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A B S T R A C T

Foam behaves as a yield-stress fluid as it flows in a porous medium. Quasi-static analysis suggests that the
yield stress arises from the non-smooth motion of foam films, denoted as lamellae, in pores. In order to study
the effect of trapped lamellae on the motion of a moving lamella and consequently on the yield stress of foam,
we conduct numerical simulations in the quasi-static limit. We propose a new method utilizing the surface
energy minimization algorithm, which explicitly considers the connectivity of pores in a porous medium. We
consider two different shapes of pore and vary the number of nearby trapped lamellae to investigate the
effects of bubble trapping on the non-smooth and the smooth motion of a single lamella passing through a
pore, respectively. We find that the trapped lamellae lead to the increased volume-averaged pressure drop and
thus the increased yield stress. Notably, the motion of a lamella through a pore with rounded corners in the
pore body becomes non-smooth, due to the presence of trapped lamellae. The results contribute to a better
understanding of the yield stress of foam in porous media.
1. Introduction

Aqueous foam has found wide applications in industrial processes
such as soil remediation [1,2], acid diversion in well stimulation [3],
and EOR projects [4], for its ability to reduce gas mobility. In all
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these circumstances, foam is confined in porous media composed of a
large number of irregular and varying-size pores contained in the solid
matrix. Foam bubbles are thought to be of the same size or larger than
the pores [5]. This is because newly generated bubbles by the snap-off,
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which is a main foam generation mechanism in steady foam flow in
porous media, are unlikely to be smaller than a pore body [6], and the
gas diffusion driven by the pressure difference among bubbles tends to
eliminate bubbles smaller than a pore [7–9]. Moreover, a significant
amount of gas in a foam exists in the form of trapped bubbles [10]. In
contrast, moving bubbles account for only a small fraction of gas. These
moving bubbles form ‘‘bubble trains’’, which connect in sequence along
the flow paths and squeeze through midst the trapped bubbles.

Rossen [11] studied the motion of a moving lamella in a pore
which has two throats along the central axis of the pore and two
side throats that are occupied by two trapped lamellae, respectively.
A lamella enters the pore through one throat on the axis and moves
forward to the opposite throat. As the lamella approaches the side
throat, it will directly interact with the trapped lamellae. The results
show that the motion of the moving lamella is complicated in the
presence of trapped lamellae, compared to that of a lamella moving
in a pore without side throats. In this paper, the effect of bubble
trapping on the motion of moving bubbles is further investigated by
considering that trapped lamellae are located in throats of other pores
and indirectly interact with the moving lamella. For simplicity, we
consider that lamellae propagate in a porous medium model which
consists of several connected pores, and the gas in the foam is assumed
to be incompressible. A two-level method, which minimizes the total
surface energy of the foam system at two levels, i.e. at the sub-
pore level and at the pore-network level, is proposed to calculate the
foam configuration. This method is able to improve the computational
efficiency, especially when the considered porous medium model is
large. Another advantage is that the gas flow through pore throats can
be tracked directly because the gas flow into each pore body is the
variable solved in the simulations.

1.1. Background

Foam in porous media usually behaves as a yield-stress and shear-
thinning fluid. Specifically, there exists a threshold of pressure gradient
to start the foam flow, and the apparent viscosity of foam decreases
as the flow velocity increases [12]. This minimum pressure gradient
required to initiate foam flow arises from the resistance to deformation
of thin foam films denoted as lamellae. The deformation of lamellae
is in fact a complex interfacial phenomenon incorporating various dy-
namic processes as suggested in the work by Saye and Sethian [13] who
proposed a multiscale modelling method to evolve the configuration
of foam in bulk, though not in porous media. In their approach, gas
dynamics in bubbles, liquid drainage within Plateau borders and foam
lamellae, and lamella rupture are separated, given the fact of these
processes’ distinct characteristic time scales. These separated processes
are handled separately and coupled in sequence to dynamically evolve
the foam configuration.

In the limit of zero velocity, the movement of foam is quasi-static
and its structure is of the minimum total surface energy, subjecting to
constraints of finite and conserved bubble volumes as well as confined
pore geometries [12,14]. One further simplification is the dry foam
assumption, which is reasonable for a high-quality foam namely a foam
with a low liquid fraction. The lamellae in a dry foam are represented as
curved surfaces in 3D or curves in 2D, which are assumed to be stable,
though a realistic foam could become increasingly unstable and proba-
bly destroyed by the film coalescence induced by the capillary suction
as the foam quality increases [15]. Rossen [16] considered a 2D dry
foam transport in a series of connected bi-conical pores and calculated
the population-average pressure drop across the foam lamellae. It is
suggested that a foam lamella would experience asymmetric pressure
drop with respect to the volume swept by the lamella, which results in
a net positive population-average pressure drop. This asymmetry arises
from the asymmetric movement of the lamella front-to-back, because
the lamella would spend more time moving in the diverging section
2

of the pore than in the converging section of the pore, though the
pore itself is symmetric front-to-back. A jump of the pressure difference
happens when the lamella first enters the converging section of the
pore, accompanied by the jump of the positions of the two wall Plateau
borders. Moreover, the positions of the two wall Plateau borders after
the jump could be symmetric or asymmetric about the central axis of
the pore. Both the symmetric and asymmetric jumps of the wall Plateau
borders have been discussed in the literature, which have distinct
impact on the yield stress of foam [14,16]. The asymmetric jump of
the two wall Plateau borders could lead to higher resistance and thus
higher yield stress. Xu and Rossen [17] further considered the effect
of viscous forces acting on the wall Plateau borders and proposed a
dynamic model for the movement of lamella in 2D bi-conical pores.
They suggested that as the velocity increases, the asymmetric jump
happening as a lamella flows through the widest pore body is replaced
by the symmetric jump.

The topology of foam structure is one important factor that affects
the foam behaviour. The foam topology can be altered when bubbles
are newly generated or destroyed. There are mainly three foam gen-
eration mechanisms in porous media, including leave-behind, snap-off
and lamella division [18]. In the leave-behind mechanism, liquid films
or lenses are left in the common throat of two adjacent pores as gas
invades the pore bodies, which only applies in the initial drainage
process. New bubbles can also be generated by snap-off when sufficient
liquid accumulates near the geometric constrictions, i.e. pore throats,
due to the capillary pressure fluctuation redistributing the liquid phase
in porous media [19]. Incorporating the snap-off in simulations of foam
flow would require additional modelling of the liquid phase within the
foam lamellae in bulk as well as the wetting films coating on the walls.
In contrast, lamella division is relatively easy to model as it simply
divides a ‘‘mother lamella’’ into several new ‘‘daughter lamellae’’ whose
number depends on the number of branch points that the ‘‘mother
lamella’’ could hit. Cox [20] predicted the foam texture variation by
implementing quasi-static simulations of a 2D dry foam in a straight
channel containing a fixed disc. The foam texture is altered as the
lamellae divide into new more lamellae when hitting the disc. It is
shown that the foam topology can be further altered by a topologi-
cal transformation named T1 transformation. The T1 transformation
swaps the neighbouring bubbles associated with a lamella whose length
shrinks to zero, which leads to the arising of an unstable four-fold
connection point (in 2D) [21–24]. The T1 transformation mechanism
does not change the number of bubbles, but it does alter the topology of
foam configuration, and thus influences the following foam behaviour.

