′

o ||2

end
Update our neural model by backpropagation through cluster centers c1, ...cK to
minimize L

end

The code of PPLM can only condition on a single word piece, so we need to remove the
rare words that contain multiple word pieces. We filter out the input prompt in the test set if
PPLM cannot condition on any word in the randomly sampled topics.

186

APPENDIX D

APPENDIX FOR CHAPTER 5

D.1 Experiment Details for Multi-CLS BERT
We first describe the architecture details and pretraining details of our methods and

baselines in Appendix D.1.1. Then, we list the hyperparameter setup in the fine-tuning in
Appendix D.1.2. Finally, we explain the details of the ensemble baselines and their related
analyses in Appendix D.1.3.

D.1.1 Our Models and Baselines
The models built on BERTBase are pretrained using two billion tokens and each batch

contains 30 sequences. The models built on BERTLarge are pretrained using one billion
tokens and each batch contains 48 sequences. The learning rate is 2 · 10−5 and the warmup
ratio is 0.001 for the pretraining stage.

We implement Multi-CLS BERT by modifying the code of Aroca-Ouellette and Rudzicz
[6]1. We use [unused0] – [unused(K-1)] tokens in the original BERT tokenizer as our input
CLS tokens [C1] – [CK]. We still keep the original CLS tokens to increase the comparability
with the MTL baseline.

We use NVIDIA GeForce RTX 2080, 1080, and TITAN X, M40 GPUs for the BERTBase

experiments and use GeForce RTX 8000 and Tesla M40 for the BERTLarge experiments. In
Table 5.1, the model size excludes the top classifier parameters used in each task.

We test CMTL+ using the default hyperparameters of Aroca-Ouellette and Rudzicz [6]
and we do not try different hyperparameters or different schedules of pretraining losses. No
Inserted Layers only removes the Ll,k(.) while still using different HMC

k on top during
pretraining. SWA averages the weights of every model checkpoint that is evaluated using
the validation dataset.

1https://github.com/StephAO/olfmlm

187

D.1.2 Fine-tuning
We start from the default evaluation hyperparameters used in Aroca-Ouellette and

Rudzicz [6] and modify the settings based on the suggestions from Zhang et al. [255] and
Mosbach et al. [155]. We find that the best hyperparameters depend on the training size. For
example, batch size 16 works well in GLUE Full but is much worse than batch size 4 in
GLUE 100. Furthermore, the performance of the default hyperparameters on some tasks
is suboptimal or unstable even after averaging the performance from 16 trials. Therefore,
we coarsely tune the hyperparameters to maximize and stabilize the performance of the
Ours (K=1) baseline under the memory and computational time constraints in our GPUs.
The preliminary results suggest that the hyperparameters also maximize the performance of
MTL.

Next, we list fine-tuning hyperparameters for all the tasks2. Our fine-tuning stops after
20 epochs, 60k batches, or consecutive 10k batches without a validation improvement
(whichever comes first). We use the first 5k validation samples to select the best fine-tuned
model checkpoints for the evaluation. The maximal gradient norm is 1. The maximal length
for sentences and CLS tokens is 128 for GLUE and 256 for SuperGLUE.

For each task, we select the best learning rate from c · 10−5 and c = 1, 2, 3, 4, 5, 7. When
running large datasets in GLUE Full and SuperGLUE Full (MNLI, QQP, QNLI, SST-2,
BoolQ, MultiRC, and WiC) using BERTLarge, we use learning rates c = 2, 4, 6, 8, 10, 14 to
accelerate the training. The batch sizes for GLUE 100, 1k, Full are 4, 8, 16, respectively.
The batch size for SuperGLUE is 4 except that the BERTLarge models use 8 in SuperGLUE
1k and Full. For BERTBase, the warmup ratio is 0.1. For BERTLarge, the warmup ratio is 0.2
and the weight decay is 10−6.

For each fine-tuning random seed, we randomly select a different subset in the settings
where only 100 or 1k training samples are available. For the datasets with less than 500
training samples in SuperGLUE and SuperGLUE 1k (i.e., CB and COPA), we repeat the
experiments 32 times to further stabilize the scores. For the pre-trained BERT baseline, we
use 16 fine-tuning random seeds. To reduce the computational cost, we use two pretraining
random seeds and four fine-tuning random seeds in our ablation study in Table 5.2.

