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ABSTRACT

OPTIMIZING TRANSPORTATION SYSTEMS WITH INFORMATION

PROVISION, PERSONALIZED INCENTIVES AND DRIVER COOPERATION

SEPTEMBER 2022

B.S.C.E., BANGLADESH UNIVERSITY OF ENGINEERING AND

TECHNOLOGY

M.S.C.E., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Dr. Song Gao

Poor performance of the transportation systems has many detrimental effects

such as higher travel times, increased travel costs, higher energy consumption, and

greenhouse gas emissions, etc. This thesis optimizes the transportation systems by

addressing the traffic congestion problem and climate change impact resulting from

the inefficient operation of these systems.

I first focus on the key player of the transportation systems e.g., human

being/traveler, and model travelers’ route choice behavior with real-time information.

In this study, I define looking-ahead behavior in route choice as a traveler’s taking

into account future diversion possibilities enabled by real-time information in a

network with random travel times. Subjects participated in route-choice experiments

viii



in a driving simulator as well a PC-based environment. Three types of maps in

increasing levels of complexity and information availability are used. Aggregate data

analysis shows that network complexity negatively affects subjects’ ratio of choosing

the risky route given an experiment environment. Higher cognitive load in the driving

simulator results in a higher level of risk aversion than in the PC-based environment

for the simplest map. I specify and estimate a mixed logit model with two latent

classes, looking-ahead and myopic, taking into account the panel effect. The

estimated latent class membership function suggests that some subjects can look

ahead while others are myopic in making their route choices, and drivers learn to look

ahead over time. The experiment environment plays a role in the risk attitude of

myopic subjects. A bias against information is found for subjects who look ahead,

however, is not significant among myopic subjects.

I then shift my focus to influencing the travel patterns of individual travelers

to reduce the energy and environmental impacts of the transportation sector. I

present the system optimization (SO) framework of Tripod, an integrated bi-level

transportation management system aimed at maximizing energy savings of the

multi-modal transportation systems. From the user’s perspective, Tripod is a

smartphone app, accessed before performing trips. The app proposes a series of

alternatives each with an amount of tokens which the user can later redeem for goods

or services. The role of SO is to compute the optimized set of tokens associated to the

available alternatives, in order to minimize the system-wide energy consumption,

under a limited token budget. I present a method to solve this complex optimization

problem and describe the system architecture, the multimodal simulation-based

ix



optimization model and the heuristic method for the on-line computation of the

optimized token allocation. I then present the framework with the simulation results.

Finally, I optimize the systems travel time by addressing the equity issue of

congestion pricing. I propose an alternative approach to an equitable and

Pareto-improving transportation systems based on cooperation among travelers

assisted by defector penalty. Theoretical analysis shows the existence condition of the

cooperative scheme for heterogeneous value of time (VOT) of travelers. I formulate a

mathematical programming problem for the optimal cooperative scheme problem in a

general network with Pareto-improving constraints and practical considerations on

the length the cooperation cycle. I then conduct computational tests on a simple

network and evaluate the solutions in terms of efficiency improvement (total system

travel time) and equitability (Gini index).

x



TABLE OF CONTENTS

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .v

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .viii

LIST OF TABLES xvi

LIST OF FIGURES xvii

CHAPTER

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1

1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Thesis Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Thesis Scope at Individual Level . . . . . . . . . . . . . . . . . . 3

1.2.1.1 Modeling Travelers’ Route Choice Behavior . . . . . . . 4

xi



1.2.1.2 Personalized Incentives for Energy Efficient Travel

Mode Choices . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.2 Thesis Scope at Systems Level . . . . . . . . . . . . . . . . . . . 5

1.2.2.1 Optimizing the Energy Efficiency of Multimodal

Transportation Systems . . . . . . . . . . . . . . . . . . 5

1.2.2.2 Achieving an Equitable and Pareto-Improving

Transportation Systems Through Travelers’ Cooperation. 5

1.3 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.1 Looking-Ahead in Route Choice with Real-Time Information:

Network Complexity, Cognitive Load and Learning . . . . . . . . 6

1.3.2 System-Level Optimization of Multi-Modal Transportation

Networks for Energy Efficiency using Personalized Incentives:

Formulation, Implementation, and Performance . . . . . . . . . . 7

1.3.3 Cooperative Scheme - An Alternative Approach to an Equitable

and Pareto-Improving Transportation System . . . . . . . . . . . 7

1.4 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2. LOOKING-AHEAD IN ROUTE CHOICE WITH REAL-TIME

INFORMATION: NETWORK COMPLEXITY, COGNITIVE

LOAD AND LEARNING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Background and Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Experiment Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.1 Map Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

xii



2.3.2 Testing Environment . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.3 Subject Assignment and Scenario Randomization . . . . . . . . . 25

2.3.4 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4 Choice Ratio Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5 A Latent-Class Mixed-Logit Model . . . . . . . . . . . . . . . . . . . . . 36

2.5.1 Model Specification . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.5.2 Model Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3. SYSTEM-LEVEL OPTIMIZATION OF MULTI-MODAL

TRANSPORTATION NETWORKS FOR ENERGY

EFFICIENCY USING PERSONALIZED INCENTIVES:

FORMULATION, IMPLEMENTATION, AND

PERFORMANCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2 Overview of Tripod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.3 System Optimization Architecture . . . . . . . . . . . . . . . . . . . . . 64

3.4 Multi-modal Transportation Demand and supply Models . . . . . . . . . 67

3.4.1 Multi-modal Demand Simulator . . . . . . . . . . . . . . . . . . 67

3.4.2 Simulated User Optimization (SUO) . . . . . . . . . . . . . . . . 70

3.4.3 Multi-modal Supply Simulator . . . . . . . . . . . . . . . . . . . 71

3.5 Optimization Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.5.1 DynaMIT State Estimation (SE) . . . . . . . . . . . . . . . . . . 74

xiii



3.5.2 DynaMIT State Prediction (SP) . . . . . . . . . . . . . . . . . . 74

3.5.3 Energy Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.5.4 Strategy Optimization Loop . . . . . . . . . . . . . . . . . . . . . 75

3.6 On-line optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.7 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.7.1 Simulation scenario . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.7.2 Impact on the multimodal transportation . . . . . . . . . . . . . 80

3.7.3 Performance of the on-line optimization . . . . . . . . . . . . . . 88

3.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4. COOPERATIVE SCHEME: AN ALTERNATIVE APPROACH

TO AN EQUITABLE AND PARETO-IMPROVING

TRANSPORTATION SYSTEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.2 Theoretical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.2.1 Cooperative Scheme (CS) . . . . . . . . . . . . . . . . . . . . . . 98

4.2.2 A Turn Taking Strategy without Consideration of the Cycle Length 98

4.2.3 A Turn Taking Strategy with Shorter Cycle Length . . . . . . . 100

4.2.4 Defector Penalty . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.2.4.1 Homogeneous VOT . . . . . . . . . . . . . . . . . . . . 102

4.2.4.2 Heterogeneous VOT . . . . . . . . . . . . . . . . . . . . 103

4.2.5 A Potentially More Appealing CS . . . . . . . . . . . . . . . . . 104

4.3 A Mathematical Problem Formulation for Optimal CS in a General

Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

xiv



4.3.1 Formulation 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.3.2 Formulation 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.4 Computational Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5. CONCLUSIONS AND FUTURE DIRECTIONS . . . . . . . . . . . . . . . . . . 115

5.1 Modeling Travelers Route Choice Behavior . . . . . . . . . . . . . . . . 115

5.1.1 Research Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.1.2 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.2 Optimizing Transportation Systems for Energy Efficiency . . . . . . . . 118

5.2.1 Research Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.2.2 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.3 Optimizing System Travel Time for Equity and Pareto-improvement . . 120

5.3.1 Research Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.3.2 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

APPENDICES

A. PATH SIZE LOGIT EQUATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

B. LAGRANGIAN RELAXATION ALGORITHM . . . . . . . . . . . . . . . . . . . 188

xv



LIST OF TABLES

2.3.1 Travel Time Combinations in Six Scenarios . . . . . . . . . . . . . . . . 24

2.3.2 Random Travel Time Realization at Information Nodes . . . . . . . . . 30

2.3.3 Gender Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3.4 Cumulative Mileage Distribution . . . . . . . . . . . . . . . . . . . . . . 32

2.4.1 Summary Statistics of R-Ratios . . . . . . . . . . . . . . . . . . . . . . . 34

2.5.1 Potential Explanatory Variables in Membership Functions and Choice

Model Utility Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.5.2 Estimation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.4.1 Optimal Cooperative Scheme for a demand of 9000 users divided into 3

groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.4.2 Performance metrics at different demand level and cycle lengths (3 groups)112

4.4.3 Performance metrics with different group sizes and cycle lengths

(demand = 9000) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

xvi



LIST OF FIGURES

2.3.1 Three Types of Maps in the Experiment. . . . . . . . . . . . . . . . . . . 19

2.3.2 Map C at the Start Node in Driving Simulator . . . . . . . . . . . . . . 21

2.3.3 Map C at the First Information Node i1 in Driving Simulator . . . . . . 22

2.3.4 Map C at the Second Information Node i2 in Driving Simulator . . . . . 23

2.3.5 Map A in PC-based Test. . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.6 Map B in PC-based Test. . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.7 Map C in PC-based Test. . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3.8 Age Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5.1 Modeling risky branch perception for looking-ahead and myopic users in

Map A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.5.2 Modeling risky branch perception for looking-ahead and myopic users in

Map B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.5.3 Modeling risky branch perception for looking-ahead and myopic users in

Map C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2.1 Tripod menu UI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.2.2 The Tripod Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.3.1 The System Optimization Architecture . . . . . . . . . . . . . . . . . . . 66

xvii



3.4.1 Multi-modal Demand Simulator . . . . . . . . . . . . . . . . . . . . . . . 68

3.4.2 Structure of Pre-Trip Behavior Update Model . . . . . . . . . . . . . . . 69

3.4.3 Traveler Movement: Stages of a Transit Trip . . . . . . . . . . . . . . . 72

3.6.1 The on-line optimization procedure. . . . . . . . . . . . . . . . . . . . . 77

3.7.1 Mode share in the base model . . . . . . . . . . . . . . . . . . . . . . . . 81

3.7.2 Mode share at 25% penetration rate . . . . . . . . . . . . . . . . . . . . 82

3.7.3 Mode share at 50% penetration rate . . . . . . . . . . . . . . . . . . . . 83

3.7.4 Mode share at 75% penetration rate . . . . . . . . . . . . . . . . . . . . 84

3.7.5 Overall Average Energy Consumption per Trip. Monetary values of

energy savings per trip at $3.00/gallon are shown on the bars. . . . . . . 85

3.7.6 Mode-Specific Average Energy Consumption per Trip. . . . . . . . . . . 85

3.7.7 Average Personal Travel Time . . . . . . . . . . . . . . . . . . . . . . . . 86

3.7.8 Token Consumption per 5 Minutes. The number above each bar is the

average perceived monetary value of tokens per trip. . . . . . . . . . . . 86

3.7.9 On-line optimization vs. static allocations . . . . . . . . . . . . . . . . . 89

4.2.1 A single-OD two route network . . . . . . . . . . . . . . . . . . . . . . . 99

4.2.2 Turn-taking of 3 blocks of cooperators over a cycle of 3 days . . . . . . . 101

4.4.1 Average travel time of 3 groups of cooperators over different cycle length 110

xviii



CHAPTER 1

INTRODUCTION

1.1 Background and Motivation

Advances in transportation have made possible changes in the way of living

and the way in which societies are organized and therefore have a great influence in

the development of civilizations. From movement to work to travel around the world,

being able to arrive at various places or deliver different items on time is vital for

overall productivity and sustainable development. Whereas there is no doubt that

transportation plays a pivotal role in human lives, poor performance of the

transportation system has many detrimental effects including lost time, higher fuel

consumption, more vehicle emissions, increased accident risk, and greater

transportation costs. According to data from Forbes, traffic congestion cost US cities

more than $88 billion in 2019 (Forbes, 2020). Data from the US Energy Information

Administration (EIA) show that the transportation sector accounted for the largest

share of US energy-related CO2 emissions (24.2%) in 2020 (US EIA, 2021).

Therefore, transportation researchers now-a-days are faced with greater challenges of

how to ensure efficient operation of the transportation systems. On one hand, it is

necessary to optimize the system travel time and reduce traffic congestion. On the

other hand, it is imperative to make sure that environmental impacts (e.g.,

1



greenhouse gas emission, higher energy consumption) associated with the

transportation sector are minimized.

With the rapid growth of population, the demand for travel has increased

significantly especially in the mega cities in the recent years. However, the

possibilities for the physical increase of capacities to accommodate this increased

demand are limited or nonexistent. Therefore, how do we utilize the existing

transportation networks in the best possible ways to maximize the systems efficiency

is an area of research of great importance. Recently, much interest has focused on the

development of advanced traveler information systems (ATIS) to aid the traveler to

make more informed route choices and to alleviate increasing levels of traffic

congestion. An important issue in the implementation of these systems is to develop

an understanding of how ATIS will affect travelers behavior, how travelers will adopt

and learn to use ATIS and how these changes will impact travel demand in the

network. Traffic information is generally perceived to help travelers make better

travel decisions, however, the response to the future information could be very specific

to individual travelers. Econometric modeling could possibly identify how travelers

perceive real-time information while making their route choice decisions, and what

socio-demographic characteristics might play roles in their decision making processes.

At individual level, a traveler makes his/her travel decisions (i.e., route choice,

mode choice etc.). However, it is the collective of all travelers’ decisions/choices that

determine the overall performance of a transportation network. Therefore, coordination

among travelers could potentially lead to better utilization of available routes, and

thereby improve the network’s performance. Specially in the era of connected and
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automated vehicle (CAV) technologies, cooperation can be a very effective tool in

optimizing the transportation system travel time.

As discussed earlier, the environmental drawbacks caused by the

transportation need to be addressed to ensure a sustainable transportation system.

According to the U.S. Energy Information Administration (EIA), the transportation

of people and goods accounts for about 25% of total world delivered energy

consumption (IEO 2016). Passenger transportation in particular, light - duty vehicles

accounts for most transportation energy consumption, with light - duty vehicles

consuming more energy than all modes of freight transportation. Carbon emission

coming from this energy consumption plays an important role in the greenhouse gas

emission, a key factor leading to the current environmental problems such as global

warming. A multimodal transportation system has the potential to reduce the system

wide energy consumption by offering a variety of energy - efficient travel alternatives.

At individual level, providing personalized incentives to use more energy efficient

transportation modes could significantly improve the energy consumption of the

transportation sector as well as reduce the level of greenhouse gas emissions.

1.2 Thesis Scope

This thesis models and optimizes the transportation systems at both individual

and system level.

1.2.1 Thesis Scope at Individual Level

At an individual level, the scope of this research lies on studying travelers’ route

choice decisions to help them make better travel decisions, and optimizing the energy
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savings resulting from their travel mode choices motivated by the potential gain from

personalized incentives and better travel times.

1.2.1.1 Modeling Travelers’ Route Choice Behavior

This thesis investigates travelers’ route choice behavior with advanced traveler

information systems. Modeling route choice behavior is difficult due to the

complexity of representing human behavior, the lack of travelers knowledge about the

network composition, the uncertainty about travelers perceptions of route

characteristics and the unavailability of exact information about travelers

preferences (Prato, 2009b). Travelers’ responses to real-time information has been a

subject of great interest among researchers. In this thesis, I study travelers’ looking

ahead behavior with real-time information. I consider a traveler looking ahead if s/he

takes into consideration the availability of future information while making her/his

route choice. With real-time information, a looking ahead traveler could adapt to the

unfolded traffic conditions, and could avoid unexpected delay.

1.2.1.2 Personalized Incentives for Energy Efficient Travel Mode Choices

While I optimize the multimodal transportation systems for energy efficiency,

individual travelers play a key role in that their choice of travel modes determine

the total system energy savings. Incentive-based demand management strategies has

gained significant attention from researchers since they are generally considered more

acceptable than road pricing. From a traveler’s perspective, s/he is provided with a

set of personalized energy efficient travel options each with different level of incentives.

When starting a trip, travelers can access Tripod, a smartphone app with personalized
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menu and are offered incentives in the form of tokens for a variety of energy-reducing

travel options in terms of: route, mode, ride-sharing, departure time, driving style and

actual trip making. Each traveler maximizes his/her consumer surplus under a set of

preference parameters (Azevedo et al., 2018).

1.2.2 Thesis Scope at Systems Level

At the system level, this thesis optimizes the transportation systems by

maximizing energy savings and minimizing the system travel time.

1.2.2.1 Optimizing the Energy Efficiency of Multimodal Transportation

Systems

In this thesis, I focus on a novel real-time incentive scheme, Tripod, to

maximize energy savings of the multimodal transportation network. I solve a

challenging optimization problem in that it includes several modes of transportation,

computes personalized incentives, is guided by both the current and predicted states

of network, and needs to achieve real-time performance.

1.2.2.2 Achieving an Equitable and Pareto-Improving Transportation

Systems Through Travelers’ Cooperation.

The problem of traffic congestion is particularly acute in urban areas in which

the possibilities for the physical increase of capacities are limited or nonexistent.

Congestion pricing, therefore, has been historically viewed as a viable strategy to

mitigate traffic congestion in urban environments. Although theoretically appealing,

congestion pricing has been a controversial congestion mitigation strategy to public

due to several issues such as equity. This thesis proposes an alternative approach to
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improve the system travel time by utilizing travelers’ cooperation. I perform both

theoretical analysis and mathematical modeling to demonstrate the effectiveness of

my proposed approach.

1.3 Thesis Contributions

The contribution of this thesis is summarized below:

1.3.1 Looking-Ahead in Route Choice with Real-Time Information:

Network Complexity, Cognitive Load and Learning

I study looking-ahead behavior in route choice with real time information in

different test environments with variable levels of network complexity. In this study, I

define a human subject in an experiment as “looking-ahead” if s/he considers future

diversion possibilities enabled by real-time traffic information not yet available, and

“myopic” otherwise.

