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Abstract

To support the wide range of envisioned applications, including autonomous vehicles,
augmented reality, holographic communication, and Internet of Everything (IoE),
future wireless networks must meet demanding requirements for higher spectral and
energy efficiency, lower end-to-end latency and massive connectivity. This requires
a vast upgrade in the technologies of the sixth-generation (6G) wireless networks.
Non-orthogonal multiple access (NOMA) has been advocated as a prospective effective
multiple access technique for future wireless networks due to the wide range of its
potential benefits, including superior spectral efficiency (SE), energy efficiency (EE),
compatibility, user fairness, and flexibility. To exploit additional degrees of freedom
and address the computational complexity with massive connectivity, NOMA has been
recently combined with different types of multiple access techniques and appropriate
optimization designs. Hence, this thesis attempts to utilize the combination of NOMA
with different key technologies, including multiple antenna techniques, conventional
OMA techniques, and intelligent reflecting surface (IRS). In particular, different resource
allocation techniques have been developed for such integrated NOMA systems, from the
downlink (DL) single-input single-output (SISO)-NOMA system, to DL multiple-input
single-output (MISO)-NOMA system, as well as the IRS-assisted NOMA system.

Firstly, a hybrid time division multiple access (TDMA)-NOMA system is considered,
where both the available time slots and the available transmit power are jointly allocated
to maximize the global EE. To further exploit the promising advantages of this hybrid
system, the SE-EE trade-off based design and max-min fairness based design are
presented in this thesis. By utilizing different convex relaxation and approximation
techniques, the non-convexity of the formulated optimization problems are transformed
into convex problems. Finally, this thesis investigates a worst-case robust design for an
IRS-assisted NOMA multi-user MISO system to maximize the EE with a set of quality
of service (QoS) constraints. In particular, an iterative algorithm based on alternating
optimization (AO) is proposed to design the transmit beamforming vectors at the base
station (BS) and reflection coefficient matrix for IRS. The effectiveness advantages of
all the proposed schemes are demonstrated through numerical simulation results.
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Chapter 1

Introduction

1.1 Overview

In the last few decades, mobile wireless communications have been changing enormously,
which is considered upgrading to a new generation every ten years [4]. The applications
of wireless communications are growing exponentially. They include augmented reality
(AR), autonomous vehicles, virtual reality (VR), mixed-reality (MR), and Internet of
Things (IoTs) [4, 5]. In 1979, the first cellular system in the world was launched by
Nippon Telephone and Telegraph (NTT) in Tokyo, Japan. Based on the the launch
of Nordic Mobile Telephone(NMT) system and the Advanced Mobile Phone System
(AMPS), the first generation (1G) mobile system was introduced and used analog
transmission for voice services [6]. This analog system employed a multiple access
method called frequency division multiple access (FDMA). In FDMA, the available
channel bandwidth is divided into many sub-frequency bands, where each band is
dynamically assigned to a specific user to access the network. However, there was only
limited bandwidth available, which means that only a very small group of users can
communicate simultaneously with a base station (BS).

Compared to 1G system with analog technology, the second generation (2G) system
used digital signals to provide better quality and capacity, which enabled users to
deliver text messages, picture messages at a low speed [7]. In particular, the two
important multiple access techniques, such as time division multiple access (TDMA)
and code division multiple access (CDMA) were utilized to develop 2G systems. Before
moving to the next generation, 2.5G was introduced by combining 2G cellular system
and General Packet Radio Services (GPRS) [6]. Due to the demands of a higher
number of users, the requirements of high speed data rate and multimedia connectivity,
the mobile communication industries started working on a system that can provide
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better services, leading to the emerging of the third generation (3G) cellular system
in late 1980s. In such 3G system, one key feature was support of the air-interface
technology, that is, Wideband code-division multiple access (WCDMA), which included
high-speed downlink (DL) packet access (HSDPA), uplink (UL) high-speed data, UL
high-speed access for time-division duplex (TDD) [8]. The development of the fourth
generation (4G) services in 2010 was a major step forward both in terms of the quality
of service (QoS) and data rate requirements for applications, as well as providing far
more rapid access to the Internet due to its reliability and capability of delivering
larger amounts of data. The goal of 4G is to provide wireless services in anywhere and
at anytime [6]. 4G gives more integrity through orthogonal frequency division multiple
access (OFDMA) with Long-Term Evolution (LTE)-Advanced, third generation project
partnership (3GPP) and mobile Worldwide Interoperability for Microwave Access
(WiMAX). Moreover, it is capable of reaching up between 100 Mbit/s and 1 Gbit/s
speeds in both indoors and outdoors environments, while satisfying premium quality
and high security [9].

As of today, the fifth generation (5G) mobile communication system has been rolled
out in many countries and brought 1000 times of the capability compared to that of
the 4G mobile communication systems [10]. For example, 5G has been deployed in 50
cities in the United States at the end of 2019. The number of mobile base stations
providing 5G services has been to around 3,000 across the UK at the end of 2020. The
Chinese mainland currently has 1.425 million installed 5G base stations that support
more than 500 million 5G subscribers [11–13]. Specifically, 5G is able to achieve higher
spectral efficiency (SE), energy efficiency (EE), and massive connectivity as well as
lower cost and energy consumption [14]. Meanwhile, driven by the exponential growth
of mobile traffic and newly emerging use-cases and applications, the development of a
next-generation system, the sixth generation (6G), is expected to achieve performance
superior to 5G and meet the demanding requirements of wireless networks in 2030 [1].

1.2 Towards 5G and Beyond

1.2.1 Requirements of 5G and Beyond

Based on the framework of International Mobile Telecommunications (IMT) for 2020
and beyond, an overview of the main features of 5G and 6G is shown in Fig. 1.1. There
are eight key performance metrics for evaluating the 5G and 6G networks, including
peak data rate, user-experienced data rate, SE, mobility, latency, connectivity density,
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Fig. 1.1 Key requirements of 6G networks, copied from [1].

EE, and area traffic capacity [2]. It can be seen that the vertices of the inner polygon,
(in red lines), represent the requirements of 5G, and the vertices of the outer octagon,
(in blue lines), represent the requirements of 6G. In the following, the details of eight
key performance metrics are briefly presented.

• Peak data rate

Peak data rate is the highest achievable data rate under ideal conditions. It is
expected to support up to 20 Gbit/s in DL and 10 Gbps for UL in 5G, while
the peak rate of 6G is envisioned to be 1 Tbps that is 50 times that of 5G [15].
This design requirement should consider supporting the much higher data rate
services, such as the extended reality and the holographic communications [16].

• User-experienced data rate

User-experienced data rate is defined as the 5% point of the cumulative distri-
bution function of the user throughput. In particular, individual users can get
at least this minimum achievable data rate at anytime and in anywhere with
a possibility of 95% [17]. 5G should be able to provide 100Mbps for DL and
50Mbps for UL. In 6G, the requirement of this rate is 1Gbps, which is 10 times
that of 5G.

• Spectral efficiency (SE)
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SE refers to the peak SE performance metric, which refers to the highest data
throughput per unit of spectrum resource under error-free conditions. The target
for user peak SE is 30bps/Hz for DL, and 15bps/Hz for UL. In contrast to 5G,
6G will reach up to five times higher SE than that of 5G networks.

• Mobility

Mobility is the maximum moving speed of a mobile station with the acceptable
QoS. In 5G, due to different use-cases, the requirements of mobility are defined
as follows. For higher speed user mobility, it should be supported at 500 km/h,
while the requirements for the dense urban and indoor hotspot are 30km/h and
10km/h, respectively. In 6G, the target for high speed, such as airline system
and hyperloop tube, is up to 1000km/h.

• Latency

Latency is defined as the network delay between the transmitter and receiver
to successfully deliver a packet. The minimal latency of 5G is defined as 1ms
compared with 0.01-0.1 ms expected in 6G, amounting to 10 times better. To
overcome this issue, automatic control systems and digital twin technology can
be introduced to decrease latency [16].

• Connectivity density

Connectivity density is the total number of connected devices per unit area. In
5G, it aims to support 106 devices per square kilometers with different QoS
requirements, while it is expected to support 10 times more connected devices to
107 per square kilometers in 6G.

• Energy efficiency (EE)

EE is defined as the amount of information that can be reliably transmitted
per Joule of consumed energy, and which is a key performance indicator for 5G
networks. In 6G networks, this performance metrics would be 10-100 times better
over that of 5G to improve the overall throughput while reducing the total power
consumption of the networks.

• Area traffic capacity

Area traffic capacity is defined as the total mobile traffic that a network can ac-
commodate for a given traffic speed. For the indoor hotspot case, the requirement
of the minimal area traffic capacity for 5G is 10 Mbps/m2, which is expected to
reach 1 Gbps/m2 for 6G.
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Fig. 1.2 Use-cases and applications for 5G and beyond, copied from [2].

1.2.2 Use-Cases for 5G and Beyond

These key performance metrics are essential elements to enable different envisioned
use-cases and applications in 5G and beyond which include automotive communications,
remote control with haptic style feedback, immersive AR/VR/MR applications, as well
as the very low data rate applications like remote sensors and what is being termed as
the IoTs [18]. Furthermore, a broad range of capabilities would be tightly coupled with
these intended different use-cases and applications in 5G and beyond [2]. Firstly, three
group of use-cases recommended by IMT for 5G and beyond are introduced, which is
depicted in Fig. 1.2. These use-cases can be summarized as follows:

• Enhanced mobile broadband (eMBB)

The eMBB is an extension of 4G broadband services, mainly aiming to fulfill
users’ demand for an increasingly digital lifestyle, such as ultra-high definition
video, augmented reality, and virtual reality [19]. To support a vast amount
of applications, the eMBB can be grouped into three main categories namely,
broadband access in dense areas, broadband access everywhere, and higher user
mobility [20]. Based on this wide variety of usage scenarios, the eMBB has
different requirements. For example, for the case of broadband access in dense
areas, i.e., multi-storey buildings, urban hospitals, theaters, and stadiums, the
requirements of the network will include a higher area traffic capacity and con-
nection density but lower mobility. For the case of broadband access everywhere,
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i.e., suburban and rural areas, the requirements of the network will be seamless
coverage and a lower data rate. However, in other cases for higher user mobility,
i.e., trains, planes, and aircraft, there will be greater demand for mobility but at
a lower capacity [21].

• Ultra-reliable and low latency communications (URLLC)

Unlike the eMBB, the URLLC is a new service category and the most challenging
goal in 5G and beyond communication systems in terms of two conflicting metrics,
namely, low latency and ultra-high reliability.

Generally, latency is a measure of network delay, which should meet multiple
related requirements for URLLC systems, including user plane latency, control
plane latency, and end-to-end latency. In particular, user plane latency is defined
as the one-way transmission time to successfully deliver a packet from the radio
protocol layer 2/3 service data unit (SDU) entry point to the radio protocol
layer 2/3 SDU exit point of the radio interface in either UL or DL, assuming
the user equipment is in active state [21]. The target for user plane latency is
0.5ms for UL, and 0.5ms for DL [22]. Control plane latency is defined as the
transition time from the most battery-efficient state (e.g., idle state) to the start
of continuous data transfer (e.g., active state), which should satisfy the target of
10ms [22]. End-to-end latency refers to the duration between the transmission
of a small data packet from source to destination, including transmitter and
receiver processing time, over-the-air latency, core network latency, queuing delay,
retransmission time, and so on [23]. The URLLC system should provide 10ms
end-to-end latency in general and 1ms end-to-end latency for the use cases with
extremely low latency [20].

The reliability is defined as the success probability of transmitting a packet within
the given time constraint required by the targeted service [23]. For a general
URLLC system, the reliability should meet the requirement that the target packet
failure rate of 10−5 for 32 bytes within 1 ms over-the-air latency [22].

• Massive machine type communications (mMTC)

With the exponential growth of connected devices in future wireless networks,
mMTC, or so-called massive machine-to-machine (M2M) communication are
introduced and designed for IoTs-based services. The main requirement for the
mMTC system is to develop massive communication links for a huge number
of low-cost devices with limited radio resources [24]. Motivated by the crucial



1.2 Towards 5G and Beyond 7

eMBB & CAeC & RTBC

mMTC & COC & UCBC URLLC & EDuRLLC & HCS

• Digital Twins
• Immersive Cloud XR
• Holographic Communication

• Industry 4.0
• Network Sensing
• Autonomous Driving

• Federated Learning
• Native AI Network
• Machine Vision

Fig. 1.3 Use-cases and applications of 6G, copied from [3].

role of mMTC in IoT, some applications have already been developed in relevant
industries, including structural control of smart buildings, transport and logistics
industry, environmental monitoring, and automated health monitoring, and so
on.

Based on these 5G usage scenarios, another six new use-cases and applications
have been envisioned for 6G as shown in Fig. 1.3, including contextually agile eMBB
communications (CAeC), real-time broadband communication (RTBC), event defined
URLLC (EDuRLLC), harmonized communication and sensing (HCS), computation
oriented communications (COC), and UL centric broadband communication (UCBC)
[3]. 6G is expected to go beyond the mobile internet to support ubiquitous artificial
intelligence (AI) services and the Internet of Everything (IoE) applications. For example,
by applying emerging technologies to reshape our life, holographic communications for
tactile and haptic applications to realize multi-dimensional senses exchange (i.e., vision,
hearing, touch, smell, and taste) [16]. 6G will also realize the industry 4.0 revolution,
overcoming the boundaries between the real factory and the cyber computational space
through smart robots and guaranteeing a cost-effective, flexible and efficient way [25].
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1.2.3 Key Enabling Techniques for 6G and Beyond

To meet the unprecedented requirements of 6G systems, some key enabling technologies
have been identified with unique features. These disruptive technologies include
millimeter-wave (mmWave), Terahertz (THz) communications, massive multiple-input
multiple-output (massive MIMO), intelligent reflecting surfaces (IRS), non-orthogonal
multiple access (NOMA), and mobile edge computing (MEC). Although some of these
innovations have already been discussed in the context of 5G, there are still many
associated challenges that need to be addressed in terms of technological limitations
and practical deployment.

• Millimeter-wave (MmWave)

The mmWave is one of the key 5G enabling technologies and also remains an
essential component in 6G networks, which refers to the range of frequency band
between 30 GHz to 300 GHz and the wavelength is between 1 mm and 10 mm
[26]. Using much higher frequencies spectrum opens up more spectrum and also
provides the possibility of having a much large channel bandwidth. With the
utilization of mmWave communications, it can provide us with an extremely
broad bandwidth that none of the existing cellular communications have ever seen
as well as limited inter-cell interference and a significantly reduced transmission
latency [27].

• Terahertz (THz) communications

Although mmWave communications have the potential advantages of increasing
the dimension of antenna arrays and narrow the beams, many of their associated
challenges need to be addressed to meet the 6G requirements. Compared to
mmWave communications, THz communications with 0.1-10 THz frequency band
have a richer spectrum resources and ultra-wideband frequency bands for ultra-
high-speed communication [17], [25]. Specifically, they can take advantage of
both electromagnetic and light waves as well as reduce the spectrum scarcity and
capacity limitations of current wireless communication systems [28].

• Massive multiple-input multiple-output (Massive MIMO)

Massive MIMO technique has attracted much attention since it is able to provide
the flexibility and spatial degrees of freedom by deploying a large number of
antennas at the BS [29]. Compared with the MIMO system, massive MIMO use
antenna arrays with a few hundred antennas to simultaneously serve many tens
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of terminals in the same time-frequency resource. Therefore, the advantage of
massive MIMO is not only to reap all the benefits of conventional MIMO, but
also on a much greater scale [30].

• Intelligent reflecting surface (IRS)

To address the signal propagation impairments, IRS has been envisioned as an
innovative technology for significantly improving the transmission performance
of the networks [3], [28]. In particular, IRS is composed of numerous low-cost
passive reflecting elements, where each element is capable of adjusting the phase
of the incident signal [31], [32]. In addition to these advantages, an IRS can
be deployed between the BS and users to create a new set of high quality
transmission environments through improving the signal strength when the
line-of-sight communication link is blocked by obstacles (e.g., walls in outdoor
buildings) without consuming much transmit power.

• Non-orthogonal multiple access (NOMA)

NOMA has been advocated as a prospective effective solution for future wireless
networks to improve the performance of networks through its potential benefits,
including superior SE, compatibility, fairness, flexibility, and massive connectivity
[33, 34]. In contrast to the conventional orthogonal multiple access (OMA)
scheme, the distinctive feature of NOMA is to serve multiple users using the
same orthogonal radio resources, i.e., time and frequency, by exploiting power-
domain superposition coding (SC) at the transmitter and successive interference
cancellation (SIC) at the receiver [33]. In particular, the SC approach is adopted
to encode signals intended to different users by using different power levels, which
is referred to as the power-domain multiplexing [35]. At the receiver, the SIC
technique is utilized at stronger users to decode the signals intended to the weaker
users prior to decoding their own signals [34, 35]. For future wireless networks,
NOMA has been identified as a viable technique to support the proliferation of
IoTs by offering massive connectivity [36].

• Mobile edge computing (MEC)

Due to the appearance of a lot of applications with computation-intensive and
delay-sensitive computational tasks, the devices will achieve a degraded per-
formance in terms of their limited resources and low computation capabilities
[37]. MEC technology allows such devices to move processing and storage tasks
to the edge computing servers so that the computational delay can be greatly
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reduced. By doing this way, MEC can reduce the delay and energy consumption
of computing tasks significantly and improve the resource utilization.

1.3 Towards Non-orthogonal Multiple Access

As discussed in the previous section, the main idea of NOMA is to serve more than one
user in the same radio resource block, i.e., the time slot in TDMA, the frequency band
in OFDMA, the spreading code in CDMA, and the space in space division multiple
access (SDMA). There are two dominant types of NOMA, namely, power-domain and
code-domain NOMA. The key feature of power-domain NOMA is to allow different
users to share the same time, frequency, and code, but with different power levels. This
feature makes NOMA capable of increasing SE over the conventional multiple access
schemes. In code-domain NOMA, different user-specific spreading codes are assigned
to different users and then multiplexed over the same time-frequency resources. This
thesis focuses on power-domain NOMA.

The potential capability of NOMA to serve multiple users in the same resource block
addresses the increasing demand for massive access in future wireless networks. On the
other hand, NOMA can improve user fairness and be combined with other emerging
technologies, including multiple-antenna techniques, conventional OMA techniques,
and IRS technology. In particular, the combination of NOMA with different multiple-
antenna techniques has been extensively investigated in the literature, such as multiple-
input single-output (MISO)-NOMA [38] and MIMO-NOMA [39] design. For example,
in [38], two algorithms are proposed for solving an EE maximization problem with
the DL beamforming design for the MISO-NOMA system. In [39], the EE design is
investigated in a multi-cluster multi-user MIMO-NOMA system with pre-defined QoS
requirements.

Furthermore, NOMA can also be combined with the existing conventional OMA
techniques, such as hybrid TDMA-NOMA [40] and OFDMA-NOMA [41, 42] systems.
For example, in a hybrid TDMA-NOMA system, several users are divided into different
groups (i.e., clusters) and each cluster is assigned to a time slot for transmission. In
particular, multiple users in each group are served by exploiting power-domain NOMA.

1.4 Thesis Outline and Contributions

In 5G and beyond, NOMA is considered as a promising multiple access technique
for significantly improving the transmission performance in terms of SE, EE, as well
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as massive connectivity [35]. Motivated by demanding heterogeneous requirements
of future wireless networks, combining NOMA with other techniques can bring more
degrees of freedom and exploit their mutual benefits and complementary features.
Therefore, this thesis studied different resource allocation techniques for such hybrid
NOMA systems. This thesis consists of seven chapters and the main contributions of
each chapter are summarised as follows:

In Chapter 2, basic concepts of NOMA and related literature review are presented.
In the first part of this chapter, the fundamental principles of NOMA, such as SIC
and SC techniques, are provided by considering an DL transmission of multi-user
scenario. Furthermore, the combination of NOMA with multiple antenna, conventional
OMA techniques, and IRS are discussed. In the second part of this chapter, a detailed
literature review related to recent resource allocation techniques for different NOMA
systems is provided.

In Chapter 3, different resource allocation techniques to optimize the performance
metrics in future wireless networks are firstly discussed. Next, mathematical optimiza-
tion techniques related to the radio resource allocation problems in NOMA systems are
presented. In particular, the fundamental concepts of convex optimization techniques
are discussed in details. Then, different types of convex optimization problems are
provided. These problems include linear programming (LP), quadratic programming
(QP), quadratic constrained quadratic programming (QCQP), second-order cone pro-
gramming (SOCP) and semidefinite programming (SDP). Furthermore, multi-objective
optimization (MOO) framework are described with necessary details.

In Chapter 4, a hybrid TDMA-NOMA system is introduced, where a joint global
energy efficiency maximization (GEE-Max) design for a DL transmission is considered.
In such a hybrid system, the available time for transmission is divided into several
sub-time slots, and a sub-time slot is allocated to serve a group of users (i.e., cluster).
In this design, both the power levels for users and time slot allocations for the clusters
are considered for a hybrid TDMA-NOMA system. A feasibility check is carried out
as the formulated GEE-Max problem might turn out to be infeasible due to some
constraints. Next, to deal with the non-convexity issues, two iterative algorithms are
developed to solve the feasible GEE-Max problem. In the first algorithm, a novel
SOC formulation along with sequential convex approximations (SCA) is utilized to
realize a feasible solution to the problem. In the second algorithm, the Dinkelbach’s
algorithm is employed to determine the solution of the original GEE- Max problem.
Simulation results demonstrate the superior performance of the proposed GEE-Max
design with opportunistic time allocations. Furthermore, results also confirm that the
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proposed novel SOC approach with the iterative SIC not only provides the solution to
the original GEE-Max optimization problem, but also converges within a few number
of iterations.

Motivated by the importance of both SE and EE in future wireless networks,
an SE-EE trade-off based resource allocation technique for a hybrid TDMA-NOMA
system is considered in chapter 5. The EE and SE are conflicting performance metrics.
Optimizing SE degrades the overall EE, provided the available transmit power is
more than the green power. Similarly, EE maximization does not offer maximum SE.
Unlike the work in previous chapter, which aiming to individually maximize the EE of
the system, this design offers an additional degree of freedom in resource allocation.
Specifically, the proposed design is formulated as a non-convex MOO problem. The
MOO framework is reformulated as a single-objective optimization (SOO) problem by
combining the multi-objectives through a weighted-sum objective function. With this,
each of the original objectives is assigned with a weight factor to reflect its importance
in the design. Then, the SCA and a second-order cone (SOC) approach are jointly
utilized to deal with the non-convexity issues of the SOO problem. Simulation results
reveal that the proposed trade-off based design strikes a good balance between the
objective functions, while meeting the requirements of the system. To fully exploit
underlying benefits of this hybrid TDMA-NOMA system and guarantee the user-
fairness, a max-min resource allocation problem is also formulated in this chapter.
However, this max-min problem is non-convex due to coupled design parameters of time
and power allocations. Hence, a novel SOC formulation is exploited to overcome this
non-convexity issue and an iterative algorithm is developed to realize a solution to the
original max-min problem. Simulation results show that this joint resource allocation
technique has a considerable performance enhancement in terms of both minimum
achieved rate and overall system throughput compared to that of the conventional
resource allocation technique where equal time-slots are assigned to the groups of users.

In Chapter 6, another hybrid NOMA system, namely, IRS-assisted multi-user
MISO NOMA system is introduced. To take into account the inevitable channel
uncertainties, worst-case robust design for such system is studied, where a bounded
channel uncertainty model is considered to define the channel state information (CSI)
errors. The transmit beamforming and reflecting matrix are designed to maximize the
EE under a set of QoS constraints. In particular, the robust EE-Max problem is solved
by jointly designing both the transmit beamforming for BS and reflection matrix for
IRS based on the definition of the system EE, which is defined as the ratio between
the total sum rate and total power consumption. To guarantee the QoS requirement
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of each user, the individual minimum data rate is chosen as a performance metric.
Moreover, the total transmit power and the phase shift unit-modulus constraints are
also incorporated in our formulated problem to guarantee the maximum transmit
power at BS and the unit-modulus requirements of the reflection elements at the IRS,
respectively. Then, an alternating optimization (AO) algorithm is proposed by applying
the S-procedure and SDR to address the original non-convex problem. Furthermore,
due to the imperfect CSI, the constraints are reformulated in terms of convex linear
matrix inequalities (LMIs) that can be easily solved, exploiting the S-procedure. Finally,
simulation results are provided to demonstrate the performance of the proposed robust
IRS-assisted NOMA EE-Max design by comparing that of the design with non-robust
scheme in terms of achieved EE. Simulation results further confirm that the proposed
AO algorithm can provide the solution to the original non-convex EE-Max optimization
problem as well as convergence within a few number of iterations.