Compared to other tasks, ReCoRD needs to be trained much longer than other tasks in
SuperGLUE, so we only use one fine-tuning seed for each of the four pretrained models
with different seeds. Our fine-tuning stops after 600k batches (BERTBase) / 300k batches
(BERTLarge) or consecutive 160k batches without a validation improvement (whichever
comes first).

To stabilize the performance of each model on ReCoRD, we use the first 40k validation
samples to select the best fine-tuned model checkpoints. We set batch size as 8 and learning
rate as 1 · 10−5 for BERTBase. For BERTLarge, we set batch size as 32 and learning rate as
2 · 10−5.

2We use different values for some hyperparameters in ReCoRD. See the details below.

188

D.1.3 Ensemble Models
Ensemble on FT Seeds (K=1) in Table 5.2 is the same as Ensemble of Ours (K=1)

in Table 5.3. Ensemble on FT Seeds (K=5) in Table 5.2 is the same as ENS in Table 5.4.
Ensemble on Dropouts in Table 5.2 is the same as Dropout in Table 5.4. All results are the
average of four models that use four different pretrained models and the best learning rate
among c · 10−5 (c = 1, 2, 3, 4, 5, 7) in the fine-tuning stage.

In Table 5.3, we compute the expected calibration error (ECE) [157] by
10∑
j=1

|Bj|
N

|acc(j)− conf(j)|, (D.1)

where acc(j) is the model accuracy in the jth bin Bj , N is the number of validation samples,
and conf(j) = 1

|Bj |
∑

x∈Bj
maxyP (y|x) is the average of the highest prediction probability

P (y|x) in the jth bin. We put the samples into 10 equal-size bins according to their highest
prediction probability maxyP (y|x).

In Table 5.3, we use Tesla M40 to measure the inference time of the models built on
BERTBase. We set batch size 16 and run 1000 batches to get the average inference time of
one batch in every GLUE task. We repeat the experiments five times and report their average
and standard error. For the ensemble model, we assume the time of averaging multiple
prediction probabilities is negligible and directly multiply the inference time of Ours (K=1)
by 5.

In Table 5.4, we would like to see if CLS embeddings disagree with each other as other en-
semble baselines did. In Multi-CLS, we compute the uncertainty of each sample x as the av-
erage variance of prediction probability of each CLS embedding meanl (varkP (y = l|x, k))
and estimate the prediction probability of the kth CLS embedding by

P (y = l|x, k) =
exp

(
qT
l,kL

FT
O,k(h

c
k(x, ygt))

)∑
i exp

(
qT
i,kL

FT
O,k(h

c
k(x, ygt))

) , (D.2)

where LFT
O,k(h

c
k(x, ygt)) is the CLS embedding of the input x after fine-tuning, and qi,k =

1
Ni

∑
ygt=i L

FT
O,k(h

c
k(x, ygt)) is the ith class embedding for the kth CLS embedding, which is

computed by averaging the kth CLS embeddings of the input x with the ith class label.
In Table 5.4, the two ensemble models for ENS vs ENS use the same set of 5 fine-tuning

seeds and the two Ours (K=5, λ = 0.1) pretrained with different random seeds. Both
uncertainty estimation models for Multi-CLS vs ENS, Dropout vs ENS, and Least vs ENS
are based on the same pretrained Ours (K=5, λ = 0.1) model.

D.2 Training and Testing Dataset Information for Multi2SPE
D.2.1 Creating training data
SPECTER, single domain (CS): We use the original dataset files provided by the SPECTER
authors.3

3https://github.com/allenai/specter/issues/2#issuecomment-625428992

189

SPECTER, multi domain: We use the papers in shard 11 of the 20200705 version of
S2ORC [132] as query papers. Since we tried to be unbiased as possible towards different
subject areas during the paper selection, we filter out any papers without MAG information
in S2ORC. Then we scan the entirety of S2ORC to fetch all direct and indirect citations,
as defined in Cohan et al. [42], for the chosen query papers. We feed the acquired citation
information into the sampling code provided by the SPECTER authors.
SPECTER, single domain (Medicine): We follow the same steps as SPECTER multi-
domain, except for the use of shard 22, 33, and 44 and limiting all query papers to belong to
the ‘Medicine’ MAG field.
SciNCL: For SciNCL single domain, we use the ‘SciNCL w/ leakage’ dataset.4 For SciNCL
multi-domain, we use the ‘SciNCL w/o leakage’ dataset.5 We examined the ‘SciNCL w/o
leakage’ dataset and found it to be fairly balanced in terms of subject field distribution of
query papers, as they also randomly choose query papers from S2ORC.

