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Short title: Identifying proteomic Biomarkers in Parkinsons 
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Centre; PD = Parkinson’s Disease; PUKBB = Parkinson’s United Kingdom Brain Bank; TP = 

Tracking Parkinson’s; WGCNA = Weighted Gene Correlation Network Analysis; MDS - 

UPDRS = Movement Disorder Society - Unified Parkinson's Disease Rating Scale 
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Abstract 

 

Biomarkers to aid diagnosis and delineate progression of Parkinson’s Disease (PD) are vital 

for targeting treatment in the early phases of disease.  Here, we aim to discover a multi-protein 

panel representative of PD and make mechanistic inferences from protein expression profiles 

within the broader objective of finding novel biomarkers. 

 

We used aptamer-based technology (SomaLogic®) to measure proteins in 1,599 serum 

samples, 85 CSF samples and 37 brain tissue samples collected from two observational 

longitudinal cohorts (Oxford Parkinson’s Disease Centre and Tracking Parkinson’s) and the 

PD Brain Bank, respectively. Random forest machine learning was performed to discover new 

proteins related to disease status and generate multi-protein expression signatures with 

potential novel biomarkers. Differential regulation analysis and pathway analysis was 

performed to identify functional and mechanistic disease associations. 

 

The most consistent diagnostic classifier signature was tested across modalities (CSF AUC = 

0.74, p-value = 0.0009; brain AUC = 0.75, p-value = 0.006; serum AUC = 0.66, p-value = 

0.0002). Focusing on serum samples and using only those with severe disease compared to 

controls increased the AUC to 0.72 (p-value = 1.0x10-04). In the validation dataset we showed 

that the same classifiers were significantly related to disease status (p-values < 0.001).  

Differential expression analysis and Weighted Gene Correlation Network Analysis (WGCNA) 

highlighted key proteins and pathways with known relationships to PD.  Proteins from the 

complement and coagulation cascades suggest a disease relationship to immune response. 

 

The combined analytical approaches in a relatively large number of samples, across tissue 

types, with replication and validation, provides mechanistic insights into the disease as well as 

nominating a protein signature classifier that deserves further biomarker evaluation. 

 

Keywords: Parkinson’s disease, proteomics, biomarker  
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Introduction 

 

Parkinson’s disease (PD) is a complex neurological disorder resulting in disabling motor and 

non-motor deficits, often accompanied by cognitive impairment, as a consequence of loss of 

dopaminergic neurons within the substantia nigra pars compacta and ventral tegmental area 1. 

Given the prevalence of over 350 per 100,000 people globally which increases with age 2, PD 

represents a heavy burden not only to patients but to families, carers and society. It has become 

increasingly apparent that there is a prolonged prodromal phase of PD 3, similar to other 

neurodegenerative conditions such as Alzheimer’s disease (AD) 4.  A biomarker(s) for use in 

selection and stratification in clinical trials and early therapeutic intervention has become an 

increasingly pressing objective for research as we seek disease-modifying therapies. In AD, 

fluid biomarkers of pathological processes have been identified in both cerebrospinal fluid 

(CSF) and blood and are increasingly used in clinical trials 5.  In PD, reliable biomarkers for 

use in clinical settings that recapitulate underlying pathophysiology are rare, making the search 

for candidate protein markers more urgent 6. Basso et al. 7 described 44 proteins that supported 

the role of oxidative stress. Subsequently, Chen-Plotkin et al. 8 used immunoassays of 151 

proteins in plasma and found epidermal growth factor (EGF) to be associated with cognitive 

decline in PD. In addition to targeted biomarker testing, biomarker identification has been 

broadened to include unsupervised discovery approaches. Chen-Plotkin used the SomaLogic 

aptamer capture technology to identify a putative PD related signature, finding four new 

markers of PD which were able to differentiate PD from Amyotrophic Lateral Sclerosis patients 

9. Serum neurofilament light chain levels have been shown to be raised in PD compared to 

controls, with longitudinal data showing positive associations with motor scores 10. These 

results and those from other studies suggest that there might be a signature of disease in 

peripheral fluids such as blood, with potential as use as a biomarker 6,11.  

 

We sought to build on past studies and learn from similar approaches in other 

neurodegenerative diseases 12–14 to identify protein-based biomarkers from peripheral fluids in 

PD in larger cohorts.  We used high dimensionality proteomics technology (SOMAmer assay, 

SomaLogic®) based on aptamer capture assays of between 1000 to 4000 proteins.  Here, we 

describe a dual approach to the study analysis; a machine learning approach to discover a 
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reproducible multi-protein signature representative of PD and an in-depth analysis of proteomic 

function to provide mechanistic disease insights. 

 

Methods 

Study Design and Participants 

Parkinson’s disease cases and control samples for this study were obtained from three cohorts; 

the Oxford Parkinson’s Disease Centre (OPDC) Discovery Cohort 15, the Tracking Parkinson’s 

cohort (Parkinson's Repository of Biosamples and Networked Datasets - PRoBaND) 16 and the 

Parkinson’s UK Brain Bank (PUKBB) 17. Samples were organised and tested by the Mapping 

Proteomics to Parkinson’s disease UK (MAP2PD-UK) collaboration with a multi-stage design 

including blood, brain and CSF samples (Figure 1).  Cohort details were as follows: 

 

Oxford Parkinson’s Disease Centre (OPDC) Cohort 

The OPDC Discovery cohort was collected from eleven hospitals covering a UK Thames 

Valley population of 2.1 M.  Cases were selected using clinical data permitting endophenotype 

analysis by the severity of motor phenotype (both measured using MDS-UPDRS scores) and 

by cognitive impairment (measured using Montreal Cognitive Assessment, MoCA). 