The pore connectivity of a porous medium also contributes to the
complexity of foam behaviour. As a consequence of the pore connec-
tivity, multiple flow paths co-exist in a porous medium. The active
flow paths and hence the moving bubbles can be trapped when the
flow resistance becomes sufficiently high [25]. In contrast, trapped
bubbles can convert to flowing bubbles when the driving force is
able to overcome the capillary resistance [25]. This flow pattern,
i.e. flow intermittency, has enabled foam flooding with a sharp front
in porous media because the trapped bubbles would block the previous
preferential flow paths and activate new flow paths which would be
blocked again as foam invades the porous media along the existing
flow paths [26]. Jones et al. [27] experimentally studied the mobility
of a dry foam in a simple model consisting of two parallel channels,
and observed flow intermittency when a so-called bamboo-structure
foam appears in one channel that is sufficiently narrow. This flow
intermittency occurs because the spanning lamellae in the channel
would be periodically pinned and then leave the exit of the channel
into the downstream wide region. The flow rate decreased when a
lamella was pinned due to the increased capillary pressure across the
pinned lamella. This phenomenon suggests that foam behaviour in
different flow paths are coupled, highlighting the importance of pore
connectivity.

Previous studies have shed important insights into understanding

the physical properties of foam flow in porous media. Foam structure
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Fig. 1. Pore geometries used in this study are modified from a diamond. Geometric
parameters are: 𝐿 the half of pore length, 𝑊 the half of pore width, 𝑅𝑡 the half width
of pore throat, 𝑟𝑏 the rounding radius at corners in the pore body, 𝑟𝑡 the rounding
radius at the pore throats, and 𝛽 the angle between the straight wall and the vertical.
These parameters are not independent, i.e. 𝛽 = tan−1(𝑊 ∕𝐿) and 𝑅𝑡 = (

√

2 − 1)𝑟𝑡. The
pores used in this work include: (i) a pore with two opposite pore throats, (ii) a pore
with two neighbouring pore throats, and (iii) a pore with three pore throats.

and capillary pressure can be locally tracked in theoretical and nu-
merical studies, and foam morphology can be observed in micromodel
experiments. However, the porous medium models used in previous
theoretical and numerical studies have been relatively simple in how
they represent a real porous medium, while the micromodel experi-
ments failed to measure local physical quantities, such as the pressure
in bubbles. To this end, we resort to quasi-static numerical simula-
tions to further understand foam behaviour in a porous medium when
connected flow paths are present.

2. Geometric models

The porous medium models used in this work are 2D models. To
construct a porous medium, one straightforward way is to replace each
site in a lattice pore network model with a pore possessing a specified
shape. A reasonable size of such a pore network has been suggested
by simulations of percolation behaviour performed on lattices [28].
Chatzis and Dullien [28] computationally simulated percolation be-
haviour in 2D lattice, arguing that a lattice width of 30 bonds and a
length of 40 bonds is sufficient to reflect an infinite 2D lattices. For sim-
plicity, we instead consider smaller geometric models. As shown later,
even in such simpler models, the trapped lamellae exert significant
influences on the movement of a lamella moving through a pore.

Several different geometric models are used in the present work,
which are all constructed based on the individual pores depicted in
Fig. 1. The pore shapes are derived from a diamond. To obtain the
pores, the corners of the diamond are modified so that each corner
represents a pore throat or a pore corner in the wide pore body. A pore
corner is obtained by rounding a diamond corner with a selected radius.
A small rounding radius results in a sharp pore corner. We consider two
types of pore in the simulations, including the two-throat pore and the
three-throat pore.

Table 1 presents the values taken for the related geometric parame-
ters, which are dimensionless in this work. The radius at the corner in
the central pore body is set to 0.25 and 1.0 for rounded and sharp pores,
respectively. Both the pore length and width, i.e. 2𝐿 and 2𝑊 , are set
to 3.0. The typical dimensional length of a realistic pore might be 10
μm [26]. The corners are rounded because of the fact that pore corners
could always be rounding due to the small amount of water occupying
the corners, which can be brought by the Plateau borders moving along
the walls [29,30]. We consider two different values of radius at the
corners in the pore body, i.e. 𝑟 equals 0.25 or 1.0. In addition, three
3
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Table 1
Pore dimensions used in the simulations.

Geometric parameter (Dimensionless) Value

𝐿 1.5
𝑊 1.5
𝑅𝑡 0.207
𝑟𝑏 0.25 and 1.0
𝑟𝑡 0.25
𝛽 𝜋/4

types of pores are used, which are differentiated by the number of
throats and the relative position of these throats, namely the two-throat
pore with opposite throats, the two-throat pore with neighbouring
throats and the three-throat pore. A two-throat pore with opposite
throats is exactly a bi-conical pore as used in previous work [14,16,17].
A two-throat pore, either with opposite or neighbouring throats, is
regarded as a sharp pore if 𝑟b is set to 0.25, or a rounded pore if 𝑟b
is set to 1.0.

The geometric models used in this work are summarized in Fig. 2.
In Section 4.1, we used the two-throat pore, shown in Fig. 2(i), to verify
our code conducting the sub-pore level method discussed in Section 3.1.
In the same subsection, we also constructed a porous medium composed
of three pores, including one upstream three-throat pore and two
downstream two-throat pores with neighbouring throats, in order to
verify the pore-network method proposed in Section 3.2, as shown in
Fig. 2(ii). We found that only one lamella would move forwards in
the downstream pore with the remaining lamellae trapped in the pore
throats, which is discussed in detail in Section 4.1. In Section 4.2, we
considered the porous medium models shown in Fig. 2(iii)–(vi). The
number of pores with trapped lamellae varies from 0 to 3, and for each
case we considered that the pore with a moving lamella is sharp and
rounded, respectively.

3. Method

To determine the foam configuration in equilibrium, the gradient
descent method is used to evolve the foam system until the minimum
surface energy is approached. The idea of the gradient descent method
constructs the basis of the Surface Evolver [31], a computer software
being able to computationally determine the foam configuration and
the pressure drop across lamellae. In Surface Evolve, the foam configu-
ration is evolved by moving the points on lamellae and, therefore, the
foam configuration is predicted in a direct way. Since the geometric
structures of the pore walls and the foam lamellae in the pores are
directly modelled, we call the method used in the Surface Evolver the
sub-pore level method. In the present work, we apply the idea at a
different level, i.e. the pore-network level, where the foam movement
is indirectly represented by the gas flow through pore throats. To
differentiate this method from the sub-pore level method, we name this
method the pore-network method. Here, we present both methods in
detail, for comparison and completeness.