Finally, Chapter 7 concludes this thesis and identifies interesting future research
directions.



Chapter 2

Fundamentals Concepts and Literature
Review

In this chapter, the fundamental concepts of the NOMA systems are introduced. Firstly,
the key component techniques of NOMA, namely SC and SIC, are presented, and then
the DL transmission of a two-user single-input single-output (SISO)-NOMA system
is discussed. Next, the combination of NOMA technology with other 5G and beyond
emerging technologies, including multiple-antenna techniques, OMA techniques, and
IRS technology, are presented. Finally, the related literature review on EE resource
allocation, NOMA with multiple-antenna techniques, NOMA with OMA techniques,
and NOMA with IRS technology is shown briefly.

2.1 NOMA Fundamentals

NOMA has been envisioned as a promising multiple access technique to support
different use-cases and applications in future wireless networks. This is due to the wide
range of potential benefits of NOMA [33, 43, 44]. Different from the conventional OMA
technologies, such as TDMA and OFDMA, multiple users in NOMA simultaneously
share the same radio resources, namely time and frequency resources. Generally,
the NOMA technique can be classified into two categories: power-domain NOMA
and code-domain NOMA [35]. In power-domain NOMA, different users are assigned
with different power levels according to their channel conditions, which is the type of
NOMA investigated in this thesis. Unlike power-domain NOMA, code-domain NOMA
allows different users to be assigned with user-specific spreading code sequences over
the entire available time-frequency resources. Moreover, code-domain NOMA can be
characterized as low-density spreading CDMA (LDS-CDMA), low-density spreading-
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Fig. 2.1 A Two-user SISO NOMA system with SC.

based orthogonal frequency division multiplexing (LDS-OFDM), sparse code multiple
access (SCMA), pattern division multiple access (PDMA), and multi-user shared access
(MUSA) [45].

At the transmitter, this simultaneous resource sharing is implemented through
exploiting power domain multiplexing, which is referred to as a power-domain SC
technique. At the receiver, the user with a weaker channel strength (i.e., weaker user)
can decode its signal directly by treating the signal of the user with a stronger channel
strength (i.e., stronger user) as interference. While stronger user needs to detect the
signal intended to weaker users, then subtract this signal from the received signals,
and finally decode its own signal without interference. This process is referred to as
SIC. In the following subsections, the basic concepts of SC and SIC are introduced.

2.1.1 Superposition Coding and Successive Interference Can-
cellation

The SC has been considered to improve the capacity of broadcast channels and the
SE in wireless systems, which allows the transmitter to transmit signals of multiple
users at the same time [35]. In other words, SC is used at the transmitter in order to
efficiently multiplex signals from multiple users. For example, as shown in Fig. 2.1, a
two-user scenario for the NOMA system is considered, where the BS transmits two
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signals to both users using SC. The s1 and s2 denote the symbols intended to the user 1
(U1) and the user 2 (U2), respectively. Let P is the total transmit power and the factor
αi ∈ (0, 1), i = 1, 2, are the fraction of transmit power allocated to user i. Therefore,
the transmitted signal from the BS can be defined as

x =
√

Pα1s1 +
√
Pα2s2, (2.1)

where α1 + α2 = 1. It is worth mentioning that stronger users are assigned with lower
power levels, while weaker users are assigned with higher power [35]. It is assumed
that the U1 has a better channel condition than that of the U2 based on the distance
between users and BS, which is given by

|h1|2 ≥ |h2|2, (2.2)

where hi denotes the channel coefficient between Ui and the BS. Based on the above
assumption, it is obvious to realize that α1 ≤ α2 in Fig. 2.1.

During the decoding at the receiver, the user near to the BS can decode other user
signals due to stronger channel conditions, while the user far from the BS can only
decode its own signals due to weaker channel conditions. The basic idea of the SIC
technique at the receiver is to successively decode different user signals and eliminate
inter-user interference step by step. As shown in Fig. 2.2, the received signal is initially
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demodulated and decoded to detect the signals intended for different users [35]. When
one of the user signals is decoded, the corresponding interference is subtracted from
the rest of the received signals. The second multiplexed signal can be demodulated
and decoded in the absence of interference from the first detected signal. Accordingly,
at user Ui, i = 1, 2, the received signals for the above SISO system are given by

yi = hi(
√

Pα1s1 +
√
Pα2s2) + ni, (2.3)

where ni denotes the additive white Gaussian noise (AWGN) with zero-mean and
variance σi

2 at receiver. Specifically, U1 has better channel conditions than U2 as
defined in (2.2), then U1 would decode the signal s2 and remove it from the combined
signals to decode s1 by employing SIC. U2 decodes its own signal s2 directly from the
received signal with the interference from s1. Consequently, the received signal at user
Ui, i = 1, 2 after SIC processing can be expressed as follows:

ŷ1 = h1

√
Pα1s1 + n1, (2.4)

ŷ2 = h2

√
Pα2s2 + h2

√
Pα1s1 + n2. (2.5)

Therefore, the signal-to-interference and noise ratio (SINR) for U1 and U2 can be
written by

SINR1
1 =
|h1|2Pα1

σ2
1

, (2.6)

SINR2
1 =

|h1|2Pα2

|h1|2Pα1 + σ2
1

, (2.7)

SINR2
2 =

|h2|2Pα2

|h2|2Pα1 + σ2
2

, (2.8)

where SINR2
1 and SINR2

2 denote the SINR of decoding the message intended for U2

at the stronger user U1, the SINR of its own signal of the weaker user, U2, by treating
the signal intended for the stronger user U1 as interference, respectively. For the weaker
user U2, the SINR of decoding this signal can be defined as

SINR2 = min
{
SINR2

1, SINR2
2

}
= SINR2

2. (2.9)
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Note that the equation in (2.9) always holds true when σ2
1 = σ2

2. Based on the
Shannon’s capacity definition, the available data rate for U1 and U2 can be written by

R1 = log2
(
1 + SINR1

1

)
= log2

(
1 +
|h1|2Pα1

σ2
1

)
, (2.10)

R2 = log2 (1 + SINR2) = log2

(
1 +

|h2|2Pα2

|h2|2Pα1 + σ2
2

)
. (2.11)

2.1.2 Advantages of NOMA

NOMA can support to meet the unprecedented requirements of future wireless networks
due to its different potential benefits and the main advantages of this novel multiple
access technique are listed as follows:

• Bandwidth efficiency

In OMA, such as in OFDMA, a specific frequency resource is assigned exclusively
to one user at any time. Then, the overall system may suffer from low SE and
throughput since this user cannot utilize the allocated bandwidth efficiently when
experiencing a deep channel fading. On the contrary, NOMA is attributed to the
fact that it allows each resource block to be shared between multiple users at the
same time by completely removing the orthogonality concept in OMA. Hence,
the resource assigned for the weaker user is also used by a stronger user, and the
interference can be mitigated efficiently through SIC processes at the receiver
ends. Therefore, NOMA exhibits a high bandwidth efficiency and improves the
overall system throughput.

• Fairness

In OMA, the user with a good channel condition has a higher priority to be
served while the user with a poor channel condition has to wait for access, which
opens up naturally fairness problems. However, NOMA always allocates more
power to weaker users. By doing so, NOMA can guarantee an attractive trade-off
between the fairness among users in terms of their achieved throughput.

• Compatibility

NOMA is also compatible with the current and future communication systems
to offer additional degrees of freedom since it can be invoked as an “add-on”
technique for any existing OMA techniques [33]. It does not require significant
modifications to the existing architecture. For example, NOMA has been included
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in the study of DL multi-user superposition transmission by 3GPP LTE Release
13 and UL NOMA techniques for massive machine type communications by 3GPP
LTE Release 14 [46].

• Connectivity

Based on the definition of OMA, the bandwidth resources occupied by the
individual user cannot be shared by other users, which implies that OMA can only
support a limited number of users in practical implementation. However, future
wireless networks are expected to offer massive connectivity to support billions
of smart devices in the IoT era [47]. As such, NOMA can serve multiple users
simultaneously with different channel conditions and utilize the available resource
blocks efficiently. Therefore, it can support massive number of connections
compared to the conventional OMA techniques.

2.2 NOMA with other Techniques

In this section, we present the possibilities of integrating NOMA with different emerging
technologies, including multiple-antenna techniques, conventional OMA techniques,
and IRS technology.

2.2.1 NOMA with Multiple-Antenna Techniques

To exploit the spatial degrees of freedom, multiple-antenna techniques have gained
significant interest in both academia and industry. In particular, multiple antennas
have the potential capabilities to enhancing the bit rate, the error performance, and the
co-channel interference mitigation of the system [48]. Multiple antennas can be utilized
at the transmitters and the receivers. To overcome the path loss due to the propagation
environment, massive MIMO can be utilized to generate narrow high-power beams
for establishing reliable links [49]. When it is combined with NOMA, the capacity of
the networks and system performance, such as SE, EE, and spatial diversity, can be
utilized to a greater extent compared to the single antenna systems.

To further demonstrate the combination of NOMA and multiple-antenna techniques,
a DL transmission of a multiple-user MISO NOMA system is considered, as shown
in Fig. 2.3. This MISO system consists of a BS with M antennas and K single
antenna users U1, U2, . . . , UK located within the coverage area. All signals from BS
are mapped onto the antenna array by corresponding beamforming vector wi ∈ CM×1,
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Fig. 2.3 A multiple-user MISO system.

i = 1, 2, ..., K. Hence, the transmitted signal x from the BS is given by

x =
K∑
i=1

wisi, (2.12)

where si denotes the transmitted symbol for user k. Assume that si, i = 1, 2, ..., K,
are independent and uncorrelated, and the signal powers E[|si|2] = 1. The channel
coefficient between the BS and the ith user is denoted by hi ∈ CM×1, i = 1, 2, ..., K,
and those channels are assumed to be quasi-static fading channels, which means that
hi remains constant within each symbol period. Therefore, the received signal yi at
user Ui can be expressed as follows:

yi = hH
i x+ ni, i = 1, 2, ..., K. (2.13)
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By combining both (2.12) and (2.13), the received signal yi at user Ui can be rewritten
as

yi = hH
i

(
K∑
j=1

wjsj

)
+ ni

= hH
i wisi︸ ︷︷ ︸

desired signal

+hH
i

(
K∑

j=1,j ̸=i

wjsj

)
︸ ︷︷ ︸

interference

+ ni︸︷︷︸
noise

, i = 1, 2, ..., K. (2.14)

In the NOMA scheme, users can be multiplexed in the power domain and the user
ordering can be determined according to their channel strengths. As such, the first
user (i.e., U1) has the strongest channel strength while the channel strength of UK is
the weakest. In other words, the channels can equivalently be ordered as follows:

||h1||2 ≥ ||h1||2 ≥ · · · ≥ ||hK ||2. (2.15)

Based on the users’ channel conditions, Ui should be able to decode the signals intended
for the users from Ui to UK and effectively remove the interference from the {i+1}th to
Kth users, whereas the signals intended for the rest of the users, i.e., U1, . . . , Ui−1 are
treated as the interference at Ui. Therefore, the received signal at Ui after employing
SIC can be expressed as

ŷi = hH
i wisi + hH

i

(
i−1∑
j=1

wjsj

)
+ ni, i = 1, 2, ..., K, (2.16)

where the first term in (2.16) indicates the intended signal for the ith user. The second
term represents the interference from the signals intended for the users U1, . . . , Ui−1.
The last term is the AWGN. According to Shannon’s capacity theorem, the achievable
data rate at the ith user can be defined as follows:

Ri = B log2

(
1 +

|hH
i wi|

2∑i−1
j=1 |hH

i wj|
2
+ σi

2

)
, (2.17)

where B represents the available bandwidth in Hz, which is assumed to be one (B =
1) throughout this thesis.
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User 1

User 2

User K

…

BS

IRS

Fig. 2.4 Illustration of IRS-assisted NOMA communication system.

2.2.2 NOMA with OMA Techniques

Combining NOMA with other orthogonal multiple access techniques, such as OFDMA,
TDMA, offers additional degrees of freedom as different domains can be exploited to
serve a larger number of users [33, 50]. Different hybrid OMA-NOMA approaches
have been considered in the literature, such as OFDMA-NOMA [41, 42, 51–54] and
TDMA-NOMA approaches [55, 56]. In addition, the practical challenges of employing
NOMA in dense networks can be addressed through such combined (i.e., hybrid)
OMA techniques. For example, in the hybrid TDMA-NOMA system, the power-
domain based NOMA and the time-domain based TDMA are jointly utilized to serve
the users in the DL transmission [55, 57]. In particular, the hybrid TDMA-NOMA
system has been recently identified as a promising multiple access technique for various
applications in 5G and beyond [55]. They include IoT applications [58], multi-satellite
relay transmission systems based on TDMA and NOMA [59], and TDMA-based unified
resource management scheme for MEC over Ethernet-based fiber-wireless network [60].

2.2.3 NOMA with IRS technology

IRS is a planar surface comprising a large number of passive reflecting elements, each
of which is able to dynamically alter wireless channels to enhance the communication
performance [61]. This technology can be beneficial in many scenarios to improve the
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performance of the system. For example, it can be deployed on the outside walls of
buildings or the ceiling of factories to bypass obstacles, and can be utilized to suppress
the co-channel or inter-cell interference between users. In contrast to the conventional
relaying systems, the IRS-assisted wireless communications reflect the signals in a
passive way, which can support the link capacity and provide a new solution to solve
the channel fading and interference issues [61].

Moreover, IRS can also be incorporated into NOMA communication systems. As
shown in Fig. 2.4, a DL IRS-assisted NOMA communication system is illustrated,
where there is one BS, one IRS and K users. It is obvious to see that the direct links
between the users and the BS are blocked by obstacles. By employing an IRS between
the users and the BS, the new set of transmission links can be successfully established
by adjusting the reflection coefficients, including phase shift and amplitude of the IRS
[62].

2.3 Energy-Efficient Strategies

With the exponential growth of connected devices in future wireless networks, the
corresponding power consumption becomes a significant issue, requiring careful consid-
eration in the relevant designs [63]. In particular, the excessive power consumption not
only introduces an uncontrolled increase of the CO2 emission levels, but also imposes
additional financial pressures on the users [64, 65]. Therefore, different solution ap-
proaches have been proposed to address these challenges of the unprecedented growth
in the power consumption. These approaches include the deployment of renewable
energy resources [66], recent developments of energy harvesting techniques using si-
multaneous wireless information and power transfer (SWIPT) [67], and integration of
energy efficient resource allocation techniques into wireless networks [68, 69].

EE is defined as the ratio of the achieved sum-rate to the corresponding total
power consumption [63]. The EE based resource allocation techniques strike a good
balance between these two conflicting goals of maximizing the achieved sum-rate and
minimizing the corresponding power consumption [68, 70]. In addition, several EE
designs have been investigated for NOMA transmissions system in the literature, such
as the works in [39, 71–73]. The power and bandwidth allocation have been jointly
considered for a SISO-NOMA system in [71] to maximize the system EE with the
transmit power constraint and minimum rate constraints. In [72], an EE maximization
(EE-Max) problem for the DL SISO-NOMA system has been solved through the EE
optimal power allocation strategy. An EE fairness for MISO-NOMA systems has been
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studied in [73], in which max-min EE and proportional fairness designs have been
addressed relying on the SCA technique. The transmission scheme for EE has been
proposed for the multi-user MIMO-NOMA system under a QoS constraint for each
user in [39]. Numerical results show that the proposed NOMA design improves both
EE and the number of accessible users compared with the conventional OMA.

2.4 Literature Review

NOMA has been recently combined with a wide range of techniques. These include
multiple-antenna [39, 74–78] and conventional OMA techniques [41, 42, 55, 56, 79]. In
these combined systems, power domain multiplexing is utilized along with the other
existing spatial and orthogonal domains multiplexing to meet the demanding massive
connectivity requirements. In particular, these hybrid systems not only exploit different
multiplexing domains to enhance the performance but also facilitate the practical
implementation of NOMA in dense networks [68, 80]. For example, the SE-EE trade-off
based design has been proposed for a MISO-NOMA system in [81]. In this design, a
weighted sum approach based on the priori articulation is utilized to convert the MOO
problem into a SOO problem. An EE maximization problem has been studied for the
massive MIMO-NOMA uplink system in [68]. Then, the proposed schemes achieve
superior EE when compared with the conventional OMA scheme. Another example
SE-EE trade-off based design for massive MIMO systems has been considered in [82]
through the particle swarm optimization algorithm.

In addition, some research works for hybrid OMA-NOMA systems investigate
different resource allocation techniques [40–42]. In hybrid OMA-NOMA systems,
the available OMA resources (i.e., time or frequency) are divided into several sub-
resource blocks, where each sub-resource block corresponds to a set of multiple users
via NOMA technique [40, 80]. For example, in a hybrid OFDMA-NOMA system,
an EE maximization problem has been considered in [41], in which the sub-channel
assignment and the power allocation algorithms were proposed for the system. In
[42], the max-min sum of DL and UL transmit rates among all users joint resource
allocation problem of OFDMA-NOMA system has been investigated. Specifically, two
scenarios have been considered, perfect CSI estimation and imperfect CSI estimation.
Then, an asymptotically optimal algorithm and a sub-optimal algorithm have been
proposed. The energy harvesting capabilities of a hybrid TDMA-NOMA system have
been explored in [40], in which several users are divided into different groups (i.e.,
clusters) and each cluster is assigned to the equal time slot for transmission, aiming to
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minimize the transmit power under minimum rate and minimum energy harvesting
requirements at each user.

Several IRS-assisted NOMA communication systems have been considered in the
literature, such as the works in [62, 70, 83–85]. In [83], a DL IRS-assisted NOMA
transmission scheme has been studied, where IRSs have been deployed at cell-edge
regions to maximize the total number of served users. In [62], a DL multi-channel
IRS-NOMA system has been considered, specifically, the channel assignment, decoding
order, power allocation and reflection coefficients have been jointly optimized to
maximize the achievable system throughput. Further, the design of the UL IRS-NOMA
transmission scheme under individual power constraint has been investigated in [84]. By
considering the secrecy of the IRS-aided NOMA network, a robust beamforming scheme
with imperfect CSI of the eavesdropper has been addressed in [85]. Furthermore, to
maximize the EE, a power allocation and phase shift design strategy has been considered
in [70] by the AO algorithm. The joint power allocation and the reflection matrix of
IRS in this context has been further explored in [61, 86, 87] under the assumption of
perfect CSI at the BS. In [86], a two-user IRS-assisted DL communication with discrete
phase shifts has been studied in both NOMA and OMA systems, with FDMA and
TDMA. A comparison with FDMA/TDMA showed that TDMA can yield superior
performance compared with FDMA when the latter case lacked frequency-selective
IRS reflection coefficients. In addition, it was demonstrated that TDMA requires lower
transmit power than NOMA under symmetric user channels, which is due to the fact
that the IRS reflection has an effect on users’ individual channels in the former case.
Furthermore, this two-user case has been extended to a general case in [61, 87], which
the number of users is more than two.

2.5 Summary

In this chapter, the fundamental principles of NOMA are introduced, including SC,
and SIC, which lays a comprehensive foundation for the technical work in the thesis.
Then, the main advantages of NOMA are discussed, including bandwidth efficiency,
fairness, compatibility, and connectivity, which provides the background knowledge
for the NOMA. Furthermore, the combinations between NOMA and other techniques
are presented, including multiple-antenna techniques, conventional OMA techniques,
and IRS technology, which offers new insight into these emerging technologies. Finally,
recent research works related to NOMA in the literature are reviewed.



Chapter 3

Mathematical Background

Optimization techniques play an important role in the design of many practical
communication systems, especially in research areas, such as signal processing and
resource allocations [88–90]. In this chapter, the fundamental concepts of resource
allocation techniques, convex optimization techniques, and the MOO framework are
provided.

3.1 Resource Allocation Techniques in Wireless Net-
works

Over the past decade, the resource allocation has drawn a significant attention in
wireless networks due to its various benefits [91, 92]. For example, different users may
have different requirements and capabilities in terms of their locations and channel
conditions. The system performances may worsen without considering user diversity
and the assignment of the limited resources. In addition, considering the communication
resources, such as space, time slots, frequency bandwidths, or power levels, the system
performances can be improved by taking the advantages of those diverse resources.
Therefore, a suitable performance metric needs to be selected based on several factors
when designing any future wireless communication systems. In the following, the
resource allocation techniques that have been considered in this thesis are introduced
briefly.
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3.1.1 Power Control Techniques

In wireless communications, transmission power is one of the most important radio
resources [75, 93]. Power control, also known as transmit power control, is a crucial
design problem in wireless networks, as it mitigates the consequences of two fundamental
limitations of wireless networks, including radio spectrum and the life of the battery [92].
The objective of power control in wireless networks is to control the transmit power
to guarantee a certain link quality at each user. For instant, a power minimization
problem, which is referred as P-Min problem, is to minimize the transmit power
consumption under different QoS constraints at each user:

minimize
Pk

∑
k

Pk

s.t. SINRk ≥ S̃INRk, ∀k, (3.1)

where Pk is the transmit power allocated for the kth user, and S̃INRk is the predefined
QoS requirements for the kth user.

3.1.2 Rate-Aware Techniques

Compared to the power control, rate-aware based designs provide additional degrees of
freedom which can be utilized to improve the SE in 6G and beyond wireless networks
[91]. Several rate-aware resource allocation techniques have been widely proposed for
different wireless networks in the literature [94, 95]. In some application scenarios, the
SE is maximized with the available power constraint at the transmitter. In particular,
this utility function is defined as the ratio between the total achievable sum rate and
the total bandwidth and expressed in bits per second per Hz (bps/Hz). This can be
mathematically expressed as

minimize
∑

k Rk

B

s.t.
∑
k

Pk ≤ P̃ , ∀k, (3.2)

where Rk is the achievable data rate of the kth user, B is the bandwidth, and P̃ is the
available total transmit power.

However, maximizing overall throughput of the system degrades the performance of
individual users while compromising user-fairness in terms of achievable rates. Hence,
this fairness problems have been developed, which can be expressed as the minimum
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achievable rate between all users:

maximum min Rk

s.t.
∑
k

Pk ≤ P̃ , ∀k. (3.3)

In such a max-min problem, equal rates will be obtained for all users while satisfying
the power constraints [96].

The power consumption of wireless networks is one of the dominant factors that
has a considerable impact in the design of future wireless communications systems. On
one hand, the excessive power consumption will cause an uncontrolled increase of CO2

emission levels [64, 65, 97], which raises different environmental issues including global
warming and natural disasters [98]. On the other hand, the accelerated growth of
the power consumption will be inherently reflected on the overall costs of the wireless
communication systems. This, as a result, will impose additional financial pressures on
the service providers and consumers. Therefore, EE is defined as the ratio between the
achieved sum rate and the corresponding total power consumption [63]. The EE of a
communication system with unit of bit-per joule can be defined as the number of bits
transmitted per joule of energy consumption in the system [99], which can be written
as

minimize
∑

k Rk∑
k Pk

s.t.
∑
k

Pk ≤ P̃ , ∀k,

SINRk ≥ S̃INRk, ∀k. (3.4)

This section provides different resource allocation techniques to optimize crucial
performance metrics in future wireless networks including the motivations behind
each performance metric are introduced. Specifically, the EE and power minimization
performance metric is mainly focused on in Chapter 4 and Chapter 6. In addition,
the SE and max-min fairness performance metric has been investigated in Chapter 5.
In the following sections, an overview of the fundamentals of convex optimization is
provided to mathematically express these resource allocation techniques.
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Fig. 3.1 Example of a convex set (left) and a non-convex set (right).

3.2 Convex Optimization

Generally, optimization problems can be categorized as convex optimization problems
or non-convex optimization problems. The former problems can be solved efficiently
to determine the optimal solution through interior point methods, while the latter
problems cannot be solved directly by convex optimization tools and software due to
their non-convex nature [88, 100].