Individuals with an alternative diagnosis or with a clinical impression of PD probability < 90% 

at their latest visit were excluded. Levodopa equivalent daily dose (LEDD) was recorded at the 

time of sampling. All individuals with a baseline disease duration of > 3.5 years were excluded.  

For the initial sampling, using the OPDC-Serum-1K, disease free controls were matched by 

sex and age, where age matching was within ± 2.5 years. Individuals with common LRRK2 or 

GBA mutations were excluded. The OPDC-Serum-1K set contained 144 samples including 65 

controls.  CSF proteins were measured for 85 samples. The OPDC-Serum-4K set contained 

400 cases and 172 controls, here the larger sample set incorporated all available controls and 

mutation exclusion filters were not required.  

 

Tracking Parkinson’s cohort 
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The Tracking Parkinson’s (TP) or PRoBaND cohort is a prospective study spanning 72 UK 

locations.  Two sets of samples were selected from this cohort.  An initial set (TP-Serum-1K) 

and a furthermore comprehensive set (TP-Serum-4K). The TP-Serum-1K set contained 80 

cases and was combined with the OPDC-serum-1K for analysis. Age matching was within 2.5 

years. The TP-Serum-4K sample set (n=1,020) includes a broader range of endophenotypes 

from the clinical measures. All individuals with a baseline disease duration of > 3.5 years were 

excluded.  Individuals with an alternative diagnosis or with a clinical impression of PD 

probability <90% at their latest visit were excluded.  In both sample sets LEDD was recorded 

at the time of sampling.  

 

Parkinson’s UK Brain Bank (PUKBB) 

The Parkinson's UK Brain Bank (PUKBB) is part of the Multiple Sclerosis Society and 

Parkinson’s Tissue Bank based at Imperial College London. 37 brain (anterior cingulate cortex) 

samples were used for the Brain test set, all originating from the PUKBB cohort. 24 brain 

samples were from PD donors. 13 brain samples were from control donors. Samples were 

selected which had a post-mortem interval of < 26 hours and RNA integrity of > 6.0.    

 

Classifying Disease Severity in the Cohorts 

Case samples were split into ‘mild’ and ‘severe’ phenotypes, defined by cognitive and motor 

symptoms in order to make inferences about changes in disease pathology during disease 

progression.  Initially, for OPDC - Serum - 1K subset, samples were selected using the bottom 

15% (mild) and the top 10% (severe) with a few intermediate cases in between.  For the final 

phase of the analysis an equivalent approach was developed to generate a severity score per 

patient (Supplementary Methods). This score was used to sort samples by being above or below 

the median. The severity score was used as a continuous measure in the larger validation set.  

 

Protein measurements 

All samples analysed in this study had protein levels measured using a Slow Off-rate Modified 

Aptamer (SOMAmer)–based capture array in five batches using this evolving array 
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(‘SOMAscan’ assay from SomaLogic, Inc. Boulder, CO)18. Over the course of the study this 

platform was upgraded - namely, OPDC and brain samples were run on the Version 2 panel 

which includes 1,129 proteins, Tracking Parkinson’s and CSF samples were run on an updated 

panel (Version 3) with a total of 4,006 proteins including those on Version 2. Protein 

concentration measurements were derived from Relative Fluorescent Units (RFU), which had 

undergone Somalogic proprietary experimental normalisation to standardize noise between 

sample plates.   

 

Quality Control and Data Pre-processing 

Samples not meeting quality control standards defined by SomaLogic (acceptance criteria 

concentration range 0.4-2.5 based on experimental controls) were removed from further 

analysis. For classifier discovery 1,129 protein assays were used which included multiple 

isoforms for a single protein in some cases. For differential regulation and enrichment analysis 

3,381 assays were used, each protein represented once. The per cohort sample and assay pass 

rate summary is included in Supplementary Table 1. Potential experimental confounders for 

these cohorts were checked for significant effects (e.g., assay plate, location, submission box, 

cohort, submission batch year). Principal Component Analysis was used to understand 

underlying variation, and where confounders were related to principal components a further 

step was introduced. Visual inspection was used to assess whether any of the recorded 

experimental variables were associated with any of the first principal components, highlighting 

cohort and array type as confounders.  After this step, two different pre-processing strategies 

were used depending on the final objective. When the final objective was biomarker discovery 

protein concentrations were normalised per data subset. When the final objective was 

differential expression analysis, protein concentrations were normalised using a bulk strategy. 