3.1. Sub-pore level

At this level, foam lamellae are discretized into material points
whose positions determine the foam configuration, as embedded in the
Surface Evolver [31]. Therefore, the evolution of the foam system is
achieved by evolving the positions of these material points with cal-
culated displacements by the gradient descent method. Discretization
of foam lamellae and categories of associated geometric elements are
shown in Fig. 3. In order to explain the sub-pore level method that can
be used in a general circumstance of foam flow in 2D constricted pores,
the schematic includes all the possible geometric elements, though
some of these elements are not involved in the applications in the
present work.
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Fig. 2. Geometric models used in this work. (i) A single two-throat pore with opposite throats. (ii) A porous medium composed of three pores. (iii)–(vi) Porous medium models
with the number of downstream pores varying from 1 to 4. The blue arrows show the direction that gas is injected into the models, and the red line segments show the initial
positions of lamellae in the models. The models in (i) and (ii) are used in Section 4.1. The models in (iii)–(vi) are used in Section 4.2.
Fig. 3. Schematic of a foam configuration including two attached bubbles on the
wall. Discretized segments of lamella in bulk include mobile lamella segments and
constrained lamella segments. The constrained lamella is exactly the wetting film
coating on the wall. The material points can be categorized into two-fold points and
three-fold points, depending on the number of lamella segments that are connected
through the points. A two-fold point can either be mobile or constrained. A mobile two-
fold point is located on a mobile lamella, and a constrained two-fold point is attached
on the wall. A three-fold point can either be mobile or semi-mobile. In physical terms,
a mobile three-fold point is a bulk Plateau border, and a semi-mobile three-fold point
is a wall Plateau border. This schematic is only referenced in the discussion of the
sub-pore level method and may not accurately represent the realistic configuration.

We adopt linear interpolation to approximate the curved foam
lamellae, i.e. the lamella segment between two neighbouring material
points being represented by a straight line segment connecting the
points. According to the number of edges that connect to a point,
material points can be categorized into two-fold points and three-fold
points. A two-fold point is an interior point on a lamella, while a three-
fold point is the junction of three foam lamellae, i.e. the Plateau border.
A Plateau border can be further specified as a bulk Plateau border or a
wall Plateau border, depending on the Plateau border being in the bulk
or on the wall.

Besides, according to the mobility of a point, material points can be
categorized into four types namely fixed points, mobile points, semi-
mobile points and constrained points. A material point is fixed when
it is pinned on the wall. This is the case when a material point enters
a wall section of high curvature, because the point is confined within
that narrow region and hard to move. A mobile point is a two-fold point
located interior of a lamella, with both connecting edges belonging to
a mobile lamella that is in the pore space instead of coating on the
wall. A semi-mobile point is a three-fold point located on the wall but
4

is connected by a free lamella. A constrained point is a two-fold point
on the constrained lamella coating on the wall.

3.1.1. Tension force of lamella
The surface in a foam system tends to minimize its total area

because of the surface tension. The total tension force, 𝐹𝑖, acting on
material point 𝑖 is

𝐹𝑖 =
𝐾
∑

𝑘=1
𝑓𝑘, (1)

where 𝐾, either 2 or 3, is the number of edges connecting to point
𝑖, and 𝑓𝑘 is the tension force exerted by the 𝑘th connecting edge,
which is a unit vector along the edge, pointing out of point 𝑖, as
shown in Fig. 3. The tension forces acting on all the material points
comprise the steepest descent direction of total surface energy for
moving the material points [31]. Note that, only mobile lamellae would
exactly exert a force on a material point. All the constrained lamellae
coating on the walls, which are required to form enclosed bubbles,
exert no force on any associated material points. This resultant evolving
direction at each material point, however, needs to be modified, given
the constraints that the bubble volume should be conserved and the
semi-mobile points should always move tangentially along the wall.

The wall constraint requires that the tension force acting on a semi-
mobile point should be projected to the tangent direction along the
wall at that point, which can be separately calculated for each material
point. In contrast, the bubble volume constraint results in a system of
equations to be solved to determine the modification of tension force
acting on each material point, because the bubble volume is expressed
theoretically as an integral over all the material points on the boundary
of a bubble. One way to calculate the modification is to utilize the
gradient directions at each material point due to all the bubble volumes.
Specifically, denote 𝑔𝑖𝑗 the gradient direction at point 𝑖 due to the
volume conservation in bubble 𝑗, which has been firstly projected onto
the tangential plane of the wall. The modification of tension force at
each point can be constructed as a linear combination of the gradient
directions of all bubble volumes at that point [31]. Therefore, the
modified evolution direction, 𝐹 𝑣

𝑖 , at each point, is

𝐹 𝑣
𝑖 = 𝐹 𝑝

𝑖 +
𝐽
∑

𝑗=1
𝑃𝑗𝑔

𝑝
𝑖𝑗 , (2)

where 𝐽 is the number of bubbles, 𝐹 𝑝
𝑖 the projected tension force, 𝑃𝑗 the

coefficient corresponding to the contribution of the 𝑗th bubble, and 𝑔𝑝𝑖𝑗
the direction projected from the gradient direction that the 𝑗th bubble
exerts at the 𝑖th point.
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The rate of the variation in volume of each bubble should be
diminished if material points move along the directions given in Eq. (2),
which leads to a linear system of equations for the unknown coefficients
𝑃𝑗

𝑁
∑

𝑖=1
𝐹 𝑣
𝑖 𝑔

𝑝
𝑖𝑗 = 0, 𝑗 = 1, 2,… , 𝐽 , (3)

where 𝑁 is the number of material points of 𝑗th bubble. Solving this
linear system of equations, the evolving direction of each material point
can be determined. Furthermore, the displacement of each material
point can be calculated as 𝜆𝐹 𝑣

𝑖 , where 𝜆 is a small scaling factor. Using
a small scaling factor is important because the obtained directions
evolving the positions of the material points only approximate the
descent direction of the total surface energy to the first order. A small
scaling factor ensures that the total surface energy is reduced after the
foam configuration being evolved by the calculated displacement.

The evolution of the foam configuration is conducted using the
iteration method. At each iteration step, the material points are moved
by the calculated displacements. One problem remained, however, is
the deviation in bubble volume after moving the foam configuration
by the calculated displacements. Even though a small 𝜆 is used, which
is helpful to maintain the bubble volume, the numerical error in the
bubble volume could accumulate after a large number of iterations. The
arising of this error can be explained from two aspects. Firstly, the mod-
ifications for the evolving directions are based on the bubble volumes’
gradient directions at each material point. A finite displacement of a
material point would lead to a second-order error in the bubble volume.
Secondly, the number of material points discretizing the lamellae is
finite in simulations. This discretization error could also lead to the
deviation in bubble volume. In order to diminish the deviations in
bubble volumes, volume restoring motion should be incorporated at
each iteration step, immediately after the foam configuration being
moved by the calculated displacements.