3.2.1 Fundamentals of Convex Optimization

Convex Sets

A set C ∈ Rn is called convex if the line segment between any two points in C lies in C,
i.e., for any x1,x2 ∈ C, and any θ ∈ [0, 1] [90]. This can be mathematically expressed
as

θx1 + (1− θ)x2 ∈ C. (3.5)

For example, the unit circle {x ∈ R2|x2
1 + x2

2 = 1} is convex, where (x1, x2) is a point
on the unit circle’s circumference. However, a crescent shape, is not convex since the
line segment joining two distinct points is no longer on the crescent shape, as shown
in Fig. 3.1. In general, a convex set must be a solid body, containing no holes, and
always curve outward. It is worthy to note that the convex set remains as convex in
the following operations:

• The convex set is convex under intersection, even if the number of sets is infinite.
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• If C ∈ Rn is a convex set, A ∈ Rm×n and b ∈ Rm, then its affine transform set
AC + b also preserves convexity, where

AC + b = {Ax+ b | x ∈ C}.

• If C is a convex set, C ⊆ dom P = Rn × R++, then its perspective transform

P (C) = {(x, t) ∈ Rn+1 | x/t ∈ C, t > 0},

is convex. Note that R++ denotes the set of positive numbers. The perspective
function scales or normalizes vectors so the last component is one, and then
drops the last component [90]. The perspective function can be interpreted as
the action of a pinhole camera. For example, a pinhole camera (in R3) consists of
an opaque horizontal plane x3 = 0 and a horizontal image plane x3 = −1. Then,
an object at x, such as (x1, x2, x3) through a pinhole at (0, 0, 0) on the opaque
horizontal plane x3 = 0 forms an image at the point −(x1/x3, x2/x3, 1) on the
image plane x3 = −1. The last component of the image point can be dropped
since it is always fixed.

Convex Cones

A convex cone C is a special type of convex set, that is, for each x ∈ C and each
θ ≥ 0, θx ∈ C. This can be mathematically expressed as

θ1x1 + θ2x2 ∈ C, ∀θ1 ≥ 0, ∀θ2 ≥ 0, x1,x2 ∈ C. (3.6)

In communications, engineering application and signal processing, different forms of
convex cones are utilized, and the most common convex cones are as follows [90]:

• Nonnegative orthant Rn
+

Any subspace is affine, and a convex cone.

• Second-order cone (Quadratic cone)

C = {(x, t) ∈ Rn+1 | ||x||2 ≤ t}, where || · ||2 denotes the Euclidean norm, i.e.,
||x||2 = (xTx)1/2.

• Positive semidefinite cone

C = {X ∈ Sn
+|X ⪰ 0}, where Sn

+ denotes the set of symmetric positive n × n

matrices.
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Convex Functions

A function f(x) : Rn → R is convex if dom f is a convex set and if ∀x,y ∈ dom f(x),
and ∀θ ∈ [0, 1] the following inequality holds [90]

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y). (3.7)

The above inequality means that the line segment between (x, f(x)) and (y, f(y)) lies
above the graph of f . A function f(x) is called strictly convex if strict inequality holds
in (3.7) whenever x ̸= y and 0 < θ < 1. The function f(x) is concave if −f(x) is
convex.

Suppose f(x) : Rn → R is continuously differentiable, for all x,y ∈ dom f(x), then
f(x) is convex if and only if dom f(x) is convex and the following inequality holds

f(y) ≥ f(x) +∇f(x)T (y − x). (3.8)

It is clear to see that the inequality in (3.8) is the first-order Taylor series approximation
of f near x, which is a global underestimator of the function. In other words, if the
first-order Taylor series expansion of a function is always a global underestimator of
the function, then the function is convex.

Furthermore, if f(x) : Rn → R is twice continuously differentiable, then f(x) is
convex if the following inequality holds,

∇2f(x) ⪰ 0, ∀x ∈ Rn, (3.9)

where ∇2f is its Hessian or second derivative. The condition in (3.9) can be interpreted
geometrically as the requirement that the graph of the function has positive (upward)
curvature at x [90]. Thus, all linear and affine functions are convex, and for quadratic
functions f(x) : Rn → R, P ∈ Sn,q ∈ Rn, a ∈ R, with f(x) = 1

2
xTPx + qTx + a is

convex if and only if P ⪰ 0 since ∇2f(x) = P.

3.2.2 Convex Optimization Problems

A convex optimization problem can be mathematically expressed as follows [90]:

minimize
x

f0(x)

s.t. fi(x) ≤ 0, i = 1, 2, . . . ,m,

hi(x) = 0, i = 1, 2, . . . , p, (3.10)
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where the vector x ∈ Rn is the optimization variables of the problem, f0 is called the
objective function (or cost function), the functions f0, f1 . . . , fm are convex functions
and the functions h1, h2, . . . , hp are linear functions, fi(x) ≤ 0, i = 1, 2, . . . ,m, and
hi(x) = 0, i = 1, 2, . . . , p, are called the inequality and equality constraint functions,
respectively. Generally, the convex optimization problem in (3.10) aims to find an
x that minimizes f0(x) among all x while satisfying all inequalities and equality
constraints. The problem is called an unconstrained problem if there is no constraints,
i.e., m = p = 0. The domain of the problem (3.10) is the set of points, for which the
objective and the constraints can be defined as

D =
m⋂
i=0

dom fi ∩
p⋂

i=1

dom hi. (3.11)

If a point x ∈ D satisfies all inequalities and equality constraints, fi(x) ≤ 0, i =

1, 2, . . . ,m, and hi(x) = 0, i = 1, 2, . . . , p, then it is feasible. The problem (3.10) is said
to be feasible if there exists at least one feasible point, and otherwise it is infeasible. A
feasible solution x∗ is said to be optimal point if

f0(x
∗) ≤ f0(x), ∀x ∈ D. (3.12)

A feasible point x̄ is called locally optimal if there exists an R > 0, such that f0(x̄) ≤
f0(x) for all feasible x satisfying ||x − x̄||2 ≤ R. Based on the above definition, a
problem can be classified as a convex optimization problem, which should satisfy the
following requirements:

• the objective function f0(x) must be convex,

• the inequality constraint functions fi(x), i = 1, 2, . . . ,m must be convex,

• the equality constraint functions hi(x) = aT
i x− bi must be affine.

Linear Programming

When the objective and constraint functions are all affine, then the convex optimization
problem is known as a LP [90]. A standard form of LP can be defined as follows:

minimize
x

cTx+ d

s.t. Gx ⪯ h,

Ax = b, (3.13)
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where G ∈ Rm×n and A ∈ Rp×n. Since the maximization problem cTx + d can be
solved by minimizing the function −cTx− d subject to the constraints, a maximization
problem with affine objective and constraint functions can also be referred as an LP.

Quadratic Programming

The convex optimization problem is called a QP, when the objective function is
quadratic and the constraint functions are affine. A QP takes the following form [90]:

minimize
x

1

2
xTPx+ qTx+ r

s.t. Gx ⪯ h,

Ax = b, (3.14)

where P ∈ Sn
+, G ∈ Rm×n and A ∈ Rp×n. LP is a special case of QP by setting P = 0

in the objective function of (3.14).

Quadratic Constrained Quadratic Programming

If the objective and constraint functions are quadratic, then this convex optimization
problem is called QCQP. A QCQP can be expressed as follows [90]:

minimize
x

1

2
xTP0x+ qT

0 x+ r0

s.t.
1

2
xTPix+ qT

i x+ ri ≤ 0, i = 1, 2, . . . ,m,

Ax = b, (3.15)

where Pi ∈ Sn
+, i = 0, 1, . . . ,m. QCQP includes QP (and therefore also LP) as a special

case. This may be obtained by setting Pi = 0, i = 1, 2, . . . ,m in the constraints of
(3.15).

Second Order Cone Programming

A SOCP can be defined in the following form [90]:

minimize
x

fTx

s.t. ||Aix+ bi||2 ≤ cTi x+ di, i = 1, 2, . . . ,m,

Fx = g, (3.16)
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where x ∈ Rn, Ai ∈ Rni×n, and F ∈ Rp×n. In particular, the constraint ||Ax+ b||2 ≤
cTx+ d is called a second order cone constraint, where A ∈ Rk×n. A QCQP can be
obtained by setting ci = 0, i = 1, 2, . . . ,m and squaring both sides of the constraints of
(3.16). When Ai = 0, i = 1, 2, . . . ,m, then this problem in (3.16) will be reduced to a
LP.

Semidefinite Programming

The general form of SDP can be written as [90]

minimize
x

cTx

s.t. x1F1 + x2F2 + · · ·+ xnFn +G ⪯ 0,

Ax = b, (3.17)

where G,F1, . . . ,Fn ∈ Sk×k, and A ∈ Rp×n. A LP can be obtained if the matrices
G,F1, . . . ,Fn are all diagonal.

A standard form of SDP can be expressed as [90]

minimize
X

tr(CX)

s.t. tr(AiX) = bi, i = 1, 2, . . . , p,

X ⪰ 0, (3.18)

where C,A1, . . . ,Ap ∈ Sk×k. This form of SDP in (3.18) has linear equality constraints,
and a (matrix) non-negativity constraint on the variable X ∈ Sn×n.

The SDP can also be represented as the form of multiple LMIs and linear inequalities,
such as

minimize
x

cTx

s.t. F(i)(x) = x1F
(i)
1 + · · ·+ xnF

(i)
n +G(i) ⪯ 0, i = 1, 2, . . . , K,

Gx ⪯ h,

Ax = b. (3.19)

This form of SDP in (3.19) has linear objective, linear equality and inequality constraints,
and several LMI constraints.
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3.3 Cholesky Decomposition

The Cholesky decomposition is useful if the matrix A is symmetric and positive definite
[101], which can be defined as follows:

If A ∈ Rn×n is symmetric and positive definite, then there exists a unique lower
triangular matrix G ∈ Rn×n with positive diagonal entries such that A = GGT . Note
that Cholesky decomposition can be rewritten in the form of A = BTB, where B is
an upper triangular matrix with positive diagonal elements [102]. Every Hermitian
positive-definite matrix has a unique Cholesky decomposition.

The advantages of Cholesky decomposition is that the computation (i.e., without
exploiting any structure, (1

3
)n3 flops) faster than lower upper (LU) decomposition since

only a lower triangular is needed in this processing. Based on the above definition, it is
clear that the Cholesky decomposition is composed of a lower triangular matrix G and
its transpose GT serving as an upper triangular part. The elements of GT are related
to the elements of the lower triangular matrix G as follows:

∀gi,j ∈ G,∀bi,j ∈ GT ⇒ bi,j = gj,i. (3.20)

The diagonal elements (gk,k) of G are determined as follows:

gk,k =

√√√√ak,k −
k−1∑
j=1

g2k,j, k = 1, 2, . . . , n, (3.21)

and the other elements (gi,k, i > k) are

gi,k =
1

gk,k

(
ai,k −

k−1∑
j=1

gi,jgk,j

)
. (3.22)

3.4 Multi-Objective Optimization

The MOO method has been recently utilized to solve different problems with conflicting
objectives in wireless networks. In contrast to a unique global optimal solution in the
SOO problems, the MOO problems have many Pareto-optimal solutions and each of
those solutions is capable of striking a good balance between the conflicting objectives.
Thus, they can simultaneously achieve a better performance in all objectives without
significantly sacrificing any of those objectives [103]. A MOO problem has a number
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of conflicting objectives:

minimize
x

F(x) = [f1(x), f2(x), · · · , fM(x)]T

s.t. gi(x) ≤ 0, i = 1, 2, . . . ,m,

hj(x) = 0, j = 1, 2, . . . , p, (3.23)

where M is the number of objective functions, m is the number of inequality constraints,
and p is the number of equality constraints. F(x) is a vector function containing M

objective functions and x∗
i is the point that minimizes the objective function Fi(x). X

is the feasible design space, such that,

X = [x|gi(x) ≤ 0, i = 1, 2, . . . ,m;hj(x) = 0, j = 1, 2, . . . , p.] (3.24)

The conventional SOO aims to find a single global solution that meets all requirements
for an optimal solution. However, in MOO problems, the solutions obtained with
no articulation of preferences are arbitrarily relative to the Pareto optimal, which is
defined as follows [104]:

A feasible solution x∗ ∈ X is defined as a Pareto-optimal solution if there exists no
other feasible solution x ∈ X such that F(x) ≤ F(x∗), and Fi(x) < Fi(x

∗) for at least
one function.

3.4.1 MOO problems Based on Different Utility Functions

Considering multiple objective functions, some methods are introduced to solve MOO
problems based on different utility functions in this subsection.

• Weighted Sum Method

The main idea of this method is to transform a set of objectives into a single
objective by adding scaled version of each objective. The weighted sum method
can be written as [104],

minimize
x

M∑
m=1

wmfm(x)

s.t. gi(x) ≤ 0, i = 1, 2, . . . ,m,

hj(x) = 0, j = 1, 2, . . . , p, (3.25)
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where wi is the weight of an objective typically set by the users, such that∑M
m=1wi = 1. The relative importance of the objective is determined by the

chosen proportion of this value. Although the weighted sum method is easy
to apply in some scenarios, it also introduces some challenges. Firstly, a priori
selection of weights does not necessarily guarantee that the final solution will
be acceptable. In other words, it is difficult to set the weights to obtain the
Pareto optimal solutions in a desired region in the objective space. The second
problem with the weighted sum approach is that it is impossible to obtain points
on non-convex portions of the Pareto optimal set in the objective space [104].

• ϵ-Constraint Method

The ϵ-constraint method is to minimize one of the objective functions, fu(x),
while the rest of objectives are transferred to constraints that bound within some
limits, such that fm(x) ≤ ϵm, for all m ̸= u. It can be expressed as

minimize
x

fu(x)

s.t. fm(x) ≤ ϵm, m = 1, 2, . . . ,M,m ̸= u,

gi(x) ≤ 0, i = 1, 2, . . . ,m,

hj(x) = 0, j = 1, 2, . . . , p. (3.26)

The ϵ-constraint method can be applied to either convex or non-convex problems.
But the value of ϵ has to be chosen carefully so that it is within the minimum or
maximum values of the individual objective function [105].

3.5 Summary

In this chapter, the required mathematical background and related techniques for this
thesis are presented. Firstly, basic elements of convex optimization techniques, including
convex set, convex cones, convex functions, as well as convex optimization problems
have been discussed. In addition, a brief introduction of Cholesky decomposition for
a symmetric and positive matrix has been provided. Next, a MOO framework with
different utility functions has been discussed. Finally, for the addressed radio resource
allocation optimization problems in this thesis, some classic objective functions used
in this thesis have been provided. In general, this resource allocation problem has
three main components, such as a utility function as the objective which can be a
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performance metric, variables to be optimized and the constraints which are usually
QoS requirements or some resource limitations in wireless networks.



Chapter 4

Energy Efficiency Maximization for
Hybrid TDMA-NOMA System

In this chapter, an energy efficient resource allocation technique is considered for
a hybrid TDMA-NOMA system. In such a hybrid system, the available time for
transmission is divided into several sub-time slots, and a sub-time slot is allocated to
serve a group of users (i.e., cluster). Furthermore, signals for the users in each cluster
are transmitted based on the NOMA approach. In particular, an EE-Max problem is
formulated to maximize the overall EE of the system with a per-user minimum rate and
transmit power constraints. Simulation results demonstrate that the performance of
the proposed hybrid TDMA-NOMA system with joint resource allocation outperforms
the system with equal time allocation in terms of the overall EE.

4.1 System Model

A DL transmission of a hybrid TDMA-NOMA multi-user SISO system is considered.
In this hybrid system, a single-antenna BS communicates with K single-antenna users,
as shown in Fig. 4.1. As such, the total number of users is K, which are grouped
into C clusters with a time-slot ti, ∀i = 1, 2, ..., C, per cluster. Furthermore, uj,i

represents the jth user in the ith cluster. As shown in Fig. 4.2, the available time for
transmission is denoted by T . The number of users in the ith cluster, Li, is denoted
by Ki, ∀i ∈ C

△
= {1, 2, ..., C}, satisfying K =

∑C
i=1 Ki. It is assumed that signals

are transmitted over a quasi-static flat Rayleigh fading channel, where the channel
coefficients remain constant over each transmission block but vary independently
between different blocks.
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Fig. 4.1 A hybrid TDMA-NOMA multi-user SISO system.

The power assigned for uj,i is denoted as p2j,i, and thus, define the total transmit
power at the BS by Pt, such that Pt =

∑C
i=1

∑Ki

j=1 p
2
j,i. The maximum transmit

power available at the BS is Pmax; then, the total transmit power constraint can be
mathematically expressed as

Pt =
C∑
i=1

Ki∑
j=1

p2j,i ≤ Pmax. (4.1)

As the power-domain NOMA technique is applied among the users in each cluster,
the symbol transmitted from the BS during ti can be written as

xi =

Ki∑
j=1

pj,ixj,i, (4.2)

where xj,i is the message intended to uj,i. Accordingly, at user uj,i, the received signal
is given by

rj,i = hj,ixi + nj,i,∀i ∈ C,∀j ∈ Ki
△
= {1, 2, ..., Ki}, (4.3)

where hj,i denotes the Rayleigh fading channel coefficient between the BS and the
uj,i, and nj,i ∼ CN (0, σ2

j,i) represents the AWGN at receiver. Note that it is assumed
that perfect CSI is available at the BS. The corresponding channel gain is defined as
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Fig. 4.2 A time-slot is assigned to serve each cluster, while the users in each cluster
communicate with the BS based on the power-domain NOMA.

|hj,i|2 = β
(dj,i/d0)κ

[106], where dj,i and d0 are the distances between uj,i and the BS,
and a reference distance, respectively. Furthermore, denote the signal attenuation at
the reference distance, d0, by β and the path loss exponent by κ. Without loss of
generality, the channel gains for the users at each cluster are assumed to be ordered as

|h1,i|2 ≥ |h2,i|2 ≥ ...|hKi,i|2,∀i ∈ C. (4.4)

Accordingly, the SIC process is implemented at stronger users, i.e., users with higher
channel strengths. In particular, the user uj,i aims to cancel the interference from any
other weaker users from uj+1,i to uKi,i using SIC. It is assumed that SIC is implemented
perfectly without any errors. Therefore, the SINR at uj,i to decode the message of
weaker users ud,i,∀d ∈ {j + 1, j + 2, ..., Ki}, can be defined as

SINRd
j,i =

|hj,i|2p2d,i
|hj,i|2

∑d−1
s=1 p

2
s,i + σ2

j,i

,∀i ∈ C,∀j ∈ Ki,∀d ∈ {j + 1, j + 2, ..., Ki}. (4.5)

To successful perform the SIC process, the received SINR levels of the users with
weaker channel strengths should be higher than the users with stronger channel strengths
[47]. This requirement can be only satisfied by imposing the following constraint on
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the power allocation [107]:

p2K,i ≥ p2K−1,i ≥ ... ≥ p21,i, ∀i ∈ C. (4.6)

The necessary power constraints for efficient SIC can be given by (4.6), which is referred
to as the SIC constraint throughout this chapter; this has been widely adopted in
several NOMA downlink transmissions [38, 80]. Thus, the received signal at uj,i after
employing SIC can be expressed as

rSICj,i = hj,ipj,ixj,i + hj,i

j−1∑
s=1

ps,ixs,i + nj,i,∀i ∈ C,∀j ∈ Ki. (4.7)

Therefore, the SINR of uj,i can be given by [40]

SINRj,i = min{SINR1
j,i, SINR2

j,i, ..., SINRj
j,i}, ∀i ∈ C,∀j ∈ Ki. (4.8)

Then, the achieved rate Rj,i at uj,i can be given by

Rj,i = Bti log2 (1 + SINRj,i) ,∀i ∈ C,∀j ∈ Ki, (4.9)

where B is the available bandwidth of the channel. It is worthy to note that grouping
(i.e., clustering) strategy plays a crucial role in the performance of the TDMA-NOMA
system. Therefore, the proposed user grouping strategy will be discussed in the
following.

4.2 Power Consumption Model

The total power consumption at the BS can be defined as [41]

Ptotal =
1

ϵ
Pt + Ploss, (4.10)

where ϵ ∈ [0, 1] denotes the efficiency of the power amplifier. Furthermore, Ploss

represents the total power losses, and it can be expressed as [41]

Ploss = Pdyn + Psta, (4.11)

where Pdyn is the dynamic power consumption and Psta is the static power consumption
required to maintain the system [63].
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The GEE can be defined as the ratio between the achieved sum-rate and the
corresponding power consumption [39, 41]. Considering the hybrid TDMA-NOMA
system, the overall EE, i.e., GEE, can be given by

GEE =

∑C
i=1

∑Ki

j=1Rj,i

Ptotal

. (4.12)

4.3 Problem Formulation

By taking into account the importance of energy efficient resource allocation, an
GEE-Max optimization design is developed for the hybrid TDMA-NOMA system. In
particular, the aim is to maximize the overall system EE, i.e., GEE, while satisfying a
set of relevant constraints.

Note that the GEE function presented in (4.12) is fractional in nature; as such,
maximizing GEE can be viewed as a joint optimization of the achieved sum-rate
(maximization) and the corresponding power consumption (minimization). In this
chapter, an GEE-Max design is proposed to maximize EE under a set of constraints,
including QoS requirements, as well as total time and power constraints at the BS.
With these constraints, the GEE-Max optimization problem for the TDMA-NOMA
system can be formulated as follows:

(P1) : max
{pj,i,ti}Ci=1

Ki
j=1

∑C
i=1

∑Ki

j=1 ti log2 (1 + SINRj,i)
1
ϵ

∑C
i=1

∑Ki

j=1 p
2
j,i + Ploss

(4.13)

s.t.
C∑
i=1

ti ≤ T, (4.14)

C∑
i=1

Ki∑
j=1

p2j,i ≤ Pmax, (4.15)

p2K,i ≥ p2K−1,i ≥ ... ≥ p21,i,∀i ∈ C, (4.16)

Rj,i ≥ R̄j,i, ∀i ∈ C,∀j ∈ Ki, (4.17)

where R̄j,i is the minimum rate requirement associated with the QoS constraint for user
uj,i, and the constraint in (4.14) ensures the maximum time constraint. Furthermore,
the constraint in (4.16) is necessary for the successful application of the SIC technique
[38].

In particular, there are several challenges associated with solving P1, which are
summarized in the following discussion. Firstly, unlike equal time allocation considered
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in previous works in the literature including [40], the joint allocations of the time and
power resources introduce additional complexity to solve the problem and evaluate
the corresponding design parameters. Secondly, as it can be seen in P1, the objective
function is not only non-convex, but also fractional. This fractional non-convex nature
of the objective function introduces additional complexity in solving the optimization
problem. Thirdly, due to the constraints in (4.16) and (4.17), the optimization problem
P1 might turn out to be infeasible when the minimum rate requirements cannot be
achieved with the available power budget at the BS. Hence, determining the solution
for P1 should take all these issues into account. Note that this optimization problem is
significantly different from those solved in other related work, such as in [80], in terms
of both objective function and constraints. Therefore, a comprehensive algorithm to
solve this problem is provided in the following section. Before presenting the detailed
steps of the proposed algorithm, a method is first provided to validate the feasibility of
the problem in the following section.

4.4 Feasibility Analysis of the GEE-Max Problem

Now, the feasibility issues of the GEE-Max problem P1 is discussed. Towards this end,
some light is shed on the total time constraint in (4.14) with the following Lemma:

Lemma 1 The condition
∑C

i=1 ti = T is necessary for achieving the maximum EE for
the optimization problem P1.

Proof: This lemma is proven by contradiction. First, it is assumed that
∑C

i=1 ti =

T does not hold for an optimal solution T∗ = [t∗1, t
∗
2, ..., t

∗
C ], that is,

∑C
i=1 ti < T .

Now, a new solution Tnew = [t∗1, t
∗
2 +

(
T ∗ −

∑C
i=1 t

∗
i

)
, t∗3, ..., t

∗
C ] [95] is constructed.

Obviously, this new solution still satisfies the time allocation constraint given in
(4.14). Additionally, cluster L2 has a larger throughput than that of solution T∗ since
Rj,i(T, pj,i) is a strictly monotonically increasing function with respect to ti, and clusters
L1, L3, ..., LC achieve the same throughputs as that obtained with T∗. Therefore, Tnew

yields better throughputs than T∗. This contradicts the initial assumption that T∗

is optimal and therefore
∑C

i=1 ti = T should be satisfied. This completes the proof of
Lemma 1.