The contribution of the study lies on providing empirical evidence to three

hypotheses regarding learning to look ahead in route choice, based on both aggregate

data analysis and latent-class choice modeling. In addition, the impacts of subject

demographics including driving experience on the capability to look ahead are

investigated.
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1.3.2 System-Level Optimization of Multi-Modal Transportation

Networks for Energy Efficiency using Personalized Incentives:

Formulation, Implementation, and Performance

The primary contribution of the research is the implementation of Tripods

optimization framework. The optimization tackled here is challenging since it is

performed on-line, includes several modes of transportation, computes personalized

incentives, is guided by the current state of the network and the predicted state. A

methodology to implement a heuristic method that reduces this complex problem to

the search of a single value, called Token “Energy Value” is proposed. Predictions are

based on multimodal traffic simulation and models of individual travel decision

making, including the response to incentivization.

1.3.3 Cooperative Scheme - An Alternative Approach to an Equitable and

Pareto-Improving Transportation System

I propose an alternative approach to an equitable and Pareto-improving

transportation system based on cooperation among travelers assisted by defector

penalty. I perform theoretical analysis on a single origin-destination, two-route

network with heterogeneous value of time (VOT) among travelers and derive the

existence condition of a cooperative scheme to ensure Pareto-improvement. A

mathematical programming problem is formulated for the optimal cooperative scheme

problem in a general network with Pareto-improving constraints and practical

considerations on the length of the cooperation cycle. Computational tests on a

simple network are conducted and solutions are evaluated in terms of efficiency

improvement (total system travel time) and equity (Gini index).

7



The cooperative scheme (CS) proposed in this research is an extension of the

hybrid scheme between rationing and pricing, first proposed by Daganzo (1995) for

a single bottleneck with flexible demand, and later adopted and extended by other

researchers, e.g., Song et al. (2014). The major distinction is that the CS in this

research is applied to route choice in a general network, where the “rationing” is route-

specific. This flexibility allows for potentially more room for improvement in both

efficiency and equitability, but also renders a more challenging problem.

1.4 Thesis Organization

The thesis is organized as follows. Chapter 2 presents travelers’ looking-ahead

behavior in route choice with real-time information. A latent class mixed logit model is

developed, estimated and evaluated using data from laboratory experiments on route

choice performed in both driving simulator and PC environment.

In Chapter 3, a system-level optimization model for multi-modal

transportation networks is formulated and implemented by optimizing the energy

efficiency using personalized incentives. A heuristic method is proposed to solve the

complex optimization problem.

Chapter 4 presents theoretical analysis of a turn taking scheme by utilizing

traveler’s cooperation. The formulation of optimal turn taking strategy with equity

and Pareto-improving constraints is proposed and implemented on a test network.

Chapter 5 presents a summary of the thesis work and discussions on future

directions.
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CHAPTER 2

LOOKING-AHEAD IN ROUTE CHOICE WITH REAL-TIME
INFORMATION: NETWORK COMPLEXITY, COGNITIVE LOAD

AND LEARNING

A traffic network is subject to frequent delays resulting from crashes,

construction, inclement weather, and special events, and is inherently an uncertain

system. Traffic delays consume time and fuel of travelers and increase environmental

pollution for the society. One counter-measure to reduce the adverse effect of

uncertainties is to provide real-time information on the prevailing and/or predicted

traffic condition to help travelers, and more increasingly, automated vehicles, make

better travel decisions. A plethora of research has been conducted on the responses to

real-time traffic information, both at the individual and the system level. Multiple

studies have been performed to investigate the role of travel

information (Mahmassani and Jayakrishnan, 1991; Lappin and Bottom, 2001; Molin

and Timmermans, 2006; Abdel-Aty and Abdalla, 2006; Balakrishna et al., 2013a;

Lindsey et al., 2014; Ben-Elia and Avineri, 2015; de Moraes Ramos et al., 2020; Han

et al., 2021, see, e.g.,). Literature suggests that travel information has the potential

to influence travellers’ choices and alleviate congestion (Arnott et al., 1991; Bogers,

2009; Levinson, 2003; Ben-Elia and Shiftan, 2010b; van Essen et al., 2020).

The utility of real-time information derives from it enabling potential

adaptation of travel choices to unfolded traffic conditions. The adaptation could
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happen not only on the spot, that is, when the information is provided, but also

before. More specifically, with potential future real-time information, a driver does

not need to commit to a particular route but can decide later at a switching point

based on then-revealed traffic conditions and pick the route with a lower travel time

for the remaining trip. The real-time information thus could influence route choice

even before the information is available. Looking-ahead behavior in route choice

refers to a driver’s taking into account future diversion possibilities enabled by

real-time information, where choice alternatives are not all simple paths but could

include contingency plans that specify what action to take given each possible future

traffic scenario, e.g., “take the highway if there is no accident on it, and take the

arterial if there is an accident on the highway”.

The remainder of this chapter is organized as follows. Section 2.1 provides a

literature review. In Section 2.2, the research background and hypotheses are

described. Section 2.3 presents the design of experiments. Section 2.4 presents some

descriptive analyses. Section 2.5 presents the modeling approach and the estimation

and prediction results. Section 2.6 summarizes the research and presents conclusion

and future directions.

2.1 Literature Review

The effect of travel time information on route choice behavior has been

incrementally studied both from a theoretical and practical standpoint. With the

rapid development of intelligent systems and big traffic data, Advanced Traveler

Information Systems (ATIS) has become an important part of the Intelligent

Transportation Systems (ITS). Many researchers consider ATIS an effective tool in
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alleviating traffic congestion problems (Khattak et al., 2003; Rouhani and Gao, 2014).

The development of ATIS also makes the study of travel behavior under the influence

of information become one of the hot issues in the field of transportation engineering

(Tsirimpa et al., 2007; Dell’Orco and Marinelli, 2017).

Individual travel choices under different information regimes has been the

focus of a large body of researches. Travelers’ route choice behavior in response to

how the travel time information is provided has been studied by some researchers.

Some studies used descriptive information in conjunction with the prospect theory

framework. Framing, Loss aversion and probability weighting effects have been

verified with descriptive information (Katsikopoulos et al., 2002; Avineri and

Prashker, 2004; Avineri and Bovy, 2008; Gao et al., 2010; Avineri and Waygood,

2013; Kemel and Paraschiv, 2013, see, e.g.,). Descriptive information is also used to

study travelers’ responses such as anticipation adaptation (Ettema and Timmermans,

2006; Chorus et al., 2013), and regret aversion (Chorus et al., 2008; Chorus, 2014a,c).

Combination of descriptive and experiential information have been used by some

researchers in both prospect theory and reinforced learning contexts (Avineri and

Prashker, 2006; Ben-Elia et al., 2008b; Ben-Elia and Ettema, 2011; de Moraes Ramos

et al., 2013; Ben-Elia and Shiftan, 2010a, see, e.g.,). Regret aversion in response to

both types of information has been studied by (Chorus et al., 2006b; Ben-Elia et al.,

2013c). Ben-Elia et al. (2013a) found that prescriptive information had the largest

effect on route choice compared to the descriptive and experiential information.

The effect of ATIS implementation depends on how the information released by

ATIS affects people’s travel behavior (Mahmassani and Liu, 1999b; Wahle et al., 2002).

Different survey methods (e.g., stated preference, revealed preference, etc.) have been
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used in some researches (Erke et al., 2007; Tseng et al., 2013a) to study how ATIS

affects people’s travel decisions.

A large number of sources, such as Google Maps, Waze, and variable message

signs (VMSs) have been providing drivers with real-time information on prevailing

and/or predictive traffic conditions and are designed with the premise that more

information helps drivers make better route choice decisions that collectively might

reduce the system costs associated with wasted travel time and fuel. Some studies

show that the deployment of variable message signs (VMSs) to inform drivers of

traffic conditions has been proven successful in terms of improving network travel

times (Chatterjee and McDonald, 2004). However this premise is not necessarily true

in that real-time information could potentially degrade system performance (Gao,

2005) and thus the value of traveler information needs to be evaluated with sound

models. While the presence of real-time information affects each driver’s route choice

decisions, the collective of all drivers’ route choice decisions in turn determines the

overall performance of traffic systems. The complicated interaction between drivers’

choice, the infrastructure, and the real-time information system needs to be captured

to adequately assess the effectiveness of traveler information. Drivers’ route choice is

an important component of this interaction and is the focus of this research.

A large number of route choice models are based on deterministic networks.

They assume that a driver makes a complete route choice at the origin of a trip and do

not account for any real-time information provided en-route. Examples of such models

are Path Size Logit (Ben-Akiva and Ramming, 1998; Ben-Akiva and Bierlaire, 1999),

C-Logit (Cascetta et al., 1996a), Cross-Nested (Vovsha and Bekhor, 1998), and Logit

Mixture (Ramming, 2001; Bekhor et al., 2002; Frejinger and Bierlaire, 2007).
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There has been a plethora of studies of path choice models with real-time

information in the literature that considered both pre-trip and en route information.

Overviews of empirical studies of traveler’s response to traffic information in route

choice can be found in (Lappin and Bottom, 2001; Abdel-Aty and Abdalla, 2006;

Balakrishna et al., 2013a). Studies show that real-time traffic information could

prompt drivers to change routes; e.g., (Khattak et al., 1993; Adler et al., 1993;

Emmerink et al., 1995; Bierlaire et al., 2006). In some studies, the response to

real-time information is modeled by predicting the decision to switch from a previous

chosen or experienced route (Abdel-Aty and Abdalla, 2004; Mahmassani and Liu,

1999a; Polydoropoulou et al., 1996; Srinivasan and Mahmassani, 2003, see, e.g.).

Some other models considered the choice set of all paths explicitly (Abdel-Aty and

Abdalla, 2006; Bogers et al., 2005; Bierlaire et al., 2006; Ben-Elia et al., 2008a;

Ben-Elia and Shiftan, 2010b; Ben-Elia et al., 2013b; Bifulco et al., 2014, see, e.g.).

One recent overview of models that account for real-time information in route choice

can be found in (Abdel-Aty and Abdalla, 2006).

A seemingly natural way to build adaptive route choice models is to have a

sequence of nonadaptive path choice models at decision nodes where the attributes of

alternative paths to the destination reflect updated information. Any of the

above-mentioned route choice models with adequate incorporation of real-time

information could in principle be applied successively in a stochastic network to

model adaptive route choice behavior. DynaMIT (Ben-Akiva et al., 1998) and

DYNASMART (Mahmassani, 1998; Mahmassani et al., 1998) are examples of

dynamic traffic assignment models that apply an adaptive path choice model.
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Calibration of DynaMITs route choice model based on field data is reported by

(Balakrishna, 2006; Balakrishna et al., 2007).

The effect of information is usually modeled by adding different types of

attributes to a model specification. Some models consider whether information is

available or not (Srinivasan and Mahmassani, 2003; Abdel-Aty and Abdalla, 2004,

2006; Tsirimpa et al., 2009; Rapoport et al., 2014, see, e.g.,). Some studies model the

information in finer details in content, format and/or perception, for example,

information on queue length and travel time (Mahmassani and Liu, 1999a; Srinivasan

and Mahmassani, 2003; Bogers et al., 2005; Tseng et al., 2013a; Tanaka et al., 2014),

using fuzzy variables with continuous membership function to model

perception (Peeta and Yu, 2005), and assuming a sensation seeking domain when

pre-trip information is provided (Bekhor and Albert, 2014). The sensation seeking

domains along with traditional variables are accounted for by Shiftan et al. (2011),

and Bekhor and Albert (2014). The interaction of different information types and

accuracy level with experience and its effect on both route choice and compliance are

modeled in some studies (Ben-Elia and Shiftan, 2010b; Ben-Elia et al., 2013b; Bifulco

et al., 2014; Ben-Elia et al., 2008a; Ben-Elia and Shiftan, 2010b; Ben-Elia et al.,

2013b; Bifulco et al., 2014, see, e.g.).

The literature has seen empirical studies on the existence of looking-ahead route

choice with both laboratory (Razo and Gao, 2013; Yu and Gao, 2019) and real world

data (Ding-Mastera et al., 2019; Tien et al., 2021). This study goes beyond asking

the existence question and focuses on the learning to acquire such behavior and how it

is affected by network complexity and cognitive load, based on driving simulator and
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PC-based experiments conducted on a series of hypothetical networks with increasing

complexity.

2.2 Background and Hypotheses

In this chapter, I define a traveler or human subject in an experiment as

“looking-ahead” if s/he considers future diversion possibilities enabled by real-time

traffic information not yet available, and “myopic” otherwise. The contingency plan

that a looking-ahead subject considered is referred to as a routing policy in the

literature and in this research.

While many studies have addressed the problem of generating optimal

looking-ahead routing algorithms in a stochastic network, empirical investigations of

looking-ahead route choice behavior are comparatively lacking. An econometric

model of routing policy choice is first proposed by Gao (2005), but the estimation

problem is not dealt with. Later on, the estimation of a routing policy choice model

based on synthetic data is conducted in Gao et al. (2008) and Gao et al. (2010),

which builds the foundation of applying the model to empirical data.

The very first question regarding looking-ahead behavior using empirical data is

its existence. While the on-the-spot responses to real-time traffic information are well

documented and studied (see the reviews cited in the previous section), looking-ahead

being a plan cannot be directly observed and only the executed plan, which is a simple

path, can. It is therefore not surprising that laboratory data are first used to infer

the existence of looking-ahead behaviors. Razo and Gao (2010) and Razo and Gao

(2013) use stated preferences (SP) data from a PC-based survey to develop latent-class

models with two classes, looking-ahead and myopic, and show that the looking-ahead
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class probability is significantly different from 0 or 1, suggesting that travelers are a

mix of the two types. Later on, Ding-Mastera et al. (2019) apply the latent-class model

with a membership function to a revealed preferences (RP) context, using taxi GPS

traces from Stockholm, Sweden. It is similarly shown that Stockholm taxi drivers are

a mix of looking-ahead and myopic types, and that drivers are more likely to look

ahead during longer trips, which is intuitive as longer trips allow for potentially more

diversion possibilities. The lack of demographic data from GPS traces precludes the

study of how looking-ahead behavior is affected by factors such as experience. Yu and

Gao (2019) use laboratory data from a route choice game in a congestible network to

study the day-to-day learning of routing policies and find that travelers sometimes take

seemingly counter-intuitive strategies to account for fellow travelers’ decisions.

Once the existence of looking-ahead behavior is demonstrated with both

laboratory and real world data, it is of interest to ask what types of personal

characteristics and decision contexts are more conducive to looking ahead, and

whether travelers can acquire the behavior through experience and learning. I have

three hypotheses as follows:

2.2.0.0.1 Hypothesis 1: Human subjects can learn to look ahead. To look

ahead is to have a contingency plan of route choice, and I hypothesize that this can

be acquired through repeated experiences without any explicit training. Note that the

learning studied in Yu and Gao (2019) is on how human subjects retrieve and combine

past experiences to form perceptions of attributes (e.g., travel time) of alternative

routing policies, assuming that human subjects are already able to look ahead. The

learning studied in this paper is on a subject’s capability to look ahead and recognize a
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routing policy. In a sense, this is more similar to the choice of decision strategies studied

in Erev and Barron (2005) with lottery experiments commonly used by psychologists,

and the choice of decision rules in travel behavior analysis (Hess et al., 2012; Hess and

Stathopoulos, 2013, see, e.g.,).

2.2.0.0.2 Hypothesis 2: Network complexity negatively affects human

subjects’ looking ahead behaviors. Looking ahead requires a certain level of

high level planning and requires more mental effort than responding to cues on the

spot. Therefore it is hypothesized that route choice decisions in a more complex

network are less likely to be proactive.

2.2.0.0.3 Hypothesis 3: Cognitive load negatively affects human subjects’

looking ahead behaviors. In this paper, cognitive load difference is induced by

conducting experiments in both a driving simulator and a PC-based environment.

Reviews of comparisons between driving simulator tests and field data indicate that

such a simulator is able to provide route choice data with high

validity ()KaptTheeHors95, and the driving simulator environment could induce a

more realistic level of cognitive load than a traditional paper-and-pencil or PC-based

survey. Research shows that subjects’ route choice behavior in a driving simulator

test that demands high cognitive load was different from that in a paper-and-pencil

survey or web based simulator which demand low cognitive load (Szymkowiak et al.,

1997; Katsikopoulos et al., 2000; de Luca and Di Pace, 2015). Compared with

paper-and-pencil surveys, the relative importance of expected travel time over travel

time variability is more significant in the driving simulator test. It is also shown in

some psychology studies that people’s ability to make an informed intuitive judgment
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is impaired by concurrent involvement in a different cognitive task (T., 2002, see,

e.g.,).

2.3 Experiment Design

2.3.1 Map Design

There are three types of maps in the experiments, schematically shown in

Figure 2.3.1. A single number beside a route denotes a deterministic travel time,

while (m, n) denotes a random travel time with two ordered outcomes, m and n (m

< n), each with probability 0.5. From the origin node (labeled “Start”) in each map,

two outgoing branches are available: either the safe branch (the upper branch with

only one route) with a deterministic travel time tb or the risky branch (the lower

branch) involving random travel times on one or more routes. The risky branch gets

more complicated in topology from map A through C, containing one, two and three

routes respectively.

In map A, the risky branch contains one single route (route 2), with a possible

low travel time tL and a high travel time tH , each with probability 0.5.

In map B, a bifurcation is added to the risky branch, where the safe detour

(route 2) has a deterministic travel time tH . The risky route 3 has a low travel time

tL and a prohibitively long delay tM , which could be due to an incident, each with

probability 0.5. At node i, a subject receives real-time information on the realization

of the travel time on route 3. If tM is realized, route 2 can serve as a diversion from

route 3. A driver who takes into account the value of information at node i when

making the route choice at the origin is likely to be looking ahead (proactive).
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Figure 2.3.1: Three Types of Maps in the Experiment.
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Map C adds another bifurcation to the risky branch, upstream of the one in

map B, with two possible outcomes tb and tM , each with probability 0.5 (route 2 in

map C ). This additional bifurcation is stochastically dominated by the safe branch

(route) with a fixed travel time tb. Real-time information is available at node i1 on the

realized travel time on route 2 (tb or tM ), and at node i2 on the realized travel time on

route 4 (tL or tM ). Similarly, the information at either node could help drivers avoid

the extremely high travel time tM on route 2 or 4, and a driver who takes into account

these facts when making decisions at the origin is likely to be looking ahead. Note that

a subject could be looking ahead in one scenario and myopic in another, likely due to

learning over time, and such an effect is studied later in the modeling section.