D.2.2 Creating Multi-SciDocs
For a better measurement of multi-domain performance, we have created the multi-

domain (co-)citation prediction tasks. We refer to the collection of 3 multi-domain tasks,
multi. cite, multi. co-cite, and MAG as Multi-SciDocs.

For multi. cite and multi. co-cite datasets, we use shard 7 of the 20200705 version of
S2ORC [132] as query papers, avoiding certain domain from being the majority of query
papers. For each query, we collect 500 negative papers and up to 5 positive papers. This is
the same setting used in the original SciDocs [42]. The task is to assign higher similarity
scores to the positive papers and lower scores to the negative papers. In both datasets, the
negative samples come from randomly sampled papers. In the multi. cite dataset, the
positive samples are the papers cited by the query paper. In the multi. co-cite dataset, the
positive samples and the query paper are both cited by another paper. We made minimal
modification to the SciDocs execution code6 to allow testing with our custom dataset files.

For MAG, we use the same test set included in the original SciDocs.

D.2.3 MAG subject field distribution of training and testing datasets
Please refer to Table D.1.

4https://github.com/malteos/scincl/releases/tag/0.1

5https://github.com/malteos/scincl/releases/tag/0.1-wol

6https://github.com/allenai/scidocs

190

D.3 Reproducibility Information for Multi2SPE
Implementation of architectural changes: For multiple CLS tokens, we use [unused]
tokens available in SciBERT vocabulary except for the first CLS token, where we make
use of the existing [CLS] token. We note that our current best model, Multi-CLS BERT (3
CLS, λ = 0.1) have 114.8M parameters. which is relatively a small increase from the 109M
parameters of BERTBase with sequence classification head.
Training hyperparameters: Since we compare the performance of our models with the
SPECTER/SciNCL baselines, we replicate the training setup originally used in SPECTER
as much as possible. We initialize the BERT layer with the pretrained SciBERT7 We use the
Adam optimizer with a learning rate of 2e-5. A linear learning rate scheduler with warm
up fraction of 0.1 is used. Since SPECTER uses an effective batch size of 32 with gradient
accumulation, we achieve the same effective batch size by doing gradient accumulation at
every 16 steps with the real batch size of 2. We train all the models for 2 epochs.
Random seeds: All experiments are ran with 4 different seeds, 1783, 1918, 1945,
1991. All the reported metrics in this paper are the average scores from the 4 seeds, unless
otherwise noted.
Hardwares and softwares used: To fully utilize all the GPU resources available to us, We
trained all our models using multiple NVIDIA RTX 2080 Ti, GTX 1080 Ti and GTX TITAN
X GPUs. To achieve better reproducibility, each random seed was always ran with the same
GPU model (1783→ TITAN X, 1918→ 2080 Ti, 1945→ 1080 Ti, 1991→ 2080 Ti.)

We use the version 4.9.2 of HuggingFace Transformers library [240] for BERT imple-
mentation, and PyTorch Lightning version 1.4.2 [55] alongside PyTorch 1.8.2 [169] for
training logic organization.

We also make use of the source codes released by the authors of SPECTER8 and
SciNCL9 to perform dataset creation and loading.

7https://huggingface.co/allenai/scibert_scivocab_uncased

8https://github.com/allenai/specter

9https://github.com/malteos/scincl

191

Training Testing - SciDocs Testing - Multi-SciDocs

MAG field
SPECTER SciNCL SPECTERmulti SciNCLmulti cite cocite MAG multi. cite multi. cocite

Percentage Percentage Percentage Percentage Percentage Percentage Percentage Percentage Percentage
(Count) (Count) (Count) (Count) (Count) (Count) (Count) (Count) (Count)

Art
0.03% 0.04% 0.02% 0.06% 0% 0% 4.67% 0.03% 0%

(53) (62) (12) (108) (0) (0) (175) (13) (0)

