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To achieve more accurate recognition and segmentation of obscured fruit in natural orchard environ-
ments, DLNet model is proposed. The model is improved for the more challenging problem of segmenting
overlapping fruit from homochromatic backgrounds without considering various damages. This approach
is tantamount to construct the detection network RS-RFP and the segmentation network DLNet. RS-RFP
extends Full Convolutional One-Stage Object Detection (FCOS). Specifically, Feature Pyramid Network
(FPN) by adding Gaussian non-local attention mechanism to build Refined Pyramid Network (RFP) for
refining semantic features generated continuously by Residual Network (ResNet) and FPN. The DLNet
segmentation framework is composed of a dual-layer Graph Attention Networks (GAT) layer is con-
structed to model the image as two overlapping layers, where the top GAT layer detects the occluded
object (occluded) and the bottom GAT layer infers the partially occluded instance (occlude). Display mod-
eling of the two-layer structure occlusion relationship can naturally the boundaries between the
occluded and occlude instances and consider their interactions. The experimental results show that
the method outperforms earlier segmentation models and achieves metric values of 80.9% and 81.2%
for Average Precision (AP) box and AP mask respectively. In a reasonable running time, it meets the
requirements of accuracy and robustness for picking robots and provides a reference for segmentation
of other fruits and vegetables.
� 2021 The Authors. Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

With the gradual maturation of deep learning, the transplanta-
tion of this new revolution to various industries for better results
has become a common phenomenon, which has stimulated the
development of autonomous robots in agriculture. Vision systems,
as the most fundamental and important part of agricultural robots
for resolving specified targets from complex and diverse scenes,
which have been widely used in many practical applications, such
as fruit yield estimation (Zhang et al., 2021), crop growth monitor-
ing (Schima et al., 2016), and disease detection (Zhao et al., 2016).
As for the visual recognition system, which is an important compo-
nent of fruit and vegetable picking robots (Bauer et al., 2019), the
accuracy, efficiency, and robustness of its fruit detection under
complex background conditions will greatly affect the packing
quality of picking robots. Therefore, a picking robot equipped with
a stable vision recognition system will be the key to achieving effi-
cient detection of target fruit is to realize intelligent management
of orchards.

Machine learning plays a major role in image segmentation, and
promising results have been achieved in green fruit segmentation.
Arefid (Arefi et al., 2011) first removed the background in Red
Green Blue (RGB) space, then combined RGB and Horizontal Situa-
tion Indicator (HSI) space to extract ripe tomato regions, and finally
used shape features to locate fruit regions, and the overall accuracy
of the algorithm was able to reach 96.36%. Dorj (Dorj et al., 2017)
identified citrus with the help of color features and after a series
of image processing methods to estimate fruit yield, but the color
difference between citrus and leaves is obvious, there are few cases
of mixed detection, which is relatively simple to identify. Tian
(Tian et al., 2019) proposed a depth image-based target fruit local-
ization method to fit the target region by locating the apple circle
center and its radius through the depth image and its correspond-
ing RGB spatial information respectively, but the method is diffi-
cult to locate the fruit circle center by depth image for the
problems of fruit overlap and occlusion, and the robustness is poor
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in complex environment. Bhunia (Bhunia et al., 2020) proposed a
novel feature descriptor to explore the relationship between hue
(H) and saturation (S) channels in Hue-Saturation-Value (HSV)
color space, combining color and texture information. Experiments
show that the proposed descriptor is a significant improvement
over existing descriptors for content-based color image retrieval.
Bhattacharyya (Bhattacharyya et al., 2019) proposed a newmethod
for obtaining specific gender information from facial images to
extract information from frontal facial images to discriminate gen-
der, which is still stable under the interference of background, illu-
mination, intensity and facial expressions, thus improving the
overall classification accuracy. These methods are often accompa-
nied by a series of complex operations such as image pre-
processing, feature selection and extraction, and the recognition
effect of the model is easily involved in these operations. When
the texture features on the fruit surface are missing due to light
intensity, shape due to branch and leaf occlusion or overlap
between fruits, and when the target fruit has the same color as
the branches and leaves in the background and causes color inter-
ference, these problems can greatly reduce the recognition accu-
racy of such methods for the target fruit.