Based on Lemma 1, the time allocation constraint is transformed to the following
equality constraint to reduce the feasible region of the original problem P1:

C∑
i=1

ti = T. (4.18)
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Provided a solution set {pj,i∗, ti∗},∀i ∈ C,∀j ∈ Ki is feasible, then, the minimum
rate constraint in (4.17) is automatically fulfilled. Obviously, P1 turns out to be
infeasible if the corresponding minimum rate constraints cannot be met with the total
power constraint in (4.15). Therefore, this infeasibility issue can be examined through
evaluating the required minimum power to satisfy the corresponding QoS constraints,
as follows:

(P-Min) : Pmin = min
{pj,i,ti}Ci=1

Ki
j=1

C∑
i=1

Ki∑
j=1

p2j,i (4.19)

s.t.
C∑
i=1

ti = T, (4.20)

p2K,i ≥ p2K−1,i ≥ ... ≥ p21,i,

∀i ∈ C, (4.21)

SINRj,i ≥ 2
R̄j,i
ti − 1,

∀i ∈ C, ∀j ∈ Ki, (4.22)

where Pmin is the minimum total transmit power that is required to meet the user data
rate requirements. It indicates that the BS has insufficient power budget to achieve the
user data rate requirements when Pmin > Pmax. Under this condition, the optimization
problem P1 is classified as an infeasible problem. To handle this infeasibility issue,
an alternative resource allocation problem, namely sum-rate maximization (SR-Max)
problem, is considered. With this technique, the maximum achievable sum-rate is
investigated under available power and SIC constraints. This problem can be formulated
as

(SR-Max) : max
{pj,i,ti}Ci=1

Ki
j=1

C∑
i=1

Ki∑
j=1

Rj,i (4.23)

s.t.
C∑
i=1

ti = T, (4.24)

p2K,i ≥ p2K−1,i ≥ ... ≥ p21,i, ∀i ∈ C, (4.25)
C∑
i=1

Ki∑
j=1

p2j,i ≤ Pmax, ∀i ∈ C, ∀j ∈ Ki. (4.26)

The solution of the optimization problem SR-Max can be accessed using the SCA
technique. In the following section, two algorithms are developed to solve the original
GEE-Max problem P1.
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4.5 Proposed Methodology

In this section, two algorithms are provided to solve the non-convex optimization
problem P1, which are based on the SCA technique and Dinkelbach’s algorithm (DA).
Note that the solution of the original GEE-Max problem P1 depends on the users that
are selected for each cluster. Hence, it is necessary to determine the grouping strategy
in the considered hybrid TDMA-NOMA system.

4.5.1 Grouping Strategy

Obviously, the optimal user grouping sets can be determined through an exhaustive
search or combinatorial search algorithms among all possible user sets. However, this
exhaustive search is impractical due to its computational complexity. Furthermore,
there are several factors that should be considered when choosing a clustering algorithm,
which are summarized in the following discussion. Firstly, grouping users should
consider the objective function of the original design problem. In particular, for a
given hybrid TDMA-NOMA system, the user clusters for the SR-Max design should
be different from those of the GEE-Max design. Secondly, it has been proven in the
literature that SIC is successfully implemented with relatively small error when the
gap between channel strengths of the users is as high as possible [108]. This imposes
that users with diverse channel strengths should be grouped into the same cluster.
Considering the above key facts, and similar to the grouping strategy proposed in [80]
and [109], a clustering algorithm based on the difference between the channel strengths
of the users is employed. In particular, users with higher channel strengths’ gaps are
grouped into the same cluster. Clusters with only two users have been considered due
to practical implementation challenges, including high computational complexity and
potential propagation in SIC. With this restriction, the grouping sets of the hybrid
TDMA-NOMA can be presented as

({u1,1, u2,1}, {u1,2, u2,2}, ...{u1,C , u2,C}) ≡
(
{u1, uK}, {u2, uK−1}, ...{uK

2
, uK

2
+1}
)
,

(4.27)

where u1 is the strongest user, while uK is the weakest user from all users in the
considered system. With this grouping strategy, two algorithms are developed to solve
the non-convex optimization problem P1 in the following subsections.
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4.5.2 Sequential Convex Approximation (SCA) - based Ap-
proach

The SCA technique is a local optimization method for evaluating the solutions of non-
convex problems [110]. The key idea behind this iterative approach is to approximate
the non-convex functions into convex ones, and then solve iteratively the approximated
convex optimization problems. It is worthy to mention that SCA is heuristic; therefore,
the solutions generally depend on the initializations [110].

It is obvious that the optimization problem P1 is non-convex due to both non-
convex objective functions and constraints. Thus, this non-convexity issue can be
solved through employing the SCA technique. Starting with an approximation of
the non-convex objective function. A slack variable γ is introduced to approximate
the objective function with a convex one. With this slack variable, the optimization
problem P1 can be rewritten as,

(P2) : max
γ,{pj,i,ti}Ci=1

Ki
j=1

γ (4.28)

s.t.
∑C

i=1

∑Ki

j=1 ti log2(1 + SINRj,i)
1
ϵ

∑C
i=1

∑Ki

j=1 p
2
j,i + Ploss

≥ √γ, (4.29)

C∑
i=1

ti = T, (4.30)

(4.15), (4.16), (4.17). (4.31)

Note that the objective function of the original optimization problem P1 is replaced
with the slack variable √γ by using epigraph. However, the non-convex constraint
in (4.29) should be approximated by a convex constraints such that problem P2
turns out to be a convex problem. To handle these non-convexity issues, the SCA
technique is exploited through introducing additional slack variables. The details of
these approximations are provided in the following.

Firstly, by incorporating a positive slack variable z, the constraint in (4.29) can
equivalently be decomposed into the following two constraints:

C∑
i=1

Ki∑
j=1

ti log2(1 + SINRj,i) ≥
√
γz, (4.32)

√
z ≥ 1

ϵ

C∑
i=1

Ki∑
j=1

p2j,i + Ploss. (4.33)
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Now, the non-convexity of (4.32) is dealt by introducing new slack variables αj,i and
ϑj,i as follows:

(1 + SINRj,i) ≥ αj,i,∀i ∈ C, ∀j ∈ Ki,∀d ∈ {j + 1, ..., Ki}, (4.34a)

log2(1 + SINRj,i) ≥ ϑj,i,∀i ∈ C,∀j ∈ Ki, (4.34b)

αj,i ≥ 2ϑj,i ,∀i ∈ C,∀j ∈ Ki, (4.34c)

C∑
i=1

Ki∑
j=1

tiϑj,i ≥
√
γz,∀i ∈ C,∀j ∈ Ki. (4.34d)

Note that the constraint in (4.34c) is convex while the rest of the constraints in (4.34a),
(4.34b), (4.34d) are not. To overcome these non-convexity issues, another slack variable
ηj,i is introduced, such that the constraint in (4.34a) can be rewritten as

|hj,i|2p2d,i
|hj,i|2

∑d−1
s=1 p

2
s,i + σ2

j,i

≥
(αj,i − 1)η2j,i

η2j,i
,∀i ∈ C, ∀j ∈ Ki,∀d ∈ {j + 1, j + 2, ..., Ki}.

(4.35)

Accordingly, the constraint in (4.35) can now be decomposed into the following two
constraints:

|hj,i|2p2d,i ≥ (αj,i − 1)η2j,i,∀i∈C, ∀j∈Ki,∀d∈{j + 1, j + 2, ..., Ki}, (4.36a)

|hj,i|2
d−1∑
s=1

p2s,i + σ2
j,i ≤ η2j,i,∀i∈C,∀j∈Ki,∀d∈{j + 1, j + 2, ..., Ki}. (4.36b)

Then, based on the approximation of first-order Taylor series expansion method, the
constraint in (4.36a) can be represented as

|hj,i|2
(
p2d,i

(t)
+ 2p

(t)
d,i(pd,i − p

(t)
d,i)
)
≥ η2j,i

(t)
(
α
(t)
j,i − 1

)
+2
(
α
(t)
j,i − 1

)
η
(t)
j,i

(
ηj,i − ηj,i

(t)
)
+ η2j,i

(t) (
αj,i − αj,i

(t)
)
,

∀i ∈ C,∀j ∈ Ki,∀d ∈ {j + 1, j + 2, ..., Ki}, (4.37)

where p
(t)
d,i, ηj,i

(t) and α
(t)
j,i represent the approximations of pd,i, ηj,i and αj,i at the

tth iteration, respectively. Note that both sides of (4.37) are linear in terms of the
optimization variables, i.e., pd,i, ηj,i, and αj,i. Furthermore, the constraint in (4.36b)
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can be rewritten as the following SOC constraint:

∥|hj,i|p1,i, |hj,i|p2,i, ..., |hj,i|pd−1,i,σj,i∥ ≤ ηj,i,∀i ∈ C,∀j ∈ Ki,∀d ∈ {j + 1, j + 2, ..., Ki},
(4.38)

where || · || denotes the Euclidean norm of a vector. With these approximations, the
constraint in (4.34a) can be rewritten as the convex constraints in (4.37) and (4.38).

Now, the non-convexity issue of the constraint in (4.34d) is considered. Similar to
the previous approximations, the non-convex constraint in (4.34d) with a new slack
variable νj,i can be rewritten as

tiϑj,i ≥ νj,i,∀i ∈ C,∀j ∈ Ki, (4.39a)

C∑
i=1

Ki∑
j=1

νj,i ≥
√
γz,∀i ∈ C,∀j ∈ Ki. (4.39b)

To deal with the non-convexity issue of (4.39a), a non-negative term t2i + ϑ2
j,i is added

to both sides of inequality (4.39a) without loss of generality. By taking the square root
of both sides of the inequality, the following SOC constraint can be defined:

ti + ϑj,i ≥
∥∥∥ 2
√
νj,i

ti − ϑj,i

∥∥∥,∀i ∈ C,∀j ∈ Ki. (4.40a)

Furthermore, the left-side of (4.39b) is approximated with a lower-bounded convex
approximation using the first-order Taylor series expansion. As such, (4.39b) can be
reformulated as

C∑
i=1

Ki∑
j=1

νj,i ≥
√

γ(t)z(t) +
1

2

√(
z(t)

γ(t)

)
(γ − γ(t)) +

1

2

√(
γ(t)

z(t)

)
(z − z(t)). (4.40b)

Similar to the previous approximations, the non-convexity of the constraint in (4.33)
can be dealt with by introducing a new slack variable z̃,

√
z ≥ z̃, (4.41a)

z̃ ≥ 1

ϵ

C∑
i=1

Ki∑
j=1

p2j,i + Ploss. (4.41b)
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Now, a SOC relaxation is exploited to cast the non-convex constraints in (4.41) with
convex ones [111] as follows:

z + 1

2
≥
∣∣∣∣∣∣∣∣ z−1

2

z̃

∣∣∣∣∣∣∣∣ , (4.42a)

ϵ(z̃ − Ploss) + 1

2
≥

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
ϵ(z̃−Ploss)−1

2

p1,i

...

pK,i

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣ ,∀i ∈ C. (4.42b)

Considering the aforementioned approximations, the constraint in (4.29) can be equiv-
alently rewritten as a set of the following convex constraints: (4.34c), (4.37), (4.38),
(4.40a), (4.40b), (4.42a) and (4.42b). Accordingly, the minimum rate constraints can
be redefined as the following convex constraints:

νj,i ≥ R̄j,i,∀i ∈ C,∀j ∈ Ki. (4.43)

Next, the non-convexity issue of (4.16) can be handled by approximating each
non-convex term in the inequality by a lower-bounded convex term using the first-
order Taylor series expansion. With this approximation, each term in (4.16) can be
equivalently written as

p2K,i ≥ p2K,i
(t)

+ 2pK,i
(t)(pK,i − pK,i

(t)),∀i ∈ C. (4.44)

With the above relaxations, the original non-convex optimization problem P1 can
be equivalently written as the following approximated convex one:

(P3) : max
Γ

γ (4.45)

s.t. (4.34c), (4.37), (4.38), (4.40a), (4.40b), (4.42a), (4.42b), (4.46)

(4.30), (4.15), (4.44), (4.43), (4.47)

where Γ comprises all the optimization variables, such that Γ = {pj,i, ti, γ, αj,i, ϑj,i, ηj,i, z,

z̃, νj,i}, ∀i ∈ C, ∀j ∈ Ki. More specifically, the solution of P1 is obtained through
iteratively solving the approximated convex optimization problem P3 and updating
initialized variables. In particular, the solution of each iteration is fed into the optimiza-
tion problem P3 to update the corresponding initial parameter for the convergence
iteration. However, the initial parameters of the first iteration have to be carefully
selected to guarantee the success of the iterative algorithm. In particular, for this
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Table 4.1 GEE-Max Joint Resource Allocation Algorithm.

Algorithm 1: SCA method to solve GEE-Max Problem.

1:Group the users into clusters based on the grouping strategy defined in (4.27)
2: Initialize: Set the parameters Γ(0)

3:Repeat
4: Solve the problem P3 in (4.45) - (4.47)
5: Update all parameters Γ(t)

6:Until |γ∗(t+1) − γ∗(t)| ≤ τ .

iterative SCA algorithm, selecting initial optimization parameters, Γ(0), has a consider-
able impact on both efficiency of the solution and convergence of the algorithm itself.
Hence, the initialization of variables should be carefully defined. These initial values
can be chosen by defining random power allocations p

(0)
j,i that fulfill the constraints in

the problem P-min. Then, the corresponding slack variables are determined by substi-
tuting these power allocations in (4.34), (4.37), (4.38), (4.40) and (4.42). Consequently,
the solutions obtained in each iteration are used as initialized variables to solve the
optimization problem P3 in the subsequent iteration. Note that the objective function
of the optimization problem P3, i.e., γ, is a non-decreasing function [4]. Therefore, a
solution of the SCA algorithm can be selected as a reasonable solution for the original
optimization problem if the difference between two consecutive solutions is less than a
pre-defined threshold, τ . This stopping criteria of the proposed iterative algorithm can
be mathematically given by |γ∗(t+1)− γ∗(t)| ≤ τ . The proposed iterative SCA technique
based algorithm to solve P1 is summarized in Table 4.1.

It is worth pointing out that the convergence of the proposed SCA-based approach
to solve the GEE-Max problem has been carefully investigated in [112], where it has
been stated that the SCA guarantees at least a local optimal solution, and in most
cases, a global optimal solution. On the other hand, the required aspects to guarantee
the convergence of the SCA technique in Algorithm 1 are discussed in the following.
Firstly, the iterative algorithm should be initialized with appropriate initial parameters
Γ(0), which ensures the feasibility of the problem at each iteration. It can be realized
that the solutions returned at the iteration t are also feasible solutions for the problem
at the successive iteration t+ 1. This implies that Algorithm 1 yields a non-decreasing
sequence of the objective values, i.e., γ(t+1) > γ(t). In addition, the total transmit
power at BS is limited by an upper bound of Pmax, which confirms that γ will converge
to the solution with a finite number of iterations.



4.5 Proposed Methodology 52

4.5.3 Dinkelbach’s algorithm (DA) - based Approach

In this subsection, an alternative approach based on DA is developed to solve the
original GEE-Max problem. This approach not only validates the solution obtained
through the SCA algorithm, but also provides an alternative technique to deal with
the fractional nature of the objective function in the original optimization problem P1.
With DA, a new non-negative variable λ is introduced to parametrize the fractional
objective function into a non-fractional one [113]. Based on the variable λ, the problem
P1 can be defined as follows:

(P4) : max
{pj,i,ti}Ci=1

Ki
j=1

C∑
i=1

Ki∑
j=1

ti log2 (1 + SINRj,i)− λ

(
1

ϵ

C∑
i=1

Ki∑
j=1

p2j,i + Ploss

)
(4.48)

s.t.
C∑
i=1

t
(t)
i = T, (4.49)

C∑
i=1

Ki∑
j=1

p2j,i
(t) ≤ Pmax, (4.50)

p2K,i
(t) ≥ p2K−1,i

(t) ≥ ... ≥ p21,i
(t)
, ∀i ∈ C, (4.51)

R
(t)
j,i ≥ R̄j,i,∀i ∈ C,∀j ∈ Ki, (4.52)

Obviously, the objective function is convex with respect to λ. Then, the following
theorem presents the solution to the problem P4.

Theorem 1 [113] The optimal objective value of P4 equals to zero, i.e.,

C∑
i=1

Ki∑
j=1

t∗i log2(1 + SINR∗
j,i)− λ∗

(
1

ϵ

C∑
i=1

Ki∑
j=1

p∗j,i
2 + Ploss

)
= 0, (4.53)

where {t∗i , p∗j,i, λ∗},∀i, ∀j denote the corresponding optimal solutions for P4.

With Theorem 1, the solution of the original fractional problem P1 (i.e., {t∗i , p∗j,i},∀i, ∀j)
can be determined by solving the non-fractional optimization problem P4, where the
optimal objective value of P4 is zero [113]. The proof of Theorem 1 can be found in
[113].

According to Theorem 1, the fractional objective function can now be transformed
into a subtractive form, and thus, obtaining the variables pj,i, ti that maximize the
GEE in the original problem P1 is equivalent to solving the parameterized optimization
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problem P4. Therefore, starting to initialize the parameter λ with zero, then use the
convex approximation techniques to solve the parameterized optimization problem P4
[113]. Then, update λ in the tth iteration can be written as follows:

λ(t) =

∑C
i=1

∑Ki

j=1 t
(t−1)
i log2(1 + SINR

(t−1)
j,i )

1
ϵ

∑C
i=1

∑Ki

j=1 p
2
j,i

(t−1)
+ Ploss

. (4.54)

In particular, the variables t(t), p
(t)
j,i in the tth iteration can be found by solving the

following optimization problem:

(P5) : max
{p(t)j,i ,t

(t)
i }Ci=1

Ki
j=1

C∑
i=1

Ki∑
j=1

t
(t)
i log2(1 + SINR

(t)
j,i )− λ(t−1)

(
1

ϵ

C∑
i=1

Ki∑
j=1

p2j,i
(t)

+ Ploss

)
(4.55)

s.t. (4.49), (4.50), (4.51), (4.52). (4.56)

Now, the following observations are highlighted by comparing the optimization problems
P1 and P5. Firstly, note that the parametrization carried out using DA deals with the
fractional nature of the objective function, as seen in P5. However, it can be shown
that the first part of the objective function in P5 still remains non-convex because the
optimization variables are coupled. Secondly, the convex approximations implemented
in P3 can be utilized to deal with the non-convex constraints in P5.

Considering the above, to deal with the non-convexity issue of the objective function
of P5, the same approach that has been developed to approximate the constraints in
problem P3 is exploited, such as the SCA technique, through introducing a set of slack
variables as follows:

ti log2(1 + SINRj,i) ≥ yj,i,∀i ∈ C, ∀j ∈ Ki, (4.57a)

(1 + SINRd
j,i) ≥ βj,i,∀i ∈ C,∀j ∈ Ki,∀d ∈ {j + 1, ..., Ki}, (4.57b)

log2(1 + SINRj,i) ≥ χj,i,∀i ∈ C,∀j ∈ Ki, (4.57c)

βj,i ≥ 2χj,i ,∀i ∈ C,∀j ∈ Ki, (4.57d)

tiχj,i ≥ yj,i,∀i ∈ C, ∀j ∈ Ki. (4.57e)
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The constraint in (4.57b) can be equivalently rewritten as the following set of
convex constraints:

|hj,i|2
(
p2d,i

(t)
+ 2p

(t)
d,i(pd,i − p

(t)
d,i)
)
≥ θ2j,i

(t)
(
β
(t)
j,i − 1

)
+2
(
β
(t)
j,i − 1

)
θ
(t)
j,i

(
θj,i − θj,i

(t)
)
+ θ2j,i

(t)
(
βj,i − βj,i

(t)
)
,

∀i ∈ C,∀j ∈ Ki,∀d ∈ {j + 1, j + 2, ..., Ki}, (4.58a)

∥|hj,i|p1,i, |hj,i|p2,i, ..., |hj,i|pd−1,i, σj,i∥ ≤ θj,i, ∀i ∈ C,∀j ∈ Ki, ∀d ∈ {j + 1, j + 2, ..., Ki},
(4.58b)

where θj,i,∀i ∈ C,∀j ∈ Ki, are newly introduced variables. As can be seen, the
constraints in (4.57e) are jointly convex with respect to the involved variables where
the right side is an affine function and the left side is a quadratic-over-affine function
[4]. The inequality (4.57e) can be formulated into a SOC constraint as follows:

ti + χj,i ≥
∥∥∥ 2
√
yj,i

ti − χj,i

∥∥∥, ∀i ∈ C,∀j ∈ Ki. (4.59)

It is obvious that
(

1
ϵ

∑C
i=1

∑Ki

j=1 p
2
j,i + Ploss

)
is a convex function in terms of

pj,i,∀i ∈ C,∀j ∈ Ki. Thus, the function λ
(

1
ϵ

∑C
i=1

∑Ki

j=1 p
2
j,i + Ploss

)
is also a convex

function of pj,i,∀i ∈ C, ∀j ∈ Ki, as λ is a constant and consequently
∑C

i=1

∑Ki

j=1 yj,i −
λ
(

1
ϵ

∑C
i=1

∑Ki

j=1 p
2
j,i + Ploss

)
is a convex function. From these observations, the origi-

nal non-convex optimization problem P1 can be approximated using the DA as the
following optimization problem:

(P6) : max
Φ(t)

C∑
i=1

Ki∑
j=1

y
(t)
j,i − λ(t−1)

(
1

ϵ

C∑
i=1

Ki∑
j=1

p2j,i
(t)

+ Ploss

)
(4.60)

s.t. (4.49), (4.50), (4.51), (4.58a), (4.58b), (4.57d), (4.59), (4.61)

y
(t)
j,i ≥ R̄j,i,∀i ∈ C, ∀j ∈ Ki, (4.62)

where Φ(t) = {p(t)j,i , t
(t)
i , θ

(t)
j,i , χ

(t)
j,i , y

(t)
j,i },∀i ∈ C,∀j ∈ Ki. With the solution of P6, the

involved variables are updated at the successive iteration. This iterative process is
carried out until the algorithm converges. Table 4.2 summarizes the proposed iterative
algorithm for solving the original problem P1. In this DA-based iterative algorithm,
the variables are first initialized with λ(0) and Φ(0). Then, for current λ, the optimal
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Table 4.2 Dinkelbach’s Method to Solve GEE-Max Problem.

Algorithm 2: Dinkelbach’s method to solve GEE-Max Problem.

1: Initialize: λ(0) to satisfy G(λ(0)) ≥ 0, iteration number t = 0 and set the parameters Φ(0)

2:Repeat
3: Solve the problem P6 with Φ(t−1), then obtain the optimal Φ∗

4: Update Φ(t) = Φ∗

5:Until required accuracy is achieved
6:Update λ(t+1) according to (4.54), and set t← t+ 1
7:Until convergence.

variables Φ∗ are determined by solving the problem P6 until the required accuracy
is achieved. The proof for the convergence of the proposed algorithm is provided in
Appendix.

4.5.4 Complexity Analysis of the Proposed Schemes

In this subsection, the analysis for the computational complexity of solving the original
GEE-Max optimization problem P1 is provided.

The complexity of the SCA based approach

With the SCA-based approach, the solution of the original GEE-Max optimization
problem P1 is obtained through solving the approximated optimization problem P3,
iteratively. Therefore, the complexity of solving P1 can be defined by quantifying
the complexity of solving the approximated P3 and the average number of required
iterations, where the interior-point method is utilized to solve the SOCP with SOC
and linear constraints [100, 114]. In particular, the complexity of solving the SOCP
constraints at each iteration is given by O = (A2B) [114], where A and B represent
the number of optimization variables and the dimensions of the SOC constraints,
respectively. In fact, as P3 is solved in a number of iterations, the overall complexity
of solving the original problem is upper bounded by O

(
A2B log( 1

τ
)
)
, where τ is the

required solution accuracy.

The complexity of the Dinkelbach’s algorithm (DA) based approach

In the developed DA-based algorithm, the original optimization problem is transformed
into a standard SOCP problem for the given non-negative variable λ. However,
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two iterative algorithms are deployed to determine the solution in the DA based
approach. Thus, the upper-bound complexity of DA based approach can be defined as
O
(
A2B log( 1

τ
) log( 1

ϖ
)
)
, where ϖ represents the required solution accuracy.

4.6 Simulation Results

In this section, simulation results are provided to demonstrate the effectiveness of
the proposed joint GEE-Max design for the considered hybrid TDMA-NOMA system.
Additionally, the performance of the proposed schemes have been compared with that
of the other baseline designs, namely, SR-Max and P-Min designs. In particular, the
performance of the proposed GEE-Max design is evaluated with opportunistic time
allocations against schemes with equal time allocations.