 

Targeted Protein Analysis 

A narrative review of PD biomarker studies was conducted to select a range of diagnostic and 

prognostic proteins. This resulted in a list of 50 proteins, although not all were represented in 

our Somalogic platform.  Protein expression was log2 transformed. Finally, a list of 25 unique 

proteins (30 assays total) were taken forward for univariate analysis using a simple logistic 
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regression (disease status) or linear regression (MoCA and MDS-UPDRS III) on each sample 

subset. As this method focused on selected proteins to test known biomarkers, p-values are 

presented as independent results without adjustment.  

 

Classification of a biomarker 

Biomarker Method Quality Control 

The classification pipeline incorporated all the samples measured during the project, using only 

those proteins common to versions 2 and 3 of the SomaLogic platform (n=1,047). To allow the 

unbiased inclusion of all sample type modalities, we limited the selection to the 1,047 proteins 

found on the version 2 SomaScan array.  Sample sets were split by batch and cohort for initial 

quality checks before assignment into testing and training groups as described in Figure 1. Each 

dataset was corrected for unwanted variation due to demographics by building a generalised 

linear model per protein, and then retaining the residuals calculated by the model. In this case, 

these generalised linear models used the to-be-corrected protein level as outcome, while the 

predictor variables were the covariates. The covariates were cohort (Serum-1K only), 

participants’ LEDD at time of sampling, date samples were tested on the SOMAscan assay 

(OPDC-CSF only) and the date the samples were prepared (Brain only).  Following correction, 

each dataset was z-score standardised. 

 

Discovery and Classification  

We first performed a multi-stage machine learning discovery analysis – training and testing to 

identify a multi-protein signature of disease using a case-control design.  In the OPDC-serum 

dataset (training) we ranked all proteins using simulated annealing as implemented in R 

package ‘caret’ (version 6.0.77) 19. This iterative algorithm starts with a random selection of 

proteins, then randomly perturbs the selection, and keeps the new list of proteins only if it is 

better at discriminating cases from controls with a generalised linear model. Random 

perturbation is repeated iteratively until the algorithm converges into a final list of proteins 

(1000 iterations). Proteins are then ranked according to how often they are selected for their 

discriminative power. In the following step, using the resulting ‘N’ top ranked proteins, a 

random forest classifier was built (R package ‘caret’) to discriminate between cases and 
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controls. This was repeated with increasing values of N, from 1 to 200, creating a total of 200 

random forest classifiers, and recording in each case the accuracy that the classifier achieved. 

For the testing stage, the identified protein classifiers were assessed in three independent 

datasets, each representing three different tissue types, serum (Serum-1K), CSF (OPDC-CSF) 

and post-mortem brain (Brain). The classifiers output from the replication stage were taken as 

a refined protein panel set.  

Classifiers were compared using the area under the receiver operator characteristic curve 

(AUC), which was calculated using the function ‘predict’ as implemented in the R base 

package ‘stats’, and the ‘prediction’ and ‘performance’ functions as implemented in the R 

package ‘ROCR’ (version 1.0.7). The p-value associated to this AUC was calculated using 

10,000 random permutations of disease status to create a distribution of the statistic. Optimising 

biomarker discovery methodology in a multi-modal cohort is key to finding the set of proteins 

that most robustly predicts the outcome.  Our biomarker was required to perform well in all 

modalities and therefore selection of the correct sample set for optimisation was important.  

Three sample sets were used for a basic training analysis, OPDC serum, TP serum and CSF 

(OPDC). The strongest AUC after training were for CSF and brain (Supplementary Table 2). 

However, the priority for this analysis was for a good prediction AUC in a serum sample set.  

The serum training set selected was from a single cohort (OPDC) and contained similar case-

control proportions to the testing datasets (70 - 30 %). 

 

Replication of the novel multi-protein signature 

The best multiprotein classifier, or signature, was then explored further in the replication data 

set, which consisted of serum samples from Tracking Parkinson’s. Protein expression data was 

log2 transformed as a standard experimental normalisation strategy.  Two approaches were 

used to convert the signatures from the protein classifier to a single indicator.  First, a mean 

expression per sample with z-score transformation was used.  Secondly, singular value 

decomposition was used to generate an eigengene representation of the signature in an 

approach to reduce dimensionality.  The performance of these classifiers or signatures in CSF 

(total protein = 142), brain (total protein = 89) and serum (n = 31) were assessed using 

association to disease status as outcome.  
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Protein Differential Regulation and Enrichment Analysis 

In order to explore disease mechanisms, we focused on the data generated from the version 3 

Somalogic assay, which included 4,006 protein assays.  Protein expression values were log2 

transformed. This analysis used 1,599 serum samples with a matched case-control structure 

from the two longitudinal cohorts. An additional quality control step was undertaken to reduce 

between-cohort effects.  ComBat normalization20 was employed to remove this structure, while 

measuring dataset structure was checked using Uniform Manifold Approximation and 

Projection (UMAP) clustering. We performed differential regulation analysis on log2 

transformed data using linear models corrected for age (continuous), sex, and cohort.  All 

generalised linear models were created using the R function ‘glm’ with linkage function 

binomial for disease status and gaussian for continuous phenotypes (e.g. MoCA and MDS-

UPDRS).  For pathway enrichment analysis Over Representation Analysis (ORA) was 

implemented in the R library clusterProfiler21 using the KEGG and GO databases whereby 

proteins signatures are tested (hypergeometric) to understand whether a function or pathway is 

enriched more than would be expected by chance.   

