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Abstract
Estimating soil properties from the mechanical reaction to a displacement is a common strategy, used not only in in situ soil

characterization (e.g., pressuremeter and dilatometer tests) but also by biological organisms (e.g., roots, earthworms, razor

clams), which sense stresses to explore the subsurface. Still, the absence of analytical solutions to predict the stress and

deformation fields around cavities subject to geostatic stress, has prevented the development of characterization methods

that resemble the strategies adopted by nature. We use the finite element method (FEM) to model the displacement-

controlled expansion of cavities under a wide range of stress conditions and soil properties. The radial stress distribution at

the cavity wall during expansion is extracted. Then, methods are proposed to prepare, transform and use such stress

distributions to back-calculate the far field stresses and the mechanical parameters of the material around the cavity (Mohr-

Coulomb friction angle /, Young’s modulus E). Results show that: (i) The initial stress distribution around the cavity can

be fitted to a sum of cosines to estimate the far field stresses; (ii) By encoding the stress distribution as intensity images, in

addition to certain scalar parameters, convolutional neural networks can consistently and accurately back-calculate the

friction angle and Young’s modulus of the soil.

Keywords Cavity expansion � Finite element method � Machine learning � Non-biaxial stress conditions �
Parameter back-calculation

The study of the distribution of stresses around expanding

(or contracting) cavities has many applications in geome-

chanics, from tunneling and underground exploration to

in situ soil characterization and resource extraction. Even

though the problem scales are quite different, a common-

ality between these applications is that they can be mod-

elled considering a cylindrical cavity that is either

pressurized (e.g., the pressuremeter test) or deformed (e.g.,

cone penetration and tunneling). Moreover, cavity expan-

sion mechanisms are not only used for characterization and

design by engineers, but also for burrowing purposes by

natural organisms. For instance, roots [1], earthworms

[3, 11], razor clams [45] and sandfish [22] all use

expanding cavities for exploration/navigation toward paths

of least resistance or maximum nutrient yield, anchoring

during excavation and assessing the mechanical stability of

tunnel networks. These similarities between engineered

and biological systems have sparked a wave of scientific

interest in bio-inspiration applied to geotechnics [23]. The

recent developments in robotics, in addition to the rise of

Machine Learning (ML) applications in underground

exploration and soil characterization, have opened the

possibility to explore the development of autonomous

devices that can burrow and sense underground.

This study focuses on the back-calculation of soil

parameters from the radial stress at the wall of circular
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cavity subject to displacement-controlled expansion, under

geostatic stress. To the authors’ best knowledge, there is no

closed-form solution available at shallow depth (at which,

the state of stress may not be considered biaxial). We

simulate cavity expansion for various soil properties and

depths with a 2D plane-strain Finite Element model. The

simulation input parameters, together with the calculated

radial stress at the cavity wall during the expansion are

used as inputs to ML algorithms to assess the sensitivity of

the FEM model, back-calculate the far-field stress and

estimate soil constitutive parameters. The main contribu-

tions made in this work are the following:

• A program was written to automatically launch Finite

Element Method (FEM) simulations of displacement-

controlled cavity expansion under a wide range of stress

conditions and soil properties, and extract the radial

stress distribution at the cavity wall during expansion.

The results of the FEM simulations constitute a

database that can be used for input in a ML-based

algorithm.

• Methods are proposed to prepare, transform and use

such stress distributions to back-calculate the far field

stresses and the mechanical parameters of the material

around the cavity (Mohr-Coulomb friction angle /,
Young’s modulus E).

• The performance of eight ML techniques in estimating

the soil’s friction angle is assessed, and then, the same

ML models are tested to predict the soil’s Young’s

modulus. It is shown that similar convolutional neural

networks can accurately back calculate the friction

angle and the Young’s modulus of the material.

• The combination of FEM and ML is expected to

advance the technology of autonomous devices that can

burrow and sense underground, considering that such

devices could self-anchor and/or sense through the

displacement controlled expansion of an embedded

cavity.

The paper is structured as follows. We first present litera-

ture reviews of cavity expansion (Sect. 1.1) and machine

learning (Sect. 1.2) applications in geotechnics. Section 2

describes the general workflow and explains the numerical

modeling approach. Section 3 provides an overview of the

ML algorithms used in this study. Section 4 summarizes

our results for the far-field stress, the Mohr-Coulomb

friction angle and the Young’s modulus, and discusses the

performance of the ML models tested. Section 5 concludes

the manuscript summarizing the findings, limitations and

proposing possible directions of future work.

1 Related work

1.1 Cavity expansion in geotechnics

Cavity expansion is an active field of research in geome-

chanics given its applications to in situ testing [18, 20],

resource withdrawal and tunneling [2, 46]. For applications

that deal with vertical cavities at relatively large depths, the

state of stress can be reduced to plane strain (no change in

strain along the body of the cavity) and in-plane isotropic

stress conditions. Under such conditions, the expansion

problem can be reduced to a one-dimensional (radial)

problem since both the distribution of stresses and the

deformation of the cavity are radially isotropic [48].

However, for horizontal (or inclined) cavities, or vertical

cavities under particular tectonic or sedimentation condi-

tions, the in-plane state of stress may not be isotropic (for

instance, the state of stress may be biaxial or geostatic).