In the simulations, a hybrid TDMA-NOMA system is considered with 10 users
divided into 5 clusters. The users are assumed to be uniformly distributed over a circle
area with a radius of 10 meters around the BS, where the minimum distance d0 is
selected 1 meter (d0 = 1 m), where d0 is the reference distance. The corresponding
channel gain is |hj,i|2 = β

(dj,i/d0)κ
, where β = −30 dB and κ = 2. The noise variance

at each user σ2
j,i depends on the noise power spectral density N0 and the channel

bandwidth B, which is expressed as σ2
j,i = N0B. In these simulations, N0 is assumed to

be -70 dBm/Hz and the bandwidth B is set to 1 MHz. T is chosen to be 10 seconds. The
power amplifier efficiency ϵ for both algorithms is 0.35, the static power consumption
is Psta =15 dBm, and Pdyn =10 dBm [99]. In addition, the stopping-criteria threshold
for both algorithms is set to 0.01 [38]. Furthermore, the CVX software is used to solve
the convex problems in these simulations [4].

Fig. 4.3 compares the EE of our proposed design with the existing conventional
designs in the literature, namely the resource allocation techniques with P-Min and
SR-Max in hybrid TDMA-NOMA system. As seen in Fig. 4.3, the proposed GEE-Max
based design outperforms the conventional design criteria of P-Min and SR-Max
in terms of achieved EE. In addition, the EE of the SR-Max based design is not
monotonically increasing with the available power and decreases when the transmit
power exceeds a certain available power budget. This is due to the fact that this design
fully uses all the available power for maximizing the achievable sum rate instead of
maximizing the EE. In other words, maximizing the achievable sum-rate does not
always maximize the EE. It can also be observed that the P-Min based design achieves
lower EE than the proposed scheme. This is due to the fact that the P-Min design seeks
for the minimum power that is required to achieve the minimum rate requirements.
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Fig. 4.3 Energy efficiency of the hybrid TDMA-NOMA system with different design
criteria, R̄j,i = 5bits/s/Hz.
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Fig. 4.4 Energy efficiency of the proposed algorithm with different QoS requirements.
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Fig. 4.5 Energy efficiency of the proposed algorithm and equal time allocation scheme
with different transmit power, R̄j,i = 3bits/s/Hz.

Fig. 4.4 depicts the average EE versus transmit power for different QoS requirements
using the algorithms developed through the SCA and DA techniques. It can be observed
that the EE of both algorithms first increases until reaches a certain value, and then it
remains constant after a certain maximum power Pmax. The EE performance with
Rmin = 5 bits/s/Hz 1 is better than that with Rmin = 3 bits/s/Hz. This performance
difference can be justified through the following argument. With higher Rmin, the
increasing rate in the sum rate is higher than the increasing rate in the total power
consumption, which results in an improvement of EE. Note that the performance gap
between these two algorithms is not significant in terms of the achieved EE. By setting
the stopping-criteria to zero (i.e., λ(t+1) − λ(t) = 0), then both approaches should
achieve the same performance.

Next, Fig. 4.5 illustrates the achieved EE against different transmit power levels for
the proposed scheme with opportunistic time allocation and the conventional schemes
with equal time allocation. As seen in Fig. 4.5, the achieved EE of the GEE-Max
design with opportunistic time allocation outperforms that of the conventional equal
time allocation. This can be achieved by solving the GEE-Max problem using either

1Note that Rmin and R̄j,i carry the same meaning
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Table 4.3 Power Allocations For Each User In The Hybrid TDMA-NOMA Through
The Proposed Opportunistic Time Allocations And The Conventional Equal Time

One.
Channels p1,1 p2,1 p1,2 p2,2 p1,3 p2,3 p1,4 p2,4 p1,5 p2,5

Scheme
with oppor-
tunistic
time
allocations

Channel 1 9.407 2.000 8.678 2.000 7.443 2.000 2.461 2.000 2.000 2.000

Channel 2 1.2509 2.6832 1.2509 2.6832 1.2509 2.5327 1.2898 2.2687 1.3310 2.1908

Channel 3 0.8979 2.1111 0.8979 2.1111 0.8979 1.9323 0.8979 1.6852 0.8979 1.5376

Channel 4 1.1093 2.6235 1.1093 2.6235 1.1093 2.5285 1.1093 2.4644 1.1093 2.4644

Channel 5 0.8393 1.8862 0.8393 1.8433 0.8393 1.7023 0.8393 1.6952 1.0169 1.5410

Scheme
with equal
time
allocations

Channel 1 7.517 2.000 7.517 2.000 7.091 2.000 3.293 2.000 2.687 2.000

Channel 2 1.1546 3.2741 1.1546 2.8266 1.1546 2.1453 1.1546 1.9478 1.1855 1.8550

Channel 3 0.9145 2.6055 0.9145 2.3931 0.9145 1.8665 0.9145 1.3254 0.9145 1.2887

Channel 4 1.1637 3.1452 1.1637 2.9782 1.1637 2.3582 1.1637 2.1550 1.1637 2.1295

Channel 5 0.8568 2.2729 0.8568 1.9871 0.8568 1.5232 0.8568 1.4743 0.9514 1.3963

Table 4.4 Time Allocation And Achieved Minimum Throughout In The Hybrid TDMA-
NOMA And The Conventional Schemes.

Scheme with opportunistic time allocations Scheme with equal time allocations

Channels t1(s) t2(s) t3(s) t4(s) t5(s) EE t1(s) t2(s) t3(s) t4(s) t5(s) EE

(Mbits/Joule) (Mbits/Joule)

Channel 1 2.254 2.329 2.118 1.980 1.516 0.356 2 2 2 2 2 0.327

Channel 2 1.751 1.819 2.097 2.114 2.219 0.275 2 2 2 2 2 0.251

Channel 3 2.737 2.399 1.892 1.425 1.547 0.490 2 2 2 2 2 0.438

Channel 4 2.599 2.388 1.783 1.628 1.601 0.304 2 2 2 2 2 0.284

Channel 5 2.634 2.220 1.695 1.630 1.819 0.563 2 2 2 2 2 0.533

the SCA or the DA algorithm, as shown in Fig. 4.5. In these algorithms, both time
and power resources are utilized efficiently to achieve the best EE for a given system.

Next, the achieved per-user power allocations and per-cluster time allocations in the
hybrid TDMA-NOMA schemes with the opportunistic time allocations versus that of
the conventional schemes with equal time allocation are presented in Table 4.3 and 4.4,
respectively. For the sake of comparison, it is assumed that both schemes use the same
minimum data rate requirements (R̄j,i = 2 bits/s/Hz). The achieved rate of each user
and the time allocations using the proposed opportunistic time allocation are given
for five different sets of random channels. As seen in Table 4.3, most users achieve
better rates in our proposed opportunistic time allocations based hybrid TDMA-NOMA
schemes when compared with the conventional scheme with equal time allocations.
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Fig. 4.6 The convergence of the SCA algorithm for five different sets of channels.

The convergence of SCA and DA-based EE maximization algorithms is studied in
Fig. 4.6 and Fig. 4.7, respectively. In particular, five different sets of channels are
considered to evaluate the convergence. In these simulations, the maximum transmit
power Pmax is set to 10 W. As seen in Fig. 4.6, the SCA-based algorithm converges to
the optimal EE faster by using the relaxation of constraints. The convergence of DA
follows the same procedure as for the convergence of the SCA technique for each λ. In
addition, the simulation results confirm that both algorithms converge within a few
number of iterations.

4.7 Summary

In this chapter, the GEE-Max problem with joint power-time resource allocation has
been studied for a hybrid TDMA-NOMA system. In particular, the users are grouped
into a number of clusters, the available transmission time is divided into several time-
slots, and the power-domain NOMA is exploited to serve multiple users within each
cluster. However, due to the non-convexity of the formulated GEE-Max optimization
problem, two different algorithms based on the SCA and DA techniques have been
proposed, respectively. Simulation results have demonstrated the effectiveness of the
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Fig. 4.7 The convergence of the DA for five different sets of channels.

proposed schemes. In particular, the proposed hybrid TDMA-NOMA system with
opportunistic time allocation outperforms the conventional resource allocations with
equal time assignment in terms of the required minimum transmit power and achieved
sum rate. In other words, the proposed schemes achieve better EE than the conventional
schemes with equal time allocations.

4.8 Appendix

In order to prove the convergence of the DA-based iterative approach to the optimal
solution, the following conditions can be equivalently proven [113]:

• Firstly, it is proven that λ(t+1) > λ(t) for all t.

Lemma 2 Let G(λ(t)) = max{t∗i ,p∗j,i}

{∑C
i=1

∑Ki

j=1Rj,i(ti, pj,i)− λ(t)Ptotal(pj,i)
}
,

then G(λ) is a strictly monotonic decreasing function of λ, i.e., if λ(t) < λ(t+1),
then G(λ(t)) > G(λ(t+1)).
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Proof: Let {t∗i , p∗j,i} be the optimal power allocation and time slot assignment
for the proposed schemes for G(λ(t+1)). Then

G(λ(t+1)) = max
{t∗i ,p∗j,i}


C∑
i=1

Ki∑
j=1

Rj,i(ti, pj,i)−λ(t+1)Ptotal(pj,i)


=

C∑
i=1

Ki∑
j=1

Rj,i(t
∗
i , p

∗
j,i)− λ(t+1)Ptotal(p

∗
j,i)

<

C∑
i=1

Ki∑
j=1

Rj,i(t
∗
i , p

∗
j,i)− λ(t)Ptotal(p

∗
j,i)

≤ max
ti,pj,i


C∑
i=1

Ki∑
j=1

Rj,i(ti, pj,i)− λ(t)Ptotal(pj,i)


= G(λ(t)). (4.63)

This completes the proof of Lemma 2.

Lemma 3 Let {ti, pj,i} be an arbitrary power allocation and time slot assignment

and λ(t+1) =
∑C

i=1

∑Ki
j=1 Rj,i(p

(t+1)
j,i ,t

(t+1)
i )

Ptotal(p
(t+1)
j,i )

, then G(λ(t+1)) ≥ 0.

Proof: G(λ(t+1)) = max{ti,pj,i}

{∑C
i=1

∑Ki

j=1 Rj,i(ti, pj,i)−λ(t+1)Ptotal(pj,i)
}

≥
∑C

i=1

∑Ki

j=1Rj,i(t
(t+1)
i , p

(t+1)
j,i ) − λ(t+1)Ptotal(p

(t+1)
j,i ) = 0. Hence, G(λ(t+1)) ≥ 0.

This completes the proof of Lemma 3 and this lemma implies that G(λ(t)) ≥ 0.
By definition,

G(λ(t)) =
C∑
i=1

Ki∑
j=1

Rj,i(ti
(t), p

(t)
j,i )− λ(t)Ptotal(p

(t)
j,i )

= λ(t+1)Ptotal(p
(t)
j,i )− λ(t)Ptotal(p

(t)
j,i ) > 0. (4.64)

Since Ptotal(p
(t)
j,i ) > 0, then λ(t+1) > λ(t).

• Secondly, it is proven that limt→∞ λ(t) = λ∗, where λ∗ is the maximum EE
and the λ(t) equals to λ∗ when iteration number t approaches to infinity. It is
proven by contradiction. Assume that limt→∞ λ(t) = λ∗ does not hold, that is,
limt→∞ λ(t) = λ̃ < λ∗. Based on this argument, G(λ̃) = 0. However, G(λ) is a
strictly monotonic decreasing function based on Lemma 2, and therefore it is
obtained

0 = G(λ̃) > G(λ∗) = 0, (4.65)
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which contradicts the initial assumption. Therefore, this confirms that the
Dinkelbach’s algorithm based method converges to the optimal solution. ■



Chapter 5

Resource Allocation Techniques for
Hybrid TDMA-NOMA System

In this chapter, two resource allocation techniques for hybrid TDMA-NOMA system are
proposed. While recent resource allocation techniques aimed to individually maximize
either SE or EE, this chapter firstly considers an SE-EE trade-off based technique for a
hybrid TDMA-NOMA system. The original problem has been formulated as an MOO
problem with the conflicting objective functions SE and EE. Then, a max-min problem
is investigated to maintain a user fairness in terms of the achieved rates in the hybrid
TDMA-NOMA system. The performance of the proposed designs are evaluated and
compared with that of conventional designs in the literature.

5.1 Spectral-Energy Efficiency Trade-Off Based De-
sign

5.1.1 Introduction

To meet the requirements of future wireless networks, several resource allocation
techniques have already been proposed for hybrid TDMA-NOMA systems. SE-Max has
been investigated in [94] and the work in [63] has considered the EE-Max based resource
allocation technique. The EE and SE are conflicting performance metrics. Optimizing
SE degrades the overall EE, provided the available transmit power is more than the
green power [69]. The maximum GEE in P1 is achieved within certain available power
budget, which is referred to as the green power. Similarly, EE maximization does not
offer maximum SE.
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An SE-EE trade-off based design has been proposed for a MISO-NOMA system in
[81]. In [82], the SE-EE trade-off for massive MIMO systems has been investigated
through the particle swarm optimization algorithm. The EE-SE trade-off has been
studied for the IRS-aided multi-user MIMO uplink system with the partial CSI in [115].
The solution to MOO problem can be achieved by converting it into a SOO problem
[116, 117].

Motivated by the importance of both SE and EE in future wireless networks,
an SE-EE trade-off based resource allocation technique is considered for a hybrid
TDMA-NOMA system in this chapter. The hybrid TDMA-NOMA system with single-
antenna has potential capabilities to achieve better performance and meet different
requirements in specific scenarios compared to the conventional stand-alone NOMA or
TDMA designs, including some practical applications, such as M2M communications
[55], UAV communications [57], and IoT networks [118]. Unlike the existing stand-alone
SE or EE resource allocation techniques in hybrid TDMA-NOMA system, the proposed
design aims to strike a good balance between those performance metrics while fulfilling
the requirements of future wireless networks. The SE-EE trade-off based design is
formulated as a MOO problem, and the weighted sum utility function is utilized to
reformulate the MOO framework as a SOO problem. Then, an iterative approach is
proposed to solve the SOO problem.

5.1.2 Problem Formulation

The DL hybrid TDMA-NOMA system has been introduced in the previous chapter.
Based on the definition of the achieved rate Rj,i at uj,i, SE can be defined as SE =∑C

i=1

∑Ki
j=1 Rj,i

B
. Since it is assumed that B = 1 throughout this thesis, both SE and

sum-rate carry the same meaning throughout this thesis.
Note that the objective functions of EE-Max and SE-Max are conflicting in nature.

In particular, maximizing the sum rate in EE-Max might degrade the EE of the
system. Similarly, maximizing EE through solving SE-Max has a negative impact on
the achieved sum-rate. To overcome this conflicting issue and to align with different
requirements of both users and service providers, an SE-EE trade-off based design is
proposed for the hybrid TDMA-NOMA system.

The objective function of this MOO design consists of the conflicting performance
metrics, i.e., SE and EE. For simplicity, SE and EE are represented by the functions
f1({pj,i, ti}Ci=1

Ki
j=1) and f2({pj,i, ti}Ci=1

Ki
j=1), respectively. In fact, the objective function

of this trade-off based design can be defined as a vector function f , with the elements of
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both performance metrics f1 and f2. Accordingly, the proposed trade-off based design
can be formulated as

(P7) : max
{pj,i,ti}Ci=1

Ki
j=1

f
(
{pj,i, ti}Ci=1

Ki
j=1

)
(5.1)

s.t.
C∑
i=1

ti ≤ T, (5.2)

C∑
i=1

Ki∑
j=1

p2j,i ≤ Pmax, (5.3)

p2K,i ≥ p2K−1,i ≥ ... ≥ p21,i,∀i ∈ C, (5.4)

Rj,i ≥ R̄j,i, ∀i ∈ C,∀j ∈ Ki, (5.5)

where

f({pj,i, ti}Ci=1
Ki
j=1) = [f1({pj,i, ti}Ci=1

Ki
j=1), f2({pj,i, ti}Ci=1

Ki
j=1)]. (5.6)

There are several challenges associated with solving P7. Firstly, it is essential to identify
the users that have to be grouped and served at each sub-time slot as different solutions
can be obtained with different grouping strategies. Secondly, once the grouping strategy
is determined, a feasibility check has to be carried out prior to solving the problem.
This is due to the fact that the minimum rate constraints in P7 cannot be satisfied
for some power budget at BS. Finally, given a multi-objective function in P7, the
conventional approaches cannot be directly employed to determine its feasible solution.
Thus, a solution approach is proposed to address all of these issues in the following
subsection.

5.1.3 Proposed Methodology

The solution of the original problem P7 depends on the selected users for each cluster.
Hence, it is important to determine an appropriate grouping strategy in the considered
hybrid TDMA-NOMA system. The optimal grouping strategy can be only determined
through exhaustive search [119], which has a high computational complexity. To reduce
the computational complexity, different sub-optimal grouping strategies have been
considered in the literature [97, 120].
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Feasibility Analysis

The feasibility of P7 can be investigated with the grouping strategy. Note that P7
might turn out to be infeasible due to the limited total power constraint in (5.3).
Therefore, it is important to firstly examine the required minimum transmit power to
fulfill these minimum rate constraints. It can be evaluated by solving the following
problem:

(P-Min) : Pmin = min
{pj,i,ti}Ci=1

Ki
j=1

C∑
i=1

Ki∑
j=1

p2j,i (5.7)

s.t.
C∑
i=1

ti ≤ T, (5.8)

p2K,i ≥ p2K−1,i ≥ ... ≥ p21,i,∀i ∈ C, (5.9)

SINRj,i ≥ 2
Rmin
j,i
ti − 1,∀i ∈ C,∀j ∈ Ki, (5.10)

where Pmin is the minimum total transmit power required to meet the minimum rate
requirements. The P7 is feasible, and thus worthy to solve if Pmin ≤ Pmax. When
Pmin > Pmax, P7 turns out to be infeasible. In this chapter, it is assumed that an
alternative SE-Max design is considered if P7 is infeasible.

The Proposed Algorithm

Given that P7 is feasible, an approach is proposed to solve this MOO problem.
Note that no single unique optimal solution exists to simultaneously optimize both
f1({pj,i, ti}Ci=1

Ki
j=1) and f2({pj,i, ti}Ci=1

Ki
j=1). Therefore, the set of the best trade-off so-

lutions should be determined, referred to as the Pareto-optimal solutions [121]. A
feasible solution {p∗j,i, t∗i } is considered to be a Perto-optimal solution if no other
solution exists such that f({pj,i, ti}Ci=1

Ki
j=1) ⪯ f({p∗j,i, t∗i }Ci=1

Ki
j=1) [104]. To determine the

Pareto-optimal solution, the multi-objective function should be firstly replaced with a
single-objective function [104, 121]. The weighted-sum utility function is selected to
determine the Pareto-optimal solution [104]. A weight factor αi ∈ [0, 1] is assigned to
the ith objective function to reflect its relative importance on the overall design, and
the sum of both weighted functions is considered. The SOO framework to represent
P7 can be formulated as
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(P8) : max
{pj,i,ti}Ci=1

Ki
j=1

2∑
l=1

αlf
Norm
l

(
{pj,i}, {ti}Ci=1

Ki
j=1

)
(5.11)

s.t.
C∑
i=1

ti ≤ T, (5.12)

C∑
i=1

Ki∑
j=1

p2j,i ≤ Pmax, (5.13)

p2K,i ≥ p2K−1,i ≥ ... ≥ p21,i,∀i ∈ C, (5.14)

Rj,i ≥ R̄j,i, ∀i ∈ C,∀j ∈ Ki, (5.15)

where fNorm
1 ({pj,i, ti}Ci=1

Ki
j=1) and fNorm

2 ({pj,i, ti}Ci=1
Ki
j=1) are the normalized versions of

f1({pj,i, ti}Ci=1
Ki
j=1) and f2({pj,i, ti}Ci=1

Ki
j=1), respectively. These can be expressed as

fNorm
1

(
{pj,i, ti}Ci=1

Ki
j=1

)
=

f1
(
{pj,i, ti}Ci=1

Ki
j=1

)
f ∗
1

, (5.16a)

fNorm
2

(
{pj,i, ti}Ci=1

Ki
j=1

)
=

f2
(
{pj,i, ti}Ci=1

Ki
j=1

)
f ∗
2

, (5.16b)

where f ∗
1 and f ∗

2 are the maximum values of SE and EE, respectively. With such
normalization, a non-dimensional objective function with a unity upper bound is
obtained. For simplicity, let α2 = α and α1 = 1 − α. Note that P8 is non-convex
problem. Therefore, the SCA technique is exploited to deal with its non-convexity
issue.

Sequential Convex Approximation (SCA)

The SCA technique is a local optimization method for evaluating the solutions of
non-convex problems, and it has been utilized to obtain the solutions for several
optimization frameworks in wireless communications [40, 81]. Firstly, the objective
function can be solved by introducing two slack variables γ1 and γ2 such that

(1− α)fNorm
1

(
{pj,i, ti}Ci=1

Ki
j=1

)
≥ γ1, (5.17a)

αfNorm
2

(
{pj,i, ti}Ci=1

Ki
j=1

)
≥ γ2. (5.17b)

With γ1 and γ2, P8 can be equivalently written as
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(P9) : max
γ1,γ2,{pj,i,ti}Ci=1

Ki
j=1

γ1 + γ2 (5.18)

s.t.
C∑
i=1

ti ≤ T, (5.19)

C∑
i=1

Ki∑
j=1

p2j,i ≤ Pmax, (5.20)

p2K,i ≥ p2K−1,i ≥ ... ≥ p21,i,∀i ∈ C, (5.21)

Rj,i ≥ R̄j,i,∀i ∈ C,∀j ∈ Ki, (5.22)

(1− α)fNorm
1

(
{pj,i}, {ti}Ci=1

Ki
j=1

)
≥ γ1, (5.23)

αfNorm
2

(
{pj,i}, {ti}Ci=1

Ki
j=1

)
≥ γ2. (5.24)

Note that the objective function in P9 is linear in terms of γ1 and γ2. However, the
non-convex constraints in (5.23) and (5.24) are introduced to P9. The SCA is exploited
to approximate the non-convex terms.

Firstly, the constraint in (5.23) can be rewritten as

C∑
i=1

Ki∑
j=1

ti log2 (1 + SINRj,i) ≥
f ∗
1

1− α
γ1. (5.25)

To deal with the non-convexity of (5.25), slack variables zj,i and χj,i are introduced,
such that

(1 + SINRj,i) ≥ zj,i,∀i ∈ C,∀j ∈ Ki, ∀d ∈ {j + 1, ..., Ki}, (5.26a)

log2(1 + SINRj,i) ≥ χj,i,∀i ∈ C,∀j ∈ Ki, (5.26b)

zj,i ≥ 2χj,i ,∀i ∈ C, ∀j ∈ Ki, (5.26c)

C∑
i=1

Ki∑
j=1

tiχj,i ≥
f ∗
1

1− α
γ1,∀i ∈ C,∀j ∈ Ki. (5.26d)

Note that the constraint in (5.26c) is convex while the others are not. To overcome
the non-convexity issues of (5.26a), another slack variable ξj,i is introduced, such that
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(5.26a) can be rewritten as

|hj,i|2p2d,i
|hj,i|2

∑d−1
s=1 p

2
s,i + σ2

j,i

≥
(zj,i − 1)ξ2j,i

ξ2j,i
,∀i ∈ C,∀j ∈ Ki,∀d ∈ {j + 1, j + 2, ..., Ki}.

(5.27)

Furthermore, the constraint in (5.27) can now be decomposed into two constraints as
follows:

|hj,i|2p2d,i ≥ (zj,i − 1)ξ2j,i,∀i ∈ C, ∀j ∈ Ki,∀d ∈ {j + 1, j + 2, ..., Ki}, (5.28a)

|hj,i|2
d−1∑
s=1

p2s,i + σ2
j,i ≤ ξ2j,i, ∀i ∈ C,∀j ∈ Ki, ∀d ∈ {j + 1, j + 2, ..., Ki}. (5.28b)

Then, the first-order Taylor series expansion is exploited to approximate both sides of
(5.28a) with their corresponding linear approximations, such that

|hj,i|2
(
p2d,i

(n)
+ 2p

(n)
d,i (pd,i − p

(n)
d,i )
)
≥ ξ2j,i

(n)
(
z
(n)
j,i − 1

)
+ 2

(
z
(n)
j,i − 1

)
ξ
(n)
j,i

(
ξj,i − ξj,i

(n)
)
+ ξ2j,i

(n) (
zj,i − zj,i

(n)
)
,

∀i ∈ C,∀j ∈ Ki,∀d ∈ {j + 1, j + 2, ..., Ki}, (5.29)

where p
(n)
d,i , ξj,i

(n) and z
(n)
j,i represent the approximations of pd,i, ξj,i and zj,i at the nth

iteration, respectively. Note that both sides of (5.29) are now linear in terms of pd,i,
ξj,i, and zj,i. Furthermore, the constraint in (5.28b) can be rewritten as the following
SOC constraint:

∥|hj,i|p1,i, |hj,i|p2,i, ..., |hj,i|pd−1,i,σj,i∥ ≤ ξj,i,∀i ∈ C,∀j ∈ Ki,∀d ∈ {j + 1, j + 2, ..., Ki},
(5.30)

where || · || denotes the Euclidean norm of a vector. With these approximations, (5.26a)
can now be approximated as the convex constraints in (5.29) and (5.30).