Comprehensive co-expression analysis was performed using Weighted Gene Correlation 

Network Analysis (WGCNA)22. The standard pipeline was adapted for use with the proteins 

as described by Seyfried et al. 23.  Briefly, modules were capped at minimum protein number 

= 30, power at 2 and the block-wise adjustment step was incorporated to reduce module noise 

and increase the robustness of protein selection.  ORA was implemented on each module to 

understand functionality and relevance to disease mechanism. The eigengene value for each 

module was compared to clinical measures using logistic regression (PD case status) and 

general linear model (MoCA and MDS-UPDRS III) to understand the relationship to disease. 

 

Statistical Analysis 

All data pre-processing and analysis was performed using the statistical coding language R 

(version 4.0.2) with specific library choices described with each method. For targeted 

regression analysis a p-value < 0.05 was applied to assess significance. For pathway analysis a 

more conservative level was required and adjusted p-values were calculated according to 
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Benjamini & Hochberg. A 95% confidence interval is reported for each analysis in addition to 

p-values.  

Data availability 

Data is available on application to cohort owners. 

 

 

Results 

 

Using an aptamer capture assay measuring over 1000 proteins we sought to find signatures of 

disease that might function as biomarkers and provide insights into disease mechanisms. To do 

this we utilised serum samples from two cohorts, the Oxford Parkinson’s Disease Centre 

Cohort (OPDC) and Tracking Parkinson’s, together with CSF samples from OPDC and brain 

samples from the Parkinson’s UK Brain Bank (PUKBB). The participant characteristics from 

these datasets are described in Table 1. The ratio of cases to controls across samples varied 

from 82% to 65% with cases predominating. As expected, there was a male predominance and 

the mean age for the PUKBB was from 9 to 13 years older.  

 

Comparing biomarker predictions in different sample modalities 

We first wanted to assess whether putative biomarkers, previously suggested from a range of 

published studies, could be replicated using our proteomic data. From a list of 50 PD specific, 

neurodegenerative and cell type markers, 25 were included in assays on the Somalogic panel.  

Apolipoprotein A1 (APOA1) and Growth Hormone Receptor (GHR) protein expression were 

related to at least one disease phenotype in all the serum sample sets tested (Figure 2). 

Furthermore, Bone sialoprotein (IBSP) was associated to the MoCA phenotype in all the serum 

datasets. In the CSF sample set, five suggestion biomarker proteins showed an association with 

disease status (p-value > 0.05). These included Glial fibrillary acidic protein (GFAP), Bone 

sialoprotein (IBSP) and DJ-1 (PARK7). None of the proteins tested in brain tissue were related 

to disease. Interestingly, no proteins tested were significantly related to the Parkinson’s disease 



12 

 

phenotypes in every modality. These results suggest that there is scope for improvement of 

single protein biomarkers, perhaps instead as part of a multi-protein panel. Therefore, the next 

objective was to discover new multi-protein combinations which could be utilised as a 

biomarker.  

 

Defining a robust proteomic biomarker using multi-modal cohorts 

Given the limited replication of previously identified biomarkers, which suggested that a 

known biomarker signal is detectable but perhaps not fully transferable between modalities, 

we went on to generate a de novo signature of disease from all 1,004 proteins captured by the 

SomaLogic data common to all three sample sources in this study. We applied machine 

learning approaches to first prioritise protein selection from a training set in serum (n = 572) 

and then carry out testing in serum (n = 227), CSF (n = 45) and brain (n = 37) samples. Briefly, 

we used simulated annealing and random forest for protein selection in the training serum set 

(OPDC - Serum) which produced 200 potential classifiers, each using 1-200 of the top-ranked 

proteins.  In the next stage, we tested each classifier in all three modalities to understand their 

performance in other tissue types: post-mortem brain (PUKBB - Brain), CSF tissue (OPDC - 

CSF) and serum (OPDC / TP - 1K). Figure 3A shows a comparison between classifiers 

generated on different modality test sets.  The brain sample proteins had an AUC of 0.75 (p-

value=0.006), CSF AUC was 0.74 (p-value=0.0009) and serum AUC was 0.66 (p-

value=0.0002). These classifiers used the top 31, 86 and 142 ranked proteins respectively 

(Table 2). Although similar in AUC values the CSF had a reduced 95% CI compared to the 

brain classifier (Supplementary Figure 1). Despite selecting from the same 200 proteins the 

serum sample set was optimal at 31 proteins.  The best classifier outcome, optimised in the 

CSF samples, included APOE and GFAP (Supplementary Table 3). Enrichment analysis of the 

CSF classifier proteins detected four KEGG pathways including cytokine-cytokine receptor 

interaction (adjusted p-value=0.004) as well as complement and coagulation cascades (adjusted 

p-value=0.041).  Using the smaller brain classifier protein list only a single KEGG pathway 

was found; Cytokine-cytokine receptor interaction (adjusted p-value=0.0002). 