Each type of map appeared six times with different travel times as shown in

Table 2.3.1. Travel times denoted with the same symbol in three different map types

have the same numerical value.

2.3.2 Testing Environment

There are two types of test environment: driving simulator and PC-based. The

driving simulator is located in the Human Performance Laboratory at the University of

Massachusetts Amherst. It consists of a retrofitted sedan connected to three projectors

that display a virtual driving environment set up with pre-fabricated blocks of road

geometries and street scenes. Figures 2.3.2 through 2.3.4 show pictures of the car and

the screens and the content of the travel time information on the billboards at three

different locations along a drive in map C.

Subjects were asked to drive slowly at the beginning of each scenario to observe

a map of the entire network before arriving at an intersection where a route choice
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Figure 2.3.2: Map C at the Start Node in Driving Simulator
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Figure 2.3.3: Map C at the First Information Node i1 in Driving Simulator
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Figure 2.3.4: Map C at the Second Information Node i2 in Driving Simulator
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Table 2.3.1: Travel Time Combinations in Six Scenarios

Scenario tL tH tb tM

(min) (min) (min) (min)

#1 30 50 45 120

#2 30 60 50 120

#3 30 60 55 120

#4 30 70 60 120

#5 30 70 65 120

#6 30 80 70 120

decision had to be made. This map was shown as a picture on the up-right corner of

the middle screen for exactly ten seconds, as shown in Figure 2.3.2. In addition, there

were two identical roadside billboards shortly before each real-time information node,

namely, node i in map B, and nodes i1 and i2 in map C, where the actual travel times

on links immediately out of the information node were revealed, while risky travel time

distributions further downstream remained unchanged, as shown in Figures 2.3.3 and

2.3.4. The two identical billboards were intended for the subjects to have enough time

to acquire the information. In order to implement different travel times for the same

route, lead vehicles with pre-specified speeds were assigned at every intersection in each

scenario, and subjects were instructed to follow the lead vehicles. The simulator time
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that a subject actually spent on driving on any route in a map was scaled down from

the displayed travel time by controlling the lead vehicle speeds. All route travel times

in the same map were scaled by the same factor, so that subjects bore the consequences

of their choices. On average, a subject spent two minutes in each scenario, and the

complete experiment took around one hour including the time for instruction, rest and

entry- and exit-questionnaires.

In PC-based experiments, subjects were asked to view the map of the entire

network (Figures 2.3.5 through 2.3.7) for exactly ten seconds at the beginning of each

scenario with all mouse or keyboard operations disabled. After ten seconds, all travel

time labels disappeared. Subjects then clicked on segments out of the origin to make

a choice. An animated dot showed the movements along the routes, and upon the

arrival at an information node, the same information as in the driving simulator

billboards was displayed on the map. I split each route into 4 segments to keep a

balance on number of clicks to finish each scenario regardless of the route chosen. The

time for the animated dot to traverse a segment was not proportional to the displayed

travel time. The subjects were asked to put these travel times in their regular

work-to-home commute context and make choices as they would in real life. On

average, a subject spent twenty seconds in each scenario.

2.3.3 Subject Assignment and Scenario Randomization

All subjects were randomly assigned to the following four groups: Sim AB,

Sim AC, PC AB and PC AC. For example, subjects in the Sim AB subgroup were

presented with map A scenarios and then map B scenarios in driving simulator.
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Figure 2.3.5: Map A in PC-based Test.
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Figure 2.3.6: Map B in PC-based Test.
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Figure 2.3.7: Map C in PC-based Test.
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In order to eliminate any potential bias resulting from any specific scenario

sequence, a block randomization of the scenarios was applied. The six scenarios were

divided into three blocks, where the first block contained scenarios 1 and 4, the second

block contained scenarios 2 and 5, and the third block contained scenarios 3 and 6. A

randomization was applied to the three blocks with permutations of two scenarios in

each block. This resulted in forty-eight different scenario sequences. Each subject is

randomly assigned to a sequence for a given map. No randomization was conducted

across map types, i.e., all map A scenarios were presented before maps B or C scenarios.

The realizations of random travel times are fixed for a given scenario as shown

in Table 2.3.2. At node i of map B and node i2 of map C, half of the scenarios have the

normal travel time (tL) realized and the other half have the prohibitively high travel

time (tM ) realized. At node i1 of map C, the low travel time (tb) is always realized,

so as to make the decision context at node i1 non-trivial (in fact, identical to that at

the origin of map B). Due to the randomization of the scenarios, the realizations of

random travel times appeared to be random to the subjects, while an overall proportion

of 50% for either of the two possible outcomes at node i of map B and node i2 of

map C was maintained over the six scenarios for a given map type. Subjects were

notified that travel time realizations across scenarios were independently drawn from

the distributions they saw on the screen. There was one additional map A scenario

with travel time combination (tL, tM ) on the risky route for the identification of extreme

risk-seeking subjects. It was inserted into the six map A scenarios randomly. Two,

three, and four warm up scenarios were scheduled before map A, B and C scenarios

respectively to help subjects familiarize themselves with each route in these three maps

and avoid exploratory route choices later. Each subject experienced a total of seven
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Table 2.3.2: Random Travel Time Realization at Information Nodes

Scenario Node i Node i1 Node i2

(Map B) (Map C) (Map C)

#1 tL tb tL

#2 tM tb tM

#3 tL tb tL

#4 tM tb tM

#5 tL tb tL

#6 tM tb tM

scenarios from map A and six scenarios from map B or C, a total of thirteen scenarios

(excluding the warm-up drives).

2.3.4 Participants

Subjects were recruited from the University of Massachusetts Amherst students

via emails and from the surrounding communities via Craigslist with the requirement

of being at least 18 years old with a valid driver’s license of at least 6 months.
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64 subjects participated in the driving simulator experiment. One subject

clearly misunderstood the instruction according to exit survey and was removed. Five

subjects exhibited extreme risk-seeking behaviors in Map A by choosing the risky

route with tM , which although uncommon was not a mistake, and the five subjects

were kept. Among the remaining 63 subjects, I have 34 subjects from the Sim AB

group and 29 subjects the Sim AC group with a total of 819 observations for the

driving simulator experiment. The mean age was 22.2 years and mean driving

experience was 3.4 years. 48% of the subjects were male, and 52% female. Each

subject made choices in 13 different scenarios with a total of 819 observations.

66 subjects participated in the PC-based experiment, with 35 subjects in the

PC AB group and 31 subjects the PC AC group. The mean age was 20.5 years and

mean driving experience 3.3 years. 82% of the subjects were male and 18% female.

Each subject made choices in 13 different scenarios with a total of 858 observations.

A summary of all 129 subjects’ demographics is provided in Tables 2.3.3

through 2.3.4 and Figure 2.3.8. The cumulative mileage is a proxy for driving

experience, and on the lower end due to the relatively young student population.

2.4 Choice Ratio Analysis

I define R-ratio as the ratio of risky branch choice calculated over all six

scenarios for a given subject on a given map. Summary statistics of R-ratios for the

four groups of subjects are presented in Table 2.4.1. It is interesting to investigate

how the mean R-ratios vary across different maps and experiment environments

through statistical tests to reveal whether subjects could look ahead and recognize
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Table 2.3.3: Gender Distribution

Gender Number of participants Proportion

Male 83 64%

Female 46 36%

Total 129 100%

Table 2.3.4: Cumulative Mileage Distribution

Miles Driven Number of participants Proportion

< 5000 29 22%

5000 − 20, 000 63 49%

> 20, 000 37 29%

Total 129 100%
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Figure 2.3.8: Age Distribution
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the value of future information, and the potential effects of cognitive load and

network complexity on the willingness/capability of looking ahead.

Table 2.4.1: Summary Statistics of R-Ratios

Environment Simulator Simulator PC PC

Map A B A C A B A C

Mean 0.86 0.76 0.89 0.66 0.99 0.85 0.94 0.72

Median 0.92 0.83 1.0 0.67 1.0 1.0 1.0 0.83

Std 0.17 0.29 0.17 0.28 0.050 0.23 0.13 0.28

Min 0.50 0 0.33 0 0.83 0 0.50 0

Max 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Sample Size 34 29 35 31

A one-tailed paired t-test is performed for the equality of mean R-ratios in

maps A and B in a given experiment environment using the data from the Sim AB

or PC AB group. The null hypotheses are rejected for both environments at a 0.05

significance level (with a p-value of 0.02 in simulator, and a p-value < 0.01 in PC), and

it is concluded that the R-ratio in map B is statistically smaller than that in map A in

either the simulator or PC environment. This is likely due to the presence of the very

large delay on the risky branch, and that some subjects did not realize that the delay
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can be avoided by utilizing the en-route real-time information or that some subjects

did not like processing information. Similarly, the R-ratio in map C is statistically

smaller than that in map A in either the simulator (p-value < 0.01) or PC environment

(p-value < 0.01) at a 0.05 significance level.

A one-tailed two-sample t-test is performed for the equality of mean R-ratios

in maps B and C. The R-ratio in map C is statistically smaller than that in map B at a

0.05 significance level (p-value of 0.02) in the PC environment, and at a 0.10 significance

level (p-value of 0.08) in the simulator environment. There could be multiple reasons

behind this difference: subjects being less likely to look ahead in a more complex

network (map C), and/or myopic users being more intimidated by the high travel

times on more routes of the risky branch.

The R-ratio in map A in the simulator environment is significantly different from

that in the PC environment based on a two-tailed two-sample t-test (p-value < 0.01).

However, the R-ratio in map B (or C) in the simulator environment is not significantly

different from that in the PC environment based on a two-tailed two-sample t-test

(with a p-value of 0.2 in simulator, and a p-value of 0.4 in PC). The results seem to

suggest that the experiment environment plays a role in route choice behavior when

the network is simple (map A), but not in a more complex network (map B or C).

This might be explained by a diminishing marginal effect of cognitive load, in that the

additional load caused by the simulator compared to the PC environment has less of

an effect in an already more cognitively demanding network (map B or C vs. A).

Another hypothesis introduced in Section 2.2 is that subjects can learn to look

ahead. To identify potential learning effects at the aggregate level, I need to examine

the trend of r-ratios over time with travel time distributions held constant over time.
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While map type or experiment environment can be perfectly controlled, scenario travel

time distributions are systematically varied to identify risk attitudes, a prerequisite for

a study involving risky travel times. It follows that I need to build a discrete choice

model to control for the effect of travel time distributions and other factors in order to

identify the potential learning effect, as detailed in the next section.

2.5 A Latent-Class Mixed-Logit Model

The R-ratio analysis in the previous section provides me with some

preliminary indication of subjects learning to look ahead and how cognitive load and

network complexity could play a role in the capability/willingness to look ahead.

However, the change of R-ratio could have a number of contributing factors, including

risk attitude and information processing aversion. For example, the decrease of

R-ratio in the simulator compared with the PC-based tests might be due to higher

risk aversion in the simulator, or higher aversion to processing information and

looking ahead given the additional cognitive load imposed by the simulator. I thus

use a discrete choice model to attempt disentangling these complicating factors.

2.5.1 Model Specification

I specify a latent-class mixed Logit model to explain subjects’ binary choices

between the two branches, safe branch (S) and risky branch (R), at the origin node in

all three map types and both PC and simulator environments. I do not model choices

at subsequent nodes since the focus is on how future information availability affects

the choice at the origin.
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Previous studies using both laboratory and real world data have shown that

some subjects can look ahead while others are myopic (see, e.g., Razo and Gao, 2013;

Ding-Mastera et al., 2019). I do not directly observe subjects’ contingency plans,

therefore two latent classes, looking-ahead (LA) and myopic (M) are used to capture

the different ways of utilizing future real-time information. Naturally in map A when

the risky branch is simply a path and no information is provided, the two classes are

the same except potentially class-specific coefficients in the utility functions. In any

map, the safe branch contains only one path with a deterministic travel time tb, and

is modeled exactly the same way regardless of class. The two classes differ in the

assumption how the risky branch is perceived and thus modeled in maps B and C.

Figures 2.5.1 through 2.5.3 show how the risky branch is perceived by looking-ahead

and myopic users in the three different maps.

A myopic subject does not account for future information when making the

current choice, and the probability of Myopic subject n choosing the risky branch in

map w and scenario v, Pn
wv(R|M), is the sum of the probabilities of choosing all the

simple paths of the risky branch (see the second diagram of Figures 2.5.2 and 2.5.3).

Let Zw be the set of paths in the risky branch in map w, that is, ZB = {r2, r3}, and

ZC = {r2, r3, r4}, where ri represents route i. I then have

Pn
wv(R|M) =

∑
i∈Zw

Pn
wv(ri|M),

Pn
wv(S|M) = Pn

wv(r1|M),
(2.1)
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where Pn
wv(i|M) is the probability of a Myopic subject n choosing path i in map w

and scenario v. A mixed Logit with linear-in-parameter utility functions is specified

for the path choice model with a choice set of Zw ∪ r1, with r1 being the safe branch.

Potential explanatory variables to be included in the utility functions are listed in

Table 2.5.1, including summary statistics of stochastic travel times such as mean and

variance, a path-size (PS) variable to adjust for path overlap (See Appendix 5.3.2 for

the definition and calculation of the PS variable), dummy indicators of information

availability, network complexity, and test environment, and a subject’s demographic

characteristics including age, gender and driving experience. A uniform ASC is specified

for all the paths of the risky branch, roughly an ASC for the risky branch. It is a random

parameter normally distributed over subjects to account for the panel data.

A looking-ahead subject, on the other hand, realizes that the extremely large

travel time, tM , is a red herring and can be avoided by switching to an alternative route.

In map B at node i, one can switch to route 2 with a travel time tH if tM is realized

on route 3. See the first diagram of Figure 2.5.2. In map C, route 2 is stochastically

dominated by the safe branch and assumed not considered by a looking-ahead subject,

the rationale being that someone who has the mental capacity to plan ahead for future

information is likely capable of eliminating clearly unfit options; and then at node i2,

one can switch to route 3 with a travel time tH if tM is realized on route 4. As a result,

the risky branch in map B or C as seen from the origin is no different from that in map

A, that is, its travel time can be either tL or tH , each with a probability of 0.5. See

the first diagram of Figure 2.5.3. A binary mixed Logit model with linear-in-parameter

utility functions is specified for the branch choice at the origin with the same potential

explanatory variables as in the path choice models for the myopic class.
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Table 2.5.1: Potential Explanatory Variables in Membership Functions and Choice
Model Utility Function

Variable Definition

Only in Membership Utility Functions

ORD The order in which a scenario appears for a given subject in map B or C

in the membership function ∈ {0, 1, 2, 3, 4, 5}.

CMP Dummy variable to represent the network complexity.

0 if the map type is B, and 1 if map type is C.

Only in Choice Model Utility Functions

AVG Expected travel time.

VAR Variance of travel time.

INF Dummy variable to represent information availability.

1 for the risky branch in map B or C; 0 otherwise.

Both in Membership and Choice Model Utility Functions

ASC Alternative-specific constant, specific to the looking ahead class in the

membership function and for the risky branch in the choice model.

SIM Binary variable for the testing environment.

1 if test environment is simulator, 0 otherwise.

AGE Binary variable representing a subject’s age.

Various thresholds of the subjects’ age are considered.

1 if the age is x years or less, 0 otherwise. x = 20, 30.

FEM Binary variable: 1 if the subject is a female, 0 otherwise.

DRV Binary variable to account for subjects’ driving experience.

Various thresholds of the cumulative mileage are considered.

1 if the cumulative mileage is x or more, 0 otherwise. x = 5000, 20000.
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The effects of the test environment, PC vs. driving simulator, are modeled

in two ways. First, the dummy indicator of the test environment can be interacted

with other explanatory variables to differentiate the corresponding variables’ effects by

environment. Secondly, a scale parameter is applied to utility functions of observations

from the PC environment1 to capture the difference in random noise variance between

the two environments, similar to what is commonly done for modeling exercises using

combined revealed preference (RP) and stated preference (SP) data.

The two latent classes for looking-ahead and myopic users are at the

map-scenario level, not the individual level, as I hypothesize that a subject can learn

to look ahead, and thus exhibit different looking-ahead behaviors in different

scenarios. The probability that a subject n in map w and scenario s is looking-ahead,

Pn
ws(LA) is modeled using Logit with a linear-in-parameter utility specification.

Potential explanatory variables Xn
ws are listed in Table 2.5.1 and the corresponding

parameter vector is β. Besides the common set of demographic and test environment

variables as in the choice model, the variable ORDn
wv ∈ {0, 1, 2, 3, 4, 5} is defined to

study the learning of looking ahead behavior, representing the order in which a

scenario appears for subject n in map w and scenario v, where w = B,C, since map

A does not allow for looking ahead behavior. An ASC is specified to represent the

initial propensity of a subject looking ahead without any experience. The

membership function of looking-ahead is thus

Pn
ws(LA) =

exp(β′Xn
ws)

1 + exp(β′Xn
ws)

. (2.5.1.2)

1This effectively sets the scale of simulator observations to a default 1.
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2.5.2 Model Estimation

Let Φ denote the set of model parameters, including those for the choice

models and membership function, and some parameters are random with

distributional parameters, e.g., the mean and variance of a normally distributed ASC.

Let ϕ denote a realization of the random parameter set. I augment the probability

notation from the previous section to include model parameters explicitly, as I write

out the likelihood function to be maximized in estimating these parameters.

Let Pn
ws(b

n
ws|LA, ϕ) be the likelihood of subject n choosing observed alternative

bnws ∈ {S,R} in map w ∈ {A,B,C} and scenario s, where s ∈ {1, . . . , 7} if w = A, and

s ∈ {1, . . . , 6} if w = B or C, given that the subject is in class LA with a realization

of the parameter set ϕ. Pn
ws(b

n
ws|M,ϕ) is similarly defined but for class M .

The likelihood of subject n choosing observed alternative bnws in map w and

scenario s is thus the expectation taken over the two classes,

Pn
ws(b

n
ws|LA, ϕ)Pn

ws(LA|ϕ) + Pn
ws(b

n
ws|M,ϕ)

(
1 − Pn

ws(LA|ϕ)
)
, (2.5.2.1)

where Pn
ws(LA|ϕ) is the probability that subject n looked ahead in map w and scenario

s with a realization of the parameter set ϕ.