Therefore, the displacement-controlled expansion of a

circular cavity yields a non-isotropic stress distribution,

and similarly, the pressure-controlled expansion of a cir-

cular cavity generates a non-isotropic displacement of the

cavity wall— increasing significantly the complexity of the

analytical solutions.

The analytical solutions that give the closest stress

estimates in such non-isotropic plane stress conditions are

those developed for tunneling applications and in situ

testing [48], for instance to interpret the pressuremeter test

(PMT) [47], the cone penetration test (CPT) [35, 36] and

the dilatometer test (DMT) [53]. Analytical solutions were

also established to predict rock or soil behavior around

vertical extraction wells relevant to hydraulic fracturing

and geothermal foundations, and around horizontal shafts

for deep tunneling, micro-tunneling and horizontal direc-

tional drilling (HDD) [12].

Still, the solutions mentioned above are developed for

infinite domains, e.g., the size of the cavity is relatively

small (or deep) compared to the dimensions of the domain

it is embedded in. Therefore, there is no effect of free

surfaces, and the vertical and horizontal far field stresses

can be considered constant along the cavity, which results

in isotropic or biaxial stress conditions. When analyzing

the problem of shallow cavities, these assumptions do not

necessarily hold true, since the gradient of stresses around

the cavity becomes significant and the geostatic stress field

can no longer be modelled as a biaxial state. Furthermore,

experimental studies on shallow cavities such as [16, 31]

and limit analysis formulations such as [16], have shown

that the failure mechanism of shallow horizontal cavities is

dominated by the development of shear planes that follow a

catenary/parabolic shape, resembling a passive trapdoor

mechanism, see [7, 40, 42].
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These considerations on the mechanical response of the

cavity increase significantly the complexity of the mathe-

matical problem, for which, to the authors’ best knowledge,

there is no available closed-from analytical solution. For

this reason, we use the FEM to capture the response of

cavities during expansion. We then test ML algorithms in

order to estimate the far-field stress and soil parameters

from the response of the model. Section 1.2 presents an

overview of other applications of ML in geotechnics.

1.2 Machine learning applications in geotechnics

The use of ML in geotechnics has seen exponential growth

over the last decade [50]. ML has indeed proven to be a

useful tool to provide estimations of soil properties and/or

limit loads for geotechnical applications where no closed-

form analytical solutions exists. ML algorithms do not

replace analytical solutions; they are comparable to

empirical equations and correlations. For a given applica-

tion, there is usually no consensus on which ML algorithm

or data preparation methodology works best, and therefore

some authors have written reviews that compare the

advantages/limitations of several approaches. For instance,

Lary et al. [17] reviewed applications of ML in geo-sci-

ences and remote sensing, Zhang et al. [51] summarized

applications of ML in the constitutive modeling of soils,

and Wang and Sun [50] reviewed applications targeted

toward modeling of soil properties. Although the range of

applications is wide, most studies can be grouped into three

categories: i) Estimation of mechanical properties of a

system for specific loading conditions and soil type, ii)

Estimation of a set of design parameters (e.g., limit load,

factor of safety) from the response of a soil to stimuli and

iii) Generation and/or calibration of constitutive models.

The third category, which goes beyond the scope of this

paper, is concerned with the creation, validation and tuning

of constitutive models, as shown in the reviews presented

in [43, 44, 51].

Estimation of mechanical properties typically resorts to

either numerical models or field/lab data as the training set.

Material mechanical properties are set as the output so as to

create models that can later predict soil parameters.

Applications using lab/field data include the prediction of

shear strength in cohesive soils using neural networks (NN)

from experimental data [33], the estimation of Cam-clay

parameters [26], and the estimation of the over consoli-

dation ratio (OCR) from piezocone penetration tests [15].

Studies in which numerical models are used to generate

training data include the combination of NN and gradient-

descent to identify constitutive model parameters from

self-boring pressuremeter tests [27], and the use of the

output of FEM simulations of piezocone penetration as the

training data of a NN in order to estimate soil parameters

[28].

Estimation of design parameters usually aims to calcu-

late a factor of safety or a limit load, using either field data

or numerical results as training sets. Some of the studies

that use field and lab data include the work of Sulewska

[39], which discusses six different applications of NN to

predict displacements (settlement, consolidation) and the

limit load (bearing capacity) in different applications.

Khatibi et al. [13] estimated the shear wave velocity in

incomplete data sets achieving good agreement between

predicted and measured downhole pressures, which helped

assessing wellbore stability. Zhang et al. [49] used data

from a tunneling project in Changsha city (China) to pre-

dict surface settlement. Samui and Sitharam [37] trained a

model that can predict the liquefaction susceptibility of a

site. Lu et al. [19] estimated the pullback force during

horizontal directional drilling using a genetic algorithm

combined with support vector machines (SVM). Kardani

et al. [10] estimated the bearing capacity of piles, using

field data as the training set. When numerical models are

used to generate training data, the numerical model maps

the inputs, i.e., the geometry and loading conditions of the

problem, to the desired output, typically a factor of safety

or a limit load. Numerical models may be computationally

expensive and/or rely on advanced/licensed software,

making them inconvenient for fast estimations. ML models

trained on numerical simulations are fast, reliable alterna-

tive methods that allow quick estimations. For instance,

Makasis et al. [21] generated a model to design thermal

piles. He et al. [8] focused on a reliability analysis of

spatially variable slopes, training a ML model on relatively

few numerical simulations, and showing the ability of the

model to produce results comparable to those of the com-

plex numerical model.