Next, the non-convexity issue of the constraint in (5.26d) is considered. This can
be dealt by incorporating a new slack variable νj,i, such that

tiχj,i ≥ νj,i,∀i ∈ C,∀j ∈ Ki, (5.31a)

C∑
i=1

Ki∑
j=1

νj,i ≥
f ∗
1

1− α
γ1,∀i ∈ C,∀j ∈ Ki. (5.31b)
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To tackle the non-convexity issue of (5.31a), the non negative t2i + χ2
j,i is incorporated

to the both sides of inequality (5.31a) without affecting the original inequality. This
constraint can be now formulated as the following SOC constraint:

ti + χj,i ≥
∥∥∥ 2
√
νj,i

ti − χj,i

∥∥∥
2
,∀i ∈ C,∀j ∈ Ki. (5.32)

To this end, the non-convex constraint in (5.23) is replaced with the following convex
constraints:

(5.23)⇔ (5.29), (5.30), (5.26c), (5.32), (5.31b).

Similarly, the non-convexity of the constraint in (5.24) is tackled by introducing a
new slack variable b such that∑C

i=1

∑Ki

j=1 ti log2 (1 + SINRj,i)
1
ϵ

∑C
i=1

∑Ki

j=1 p
2
j,i + Ploss

≥ γ2f
∗
2 b

2

αb2
. (5.33)

The constraint in (5.33) can be split into the following two constraints:

C∑
i=1

Ki∑
j=1

ti log2 (1 + SINRj,i) ≥
f ∗
2

α
γ2b

2, (5.34)

b2 ≥ 1

ϵ

C∑
i=1

Ki∑
j=1

p2j,i + Ploss. (5.35)

To handle the non-convexity issue of (5.34), the same approaches that were used for
constraint in (5.23) is exploited. A set of new slack variables ϖj,i, υj,i, δj,i and βj,i are
introduced, such that

(1 + SINRj,i) ≥ υj,i,∀i ∈ C, ∀j ∈ Ki,∀d ∈ {j + 1, ..., Ki}, (5.36a)

υj,i ≥ 2ϖj,i ,∀i ∈ C,∀j ∈ Ki, (5.36b)

C∑
i=1

Ki∑
j=1

tiϖj,i ≥
f ∗
2

α
γ2b

2,∀i ∈ C,∀j ∈ Ki. (5.36c)

The constraint in (5.36a) can be written as

|hj,i|2p2d,i
|hj,i|2

∑d−1
s=1 p

2
s,i + σ2

j,i

≥
(υj,i − 1)δ2j,i

δ2j,i
. (5.37)
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Following a similar approach,

|hj,i|2p2d,i ≥ (υj,i − 1)δ2j,i,∀i ∈ C,∀j ∈ Ki,∀d ∈ {j + 1, j + 2, ..., Ki}, (5.38a)

|hj,i|2
d−1∑
s=1

p2s,i + σ2
j,i ≤ δ2j,i, ∀i ∈ C,∀j ∈ Ki, ∀d ∈ {j + 1, j + 2, ..., Ki}. (5.38b)

The inequalities in (5.38) can now be approximated with linear function using the
first-order Taylor series approximation as

|hj,i|2
(
p2d,i

(n)
+ 2p

(n)
d,i (pd,i − p

(n)
d,i )
)
≥ δ2j,i

(n)
(
υ
(n)
j,i − 1

)
+ 2

(
υ
(n)
j,i − 1

)
δ
(n)
j,i

(
δj,i − δj,i

(n)
)
+ δ2j,i

(n) (
υj,i − υj,i

(n)
)
,

∀i ∈ C,∀j ∈ Ki,∀d ∈ {j + 1, j + 2, ..., Ki}, (5.39a)

∥|hj,i|p1,i, |hj,i|p2,i, ..., |hj,i|pd−1,i,σj,i∥ ≤ δj,i,∀i ∈ C,∀j ∈ Ki,∀d ∈ {j + 1, j + 2, ..., Ki}.
(5.39b)

The constraint in (5.36c) can be reformulated with the following convex constraints:

tiϖj,i ≥ βj,i,∀i ∈ C,∀j ∈ Ki, (5.40a)

ti +ϖj,i ≥
∥∥∥ 2
√

βj,i

ti −ϖj,i

∥∥∥
2
,∀i ∈ C,∀j ∈ Ki, (5.40b)

C∑
i=1

Ki∑
j=1

βj,i ≥
f ∗
2

α
γ2b

2,∀i ∈ C,∀j ∈ Ki, (5.40c)

C∑
i=1

Ki∑
j=1

βj,i ≥
f ∗
2

α

(
b2

(n)
γ2

(n) + 2γ2
(n)b(n)

(
b− b(n)

)
+ b2

(n) (
γ2 − γ2

(n)
))

,∀i ∈ C,∀j ∈ Ki.

(5.40d)
Following a similar approach in (5.28b), the constraint in (5.35) can be cast as the
following SOC constraint:

b ≥ 1

ϵ

∥∥∥∥[p1,i, p2,i, ..., pd−1,i,
√

Ploss

]T∥∥∥∥
2

,∀i ∈ C,∀j ∈ Ki, ∀d ∈ {j + 1, j + 2, ..., Ki}.

(5.41)
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To this end, the non-convex constraint in (5.24) is replaced with the following convex
constraints:

(5.24)⇔ (5.39a), (5.39b), (5.36b), (5.40b), (5.40d), (5.41).

The non-convexity issue of (5.9) can be dealt by approximating each non-convex
term of the inequality by a lower bounded convex term using the first-order Taylor
series. Each term in (5.9) can be written as

p2K,i ≥ p2K,i
(n)

+ 2pK,i
(n)
(
pK,i − pK,i

(n)
)
,∀i ∈ C. (5.42)

Finally, the minimum rate constraints in (5.10) can be formulated as the following
convex constraints:

νj,i ≥ Rmin
j,i ,∀i ∈ C,∀j ∈ Ki. (5.43)

With the above approximations, P7 can be equivalently written as the following
approximated convex one:

(P10) : max
Γ

γ1 + γ2 (5.44)

s.t. (5.2), (5.3), (5.42), (5.43), (5.45)

(5.29), (5.30), (5.26c), (5.32), (5.31b), (5.46)

(5.39a), (5.39b), (5.36b), (5.40b), (5.40d), (5.41), (5.47)

where Γ consists of all the optimization parameters, such that Γ = {pj,i, ti, γ1, γ2, βj,i, χj,i,

ξj,i, zj,i, νj,i, υj,i, ϖj,i, δj,i, b}, ∀i ∈ C,∀j ∈ Ki. In fact, the solution to P7 can be obtained
by iteratively solving P10. With this iterative algorithm, the initial value of Γ(0) needs
to be carefully selected as it plays a crucial role in determining the solution. Therefore,
a simplified approach is discussed to select these initial values. Firstly, an appropriate
initial power allocation and time slots are selected to fulfill all the constraints of P10.
Then, the corresponding slack variables can be evaluated based on the initial power
allocation and time slots. Note that the iterative process is continued until the required
accuracy which can be defined as the difference between two consecutive objective
values (i.e., |Φ∗(Γ(n+1))−Φ∗(Γ(n))| ≤ ς , where Φ(Γ(n)) = γ1(Γ

(n))+γ2(Γ
(n)) and ς is the

predefined threshold. The proposed iterative algorithm to solve the original problem
P7 is summarized in Table 5.1.
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Table 5.1 SE-EE Trade-Off Resource Allocation Algorithm.

Algorithm 1: SCA method to solve SE-EE trade-off design problem.

1:Group the users into clusters based on the grouping strategy
2:Check the feasibility of the problem by solving problem P-Min
3: Initialize: Set the parameters Γ(0) with initial values
4: Repeat
5: Solve the problem P10 in (5.44) - (5.47)
6: Update Γ(n)

7:Until required accuracy is achieved.

5.2 Max-min Fairness Design with Opportunistic Time
Assignment

To overcome the practical challenges of employing SIC in dense networks, and to
meet the unprecedented requirements of future wireless networks, NOMA has been
integrated with different other technologies, including multiple-antenna techniques
[36, 74, 75, 122] and conventional OMA schemes [40, 41, 43, 68, 79, 93, 123]. In a hybrid
OMA-NOMA systems, the available resources (i.e., time or frequency) are divided into
several sub-resource blocks and each sub-resource block is assigned to serve multiple
users based on NOMA [40, 41]. For example, a hybrid TDMA-NOMA system has
been considered in [40], in which the available time for transmission is divided equally
among several groups of users (i.e., clusters), and the energy harvesting capabilities
of such system is investigated. A hybrid OFDMA-NOMA system is considered in
[41], where the available bandwidth is divided into several sub-bandwidths, and the
available resources are allocated to maximize the energy efficiency of the system. In [93]
and [123], different resource allocation techniques for hybrid OFDMA-NOMA systems
are developed. In fact, these combinations not only simplify the implementation of
SIC, but also offers additional degrees of freedom by utilizing different domains to
serve multiple users. Considering the hybrid TDMA-NOMA system, the work in the
literature assume equal time assignments to serve the available groups of users to reduce
computational burden at the receiver ends. However, this equal time assignments
limit the performance enhancement of such a hybrid TDMA-NOMA system owing
the fact that opportunistic time allocations provides additional benefits to the groups
of users. Furthermore, serving each user in such hybrid TDMA-NOMA systems to
achieve reasonable throughput is one of the key objectives of such systems. However,
maximizing overall throughput of the system degrades the performance of individual
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users while compromising user-fairness in terms of achievable rates. Motivated by these
facts, an max-min problem is considered, which aiming to minimum per user rate while
satisfying the relevant constraints on the system.

5.2.1 Problem Formulation

Based on the aforementioned facts, user-fairness is one of the crucial requirements for 5G
and beyond wireless networks. Hence, the problem is studied to allocate the available
resources, i.e., time and transmit power, among the users to maintain a user fairness
in terms of the achieved rates in the hybrid TDMA-NOMA system. In particular, the
objective is to maximize the minimum achieved rate at the individual users. This can
be accomplished by solving the following max-min optimization problem:

(P11) : max
{pj,i,ti}Ci=1

Ki
j=1

min
1≤j≤Ki,1≤i≤C

Rj,i (5.48)

s.t.
C∑
i=1

ti ≤ T, (5.49)

C∑
i=1

Ki∑
j=1

pj,i
2 ≤ Pmax, (5.50)

p2K,i ≥ p2K−1,i ≥ ... ≥ p21,i,∀i ∈ C, (5.51)

where the constraint in (5.49) ensures that the total allocated time does not exceed the
available time T for transmission. Furthermore, the constraint in (5.51) facilitates the
successful implementation of SIC. However, additional complexity is introduced due to
the joint allocation of both the time and the transmit power to all served users in the
system. Furthermore, the non-convex objective function makes the original problem
defined in (5.49) - (5.51) more challenging to solve. Hence, an iterative algorithm is
developed to realize the solution in the next subsection.

The grouping strategy is first discussed to group the users into a number of clusters
in the hybrid TDMA-NOMA system. Next, approximation techniques are used to
transform the non-convex optimization problem P1 into an approximated convex
problem.
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5.3 Proposed Methodology

The objective function of problem P11 is non-convex; hence, a new slack variable γ is
firstly introduced to approximate it into a convex one. Based on this slack variable,
problem P11 can be reformulated equivalently as,

(P12) : max
γ,{pj,i,ti}Ci=1

Ki
j=1

γ (5.52)

s.t.
C∑
i=1

ti ≤ T, (5.53)

C∑
i=1

Ki∑
j=1

pj,i
2 ≤ Pmax, (5.54)

p2K,i ≥ p2K−1,i ≥ ... ≥ p21,i,∀i ∈ C, (5.55)

ti log2 (1 + SINRj,i) ≥ γ, ∀i ∈ C,∀j ∈ Ki. (5.56)

Note that the objective function of the original optimization problem P11 is replaced
with a new single scalar slack variable by using epigraph. However, this non-convex
objective function has been formulated into a constraint in (5.56) in P12. In other
words, maximizing min1≤j≤Ki,1≤i≤C Rj,i is equivalent to maximizing the slack variable γ
with a new constraint in (5.56). However, the overall problem still remains intractable
due to the non-convex constraints (5.55) and (5.56) in P12. In order to solve this
non-convex problem, the SCA technique is exploited, in which a set of lower bounded
convex terms are introduced to approximate the non-convex terms in the constraints
(5.55) and (5.56) [40].

The non-convexity of the constraint in (5.56) is handled by introducing new slack
variables αj,i and ϑj,i, such that

(1 + SINRd
j,i) ≥ αj,i, ∀i ∈ C,∀j ∈ Ki, ∀d ∈ {j + 1, ..., Ki}, (5.57)

log2(1 + SINRj,i) ≥ ϑj,i,∀i ∈ C, ∀j ∈ Ki, (5.58)

αj,i ≥ 2ϑj,i ,∀i ∈ C, ∀j ∈ Ki, (5.59)

tiϑj,i ≥ γ, ∀i ∈ C,∀j ∈ Ki, (5.60)
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where the constraint in (5.59) is convex. Next, to address the non-convexity issue of
the constraint in (5.57), another slack variable ηj,i is introduced, such that

|hj,i|2p2d,i
|hj,i|2

∑d−1
s=1 p

2
s,i + σ2

j,i

≥
(αj,i − 1)η2j,i

η2j,i
,∀i ∈ C, ∀j ∈ Ki,∀d ∈ {j + 1, j + 2, ..., Ki}.

(5.61)

Secondly, the above constraint in (5.61) can be decomposed into two constraints as
follows:

|hj,i|2p2d,i ≥ (αj,i − 1) η2j,i,∀i ∈ C,∀j ∈ Ki,∀d ∈ {j + 1, j + 2, ..., Ki}, (5.62)

|hj,i|2
d−1∑
s=1

p2s,i + σ2
j,i ≤ η2j,i,∀i ∈ C,∀j ∈ Ki,∀d ∈ {j + 1, j + 2, ..., Ki}. (5.63)

Then, the first-order Taylor series are exploited to approximate both sides of (5.62)
with linear convex terms, such that

|hj,i|2
(
p2d,i

(t)
+ 2p

(t)
d,i(pd,i − p

(t)
d,i)
)
≥ η2j,i

(t)
(
α
(t)
j,i − 1

)
+ 2

(
α
(t)
j,i − 1

)
η
(t)
j,i

(
ηj,i − ηj,i

(t)
)
+ ηj,i

2(t)
(
αj,i − αj,i

(t)
)
,

∀i ∈ C, ∀j ∈ Ki,∀d ∈ {j + 1, j + 2, ..., Ki}, (5.64)

where p
(t)
d,i, ηj,i

(t) and α
(t)
j,i represent the approximations of pd,i, ηj,i and αj,i at the tth

iteration, respectively. The constraint in (5.63) can be rewritten as follows using SOC
[88, 124]:∥∥∥|hj,i|p1,i, |hj,i|p2,i, ..., |hj,i|pd−1,i, σj,i

∥∥∥ ≤ ηj,i,∀i ∈ C,∀j ∈ Ki,∀d ∈ {j + 1, j + 2, ..., Ki}.

(5.65)

Based on the above multiple slack variables αj,i and ηj,i, the constraint in (5.57)
can be approximated with the convex constraints in (5.64) and (5.65).

The non-convexity issue of the constraint in (5.60) can be solved by formulating it
as the following SOC constraint [88, 90]:

ti + ϑj,i ≥
∥∥∥ 2
√
γ

ti − ϑj,i

∥∥∥,∀i ∈ C,∀j ∈ Ki. (5.66)
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Furthermore, each non-convex term in (5.55) can be approximated by a lower bounded
convex term using the first-order Taylor series expansion,

p2K,i ≥ p2K,i
(t)

+ 2pK,i
(t)(pK,i − pK,i

(t)),∀i ∈ C. (5.67)

Therefore, the original non-convex optimization problem P11 can be approximated
by the following convex optimization problem:

(P13) : max
Γ

γ (5.68)

s.t.
C∑
i=1

ti ≤ T, (5.69)

C∑
i=1

Ki∑
j=1

p2j,i ≤ Pmax, (5.70)

(5.55), (5.59), (5.64), (5.65), (5.66), (5.71)

where Γ consists of all the optimization variables, such that Γ = {pj,i, ti, γ, αj,i, ϑj,i, ηj,i},
∀i ∈ C,∀j ∈ Ki. It is worth pointing out that the solution of P11 is obtained iteratively,
such that the approximated convex optimization problem P13 is solved at each iteration.
In particular, this requires appropriate selection of the initial variables, i.e., Γ(0). These
initial values can be chosen by defining random power allocations p

(0)
j,i that fulfills the

maximum power constraint in (5.50). Then, the corresponding slack variables are
evaluated by substituting these power allocations in (5.64) and (5.65). The solutions
obtained in each iteration are used as initial points for the Taylor series approximation
to the next iteration. In fact, the iterative algorithm keeps improving the solutions at
each iteration until the difference between two consecutive objective values is less than
a pre-defined threshold, ς , (i.e., |γ∗(n+1)− γ∗(n)| ≤ ς). The proposed iterative algorithm
is summarized in Table 5.2.

5.4 Simulation Results

5.4.1 Spectral-Energy Efficiency Trade-Off Based Design

In this sub-section, simulation results are provided to demonstrate the effectiveness of
the proposed SE-EE trade-off based design for the hybrid TDMA-NOMA system. For
the grouping strategy, clusters with two users in each cluster have been considered,
i.e., Ki = 2, due to practical implementation challenges, including high computa-
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Table 5.2 Max-min Joint Resource Allocation Algorithm.

Algorithm: Solving Max-min Joint Resource Allocation Problem.

1:Group the users into clusters based on the grouping strategy,
2: Initialize: Set the parameters Γ(0),
3:Repeat
4: Solve the problem P13 in (5.68) - (5.71),
5: Update all parameters Γ(n) based on (5.55),(5.59),(5.64),(5.65),(5.66),
6:Until |γ∗(n+1) − γ∗(n)| ≤ ς, where ς is a predefined error tolerance

threshold.

Table 5.3 Parameter values used in the simulations
Simulation Parameter Value(s)
Number of users (K) 10

Number of users in each cluster (Ki) 2
Distances of users (m) 1.0 ≤ dj,i ≤ 30.0
Pass loss exponent(κ) 2

Noise variance of users (σ2
j,i) 0.01

Power amplifier efficiency (ϵ) 0.35
Threshold of algorithm 0.01

Bandwith B (MHz) 1

tional complexity and error propagations in SIC. However, the analysis provided
in this work is applicable to clusters with any number of users. Motivated by the
fact that SIC can be successfully implemented when the difference of the channel
gains is high, users are grouped with higher difference in their channel gains. Based
on this grouping strategy, the clusters for the considered system can be presented as
({u1,1, u2,1}, {u1,2, u2,2}, ...{u1,C , u2,C}) ≡

(
{u1, uK}, {u2, uK−1}, ...{uK

2
, uK

2
+1}
)
, where

u1 and uK are the strongest and the weakest users, respectively. Table 5.3 provides
simulation parameters [99, 107]. Similar to the works in the literature [107, 125], a
pico-cell is considered in this simulation.

Fig. 5.1 presents the achieved SE and EE with different weight factors α. As seen
in Fig. 5.1, both SE and EE remain the same when the weight factor α is small. Then,
with increasing α, the SE decreases whereas the EE increases. This is due to the fact
that more resources are allocated for maximizing EE as the weight factor α increases.
As the weight factor α increases, more resources are allocated for maximizing EE,
which provides a better performance. With an appropriate weight factor α, the BS has
the flexibility to achieve different performance trade-off according to the requirements
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Fig. 5.1 Achieved SE and EE with different weight factors.

of the systems. Furthermore, Fig. 5.1 shows the achieved EE and SE for the proposed
design against α with 10 and 30 meters radii around the BS. As expected, with the 30
meters radius, both the achieved EE and SE decrease compared to those achieved with
10 meter radius.

Fig. 5.2 and Fig. 5.3 depict the achieved SE and EE performance versus Pmax with
different α, respectively. It can be observed that the achieved SE first increases until
reaching a certain value, and it then remains constant. Similarly, the performance of
EE first increases until reaching the maximum value, however, it then decreases as the
transmit power increases. The proposed SE-EE trade-off based design becomes the
conventional SE and EE designs with α = 0 and 1, respectively.

Finally, the SE-EE performance trade-off is illustrated in Fig. 5.4 with the set of
Pareto-optimal solutions for the original optimization problem. Note that each point
on this curve represents a Pareto-optimal solution for a particular α, based on sum
rate and EE performance. In other words, no other solution exists to simultaneously
improve both the SE and EE objective functions.
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Fig. 5.2 The achieved SE performance versus Pmax with different α.
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Fig. 5.3 The achieved EE performance versus Pmax with different α.
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Fig. 5.4 A set of Pareto-optimal solutions of the proposed design.

5.4.2 Max-min Fairness Design with Opportunistic Time As-
signment

To evaluate the performance of the proposed hybrid TDMA-NOMA scheme with
opportunistic time allocations, the conventional scheme with equal time allocations is
selected as the benchmark. In simulations, the users are uniformly distributed over a
circle with a radius of 50 meters around the BS, and the minimum distance is selected
such that d0 = 1 meters. The corresponding channel gain is |hj,i|2 = β

(dj,i/d0)
κ , where

dj,i is the distance between uj,i and the BS, measured in meters and β = −30 dB is
the signal attenuation at d0, and κ = 2 is the path-loss exponent. Ten users (K = 10)
are considered, which are divided into five clusters (C = 5); accordingly, each cluster
consists of two users. The noise variance at each user is assumed to be -100 dBm/Hz
(σ2

j,i = −100). Furthermore, the CVX software is utilized to solve the convex problems
in this work [124].

Table 5.4 and 5.5 illustrate the performance of the hybrid TDMA-NOMA with
the opportunistic time allocations versus that of the conventional schemes with equal
time allocation. As seen in Table 5.4, the proposed opportunistic time allocations
based hybrid TDMA-NOMA outperforms the conventional scheme with equal time
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Table 5.4 Power Allocations For Each User In The Hybrid TDMA-NOMA Through
The Proposed Opportunistic Time Allocations And The Conventional Equal Time
One.

Scheme with opportunistic time allocations Scheme with equal time allocations

p1,1 p2,1 p1,2 p2,2 p1,3 p2,3 p1,4 p2,4 p1,5 p2,5 p1,1 p2,1 p1,2 p2,2 p1,3 p2,3 p1,4 p2,4 p1,5 p2,5

0.081 1.483 0.098 1.462 0.122 1.414 0.179 1.330 0.256 1.330 0.057 1.407 0.071 1.407 0.092 1.407 0.141 1.407 0.264 1.407

0.120 1.409 0.178 1.391 0.266 1.391 0.273 1.391 0.301 1.391 0.079 1.397 0.126 1.397 0.243 1.397 0.253 1.397 0.302 1.397

0.144 1.386 0.188 1.386 0.243 1.386 0.370 1.386 0.383 1.386 0.089 1.384 0.125 1.384 0.177 1.384 0.420 1.384 0.439 1.384

0.034 1.572 0.036 1.523 0.091 1.306 0.121 1.306 0.253 1.306 0.023 1.409 0.023 1.409 0.053 1.409 0.079 1.409 0.263 1.409

0.074 1.410 0.105 1.410 0.123 1.410 0.127 1.410 0.160 1.410 0.040 1.410 0.072 1.410 0.097 1.410 0.102 1.410 0.160 1.410

Table 5.5 Time Allocation And Achieved Minimum Throughout In The Hybrid TDMA-
NOMA Through The Proposed Opportunistic Time Allocations And The Conventional
Equal Time One.