3.1.2. Volume restoring motion
The volume restoring motion, 𝐹 𝑟

𝑖 , for each material point 𝑖, is
expressed as a linear combination of the gradient direction of each
bubble volume at the material point

𝐹 𝑟
𝑖 =

𝐽
∑

𝑗=1
𝐶𝑗𝑔

𝑝
𝑖𝑗 , (4)

where 𝐶𝑗 is the coefficient corresponding to the contribution of the 𝑗th
bubble. The volume restoring motions of all the material points would
restore the volume for each bubble 𝑗, which is expressed as
𝑁
∑

𝑖=1

( 𝐽
∑

𝑗′=1
𝐶𝑗′𝑔

𝑝
𝑖𝑗′

)

𝑔𝑝𝑖𝑗 = 𝑉 target
𝑗 − 𝑉𝑗 , (5)

where 𝑉𝑗 is the current volume of bubble 𝑗, and 𝑉 target
𝑗 is the volume

required to be restored. Eq. (5) can be written in a more convenient
form shown in Eq. (6)
𝐽
∑

𝑗′=1
𝐶𝑗′

( 𝑁
∑

𝑖=1
𝑔𝑝𝑖𝑗′𝑔

𝑝
𝑖𝑗

)

= 𝑉 target
𝑗 − 𝑉𝑗 . (6)

3.2. Pore-network level

The comparable bubble size with respect to the pore size, in the
context of EOR, has inspired the idea that apply the gradient descent
method at the pore-network level. A pore throat is less likely to be
occupied by multiple foam lamellae as the case of a bulk foam in a
container, meaning that uniform pressure distributes in the pore throat.
The presence of foam lamellae in a pore body would lead to pressure
differences among pore throats connecting to the pore body.

We divide a large porous medium into individual pores connected
by pore throats, as shown in Fig. 4. Different colours are used to
5

Fig. 4. Schematic of a 2D porous medium. The circles in grey are solid grains and
the void space is divided into pores connected by pore throats. Pores are marked in
different colours. The red curves are the assumed configuration of foam lamellae in
the porous medium. The black arrows illustrate the assumed directions of gas flowing
through the pore throats that surround the pore in pink at the centre of the porous
medium. Differentiating the gas area or bubble of type I from type II, Type I refers to
the gas area being enclosed by pore throats, pore wall and lamellae, and type II is the
bubble enclosed by pore wall and lamellae. The idea of the pore-network level method
is to express the variation in the total surface energy in the pore as a form in terms
of the pressure differences among the pore throats and the gas flow though these pore
throats.

differentiate a pore from its adjacent pores. The scheme of the division
is not unique and could be altered during a simulation process because
some throats could be sufficiently wide to allow simultaneous passage
of multiple lamellae. For the pore marked in pink in the central area
of the porous medium shown in Fig. 4, we notice that the variation in
the total surface energy of the lamellae in the pore, which in the sub-
pore level method is related to the displacements of the material points
on the lamellae, could be re-expressed using two physical quantities,
i.e. the pressure differences among the throats of the pore and the gas
flow through these throats.

3.2.1. Mass conservation in pores
Gas is conserved in any pore in the porous medium. Denote 𝑓𝑝𝑡 the

gas flow through pore throat 𝑡 of pore 𝑝. In default, 𝑓𝑝𝑡 is positive when
gas flows into pore 𝑝 and negative when gas leaves the pore. The mass
conservation in pore 𝑝 is
𝑇
∑

𝑡=1
𝑓𝑝𝑡 = 0, (7)

where 𝑇 is the number of throats of pore 𝑝. Therefore, the gas flow
through a specific throat of a pore can be represented using the gas flow
through all other throats of that pore. For instance, gas flow through
pore throat 𝑡 = 1 is written as

𝑓𝑝1 = −
𝑇
∑

𝑡=2
𝑓𝑝𝑡. (8)

3.2.2. Gradient of system energy
There are two types of gas areas (or called bubbles) as shown in

Fig. 4, categorized upon the boundaries that enclose the gas areas.
Specifically, type I refers to the bubble that is enclosed by pore throats,
pore wall and lamellae, and type II is the bubble enclosed by pore
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,

wall and lamellae, namely individual bubbles that do not span several
pores. We denote the volume of gas area of type I as 𝑉𝑝𝑡, where 𝑝 is
the identification of the pore and 𝑡 is the identification of the throat
belonging to that pore. Denoting the pressure at pore throat 𝑡 of pore 𝑝
as 𝑃𝑝𝑡, the pressure potential energy of the gas in the pore, 𝐸𝑝, can be
expressed as

𝐸𝑝 =
𝑇
∑

𝑡=1
𝑃𝑝𝑡𝑉𝑝𝑡 + Const, (9)

where 𝑉𝑝𝑡 is the volume of the bubble of type I attached to pore throat
𝑡. The term, Const, accounts for the energy in bubbles of type II. Note
that it is possible that a type I bubble is bounded by two or more
throats. In this case, the gas potential energy in that bubble would
be counted repeatedly in Eq. (9). This repetition does not affect the
energy variation because the pressure at these throats associated with
this type I bubble is the same, and thus the pressure difference among
these throats is zero.

Considering infinitesimal gas perturbation, 𝑓𝑝𝑡, the first-order ap-
proximation of the variation in the pressure potential energy in pore 𝑝
is

𝛿𝐸𝑝 =
𝑇
∑

𝑡=1
𝑃𝑝𝑡𝑓𝑝𝑡, (10)

where 𝑓𝑝𝑡 is considered as an infinitesimal gas flow through pore throat
𝑡. This energy variation is exactly the net work done in pore 𝑝 and is
stored as film surface energy. Substituting Eq. (8) into Eq. (10), the
energy variation becomes

𝛿𝐸𝑝 = 0 ⋅ 𝑓𝑝1 +
𝑇
∑

𝑡=2
(𝑃𝑝𝑡 − 𝑃𝑝1)𝑓𝑝𝑡, (11)

where the first term on the right hand side, with coefficient 0, is added
for completeness.

The variation of the total surface energy, 𝛿𝐸, in the whole porous
medium, can be obtained by summarizing the energy variation over all
the pores in the porous medium

𝛿𝐸 =
𝑍
∑

𝑝=1
0 ⋅ 𝑓𝑝1 +

𝑍
∑

𝑝=1

𝑇
∑

𝑡=2
(𝑃𝑝𝑡 − 𝑃𝑝1)𝑓𝑝𝑡, (12)

where 𝑍 is the number of pores in the porous medium.
For a given porous medium, Eq. (12) can be further simplified into

a form that the total energy variation is expressed as a linear function
of the gas flow through pore throats.