2 Numerical model

The finite element models used for the present study are

built using Abaqus software. The 2D, plane strain model

approximates the cross section of a cylindrical cavity,

which is assumed to be long in relation to its diameter so

that plane strain conditions hold. Due to the symmetry of

the problem with respect to the vertical axis, and in order to

reduce computational cost, only half of the domain is

modelled (see Fig. 1). The top boundary of the domain

represents the free surface, symmetric boundary conditions

are set on the left wall of the domain (cavity’s side), and

fixed boundary conditions are set on the right and bottom

boundaries, see Fig. 1a. The diameter of the cavity (Dc) is

fixed for all the simulations at 1.0 m—the choice of this

diameter corresponds to an intermediate value between soil
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probing instruments, usually in the range of tens of cen-

timeters, and the range of infrastructure construction

devices such as tunneling machines. The depth of the

cavity (H) is measured from the surface to the center of the

cavity and is varied between 5 and 50 times the cavity

diameter (5 to 50 m). The height of the model (Hm) was set

to Hm ¼ H þ 25Dc, while its width (Wm) was set to

Wm ¼ 1:5Hm—these dimensions were chosen according to

[54] to avoid boundary effects. Each model was created

and meshed automatically using a Python routine that

exploits the scripting capabilities of Abaqus. The model

was split into two sections prior to meshing. A first region

concentric to the cavity with a diameter of 6Dc was

assigned 4-node bi-linear elements arranged in a structured

mesh with 36 elements around the cavity (see Fig. 1c. A

second region covering the rest of the domain was assigned

3-node linear elements arranged in a non-structured mesh.

The number of elements in the mesh ranged between

1, 415 and 4, 340 depending on the depth of the cavity (see

Fig. 1b. The geometry of the models and an example of

mesh are shown in Fig. 1.

2.1 Model input parameters

We used the Mohr-Coulomb (MC) soil constitutive model

because of its simplicity and flexibility. After creating the

geometry of the model, soil properties were assigned to the

elements of the mesh, including: soil density (d), Young’s

modulus (E), Poisson’s ratio (m), Mohr-Coulomb (MC)

friction angle (/) and MC dilation angle (w). In the fol-

lowing sections, we refer to the soil density (d) and unit

weight (c) of the material interchangeably, keeping in mind

that these two parameters are linearly related by c ¼ g � d,
where g is the gravity acceleration. All the elements of the

mesh were assigned the same soil properties, the values of

which were selected randomly from a uniform distribution

spanning ranges suggested in [14, 40] for frictional soils

(silty sands to gravels)—see Table 1. The distributions of

the different variables were assumed independent, which

allowed us to ignore correlations between soil parameters.

A fixed value of MC cohesion (c) of 5 kPa was used in

every simulation in order to improve the convergence of

the models. Although there is no risk of achieving a state of

stress at a corner of the MC yield surface in plane strain,

the simulations were run with the Drucker-Prager (DP)

model, using a matching smooth yield surface (e.g.,

[4, 9, 25, 38, 52]). The Python scripts developed to sample

Fig. 1 a Diagram (not to scale) of the symmetric (Sym.) and fixed (Fix.) boundary conditions (BC), the free surface, and the direction of gravity

(g) in the model. b Mesh of the simulation domain (to scale). c Close-up of region around the cavity

Table 1 Bounds for the model parameters. Each variable was sam-

pled independently assuming a uniform distribution between the

bounds

Parameter Units Lower bound Upper bound

Cavity depth (H) m 5 50

Unit weight (c) kN=m3 16 24

Young’s modulus (E) kPa 10 100

Poisson ratio (m) – 0.15 0.45

MC friction angle (/) Deg (�) 20 45

MC Dilation angle (w) % of / 5% 95%
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constitutive parameters for the present study can thus be

used as they are for future 3D simulations.

2.2 Simulation procedure

The computations were performed in two steps. First, the

displacement of the cavity wall was fixed to zero and a

geostatic stress step was used to create a linear stress

gradient controlled by the unit weight of the material and

increasing in the direction of gravity (see Fig. 1a, i.e., from

the free surface (zero vertical stress) to the bottom of the

simulation domain. The resulting horizontal stress was

consistent with the conditions of the soil at rest. We veri-

fied that the lateral earth pressure coefficient was Ko ¼
1� sinð/Þ from the simulation results after the geostatic

step, which Abaqus performs without inducing deforma-

tions to the model. The density and MC friction angle of

the material are two of the variables assigned randomly in

the models, and therefore, our set of simulations covers a

wide range of pre-expansion stress conditions at compa-

rable cavity depths. The expansion of the cavity was sim-

ulated in a second step, displacing the nodes around the

cavity radially away from the cavity center at a constant

rate, keeping the cavity circular. The maximum radial

expansion was set to a large value (10Dc) in order to push

the simulation to the maximum expansion of the cavity

before it fails. A total of 1,500 simulations were performed

using a machine with a Dual Intel Xeon Gold 6148

(2.4 GHz, 3.7 GHz turbo) processors, and each simulation

was run in serial instances of Abaqus Standard (implicit).