The likelihood of subject n choosing the observed choices over all maps and

scenarios is thus a summation over all maps and scenarios,

∏
w,s

(
Pn
ws(b

n
ws|LA|ϕ)Pn

ws(LA, ϕ) + Pn
ws(b

n
ws|M,ϕ)

(
1 − Pn

ws(LA|ϕ)
))

(2.5.2.2)
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The unconditional likelihood of the observed choices over all maps and scenarios

for subject n is the integral of the conditional probability over the probability density

function of Φ,

∫
Φ

∏
w,s

(
Pn
ws(b

n
ws|LA, ϕ)Pn

ws(LA|ϕ) + Pn
ws(b

n
ws|M,ϕ)

(
1 − Pn

ws(LA|ϕ)
))

dϕ. (2.5.2.3)

The log-likelihood of all observations over all subjects is thus

∑
n

ln

∫
Φ

∏
w,s

(
Pn
ws(b

n
ws|LA, ϕ)Pn

ws(LA|ϕ) + Pn
ws(b

n
ws|M,ϕ)

(
1 − Pn

ws(LA|ϕ)
))

dϕ,

(2.5.2.4)

and is maximized using simulation Train (2003).

2.5.3 Results

The model is estimated using PandasBiogeme (Bierlaire, 2018, 2020) with

flexible specifications for latent variables. For each subject, observations from 13

map-scenario combinations are used, with 6 scenarios in map A and 6 scenarios in

map B or C as from Table 2.3.1, and 1 additional map A scenario to test extreme risk

seeking attitude. 1000 simulation draws are performed for the random parameters.

In addition to the latent class model, I also estimate two baseline models without

latent classes, where all users are looking-ahead and myopic, respectively. Table 2.5.2

shows the estimation results of the three models. Variables listed in the first column

are defined in Tabel 2.5.1, and LA or M in parentheses after a variable indicates that its

associated parameter is specific to the looking-ahead or myopic class, while “simulator”
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indicates that the variable is present only in likelihood functions of observations from

the driving simulator. I only include parameters that are statistically significant at

the 0.05 level 2 in the result table, with the exception of the variable CMP in the

membership function, for the convenience of discussing one of the three hypotheses

laid out in the introduction regarding the effect of network complexity on looking-

ahead ability. In the remainder of this chapter, a default significant level of 0.05 is used

if not otherwise stated.

It can be seen that the latent-class model, which accounts for two possible ways

of utilizing future traffic information for the current route choice, has a better model

fit, either based on ρ̄2 = 1 − LL(β̂)−k
LL(0) or AIC = 2k− 2LL(β̂), where k is the number of

parameters, LL(β̂) the final log-likelihood of the model and LL(0) the log-likelihood

of an equal-probability model. This is consistent with previous results either from

the laboratory (Razo and Gao, 2013) or real world (Ding-Mastera et al., 2019). The

discussion in the remainder of the section will then be focused on the latent-class model.

I first examine the variables in the latent-class membership function, the first

category of variables in Table 2.5.2. Recall that all variables in the membership function

are specific to the LA class. The parameter to ORD is positive and significantly different

from 0 at the 0.05 level, suggesting that subjects learn to look ahead as they experience

more scenarios, that is, when ORD increases, in a given map. The estimated looking-

ahead probability increases non-linearly over scenarios, with 0.5, 0.668, 0.801, 0.890,

0.942 and 0.970 respectively for scenario 1 through 6 in map B, and 0.365, 0.536, 0.699,

2The simulator/PC scale ratio is not significantly from 1.

46



Table 2.5.2: Estimation Results

Variable Parameter Value (Robust std error)

Latent-Class Myopic Only Looking-Ahead Only

Variables in the Membership Function

ORD 0.697(0.140)

CMP −0.552(0.646)∗

Class-specific Variables in Choice Model Utility Functions

VAR (LA) (in 0.0001) 15.6(6.47) −6.26(2.17)

VAR (M) (in 0.0001) −9.74(3.45)

VAR (M, simulator) −12.4(5.90) −5.14(2.51)

INF (LA) −1.96(0.297) −1.37(0.159)

INF (M) 1.33(0.220)

Non-class-specific Variables in Choice Model Utility Functions

ASC (risky branch) µ : 1.91(0.223) µ : 1.22(0.165) µ : 1.54(0.222)

σ : 1.17(0.142) σ : 0.979(0.113) σ : 1.03(0.120)

AVG −0.126(0.0147) −0.146(0.0138) −0.130(0.0125)

No. of Observations 1677 1677 1677

No. of Subjects 129 129 129

No. of Parameters 9 5 5

Equal-probability LL −1162.4 −1162.4 −1162.4

Final LL −688.26 −699.73 −698.25

ρ̄2 0.400 0.394 0.395

AIC 1376.5 1409.5 1406.5

*: The parameter is not significantly different from 0 at the 0.05 level.47



0.823, 0.903 and 0.949 in map C. Note that the differences between maps B and C are

numerically sizable but not statistically significant, as discussed in the next paragraph.

The parameter to CMP is not significantly different from 0 at the 0.05 or 0.10

level, suggesting that data from the current experiment does not support the hypothesis

that a more complex map C makes subjects less likely to look ahead than in a simpler

map B, although the hypothesis is intuitive. Recall that the aggregate analysis in

Section 2.4 concludes that the R-ratio in map C is statistically smaller (at the 0.05

level) than that in map B. The reduced R-ratio shows an observed higher risk aversion,

while the underlying reasons might be something other than the change of true risk

attitude: fewer subjects looking ahead and/or some myopic subjects overestimating

the risk from the risky branch due to the decoy route 2 added to map C. In the model,

the former is captured by the latent-class membership function, while the latter is

partially captured by the inclusion of route 2 in the choice set of myopic subjects. The

insignificant result regarding network complexity suggests that the data does not allow

for the disentanglement of the former from the latter. It follows that recovering latent

factors might require more data on the thought process other than the final choice,

which can be obtained from interviews and a promising direction for future research.

I have tested including the experiment environment variable, SIM in the

membership function, and it is highly insignificant. The testing environment however

does have an effect on myopic subjects’ risk attitude. Looking at the second category,

class-specific variables in the choice model utility functions in Table 2.5.2, I see that

the parameter to travel time variance, VAR (M, simulator) is negative, indicating

that travel time variability has a more negative effect on myopic subjects in the

simulator than in the PC environment, a result consistent with previous
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findings (Szymkowiak et al., 1997; Katsikopoulos et al., 2000; de Luca and Di Pace,

2015). However, such an effect is not observed for the looking-ahead subjects, who are

on average risk seeking indicated by the positive sign of the parameter to the variable

VAR (LA), in contrast to the risk aversion of myopic users suggested by negative

parameters to the variable VAR (M). The class-specific risk attitude and class-specific

impact of additional cognitive load on risk attitude give some preliminary evidence on

the connection between risk attitude and looking-ahead behavior, e.g., both might be

related to the processing capability of the human brain. Further research is needed to

investigate the root cause of such connections.

I have tested including subjects’ demographic information in the class

membership function, including driving experiences, age and gender, but they are not

significantly different from zero at the 0.10 level. Interactions between ORD and

other variables are also tested for their mediating effect on learning, and are found

not statistically significant. Driving experience conceivably could play a role in real

life networks where it takes time and effort to familiarize oneself with the network

and discover diversion possibilities. Such a situation is not replicated in the

experiment where the maps are relatively simple, which could be the reason that

experience is not significant in the membership function.

A class-specific variable related to the looking ahead behavior is the dummy

variable INF, which effectively adjusts the ASC for the risky branch in maps B and

C. In the latent-class model, the parameter to INF (LA) is negative, while that to

INF (M) is not significantly different from zero. This might be due to the fact that

processing future information in maps B and C requires cognitive efforts for looking-

ahead subjects. Note that this negative effect exists together with the positive effect
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resulting from recognizing the value of future information. On the other hand, myopic

subjects ignore future information and thus it does not exert any effect.

I then turn to the third category of variables, non-class-specific variables in

choice model utility functions. The ASC for the risky branch is a normally distributed

random variable whose mean (µ) and standard deviation (σ) are estimated and

presented in Table 2.5.2. On average there is an innate bias favoring the risky branch

when everything else is equal, probably due to the exploration effect. The sizable

standard deviation of the ASC suggests that a certain variation exists over subjects in

terms of their bias. The parameter to the average travel time, AVG, is negative as

expected. Class-specific parameters to AVG are also tested but are not found

significantly different, suggesting that subjects are usually homogeneous in responding

to average travel times, in contrast to their risk attitude as discussed earlier.

2.6 Summary

This experimental study focuses on the looking-ahead behavior of human

subjects in route choice where real-time traffic information that is not yet available

can have an impact on route choice. Specifically the prospect of being able to switch

to a detour when the future information reveals a congested travel time can make the

parts of the transportation network with real-time traffic information, even though

not currently available, more attractive. Built on previous studies on the existence of

looking-ahead behavior, this study further investigates three related research

questions: learning to look ahead, the effect of network complexity on looking-ahead

behavior, and the effect of cognitive load. An experiment is designed where multiple

scenarios are experienced by the same subject to allow for the study of learning,
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networks with increasing complexity are used for the effect of complexity, and two

experiment environments, driving simulator and PC are used for the effect of

cognitive load. An aggregate analysis using choice ratios and a disaggregate analysis

using a latent-class mixed Logit model are conducted.

Aggregate data analysis shows that network complexity negatively affects

subjects’ ratio of choosing the risky branch given an experiment environment. Higher

cognitive load in the driving simulator results in a higher level of risk aversion than in

the PC-based environment for the simplest map. However, when the map becomes

more complex, the testing environment does not affect the ratio of choosing the risky

branch.

In the disaggregate analysis, the estimated latent class membership function

suggests that some subjects can look ahead while others are myopic in making their

route choices, and drivers learn to look ahead over time. The impact of network

complexity on learning is not statistically significant at the 0.05 level, and it is

hypothesized that the current experimental design with only the final choices

observed and not the thought processes elicited, might not be enough to disentangle

the multitude of effects brought on by a more complex network. The effect of

experiment environment on looking-ahead cannot be statistically established.

However it plays a role in risk attitude of myopic subjects - they are more risk averse

in a driving simulator than in a PC-based environment. Furthermore, subjects who

look ahead are found to be risk seeking whilst myopic subjects risk averse. The

class-specific risk attitude and class-specific effect of cognitive load on risk attitude

might suggest that risk attitude and looking-ahead behavior be both connected to the

same factor of brain functioning. A bias against information is found for subjects who
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look ahead, likely due to the cognitive cost of processing information. Such a bias

however is not significant among myopic subjects, likely due to their ignoring

information.

I did not find statistically significant effect of either network complexity or

cognitive load on looking-ahead behavior in this study. The two factors in fact

address the same issue from different angles - the match of cognitive demand and

supply. Increasing network complexity leads to the increase of cognitive demand,

while increasing cognitive load on other tasks such as driving the simulator leads to

the reduction of cognitive supply available for looking ahead. Unlike the study of

learning where six levels of experience are available, either network complexity or

cognitive load has only two levels. In future research, more systematic variations of

cognitive demand and/or supply would would be incorporated and are expected to

better elicit the effect of demand/supply imbalance on looking-ahead behavior, if any.

Looking-ahead is a thought process not directly observed, and needs to be

inferred from observed route choices. While a better experimental design could

potentially better provide the statistical evidence for the various effects we are

interested in, interviews of subjects with direct questions on the thought process

could provide direct evidence and would be another direction of future research.

Interviews could also suggest adequate modeling elements. For example, do myopic

subjects perceive the risky branch as the sum of several routes as is done in this

study, or they also garble them into one composite choice alternative, albeit not in

the same way that looking-ahead subjects do? Answers to such questions would help

build more adequate choice sets for different types of subjects.
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CHAPTER 3

SYSTEM-LEVEL OPTIMIZATION OF MULTI-MODAL
TRANSPORTATION NETWORKS FOR ENERGY EFFICIENCY

USING PERSONALIZED INCENTIVES: FORMULATION,
IMPLEMENTATION, AND PERFORMANCE

This is a collaborative work with Hossein Ghafourian of UMass Amhersrt and

Dr. Moshe Ben-Akiva’s research team, including Andrea Araldo, Ravi Seshadri,

Carlos Lima Azevedo, Yihang Sui and David Sukhin at the Massachusetts Institute of

Technology 1

An efficient, reliable and sustainable transportation system is vital to the

prosperity of society and the well-being of people. Urban transportation networks

worldwide, however, are beset by issues of excessive congestion and energy

consumption, which are critical obstacles in achieving these goals. Given the

limitations in adding capacity, travel demand management has received significant

attention from researchers and practitioners as an effective means of achieving a more

efficient utilization of existing infrastructure. From the real-time demand

management perspective, externalities such as congestion and vehicular emissions

1Araldo, A., Gao, S., Seshadri, R., Azevedo C.L., Ghafourian H., Sui, Y., Ayaz, S., Sukhin,
D., and Ben-Akiva, M. (2019) System-Level Optimization of Multi-Modal Transportation Networks
for Energy Efficiency using Personalized Incentives: Formulation, Implementation, and Performance.
Transportation Research Record 2673:425-438.
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have been historically addressed with information provision (Ben-Akiva et al., 1991)

or pricing strategies (Viti, F. et Al., 2003; Wang, Y. et Al., 2018). Indeed, one of the

most widely discussed demand management strategies is congestion pricing (see

Lindsey (2010) or Tsekeris and Voß (2009) for comprehensive reviews). Congestion

pricing is based on the idea that transportation users should pay for the full cost of

travel, which includes both their own cost and costs imposed on other users due to

congestion. It aims at curbing excessive demand and making efficient use of the

existing transportation facilities. Singapore, London and Stockholm are among the

few major cities over the world that have such a scheme area-wide. For example, in

London, one needs to pay 11.50 £ to drive a personal vehicle within Central London

between 7am and 6pm, with more polluting cars paying more. Congestion pricing is,

however, controversial due to a range of reasons, including the general aversion to

charges, as well as equity concerns, in that it is seen as benefiting high income users

at the expense of low income users.

In recent years, incentive-based demand management strategies are gaining

increasing attention because they are generally considered more acceptable public. In

this research I present Tripod, a smartphone-based system to influence individuals

real-time travel decisions by offering information and incentives with the objective of

optimizing system wide energy performance.

The remainder of the chapter is organized as follows. Section 3.1 presents a

review of the state of the art practices. Section 3.2 presents the overall Tripod

architecture. The system optimization architecture within Tripod is presented in

Section 3.3. Section 3.4 presents the multi-modal demand and supply simulators,

which are the basis of the simulation-based optimization. The formulation of the
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system optimization problem and the solution algorithm are presented in Section 3.5.

Section 3.6 presents the online optimization. Section 3.7 presents the simulation

results in the Boston Central Business District (CBD) network. Finally, Section 3.8

concludes and discusses directions for future research.

3.1 Literature Review

Incentive policies are alternative demand management approaches that,

instead of charging people for using a congestion-inducing or polluting travel option,

reward them for using a less congestion-inducing or polluting travel option (Akamatsu

and Wada, 2017a; Yang and Wang, 2011a; Nie, 2012; Wu et al., 2012a; Grant-Muller

and Xu, 2014; Dogterom et al., 2017; De Palma et al., 2017; Lahlou and Wynter,

2017). Incentive-based strategies have the potential to encourage individuals’ shift

towards multimodal mobility options, thus contributing to a more sustainable and

resilient transport environment. A main goal of multimodal passenger transportation

is to increase the use of public transport modes along with sustainable mobility

options (i.e. cycling, walking) and emerging transport modes (i.e. shared mobility

concepts) as opposed to the use of private vehicles. Recently, a lot of researchers have

focused their attention towards exploring the potential of approaches supporting

behavioral change, including behavior feedback, social comparison, goal setting,

gamification, and personalized suggestions and rewards (Ben-Elia and Ettema, 2009;

Bothos et al., 2014; Khademi and Timmermans, 2014; Anagnostopoulou et al., 2018;

De Kruijf et al., 2018; Jariyasunant et al., 2015; Lieberoth et al., 2018; Song et al.,

2018; Stark et al., 2018; Weber et al., 2018; Yen et al., 2019; Wunsch et al., 2016). A

growing body of literature has focused on reward schemes and other persuasive
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strategies to encourage the shift towards public transport or non-motorized modes,

while the rise of smartphone applications within the transport sector has created a

relatively new era of research that utilizes smartphone technology as a tool for

promoting sustainable transport modes (Baird and Zhao, 2014, Brazil and Caulfield,

2013, Di Dio et al., 2018).

Some researches studied the effects of reward schemes via field experiments in

which, participating travelers are offered different incentives for traveling with the

promoted transport modes. One of the most comprehensive experiment was the

widely documented Netherlands Spitsmijden program rewarding peak hour travel

avoidance (Ettema et al. 2010; Ben-Elia and Ettema 2009, 2011a, b; Knockaert et al.

2011; Kumar et al. 2016; Leblanc and Walker 2013; Tillema et al. 2013). Volunteers

participated in a scheme whereby they could receive daily rewards, either monetary,

or in the form of credits that could be exchanged through a smartphone. Participants

could earn a reward, either by driving at off-peak times, switching to another mode of

transportation, such as cycling, public transport or carpooling, or by working from

home. Researchers found that between 30% to 40% of participants avoided peak hour

driving.

Reward systems which included temporary (e.g. one-month) free bus tickets,

aimed at reducing car use, were investigated in some experiments (Abou-Zeid and Ben-

Akiva, 2012; Abou-Zeid and Fujii, 2016; Thøgersen, 2009; Fujii and Kitamura, 2003;

Bamberg et al., 2003b, see, e.g., ). The authors concluded that temporarily offering car

drivers free bus tickets might change their habits, attitudes, and travel mode choices. In

other studies, actual travel behavioral change has been monitored through smartphone

applications that track participants trips before and during the field trials. de Kruijf
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et al. (2018) examined the impact of monetary incentives on the use of e-bikes in the

Netherlands. Their findings suggest that, although incentive programs can be effective

in promoting e-cycling, special attention should be paid to the targeted groups.