𝛿𝐸 =
𝑌
∑

𝑡=1
𝑔𝑡(𝛥𝑃 )𝑓𝑡, (13)

where 𝑌 is the number of all the pore throats in the porous medium and
𝑔𝑡 the coefficient of gas flow, which is a function of pressure difference
appearing in Eq. (12), and 𝑓𝑡 the absolute value of gas flow through
pore throat 𝑡. Note that the subscript 𝑡 now is a global index denoting
one specific pore throat in the porous medium, instead of the local
index denoting throats of an individual pore.

To exemplify the transformation from Eq. (12) to Eq. (13), we
consider the porous medium model shown in Fig. 2(ii), which is studied
in Section 4.1. The scheme to divide the porous medium model is
shown in Fig. 5. For this model, the specific expression of Eq. (12) can
be written as

𝛿𝐸 =0 ⋅ 𝑓11 + (𝑃12 − 𝑃11)𝑓12 + (𝑃13 − 𝑃11)𝑓13+

0 ⋅ 𝑓21 + (𝑃22 − 𝑃21)𝑓22+ (14)
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0 ⋅ 𝑓31 + (𝑃32 − 𝑃31)𝑓32,
Fig. 5. The division scheme for the three-pore porous medium model considered in
Section 4.1. The model is divided into three connected pores, including a three-throat
pore and two two-throat pores, whose indices 𝑝 are 1, 2, 3, respectively. There are 5
throats in this model, whose global indices 𝑡 are 1, 2 . . . , 5. The assumed directions
of the gas flow are shown by the black arrows. 𝑓𝑡 is the absolute value of the gas
flow through throat 𝑡 of the porous medium model. 𝑃𝑝𝑡 is the pressure at the throat
of local index 𝑡 of pore 𝑝. 𝑓𝑝𝑡 is the gas flow through the throat 𝑡 of pore 𝑝, which is
either positive or negative, depending on the gas flow is into or out of pore 𝑝. When
referring to a specific pore, the local index 𝑡 of a throat of the pore is up to 2 or 3.

which can be further combined into a form as in Eq. (13). It is known
that
𝑓1 = 𝑓11,

𝑓2 = −𝑓12, 𝑓2 = 𝑓21,

𝑓3 = −𝑓13, 𝑓3 = 𝑓31,

𝑓4 = −𝑓22,

𝑓5 = −𝑓32.

(15)

Substituting Eq. (15) into Eq. (14), we obtain

𝛿𝐸 = 0 ⋅ 𝑓1 − (𝑃12 − 𝑃11)𝑓2 − (𝑃13 − 𝑃11)𝑓3 − (𝑃22 − 𝑃21)𝑓4 − (𝑃32 − 𝑃31)𝑓5

(16)

where the coefficients of 𝑓𝑡 are denoted as 𝑔𝑡(𝛥𝑃 ) in Eq. (13). These
coefficients namely pressure differences among pore throats can be
obtained using the sub-pore level method or, in simple cases, by the
analytical solution.

Eq. (13) shows that the gas flow through each pore throat is 𝑓𝑡 =
−𝑔𝑡(𝛥𝑃 ), and enables us to evolve the foam system by the gas flow
through pore throats. The remaining issue is that the gradient descent
direction −𝑔 (𝛥𝑃 ), which only provides guessed values of gas flow
𝑡
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Fig. 6. Processes of a lamella passing through a pore with two opposite throats are
simulated. The results of the pressure drop across the lamella are compared with the
analytical solution. The letters refer to the lamella shapes in the inserted figures. (i)
Asymmetric jump. Two Plateau borders become asymmetric about the horizontal axis
of the pore after approaching the corners in the wide pore body (ii) Symmetric jump.
During the lamella propagation, two Plateau borders maintain symmetric about the
horizontal axis of the pore. The analytical solution for the symmetric and asymmetric
jump is available in [16].

through each pore throat, could disobey the mass conservation law, and
should be modified. To do so, we write Eq. (7) in a form with respect
to the absolute value of the gas flow through pore throats as
𝑌
∑

𝑡=1
𝑘𝑝𝑡𝑓𝑡 = 0, (17)

where 𝑘𝑝𝑡 is a coefficient, taking 0, 1, or −1. The coefficient occurs
because 𝑓𝑡 has been taken as the absolute value of gas flow through
pore throat 𝑡 and its direction is ruled in advance for a specific porous
medium, as exemplified in Eq. (15).

The modification for each gradient component given by Eq. (13) is
assumed to be −

∑𝑍
𝑝=1 𝐾𝑝𝑘𝑝𝑡 with 𝐾𝑝 being the coefficient associated

with the mass conservation in pore 𝑝. Thus, 𝑓𝑡 is modified as −𝑔𝑡(𝛥𝑃 )−
∑𝑍

𝑝=1 𝐾𝑝𝑘𝑝𝑡. To solve the unknown coefficients, the modified gas flow
through each pore throat should satisfy the total 𝑍 mass conservation
equations. We substitute 𝑓𝑡 = −𝑔𝑡(𝛥𝑃 ) −

∑𝑍
𝑝=1 𝐾𝑝𝑘𝑝𝑡 into Eq. (17) and

obtain
𝑌
∑

𝑘𝑝𝑡

(

𝑔𝑡 +
𝑍
∑

𝐾𝑝𝑘𝑝𝑡

)

= 0, (18)
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𝑡=1 𝑝=1
which can be transferred into a convenient form
𝑍
∑

𝑝=1
𝐾𝑝

𝑌
∑

𝑡=1
𝑘𝑝𝑡 = −

𝑌
∑

𝑡=1
𝑘𝑝𝑡𝑔𝑡. (19)

Eq. (19) is a counterpart of Eq. (6) derived for the sub-pore level. An
addition equation to be solved together with Eq. (19) is that the amount
of gas injected in a porous medium model is known. For instance, in
the previous example using the porous medium model in Fig. 5(ii),
𝑓1 equals 𝛿𝑉 which is a small increment of gas volume assigned in
simulations.

Finally, the resultant gas flow through each pore throat can be
written as 𝑓𝑡 = −𝜆

(

𝑔𝑡 +
∑𝑍

𝑝=1 𝐾𝑝𝑘𝑝𝑡
)

, where 𝜆 is a small scaling factor.
The scaling factor is needed because the total surface energy is non-
linearly varied with the gas flow through each pore throat. The surface
energy reduction is guaranteed only when the adjustment to the foam
configuration is minor.

3.3. Algorithm

There are at least two distinct algorithms, based on the methods
discussed in Sections 3.1 and 3.2, for conducting quasi-static simu-
lations for foam flow in a porous medium. The simplest and most
straightforward way is to apply the sub-pore level method in a confined
geometry, e.g. a porous medium, without dividing a porous medium
into smaller parts, as has been conducted in many studies [14,20,32–
34]. Another algorithm (hereafter we call it the two-level method)
relies on both the sub-pore and the pore-network level methods, which
is most efficient when gas bubbles are, in general, larger than the size
of pores because we have based the pore-level method on uniform
pressure distribution in pore throats recognized as the most restricted
area in the local geometry.