In average, each simulation took about 5 minutes to com-

plete for a total of about 125 hours of computing time.

Since the objective of the study is to test whether the

data captured at the wall of the cavity during expansion can

be used to infer soil behavior, we used the radial stress at

each orientation around the cavity and at every value of

radial expansion/deformation (rrðr ¼ Dc=2; h; �rÞ) as a

data set that can be given as input to the ML algorithm to

back-calculate soil properties. Examples of rrðr ¼
Dc=2; h; �rÞ data sets obtained by FEM simulation are

shown in Fig. 2.

3 Machine learning algorithms

In our study, we focus on predicting the Mohr-Coulomb

(MC) friction angle (/) and the Young’s modulus (E). We

assume that the far field stresses (rv; rh;Ko), cavity depth

(H), and soil density (d) are known, as they can be inferred

from the initial stress distribution (see Sect 4.1). Therefore,

we used them together with the radial stress distribution

during expansion (rrðr ¼ Dc=2; h; �rÞ) as predictive vari-

ables of the tested models.

ML models with higher complexity tend to be more

accurate, but less interpretable [34]. Besides accuracy,

interpretability is also important in our study, as we are

interested in inferring the relationship between cavity

expansion and soil properties. Therefore, in order to find

the simplest model that can capture the mechanism, we

trained and evaluated 8 different machine learning

approaches with increasing complexity (Table 2). In the

first model, we used a mean score predictor as our naı̈ve

baseline model. This model simply uses the average of / in

the training set (with n samples) to predict every sample j

in the test set, as follows:

/̂test;j ¼
1

n

Xn

i¼1

/train;i ð1Þ

This mean score naı̈ve baseline model assesses how well

the distribution of / in the training set alone can predict

unseen test samples. In addition, we test two linear

regression models with different input features. The first

only uses H and d, while the second uses H, d as well as

rrðr ¼ Dc=2; h; �rÞ. We also explored various types of

neural networks. Compared to linear regression models, a

two-layer fully connected neural network can learn non-

linear relationships from the input features. Lastly, we

transformed the surfaces described by rrðr ¼ Dc=2; h; �rÞ
(see Fig. 2 for examples) as gray-scale images, represented

as a matrix with pixel values in the range [0, 1], and tested

three six-layer Convolutional Neural Networks (CNNs)

with different featurizations. Our results show that CNNs

trained with H, d and rrðr ¼ Dc=2; h; �rÞ represented as

images have the highest accuracy.

3.1 Data processing

We generated all our data through FEM simulations (See

Sect. 2.2). For each simulation, H, d, / and E are scalar

values; rrðr ¼ Dc; h; �rÞ is represented as a matrix 2 Rn�37,

where n is the number of radial expansion steps in the FEM

simulation (discretized values of �r), and the 37 columns

refer to different orientations around the cavity with a

spacing of 5�, each one corresponding to a node around the

cavity. We note rr i;j the stress (numerical scalar) at

node j at step i. We randomly split 1,363 simulation results

into a training set with 817 simulations, a validation set

with 273 simulations, and a test set with 273 simulations

(6:2:2 ratio). We used the validation set to choose the

optimal hyperparameters for some models (e.g., the regu-

larization power in the linear regression model); we also

monitored the performance of CNNs on the validation set

during training and interrupted the training process when
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the performance stopped to improve in 20 consecutive

epochs—common workflow to avoid overfitting [5].

Lastly, we evaluated ML algorithm performance by com-

paring the predictions of the ML models with the actual

values calculated by FEM in the test set. We used the same

dataset split to train and evaluate all 8 ML models.

The distribution of H, d, and / are shown in Fig. 3. For

all models, we standardized H and d into a range of [0, 1]

by linearly transforming them based on their minimums

and maximums in the training set. For the stress field

matrices rr, we explored different featurization methods.

For CNNs, we treated rr as 2D gray-scale images where

the stress field value at orientation j and expansion step i

can be thought as a pixel value. CNNs are designed for

image analysis—with convolution transformations, CNNs

can learn the spatial relationships across pixels [29], which

encode cavity locations and simulation steps in our

framework. Our hypothesis is that the spatial relationship

between cavity location and simulation step is useful for

predicting soil properties. Since linear regression models

and fully-connected neural networks cannot use 2D

matrices as input features, we vectorized these 2D matrices

of rr into 1D vectors by stacking matrix rows together

(row-major flattening).

3.2 Linear models

We used a trivial mean-score predictor as a baseline model.

The model computes the average / in the training set, and

then directly uses it as prediction of all samples in the

validation set and test set. Linear regression is a popular

and interpretable approach to study the relationship

between soil properties and cavity behavior [50]. We

applied Lasso regularization [41] to all of our linear

regressions, as it can shrink the coefficients of less pre-

dictive features to zero and improve model generalizabil-

ity. The first regression model only uses two numerical

values (cavity depth H and soil density d) as input features,

while the second model adds vectorized stress fields rr as
an extra feature (Table 2).