 

Replication of the novel protein panel in an independent cohort  
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Finally, we sought to replicate the best of the classifiers using a set of serum samples (n=932) 

from the Tracking Parkinson’s cohort that had not been included in the prior training and testing 

process. Given the similarity between AUC (0.74 and 0.75) of the CSF and brain classifiers we 

took both forward for further analysis.  Initially, we used exploratory methods to understand 

how the classifier proteins related to each other. Focusing first on the larger protein signature, 

protein expression was tested for between protein correlations to understand the range and 

representation. Figure 3B shows the clustering of the correlation values to both illustrate the 

similarities between subgroups of proteins in the signature and to demonstrate the range of 

protein concentration selected to differentiate between cases and controls.  In order to replicate 

the complex signature of disease, we converted the classifiers to a single indicator or eigengene. 

This single value expression signature was calculated from a mean per sample as well as a 

dimensional reduction approach to produce an eigengene per sample. These single value 

expression signatures were compared to clinical outcomes (Figure 3C). Both the CSF and brain 

classifiers showed higher values and were significantly associated with diagnosis status using 

both signature methods (p-values < 0.001, Supplementary Table 4 and 5) providing further 

confirmation. 

 

Understanding the effects of disease severity on biomarker 

discovery 

To understand the effects of disease severity we then compared the effects on the protein 

signature on a defined subgroup of patients with relatively severe and mild disease phenotypes.  

We tested our 200 protein classifier (as defined previously) in three serum sample subsets 

(severe, intermediate and mild). These independent serum classifiers demonstrated good 

predictive performance in finding the difference between outcome sample set as compared to 

the control group (p values < 0.01 Table 2B).  The severe outcome subgroup had an AUC of 

0.72 with a selection of 31 proteins.  This is improved compared to the AUC for the complete 

serum disease cohort of 0.66.  These 31 proteins were enriched only for the Cytokine-cytokine 

receptor interaction; 12 of the proteins being in this KEGG pathway (adjusted p-value=0.0018). 

As the strongest classifier, the severe outcome signature was explored further in the 

independent serum replication set (Tracking Parkinson’s). We compared both the severe 

signature (22 proteins passing cohort-level quality control) and the mild signature (9 proteins 
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only) to the PD phenotypes to understand whether these proteins reflected disease severity in 

an alternative dataset.  The MDS-UPDRS III and severity scores were significantly associated 

to both severe (beta = -1.31, p-value=0.003 and beta=0.14, p-value=0.025) and mild phenotype 

protein signature (beta = -1.49, p-value>0.001 and beta=-0.20, p-value>0.001).  There were no 

significant associations between MoCA and either severity phenotype signature 

(Supplementary Table 6). Although the 9 proteins in the mild signature did not show any 

pathway enrichment they were more strongly related to the disease phenotypes tested.   

 

Differential expression of key proteins demonstrates a relationship 

to both known and novel PD mechanisms 

Having identified a possible biomarker signature from the 1,004 proteins common across the 

samples we used, we then went on to explore protein differences using the full 4,001 proteins 

in samples analysed with version 4 of the SomaLogic panel. A total of 1,599 serum samples 

were analysed with the Version 4 array from which 3,378 proteins passed QC in all samples.  

We performed univariable regression to ascertain the significance of each protein individually. 

This was implemented for each of the outcome variables; disease status (case vs. control), 

cognitive decline (MoCA score) and motor symptoms (MDS UPDRS III score). The greatest 

changes in protein expression were found when comparing the disease status of the samples 

and this resulted in 261 differentially expressed proteins used for pathway analysis (Figure 4A).  

In addition, 89 proteins were associated with motor function (MDS-UPDRS III) and 13 with 

cognition (MoCA). Three proteins were associated with all phenotypes: Oncostatin-M (OSM); 

Complement component 9 (C9) and Carnosine Dipeptidase 1 (CNDP1).  

To understand whether the changes in protein could potentially show changes in function we 

performed enrichment analysis. Pathway analysis showed that the main significantly 

dysregulated protein pathways of case status were the complement and coagulation cascades 

(p-value = 0.009) and Protein digestion and absorption (p-value = 0.015).   The Fat digestion 

and protein absorption pathway was enriched for dysregulated proteins associated with motor 

symptoms as measured using the MDS-UPDRS III (p-value = 0.001).    

We then used co-expression analysis with WGCNA to identify modules of differential protein 

expression associated with disease status within each case a protein eigengene to represent that 
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module expression. Four module eigengenes were significantly correlated to all PD phenotypes 

(Figure 4B p-value < 0.05). The yellow module eigengene was negatively correlated to the 

tested traits. It contained only 98 proteins and had a relationship directly to PD, oxidative 

phosphorylation and apoptosis pathways (p-value < 0.05, Figure 4C). The largest module 

(turquoise) was positively correlated to the traits and had 704 proteins and three key disease 

pathways including complement and coagulation cascades and axon guidance (Figure 4D). 

Interestingly, the red module was enriched for immune pathways in both the GO and KEGG 

databases (Supplementary Table 2).  The green module had little apparent functional relevance.  

Table 3 shows details for the three significant disease related modules.  Each module has a hub 

protein which has the strongest association with the rest of the module.  The turquoise module 

is represented by the Neurogenic locus notch homolog protein 1 precursor (NOTCH1) protein, 

part of the Notch signalling pathway which is involved in vascular development and 

angiogenesis. 15-hydroxyprostaglandin dehydrogenase (HPDG), the hub protein for the red 

module is part of the prostaglandin signalling pathway. 