In recent years, with the development of deep learning and con-
volutional neural networks, the end-to-end detection process and
the advantage of automatic extraction of image depth features,
which eliminates many complex operations of traditional vision
algorithms, it has attracted many researchers to apply them to tar-
get fruit localization and recognition. Bargoti (Bargoti and
Underwood, 2017) first segmented apple images using a multistage
perceptron and convolutional neural networks to extract apple tar-
gets in the image, and then used watershed segmentation and cir-
cular Hough transform method to identify and count apple
targets. Jia (Jia et al., 2020) adapted Mask R-CNN (He et al., 2017)
which is an instance segmentation model to apple target detection
by improving the Residual Network (ResNet) (He et al., 2016) with
Densely Connected Convolutional Networks (DenseNet) (Huang
et al., 2017) as the feature extraction network of the new model
to substantially improve the detection accuracy of apple targets
in overlapping and branch-obscured environments. Chen (Chen
et al., 2017) proposed a fully connected Convolutional Neural Net-
work (CNN) based blob detector for extracting candidate regions
in images, segmenting object regions, and using the subsequent
of CNN counting algorithm to calculate the number of fruits. Gupta
(Gupta et al., 2020) proposed a two-step method for Content-Based
Image Retrieval (CBIR), registers image binary patterns and valley
patterns and combines them with color histograms. This method
overcomes the existing methods that use larger feature vectors
and still have low detection accuracy. Ghose (Ghose et al., 2021)
proposed a novel method for the recognition of ground terrain by
modeling texture information to establish a balance between unor-
dered texture information components and ordered spatial infor-
mation to achieve an effective classification of ground terrain by a
classifier. In the above deep learning-based detection model, its
accuracy and applicability are significantly improved compared
with traditional vision methods, but such methods require a large
amount of computing and storage resources, and the speed is not
yet able to meet the demand of real-time for picking robots.

Through the above mentioned domestic and international
research status, in order to balance the relationship between accu-
racy and speed of target fruit segmentation and make the robot
achieve the requirement of real-time operation in the heavily
obscured orchard environment, this paper proposes DLNet
instance segmentation model. The model consists of a detection
network framework RS-RFP and a segmentation network frame-
work DLNet, where RS-RFP is an extension of Full Convolution
One-Stage Object Detection (FCOS) (Tian et al., 2019) by adding
the non-local (Wang et al., 2018) attention block to the Feature
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Pyramid Network (FPN) (Lin et al., 2017) and constructing a Refine-
ment Pyramid Network (RFP) to improve the accuracy of feature
extraction. The segmentation of the severely occluded part of the
DLNet network is achieved by constructing a two-layer graph
attention network (GAT) (Veličković et al., 2017), the segmentation
of the model under leaf and fruit occlusion interference can be
realistically improved under the two-layer GAT structure, which
satisfies the multiple requirements of speed, accuracy and robust-
ness of each intelligent technique in practical applications. In gen-
eral, this study has at least the following contributions:

(1) Embedding a non-local attention module and building a GAT
structure to focus on information pixels while suppressing
noise.

(2) The method set out in the present paper outperforms state-
of-the-art models in terms of accuracy and robustness, and
is more suitable for green fruit segmentation in complex
scenes.

(3) Since DLNet eliminates the anchor frame, there is no need to
reset the hypermastigote for a specific dataset, which means
that the renamedmodel can be directly migrated to segmen-
tation of other fruit.

The rest of this paper is organized as follows: Sect. 2 describes
the image acquisition and processing and annotation of the associ-
ated datasets. Next, Sect. 3 introduces the detailed composition of
the detection network RS-Net and the segmentation network
DLNet and their improvements respectively. In Sect. 4 experiments
verify that the method outperforms other methods in terms of pre-
cision, recall and robustness. Finally, the proposed method is sum-
marized and the unresolved problems in this area are outlined,
which are the future research directions.
2. Data collection and dataset creation

2.1. Data acquisition

To evaluate the segmentation effect of the model on green
fruits, two datasets: unripe persimmon and green apple were col-
lected and produced for the experiments in this paper, both of
which were captured with the Sony Alpha 7 II camera, manually
annotated with the target fruits in the images using labelme soft-
ware, and uniformly transformed into MS COCO (Lin et al., 2014)
dataset format, in order to adapt the model segmentation effect
under the obscured environment, the COCO format dataset is fur-
ther transformed into the bilayer annotation format required by
this model for model learning. The persimmon dataset was col-
lected from Shandong Normal University, Changqing District, Jinan
City, Shandong Province, and the southern mountainous area of
Jinan City, the persimmon dataset with 553 images and 2524 per-
simmon fruits labeled; the apple images were collected from the
apple production base in Fushan District, Yantai City, Shandong
Province, with 268 images and 649 apple fruits labeled. Both data-
sets contain images of fruit captured in various environments such
as different time periods, different weather, different light angles,
and different shading conditions. Taking the persimmon dataset
as an example, Fig. 1 shows some of the actual images under differ-
ent situations respectively; Table 1 shows the acquisition time per-
iod, image and fruit distribution, and training/validation set
division of the persimmon dataset.
2.2. Dataset production and dataset enhancement

The dataset was labeled with labelme software, and the resolu-
tion was uniformly reduced to 600 � 400 pixels before labeling.



Fig. 1. Actual persimmon images under complex natural scene. Note: a-c show images at different light intensities; d-f show different types of shading (fruit overlap, leaf
shading, branch shading); g-i show images at different light angles.

Table 1
Distribution of persimmon dataset.