The regularization power k is a hyper-parameter, where

larger k imposes stronger regularization. We tune k on the

validation set through grid-search using the Python pack-

age scikit-learn [32]; we choose the k that gives the

smallest Mean Absolute Error (MAE) in our final model.

The MAE is defined according to:

MAE ¼ 1

n

Xn

i¼1

j/̂i � /ij ð2Þ

where n is the size of the dataset, /̂ is the predicted value of

a parameter (e.g., friction angle) and / is the true param-

eter value, taken as input in the FEM. Models with smaller

MAE are more predictive.

3.3 Fully-connected neural network

We developed two simple fully-connected neural networks

(NN), with two hidden layers each, using the Python

package PyTorch [30]. Multi-layer NNs can approximate

any continuous functions [6]. Therefore, compared to lin-

ear models (Sect. 3.2), NNs are more powerful ML models

that can learn nonlinear relationships between the input

features and MC friction angle /. Similar to our experi-

mental design for linear models, one NN model only uses

two input features: cavity depth H and soil density d, and

the second NN uses H, d, and vectorized rr as input (Ta-
ble 2). The hyper-parameters: hidden neuron numbers,

learning rate, and batch size, are tuned on the validation set

Fig. 2 Example radial stress distributions at the cavity wall for two example simulations at different depths: H ¼ 5m and H ¼ 50m
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through grid-search. We chose the combination that yiel-

ded the smallest MAE score as our final model.

3.4 Convolutional neural network

We developed three CNN models that share a similar

model architecture (Fig. 4) but have different featurizations

with the Python package PyTorch [30]. In our CNN model,

we have six convolutional layers where each layer has six

3� 3 kernels. After every 2 consecutive convolutional

layers, we insert one max-pooling layer to introduce reg-

ularization in the model. Finally, we have two fully-con-

nected layers to nonlinearly transform the image

representations into a numerical value. One CNN takes the

stress field images with dimension 256� 256 generated by

resizing and standardizing rr matrices. The second CNN

takes these 256� 256 images as input, and then stan-

dardized H and d are concatenated in the first fully-con-

nected layer (Fig. 4). The third CNN has the same

architecture as the second CNN, but for each row (cavity

orientation), we linearly interpolated the values at the 37

cavity nodes to have values at every degree. For each

column (radial expansion), we linearly interpolated the

values in the range 0 to 1% to 100 data points. In that way,

we increase the size of our images while keeping a con-

sistent mapping, i.e., each row and column numbers refer

to the same orientation and radial expansion across simu-

lations, unlike the first and second CNN where we resized

the images without interpolation.

4 Results and discussion

Our results are organized as follows. In Sect. 4.1, the pre-

expansion radial stress distribution at the cavity wall is

used to estimate the far-field stresses around the cavity and

unit weight of the soil. In Sect. 4.2, the radial stress dis-

tribution during expansion (rr) is used to back-calculate

the MC friction angle (/), while Sect. 4.3 uses a similar

Table 2 Description of the 8 different ML algorithms, listed by

increasing complexity and tested to infer / from the cavity response

rr and other simulation parameters

Model Description

Mean-score predictor Predict / using the average mean

of / scores in the training set.

Linear regression with H, d Regularized multiple linear

regression fitted with two

numerical values: cavity depth H
and soil density d. The
regularization power k with L1
penalty is tuned.

Linear regression with H, d, rr Regularized multiple linear

regression fitted with vectorized

stress fields rr concatenated with

H and d. The regularization

power k with L1 penalty is tuned.

Fully-connected neural

network with rr
Fully-connected two-hidden-layer

neural network with vectorized

stress fields rr . The number of

hidden neurons, learning rate, and

batch size are tuned.

Fully-connected neural

network with H, d, rr
Fully-connected two-hidden-layer

neural network with cavity depth

H, soil density d, and vectorized

stress fields rr . The number of

hidden neurons, learning rate, and

batch size are tuned.

Convolutional neural network

with rr
Convolutional neural network with

6 hidden layers trained with stress

field images rr . The learning rate

and batch size are tuned.

Convolutional neural network

with H, d, and rr
Convolutional neural network with

6 hidden layers trained with

cavity depth H, soil density d, and
stress field images rr . The
learning rate and batch size are

tuned.

Convolutional neural network

with H, d, and interpolated rr
Convolutional neural network with

6 hidden layers trained with

cavity depth H, soil density d, and
interpolated stress field images

rr . The learning rate and batch

size are tuned.
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Fig. 3 Distributions of cavity depth H, soil density d, and friction angle / in the training set with 817 samples
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framework to back-calculate the Young’s modulus (E) of

the material.