Scheme with opportunistic time allocations Scheme with equal time allocations

Channels t1(s) t2(s) t3(s) t4(s) t5(s) Minimum throughput t1(s) t2(s) t3(s) t4(s) t5(s) Minimum throughput

(bit/second) (bit/second)

Channel 1 1.878 1.904 1.934 1.980 2.304 10.664 2 2 2 2 2 9.423

Channel 2 1.751 1.819 2.097 2.114 2.219 9.706 2 2 2 2 2 8.765

Channel 3 1.714 1.789 1.886 2.284 2.327 8.433 2 2 2 2 2 7.211

Channel 4 1.948 1.896 1.817 1.908 2.432 11.494 2 2 2 2 2 9.667

Channel 5 1.744 1.928 2.031 2.044 2.253 14.124 2 2 2 2 2 12.540

allocations in terms of minimum achieved rate. In particular, the opportunistic time
allocations provides improvement to the overall system performance. Furthermore,
Table 5.5 presents the power allocations of all users in the system for both schemes:
with opportunistic and equal time allocations.

Next, Fig. 5.5 depicts the performance of these schemes in terms of the minimum
achieved rate for different transmission power Pmax. Simulation results confirm that
the proposed scheme with opportunistic time allocation outperforms the scheme with
equal time allocation in terms of the minimum achieved rate.

Finally, simulation results are presented to validate the convergence of the proposed
algorithm in Fig. 5.6. Five different channels are considered, and as seen in Fig. 5.6,
the proposed algorithm converges within a few iterations.

5.5 Summary

In this chapter, two different resource allocation designs are proposed for hybrid TDMA-
NOMA system. Firstly, the SE-EE trade-off based resource allocation technique is
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5.5 Summary 85

proposed for a hybrid TDMA-NOMA system. Simulation results have demonstrated
that the proposed SE-EE trade-off based design has the flexibility to strike a good
balance between the conflicting metrics SE and EE compared to the conventional SE
and EE designs. Secondly, the max-min joint resource allocation problem is studied of
a SISO hybrid TDMA-NOMA system. Specifically, the available transmission time is
divided into several time-slots and power-domain NOMA is exploited to serve multiple
users within a cluster. However, the formulated max-min optimization problem is
non-convex in nature. To cope with this challenge, an iterative algorithm is developed
by exploiting SCA and a novel form of a SOC formulation to realize a solution to the
original problem. Simulation results demonstrate that the proposed hybrid TDMA-
NOMA system outperforms the conventional resource allocations with equal time
assignment in terms of the minimum achieved rate and overall system throughput.



Chapter 6

Energy Efficiency Maximization for
IRS-Assisted NOMA System with
Imperfect CSI

In this chapter, a DL transmission of an IRS-assisted NOMA system is considered,
where an IRS is deployed to support the communication between a multi-antenna
BS and multiple single-antenna users. Specifically, the EE is maximized by jointly
optimizing the transmit beamforming at BS and the phase shift of IRS. However, due
to the non-convex nature of this joint optimization problem, an iterative algorithm
based on the alternating optimization is proposed. The effectiveness of the proposed
scheme is verified through simulations with different estimation error values and with
OMA scheme.

6.1 Introduction

IRS is considered to be a viable and promising technology to improve the SE and
EE, and the signal coverage in wireless networks [61, 126, 127]. At the same time,
NOMA has been recently combined with the conventional OMA techniques, which
offers additional degrees of freedom [128, 129]. Most existing works on NOMA have
assumed the perfect CSI at the BS, which might be unrealistic in terms of practical
implementation. It is impossible to have perfect CSI at the BS in terms of inevitable
errors from the channel estimation and quantization in practice. Furthermore, the
overall system might suffer a performance degradation due to these channel uncertainties
[130]. Therefore, these channel uncertainties have been considered and incorporated
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in the NOMA design to introduce the robustness and enjoy the full potential benefits
offered by NOMA. In particular, the robust design can be categorized into two groups,
the worst-case design with the bounded channel uncertainties [131, 132], and the outage
probability based design with the statistics of channels and uncertainties [133–135]. In
[131], the impact of the SINR balancing problem on the performance of a two-user
MIMO-NOMA system with channel errors has been investigated. NOMA has been
applied in a heterogeneous vehicular network to enhance the spectral efficiency, where
the uplink was adopted with the imperfect channel estimation [132]. Considering the
outage probability based robust design, [133] has investigated the power allocation and
beamforming design problem to maximize the system utility under outage probability
constraints. In [134], a robust power minimization optimization problem has been
formulated under the constraints of the outage probability constraints of users’ required
rate. The expressions for the outage probability have been derived for a robust NOMA-
aided design in vehicular communications and networking where two main causes of
imperfect CSI have been considered, imposed by the channel estimation process and
the Doppler spread, respectively [135].

Motivated by the above-mentioned discussion, this chapter investigates a worst-case
robust design for IRS-assisted NOMA MISO system. A bounded channel uncertainty
model is considered to define the CSI errors, where the transmit beamforming and
reflecting matrix are designed to maximize the EE with a set of QoS constraints. In
particular, the DL transmission of an IRS-assisted NOMA-based MISO system is
considered and a joint EE-Max design is formulated, which maximizes the EE under
a set of relevant QoS constraints, including the worst-case rate constraints under the
bounded CSI error model, the minimum rate constraint of each user, the power budget
constraint at the BS, and phase shift unit-modulus at IRS. However, the formulated
EE-Max problem is non-convex in nature due to the fractional objective function and
coupled variables in constraints. The following summarize the major contributions of
this design.

• Assuming no direct links between BS and users and the ellipsoid-based channel
uncertainties, the robust EE-Max problem is solved by jointly designing both
the transmit beamforming for BS and reflection matrix for IRS based on the
definition of the system EE, which represents the ratio between the total sum rate
and total power consumption. To guarantee the QoS requirement of each user,
the individual minimum data rate is chosen as a performance metric. Moreover,
the total transmit power and the phase shift unit-modulus constraints are also
incorporated in our formulated problem to guarantee the maximum transmit
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power at BS and the unit-modulus requirements of the reflection elements at the
IRS, respectively.

• An AO algorithm is proposed by applying the S-procedure and SDP to address
the original non-convex problem. In particular, the reflection matrix is firstly
initialized to solve the beamforming optimization problem. The beamforming
optimization problem is still non-convex as the objective function is not only
non-convex, but also fractional. In the first stage, given phase shift matrix, the
optimal solutions of the beamforming optimization sub-problem are obtained by
developing an iterative algorithm. In the second stage, the reflection matrix from
the phase shift optimization sub-problem based on the beamforming in the first
stage is obtained through an iterative algorithm. The process described above is
repeated until convergence with the required accuracy. Furthermore, due to the
imperfect CSI, the constraints are reformulated in terms of convex LMIs that
can be easily solved, exploiting the S-procedure.

• The performance of the proposed robust IRS-assisted NOMA EE-Max design
is demonstrated by comparing that of the non-robust design. Numerical results
further verify that the proposed AO algorithm can provide the solution to the
original EE-Max optimization problem as well as convergence within a few
iterations.

6.2 System Model and Problem Formulations

6.2.1 System Model

In this subsection, a DL transmission of a multi-user MISO system is considered, where
a BS equipped with M antennas serves K single-antenna users, and an IRS with N

passive reflecting elements, as shown in Fig. 6.1. The IRS is deployed to establish
virtual line-of-sight links to assist the communications between BS and users.

At the transmission stage, the desired signals from the BS are superimposed by
employing SC, and then are encoded with different power levels. Hence, the combined
transmitted complex base band signal, x, at the BS can be represented as

x =
K∑
k=1

wkxk, (6.1)
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Fig. 6.1 IRS-assisted MISO NOMA system.

where wk ∈ CM×1, and xk denote the corresponding beamforming vector intended
for each user and the transmitted symbol for user k, respectively. It is assumed that
xk, k = 1, 2, . . . , K, are independent and have unit variance, then the transmission
power of each symbol is 1, i.e., E[|xk|2] = 1. The received signal at user k can be
defined as follows:

yk =
(
hH
k ΘG

) K∑
j=1

wjxj + nk,∀k ∈ K, (6.2)

where hk ∈ CN×1, and G ∈ CN×M represent the channel coefficients from the IRS to kth
user and from the BS to the IRS, respectively, while nk denotes the AWGN with zero-
mean and variance σ2

k at receiver. In addition, the matrix Θ = diag(βejθ1 , ..., βejθN ) is
the phase shift matrix at the IRS, where β ∈ [0, 1] and θn ∈ [0, 2π), n ∈ {1, 2, ..., N}
denote the amplitude reflection coefficient of the incident signal and the phase shift of
nth reflecting element, respectively. Without loss of generality, and similar to the recent
works in IRS-assisted systems, it is assumed that the amplitude reflection coefficient
is one, i.e., β = 1. In this work, it is assumed that the direct links between the BS
and the users are unavailable and obstructed by obstacles, such as building clusters,
and industrial factories that produce heavy metallic objects and smog can block this
communication path. With the help of the IRS, it can be deployed on the outside
walls of buildings or the ceiling of the factories to bypass the obstacles and improve the
performance of the system. This means the signals are transmitted through the IRS.

Furthermore, it is assumed that it is difficult to have perfect CSI in practical
schemes due to errors from the channel estimation and quantization. To overcome this
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problem, a worst-case approach is considered to deal with such channel uncertainties.
In particular, the channel uncertainties can be defined by incorporating norm-bounded
channel uncertainties model [136], i.e., the actual hk takes the form as

hk = ĥk +△hk, ||△hk||2 = ||hk − ĥk||2 ≤ ε, (6.3)

where ĥk denotes the estimate of hk and △hk is the norm bounded channel estimation
error. In addition, ε is the error bound of channel estimation. The concatenated
channel hH

k ΘG depends on hH
k , Θ and G, which significantly complicates the user

ordering. In the NOMA scheme, users can be multiplexed in the power domain and
the user ordering can be determined according to their channel strengths, which is
given by

||ĥ1||2 ≤ ||ĥ2||2 ≤ ... ≤ ||ĥK ||2. (6.4)

For example, user 2 has better channel conditions than user 1 based on the constraint
in (6.4), then user 2 would decode the signal x1 and remove it from the combined
signals to decode x2 by employing SIC. User 1 decodes its signal x1 directly with
the interference, xj, j > 1. Considering this, the lth user can decode and remove
the kth user’s signals for 1 ≤ k ≤ l − 1 before decoding its individual desired signal.
Consequently, the received signal at the lth user after SIC processing can be expressed
as follows [136]:

ỹkl =
(
hH
l ΘG

)
wkxk +

k−1∑
j=1

(
△hH

l ΘG
)
wjxj +

K∑
j=k+1

(
hH
l ΘG

)
wjxj + nk,

∀k ∈ C, l ∈ {k, k + 1, ..., K}, (6.5)

where the first term in (6.5) indicates the intended signal for the kth user. Since the
considered framework has imperfect CSI, the second term represents that the l th
user cannot completely subtract the signals intended for the users from 1 to k − 1

when employing the SIC. The third term denotes the interference caused by the signals
intended from user k + 1 to user K. The last term is the AWGN.

Considering the above, the lth user decodes the message intended for the weaker
user, i.e., k < l, with the following SINR:

SINRk
l =

|(hH
l ΘG)wk|2∑k−1

j=1 |(△hH
l ΘG)wj|2 +

∑K
j=k+1 |(hH

l ΘG)wj|2 + σ2
l

. (6.6)



6.2 System Model and Problem Formulations 91

Therefore, the SINR of user k can be defined as

γk = min
l∈{k,k+1,...,K}

SINRk
l = min{SINRk

k, SINRk
k+1, ..., SINRk

K}. (6.7)

With the above definition, the achieved rate at user k can be expressed as

Rk = B log2 (1 + γk) , (6.8)

where B represents the available bandwidth in Hz. The total required transmit power
Pt at the BS is

∑K
k=1 ||wk||2. Consequently, the total transmit power should satisfy

the following constraint:
Pt ≤ Pmax, (6.9)

where Pmax is the maximum available transmit power at the BS.

6.2.2 Power Consumption Model

Ptotal denotes the total power consumption at the BS, which is thus formulated as
[70, 73]

Ptotal = P0 (wk) +MPdyn + Psta =
1

ϵ
||wk||2 + Ploss, (6.10)

where P0(wk) is a function of the corresponding beamforming vector, wk, and ϵ ∈
[0, 1] is the efficiency of the power amplifier. In addition, Pdyn and Psta denote the
dynamic power consumption and the static power consumption, respectively. These
two components can be modeled as Ploss since Pdyn and Psta are not dependent on the
corresponding beamforming vector.

Therefore, the EE in bits/Joule can be defined as [63]

EE =

∑K
k=1Rk

Ptotal

. (6.11)

6.2.3 Problem Formulation

In this subsection, the robust EE-Max optimization problem is formulated by jointly
designing of the beamforming vectors (i.e., wk) at the BS and the reflection matrix (i.e.,
Θ) at the IRS. In particular, a set of relevant constraints is also considered, including
the data rate requirements of all users, the unit modulus constraints of all reflecting
elements, and total power budget at the BS. Therefore, this EE-Max problem can be
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formulated as

(P14) : max
wk,Θ

∑K
k=1Rk

1
ϵ

∑K
k=1 ||wk||2 +MPdyn + Psta

(6.12)

s.t. Rk ≥ Rmin
k ,∀k ∈ K, (6.13)

K∑
k=1

||wk||2 ≤ Pmax, (6.14)

0 ≤ θn ≤ 2π, n = 1, 2, . . . , N, (6.15)

where Rmin
k is the threshold for the required QoS of user k. The constraint (6.13) refers

to the QoS requirement for each user. The constraint (6.14) denotes the limitation
of total transmit power, Pmax. The constraint (6.15) ensures that the phase shift is
between 0 and 2π. However, problem P14 is a highly-coupled non-convex problem
as the objective function and the constraints in (6.13) are non-convex. Therefore, the
existing convex optimization techniques cannot be directly applied to determine the
solution of the problem P14.

6.3 Alternating Optimization Framework

An AO framework is proposed to transform the original problem P14 into two sub-
problems, namely, the beamforming design and phase shift design of IRS, respectively.
In other words, {wk} and Θ can be obtained by optimizing alternatively until required
convergence accuracy is achieved.

6.3.1 Beamforming Design

For a given reflection matrix Θ, problem P14 is still non-convex. The original problem
P14 can be reformulated into a epigraph form by introducing a slack variable t, as
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follows:

(P15) : max
{wk}Kk=1,t

t (6.16)

s.t.
∑K

k=1 log2 (1 + γk)
1
ϵ

∑K
k=1 ||wk||2 +MPdyn + Psta

≥ t, (6.17)

Rk ≥ Rmin
k ,∀k ∈ K, (6.18)

K∑
k=1

||wk||2 ≤ Pmax. (6.19)

To deal with the non-convex constraint in (6.17), another slack variable ξ is introduced,
and thus, the following two constraints can be used to represent the constraint in (6.17)
[137]:

K∑
k=1

log2 (1 + γk) ≥ tξ, (6.20a)

1

ϵ

K∑
k=1

||wk||2 +MPdyn + Psta ≤ ξ. (6.20b)

A set of new slack variables αk is introduced to deal with the non-convexity of (6.20a).
Hence, the constraint (6.20a) can be expressed as

K∑
k=1

log2 (αk) ≥ tξ, (6.21a)

1 + γk ≥ αk,∀k ∈ K. (6.21b)

By introducing another variable βk, the constraint in (6.21a) can be equivalently
represented by

K∑
k=1

βk ≥ tξ, (6.22a)

αk ≥ 2βk ,∀k ∈ K. (6.22b)
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According to the above new slack variables, the constraint in (6.20a) can equivalently
be expressed into a set of constraints, as

(6.20a)⇔



(6.21b) : 1 + γk ≥ αk,∀k ∈ K,

(6.22a) :
K∑
k=1

βk ≥ tξ,

(6.22b) : αk ≥ 2βk ,∀k ∈ K.

Although the constraints in (6.22b) are not non-convex anymore, the constraints in
(6.21b) and (6.22a) are still non-convex considering some variables are tightly coupled
together. To deal with the non-convexity of the constraint in (6.22a), the upper bound
of tξ can be obtained as [137, 138]

t(n)

2ξ(n)
ξ2 +

ξ(n)

2t(n)
t2 ≥ tξ, (6.23)

where t(n) and ξ(n) are the values of t and ξ at the nth iteration, respectively. Therefore,
the constraint in (6.22a) can be transformed into the following convex constraints

K∑
k=1

βk ≥
t(n)

2ξ(n)
ξ2 +

ξ(n)

2t(n)
t2. (6.24)

To deal with non-convexity of constraints in (6.21b),

1 + min
||△hl||2≤ε

{SINRk
k, SINRk

k+1, . . . , SINRk
K} ≥ αk. (6.25)

A new matrix variable Wk = wkw
H
k is introduced and define F = ΘG, then the

constraint in (6.21b) can be rewritten as

min
||△hl||2≤ε

(∣∣∣∣((ĥl +△hl

)H
F

)
wk

∣∣∣∣2
)

∑k−1
j=1 |(△hH

l F)wj|
2
+
∑K

j=k+1

∣∣∣∣((ĥl +△hl

)H
F

)
wj

∣∣∣∣2 + σ2
l

≥ αk − 1,

∀l = k, k + 1, . . . , K.

(6.26)
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Due to the uncertain term △hl, the following Lemma 4 is presented, which relates to
reformulate the non-convex constraints as LMI constraints. This is referred to as the
S-procedure [139, 140] Lemma.

Lemma 4 (S-procedure) Let Ci = CH
i ∈ CN×N , bi ∈ CN×1, and di ∈ R. The function

f1(x) and f2(x), can be defined in the following form:

f1(x) = xHC1x+ 2ℜ{bH
1 x}+ d1,

f2(x) = xHC2x+ 2ℜ{bH
2 x}+ d2, (6.27)

Then, the implication

f1(x) ≤ 0⇒ f2(x) ≤ 0 (6.28)

holds if and only if there exists a non-negative number λ ≥ 0, such that

λ

[
C1 b1

bH
1 d1

]
−

[
C2 b2

bH
2 d2

]
⪰ 0,

is positive semi-definite.

By applying S-procedure, the numerator and the denominator of (6.26) can be
express as (6.29) and (6.30), respectively.(∣∣∣∣((ĥl +△hl

)H
F

)
wk

∣∣∣∣2
)

=

((
ĥl +△hl

)H
Fwk

)((
ĥl +△hl

)H
Fwk

)H

= △hH
l FWkF

H△hl + 2ℜ(ĥH
l FWkF

H△hl) + ĥH
l FWkF

Hĥl. (6.29)

k−1∑
j=1

∣∣(△hH
l F
)
wj

∣∣2 + K∑
j=k+1

∣∣∣∣((ĥl +△hl

)H
F

)
wj

∣∣∣∣2 + σ2
l

=
k−1∑
j=1

△hH
l FWjF

H△hl +
K∑

j=k+1

{△hH
l FWjF

H△hl + 2ℜ(ĥH
l FWkF

H△hl)

+ ĥH
l FWkF

Hĥl}+ σ2
l

= △hH
l F
∑
j ̸=k

WjF
H△hl + 2ℜ

(
ĥH
l F

K∑
j=k+1

WkF
H△hl

)
+ ĥH

l F
K∑

j=k+1

WjF
Hĥl

+ σ2
l ,∀l = k, k + 1, . . . , K. (6.30)
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Next, the constraint in (6.26) can be transformed into a tractable form as follows:(∣∣∣∣((ĥl +△hl

)H
F

)
wk

∣∣∣∣2
)
≥ τk, (6.31a)

τk ≥ (αk − 1)vk, (6.31b)
k−1∑
j=1

∣∣(△hH
l F
)
wj

∣∣2+ K∑
j=k+1

∣∣∣∣((ĥl +△hl

)H
F

)
wj

∣∣∣∣2+σ2
l ≤ vk. (6.31c)

Note that
△hH

l I△hl − ε2 ≤ 0. (6.32)

Combining (6.29), (6.32) and Lemma 4, the constraint in (6.31a) can be transformed
into the following convex LMI:[

λk
l I+ dk (ĥH

l dk)
H

(ĥH
l dk) ĥH

l dkĥl − τk − λk
l ε

2

]
⪰ 0, (6.33)

where dk = FWkF
H . It is obvious that constraint in (6.31b) is non-convex in nature

due to the coupling of slack variables αk and vk. To overcome this issue, a set of upper
bound of the coupling terms is utilized to replace them, then constraint in (6.31b) can
be represented as follows [137, 138]:

τk ≥
(α

(n)
k − 1)

2v
(n)
k

v2k +
v
(n)
k

2(α
(n)
k − 1)

(αk − 1)2. (6.34)

where α
(n)
k and v

(n)
k are the values of αk and vk at the nth iteration, respectively. Based

on the constraints in (6.30), (6.32) and Lemma 4, the constraint in (6.31c) can be
transformed into the following convex LMI:[

λk
l I− d′

k −(ĥH
l fk)

H

−(ĥH
l fk) vk − ĥH

l fkĥl − λk
l ε

2 − σ2
l

]
⪰ 0, (6.35)

where

d′
k = F

(∑
j ̸=k

Wk

)
FH ,

fk = F

(
K∑

j=k+1

Wk

)
FH .
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Next, the minimum rate constraint in (6.18) can be expressed as:

γk ≥ γmin
k , (6.36)

where γmin
k = 2R

min
k − 1. Similarly, the above constraint in (6.36) can be converted into

LMI form as follows:

△hH
l I△hl − ε2 ≤ 0 =⇒

△hH
l F

(
γmin
k

∑
j ̸=k

Wj −Wk

)
FH△hl + ĥH

l F

(
γmin
k

K∑
j=k+1

Wj −Wk

)
FHĥl

+ 2ℜ

{
ĥH
l F

(
γmin
k

K∑
j=k+1

Wj −Wk

)
FH△hl

}
+ γmin

k σ2
l ≤ 0,∀l = k, k + 1, . . . , K.

(6.37)

Then, [
λk
l I+ c′k (ĥH

l ck)
H

(ĥH
l ck) ĥH

l ckĥl − λk
l ε

2 − γmin
k σ2

l

]
⪰ 0, (6.38)

where

c′k = F

(
Wk − γmin

k

∑
j ̸=k

Wj

)
FH ,

ck = F

(
Wk − γmin

k

K∑
j=k+1

Wj

)
FH .

Finally, the original problem P15 can be transformed into the following SDP problem,

(P16) : max
{Wk}Kk=1,t,ξ,αk,βk,τk,vk

t (6.39)

s.t. (6.22b), (6.24), (6.33), (6.34), (6.35), (6.40)
K∑
k=1

tr (Wk) ≤ ϵ(ξ −MPdyn − Psta), (6.41)

(6.38), (6.42)
K∑
k=1

tr (Wk) ≤ Pmax , (6.43)

Wk ⪰ 0, rank (Wk) = 1. (6.44)
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Table 6.1 The Gaussian Randomization Procedure

Algorithm 1: The Gaussian Randomization Procedure for Problem P16.

1: Solve the problem P16 without the rank-one constraints in (6.44) and find the solution
matrices W∗

k;
2: If rank(W∗

k) = 1, then use the Cholesky decomposition to obtain the optimal solution w∗
k

for the original problem;
3: Else
4: Generate K random vectors ak, k = 1, 2, . . . ,K of W∗

k by introducing the Gaussian
randomization technique;
5: Calculate k∗ based on the equation in (6.45);
6: Choose the a∗k as an approximate solution of w∗

k.

Due to the non-convex nature of the rank-one constraint in (6.44), this problem
P16 cannot be solved directly by using the existing convex optimization techniques.
Hence, the rank-one constraint in (6.44) is firstly relaxed, and then prove that the
optimal solution of the relaxed problem also satisfy the rank-one constraint. It can be
observed that the relaxed problem is a standard SDP problem, which can be efficiently
solved by the convex optimization techniques. Cholesky decomposition is adopted in
case the solution matrices W∗

k of the relaxed problem meet the rank-one constraints.
By using Cholesky decomposition, the optimal solution for the original problem can
be constructed. For the case of the solution matrices W∗

k do not meet the rank-one
constraints, the Gaussian randomization technique is used to generate a set of rank-one
solutions [141, 142]. Specifically, the approximate solution of w∗

k is given by

k∗ = arg min
k∈1,2,...K

(ak)
H ak − tr(W∗

k). (6.45)

The algorithm based on Gaussian randomization for the problem P16 is summarized
in Table 6.1.

Theorem 2 [137, 143] The optimal solutions of the relaxed problem, defined as W∗
k,

should satisfy the rank-one constraint rank(W∗
k) = 1.