Time
Scenes
Divide

Training set
Pictures (sheets)/
Fruits (pieces)

Validation set
Pictures (sheets)/
Fruits (pieces)

Sum
Pictures (sheets)/
Fruits (pieces)

Morning 65/266 28/84 93/350
Noon 87/278 37/142 124/420
Afternoon 69/521 29/129 98/650
Evening 87/336 38/125 125/461
After the

rain
80/464 33/179 113/643

Sum 388/1865 165/659 553/2524

Note: Table of image acquisition and data set division. The acquisition was per-
formed under natural sunlight during the daytime, and LED lights were used to
assist in illumination at night. For the images acquired under each time period, the
training set and the validation set are divided in a ratio of 3:1 for the number of
images.
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The minimum external matrix of each fruit in the labeled image
was used as the true frame and the corresponding json file was
generated, and it was randomly combined into training set and
dataset according to 7:3, where the number of images in the train-
ing set of persimmon dataset was 398 and the number of images in
the test set was 170 images. Since the number of images and
labeled fruit in the apple dataset was small, the images after the
labeling were enhanced randomly. The enhancement types
included brightness enhancement, contrast reduction, fogging,
gaussian noise, impulse noise, Poisson noise. As showed in Fig. 2,
each enhancement type was divided into different enhancement
degrees, and a total of 5290 images were finally generated. The
enhanced images generated from the original images share the
7261
annotation information in the same json file, and the training set
and validation set are divided in the ratio of 7:3 in each interfer-
ence degree of each interference type. Finally, a total of 3703
images are obtained from the apple training set and 1587 images
from the validation set, and the annotation files in MS COCO data-
set format are generated respectively.
3. DLNet double-layer occlusion segmentation model

To improve the accuracy and efficiency of segmentation of
green fruit in an orchard shading environment, an accurate and
efficient DLNet segmentation model is proposed in this paper.
The framework of the new model is presented in Fig. 3 below,
which consists of three parts: (1) feature extraction; (2) feature
refinement; (3) result prediction. First, ‘‘feature extraction” and
‘‘feature refinement” phases consist of the detection network RS-
RFP, which consists of three steps: extraction, fusion, and refine-
ment by ResNet, FPN and RFP respectively (see Fig. 4 for details).
The segmentation network DLNet, which uses a two-layer GAT
structure, in which the top GAT detects occluded objects and the
bottom GAT infers partially occluded instances. With the two-
layer GAT structure, the instances of the occluded part are fetched
and the mask is generated by Fully Convolutional Networks (FCN)
(Long et al., 2015) to generate the detailed region where the fruit is
located.

3.1. Feature extraction RS-RFP detection network

The feature extraction RS-RFP detection network consists of
three parts: extraction, fusion and refinement, which are handled



Fig. 2. Examples of different types of apple image enhancement.

Fig. 3. Flow chart of DLNet.

Fig. 4. Flow chart of RS-RFP. Note: The detection network contains a total of three parts, the backbone network ResNet and FPN to extract the image features, and RFP to
refine the extracted features, a detailed diagram of the attention module embedded in RFP is shown in Fig. 5.
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by ResNet101, FPN and RFP respectively. The combination of
ResNet and FPN can lead to gradient disappearance and explosion
as the depth of the network increases, which lead to degradation of
the model. Therefore, based on the efficient feature extraction
capability of ResNet and FPN, RFP is introduced, thus effectively
solving this paradoxical phenomenon and improving the discrimi-
native ability of deeper networks.

3.1.1. ResNet + FPN
In general, deep high-level features in the ResNet101 backbone

network have more semantic information, while the shallow low-
level features are more descriptive in content. Although the final
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output feature map of the ResNet101 network contains rich
semantic information, after continuous down sampling operations
(convolution and pooling), it will make its resolution very low
and detail information such as boundary is basically lost, which
will make the semantic information of smaller objects severely
diluted and eventually lead to detection failure, so its extracted
feature values are suitable for predicting large scale targets. Con-
sidering the distance between the robot and the object, and the
small area of the obscured object, the vision system design of
the picking robot also needs to accurately identify smaller areas
of fruit in the image, so FPN is introduced in this model
architecture.
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In this study, final residual blocks conv2, conv3, conv4, conv5 of
ResNet101 are taken, whose output feature maps are
fA2;A3;A4;A5g, and its feature maps are fused according to top-
down and lateral connections to obtain the fF2; F3; F4; F5g. FPN
mainly solves the target multi-scale prediction problem in detec-
tion, which constructs a feature pyramid by fusing the semantic
information of the deep feature map and the detail information
of the shallow feature map, and distributes the targets to be
detected at different scales to the feature maps at different levels
in the pyramid responsible for prediction.
3.1.2. RFP
The features extracted by ResNet and FPN can be used as the

basis for detection, and great progress has been made and high
accuracy can be achieved, but the application of ResNet + FPN net-
work for fruit detection in complex orchard environment will have
the following problems. On the one hand, fruit images are collected
in the complex orchard environment. These images are affected by
unfavorable factors such as illumination, overlap and especially
occlusion, making the fruit area in the captured image incomplete.
On the other hand, the integrated feature extraction method
should have balanced information from the semantic features of
each pixel of each image, but in the ResNet + FPN structure will
make the integrated features pay more attention to the semantic
information of adjacent pixels and less attention to other resolu-
tions, and the semantic information contained in non-adjacent
levels will be diluted in each fusion during the information flow.
Therefore, in order to solve the above two dilemmas, RS-RFP net-
work is added RFP which is embed non-local modules on top of
FPN to obtain and refinemore semantic feature information, whose
structure is shown in Fig. 4 above, and the specific implementation
details are shown in Fig. 5 below.