4.1 Estimation of far-field stresses

The pre-expansion radial stress distribution at the cavity

wall (rrðr ¼ Dc=2; h; er ¼ 0Þ) is used to calculate the far

field stresses in each simulation. An initial inspection of the

initial stress distributions showed that the radial stress

could be parametrized as a sum of sinusoidal/cosine sig-

nals. In fact, this observation was previously found and

exploited by [24] for cavity expansion problems in elas-

ticity. Figure 5 shows an example of the pre-expansion

radial stress distribution for two simulations with similar

far-field vertical stress rv but different far-field horizontal

stress rh.
Due to the presence of geostatic stress conditions, the

initial radial stress distribution has a period of 2p (one

revolution around the circular cavity). We used the

following Fourier series to fit the initial stress distribution

around the cavity:

rr
er¼0 ¼

X4

j¼0

aj � cosðjhÞ ð3Þ

where h is the orientation angle measured from the bottom

of the cavity. By choosing this convention we have

rrðhÞ ¼ rrð�hÞ. The order of the fit (j ¼ 4) is the smallest

value that could accurately capture the absence of biaxial

symmetry in the radial stress distribution. Every fit of the

initial stress distribution has coefficients of determination

R2 [ 0:94. Next, from Eq. 3, and knowing the fit coeffi-

cients aj for every model, estimations for the radial stress at

the invert (h ¼ 0), waist (h ¼ p=2) and crown (h ¼ p) of
the cavity were found from the following relations:

rI ¼ a0 þ a1 þ a2 þ a3 þ a4

rW ¼ a0 � a2 þ a4

rC ¼ a0 � a1 þ a2 � a3 þ a4

ð4Þ

in which the subscripts B, W and C correspond to the invert

(bottom), waist (side) and crown (top) of the cavity

respectively.

The vertical (rv) far-field stress at the depth of the cavity
center (H) can be estimated as the average between the

radial stress at the crown and invert of the cavity. Similarly,

the horizontal (rh) far-field stress at the depth H can be

estimated as radial stress at the waist of the cavity. And

from there, assuming that the depth of the cavity is known

and that the stress state follows geostatic conditions, the

unit weight of the material and the lateral earth pressure

coefficient can be estimated too, according to the following

equations:

Fig. 4 Model architecture of our convolutional neural network (CNN) with six layers. The model takes a 256� 256 gray-scale image that

encodes the stress field rr as input. Then, the pixel representations are transformed through 17 layers to predict the MC friction angle / or the

Young’s modulus E. This model has six convolutional layers where each is followed by a ReLU activation layer—helping the model learn

nonlinear relationships. To avoid overfitting, one max-pooling layer is inserted after every two convolutional layers. Two fully connected (FC)

layers are inserted after the convolutional and max-pooling layers. For the second and third CNN models to predict /, two scalar values (cavity

depth H and soil density d) are concatenated into the output vector from the last max-pooling layer. For the model to predict E, we concatenate
four scalar values (cavity depth H, soil density d, and stiffness coefficients Mw, Mc) instead. The fused vector is used as the input of the last two

fully-connected layers

- /2 /2 0 - /2
Orientation [rad]

100

150

200

250

 [k
P

a]

Ko  = 0.65 Ko = 0.32

S2 = 0.99

S2 = 0.75

Fig. 5 Pre-expansion radial stress distribution at the cavity wall for a

depth H ¼ 10m and a soil unit weight c ¼ 23:8kN=m3. The two

simulations were conducted with different lateral earth pressure

coefficients Ko. Orientation angle measured from the bottom of the

cavity in the counter-clockwise direction, i.e., top of the cavity at p.
The symmetry index S2 is defined in Eq. 6
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rv ¼
rI þ rC

2
¼ a0 þ a2 þ a4

rh ¼ rW ¼ a0 � a2 þ a4

c ¼ rv
H

¼ a0 þ a2 þ a4
H

Ko ¼
rh
rv

¼ a0 � a2 þ a4
a0 þ a2 þ a4

ð5Þ

The estimation of the far-field stresses (respectively, soil

unit weight and lateral earth pressure coefficient) is

assessed against the actual values set as input in the FEM

simulations in Fig. 6 (respectively, Fig. 7).

Lastly, the gradient of stresses present under geostatic

stress conditions causes a lack of symmetry of the radial

response between the top and bottom of the cavity. In order

to compare and quantify the symmetry (or lack thereof) we

define the coefficient of symmetry S2 as follows:

S2 ¼
Pp

h¼0ðrrðhÞ � rrð�hÞÞ2
Pp

h¼�pðrrðhÞ � �rrÞ2
ð6Þ

where rrðhÞ is the radial stress at an orientation h around

the cavity wall, and �rr is the mean radial stress across all

the orientations between ½0; p�.

S2 is similar to the coefficient of determination R2 and

measures the difference between the radial stress at the top

(waist to crown) and the bottom (waist to invert) of the

cavity, and compares it to the difference between the entire

radial stress distribution at the cavity wall and its average

value. Similar to R2, the coefficient S2 has a maximum

value of 1 when there is perfect symmetry between both

sides of the distribution. Figure 8 shows the distribution of

the values of S2 as a function of the depth of the cavity H

and the lateral stress coefficient Ko (variables which had

the highest influence on the symmetry index).

Results from Fig. 8 show that the depth of the cavity has

a significant effect on the symmetry of the response. This

was expected, since the stress gradient across the height of

the cavity is significant for shallow cavities, and reduces in

importance as the depth of the cavity increases. In fact,

models in which the depth was more than 15 times the

cavity diameter (15m) had S2 [ ¼ 0:95, suggesting that at

such depths, the assumption of biaxial stress conditions

may be acceptable. However, as the depth of the cavities

decreases (i.e., the cavities are more shallow) there is a

large variability of the symmetry of the response, which is

controlled by the value of the lateral earth pressure coef-

ficient. Low values of Ko display a higher symmetry of the
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Fig. 6 Estimation of far field stresses at the depth of the cavity center from the coefficients of the sum of cosines fit
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pre-expansion stress distribution due to a larger difference

between the magnitude of the vertical and horizontal far-

field stress.