Other experiments have explored the behavioral reaction to point-based,

lottery-based, personalized or smartphone-based static incentives (Castellanos, 2016a;

Merugu et al., 2009a; Cottrill et al., 2013; Zhu, C. et Al., 2015; Lu, 2015; Rey et al.,

2016; Srinivasan, 2017, see, e.g., ). Yang et al. (2018) used a controlled, randomized

trial to measure the effect of a rewards scheme in motivating commuters to travel

earlier in the morning. Results indicated that a mild rewards structure, not entirely

reliant on monetary rewards, performs best and sustains the traffic shift to earlier

hours. Sunio et al. (2018) presented a mobility behavior change support system

offered via web and smartphone applications and explored the potential shift in

changing the travel behavior of university students in Philippines. Similarly to the

above studies, the participating students were motivated by the offer of points.

Some studies conducted stated preferences (SP) survey to model the impact

of rewards on travelers choices. Koo et al. (2013) analysed consumer preferences for

a new point-based incentive program in Korea to promote public transport as part

of an entire green consumption initiative. Leblanc and Walker (2013) carried out

a stated-preference survey in the San Francisco Bay Area to analyze how different

incentive schemes can affect commuting decisions. They investigated the impact of

seven different incentives (cash, lottery, donation, apple credit, high-occupancy vehicle

(HOV) pass, guaranteed parking or free coffee) on travelers commuting choices by

collecting SP data via a web-based survey. As predicted by behavioral economics,

travelers were found to be much more sensitive to charges than to rewards, but also
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different sensitivities were found towards different incentives, e.g.: cash rewards proved

to be more efficient than an HOV pass. Such evaluations are fundamental in the design

and optimization of potential real-time incentive schemes which may, on the other hand,

benefit from personalization to account for such sensitivities. Riggs (2017) conducted a

campus travel survey to evaluate the impact of financial and social incentives on shifting

individuals to non-automotive transportation when traveling to a university campus in

San Luis Obispo, California. The results from Riggs (2017) indicated that the social

nudge had a high degree of effectiveness when compared to both the financial incentives

and gifts, while non-monetary incentives were found by Leblanc and Walker (2013) to

be ineffective and receiving cash back was the most preferred reward in Koo et al.

(2013). Although these studies concluded that the type of incentive is a key element

in the success of a reward scheme, different effects may be observed in different people.

Specifically, Ben-Elia and Ettema (2011) concluded that individuals with experience

of or a positive attitude towards using non-auto transport modes (i.e. cycling, public

transport) are more likely to shift to such modes of travel after the implementation of

a reward scheme.

All these proposed schemes are fundamental in capturing different behavioral

shifts but are limited in effectively managing demand in real time. Intuitively appealing

and empirically verified with simple schemes (Meyer et al., 2012; Poslad, S. et Al., 2015;

emp, Accessed: 2018-11-01; Hu et al., 2015), the design, implementation and evaluation

of a real-time, personalized incentive scheme that is also optimized at a multi-modal

system level remains a challenging problem. The challenge is first of all methodological:

which formulation should be used to compute, in real time, the amount of incentives

to reward any traveler entering the transportation system? How can we adapt the
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incentive strategy to a network state that continuously evolves? How can we consider

the impact of our strategy on future time intervals?

In this study, I propose an ensemble of methods to address these questions

and demonstrate their implementation in Tripod, a smart-phone based system that

provides, in real time, personalized incentives in the form of tokens, with the objective

to nudge travelers towards more globally efficient choices of mode, departure time and

route. The primary contribution of this research is the design and the implementation

of a framework and an algorithm to perform real-time system-level token optimization

in a rolling horizon fashion, based on predictive multi-modal traffic simulation. A

novel aspect of the approach is that this complex optimization problem is reduced to

one with a single scalar decision variable, termed the Token Energy Efficiency (TEE).

Conceptually, the TEE corresponds to the amount of energy a traveler must save in

order to earn one token (Lima Azevedo, C. et Al., 2018). The framework adjusts this

value in real-time, adapting to the state of the network, in order to induce the largest

overall energy reduction. Once the TEE for a certain time interval is decided, the

tokens awarded to the traveler for choosing a specific alternative are proportional to

the TEE. The contribution of this research is in the methodology to compute this TEE.

3.2 Overview of Tripod

As presented in Lima Azevedo, C. et Al. (2018), Tripod maximizes in real time

the multi-modal transportation system-wide energy efficiency, by offering personalized

incentives to encourage travelers to select alternatives with smaller energy impact.

I first review Tripod from the user’s perspective, as in Lima Azevedo, C. et

Al. (2018): “When starting a trip, travelers can access Tripod’s personalized menu
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via a smartphone app and are offered incentives in the form of tokens for a variety of

energy-reducing travel options, in terms of route, mode, ride-sharing, departure time,

driving style and actual trip making. Options are presented with information to help

travelers understand the energy and emissions consequences of their choices. By

accepting and executing a specific travel option, a traveler earns tokens that depend

on the system-wide energy savings she or he creates, encouraging them to consider

not only their own energy cost, but also the impact of their choice on the system.

Tokens can then be redeemed for services and goods from participating vendors and

transportation agencies.” Tripod incentives are provided through a personalized

mobility menu, presented to the traveler via Tripod’s smartphone User Interface (UI)

(see Figure 3.2.1).

Figure 3.2.1: Tripod menu UI

In order to achieve system-wide energy efficiency, I have to optimize in

real-time the incentives offered in the menu, taking into account that the incentive
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budget is limited. System-wide maximization of energy savings is a challenging

problem. It needs to consider system-wide supply and demand interactions as well as

individual specific preferences towards different alternatives and token awarding. To

tackle this complexity, Lima Azevedo et al. (Lima Azevedo, C. et Al., 2018)

decomposed the energy efficiency maximization into a bi-level structure with two

loosely coupled problems: the System Optimization (SO) and the User Experience

(UE) (see Figure 3.2.2). The SO is the top level, defining the overall policy

optimization, while UE is the lower layer, taking care of individual specific

optimization, and thus the personalization. The link between these two loosely

coupled problems consists in the computation in real time of the current Token

Energy Efficiency (TEE), defined as the amount of energy a traveler must save in

order to be rewarded with one token. The TEE is the key decision variable of SO and

is used in every menu personalization, triggered by each trip request issued by Tripod

users on the app (see Figure 3.2.2). Along with the TEE, the SO also provides to UE

the full choice set of alternatives (and its policy-consistent predicted attributes) to be

considered in the menu personalization. This chapter focuses precisely on the SO,

detailing in the remainder Sections its formulation, implementation and performance.

The second component, UE, includes three modules: User Optimization (UO),

User Interface (UI), and a preference updater, see (Song et al., 2017b,a; Lu et al.,

2015a; Adnan et al., 2016) for further details. The first is responsible for generating a

personalized menu of travel options to Tripod users upon request, with updated

information and incentives based on the system-wide token energy efficiency, the

transportation performance predictions and the energy impacts generated by SO. To

compute the tokens associated to each menu alternative, UO first computes the
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energy saving, i.e., the amount of energy that this alternative saves compared to the

predicted user choice (i.e. the individual predicted choice without incentives). The

tokens offered in each alternative are then obtained by just dividing the saving by the

current TEE. The UO then selects the alternatives that are attractive to the traveler

based on a utility function, where coefficients for explanatory variables that represent

personal tastes are estimated from historical choices and values of alternative

attributes such as travel time and energy cost are calculated based on the predicted

information from Tripod’s SO. Such a personalized menu aligns with the traveler’s

interest and makes the system’s architecture sustainable. It encourages energy

efficient choices, by presenting to users explicit and accurate energy cost information,

notifications of accidents and alternatives. The UO formulation and preference

updater is described in more detail in Song, X. et Al. (2018).

To summarize, there are two optimization cycles: SO optimizes the entire

transportation system at every roll period, i.e., 5 minutes, whereas the UE optimizes

in real-time an individual menu for each trip request. UE also keeps track of Tripod

users preferences from their menu selections. In addition, UE provides the

information about the updated preferences of Tripod users to SO, for better

predictions of SO strategies. For more details on the overall Tripod architecture and

the UE optimization framework the reader is referred to Lima Azevedo, C. et Al.

(2018) and Song, X. et Al. (2018), respectively.
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3.3 System Optimization Architecture

In summary, SO executes the following operations:

1. It estimates the current state of the multi-modal transportation network.

2. It predicts the state of the network given different token awarding strategies, i.e.

different TEE values.

3. It estimates the energy savings based on the predicted network conditions for the

different token awarding strategies.

4. It provides to the UE a system-wide optimum TEE value in terms of energy

savings per token (Lima Azevedo, C. et Al., 2018).

To do so, the SO builds upon a state-of-the-art real-time simulation-based

dynamic traffic assignment model, called DynaMIT (Ch.10 of AA.VV. (2010)), to

provide predictions of the multi-modal network performance, considering how users

respond to the provided information and incentives. SO build also upon

TripEnergy (Needell and Trancik, 2018), a model that estimates the energy impacts

of traveling. In the next section, I describe the extensions to DynaMIT to model

multiple modes (including transit, carpooling, walk, etc.) and to incorporate the

behavioral response of users to information and incentives from Tripod. Carpooling is

here a private mode which consists in two travelers with the same Origin-Destination

and departing in the same 5 minutes interval choosing to travel with just one private

vehicle.

The four steps above are carried out at every roll period (typically 5 minutes, but

it can be larger for more complex networks). The obtained TEE maximizes the system-
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wide energy savings, based on predicted traffic conditions and energy savings in a future

prediction horizon. This is achieved by performing a simulation-based optimization in

real time that consists of three major components, the Supply Simulator, the Demand

Simulator and the System Optimizer. The first two components are the supply and

demand simulators that interact to simulate the multi-modal system-wide response to

different TEE values. The System Optimizer searches for the optimal TEE based on

the simulated system response. The demand and supply simulators of DynaMIT are

extended with new functions. First, I include modes other than private cars. Second,

the demand simulator is extended with Simulated User Optimization (SUO), which

simulates the user optimization of the UE, i.e. the generation of the menu of the

alternatives shown by the Tripod app, including the tokes allocated to the alternatives.

SUO is important in order to accurately simulate the response of the Tripod users

to tokens. Third, the supply simulator is extended with energy estimation, which

allows the computation of the energy consumption of the whole system, as well as

for each travel alternative. Figure 3.3.1 shows the SO architecture and how the three

components are integrated to produce the optimal TEE.

At the beginning of a roll period, a state estimation is performed to estimate

the current state of the system. The state estimation takes historical demand/supply

parameters as starting values, considers real-time events such as accidents and

performs online calibration against real-time measurements such as counts, speed or

travel time measurements. The output from the state estimation is an estimate of the

current network state, Origin-Destination (OD) trips and behavioral parameters

governing travelers’ choices, including Tripod users’ responses to tokens. Within the

state estimation, the extended demand and supply simulators interact to produce
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Figure 3.3.1: The System Optimization Architecture

estimated traffic conditions. In the supply simulator, vehicle trajectories from the

supply simulation are fed to the energy estimation module to produce energy

consumption estimates. In the demand simulator, SUO receives trip requests from

simulated Tripod users and produces personalized menus in order to simulate users’

response. SUO allocates tokens based on token energy efficiency (TEE) generated in

the previous roll period.

The optimization module is then triggered with the estimated network state

as an input. DynaMIT predicts traffic and energy conditions for the future prediction

horizon, by making the supply and demand simulators interact for different candidate
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values of TEE. The System Optimizer then chooses the best TEE, which will be

employed in the next roll period.

In the next section I describe the multi-modal extensions of the demand and

supply simulators of DynaMIT, including the extensions needed to model the response

of the Tripod users.

3.4 Multi-modal Transportation Demand and supply Models

This section describes the multi-modal demand and supply simulators of

DynaMIT that are used in the state estimation and prediction modules described

previously.

3.4.1 Multi-modal Demand Simulator

The multi-modal demand simulator employs disaggregate and aggregate

representations of demand in terms of both travelers and vehicles (passenger car

equivalents). The disaggregate representation is used to model individual

travelers’pre-trip and en-route decisions, including response to information and

tokens. An aggregate representation in the form of time-dependent Origin-Destination

(OD) matrices (expressed in passenger car equivalents per time interval and travelers

per time interval) is also used to estimate and predict multi-modal OD demands.

Figure 3.4.1 presents the demand simulator flow diagram. The historical

information consists of mode-wise time-dependent OD demand matrices specified in

terms of traveler trips.

In the first step, the historical OD matrices are disaggregated to generate a

population of travelers who are assigned a habitual route, mode and departure time.
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Figure 3.4.1: Multi-modal Demand Simulator

Next, a pre-trip behavioral update is performed, where each traveler updates her choice

of mode, route and departure time based on information of prevailing traffic conditions

and tokens awarded to alternatives (in case of Tripod users). The pre-trip choice is

formulated as a nested logit model (Ben-Akiva and Lerman, 1985) whose structure is

given in Figure 3.4.2 (DT refers to departure time interval). The specification of the

choice model involves attributes such as travel time, travel cost and monetary value of

tokens awarded, as well as alternative specific constants. For example, the utility of an

arbitrary path p under the mode-change (to car) and path-change nest for a habitual

transit traveler n with a habitual departure time interval h is given by:

Unp = βn−TTTTph + βC(Cph − αnpγTKnph) + ϵnp (3.4.1.1)

where βn−TT is the travel time coefficient generated based on a lognormal value-

of-time distribution, βC is the cost coefficient, TTph is the predicted (or historical,

depending on whether the traveler has access to information) travel time on path p in

time interval h, Cph is the monetary cost, γ is the market value of the token, αnp is a

unit-free token value inflation/deflation factor, TKnph is the number of tokens allocated
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to individual n for using path p in interval h and ϵnp is a random error component that

is i.i.d. Gumbel distributed.

Figure 3.4.2: Structure of Pre-Trip Behavior Update Model

Step 2 yields an updated list of travelers, which are aggregated in step 3 back

into mode-wise OD matrices in terms of traveler trips. For the private vehicle modes,

the ODs in terms of traveler trips are converted to vehicle trips using an average

occupancy. The fourth step is OD estimation utilizing the most recent surveillance

data from the network. This involves adjusting or estimating OD demands so as to
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minimize the difference between simulated and observed traffic counts. The OD

estimation module makes use of the supply simulator discussed in the next section

and results in the estimated number of private vehicle ODs (vehicle trips). These are

then used to compute estimates of mode-wise private vehicle ODs (vehicle trips)

based on historical modal splits which, in combination with the historical transit

ODs, yield the estimated mode-wise OD demands in traveler trips. These are used to

generate the final traveler population for the current estimation interval.

3.4.2 Simulated User Optimization (SUO)

For the estimation and prediction to be accurate, we need to simulate, within

the demand simulator, what will be the options Tripod will provide to the users. This

is the role of SUO. The inputs to SUO include all travel options available for a given

origin/destination/departure time (from DynaMIT), TEE (from previous roll period or

optimization trial value) and Tripod users characteristics and preference parameters.

Three steps are involved in generating a personalized menu of travel options with

tokens.

1. For a specific user n, the number of tokens assigned to travel option

i(i = 1, · · · , Cn) is

max

(
0,

En0 − Eni

e

)
,∀n,∀i ∈ Cn. (3.4.2.1)

Eni is the energy consumption of travel option i for user n, En0 is the expected

energy consumption of user n without tokens,
∑Cn

i=1EniPni, where Pni is the

probability of user n choosing option i without tokens, and e is the TEE.
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2. A personalized menu (a subset of travel alternatives out of all travel alternatives

Cn) is generated based on choice probabilities of travel alternatives with tokens

assigned in Step 1. SUO maximizes the expected choice probability across the M

options on the menu by solving the following problem.

max∑N
i=1 xni≤M,xni∈{0,1}

Cn∑
i=1

P ∗
nixni. (3.4.2.2)

The binary decision variable xni denotes whether to include option i or not in

the menu. P ∗
ni is the probability of user n choosing option i with tokens. The

solution is to simply pick the top M options by sorting P ∗
ni.

3. Remove tokens assigned to options not on the menu generated in Step 2.

3.4.3 Multi-modal Supply Simulator

The supply simulator of DynaMIT is mesoscopic (Sec. 1.4.3 of AA.VV.

(2010)), i.e., individual vehicle movement is simulated, but in a simplified manner.

The simulator captures traffic dynamics and evaluates the performance of the

network, including formation and dissipation of queues, spillback effects, impacts of

accidents and bottlenecks. It represents traffic dynamics using macroscopic speed -

density relationships and queuing theory. The multimodal supply simulator derives

largely from the original (Ch.10 of AA.VV. (2010)) with two key enhancements: 1)

Traveler Movement: transit travelers agents are introduced and 2) Buses: a controller

has been developed to manage the fleet of buses.

The various stages of a transit trip are shown in Figure 3.4.3 (PT refers to

Public Transit). There are two main actors: 1) Traveler and 2) Vehicle.
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The Bus controller operates the fleet of buses on the network (this could involve

fleets of multiple operators). It obtains from a database a list of bus lines with the

related stops and frequencies/headways.

Figure 3.4.3: Traveler Movement: Stages of a Transit Trip

The existing vehicle movement models are adapted to appropriately capture

the dwelling of buses at stops and their impact on the traffic stream. Since DynaMIT

naturally models spillback effects and congestion through a queuing part at the

downstream end of each segment, all segments containing a bus-stop are split at the

location of the stop in order to capture the queuing caused by bus dwelling.

The movement of buses can be split into two parts: (i) movement between bus

stops and (ii) movement into and out of a bus stop. The movement between stops is
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similar to that of cars: i.e. the buses are moved using the speed-density model and

the queuing model. Regarding the movement into and out of a stop, when the bus

reaches the end of the segment with a bus stop to serve, it moves into the bus stop if

the residual capacity is non zero. Otherwise, it starts queuing and affects the vehicles

behind it. When the bus stop’s residual capacity allows the bus to enter into the stop,

the queue starts dissipating. After serving the bus stop, the movement of the bus out

of the bus stop depends on the acceptance capacity of the downstream segment. If

there is no queue, the bus moves to the downstream segment like any other vehicle. If

the downstream segment has zero acceptance capacity, the bus remains in the bus stop

until it can move to the downstream segment.

3.5 Optimization Formulation

This section provides a high-level formulation of the SO problem, introduced

in Lima Azevedo, C. et Al. (2018), which will be solved through the heuristic method

presented in the next section.

The predictions of network state are performed in discrete time steps with

a time interval of ∆, called roll period. During time interval [t − ∆, t], I perform

the computation to predict what will be the network state in the prediction horizon

[t, t+H∆], where H ∈ N. The vector of starting times for the roll periods contained in

the prediction horizon for time t is here denoted by τ = (t, t + ∆, t+ 2∆, . . . , t + H∆).