In the two-level method, after a small amount of gas, 𝛿𝑉 , is injected
into the geometric model, the sub-pore level and the pore-network
level methods are implemented alternatively and a sufficient number of
iterations are needed to obtain the convergent foam configuration. For
each iteration step, after the gas flow through each pore throat has been
determined using the pore-network level method and is injected into
each pore, the sub-pore level method is applied to calculate the pressure
distribution in each pore. Then the pressure differences among pore
throats can be calculated and serve as the input for the pore-network
level method in the next iteration. Note that, in order to simulate the
injection of gas, the total gas flow through the pore throats connected
to the injection port is set to 𝛿𝑉 in the first iteration. In the remaining
iterations leading to the convergent foam configuration, this total gas
flow is set to 0.

4. Numerical results

4.1. Verification of the method

The code implementing the sub-pore level method is verified by
simulating a single lamella moving through a single pore with two
opposite throats. The simulation results of the pressure drop across the
lamella, denoted as 𝛥𝑝D, which is varied with the volume swept by the
lamella since its entering the pore, denoted as 𝑉D, are in good agree-
ment with the analytical solution, as shown in Fig. 6. We reproduce
both the asymmetric and the symmetric jump of the two wall Plateau
borders when the lamella propagates through the central pore body.
In numerical simulations, the symmetric jump occurs when a relatively
large volume increment is applied to push the lamella forward in the
pore [14]. In physical terms, as the lamella approaches the corners with
a large velocity, the perturbations, which lead to an asymmetric lamella
shape, are still small when the lamella has arrived in the converging
pore section on both sides, and thus a symmetric jump occurs [17].
For realistic movements in the quasi-static limit, the asymmetric jump
shown in Fig. 6(i) will always occur, with the symmetric behaviour
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Fig. 7. The geometry used to verify the two-level method consists of a three-throat pore
and two two-throat pores. Lamella configurations are labelled by letters ordered in the
alphabetic sequence. Initially, two lamellae are positioned right in the two interior pore
throats. Though the shapes of the two downstream pores are the same and the initial
lamella configuration is symmetric, the movements of the two lamellae are asymmetric,
with one lamella trapped nearby the pore throat and the other propagating through
the downstream pore.

shown in Fig. 6(ii) being shown purely to demonstrate the significant
impact that the asymmetry has on the pressure profile as the lamella
traverses the pore. At high gas rates where viscous drag is appreciable
the asymmetric jump may be suppressed, though this case is not
considered in this work. For further discussion of the effects of the
jump, one can refer to [14,32].

To verify the idea using the gradient descent method at the pore-
network level, we consider a geometry composed of two pores with two
neighbouring throats and one three-throat pore, as shown in Figs. 2(ii)
and 5. Initially, both interior pore throats, i.e. ‘‘Throat 2’’ and ‘‘Throat
3’’ in Fig. 5, are blocked by a lamella, and these two lamellae are
flat with zero pressure drop across them. Foam configuration at the
initial moment is denoted by the letter, a. Then gas is injected into the
geometric model through the top-left pore throat and allowed to leave
the model through the two pore throats connected to the external space,
i.e. ‘‘Throat 4’’ and ‘‘Throat 5’’ in Fig. 5. The injection of gas continues
until one lamella approaches either one of the two outlets. The pressure
drop across the geometric model and the gas flow through the two
interior pore throats are predicted by the sub-pore level method and
the two-level method, respectively, and compared in Figs. 8 and 9.

The results of the two-level method are in agreement with those
of the sub-pore level method, suggesting the validity of the two-level
method. It is shown that the pressure difference across the model
experiences an asymmetric jump due to the asymmetric movements of
the Plateau borders. Moreover, bubble trapping occurs in one of the
pore throats as the gas mainly flows through the other pore throat. Al-
though the two downstream pores are symmetrically positioned in the
porous medium model, the symmetric displacement of the two lamellae
in the two downstream pores is less likely to happen as this motion
mode is unstable, which would transfer to the stable mode namely the
asymmetric displacement pattern under small perturbations.

The sub-pore level method always results in the stable displacement
pattern due to the discretization error of the foam system, which acts to
disturb the positions of the two lamellae in the two downstream pores.
Using the two-level method, the unstable displacement mode can be
reproduced, but this motion mode is broken if small perturbations in
the gas flow through pore throats are introduced in the iterations. In
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Fig. 8. The pressure difference across the three-pore model calculated by the sub-pore
level method and the two-level method. For lamella positions and shapes labelled by
the letters, one refer to Fig. 7.

other words, the stable motion mode requires only one moving lamella
with all other lamellae trapped nearby the pore throats, which applies
when there are multiple downstream pores in the porous medium
model as discussed later in Section 4.2.

Note that, in the two-level method, sub-pore level simulations are
usually needed because the related pressure differences are required
as the input in the pore-network level simulations. For simple foam
configurations, the pressure differences among throats can also be
obtained by the analytical solution. In this study, we use the analytical
solution of the pressure drop across the pore with two neighbouring
throats as the input in the implementation of the two-level method.

4.2. Investigation on the effect of bubble trapping

In this subsection, we use the geometric model, shown in Fig. 2(iii)–
(vi), to further investigate the motion of a moving lamella in the
presence of trapped lamellae. The number of downstream pores varies
from 1 to 4. As all the throat geometries connecting the upstream pore
and the downstream pores are the same, the stable motion mode, as
suggested in last subsection, would be that only one lamella moves
through the downstream pore while all other lamellae are trapped in
the pore throats. As a consequence, the number of trapped lamellae
varies from 0 to 3. When there is only one downstream pore, the
problem reduces to that a single lamella moves through a single pore
with two neighbouring throats. We denote the result of this case as
‘‘original’’. As defined in Section 2, the downstream pore that a lamella
moves through is considered as a sharp or rounded pore when the
rounding radius, 𝑟b, at the central pore body is 1.0 or 0.25. We firstly
consider the case that the downstream pore is sharp namely 𝑟b = 1.0.

4.2.1. Lamella moving in the sharp downstream pore
The pressure difference across the geometric model with sharp

downstream pores is shown in Fig. 10, from which mainly three distinct
phenomena can be observed. Firstly, both the positive and the negative
peaks of the pressure difference are displaced towards the mid point
of the horizontal axis, compared to the case that the upstream pore
has only one downstream pore with two neighbouring throats, i.e. the
‘‘original’’ case. Specifically, the positive peak is delayed because a
small amount of gas flows through the trapped pore throat and is stored
in that region, as illustrated by configurations a to b in Fig. 7 and
the gas flow through each pore throat in Fig. 9(ii). In the opposite,
the negative peak occurs earlier than expected because the previously
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Fig. 9. The gas flow from the upstream pore to the two downstream pores through two
interior throats, varied with the total amount of gas injected into the three-pore porous
medium model. (i) The amount of gas flowing through two throats, denoted as 𝑉D,𝑡,
calculated by the sub-pore level method and the two-level method, are in agreement.
The magnitude contrast in terms of the gas amount through the two throats shows that
the gas mainly flows through one pore throat while the other pore throat is blocked
by the lamella. (ii) The gas flow through the blocked throat is separately plotted to
show more details with respect to the variation in gas amount through the blocked
throat versus the total gas amount injected into the three-pore porous medium model.
For lamella positions and shapes labelled by the letters, one refer to Fig. 7.

stored gas in the trapped throat has been released in the later period
when the lamella moves through the second-half section of the pore.