In this paper, in order to set the non-local block more efficient
by adding a maximum pooling layer behind u and / in Fig. 5,
the number of channels of wh, w/ and wx would set to half of
the number of channels of �, thus forming a bottleneck that will
be able to reduce the computation by half. wz then re-approach
to the number of channels of � to ensure that the input and output
dimensions are consistent. After using the down sampling opera-
tion, the outputyi becomes the following equation:

yi ¼
1

c x̂ð Þ
X

8jf xi; x̂j
� �

g x̂j
� � ð1Þ

where x denotes the input; f ðxi; xjÞ is used to calculate the pairwise
relationship between I and all possible associated positions j; gðxjÞ
is used to calculate the eigenvalues of the input signal at position
j; and cðxÞ is the normalization parameter.
Fig. 5. Detailed description of attention module
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3.2. DLNet segmentation model

In images in heavily occluded environments, multiple overlap-
ping objects in the same bounding box during segmentation may
lead to confusion between instance profiles from real objects and
occluded boundaries. For example, the masked header design of
Mask scoring RCNN (Huang et al., 2019) directly regresses masking
with a fully convolutional network that ignores the overlapping
relationship between masked instances and objects. To alleviate
this limitation, DLNet extends the existing two-stage instance seg-
mentation approach by adding a two-layer GAT structure to the
traditional target prediction pipeline, so that the interactions
between objects in the region of interest and thus the specific real
objects and masks can be well considered in the mask regression
stage.

3.2.1. Double-layer GAT structure
In recent years, Graph Convolutional Network (GCN) (Kipf and

Welling, 2016) has been used to model long-term relationships
in images and videos, and highly overlapping targets, closes can
segment pixels belonging to the same part of the occluded object
into disjoint sub-regions. However, since GCN assumes that graphs
are directed and cannot handle dynamic graphs, and cannot assign
different weight to each neighboring point, GAT is introduced.
Based on the non-local properties of GAT, DLNet is adopt GAT as
the basic block, where each graph node represents a single pixel
on the feature map. To explicitly model closed regions, the model
extends the single GAT block into a two-layer GAT structure as
showed in Fig. 3, constructing two orthogonal graphs under a sin-
gle generic framework.

In this paper, the segmentation part of the model is designed
simply and efficiently, consisting of a 3� 3conv, followed by a
GAT layer and an FCN layer, after which the output is fed to the
up sampling and 1� 1convolution layers to obtain a channel fea-
ture mapping for joint boundary and mask prediction. Implemen-
tation of GAT is performed through the Dual Attention Network
(DANet) (Fu et al., 2019a) modules, which are divided into a posi-
tion attention module and channel attention module, the built GAT
structure is shown in Fig. 6 below.

3.2.2. DLNet workflow
In the GAT structure in this, an adjacency graph G ¼ hV ; ei needs

to be given, where there is edges ebetween nodes V. The graph con-
volution operation is represented as:

O ¼ rðAXWgÞ þ x ð2Þ
where X 2 RN�K is the input feature map; N ¼ H �W is the number
of pixel grids within the ROI region; K is the feature dimension of
each node; A 2 RN�N is the functional similarity that defines the
which illustrated in RFP section of Fig. 4.



Fig. 6. The built GAT structure.
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nodes of the adjacency matrix graph;Wg 2 RK�K is the output trans-
formation matrix, in this model K 0 ¼ K; and the output features
O 2 RK�Kconsist of node features updated by global information
propagation within the entire graph layer, which is normalized
and Rectified Linear Unit (ReLU) (Krizhevsky et al., 2012) function
of the nonlinear function rð:Þis obtained. In the two-layer GAT
structure, it is further defined gias the with graph, Xroias the input
ROI features, and Wf as the weight of the FCN layer, so that the
complete formula is:

O1 ¼ rfA1½rðA0XroiW
0
gÞ þ Xroi�W1

gg þ Of ð3Þ

Of ¼ rðA0XroiW
0
gÞW0

f þ Xroi ð4Þ

To connect the two GAT blocks, the output feature A0of the first
GAT is added directly to Xroi to obtain the fused occlusion-aware
feature Of , Ofwhich is the input of the second GAT layer, and the

output O1 is used for occlusion mask prediction.
In the process of segmentation by the two-layer GAT structure,

the feature information obtained in the RS-RFP detection network
is processed, especially for the discrimination of the occluded fruit,
and the occluded part is processed in steps. In the first choice,
occluded part and the obscured part are distinguished and then
sent to the respective processing GAT layers, and finally the infor-
mation is integrated and processed to output the final predicted
image. Among them, the first GAT layer is used to detect contours
and process occluded instances to achieve contour prediction and
mask regression for occluded instances, and the second GAT layer
is used to process occlude instances to achieve contour prediction
and mask regression for occlude instancess. Based on the attention
mechanism in GAT, it can focus more on functional information
and reduce noise interference. After such a two-layer GAT process-
ing, the occluded and occluded are processed separately and then
integrated to achieve accurate segmentation for the mask as
showed in Fig. 7 below.