Alternatively, the notation τ is also used to refer to the prediction horizon [t, t+H∆],

with the specific use evident from the context. The decision variable for SO is TEE,

which represents the amount of network-wide energy savings that must be realized

by a user in order to be awarded one token. The TEE is considered to be constant
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within each roll period. The token efficiency values related to a prediction horizon

are represented by the vector e(τ) = (e(t), e(t + ∆), . . . , e(t + H∆)). The total energy

savings predicted within the horizon is denoted by ES(e(τ)).

3.5.1 DynaMIT State Estimation (SE)

As described in the previous sections, at any time t the SO starts an execution

cycle and performs an estimation of the network state using real-world data collected

in the previous roll period [t − ∆, t] as well as historical real-world data for the same

time of day. All the parameters describing demand (OD matrices, behavioral

parameters, etc.) and supply (link capacities, speed-density function, etc.) are

calibrated in order to minimize the discrepancy between simulated and real-world

measurements. DynaMIT SE also considers the choices of Tripod users, given their

individual menu and behavioral parameters, including token related parameters (e.g.

sensitivity to tokens).

3.5.2 DynaMIT State Prediction (SP)

After SE, the SO loop is initiated, by running State Prediction. Given e(τ), the

previous network state and supply-demand parameters, SP predicts how the network

performance will evolve during the prediction horizon τ , yielding the predicted network

states x(τ), including user trajectories (or parts of the trajectories that lie within the

prediction horizon), vn(τ).

3.5.3 Energy Estimation

Given the predicted network states x(τ), the predicted user trajectories vn(τ)

and token efficiencies e(τ), the total energy savings for the network during the
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prediction horizon τ , ES(e(τ)) is calculated by TripEnergy (Needell and Trancik,

2018). It does so by comparing the predicted energy consumption with the baseline

consumption (SP simulation with no tokens), as expressed below.

ES(e(τ)) =
N∑

n=1

f(vne , θ
n) −

N∑
n=1

f(vn0 , θ
n), (3.5.3.1)

where vne , vn0 are the user trajectories that result from providing tokens based on

token efficiency e(τ) and with no tokens, respectively, θn are the travel mode parameters

(e.g. car design parameters, bus type, driving style etc), N is the number of travelers

and f() is the function that computes energy consumption for each user trajectory.

3.5.4 Strategy Optimization Loop

The objective of the Strategy Optimization Loop is to determine the optimal

TEE for the H roll periods within the prediction horizon. For each given TEE value,

the Simulated User Optimization (SUO) module determines the menu of travel

alternatives (with tokens) offered to Tripod users on the network; SP updates the

demand and calculates the new network states; the TripEnergy module evaluates the

energy savings relative to the no-incentive base case. Based on these inputs, the

objective function of maximizing network-wide, entire-day energy savings potential is

evaluated. The maximization is performed subject to the constraint that the balance

of tokens W (τ, e(τ)) at the end of the prediction horizon is non-negative. Note that

W (τ, e(τ)) is the token balance at the beginning of the prediction horizon minus

token consumption during the prediction horizon for a given vector e(τ) of TEEs.

This optimization can be stated as follows:
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maxe(τ)ES(e(τ))

subject to:

e(τ) ≥ 0,W (τ, e(τ)) ≥ 0.

(3.5.4.1)

In the current study the TEE is assumed constant in the prediction horizon

(still time-varying by roll period). This results in a single decision variable and allows

for a simpler search. The continuous interval (decision space) is discretized using

a reasonable step-size obtained by trial-and-error. The objective function value for

different TEEs can be evaluated in parallel and the optimal solution obtained in a

single iteration of the optimization. This is described in detail in the next section.

3.6 On-line optimization

The goal of SO is to find the sequence e(τ) of TEE values for the next prediction

horizon that minimizes the energy consumption of the entire transportation system

under the token budget constraint. The optimization is performed on-line and adapts

to the evolution of network state. This implies that I do not compute e(τ) just when

SO is launched, but I continuously compute it over time, appending each time new

values new values to it. SO is implemented running M instances of DynaMIT in

parallel, all controlled by a Coordinator, whose role is to (i) synchronize the instances

and ensure they work in real time, (ii) pass the information they need, (iii) orchestrate

their operations and (iv) decide at each roll period t what will be the next TEE e(t+∆).

The value e(t+ ∆) will be communicated to the User Optimization module and will be

actually used to compute the incentives proposed to the real users during the interval
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Figure 3.6.1: The on-line optimization procedure.

[t + ∆, t + 2∆]. The real-time requirement is equivalent to requiring that e(t + ∆) be

computed before t + ∆.

I assume that tokens are granted to travelers on a First-Come-First-Served

basis. I take into account the constraint on eq.(3.5.4.1) by assigning a maximum per-

period token budget. Referring to eq.(3.4.2.1), if TEE is too small, I give away tokens

“too easily”, in return for a small energy reduction, to the first travelers making trips in

the roll periods. This would prevent from rewarding travelers guaranteeing more energy

savings but arriving later. On the other hand, if TEE is too high, the amount of tokens
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given to travelers may be too small to affect their behavior. Therefore, finding the

optimal value of TEE is not trivial. This is done by heuristically exploring the impact

of a set of TEE values within a certain interval.

At each roll period t, each DynaMIT instance performs an estimation phase

(SE), followed by a prediction phase (SP). All instances have identical states during

estimation, since they all read the same real time data and historical data. The

instances differ just during prediction, More precisely, during the prediction

performed in a roll period t, the Coordinator instructs each instance to predict the

network state in the prediction horizon. Each instance m = 1, . . . ,M predicts the

effect of a different future candidate TEE value, which I indicate with em(t), assuming

to apply it in the entire prediction horizon τ . At the end of the prediction, each

instance returns the predicted energy consumption Em(t). The Coordinator chooses

the instance m∗ that predicted the least energy consumption, i.e.,

m∗ = arg minmEm(t). The respective TEE value em
∗
(t) becomes the TEE to be

employed in the next roll period, i.e., e(t + ∆) = em
∗
(t).

The operations for the computation of the sequence e(τ) are depicted in

Figure 3.6.1 . Let us suppose a roll period of duration ∆ = 5 minutes and prediction

interval 15 minutes, i.e., H = 3. Let us start to describe the system when it is at time

t = 8:00, which is the start of the roll period [8 : 00, 8 : 05]. Before the end of this

period, SO must be able to provide the values of e(t + ∆), i.e., the TEE of the roll

period [8:10,8:15]. To do so, the following sequence of operations takes place at 8:00 :

1. The Coordinator triggers all the DynaMIT instances to execute their estimation

phases, based on sensor data related to the previous 5 minutes, i.e., [7:55,8:00]
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and e(t − ∆). The goal of executing these estimation phases is to make the

internal simulation model consistent with real data. As discussed previously,

all the instances have the same internal state in this phase. Observe that the

parallel execution of the estimation phases of the instances corresponds to step 1

in Section “System Optimization Architecture”.

2. The Coordinator assigns to each instance m a candidate TEE em(t).

3. Each instance predicts the evolution of the network in the interval [8:05,8:20] and

returns the predicted energy consumption Em(t).

4. The Coordinator chooses e(t + ∆) = em
∗
(t), where m∗ = arg minmEm(t) and

communicates this value to the User Optimization module, which will use this

value to determine the incentives that will be shown in the menus generated

during the next roll period [8:05, 8:10].

5. At 8:05, I start these operations again, with estimation based on real data related

to [8:00, 8:05].

3.7 Results

In this section the impact of Tripod optimization on the multimodal

transportation system is evaluated, in terms of energy consumption, mode share and

travel times. To simplify the analysis, first static scenarios are analyzed, in which a

static TEE allocation is fixed and the penetration rate is varied, i.e., the percentage

of travelers that are Tripod users. Then, the penetration rate is fixed and the benefits

of the on-line optimization over the static settings is studied.
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3.7.1 Simulation scenario

The experiments are conducted on the Boston Central District (CBD) network

with 843 nodes, 1879 links, 3075 segments and 5034 lanes including both highways and

arterials between 6 and 9am. Note that I restrict my focus to the peak hours when

the transportation system energy consumption is maximum. As expected, the energy

gains would be lower in other time intervals.

The total number of travelers is 47588. The parameter values in the utility

function (3.4.1.1) are postulated as follows: βT = −0.01, based on empirical studies in

the literature, the value of time (VOT) is assumed to be log-normal distributed with

a mean of $18 per hour and standard deviation of $5 per hour, the cost parameter

βC
n of an individual n is calculated based on a sampled VOT from the log-normal

distribution. The monetary value of a token is γ = 0.50$. Tokens instead of dollars are

used, as the full design of Tripod includes a marketplace where tokens can be exchanged

and its monetary value determined by the market. In the current implementation, the

marketplace is not in place and thus a fixed value is assumed. The perception parameter

αn = 1 for each individual n. As for the parameters of SO, I use a roll period length

of ∆ = 5 minutes and a token budget constraint of 20K per roll period.

3.7.2 Impact on the multimodal transportation

In this section, mode shares, average personal energy consumption, average

personal travel time and token consumption with respect to different penetration rates

(percentage of travelers using Tripod) are presented. Note that the energy saving of

Tripod depends on a myriad of factors, including but not limited to the penetration rate,

the sensitivity of travelers to incentives, the spatial-temporal distribution of the demand
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and the availability of attractive transit options. The penetration rate is a major factor

that is directly related to the investment in the app deployment and thus the focus of

the following computational tests. In contrast, other factors are less controllable, e.g.,

the spatial-temporal distribution of demand and the sensitivity of travelers to incentives

mainly depend on the broader economic, social and demographic developments and the

availability of attractive transit options requires significant capital investment besides

the app. Note that, for the sake of simplicity, I do not model the possibility for a

Tripod user to opt out. However, if a user does not find the propositions from Tripod

attractive, she will simply ignore them, thus not contributing to the energy savings I

will show later.

Figure 3.7.1: Mode share in the base model
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Figure 3.7.2: Mode share at 25% penetration rate

Figures 3.7.1 through 3.7.4shows the mode share at various Penetration Rates

(PRs) of Tripod. Not surprisingly, higher PR results in higher share of greener modes,

i.e., carpool, bus, walk and bike. The increase of carpool share is more significant than

that for bus, walk and/or bike, probably due to the travel time advantage of carpool

compared to the other green modes as no pick-up or drop-off travel time is accounted

for in carpool.

Figure 3.7.5 shows the average personal energy consumption per trip in

megajoule (MJ) as a function of the PR of Tripod. Not surprisingly, as more travelers

are incentivized (higher PR), the energy saving per person is higher. There is also an

indication of the saturation effect, in that the rate of the change decreases with the
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Figure 3.7.3: Mode share at 50% penetration rate

PR. For example, an additional 4% saving is achieved when the PR increases from

50% to 75%, while an additional 2.5% saving is achieved when the PR increases from

75% to 100%. shows the personal energy consumption, i.e., the energy consumed by

an individual (different from , in which the energy is per trip). The breakdown by

major mode (bus, carpool and drive-alone) shows that that average personal energy

consumption decreases for all three major modes. The personal energy consumption

of the two private vehicle based modes (drive-alone and carpool) decreases because of

improved traffic condition, that is, lower travel time (see Figure ). The personal

energy consumption of the bus mode decreases due to higher bus ridership. Note that

bus schedule is exogeneous in the system and thus bus vehicle energy consumption
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Figure 3.7.4: Mode share at 75% penetration rate

almost remains the same regardless of incentives. With higher ridership, the bus

vehicle energy is shared by more riders, and thus the energy contribution of each

decreases. Observe that mode switching is not the only source of energy savings: even

the users who drive alone may contribute energy savings by taking more

energy-efficient routes.

shows the average personal travel time as an increasing function of the PR

of Tripod. Note that travel time is not an objective of the optimization, and thus

such an increasing trend is not surprising. A breakdown by major mode (bus, carpool

and drive-alone) shows that the travel time of the two private modes (drive-alone and

carpool) decreases with the PR, while that of bus riders increases with the PR. Note
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Figure 3.7.5: Overall Average Energy Consumption per Trip. Monetary values of
energy savings per trip at $3.00/gallon are shown on the bars.

Figure 3.7.6: Mode-Specific Average Energy Consumption per Trip.
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Figure 3.7.7: Average Personal Travel Time

Figure 3.7.8: Token Consumption per 5 Minutes. The number above each bar is the
average perceived monetary value of tokens per trip.

that travel time of a bus rider includes access, egress and in-vehicle travel times. The

travel time decrease of private modes is due to fewer number of vehicles on the road,

86



resulting from mode shift to bus, walk and bike. The average travel time increase of

bus riders is due to more travelers incentivized to take bus, despite its longer access

and/or egress time. The personal travel time averaged over the system is shown besides

the bars. Collectively, at lower PRs, the mode shares of drive-alone and carpool are

higher and thus the overall average travel time is lower, while at higher PR, the large

travel time of bus riders dominates. However, it should be noted that those who switch

to transit and thus have increased personal travel times do so at their own will, that is,

the fact that they have switched indicates that they perceive that the incentives more

than compensate for their travel time losses.

shows the token consumption by mode as a function of the PR of Tripod.

The total consumption increases with PR, as expected. Carpool has the highest token

consumption, followed by bus. Both have high energy saving potentials, and yet carpool

is in general more attractive than bus due to better travel time. Drive-alone has the

least token consumption due to the least energy saving potential through route choice.

Average monetary values of the consumed tokens per trip as perceived by the

travelers are presented in as numbers above the bars. Note that here the “tokens per

trip” are obtained by dividing the total number of distributed tokens by the number

of trips. I also compute the “tokens per Tripod-trip”, where a Tripod-trip is a trip of

a traveler who accepted a Tripod option, thus consuming a positive amount of tokens.

The perceived monetary values of tokens per Tripod-trip are, as expected, higher:

$2.45, $2.68, $2.76, $2.86 for the penetration rates in the figure. Monetary values of

energy savings estimated at an assumed fuel price of $3/gallon are shown in -left as

numbers on the bars. It should be noted that the perceived monetary value of a token

is different from the cost of providing the token, e.g., if the tokens are exchanged for
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goods as in-kind gifts from participating vendors, the cost of the token to the public

is in fact 0. Similarly, the cost saving from a consumption reduction of one gallon of

fuel, is not necessarily the same as the prevailing market price, if the goal is to evaluate

the societal cost of consuming one gallon of fuel, especially when the market does not

have an adequate mechanism to reflect the external costs of fuel consumption such as

environmental costs. Therefore, these monetary values are presented for information

purpose and should not be used directly to do a benefit-cost analysis.

3.7.3 Performance of the on-line optimization

Figure 3.7.9 shows the benefit of the dynamic aspect of the on-line

optimization strategy, which continuously recomputes the TEE e(t) over time to

adapt to the network evolution. For these results I employ M = 8 parallel instances. I

implement a logarithmic search in the interval TEE=1 and TEE=eMAX = 2000, by

assigning to each instance m = 0, . . . ,M − 1 a candidate TEE em(t) such that

ln em(t) = m · (ln eMAX)/(M − 1), which results in the following discrete values:

{1, 3, 8, 26, 77, 228, 675, 2000}. I compare the overall energy consumption with the

case of static allocation, in which the e(t) does not change along the time. I test

different possible values of static e(t) belonging to the same discrete set above. Note

that, in reality, if I was to implement a static TEE policy, only one static allocation

can be implemented at a time and it is impossible to know in advance what is the

best value to apply. On the contrary, the on-line optimization does not require this

a-priori knowledge, it adapts automatically to the current conditions of the network,

guaranteeing energy reduction.
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Figure 3.7.9: On-line optimization vs. static allocations

It should be noted that this optimization is quite demanding in terms of

computational resources. However, at least in the scenario considered, with a roll

period of 5 minutes and a prediction horizon of 15 minutes, the framework has shown

to be scalable, i.e., the entire SO operations described in this research have been done

in real time. This means that at each roll period, I am able to complete the

computation of the next TEE before the beginning of the next roll period. The
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machine used for the computation is a PowerEdge T630, equipped with two Intel

Xeon E5-2695 v4 2.1GHz processors, 128GB of memory and an SSD disk.

3.8 Summary

This chapter describes the implementation of Tripod’s (Lima Azevedo, C. et

Al., 2018) optimization framework. Tripod is a novel demand management system

that incentivizes travelers in real-time to reduce the overall energy consumption of a

transportation system, under an incentive budget constraint. The optimization tackled

in this research is challenging since it is performed on-line, includes several modes of

transportation, and computes personalized incentives. Moreover, it is guided by the

current state of the network and the predicted state. A methodology to implement a

heuristic method that reduces this complex problem to the search of a single value,

called Token Energy Value is proposed. Predictions are based on multimodal traffic

simulation and models of individual travel decision making, including the response to

incentivization. Simulation results show that this system is potentially effective in

reducing energy consumption under different scenarios and that large benefits come

from the dynamic nature of the optimization.

While I have shown Tripod’s potential for a specific setting, the analysis was

limited to (1) a small network, which does not capture the full extension of travel

patterns, network complexity and computational burden of large networks, (2) the

morning peak period, thus ignoring some behavioral time-dependencies in individual

decision making and the budget allocation across longer periods, (3) a single

configuration of Tripod, as one can easily design a system with different user segment

participation rates, menu generation constraints, a relaxation in having just a single
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token energy value or even subsets of choice dimensions to be incentivized and (4) a

single system objective of energy saving while other viable objectives such as travel

time saving and reliability improvement are not accounted for. For this, future plan is

to integrate the proposed framework with an agent-based simulator (Chen et al.,

2018) for impact validation and scenario exploration. Field trials are also planned to

pursue to evaluate the feasibility and the effectiveness of Tripod in realistic settings.
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CHAPTER 4

COOPERATIVE SCHEME: AN ALTERNATIVE APPROACH TO
AN EQUITABLE AND PARETO-IMPROVING

TRANSPORTATION SYSTEM

User Equilibrium (UE) is based on the assumption that travelers behave

selfishly in a non-cooperative manner to minimize their own travel cost. System

Optimum (SO) is a traffic state where the total cost of the system is minimized.