With Theorem 2, the problem P16 can be solved directly without considering the
rank-one constraint in (6.44). The proof of Theorem 2 can be found in [137, 143].
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6.3.2 Phase Shift Design of IRS

For a given set of beamforming vectors, wk, the EE-Max problem P14 can be reduced
to a sum-rate maximization problem:

(P17) : max
Θ

K∑
k=1

Rk (6.46)

s.t. Rk ≥ Rmin
k ,∀k ∈ K, (6.47)

0 ≤ θn ≤ 2π, n = 1, 2, . . . , N. (6.48)

To deal with the non-convexity of the sum-rate maximization problem P17, a slack
variable a is introduced to approximate the objective function. Consequently, the
problem P17 can be rewritten as follows:

(P18) : max
Θ

a (6.49)

s.t.
K∑
k=1

Rk ≥ a, (6.50)

Rk ≥ Rmin
k ,∀k ∈ K, (6.51)

0 ≤ θn ≤ 2π, n = 1, 2, . . . , N. (6.52)

Then, a set of new slack variables ηk is introduced and then constraint (6.50) can be
expressed as

K∑
k=1

log2 (ηk) ≥ a, (6.53a)

1 + γk ≥ ηk,∀k ∈ K. (6.53b)

By introducing another slack variables ιk, the constraint in (6.53a) can be equivalently
reformulated as

K∑
k=1

ιk ≥ a, (6.54a)

ηk ≥ 2ιk ,∀k ∈ K. (6.54b)
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From the above discussion, the constraint in (6.50) can equivalently be represented as

(6.50)⇔



(6.53b) : 1 + γk ≥ ηk,∀k ∈ K,

(6.54a) :
K∑
k=1

ιk ≥ a,

(6.54b) : ηk ≥ 2ιk ,∀k ∈ K,

while the (6.53b) is still non-convex, such as

1 + min
||△hl||2≤ε

{SINRk
k, SINRk

k+1, . . . , SINRk
K} ≥ ηk. (6.55)

min
||△hl||2≤ε

(∣∣∣∣((ĥl +△hl

)H
ΘG

)
wk

∣∣∣∣2
)

∑k−1
j=1 |(△hH

l ΘG)wj|
2
+
∑K

j=k+1

∣∣∣∣((ĥl +△hl

)H
ΘG

)
wj

∣∣∣∣2 + σ2
l

≥ ηk − 1,∀l = k, k + 1, . . . , K. (6.56)

The numerator and denominator of (6.56) can be expressed in (6.57) and (6.58),∣∣∣∣((ĥl +△hl

)H
ΘG

)
wk

∣∣∣∣2 ⇒ ∣∣∣∣(ĥl +△hl

)H
diag (Zk)ϕ

∣∣∣∣2 . (6.57)

k−1∑
j=1

∣∣(△hH
l ΘG

)
wj

∣∣2 + K∑
j=k+1

∣∣∣∣((ĥl +△hl

)H
ΘG

)
wj

∣∣∣∣2 + σ2
l ⇒

k−1∑
j=1

∣∣(△hH
l diag (Zj)ϕ

)∣∣2 + K∑
j=k+1

∣∣∣∣((ĥl +△hl

)H
diag (Zj)ϕ

)∣∣∣∣2 + σ2
l , (6.58)

where Zk=Gwk, ϕ = [ejθ1 , ejθ2 , . . . , ejθN ]T . Considering that (6.55) has a similar
expression with (6.25), the same scheme can solve this constraint. Consequently, the
constraint in (6.55) can be expressed as∣∣∣∣(ĥl +△hl

)H
diag (Zk)ϕ

∣∣∣∣2 ≥ φk, (6.59a)

φk ≥ (ηk − 1)gk, (6.59b)
k−1∑
j=1

∣∣(△hH
l diag (Zj)ϕ

)∣∣2 + K∑
j=k+1

∣∣∣∣((ĥl +△hl

)H
diag (Zj)ϕ

)∣∣∣∣2 + σ2
l ≤ gk. (6.59c)
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Let Φ = ϕϕH , then, the equivalent transformation of the constraint in (6.59a) can be
expressed into the convex LMI:[

λk
l I+mk (ĥlmk)

H

(ĥlmk) ĥH
l mkĥl − φk − λk

l ε
2

]
⪰ 0, (6.60)

where mk = diag(Zk)Φdiag(Zk)
H . A similar approach is used to address this non-

convex constraint in (6.59b), which can be written as follows:

φk ≥

(
η
(n)
k − 1

)
2g

(n)
k

g2k +
g
(n)
k

2
(
η
(n)
k − 1

) (ηk − 1)2 . (6.61)

where φ(n)
k and g

(n)
k are the values of φk and gk at the nth iteration, respectively. Similar

to the aforementioned approach of the constraint in (6.59a), the constraint in (6.59c)
can also be transformed into the convex LMI:[

λk
l I−m′

k −(ĥlf
′
k)

H

−(ĥlf
′
k) gk − ĥH

l f
′
kĥl − λk

l ε
2 − σ2

l

]
⪰ 0, (6.62)

where

m′
k =

∑
j ̸=k

diag (Zj)Φdiag (Zj)
H ,

f ′k =
K∑

j=k+1

diag (Zj)Φdiag (Zj)
H .

Therefore, the constraint in (6.50) can equivalently be represented by (6.54a), (6.54b),
(6.60), (6.61) and (6.62).

Next, the minimum rate constraint in (6.51) can be represented as:[
λk
l I+ q′

k (ĥlqk)
H

(ĥlqk) ĥH
l qkĥl − λk

l ε
2 − γmin

k σ2
l

]
⪰ 0, (6.63)
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where the γmin
k ,q′

k,qk are represented in (6.64), (6.65) and (6.66), which are provided
as follows:

γmin
k = 2R

min
k − 1, (6.64)

q′
k =

(
diag (Zk)− γmin

k

∑
j ̸=k

diag (Zj)

)
Φ

(
diag (Zk)− γmin

k

∑
j ̸=k

diag (Zj)

)H

, (6.65)

qk =

(
diag (Zk)− γmin

k

K∑
j=k+1

diag (Zj)

)
Φ

(
diag (Zk)− γmin

k

K∑
j=k+1

diag (Zj)

)H

.

(6.66)

Finally, the problem P18 can be equivalently transformed to

(P19) : max
Φ,a,ηk,ιk,φk,gk

a

s.t. (6.54a), (6.54b), (6.60), (6.61), (6.62), (6.67)

(6.63), (6.68)

0 ≤ θn ≤ 2π, n = 1, 2, . . . , N, (6.69)

Φ ⪰ 0, rank(Φ) = 1. (6.70)

Similar to the previous approach, the existing convex optimization software can be
utilized to solve the formulated SDP problem P16 removing the rank-one constraint in
(6.70). If the obtained Φ satisfies the rank-one constraint rank(Φ) = 1, the optimal ϕ
can be reconstructed by using eigenvalue decomposition of Φ = ϕϕH and the reflection
coeffcient matrix Θ can be expressed as Θ = diag{ϕ1, ϕ2, . . . , ϕN}. Otherwise, the
Gaussian randomization technique can be used to construct a rank-one solution [142].

Finally, the proposed iterative AO algorithm is summarized in Table 6.2. Specifically,
the transmit beamforming at the BS for given reflection matrix Θ is considered. Next,
the reflection matrix Θ is optimized based on the obtained beamforming vectors wk.
The above procedure is repeated until required convergence accuracy.

6.3.3 Complexity Analysis of the Proposed Schemes

This section discusses the computational complexity of the proposed algorithm. For
the proposed AO algorithm, the two sub-problems (convex) in P16 and P19 are
alternatively solved until convergence with the required accuracy. Specifically, the two
sub-problems contain with a series of linear, SOC, and LMI constraints, which can
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Table 6.2 The AO Algorithm

Algorithm 2: The Proposed Iterative AO Algorithm.

1: Initialize the outer iteration index n = 1 and the reflection matrix Θ = Θ(0);
2: Repeat
3: Beamforming Optimization: Initialize variables {t(0), ξ(0), α(0)

k , v
(0)
k } and the inner

iteration index n′ = 1;
4: While t(n

′) − t(n
′−1) > ω do

5: Obtain {Wk}Kk=1, t, ξ, αk, βk, τk, vk by solving problem (P16).
6: end while
7: Update variables {W(n)

k }
K
k=1 = {W

(n′)
k }Kk=1

8: Phase Shift Optimization: Initialize variables {φ(0)
k , g

(0)
k } and the inner iteration index

n† = 1;
9: Given by {W(n)

k }
K
k=1, obtain Θ† by solving problem (P19).

10: Update Θ(n) = Θ(n†)

11: Calculate EE(n) by Θ(n) and {W(n)
k }

K
k=1 and let n = n+ 1.

12: Until EE(n) − EE(n−1) < ω
13: Obtain the beamforming {W∗

k}Kk=1, the reflection matrix Θ∗ and EE∗.

be efficiently solved by the interior-point-based method [100]. Therefore, following
the complexity analysis in [144, 145], and the complexity of each sub-problem can be
defined in the following.

With the two sub-problems formulated in the previous subsections, an iterative
algorithm is proposed to solve problem P14 by utilizing the AO method. Hence, the
beamforming vector wk and the phase shift matrix Θ are alternately optimized by
solving problem P16 and P19, where the local input points of each iteration are
obtained from the solutions of the previous iteration. Therefore, the complexity of
solving the sub-problems P16 and P19 can be quantified to determine the complexity
of solving P14. The computational complexity of the general interior-point methods is
given by [144–146]

O =
√
ϱ ln(1/c) + n

(
(n2 + n

A∑
i=1

m2
i +

A∑
i=1

m3
i ) +

B∑
i=1

m2
i

)
, (6.71)

where the first term is related to the iteration complexity, and c represents the iteration
accuracy, ϱ is the barrier parameter associated with the cone [145, 146]. The second
term is called the per-iteration computational cost, where n, A, and B denote the
number of variables, LMI constraints, and SOC constraints, respectively. Therefore,
the computational complexity of the proposed methods can be written as the following
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form based on the above discussion.

O = Owk
+OΘ, (6.72)

where Owk
and OΘ are the computational complexity associated with the beamforming

and phase shift design, respectively. Now, consider the problem in P16, which has 3K

LMI constraints of size (N +1), (K +2) LMI constraints of size N , K LMI constraints
of size 1, and (K + 1) SOC constraints. Hence, the complexity of solving problem P16
is given by

Owk
=
√
ϱ1 ln(1/c) + n1(n

2
1 + 3K((N + 1)3 + n1(N + 1)2)

+ (K + 2)(N3 + n1N
2) + 2K + n1K + 1), (6.73)

where ϱ1 = 4KN+2N+6K+2, n1 = O(KN2). Similarly, the problem in P19 consists
of 3K LMI constraints of size (N + 1), 1 LMI constraints of size N , (K +N + 1) LMI
constraints of size 1, and K SOC constraints. Therefore, the complexity of solving
problem P19 is given by

OΘ =
√
ϱ2 ln(1/c) + n2(n

2
2 + 3K((N + 1)3 + n2(N + 1)2)

+N3 + n2N
2 + (K +N + 1)(n2 + 1) +K), (6.74)

where ϱ2 = 3KN + 2N + 6K + 1, n2 = O(N2).

6.4 Simulation Results

In this section, numerical results evaluate the performance of the proposed robust
design, and the proposed AO algorithm. Considering the system setup shown in Fig.
6.2, the BS is assumed to be centered at (0 m, 0 m), whereas the IRS is placed at (120
m, 20 m). While the analysis provided in this chapter is valid for any number of users,
the case of two users, i.e., K = 2 is considered, which are located at (100 m, 0 m) and
(150 m, 0 m), respectively. The channel between the BS and the IRS is G = d−lossg

[147], where d is the distance in meters between the BS and IRS, and loss = 2.2 is the
path loss exponent. g follows a Rayleigh distribution, which are complex Gaussian
random variables with zero mean and unit variance modelling the small-scale fading
[70]. The channel between the IRS and the users is hl = d′−loss′g′, where d′ is the
distance in meters between IRS and users, and loss′ = 2.5. Other parameters are set
as σ2

l = −80 dBm, ϵ = 0.6 and the convergence tolerance is 10−4 [70, 141, 144].
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Fig. 6.2 The simulated IRS-assisted NOMA system setup.
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Fig. 6.3 The convergence of the beamforming optimization for different estimation
error values, ε.
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Fig. 6.4 The convergence of the phase shift optimization for different estimation error
values, ε.

Fig. 6.3 and Fig. 6.4 show the convergence of the proposed inner iterative algorithms
for determining the beamforming vectors and reflection matrix, respectively. In
particular, the maximum transmit power Pmax = 5 W and the minimum data rate
requirements of all users are assumed to be the same, that is, Rmin

k = 2 bits/s/Hz.
It can be observed that at each outer iteration, the inner iterative algorithm of the
beamforming optimization and the phase shift optimization tend to converge after a
few iterations. Furthermore, it can be seen that the performance of EE decreases with
increasing the estimation error ε; ε = 0 reduces to a scenario with perfect CSI between
the IRS and users.

To gain insight into the performance of the proposed scheme, Fig. 6.5 shows the
achieved EE versus different transmit power and estimation errors with NOMA and
with conventional OMA scheme, when M = 5 and N = 4. The conventional OMA
transmission scenario, namely OFDMA, is considered, where the bandwidth is divided
into K sub-channels to cover K users. As can be observed, the achieved EE increases
at first until it reaches a certain value, and then it remains constant with the maximum
value over the different maximum transmit power Pmax. The EE-Max design with
perfect CSI outperforms the imperfect CSI for the same condition. Both beamforming
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Fig. 6.5 Achieved EE of the proposed algorithm with different transmit power values,
Pmax.

vectors and phase shift are utilized efficiently to achieve the best EE for a given system.
In addition, it can be observed that the proposed NOMA schemes provide better EE
than the conventional OMA scheme.

In addition, Fig. 6.6 shows the achieved EE for the proposed EE-Max design with
respect to the numbers of transmit antennas. The figure indicates that the increase
in the number of the transmit antennas does not always provide positive degrees
of freedom. The achieved EE is not monotonically increasing with the number of
transmit antennas. However, when the number of transmit antennas is larger than a
certain threshold, then the performance of EE decreases, even though there are more
transmit antennas. The reason can be explained as follows. When M is relatively
small, a number of antennas can provide a higher array gain of receiving from the
BS, thus improve the performance of the achieved sum rate, which is greater than
that of energy consumption related to M . However, when M is relatively large, the
energy consumption also increases with the increase of M , which dominates the system
performance. It indicates that more transmit antenna is not necessarily better and
thus leads to energy cost and limit the overall performance. More importantly, it can
be seen that the maximum EE can be achieved with a best M .
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Fig. 6.6 EE versus the number of transmit antenna.
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The EE of the proposed algorithms versus the number of reflection elements at the
IRS is studied in Fig. 6.7. Specifically, it is set K = 2, Rmin

k = 2 bit/s/Hz, and M =
5. Firstly, it can be observed that the robust algorithms with imperfect CSI model
attain much less EE than those under the perfect CSI model. Secondly, the scheme
with smaller estimation error achieves more EE than with larger estimation error, i.e.,
ε. Thirdly, the additional spatial degrees of freedom offered by the increased number
of elements of the IRS provides a high flexibility in the beamforming design to enhance
the channel quality of the link for improving the system EE. More interestingly, the
system EE gradually saturates as the number of IRS elements N increases.

6.5 Summary

In this chapter, the robust design of an IRS-assisted NOMA DL transmission system
is studied. The objective of the design is to maximize the EE by jointly optimizing
the beamforming vector and the reflection matrix under the assumption of imperfect
CSI. To overcome the non-convex nature of this problem, the AO algorithm has been
proposed based on the SDP and S-procedure. It is shown that the EE performance
in terms of the maximum transmit power and the number of elements of the IRS
under the perfect CSI model is higher than that under imperfect CSI. Moreover, the
additional spatial degrees of freedom offered by the increased number of elements of
the IRS provide a high flexibility in beamforming to enhance the channel quality of
the link, and thus, improve the system EE.



Chapter 7

Conclusions and Future Work

7.1 Conclusions

NOMA has recently been identified as a promising multiple access technique for the 5G
and beyond wireless networks due to its potential benefits including superior SE and
user fairness. Unlike the conventional OMA schemes, such as TDMA and OFDMA,
multiple users in NOMA based DL transmission share the same orthogonal radio
resources, i.e., time and frequency, by exploiting power-domain multiplexing at the
transmitter. This multiplexing is referred to as SC, in which signals intended to
different users are encoded with different power levels that are inversely proportional to
the channel strengths of the users. In particular, serving multiple users simultaneously
within the same resource block through NOMA supports the proliferation on IoTs by
offering massive connectivity. At the receiver end, SIC technique is utilized at stronger
users to decode the signals intended to the weaker users prior to decoding their own
signals. Furthermore, NOMA has been recently combined with other multiple access
techniques. These include NOMA with multiple antenna, and conventional OMA
techniques. These strategic combinations offer additional degrees of freedom, and hence
to cultivate its underlying potential benefits. Resource allocation also plays a crucial
role in wireless systems and networks design as it enables an efficient use of resources.
Therefore, this thesis focused on different resource allocation techniques for different
types of NOMA systems.

In Chapter 4, the GEE-Max problem with joint power-time resource allocation for
a DL hybrid TDMA-NOMA system was investigated. In particular, the overall EE
of a hybrid TDMA-NOMA system has been maximized subject to pre-defined users’
minimum rate requirements and the power budget constraint at the BS. An optimization
framework has been developed, which allocates the available transmit power at the
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BS between the users and opportunistically assigns the available time for transmission
between the clusters. However, the formulated GEE-Max optimization problem was non-
convex in nature, and could not be solved directly using available standard optimization
software. Hence, an iterative approach was proposed for solving the original GEE-Max
problem with a novel SOC approach and approximations. Furthermore, an alternative
approach based on Dinkelbach’s algorithm has been proposed to solve this non-convex
problem. Specifically, a new non-negative variable has been introduced to transform
the fractional objective function into a non-fractional one. Simulation results have
demonstrated the effectiveness of the proposed schemes.

In Chapter 5, by exploiting the performance advantages of the hybrid TDMA-
NOMA system in different scenarios, two resource allocation designs were proposed.
In the first design, an SE-EE trade-off based resource allocation technique has been
investigated. In particular, the original problem has been formulated as an MOO
problem with the conflicting objective functions SE and EE. Then, a weighted-sum
approach has been utilized to convert the MOO framework into an SOO problem,
and thus to obtain the Pareto-optimal solutions. However, the SOO problem has
turned out to be a non-convex problem. Therefore, an iterative algorithm has been
developed to deal with the non-convexity issues. In the second design, a max-min
problem has been considered, in which the aim was to maximize the minimum per user
rate for a hybrid TDMA-NOMA system, while satisfying the relevant constraints on
the system. This has been achieved through developing an optimization framework
to allocate the available transmit power efficiently among users and opportunistically
assign the available time for transmission between the clusters (i.e., groups of users).
The formulated optimization problem is non-convex in nature, and cannot be solved
via available software. Hence, an iterative algorithm has been developed by exploiting
SCA. Furthermore, a novel form of a SOC was utilized to cast some of non-convex
constraints as SOCs. A number of performance comparisons have been demonstrated
the advantages of the proposed hybrid NOMA-TDMA technique over the conventional
schemes with equal time allocations.

In Chapter 6, a DL transmission of an IRS-assisted NOMA system was investigated.
In contrast to the conventional stand-alone NOMA or IRS design, an IRS has been
deployed to support the communication between a multi antenna BS and multiple
single-antenna users for a NOMA system, taking into account the imperfect CSI. The
EE maximization problem was designed by jointly optimizing the transmit beamforming
at BS and the phase shift of IRS. To address this non-convex optimization problem,
an iterative algorithm based on the alternating optimization was proposed, where
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the beamforming and the phase shift design were alternatively solved by utilizing the
S-procedure and SDP relaxation technique. Results also illustrated that the proposed
scheme outperformed OMA scheme in terms of the EE. Also, the performance of the
proposed robust IRS-assisted NOMA design was provided by comparing that of the
design with perfect CSI.

7.2 Future Work

In this section, the potential extensions of the current works in this thesis are described.

7.2.1 Imperfect CSI

The current works in Chapter 4 and 5 in this thesis have assumed that the BS has
perfect CSI. The results obtained with this assumption serve as the performance
upper bounds which can be also considered as the benchmark schemes to evaluate
the performance of other similar schemes. In practice, the perfect CSI assumption
might not be realistic due to the significant system overhead and the errors from the
channel estimations and quantization. Furthermore, these channel uncertainties might
significantly degrade the overall system performance, especially in NOMA systems as
the decoding order of the received signal intended for different users plays a crucial
role in SIC. Therefore, it is important to incorporate these channel uncertainties in
the design to explore the full potential benefits offered by NOMA. In particular, the
robust design can be dealt with either the worst-case design with the bounded channel
uncertainties, or with the outage probability based design with the statistics of channels
and uncertainties. Robust designs to deal with imperfect CSI will be an interesting
future direction to extend our work.

7.2.2 Machine Learning-based Resource Allocation Techniques
for NOMA Systems

Machine learning algorithms are promising techniques to deal with the computational
complexity of solutions. In fact, deep learning and reinforcement techniques have been
recently utilized to obtain reasonable solutions for various highly complex optimization
problems. In particular, the deep learning-based solutions require a set of reliable
training data to train the developed model, which cannot be obtained without solving
the original problems using standard optimization techniques. The solution provided
in this thesis can be viewed as an approach to generate training data for different deep
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Fig. 7.1 Illustration of the NOMA-ISAC system.

learning models and to validate their performance. Reinforcement learning techniques
do not require an external data set during training and they can be exploited to improve
the computational complexity while meeting the delay requirements. For the dynamic
problem in NOMA systems, the traditional approaches could not provide long-term
performance outcomes and extract knowledge from any given problem. Therefore,
the reinforcement learning-based approaches are capable to handle this type of issues,
where the objective can be chosen as the rewards, the constraints can be assumed to be
the states, and thus the feasible region of the constraints are the actions. The optimal
action can be determined by the sum of iterative computations. Therefore, this is one
of the promising research directions that would be explored in future work resource
allocation techniques for NOMA-based systems.

7.2.3 Integrated Sensing and Communications (ISAC) for NOMA
Systems

Integrated sensing and communications (ISAC) refers to a design paradigm and corre-
sponding enabling technologies that integrate sensing and communication functionalities
to achieve efficient usage of wireless resources and to mutually benefit from each other.
ISAC captures two main advantages over dedicated sensing and communication func-
tionalities, which meets the requirements of an unprecedented proliferation of new IoT
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services. These IoT services include digital twins, smart city, vehicle-to-everything, and
remote sensing. However, striking a good balance between the two functionalities, such
as communication performance metrics and sensing and communication performance
metrics, is a challenging task when designing ISAC. This is due to the fact that the
ISAC may suffer from severe inter-functionality interference in terms of sharing the
same spectrum and infrastructure. On the other hand, the ISAC system is more likely
to encounter the overloaded regime issue due to the massive device connectivity in the
future wireless network. As a remedy, NOMA allows multiple communication devices
to be served over the same radio resources, thus significantly enhancing the connectivity
and improving the resource efficiency. This can be achieved by employing power-domain
multiplexing and the inter-user interference can be mitigated by exploiting SIC in
NOMA systems. Motivated by this discussion, a DL NOMA-ISAC system is viewed as
an interesting research direction, which consists of a dual-functional BS equipped with
N antennas, K single-antenna users, and M radar targets, as shown in Fig.7.1. In other
words, the dual-functional BS serves multiple communication users employing NOMA,
while the superimposed NOMA communication signal is simultaneously exploited for
radar target sensing. Different resource allocation problems could be investigated for
this NOMA-ISAC system in the future research.

7.2.4 Age of Information (AoI)-based Resource Allocation Tech-
niques for NOMA Systems

Age of information (AoI) is defined as the time elapsed since the generation time of the
latest received status update at the destination, which can quantify the freshness of
information. AoI has been attracted more attention in practical cases, such as sensor
data needs to be gathered and analyzed to detect the surrounding environment, camera
images from the drone need to be collected to generate point clouds that describe road
information, and video streams with informative labels need to be updated based on
the customer’s behaviours. Inspired by the wide range of applications in AoI, it could
be applied in the IRS-assisted NOMA system, which has been investigated in Chapter
6. Generally, different approaches can be selected based on the specific use-cases,
including time-average AoI, peak AoI, stochastic hybrid systems for AoI, and nonlinear
AoI. Hence, the aim is to minimize the average peak AoI for a given set of constraints
in the IRS-assisted NOMA system. This would be another interesting future research
direction in resource allocation techniques for NOMA systems.
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