4.2 Estimation of MC friction angle /

In order to back-calculate the MC friction angle / of the

material, we used the eight ML models described in

Table 2. As explained above, the models use known

parameters: cavity depth H, soil density d, and the radial

stress distribution at the cavity wall rrðr ¼ Dc=2; h; �rÞ) in
order to predict the MC friction angle /. As the dependent
variable / is a continuous value, we use the MAE to

measure the performance of the different models (see

Eq. 2).

The MAEs during training, validation (tuning of hyper-

parameters) and testing are reported in Table 3. Results

show that increasing the complexity of the models results

in better performance. For instance, with the same input

parameters, fully-connected neural networks have better

performance than linear regression models, and CNNs

outperforms fully-connected neural networks across dif-

ferent evaluation subsets. We see the largest performance

improvement when including CNN models, which suggests

that the nonlinear spatial relationships across cavity loca-

tions and simulation steps are critical to accurately predict

the MC friction angle /. The resulting test MAE of the

CNN model is 0:49�. This means that in average, the error

in the friction angle estimation /̂ is within 0.5 degrees from

the true value /.
Interestingly, using linear interpolation to modify the

input stress field images does not improve the CNN
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Fig. 7 Estimation of unit weight (c) and earth pressure coefficient (Ko) from the coefficients of the sum of cosines fit
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Fig. 8 Distribution of the coefficient of symmetry S2 (see Eq. 6) as a
function of normalized cavity depth (H=Dc) and lateral earth pressure

coefficient (Ko)
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performance. The interpolation modifies the grey scale

images obtained from rr, in such a way that every row

number (orientation around the cavity) and every column

number correspond to the same values across simulations.

This fact suggests that the performance of the model is

controlled by the ’shape’ of the radial stress distribution,

not the magnitude of the expansion.

4.3 Estimation of young’s modulus E

In this section, we apply some of the models used in Sect.

4.2 to infer the value of the Young’s modulus (E) of the

soil mass without further training, hence testing the gen-

eralizability of the framework.

We introduce two scalar parameters, Mw and Mc, which

correspond to the slope of the radial stress/strain curve

between the initial radial stress and the stress at a radial

deformation er ¼ 0:1%, measured according to the fol-

lowing equation:

Mj ¼
rrðhjÞer¼:1% � rrðhjÞer¼0

0:1%
ð7Þ

where the subscript j corresponds to the orientations at the

waist (Mw) and crown (Mc). We applied the data processing

pipeline (Sect. 3.1), model architectures of linear mod-

els (Sect. 3.2) and CNN (Sect. 3.4) to predict E, this time

with the addition of Mw and Mc, calculated for each one of

the simulations, and fed to our CNN models together with

H and d before the fully-connected layers (Fig. 4). Mw and

Mc are intuitive measures of the stiffness of the material

around the cavity and their inclusion significantly

improved the performance of the prediction models. The

Mean Absolute Percentage Error (MAPE) is calculated as:

MAPE ¼ 100� 1

n

Xn

i¼1

j Êi � Ei

Ei
j ð8Þ

The ML experiment results are summarized in Table 4,

where we see a similar pattern of model performance as in

the estimation of MC friction angle /. It is worth noting

that in this experiment, we use a slightly different metric to

measure the performance of the predictor. The MAPE

(Eq. 8) is a relative measurement of error between the

predicted Young’s modulus Ê compared to its true value E.

Therefore, the performance scores in Table 4 have a dif-

ferent scale than the scores in Table 3. The performance of

the models resonates with our findings in Table 3: (1) The

CNN model yields the best prediction performance; (2)

The inclusion of the stress field distribution rr improves

the accuracy of the predictions of E; (3) The MAPE of the

estimation is under 2%.

Table 3 Mean absolute error (MAE) obtained with eight ML algo-

rithms with increasing complexity to test whether the soil’s MC

friction angle / can be inferred from cavity characteristics and radial

stress distribution rr . The results highlight that CNN models can

accurately predict / from the radial stress distribution rr

Model Feature Train

MAE

Validation

MAE

Test

MAE

Mean-score

predictor

NA 6.4217 6.4772 6.4636

Linear regressions H, d 6.4023 6.4895 6.4782

H, d, rr 1.1710 1.5523 1.4179

Fully-connected

neural networks

H, d 6.3725 6.5234 6.5283

H, d, rr 0.6991 0.7809 0.8247

*Convolutional

neural networks

rr 0.3888 0.4440 0.5035

H, d, rr 0.3760 0.4577 0.4910

H, d,
interpolated

rr

0.4495 0.5917 0.6050

Table 4 Mean absolute percentage error (MAPE) obtained with four

machine learning models replicated from our soil friction angle /
experiment to predict soil elasticity E. The results converge with our

findings in the previous experiment, suggesting that our inference

framework is generalizable to other soil properties

Model Feature Train

MAPE

Validation

MAPE

Test

MAPE

Mean-score

predictor

NA 64.21 64.77 64.63

Linear regressions H, d, Mc,

Mw

4.25 4.32 4.18

H, d, Mc,

Mw, rr
2.46 2.57 02.68

Convolutional

neural networks

H, d, Mc,

Mw, rr
1.50 1.84 1.85
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Fig. 9 Evolution of mean errors as a function of noise magnitude

standard deviation (std). The left axis shows the MAE of the

estimation of /, and the right axis shows the MAPE of the estimation

of E, as a function of std
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4.4 Influence of noise in ML models