However, SO is not stable as drivers on slow routes will likely shift to the fast routes,

and cause the system to revert back to UE. Therefore, drivers need to be penalized

through charges or compensated through rewards for the system to move towards SO.

The study of congestion pricing is traced back to the early twentieth century when

Pigou (1920) recommended a tax to be levied on any market activity that generates

negative externalities. Vickrey (1969) proposed a time-varying toll that could

completely eliminate queuing delay, and thereby maximize system efficiency. A

plethora of studies have been conducted in this area since then.

Despite its theoretical appeal, congestion pricing continues to be a hard sell

to people. Major proposals have been remonstrated by public or political opposition.

For example, cordon tolling schemes for Edinburgh and Manchester in the UK were

rejected by public referenda (2005 and 2008). An online petition to the UK government

(2007) attracted more than 1.8 million signatures against road pricing, and effectively

put an end to plans for a national scheme in the UK for the time being. A cordon toll
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plan for New York City was stopped by the New York state legislature (2008) when it

declined to vote on the proposal. These setbacks illustrate the difficulties of designing

congestion pricing schemes that are both efficient and publicly acceptable (de Palma

and Lindsey, 2011).

There are a wide range of factors for the setbacks, and equity is one of the

most cited. Congestion pricing sometimes is characterized as a “regressive tax” (Small,

2007) in that high income travelers who usually have a high value of time (VOT) could

benefit at the cost of low income travelers’ loss. Innovative solutions to the equity issue

have focused on the so-called Pareto-improving schemes, where no traveler is worse off

compared to the no-toll case. Examples include a hybrid scheme between rationing and

pricing (Daganzo, 1995; Song et al., 2014), alternating charging a given fraction of the

drivers (Daganzo and Garcia, 2000b), Pareto-improving pricing, credit-based scheme,

tradable credit scheme, and toll-and-subsidy scheme. In this research, I utilize travelers’

cooperation to achieve an equitable and Pareto-improving transportation system.

The remainder of the chapter is organized as follows. Section 4.1 presents

a review of the existing literature. Section 4.2 presents theoretical analysis of the

cooperative scheme (CS) for both homogeneous and heterogeneous VOT of travelers.

A mathematical formulation of the optimal CS problem is presented in Section 4.3.

Section 4.4 presents the computational tests conducted on a test network. Finally,

conclusions and future directions are provided in Section 4.5.

4.1 Literature Review

Congestion pricing has been recognized as an effective demand management

strategy to reduce traffic congestion and improve system performance. In the absence
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of congestion pricing, traffic is distributed along the different routes in the network

such that a user equilibrium (UE) traffic route assignment pattern is obtained. This

undesirable UE route assignment pattern due to the selfish-routing behavior of the

travelers’ results in the inefficient use of the network capacity and excessive delays

(Pigou, 1929; Lindsney and Verhoef, 2001; Correa et al., 2004; Bonifaci et al., 2010).

Pricing strategies can shift the UE pattern toward a system optimal (SO) pattern

(Pigou, 1929; Vickrey, 1969; Beckmann et al., 1956; Ren et al., 2020), as a portion of

the travelers modify their routes to avoid paying the tolls. Although it has been

gaining more support among politicians, transportation officials, and those in

legislatures, getting the public to accept congestion pricing has always encountered

great resistance (Fageda et al., 2020; Harsman and Quigley, 2011). People tend to

regard the road toll as another lum-sum tax and a perk to the rich people (Frey et al.,

1996).

To make congestion pricing more appealing to the general public, the concept

of Pareto - improvement was introduced to congestion pricing schemes in recent

years. Pareto - improving pricing refers to a scheme that increases social welfare

without making any user worse off when compared to the situation without any

pricing intervention. Among the first in the line of research are (Daganzo, 1995;

Daganzo and Garcia, 2000a; Lawphongpanich and Yin, 2010) who proposed idea of

Pareto - improving strategy.

The first hybrid rationing and pricing scheme was proposed by Daganzo

(1995) to control traffic flow through a bottleneck. He showed that the hybrid scheme

can benefit everyone even without revenue redistribution. Later, Daganzo and Garcia

(2000a) extended the hybrid policy to cope with time-dependent bottleneck
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congestion. They also demonstrated that certain hybrid policy has the potential to

achieve Pareto - improvement even if the revenue is not returned to travelers.

Daganzo’s study was based on the idea that people would take turns in having unpaid

access to the road. Thus, an individual who travels every day would have to pay a

toll only on those days of the week in which his or her car is restricted. Daganzo’s

premise was that this hybrid scheme leaves everybody better off, providing the

necessary public support for the scheme. For identical individuals, this would work.

However, for heterogeneous individuals, it wouldn’t. Higher - income individuals

would benefit from the scheme as they continue commuting by the car faster every

day, by paying the toll on the days of restriction. Lower - income individuals, on the

other hand, would incur a loss on the days of restriction as they could not afford

paying the toll and have no choice but to either switch to public transport or cancel

the trip altogether. This loss, however, would be more than compensated with the

gain from faster car travel during the rest of the week, i.e., days of no restriction.

Nakamura and Kockelman (2002) applied the hybrid between rationing and pricing

strategy in the traffic management of the San Francisco Bay Bridge.

Instead of toll revenue redistribution, Lawphongpanich and Yin (2010)

proposed a Pareto - improving congestion pricing scheme that leads a general

transportation network to Pareto improvement over the status quo. The existence of

a non negative Pareto - improving toll scheme relies on the fact that the original

Wardropian (Wardrop and Whitehead (1952)) user equilibrium (UE) flow distribution

may not be strongly Pareto optimal, which means that the UE flow distribution may

be dominated by another distribution. Therefore, it is possible to design a charging
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scheme that evolves flow distributions to the one that is dominating in order to

achieve a Pareto improvement.

Kockelman and Kalmanje (2005) proposed a revenue - neutral policy called

credit-based congestion pricing (CBCP), in which tolls generated from marginal cost

pricing (MCP) are returned to all licensed drivers in a uniform fashion, as a sort of

driving “allowance”. Under CBCP, the average driver pays nothing; the below - average

driver makes some money; and frequent, long-distance, and peak - period drivers pay

something out of pocket, in effect paying others to stay off congested roads (Kalmanje

and Kockelman, 2004; Gulipalli and Kockelman, 2008; Nie and Liu, 2010; Kockelman

and Lemp, 2011, see, e.g., ). In recent years, tradable credits schemes (TCS) have been

promoted as an alternative to congestion pricing. The basic idea is to link the amount

of traffic allowed on a road facility or network by a certain number of “credits” or

“permits”, which are shared (free of charge) among all travelers who have the “right”

to use the facility (Yang and Wang, 2011b; Wu et al., 2011, 2012b; Nie and Yin, 2013;

Xiao et al., 2013; Zhu, C. et Al., 2015; Lian et al., 2019, see, e.g., ). Similar to the

TCS, (Wada and Akamatsu, 2013; Akamatsu and Wada, 2017b; Brands et al., 2020)

proposed tradable travel permits initially distributed by a central coordinator among

the drivers of the network. Another Pareto - improving strategy investigated in the

literature is the toll and subsidy scheme (TSS) (Liu et al., 2009; Nie and Liu, 2010;

Guo and Yang, 2010; Chen and Yang, 2012, see, e.g.,).

The cooperative scheme (CS) proposed in this research is an extension of the

hybrid scheme between rationing and pricing, first proposed by Daganzo (1995) for

a single bottleneck with flexible demand, and later adopted and extended by other

researchers, e.g., Song et al. (2014). The major distinction is that the CS in this
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research is applied to route choice in a general network, where the “rationing” is route-

specific. This flexibility allows for potentially more room for improvement in both

efficiency and equity, but also renders a more challenging problem.

It is hypothesized that traveler cooperation will bring about transformative

changes to how the transportation system is managed (Klein and Ben-Elia, 2016),

and its implementation can be accelerated by technologies including connected and

autonomous vehicles (CAV). Specifically, with fully autonomous vehicles, the barrier to

participation in the cooperative scheme due to cognitive constraint (e.g., inertia against

regular switching to potentially unfamiliar routes/departure time) and disruption to the

execution due to human errors (e.g., failing to follow specified route) can be significantly

reduced, and even eliminated.

As reviewed in Klein and Ben-Elia (2016), cooperation has been studied

extensively in behavioral economics and game theory to resolve social dilemmas such

as Prison’s Dilemma (Dawes, 1980). Evolutionary game theory provides a competent

theoretical framework for addressing the subtleties of cooperation in such

situations (Murnighan and Roth, 1983; Fehr and Gächter, 2002; Boyd et al., 2003;

Wu and Wang, 2007). (Helbing et al., 2005) conducted experiments on humans

playing two-person route choice games in a computer laboratory to study decision

behavior in repeated games. Results show that a taking-turn strategy that achieves

SO emerges after the two players have enough experience to perceive the value of

cooperation. However, computer simulations and additional experiments indicate that

oscillatory cooperation in route choice games with four players emerge only after a

long time period (rarely within 300 iterations).
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Almost all traffic equilibrium studies make the assumption that travelers are

non-cooperative, for a good reason. With the large number of travelers, the time it

takes for cooperation to emerge is too long for the assumption to be practically valid.

Penalty to defectors (people who do not cooperate) has been suggested (Helbing et al.,

2005; Klein and Ben-Elia, 2016) to promote cooperation. This study operationalizes

the idea in both theoretical and computational analyses.

4.2 Theoretical Analysis

4.2.1 Cooperative Scheme (CS)

Consider a single origin-destination (OD) network (Figure 4.2.1) with fixed

demand d, connected by two routes: Fast Route with a travel time tF at SO and Slow

Route with a travel time tS at SO. The two routes have the same travel time at UE,

tUE , and tF < tUE < tS . xF and xS are the SO flows (positive integers) on Fast Route

and Slow Route respectively, and xF + xS = d. Travel time is a strictly increasing

function of flow.

A cooperative scheme (CS) is defined as travelers taking turns to use Fast

Route. Participants of the cooperative scheme are called “cooperators”. They use Fast

Route on some days and Slow Route on other days following the guidance of a central

controller to maintain an SO flow pattern on each day, even though the composition of

the flow varies from day to day due to turn taking.

4.2.2 A Turn Taking Strategy without Consideration of the Cycle Length

When all travelers are cooperators, a naive turn-taking strategy is such that in

each cycle of d days, each cooperator uses Fast Route for xF days and Slow Route for
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Figure 4.2.1: A single-OD two route network

xS days. The average travel time for each cooperator over a cycle is the average SO

travel time:

tSO =
xF tF + xStS

d
(4.2.2.1)

It is evident that tF < tSO < tUE < tS .

Such a scheme can be directly extended to multiple ODs and more than two

routes per OD when all travelers are cooperators. For any OD (m,n) with demand

dmn, in a cycle of dmn days, each cooperator uses the routes in proportion to the SO

route flows (positive integers). Since SO flows are maintained for each OD, they must

be maintained for the network, although the composition of the flows varies. In classical

traffic assignment problems, flows are fractional numbers instead of integers, however,

when the flow is large enough, the difference of rounding to integers is negligible (not

to mention that flows are integers in reality).
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4.2.3 A Turn Taking Strategy with Shorter Cycle Length

A shorter cycle is preferred as it demonstrates the value of turn-taking in

shorter time and thus more appealing for getting public acceptance. With an

improved strategy, cooperators take turns by blocks. Let g be the greatest common

factor of xF and xS . Cooperators are grouped into d/g blocks. In each cycle of d/g

days, each block of cooperator uses Fast Route for xF /g days and Slow Route for

xS/g days. The resulting average travel time over a cycle is still tSO. In practical

applications, the cycle length might need to be controlled below a fairly small

number, say, 5 working days, to have a realistic chance of acceptance. In such cases,

indifference to small travel time differences (e.g., a 5-minute difference for a 1-hour

trip) can be exploited such that a small number of approximately equal-sized blocks

result in approximately equal average travel time for each cooperator with the

differences under a certain threshold. A turn taking strategy of a small number of

blocks of cooperators is demonstrated in Figure 4.2.2. On day 1, blocks 1 and 2 use

the fast route. On day 2, block 2 switches to slow route and block 3 switches to fast

route. And on day 3, block 1 and 2 interchanges their route. Thus each block of

cooperator uses fast route for 2 days and slow route for 1 day.

4.2.4 Defector Penalty

The cooperative scheme is not stable, as a “defector” who stays on Fast Route

all the time has a lower travel time of tF than a cooperator. As more travelers defect,

the cooperative scheme is broken and the system reverts back to UE. One way to

maintain the cooperative scheme is to impose a defector penalty τ to make defection

more costly than or at least as costly as cooperation.
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Figure 4.2.2: Turn-taking of 3 blocks of cooperators over a cycle of 3 days
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4.2.4.1 Homogeneous VOT

If a single VOT of β̄ is assumed for all the travelers, τ ≥ β̄(tSO − tF ) =

β̄(tS − tF )xS/d.

When τ > β̄(tS − tF )xS/d, defection is more costly than cooperation, and thus

no defectors exist and no financial transactions.

When the penalty is exactly β̄(tS − tF )xS/d and the penalty collected from

defectors is distributed evenly to cooperators, defection is as costly as cooperation.

Multiple cooperative schemes exist with different number of defectors, n, ranging from

0 to xF . When n = 0, the cooperative scheme is the same as described above. When

0 < n < xF , cooperators have to use Fast Route proportionally less often than when

n = 0 to maintain the SO flow pattern, and their average travel time

tCS(n) =
(xF − n)tF + xStS

d− n
. (4.2.1)

tCS(n) is an increasing function of n, and tCS(n) > tCS(0) = tSO,∀n > 0. In other

words, given that the total system travel time remains at the SO value, the reduction

in travel time for defectors (tF < tSO) is at the cost of cooperators in terms of increased

travel time. The increased travel time is compensated for by the re-distributed defector

payment. It can be shown mathematically that defectors and cooperators have the

same generalized cost (combining time and monetary costs) equal to tSO (in time

units). Intuitively, the payment is a transfer within the system and thus does not

affect total system cost, which remains the SO total travel time. The generalized costs

of a defector and cooperator are equal as there are positive numbers of both (non-corner

solution), and as a result, they must be equal to the average SO travel time. When
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n = xF , the cooperative scheme degenerates to traditional congestion pricing with

toll re-distribution, where no turn-taking is happening as Fast Route is filled up by

defectors. Note that a cooperative scheme that does not maintain an SO flow pattern

(but still better than UE in total travel cost) is still possible when n = xF .

4.2.4.2 Heterogeneous VOT

Realistically, VOT is heterogeneous among travelers. Let β be the random

VOT distributed over travelers. If the support of β has an upper bound β̌, it is trivial

to show that a cooperative scheme (maintaining SO flow pattern) always exists with

the defector penalty τ ≥ β̌(tS − tF )xS/d. This is a much milder condition compared

to those for Pareto-improving congestion pricing with toll re-distribution (Nie and Liu,

2010). An added advantage, as mentioned previously, is that no financial transactions

are needed and thus the dooming perception of “tax” is avoided.

Practical considerations might lead to an upper bound on the defector penalty,

for example, to avoid the perception of forced cooperation with the government. When

τ < β̌(tS − tF )xS/d, a traveler with the threshold VOT, β̈ = (1/τ)(tS − tF )xS/d, is

indifferent between cooperation and defection. Travelers with a VOT higher than β̈ will

defect while those with a VOT lower than β̈ will cooperate. The existence condition

of the scheme is thus a condition to ensure that the number of defectors is no larger

than xF . With the same re-distribution scheme, it can be shown that every traveler
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is better off compared to UE1, although the generalized cost is not equalized among

travelers due to heterogeneous VOT.

4.2.5 A Potentially More Appealing CS

A potentially more appealing scheme is to set the penalty to a value high enough

but not too high, so that a certain number of defectors exist while the travel time of

cooperators is strictly better than that in UE. It appeals to high-VOT travelers by

giving them an option to pay for better travel time; it appeals to low-VOT travelers

by reducing their travel time and on top of that, providing monetary rewards (re-

distributed defector penalty). The overall scheme would thus be less likely viewed as

authoritarian. The number of defectors to ensure a strictly improving travel time for

cooperators is such that

n <
xF (tS − tF ) − d(tS − tUE)

tUE − tF
. (4.2.1)

Under the condition that xF (tS − tF ) > d(tS − tUE), such an n always exists. Let Fβ(·)

be the cumulative distribution function of β. The penalty corresponding to a given

number of defectors n is F−1
β (d−n

d )(tS − tF )xS/d.

1The traveler with threshold VOT, β̈, has a generalized cost of tSO that is strictly better than tUE .
S/he can serve as a reference for a regular defectors or cooperators whose VOT is different from β̈. A
regular defector has a higher VOT and the same travel time as the threshold defector. It follows that
the travel time saving tUE − tF is more valuable than for the threshold defector in terms of offsetting
the penalty. The threshold defector is better off and thus the regular defector is also better off. A
regular cooperator has a lower VOT and the same travel time as the threshold cooperator. When the
regular cooperator’s travel time is lower than that in UE, s/he is better off since the re-distributed
penalty can only further reduce the generalized cost. When the regular cooperator’s travel time is
higher than that in UE, the increase in travel time is less detrimental than for the threshold cooperator
in terms of offsetting the re-distributed penalty. The threshold cooperator is better off and thus the
regular cooperator is also better off.
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4.3 A Mathematical Problem Formulation for Optimal CS in a

General Network

The naive CS in the previous section cannot be applied to a real network,

as the cycle length must be short enough to gain public acceptance. Integer non-

linear programming problem formulations are proposed to find optimal CS in a general

network with a given cycle length.

4.3.1 Formulation 1

Let L be the set of links in the network, Imn the set of travelers (all assumed

to be cooperators) between OD pair (m,n) and D the fixed cycle length. ta(.) is the

volume-delay function on link a as a function of the flow on link a. A binary variable,

xmn
adi is defined to indicate whether a traveler is on a particular link on a given day.

xmn
adi =


1, if individual ’i’ of OD pair (m,n) is on link ’a’ on day ’d’

0, otherwise

The average daily total travel time of the system Z(x), is calculated as

Z(x) =
∑
d

∑
a

ta(
∑
mn,i

xmn
adi )

∑
mn,i

xmn
adi/D (4.3.1)

I set up a set of equity constraints to ensure that the CS is equitable to the cooperators.

| 1

D

∑
d

∑
a

ta(
∑
mn,i

xmn
adi )x

mn
adi − umn| ≤ ϵumn,∀(m,n),∀i ∈ Imn (4.3.2)
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where

umn =
1

D ∗ |Imn|(
∑
d

∑
a

ta(
∑
mn,i

xmn
adi )

∑
mn,i

xmn
adi ) (4.3.3)

Equation 4.3.2 ensures that differences of average travel time among cooperators over a

cycle falls within a certain threshold (e.g. 5%). umn is the average travel time between

OD (m,n) over a cycle.