The bilayer GAT structure constructs a new semantic graph
space for the enclosed region additionally compared to the previ-
ous single-layer structure of the class of unknown mask headers,
which has only binary labels (foreground/ background) per pixel.
The model explicitly distinguishes the work of the two-layer occlu-
sion structure, and the overlap between the two layers can be
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directly identified as the occlusion boundary, so that it can be dis-
tinguished from the real object contours.

3.3. Loss function

One of the important factors determining the effectiveness of
the model for fruit segmentation is the design of the loss function.
Based on the prediction objectives of each branch, the task type,
the proportion of positive and negative samples, the loss function
showed below is used for iterative optimization of the model.

According to the structural analysis of the model, the loss func-
tion of the model should be composed of three parts: the loss gen-
erated in the detection phase, the loss of the occluded branch and
the loss of the occlude branch. The overall loss function equation is
shown as following.

L ¼ LDetect þ LOccluder þ LOccludee ð5Þ
Regarding the loss generated by the model in the detection

phaseLDetect , it is further composed of the losses generated by the
three branches of Classification, Regression, and Centerness. Since
a picture in which the target fruit occupies a relatively small area
compared with the background and undergoes a factor shrinkager,
there is an imbalance problem between positive and negative sam-
ples in the training phase. In order to take into account the above
disadvantages and simplify the calculation, so Classification,
Regression, and Centerness branches are chosen to be calculated
by Focal Loss (Lin et al., 2017), IoU (intersection of union) Loss
(Yu et al., 2016), and BCE Loss (de Boer et al., 2005) respectively,
and the overall loss of the detection part of the model function is
shown below:

LDetect ¼ Lðfpx;yg; fdx;yg; fcenterx;ygÞ ¼ Lcls þ Lregression þ Lcenterness ð6Þ

Lcls ¼ 1
Npos

X
x;y

Lclassðpx;y;p
�
x;yÞ ð7Þ

Lregression ¼ k
Npos

X
x;y

Lregressionðdx;y;d
�
x;yÞ ð8Þ

Lcenterness ¼ b
Npos

X
x;y

Lcenternessðcenterx;y; center�x;yÞ ð9Þ



Fig. 7. The workflow diagram of GAT. Note: The first layer of GAT will extract features for segmentation of the occluded part, and the occluded part will be found and
segmented; the second layer of GAT will segment the occluded object, and then the results obtained from the first layer of GAT will be merged to generate the final segmented
image.
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In the above equation, px;y; dx;y; centerx;y is the prediction value of
classification branch, regression branch, and centrality branch at
spatial location (x,y) respectively, p�

x;y; d
�
x;y; center

�
x;y corresponds to

the training target at spatial location (x,y), and among the three
loss terms, Lregssion; Lcenternessis only for positive samples, Nposdenotes
the number of positive samples, and k; b is the balance coefficient
of each loss term.

The model produces loss functions of LOccludeeand LOccluder in the
occlude branch and occluded branch of the partitioned network
with the following functional formulas as shown in Eq. (10) and
Eq. (11).

LOccludee ¼ k1LOcc�B þ k2LOcc�S ð10Þ

LOccluder ¼ k3L
0
Occ�B þ k4L

0
Occ�S ð11Þ

Regarding the classification lossL0Occ�B of boundary detection for
segmented occludeds in Eq. (12), the following equation is shown.

L0Occ�B ¼ LBCE WBFocc Xrotð Þ; gTBð Þ ð12Þ
where LBCE denotes the binary cross-entropy loss, expressed as
following.

LBCE x; classð Þ ¼ weight class½ � �x class½ � þ log
X
j

exp x j½ �ð Þ
 ! !

ð13Þ
Foccdenotes the nonlinear transformation function of the occlu-

sion modeling module; WB is the weight of the boundary predic-
tor; Xroi is the shear FPN feature map given by the Roi Align
operation of the target region; and gTB is the ready-made encloser
boundary, which can be easily calculated from the mask
annotation.

With respect to the classification loss L0Occ�s in Eq. (12) for mod-
eling the occluded of the segmented occluded, the following equa-
tion is shown.