Biology
1.03% 1.31% 19.55% 13.77% 0.49% 0.33% 6.05% 19.66% 25.14%
(1748) (2257) (14561) (23904) (6) (4) (227) (9813) (785)

Business
0.68% 0.67% 0.58% 0.92% 0.58% 0.41% 5.23% 0.58% 0.29%
(1156) (1148) (433) (1591) (7) (5) (196) (289) (9)

Chemistry
0.17% 0.29% 3.27% 3.65% 0.16% 0.08% 5.25% 3.54% 2.59%
(282) (495) (2433) (6336) (2) (1) (197) (1767) (81)

Computer Science
61.00% 61.78% 12.03% 15.20% 65.16% 62.78% 5.07% 11.61% 10.63%
(103869) (106268) (8962) (26391) (791) (769) (190) (5795) (332)

Economics
0.63% 0.67% 1.82% 2.06% 0.66% 0.49% 5.76% 1.82% 1.19%
(1078) (1159) (1355) (3578) (8) (6) (216) (907) (37)

Engineering
7.17% 7.34% 2.13% 4.79% 6.59% 6.29% 5.55% 2.56% 1.31%
(12212) (12623) (1586) (8315) (80) (77) (208) (1277) (41)

Environmental Science
0.05% 0.06% 0.33% 0.47% 0% 0% 5.76% 0.37% 0.10%

(85) (102) (243) (821) (0) (0) (216) (183) (3)

Geography
0.24% 0.25% 0.47% 0.76% 0.41% 0.24% 4.59% 0.49% 0.22%
(405) (430) (350) (1322) (5) (3) (172) (247) (7)

Geology
0.11% 0.13% 1.32% 1.38% 0.08% 0.16% 5.65% 1.16% 0.64%
(183) (216) (982) (2395) (1) (2) (212) (577) (20)

History
0.01% 0.02% 0.02% 0.13% 0% 0% 4.99% 0.05% 0.10%

(20) (26) (15) (223) (0) (0) (187) (24) (3)

Materials Science
0.44% 0.50% 1.31% 2.21% 0.33% 0.82% 5.76% 1.65% 0.70%
(749) (867) (976) (3844) (4) (10) (216) (825) (22)

Mathematics
7.53% 7.84% 7.95% 5.75% 7.50% 9.06% 5.20% 8.01% 6.47%
(12828) (13490) (5923) (9988) (91) (111) (195) (3997) (202)

Medicine
8.59% 9.41% 40.72% 31.79% 6.10% 7.67% 4.88% 39.37% 43.27%
(14629) (16187) (30325) (55178) (74) (94) (183) (19649) (1351)

Philosophy
0.02% 0.03% 0.03% 0.10% 0% 0% 4.67% 0.05% 0%

(41) (52) (19) (168) (0) (0) (175) (26) (0)

Physics
1.41% 1.51% 3.93% 3.08% 1.32% 2.69% 5.25% 4.49% 2.75%
(2399) (2605) (2930) (5353) (16) (33) (197) (2242) (86)

Political Science
0.13% 0.14% 0.22% 0.61% 0.16% 0.08% 5.36% 0.25% 0.03%
(219) (240) (165) (1054) (2) (1) (201) (123) (1)

Psychology
4.18% 4.27% 3.79% 3.57% 3.13% 3.27% 5.41% 3.77% 4.42%
(7125) (7340) (2819) (6197) (38) (40) (203) (1884) (138)

Sociology
0.34% 0.37% 0.52% 0.94% 0.25% 0.16% 4.93% 0.55% 0.13%
(576) (641) (389) (1638) (3) (2) (185) (276) (4)

Unknown
6.23% 3.38% 0.00% 8.74% 7.08% 5.47% 0% 0% 0%
(10611) (5811) (0) (15169) (86) (67) (0) (0) (0)

Total
100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
(170268) (172019) (74478) (173573) (1214) (1225) (3751) (49914) (3122)

Table D.1: Training and testing dataset statistics. Note: Since some papers are categorized
under multiple MAG fields in S2ORC, they are counted more than once in this table.
Unknown refers to the papers without MAG information in S2ORC.

192

	Modeling the Multi-mode Distribution in Self-Supervised Language Models
	Recommended Citation

	tmp.1662749637.pdf.ZKHH3