∑
a∈A(m)

xmn
adi = 1,∀(m,n),∀i,∀d (4.3.4)

∑
a∈B(n)

xmn
adi = 1, ∀(m,n), ∀i,∀d (4.3.5)

∑
a∈A(k)

xmn
adi =

∑
a∈B(k)

xmn
adi ,∀k ̸= m,n,∀i,∀d (4.3.6)

Equations 4.3.4 through 4.3.6 are the flow conservation constraints. Equation 4.3.4

implies that the flow out of an origin (m) has to be exactly equal to 1 for any person (i)

on any given day (d). Equation 4.3.5 implies that the flow incoming to a destination

(n) has to be exactly equal to 1 for any person (i) on any given day (d). Equation 4.3.6

implies that the inflow is equal to outflow at any intermediate node for any person(i)

on any given day(d).

Therefore, the cooperative scheme is formulated as a constrained non-linear

optimization problem,
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P1 min
xmn
adi

Z(x)

s.t. Eqs. (4.3.2) − (4.3.6)

x ∈ {0, 1}

4.3.2 Formulation 2

The above formulation is an integer non-linear programming problem which is

difficult to solve due to the combination of non-convexity of Eq. (4.3.2) and the

integrality constraints. I implemented a Lagrangian relaxation algorithm (see

Appendix 5.3.2) to solve the problem and tested it in small problem instances using

Matlab. However the efficiency and effectiveness of the algorithm is still a major

concern and thus an alternative formation is proposed that replaces the equity

constraints (Eq. 4.3.2) with Pareto-improving constraints.

1

D

∑
d

∑
a

ta(
∑
mn,i

xmn
adi )x

mn
adi ≤ tUE ,∀(m,n),∀i ∈ Imn (4.3.1)

where the the average travel time of cooperators over a cycle is no greater than the UE

travel time for any OD.

Formulation 2 is as follows:

P2 min
xmn
adi

Z(x)

s.t. Eqs.(4.3.1), (4.3.4) − (4.3.6)

x ∈ {0, 1}
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4.4 Computational Tests

P2 is easier to solve in that constraint (4.3.1) is convex. However the number

of integer decision variables, which is the product of the total demand (integer), cycle

length and number of links, makes the problem still difficult. A similar strategy as

in the theoretical analysis is adopted where the travelers are divided into groups with

approximately the same size, and the binary decision variables are defined for groups

instead of individuals.

I used BONMIN (Basic Open-source Nonlinear Mixed INteger programming)

(COIN—OR, 2020) which is an open-source C++ code for solving general MINLP

(Mixed Integer NonLinear Programming), run remotely through the NEOS web

interface (NEOS , 2020).

I tested P2 in a single-OD two-route network with the volume-delay functions

presented in Equations 4.4.1 and 4.4.2

t1 = 2 + (
x1

3000
)2 (4.4.1)

t2 = 12 +
x1

3000
(4.4.2)

Sensitivity analysis is done by starting with a demand of 9000 users and then scaling

it in the range of 0.5 to 1.5. Different group sizes ranging from 3 to 5 and cycle lengths

in the range of 3 to 5 are also tested.

Table 4.4.1 shows the optimal turn taking strategy for 9000 users divided into

three groups. It can be seen that three groups of cooperators achieve the SO flow

pattern by taking turns within a cycle length of 3 days. With increased cycle length
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of 4 and 5 days respectively the resulting average travel times are still close to SO and

Pareto-improving for each groups. The defector penalty is calculated by taking the

difference between a free riders (defector) travel time and the highest average travel

time of a cooperator. A constant VOT of 50$/hr is considered for calculating the

defector penalty.

Figure 4.4.1: Average travel time of 3 groups of cooperators over different cycle length

Figure 4.4.1 shows a barplot of average travel time of 3 groups of cooperators

at a demand level 9000. The red horizontal line in Figure 4.4.1 represents the UE
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travel time. It can be seen that each group of cooperators for this demand level has

strictly better travel time than UE.

In order to evaluate the efficiency and equity standard of the cooperative scheme

I used two matrices: % of maximum travel time improvement (% Max), defined as the

difference in average travel time between UE and SO, and the GINI coefficient (0

indicates perfect equity, and 1 inequity).

Table 4.4.2 shows that when demand is low (4500 and 6750), SO and UE are the same

and there is no room for improvement. When the demand is high enough to create

efficiency difference between SO and UE, it seems that the higher the demand, the

smaller the possible gain from turn taking. GINI indices in all cases are fairly small

and achieves 0 with 3 groups, indicating that the equity issue is well accounted for.

Table 4.4.3 shows that a larger number of groups generally improves both the efficiency

and equity of the CS, which is reasonable given that a larger number of groups allows

for more flexibility in the turn-taking.
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Table 4.4.3: Performance metrics with different group sizes and cycle lengths (demand
= 9000)

Cycle
length
(day)

Number of Groups = 3 Number of Groups = 4 Number of Groups = 5

% Max GINI % Max GINI % Max GINI

3 100 0 96 0.021 96 0.063

4 81 0.022 96 0.031 96 0.028

5 85 0.046 96 0 .029 96 0
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4.5 Summary

This research extends the rationing and pricing scheme to a general network to

cope with the equity issue when driving a transportation system from UE to SO. In the

theoretical analysis, it is shown that when the value of time (VOT) is bounded from

above, a Pareto-improving cooperative scheme without financial transactions always

exists, in which case the defector penalty is high enough so that all travelers cooperate.

A more practical and potentially more appealing case is discussed where a certain

number of defectors exist while the travel time of cooperators is strictly better than that

in UE. A mathematical programming problem is formulated for the optimal cooperative

scheme problem in a general network with Pareto-improving constraints and practical

considerations on the length the cooperation cycle. Computational tests on a simple

network and solutions are evaluated in terms of efficiency improvement (total system

travel time) and equitability (Gini index).

Future research directions include 1) systematic testing of the CS as formulated

(P2) in realistic networks, 2) extension of the analysis to probabilistic route choice

so that stochastic UE (SUE) emerges without interventions, and 3) extension of the

formulation to allow a certain fraction of defectors so that the system will not be viewed

as too authoritarian.
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CHAPTER 5

CONCLUSIONS AND FUTURE DIRECTIONS

This thesis focuses on improving the transportation systems performance by

modeling travelers’ looking-ahead behavior in route choice, and optimizing the system

travel time and the energy efficiency of multimodal transportaion networks. The

research summary and future directions are presented below.

5.1 Modeling Travelers Route Choice Behavior

I first summarize the research findings and future directions of my study of

looking-ahead behavior in route choice with real-time information. The rapid

development of information and communication technologies (ICT) enabled a better

flow of information concerning traffic via advanced traveller information systems

(ATIS) such as variable message signs (Hegyi et al., 2005) and more recently,

real-time navigation mobile apps such as google map, Waze which assist travellers to

make their travel choices (Mokhtarian and Tal, 2013). Therefore, studying travellers

route choice behavior with the availability of real-time travel information is very

important for better utilization of the ICT, and thus improve the performance of the

transportation systems.
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5.1.1 Research Summary

In this study, I model looking-ahead behavior in route choice which refers to a

traveler’s taking into account future diversion possibilities enabled by real-time

information in a network with random travel times. Subjects participated in

route-choice experiments in a driving simulator as well a PC-based environment.

Three types of maps in increasing levels of complexity and information availability

were used. The first type required a one-time choice between a safe route and risky

route to gauge the driver’s risk attitude. The other two types offered diversion

possibilities and en-route information along the risky routes to test the driver’s

looking-ahead behavior. Aggregate data analysis shows that network complexity

negatively affects subjects’ ratio of choosing the risky route given an experiment

environment. Higher cognitive load in the driving simulator results in a higher level of

risk aversion than in the PC-based environment for the simplest map. However, when

the map becomes more complex, the testing environment does not affect the ratio of

choosing the risky route.

A mixed Logit model with two latent classes, looking-ahead and myopic, is

specified and estimated, taking into account the panel effect. The estimated latent

class membership function suggests that some subjects can look ahead while others

are myopic in making their route choices, and drivers learn to look ahead over time.

The impact of network complexity on learning is not statistically significant, although

the negative sign is consistent with aggregate analysis in that learning is impeded in

a more complex network. The experiment environment plays a role in risk attitude of

myopic subjects - they are more risk averse in a driving simulator than in a PC-based

environment. Subjects who look ahead are found to be risk seeking whilst myopic
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subjects risk averse. A bias against information is found for subjects who look ahead,

likely due to the cognitive cost of processing information. Such a bias however is not

significant among myopic subjects, likely due to their ignoring information.

5.1.2 Future Directions

In this study, I am not able to show statistically significant effect of either

network complexity or cognitive load on looking-ahead behavior. The two factors in fact

address the same issue from different angles - the match of cognitive demand and supply.

Increasing network complexity is to increase the cognitive demand, while increasing

cognitive load on other tasks is to reduce the cognitive supply to look ahead. Unlike the

study of learning where six levels of experience are available, either network complexity

or cognitive load has only two levels. In future research, more systematic variations

of cognitive demand and/or supply would would be incorporated and are expected to

better elicit the effect of demand/supply imbalance on looking-ahead behavior, if any.

Looking-ahead is a thought process not directly observed, and needs to be

inferred from observed route choices. While a better experimental design could better

provide the statistical evidence for the various effects I am interested in, interviews of

subjects with direct questions on the thought process could provide direct evidence and

would be another direction of future research. Interviews could also suggest adequate

modeling elements. For example, do myopic subjects perceive the risky branch as

the sum of several routes as is done in this study, or they also garble them into one

composite choice alternative, albeit not in the same way that looking-ahead subjects

do? Answers to such questions would help build more adequate choice sets for different

types of subjects.
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5.2 Optimizing Transportation Systems for Energy Efficiency

My first research goal was to study travelers looking-ahead behavior with

real-time information. Then I focus on reducing the energy consumption of the

transportation systems by providing incentives to individual travelers to encourage

them in using energy-efficient travel modes. Each traveler is provided with a set of

personalized energy efficient travel options based on a behavioral model specific to

her/him. When starting a trip, travelers can access Tripod, a smartphone app with

personalized menu and are offered incentives in the form of tokens for a variety of

energy-reducing travel options. At individual level, each traveler maximizes his/her

consumer surplus under a set of preference parameters. At the system level, all

travelers’ choice of travel modes eventually optimize the system wide energy savings.

5.2.1 Research Summary

In this research, I propose the system optimization (SO) framework of Tripod,

an integrated bi-level transportation management system aimed at maximizing energy

savings of the multi-modal transportation system. From the user’s perspective, Tripod

is a smartphone app, accessed before performing trips. The app proposes a series of

alternatives, consisting of a combination of departure time, mode and route. Each

alternative is rewarded with an amount of tokens which the user can later redeem for

goods or services. The role of SO is to compute the optimized set of tokens associated

to the available alternatives, in order to minimize the system-wide energy consumption,

under a limited token budget. To do so, the alternatives that guarantee the largest

energy reduction must be rewarded with more tokens. SO is multimodal, in that it

considers private cars, public transit, walk, car pooling, etc. Moreover, it is dynamic,
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predictive and personalized : the same alternative is rewarded differently, depending on

the current and the predicted future condition of the network and on the individual

profile.

I present a method to solve this complex optimization problem and describe

the system architecture, the multimodal simulation-based optimization model and the

heuristic method for the on-line computation of the optimized token allocation. I finally

showcase the framework with simulation results. Simulation results show that this

system is potentially effective in reducing energy consumption under different scenarios.

Large benefits come due to the dynamic nature of the optimization since it adapts

automatically to the current conditions of the network, guaranteeing energy reduction.

5.2.2 Future Directions

While I have shown Tripod’s potential for a specific setting, the analysis was

limited to (1) a small network, which does not capture the full extension of travel

patterns, network complexity and computational burden of large networks, (2) the

morning peak period, thus ignoring some behavioral time-dependencies in individual

decision making and the budget allocation across longer periods, (3) a single

configuration of Tripod, as one can easily design a system with different user segment

participation rates, menu generation constraints, a relaxation in having just a single

token energy value or even subsets of choice dimensions to be incentivized and (4) a

single system objective of energy saving while other viable objectives such as travel

time saving and reliability improvement are not accounted for. For this, the future

plan is to integrate the proposed framework with an agent-based simulator (Chen

et al., 2018) for impact validation and scenario exploration. Field trials are also
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planned to pursue to evaluate the feasibility and the effectiveness of Tripod in

realistic settings.

5.3 Optimizing System Travel Time for Equity and

Pareto-improvement

In addition to making the multimodal transportation networks more energy-

efficient, I optimize the system travel time by utilizing travelers’ cooperation. I focus

specifically on the so called equitibily problem of congestion pricing and propose a

strategy to ensure Pareto-improving travel time for the system.

5.3.1 Research Summary

As discussed earlier, the equity issue of congestion pricing has been long

discussed in the literature. In this research, I propose an alternative approach to an

equitable and Pareto-improving transportation system based on cooperation among

travelers assisted by defector penalty. In the theoretical analysis, it is shown that

when the value of time (VOT) is bounded from above, a Pareto-improving

cooperative scheme without financial transactions always exists, in which case the

defector penalty is high enough so that all travelers cooperate. A more practical and

potentially more appealing case is discussed where a certain number of defectors exist

while the travel time of cooperators is strictly better than that in UE. A

mathematical programming problem is formulated for the optimal cooperative scheme

problem in a general network with Pareto-improving constraints and practical

considerations on the length the cooperation cycle. Computational tests on a simple

network and solutions are evaluated in terms of efficiency improvement (total system
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travel time) and equitability (Gini index). The results show that the travel time is

Pareto-improving at group level and equity issue is well accounted for.

5.3.2 Future Directions

The major contribution in this research are two-folds. First, I performed

theoretical analysis and derived the existence condition of a cooperative scheme (CS)

that is equitable and Pareto-improving. Second, I formulated the optimal CS problem

and tested it on a single O-D network with two links. One of the future directions of

research is to perform systematic testing of the CS as formulated in (P2) in realistic

networks including multiple O-D’s and links.

The optimal CS formulated in this research is based on the assumption that

travelers have the perfect information, or their perceived travel times are exactly their

actual ones. As characterized in the stochastic user equilibrium (SUE), a more

realistic approach is that the perceived travel time may be considered as a random

variable distributed across the population of users. That is to say, each user may

perceive a different travel time, over the same link. Extension of the current analysis

to probabilistic route choice so that SUE emerges without interventions is planned for

future research.

Another direction of future research is to extend the formulation of optimal CS

to allow a certain fraction of defectors so that the system will not be viewed as too

authoritarian.
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APPENDIX A

PATH SIZE LOGIT EQUATION

I use Path Size (PS) to account for the overlapping of paths for subjects in the

myopic class. The level of overlapping is calculated based on the displayed graphics, as

subjects perused the routes based on the graphics. In map B, it is assumed that route

2 and route 3 are overlapped for two thirds of the entire length from the start node to

the end node. In map C, it is assumed that the nodes i1 and i2 split the entire length

from the start to the end into three even sections.

I use the following equation for calculating the path size variables.

PSi =
∑
a∈τi

(
la
Li

)
1

Na
=

∑
a∈τi

(
la
Li

)
1∑

j∈C δaj
(A.0.1)

where, PSi is the path size variable for path i, la is the length of link a, Li is the

length of path i, τi is the set of links of path i; δaj is 1 if link a is in path j and 0

otherwise.
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APPENDIX B

LAGRANGIAN RELAXATION ALGORITHM

I reformulate the original problem as a maximization problem as follows:

max
xmn
adi ,u

mn
−Z(x)

s.t. |g(x)| ≤ ϵ

x ≥ 0

(B.0.1)

Therefore, the Lagrangian problem is,

θ(λ) = max
λ

{−Z(x)−λi

M∑
i=1

(gi(x)−ϵ)−λj

M∑
j=1,j ̸=i

(−gj(x)−ϵ)−λk

N∑
k=1

(hk(x)−δ)}, ∀λ ≥ 0.

(B.0.2)

Where λ’s are the dual variables. θ(λ) for any value of λ provides an upper bound

for the optimal cooperative scheme and θ∗ = maxλ≥0 θ(λ) is the tightest upper bound.

There exists a duality gap as the objective function is non-convex, that is, θ∗ > Z(x∗).

It is still valuable to solve maxλ θ(λ) as it measures the extent of the sub-optimality of

any solution to the original problem (along with a good lower bound, to be discussed

later).

188



The sub-gradient algorithm θ(λ) is not smooth (with kinks) and thus not

differentiable everywhere. A sub-gradient algorithm is used to solve maxλ≥0 θ(λ). At

iteration k of the algorithm, two critical pieces of information is needed: the

sub-gradient sk and step size αk and a new trial value λk+1 is calculated as in

λk+1 = λk − αks
k. (B.0.3)

Subgradient at iteration k sk =


ϵ− gi(x̃

k)

ϵ + gi(x̃
k)

δ − hj(x̃
k)



where x̃k is the optimal solution to the relaxed Problem (B.0.2) with λ = λk. An

alternative approach for step size is to use

αk =
ck(θ(λk) − Z∗)

(sk)2
, (B.0.4)

where Z∗ is the objective value of the best known feasible solution to the original

problem, and ck is a scalar chosen between 0 and 2. Frequently, the sequence ck is

determined by starting with ck = 2 and reducing ck by a factor of two whenever θ(λk)

has failed to decrease in a specified number of iterations.

189



Feasible solution Any feasible solution to Problem (B.0.1) serves as a lower bound

to Z∗. Let P̃n be the probability of person n choosing the least energy efficient option

among his/her choice set. A reasonably good feasible solution is to use the UE solution

where all travelers use the route with minimum travel time. At any iteration k of the

Lagrangian maximization problem, if the constarints of the original problem are met,

then use Z(x̃k) as the new lower bound if it improves the existing one.
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