L0Occ�s ¼ LBCE WSFocc Xroið Þ; gTSð Þ ð14Þ
where FoccðXroiÞ is for the shared features of the joint optimization
using boundary prediction in the mask prediction of the mask;
WS denotes the trainable weight of the predicted values of the
1� 1 convolutional layer segmentation mask; gTs denotes the mask
labeling of the mask. Above k1; k2; k3; k4 is the hypernatremia weight
for balancing the loss function, which are tuned to
0:5;0:25;0:5;1:0f g respectively on the validation set.
7265
4. Results and analysis

In check to see the effectiveness of DLNet model for green fruit
recognition, the following experiments are conducted and the
results are analyzed. The experiments were firstly conducted by
using both per-training and direct training to obtain the models
and compare their effects on the experimental results. Then, the
optimal training model is selected, evaluated on the validation
set of both persimmon and apple fruit and the experimental data
are analyzed. Finally, the state-of-the-art algorithms for each type
of target detection and segmentation are selected to test and com-
pare the difference in detection and segmentation performance of
the models when segmenting green fruit.

4.1. Experimental implementation details

All relevant experiments involved in this paper were done on
the same server device with the main configuration environment
of Ubuntu 16.04 OS, 32 GB Tesla V100 graphics card and 10.0 CUDA
environment. All models were built using the Python language and
the Pytorch 1.4 deep learning library with the help of relevant
modules in the Detectron framework.

4.1.1. Training phase
Before the formal training, 1586 apple images are used for per-

training. The parameters after the per-training were migrated to
the DLNet network as initialization parameters to better improve
the accuracy and robustness of the model.

For formal training, the mini-batch was utilized to iteratively
train 12 epochs, using 2 samples per iteration as a batch. The loss
changes are generated by the three branches during training are
shown in Fig. 8, with the horizontal axis showing the number of
iterations and the vertical axis showing the loss values. After each
training epoch was evaluated on the validation set, the obtained
segmentation Average Precision (AP) change graph is given in
Fig. 9. ResNet101 was used as the base network to extract the
image features, and Batch Normalization (BN) (Ioffe and Szegedy,
2015) was used for regularization when the weights were updated;
when constructing the FPN, a 5-layer pyramid hierarchy {pl}
(l = 3,4,. . . ,7) fused features, the number of channels per layer is

256, and the down sampling multiplier is 2lrespectively; the
shrinkage factor r is set to 0.4, the mapping region on the target
fruit frame corresponding to the feature map is shrunk 0.4 times
as the positive sampling region; the weights are regularized using



Fig. 8. Loss function variation curves of the two datasets in the training phase.

Fig. 9. Plot of mAP variation in the training phase for the two datasets.
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BN each time they are updated, and the model parameters are
updated using Stochastic Gradient Descent (SGD) (Bottou, 2010),
with the learning rate, weight decay, and momentum set to
0.0025, 0.0001, and 0.9 respectively. The input network is uni-
formly sized to (1200,800) before training, and is sequentially
reprocessed with random flipping, regularization, and padding
operations.
4.1.2. Testing phase
The images are also per-processed with cropping, random flip-

ping, regularization and padding before in putting into the net-
work; after the network inference, the low quality prediction
frames with confidence less than 0.05 are excluded first, and then
the prediction frames with too much overlap are screened with
NMS, using IoU equal to 0.5 as the threshold, and after the screen-
ing is completed, the prediction frames with at most the top 100
confidence are retained for each image in order of confidence,
top 100 confidence frames are retained for each image.
4.2. Evaluation indicators

In this experiment, IoU = 0.5 between the model prediction box
and the labeled box is used as the threshold to classify them as
7266
belonging to True Positive (TP) or False Positive (FP), count their
number and calculate Precision and Recall according to the
formula.

Precision ¼ TPs
TPsþ FPs

ð15Þ
Recall ¼ TPs
TPsþ FNs

ð16Þ

In Eq. (15) and Eq. (16), TPs, FPs, and FNs denote the number of
true positive samples, the number of false positive samples, and
the number of false negative samples under the specified confi-
dence level and for IoU threshold, respectively. Finally, the AP
index is used to objectively and comprehensively judge the model
detection effect, as showed in Eq. (17).

APIoU¼i ¼ 1
101

X
r2R

max
r� :r��r

p r
�� � ð17Þ

In Eq. (17), R 2 [0, 0.01, 0.02, . , 1], r represents the value taken
as the recall rate, and p is the accuracy rate corresponding to the
value taken as the recall rate. Through the above equations, accu-
racy and recall are evaluated together to obtain the approximate
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value AP (default i = 0.5) of Area Under Curve (AUC) under the
specified IoU threshold and used as the evaluation index for the
following experiments.