The ML models presented in Sects. 4.2 and 4.3 are tested

and trained with ‘clean’ data obtained from FEM simula-

tions. However, to test the applicability of this method to

data acquired from field measurement we test the influence

of noise in the accuracy of the CNN models (which yield

the highest accuracy).

Gaussian noise, i.e., random values sampled from a

normal distribution N(0, std) with zero mean and standard

deviation std, are added to each pixel of the stress field

images rr. Ten different levels of noise are tested by

increasing std from 0.1 to 1 (std ¼ 0:1; 0:2; :::; 1:0).

Resulting pixel values outside the normalized range [0, 1]

are assigned values of 0 and 1 respectively.

Resulting datasets ðrrÞstd ¼ rr þ Nð0; stdÞ are used to

train, validate and test the CNN models that predict / and

E. The accuracy of each model, in terms of the MAPE of

the estimation of E and the MAE of the estimation of /, for
each value of std, are summarized in Fig. 9.

The estimation of / is more sensitive to noise,

increasing monotonically from a MAE of 0:48� (with no

noise added), to 2:7� with std ¼ 1:0. The MAPE of the

estimation of E increases from 1:84% (with no noise) to

about 2:3% for std� 0:2, after which the estimation

appears to plateau.

The perceived lower sensitivity to noise of the estima-

tion of E is partially attributed to the fact that the MAPE is

a percentage metric, as opposed to the MAE used for /. In
addition, the high performance of the model suggests that

the extra features Mw and Mc improve the robustness of the

model, offsetting the influence of std.

5 Conclusions

This manuscript presents a novel framework that couples

FEM and ML to back-calculate the far-field stresses and

soil properties from the radial stress field (rr) at the wall of
a circular cavity during displacement-controlled expansion

under non-negligible geostatic stress gradients. We

exploited the resemblance of the initial radial stress dis-

tribution around the cavity and Fourier-like functions to

propose a simple, yet accurate way to back-calculate far-

field stresses around the cavity. Moreover, such simple

representation of the initial stress distribution (controlled

by 4 scalar parameters), can also be used to assess the

existence of geostatic or biaxial stress conditions, based on

the symmetry (or lack thereof) of the stress distributions

between the top and bottom parts of the cavity. We then

evaluated eight different ML models of increasing com-

plexity in order to find the simplest, most

interpretable method that can accurately back-calculate the

MC friction angle of the material around the cavity (/).
Results show that using image-like data that encodes the

radial stress distribution as a function of radial deformation

and orientation angle significantly improves the accuracy

of the models. Interestingly, we observed that the predic-

tive power of the encoded images to predict / is controlled

by the ’shape’ of rr rather than by its magnitude. Lastly,

we tested the flexibility of the prediction framework used

to back-calculate /, by re-using it to predict the Young’s

modulus of the material (E). Having a consistent and

flexible framework that can consistently back-calculate

different soil properties significantly reduces the time that

must be invested in data preparation and model selection.

The best-performing model has a mean absolute percentage

error (MAPE) under 2%, using a convolutional neural

network that uses rr and intuitive cavity stiffness param-

eters (Mw, Mc). Although there is no practical way to

interpret the mechanisms occurring inside the neural net-

work, we hypothesise that the encoded images from rr and
the parameters Mw, Mc provide ’shape’ and magnitude

information respectively, which is then combined to esti-

mate the Young’s modulus of the material. The CNN

models proposed in this study were found to have little

sensitivity to Gaussian noise: the MAE of / (respectively,

the MAPE of E) increases from 0.5o (respectively, from

1.84%) without noise to 2.75o (respectively, to 2.3%) with

noise of unit standard deviation. This relative insensitivity

to noise is indicative of the robustness of the proposed

CNNs.

The merits of the current study are not limited to the

particular problem of cavity expansion nor to the use of

machine learning algorithms in geotechnical problems. The

current study can indeed be used as a guide to generate,

prepare and transform mechanical data (i.e., radial stress

distribution rr) for use as training data in ML algorithms.

To that end, we have used different fitting techniques and

prediction models, all informed by a mechanical under-

standing of the problem at stake, and intuitive choices that

may improve the performance of prediction algorithms.

Future work spanning from this study includes testing the

effect of less ideal conditions encountered in physical

experiments and validating the methods presented in this

study against actual experimental and/or field data. Another

possible extension of this work is the exploration of other

applications where no analytical solutions exist yet. Still, as

with any other study that applies data-science-based

methods to mechanical problems, careful guiding, inter-

pretation and validation of the results is fundamental.
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