 

 

Discussion 

Key Results:  

We report here a large biomarker discovery programme including both unsupervised and 

confirmatory analyses using three different modalities (serum, CSF and brain tissue) and three 

different cohorts with a panel of aptamer capture protein assays including over 1,000 and 4,000 

proteins in different phases of the study. 

The first analysis generated a novel signature of proteins associated with PD. We used a 

machine learning approach to identify a protein signature differentiating case samples from 

control subjects. The resulting classifier was tested on two different cohorts to produce a more 

robust signature.  Testing was also performed across tissue modalities to produce a more 

representative signature of disease (AUC = 0.66 to 0.75). Reproducibility was a priority for 

study design hence the inclusion of a comprehensive serum replication set where the protein 

signature had a significant association to PD status and movement phenotypes (p-values < 

0.001). This final signature contained proteins from the cytokine-cytokine receptor interaction 
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pathway as well as the complement pathway.  Differential regulation and clustering of protein 

expression provided further evidence for enrichment for the complement pathway in PD; a key 

element of the innate immune response that appears to be a common feature of multiple 

neurodegenerative diseases 24.  Findings are consistent with previous work from the OPDC 

cohort showing that the most severely affected baseline PD subtype was associated with a 

proinflammatory profile, comprising raised CRP and reduced APOEA1 25.  

The AUC values reported here are modest and lower than would be hoped for a simple blood-

based biomarker to be used in clinical practice, albeit that the CSF values were reasonable.  

However, the fact that we show robust replication and replication across multiple tissue types 

and cohort sources demonstrates that a blood-based signature of PD is an achievable objective. 

Moreover, the fact that we identify pathways and processes known to be involved in 

neurodegeneration including PD strongly supports the contention that this signature is 

biologically relevant. Further work will be needed to identify the optimal components of this 

signature for use in practice in clinical research and technological enhancements of future 

arrays may have better predictive value. 

A biomarker would have the most clinical utility if it could be used for early, ideally preclinical, 

identification of disease or if it could be used as a surrogate for more specific markers of disease 

pathology. In the related field of AD biomarkers, the availability of definitive markers of 

disease pathology such as PET and CSF markers of both amyloid and tau pathology have 

enabled such studies. For example, PET Amyloid can be used as an endpoint or outcome 

variable for biomarker discovery 13,26. However, such designs are not yet possible in PD – there 

is no PET radioligand or CSF assay of alpha-synuclein to act as the equivalent anchor point. In 

the absence of such in vivo markers of disease pathology, we used a design where we compared 

different stages of disease using measures of motor and cognitive progression in the hope that 

a change in biomarker across people with symptomatic disease could be extrapolated to very 

early or prodromal disease and potentially to truly preclinical disease. Using this approach to 

describe the phenotypes and building on the ML methods we generated a serum protein 

signature tested in severe, mild and intermediate patient subsets.  The classifiers had an 

increased AUC (0.72) compared to the ungrouped serum samples (0.66) suggesting a stricter 

disease phenotype is better for disease prediction and therefore refining the proteins included 

in the signature.  
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The signature for ‘severe’ disease included particular proteins related to cytokine receptor 

enrichment which constituted nearly half of the signature. These proteins were associated with 

both severity and motor phenotypes in the replication analysis.  Although we do not have a 

clear biomarker for preclinical changes we have been able to use the approach to understand 

more about the involvement of key proteins in disease progression. Further studies to examine 

this signature, and its constituent proteins, in early disease and in preclinical and prodromal PD 

cases from longitudinal studies are warranted and will confirm if they can be used to predict 

the rate of conversion to PD clinical diagnosis. 

There are several novel proteins described in these analyses which are common to more than 

one approach.  Oncostatin-1 (OSM) was found in the CSF classifier and also detected in the 

analyses of differential regulation in relation to disease status, cognitive and movement scores. 

The known biomarkers APO1A 27 and GFAP were present in the CSF classifier which could 

act as positive controls for the signature. Using pathway enrichment approaches we identified 

many PD relevant pathways. The axon guidance pathway contains proteins related to synaptic 

dysfunction 28 and the complement and coagulation cascades are an important pathway in 

innate immune responses previously identified in neurodegenerative diseases  24,29.   Using co-

expression clustering we detected a module (turquoise) represented by the NOTCH1 protein, 

which has a reported PD relationship as it is modulated by the LRRK2 protein 30.  HPDG, the 

hub protein for the red module is part of the prostaglandin signalling pathway with a role in 

neurodegeneration. 

 

Limitations:  

As in any observational cohort study, there are limitations of this work. We used two cohorts, 

one brain bank and three sample modalities, which although gave great power to detect 

associations also introduced cohort and tissue noise. Without pathological confirmation, there 

is likely to be some misclassification due to cases of multiple system atrophy or progressive 

supranuclear palsy being wrongly included.  This is likely to be a low rate as clinicians were 

all movement disorder specialists 31, red flags were used to exclude participants, we excluded 

those with a probability of PD < 90% and follow-up allowed us to check for revised patient 

diagnoses. Additionally, we use here only neurologically healthy controls making the task of 

disease diagnosis relatively simple compared to clinical diverse datasets that we would hope a 
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biomarker could perform in.  However, despite the spectrum bias, we were still able to 

distinguish disease severity which will aid in the end goal of prognostic signatures. 