4.3. Model segmentation effect

After the training of the network is completed, and the optimal
model is selected after performance evaluation, the model uses dif-
ferent IoU thresholds and AP and Average Recall (AR) values under
different target fruit scale ranges as the evaluation index of the
model to assess the overall performance of the network. In addi-
tion, several images containing persimmon and apple fruit under
mixed interference conditions are selected such as overlapping,
branch and leaf occlusion, nighttime, distant view, after rain and
backlight for segmentation, studied and analyzed the segmenta-
tion effect maps. The segmentation effect of DLNet for both fruits
is shown in Fig. 10, where persimmon fruits are shown on the left
and apple fruits are shown on the right. The detailed evaluation
results of the model on the two fruit validation sets are shown in
Table 2.

where APb
50,AP

s
50 are the AP values of the model for the border

and the AP values of the mask under the threshold of IoU = 0.5;
mAPb, mAPs are the AP values of the model for the predicted border
and the predicted mask of the network under the threshold of [0.5,
0.55, 0.6, . . . , 0.95] and averaging the 10 AP values obtained; fur-
thermore, mAPS, mAPM, and mAPL are the combined evaluation
results of the model for small-scale fruit, medium-scale fruit, and
large-scale fruit prediction results in the three scale ranges
[0,322], [322,962], and [962,INF] respectively.

Although DLNet has been able to recognize most of the shaded
fruits for the shading situation in the orchard, there are still cases
where the light, leaves and fruits are too close to each other in
color, and the fruits are not recognized due to severe shading, as
shown in Fig. 11 below.

4.4. Algorithm comparison

To further illustrate the effectiveness of the model for target
fruit segmentation, the performance of current advanced target
detection and instance segmentation algorithms were run and
evaluated on the same dataset and the same configuration of the
experimental platform from the perspective of both detection
Fig. 10. Segmentation effects of the mo
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and segmentation performance, and the differences in recognition
performance between them and DLNet were compared. The finally
experimental conclusions were drawn, as shown in Table 3.

As shown in Table 3 above, different types of target detection
and instance segmentation algorithms are selected for comparison
with DLNet, including anchor-frame-based two-stage algorithms:
Faster R-CNN (Ren et al., 2015), Mask R-CNN, MS R-CNN; anchor-
frame-based single-stage algorithms: SSD512 (Liu et al., 2016),
YOLO v3 (Redmon and Farhadi, 2018), YOLACT (Bolya et al.,
2019a), YOLACT++ (Bolya et al., 2019b), SOLO (Wang et al., 2020)
and single-stage algorithms without anchor frames: FCOS, Polar-
Mask (Xie et al., 2020), RetinaMask (Fu et al., 2019b), BCNet (Ke
et al., 2021), ‘‘-” indicates that the model does not have the ability
to predict borders or masks.

As showed in Table 3 above, compared with other algorithms,
DLNet has the highest comprehensive evaluation index mAP and
mAR values in terms of detection and segmentation accuracy,
80.9% and 81.2% respectively, which are higher than other three
different types of algorithms. In addition to considering the accu-
racy of segmentation, it also need to consider the segmentation
speed of the algorithm in recognizing an image on GPU on average.
The model needs to reduce the segmentation time while ensuring
the accuracy, and it is hard to really put it into use if the segmen-
tation time does not reach the requirement of real-time. As showed
in Fig. 12 below, the time required for the segmentation algorithm
in Table 3 above to segment an image on average on the same data-
set is listed.

The above analysis shows that the DLNet model can achieve
higher detection accuracy with simpler model structure and less
computation, and can achieve high efficiency in speed and accu-
racy at the same time and adapt to complex orchard environment,
which can ensure more stable and efficient operation quality with
less power consumption when deployed to mobile picking
equipment.

4.5. Validation on the COCO dataset

To further validate the performance of the network, publicly
available standard datasets for testing on the network was used.
The COCO2014 dataset was selected, and four latest segmentation
algorithms, Mask R-CNN, MS R-CNN, RetinaMask, and YOLACT
were selected to compare the accuracy with the DLNet model on
del in different interference scenes.



Table 2
Evaluation results of DLNet network on two validation sets.

Persimmon Apple

Bbox Segm Bbox Segm

Metric Value Metric Value Metric Value Metric Value

mAPb 80.9% mAPs\* MERGEFORMAT 81.2% mAPb\* MERGEFORMAT 82.8% mAPs\* MERGEFORMAT 78.9%

APb
50

90.3% APs
50\* MERGEFORMAT 89% APb

50\* MERGEFORMAT 86.4% APs
50\* MERGEFORMAT 84.8%

mAPb
s

44% mAPs
s\* MERGEFORMAT 42.2% mAPb

s \* MERGEFORMAT 45.7% mAPs
s\* MERGEFORMAT 44.8%

mAPb
m

73.6% mAPs
m\* MERGEFORMAT 74% mAPb

m\* MERGEFORMAT 70.6% mAPs
m\* MERGEFORMAT 66.5%

mAPb
l

85.6% mAPs
l \* MERGEFORMAT 86.8% mAPb

l \* MERGEFORMAT 88.7% mAPs
l \* MERGEFORMAT 87.7%

mARb 80.4% mARs\* MERGEFORMAT 81% mARb\* MERGEFORMAT 84.1% mARs\* MERGEFORMAT 80.1%

mARb
s

45.9% mARs
s\* MERGEFORMAT 47.2% mARb

s \* MERGEFORMAT 46.9% mARs
s\* MERGEFORMAT 43.2%

mARb
m

80.1% mARs
m\* MERGEFORMAT 80.8% mARb

m\* MERGEFORMAT 82.8% mARs
m\* MERGEFORMAT 78.9%

mARb
l

89.8% mARs
l \* MERGEFORMAT 90.7% mARb

l \* MERGEFORMAT 91.6% mARs
l \* MERGEFORMAT 89.9%

Fig. 11. Image with missed segmentation. Note: (a) Leaves are mixed with fruits; (b) leaves are heavily obscured; (c) lighting is too dim.