Secondly, a jump of the pressure difference happens immediately
after the positive peak or before the negative peak, and the jump is
enlarged if more throats are trapped by lamellae. Lastly, the magnitude
of the negative peak decreases as the number of trapped lamellae
increases. The positive peaks, instead, maintain the same magnitude,
not influenced by the presence of trapped lamellae.

In the original case, there is no trapped lamellae and thus the overall
symmetry of the variation in pressure difference 𝛥𝑃𝐷 with the injected
gas volume 𝑉𝐷 is only broken by the jump of wall Plateau borders
happening in the central region of the pore body. The two peak regions
remain central symmetric about the midpoint on the horizontal axis.
In the presence of trapped lamellae, the three phenomena, especially
the last two phenomena, deteriorate the symmetry of the variation
in the pressure difference. Specifically, the symmetry of the two peak
regions is further broken because the magnitudes of the two peaks are
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Fig. 10. The pressure difference versus the gas amount injected into the geometric
model with the sharp downstream pore, i.e. 𝑟b equals 0.25, is influenced by the
trapped lamellae. In addition to the jump of the pressure difference that happens
as a lamella moves through the central pore body, the jump also occurs when the
positive peak is left or the negative peak is approached, as denoted by the red arrows
in the insert figures. Trends of the variations in the positions and the magnitudes of
the peaks are marked by the black arrows. The positive peak is delayed while its
magnitude maintains. In contrast, the negative peak happens earlier than expected and
its magnitude declines if more lamellae are trapped.

no longer the same and the jumps at both peaks are not symmetric. In
addition, a superposition effect is observed that this symmetry breaking
is enhanced as more lamellae are trapped in the throats.

In order to explain the arising of the above phenomena and their
effects, we consider the case shown in Fig. 1(vi) and keep in mind
that the stable motion mode is that only one lamella moves through
the pore while all other lamellae are trapped. We utilize the variation
of pressure difference as a function of gas volume for a single lamella
moving through a single pore and that for three lamellae trapped
in the pore throats. For the latter, the maximum total amount of
gas volume injected into the three downstream pores is up to 0.177.
Moreover, we extended the curve into negative domain of the hori-
zontal axis because the three trapped lamellae become convex toward
the upstream pore when the pressure difference across the moving
lamella becomes negative. Setting the pressure difference as the control
variable and considering the pressure difference independent of flow
paths, an interpolation curve can be obtained from the curves of the
pressure difference varied with the gas volume for a moving lamella
and three trapped lamellae, respectively, as shown in Fig. 11. This in-
terpolated curve shows that the amount of gas injected into the porous
medium model varies non-monotonically if the pressure difference is
continuously varied, which conflicts with the fact that the injection of
gas into the model is continuous. As a consequence, a jump of pressure
difference is invoked to maintain the increasing injection of gas, as
shown in the ‘‘modification’’ curve in Fig. 11, which further changes
the magnitude of the negative peak.

In addition to the three phenomena discussed above, the middle
jump of the pressure difference is only slightly delayed in the presence
of trapped lamellae, compared to the ‘‘original’’ case, and thus only
slightly deteriorates the symmetry of the variation of the pressure
difference versus the volume of gas injected into the model. The most
significant effects that the trapped lamellae exert on the motion of a
single lamella remain to be the three phenomena discussed above. As
discussed later, these phenomena could also happen when the moving
lamella is in a rounded pore whose 𝑟 equals 1.0.
b
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Fig. 11. The pressure difference across the porous medium model shown in Fig. 1(vi)
as a function of gas volume injected into the model. (i) The total volume of gas
injected into the porous medium model equals the sum of the gas volume flowing
into all downstream pores. The pressure difference varied with injected gas volume
(the red solid curve) for a single lamella moving through a single pore and that for
three lamellae trapped in throats (the blue solid curve) are used for the interpolation.
The grey dashed line segment and its midpoint illustrate the interpolation by taking
the average of the gas volumes at two curves given the same value of the pressure
difference. Thus, the ‘‘interpolation’’ curve has its horizontal coordinate representing the
half of the amount of gas injected into the porous medium model. (ii) The interpolated
solid curve in (i) is doubled in terms of the horizontal coordinate and then is modified
to meet the requirement of continuous gas injection. The modifications at the two peaks
are not symmetric. Specifically, the magnitude of the positive peak maintains while the
magnitude of the negative peak declines.

4.2.2. Lamella moving in the rounded downstream pore
Simulation results of a single lamella propagating through a single

bi-conical pore suggest that a rounded pore, i.e. a pore with a large
rounding radius at its corners in the central pore body, is differen-
tiated from pores with sharp corners, in terms of the average flow
resistance [14,32]. A lamella flowing in a rounded pore would have
its average flow resistance being zero. In Fig. 12, the insert schematic
shows a lamella in a pore with two neighbouring throats, whose
configuration meets the rule of a 90-degree contact angle between the
pore walls and the lamella. It shows that the volume swept by the
lamella may not increase continuously when the Plateau borders move
continuously on the pore walls, depending on the sharpness of the
corner in the pore body.

When the radius at the corner is small, e.g. 𝑟b equals 0.25, the
volume decreases as the wall Plateau borders moves along the curved
10
Fig. 12. The variation in bubble volume swept by a lamella versus the horizontal
coordinate of the Plateau border contacting on the upper wall of the pore. The swept
bubble volume is marked by the area in grey in the insert figure. The sharpness of
the corner is controlled by the rounding radius, 𝑟b. For sharp corners, e.g. 𝑟b equals
0.25 or 0.50, the volume decreases after the upper Plateau border enters the corner. To
avoid a decrease in volume, the lamella would generally jump to a new position, which
results in the jump of the pressure difference. For rounded corners, e.g. 𝑟b equals 0.80
or 1.00, the volume continuously increases as the upper Plateau border moves along
the upper pore wall.

Fig. 13. The pressure difference across the geometric model with the downstream pore
being rounded, i.e 𝑟b equals 1.0. The pressure difference is influenced by the trapped
lamellae. No jump occurs as the moving lamella passes through the central pore body.
However, a jump occurs at both peaks, as denoted by the red arrows in the inset figures.
Trends of the variations in the positions and the magnitudes of the peaks are marked
by the black arrows. The positive peak is delayed while its magnitude maintains the
same. In contrast, the negative peak occurs earlier than expected and its magnitude
declines as more lamellae are trapped.

corner. To maintain a continuous increase of the bubble volume, the
wall Plateau borders have to jump to new positions, which further
results in the jump of pressure difference. In contrast, for large radius
at the corner, e.g. 𝑟b equals 1.00, the continuous increase of bubble
volume is guaranteed and no jump of the wall Plateau borders is
expected.