Using a dataset which has been built up over years has led to some data loss from batch control 

but particular restriction came from the use of the older, lower protein number SomaScan array 

for some samples. However, the strength of validating a signature on a different array should 

not be overlooked and this gives a more robust final result. 

 

Interpretation:  

Here, we report a proteomic signature of PD in the blood that replicates across cohorts and 

validates across tissue types. Although of modest predictive power, the significance and 

replicability of the result is encouraging in the search for biomarkers that could be used to 

enhance clinical research, specifically trials, to identify and recruit well-characterised 

participants to clinical trials. Deep proteomic analyses of over 4,000 proteins identified disease 

pathways, including those of neuroimmunity and other known neurodegeneration associated 

functions, suggesting that targeting some of these biological processes might be of value in 

disease modification therapeutics. Indeed, these results raise the possibility of selecting 

subgroups of people for clinical trials using a precision medicine approach. Interestingly, the 

overlap in disease process between PD associated proteins in this study and AD associated 

proteins in similar studies in that disease again points to commonalities and overlaps between 

neurodegeneration suggesting that a precision medicine approach might not be possible but 

might be a necessary route to effective treatments for these devastating disorders. 

 

Conclusions: 

Using the largest and most comprehensive proteomics PD datasets, we have described a range 

of approaches for biomarker discovery and confirmed the potential of large-scale data analysis. 

We have demonstrated the potential value of a multi-protein signature of novel markers for 

further analysis and replication in new large datasets as these become available.   
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Abbreviated Summary 

This Parkinson’s Disease protein study combined multiple cohorts and different measures 

(blood, brain and CSF). Winchester et al. used this dataset to find a multi-protein panel 

representative of Parkinson’s and understand more about disease mechanisms from protein 

expression profiles. 
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Figures and Tables 

Figure 1 - The Mapping Proteomics to Parkinson’s Disease UK 

Project - Multiple Cohort Study Design 

Two approaches were used to analyse the samples from the Mapping Proteomics to Parkinson’s 

disease UK Project (MAP2PD). To define a classifier sample sets from all three cohorts were 

used.  Differential regulation and enrichment analysis (Exploring mechanism) was performed 

on serum samples only. 

Brain: Post-Mortem Brain tissue, CSF: Cerebrospinal fluid, Serum: Blood derived serum 

sample  
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Figure 2 - Targeted Biomarker Protein Results  

Significance matrix representing the association between protein expression of known 

biomarkers and PD phenotypes across the project datasets. Univariant logistic regression was 

used for diagnosis (disease status).  Univariant linear regression was used for MoCA 

(cognition) and MDS - UPDRS (movement) scores.  Direction of effect is shown by up 

(positive) and down (negative) triangles. Circles are used to show missing Somalogic assays.  
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Figure 3 - Proteins classifiers testing showed strong potential 

biomarkers in both CSF and brain sample sets  
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A. Receiver operator characteristic (ROC) curve for each of the best classifiers when 

testing in the sample sets (CSF AUC = 0.74, p-value = 0.0009; brain AUC = 0.75, p-

value = 0.006; serum AUC = 0.66, p-value = 0.0002). The black line defines what to 

expect by chance from a classifier. From left to right, an ideal classifier would follow a 

line up the y-axis then along the x-axis, which would have an AUC of 1. The testing 

sets are ‘Brain’, ‘CSF’ and ‘Serum’.  

B. Exploration of the signature protein expression was performed in independent TP - 

Serum set. Spearman’s correlation between expression of the CSF classifier proteins is 

shown by heatmap where proteins with similar concentration profiles are clustered 

together. Rho value correlations plotted where p-values < 0.05.  Proteins present in both 

brain and CSF signatures are coloured yellow. Proteins unique to the larger CSF 

classifier are tagged with blue. 

C. Derived classifier Eigengenes are significantly associated to disease status in an 

independent serum dataset (CSF: b=-0.44, p-value = 7.06 x10-06; Brain: b=-0.42, p-

value = 2.61 x10-05; logistic regression). 

 

  

A B
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Figure 4 - Differential Regulation and WGCNA summary from 

Serum Protein Expression 

A. Fold Change Plot showing genes with differential regulation between PD case vs 

control  

B. WGCNA Module Eigengenes correlation comparison to PD traits 

C. Yellow Module Protein Network with known PD protein pathway focus  

D. Turquoise Protein Network includes pathways with immune function and axon 

guidance 
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Table 1 - Demographics for a three cohort study of proteomic expression  

 

 OPDC - Serum OPDC / TP - 1K PUKBB - Brain OPDC - CSF TP - Serum 

Total samples 572 

 

 

224 

 

 

37 

 

85 932 

 

Disease Status Case 

(%) 

Control 

 

 

400 (69.9) 

172 (30.1) 

 

159 (71) 

65 (29) 

 

24 (64.9) 

13 (35.1) 

 

70 (82.4) 

15 (17.6) 

 

671 (81.9) 

148 (18.1) 

Sex (%) 

Male 

Female 

 

326 (57) 

246 (43) 