Table 3
Recognition results of each model on both datasets.

Methods Persimmon
Dataset

Apple Dataset

mAPb mAPs mAPb mAPs

two-stage anchor-based
Faster R-CNN 72.3 — 82.4 —
Mask R-CNN 71.8 72.3 81.5 74.3
MS R-CNN 72.9 72.5 80.6 76.2
one-stage anchor-based
SSD512 64.1 — 75.1 —
YOLO v3 69.6 — 82.2 —
YOLACT 58.0 61.0 67.4 75.6
YOLACT++ 70.2 69.1 78.0 78.8
SOLO — 58.6 — 76.4
one-stage anchor-free
FCOS 68.8 — 81.4 —
PolarMask 57.7 54.6 69.9 68.7
RetinaMask 72.4 71.6 81.8 73.6
BCNet 76.2 75.4 80.1 77.8
ours
DLNet 80.9 81.2 82.8 78.9

Fig. 12. Time comparison of different segmentation algorithms.

Table 4
Comparison results of different algorithms on coco dataset.

Method Backbone APS AP50 AP75 Time

Mask R-CNN R-101-FPN 35.7 58.0 37.8 116.3
MS R-CNN R-101-FPN 38.3 58.8 41.5 116.3
RetinaMask R-101-FPN 34.7 55.4 36.9 166.7
YOLACT R-101-FPN 31.2 50.6 32.8 42.7
DLNet R-101-FPN-RFP 40.4 60.1 42.3 53.2
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the COCO dataset, and their comparison results are shown in
Table 4 below.

According to Table 4 above, DLNet algorithm is significantly
higher than the other four algorithms in terms of accuracy, indicat-
ing a good segmentation performance, and is second only to the
YOLACT algorithm in terms of time, but both in terms of model
capacity and segmentation accuracy, DLNet makes up for its small
loss in speed with a simpler architecture, better computation and
higher segmentation accuracy. Therefore, after the above analysis,
this method achieves good results in terms of segmentation accu-
racy and time, with strong generalization ability and robustness.
7268
5. Conclusion

In the unstructured orchard environment, for the segmentation
challenges in the occluded environment, this study takes green
fruit as the research object and proposes DLNet, which is a green
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target fruit segmentation model in the occluded environment. The
model consists of two parts, the first part is the detection network
RS-RFP, which extends the FCOS generation by adding the embed-
ded Gaussian attention module. Based on ResNet and FPN, the
newly proposed RFP is added so that similar semantic features
achieve mutual gain and reduce the influence of adverse factors
such as occlusion, illumination, and overlap. The second part is
the DLNet segmentation network, which uses GAT as the basic
module, depended on its non-local properties as well as the atten-
tion network. To explicitly model occluded regions, the single GAT
block is extended to a two-layer GAT structure to decouple the
overlap relationship. In which the first GAT layer is used for occlu-
sion prediction and the second GAT layer performs occluded mod-
eling, which is used to guide the target (occluded) object
segmentation through the rich auxiliary prediction information
provided by the first GAT layer, such as shape and position predic-
tion. The experimental results show that the new method is highly
accurate in detecting and segmenting green target fruit, and robust
under various interference conditions. Report to segmentation
algorithms such as YOLACT, the model consumes less computation
and storage, has a more concise architecture design, and is faster in
segmentation. In the case of leaf occlusion, similar color to the
background, overlapping and various lighting effects, the DLNet
model can aggregate the green fruit information in the whole
images during segmentation detection and suppress the back-
ground interference noise to achieve better segmentation results
with minimal computational resources.

The new model achieves efficient and accurate recognition of
green target fruit, and performs better in terms of generalization
ability and robustness under the interference of complex orchard
environment. In future research, more complex situations in orch-
ards and the efficiency of the model are further considered on the
assembly capability and real-time operational capability of
the equipment. Given good recognition of green target fruit of
the new model, it can be further extended to other fruit and
vegetable production.

This model of ours has a relatively fast recognition speed, high
accuracy, and strong generalization ability of the model. Although
the method has achieved relatively good results so far, it also needs
to consider the accuracy and internal consumption in practical
problems, and this model still need to continuously improve the
efficiency in the future, and optimize the network structure of
the model to improve the operation speed and efficiency under
the improvement of accuracy.
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