The pressure difference versus the injected gas volume in the case
of the rounded downstream pore, i.e. 𝑟b equals 1.00, is shown by the
‘‘original’’ curve in Fig. 13. The variation is purely central symmetric
around the midpoint on the horizontal axis, which means the average
flow resistance would be zero. However, when trapped lamellae are
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Fig. 14. Variation in the volume-averaged pressure difference for the porous medium
models composed of pores with sharp corners, i.e. 𝑟b equals 0.25, and rounded corners,
i.e. 𝑟b equals 1.00, respectively. For the same number of downstream pores, the
increment of the volume-averaged pressure difference due to the presence of trapped
lamellae is nearly the same for both cases. The influence of the trapped lamellae on
the volume-averaged pressure difference could be significant when a large number
of trapped lamellae are present. In relative terms, the trapped lamellae have a more
apparent influence in the cases with rounded pores, leading to non-zero flow resistance.
The absolute increasing in the volume-averaged pressure difference, however, is similar
for the two different 𝑟b values.

present, we observe the same effects of the trapped lamellae as those
in Fig. 10, namely displaced positions of both positive and negative
peaks, jumps of the pressure difference at peaks, and declined mag-
nitude of the negative peak. As a consequence of these effects, the
averaged flow resistance or the yield stress, which is represented as
the volume-averaged pressure difference, becomes non-zero.

4.2.3. The volume-averaged pressure difference
The volume-averaged pressure difference is calculated as

𝛥𝑝avg
D = 1

𝑉tot ∫

𝑉tot

0
𝛥𝑝D𝑑𝑉D, (20)

where 𝛥𝑝avg
D is the volume-averaged pressure difference and 𝑉tot is the

total amount of gas injected into the medium. Fig. 14 shows the effects
of trapped lamellae on the volume-averaged pressure difference in both
cases of the sharp downstream pore and the rounded downstream pore.

We find that the trapped lamellae lead to the increase in the volume-
averaged pressure difference of a single lamella moving through a
pore, suggesting that the resistance of foam flow not only arises from
the moving lamella but also from the trapped lamellae with limited
mobility. This effect becomes stronger as more lamellae are present
and trapped in the nearby pore throats. This is important especially
for the cases with rounded pores because the flow resistance becomes
non-zero, which means the decrease in the foam mobility.

5. Discussion

The non-smooth motion of lamellae in confined geometries leads
to flow resistance even at an infinitesimal small flow rate. Simulation
results show that the trapped lamellae not only block the associated
flow paths, but also affect the motion of moving lamellae in other
flowing paths, thus contributing to the yield stress of foam flow in
confined geometries. The presence of trapped lamellae results in the
arising of the non-zero yield stress even for those porous medium
models composed of rounded pores. The mechanism of this effect is
associated with the competition of pressure differences along different
flow paths. The pressure differences are determined by the foam con-
figuration and would vary as the foam propagates in a porous medium.
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Specifically, the gas volume injected into the model is not the same as
the volumetric advance of the lamella, due to the presence of trapped
lamellae with limited mobility. This effect is similar to the effect of gas
compressibility depicted by Rossen [30] that the increasing pressure
difference can delay the advance of the lamella and thus affects the
yield stress of foam in porous media.

The mobility of lamellae, namely being either trapped or mobile,
relies on the shapes of pores in a porous medium. For the quasi-static
movement, the dominant factor is the maximum pressure difference
across a lamella moving through a pore. For example, consider the
three-pore porous medium model with two downstream pores of the
same shape and name the two downstream pores A and B. If a lamella
moves through either A or B, the maximum pressure difference is the
same. This leads to three possible motion modes: (1) one lamella is
trapped in the throat of A while the other lamella moves through B, (2)
one lamella is trapped in the throat of B while the other lamella moves
through A, and (3) both lamellae move through A and B. The pore-
network level method shows that motion mode (3) is not stable because
the total surface energy can be further reduced under perturbations of
lamella positions. However, if pore A is slightly different from B and
leads to a larger maximum pressure difference, the possible motion
mode becomes unique, i.e. mode (1).

The cases considered in the present work involve several trapped
lamellae but only one moving lamella. Therefore, our understanding
of the yield stress of foam is limited to relatively simple flow cases
happening at the pore scale [11,14,16,17,29,30,32,35]. Several aspects
could be improved to release this limitation. Firstly, large porous
medium models and concentrated distribution of foam lamellae are pre-
ferred in order to mimic a realistic case. Pores with large coordination
numbers could facilitate more complicated lamella interactions because
these pores function as the junctions of multiple ‘‘bubble trains’’. The
lamella interaction could also be enhanced as the foam becomes more
fine-textured. Secondly, though simulations based on the dry foam
assumption can incorporate some important phenomena such as gas
diffusion [33] and bubble division [20], there are some other important
effects that instead could not be easily incorporated. For instance,
as an important lamella generation mechanism in porous media, the
snap-off relies on the water accumulation near constricted pore throat
regions and is suggested to be dependent on the capillary fluctuation
in porous media [19,36]. Another example regarding the redistribution
of the liquid phase is the capillary suction coalescence that could occur
as a lamella stretches in the wide pore body, which has impact on
the lamella stability [37]. Finally, dynamic foam behaviour cannot be
reproduced under the quasi-static assumption, such as the process of
the jump predicted in the quasi-static simulations and the process of
topological transformation events that could happen in a foam flow
process [22,38].

6. Conclusions

In this work, we conducted quasi-static simulations to further un-
derstand foam behaviour at the extreme of infinitesimal flow rate.
Especially, we focus on the effects of bubble trapping on the yield stress
of foam in porous media. We firstly proposed a two-level method being
able to minimize the total surface energy at the pore-network level,
which utilizes the connectivity of pores in a porous medium. In our
simulation of the quasi-static behaviour of multiple lamellae in simple
porous media, it was demonstrated that the only stable propagation
mode was for a single lamella to move through the system, with the
other lamellae remaining trapped in pore throats. Though these trapped
lamellae do not interact with the moving lamella directly, the averaged
flow resistance for the lamella moving through the downstream pore is
enhanced as the number of trapped lamellae increases. This is because
the trapped lamellae can affect the gas flow along different flow paths
and adjust the pressure distribution in the porous medium.



Colloids and Surfaces A: Physicochemical and Engineering Aspects 655 (2022) 130246H. Zhang et al.

Y

In the future, it would be interesting to consider quasi-static foam
flow in a large porous medium, incorporating more foam behaviour,
such as bubble division and gas diffusion. In addition, the lamella
mobility has been discussed under the quasi-static assumption. Beyond
this assumption such as taking into account the viscous dissipation
acting on the wall Plateau borders, there could exist multiple lamella
moving along different flow paths in a porous medium, which would
also be of interest to be considered.
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