 

161 (71.9) 

63 (28.1) 

 

 

29 (78.4) 

8 (21.6) 

 

53 (62.4) 

32 (37.6) 

 

567 (60.8) 

365 (39.2) 
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Cohort (%) OPDC (100) TP (35.7) 

OPDC (64.3) 

PUKBB (100) OPDC (100) TP (100) 

Mean age at 

sampling [SD] 

(range) 

 

All 66.8 [10.4] (28.5-90.9) 

Cases 68.6 [9.6] (32.2-90.9) 

Controls 62.4 [10.9] (28.5-

88.9) 

 

All 70.4 [6.5] (53.6-83.5) 

Cases 70.4 [6.4] (53.6-83.5) 

Controls 70.6 [6.7] (54.7-

83.4) 

All 78.9 [8.2] (58-91) 

Cases 79.2 [6] (63-90) 

Controls 78.2 [11.4] 

(58-91) 

All 65.9 [8.6] (39.7-

85.1) 

Cases 65.8 [8.8] (39.7-

83.6)  Controls 66.1 

[7.9] (55.3-85.1) 

All 66.4 [9.3] (33.5-87.4) 

Cases 66.9 [8.8] (37-85.6) 

Controls 62.1 [9.7] (36.9-

87.4) 

Mean LEDD 

dosage at time of 

sampling* [SD] 

(range) 

352.9 [263.9] (0-1450) 302.1 [197.5] (0-1310) 403.5 [324.2] (0-1100) 326.3 [258.3] (0-1120) 283.3 [200.6] (0-1380) 

Mean MoCA score 

at sampling [SD] 

(range) 

All 25 [3.5] (10-30) 

Cases 24.2 [3.5] (10-30) 

Controls 26.8 [2.7] (15-30) 

 

All 24.3 [4.7] (10-30) 

Cases 23.8 [5.1] (10-30) 

Controls 25.7 [3.1] (16-30) 

- All 25.7 [3.1] (17-30) 

Cases 25.3 [3.1] (17-

30) 

Controls 27.5 [2.1] (23-

30) 

All 25.1 [4.1] (0-30) 

Cases 25.3 [3.2] (13-30) 

Controls 24.4 [7.1] (0-30) 
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Mean UPDRS3 

score at sampling 

[SD] (range) 

All 20 [15.3] (0-78) 

Cases 27.8 [11.3] (4-78) 

Controls 1.8 [2.9] (0-19) 

 

All 19.8 [18.2] (0-74) 

Cases 26.8 [16.9] (1-74) 

Controls 2.3 [2.9] (0-13) 

 

- All 22.9 [14.4] (0-74) 

Cases 27.4 [11.6] (10-

74) 

Controls 2.3 [2.9] (0-9) 

All 19.7 [13.3] (0-70) 

Cases 22.5 [12] (1-70) 

Controls 3.6 [5.4] (0-38) 

 

MoCA and UPDRS III score not available for brain bank samples.  Key: CSF; cerebrospinal fluid, LEDD; levodopa equivalent daily dose, OPDC; 

Oxford Parkinson’s Disease Centre, TP; Tracking Parkinson's, PUKBB; Parkinson’s UK Brain Bank, SD; standard deviation,* LEDD values for 

cases only 
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Table 2 - Filtering Results of top ranked proteins using three modalities  

Testing classifier on three modalities to select best predictive proteins 

Dataset Number of 

Proteins 

(classifiers) 

AUC [95% CI] p-value 

Serum 31 0.66 [0.59-0.74] 2.00 x 10 -04 

 

Brain 86 0.75 [0.57-0.93] 0.0063 

CSF 142 0.74 [0.61-0.87] 9.00 x 10 -04 

 

Testing classifier on different disease outcomes to identify proteins 

predictive of disease severity 
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Dataset Number of 

Proteins 

(classifiers) 

AUC [95% CI] p-value 

Severe 31 0.72 [0.63-0.81] 1.0x10-04 

Intermediate 18 0.72 [0.61-0.83] 2.0x10-04 

Mild 12 0.63 [0.53-0.72] 0.0063 

 

Table 3 - WGCNA Protein Modules with endophenotype relationships 

Modules with significant correlation with all disease phenotype were selected for further analysis. The three modules described passed p-value 

thresholds (adjusted p-value < 0.05) and had functional relevance. 

  PD Status 

(p-value) 

UPDRS (p-

value) 

MOCA 

(p-

value) 

Severity 

score (p-

value) 

Total 

Proteins 

Hub Proteins Enriched KEGG 

Pathways  

Red 0.034 0.001 0.004 0.0003 142 APEX1 DNA-

(apurinic or 

Spliceosome 
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apyrimidinic site) 

lyase (APEX1) 

Turquoise 4.09x10-07 4.63x10-05 0.007 6.79 x10-

07
 

 

704 Neurogenic locus 

notch homolog 

protein 1 (NOTCH1) 

Complement and 

coagulation cascades 

Axon guidance 

Yellow 0.012 0.011 0.008 0.0005 

 

98 HPGD 15-

hydroxyprostaglandin 

dehydrogenase 

[NAD(+)](HPDG) 

PD,  

Oxidative 

phosphorylation, 

Apoptosis 

 


