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SUMMARY
The biological determinants underlying the range of coronavirus 2019 (COVID-19) clinical manifestations are
not fully understood. Here, over 1,400 plasma proteins and 2,600 single-cell immune features comprising cell
phenotype, endogenous signaling activity, and signaling responses to inflammatory ligands are cross-
sectionally assessed in peripheral blood from 97 patients with mild, moderate, and severe COVID-19 and
40 uninfected patients. Using an integrated computational approach to analyze the combined plasma and
single-cell proteomic data, we identify and independently validate a multi-variate model classifying
COVID-19 severity (multi-class area under the curve [AUC]training = 0.799, p = 4.2e-6; multi-class
AUCvalidation = 0.773, p = 7.7e-6). Examination of informative model features reveals biological signatures
of COVID-19 severity, including the dysregulation of JAK/STAT, MAPK/mTOR, and nuclear factor kB
(NF-kB) immune signaling networks in addition to recapitulating known hallmarks of COVID-19. These results
provide a set of early determinants of COVID-19 severity that may point to therapeutic targets for prevention
and/or treatment of COVID-19 progression.
INTRODUCTION

The ongoing coronavirus disease 2019 (COVID-19) pandemic,

caused by the novel and highly contagious severe acute respira-
Cell R
This is an open access article und
tory syndrome coronavirus 2 (SARS-CoV-2),1 has affected more

than 240 million patients worldwide as of late 2021.2 A wide

range of clinical manifestations exists for COVID-19, which

require different intervention strategies. While the majority of
eports Medicine 3, 100680, July 19, 2022 ª 2022 The Author(s). 1
er the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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patients with COVID-19 experience mild or asymptomatic infec-

tions, nearly 20% of patients develop severe disease requiring

hospitalization.3 A substantial portion (8%–30%) of those hospi-

talized patients ultimately succumbs to the disease, leading to a

devastating global tally of COVID-19 fatalities.3–7

Varying outcomes for COVID-19 depend on a set of risk

factors and the interplay between viral replication and tissue

damage, as well as a balance of beneficial and detrimental

host immune responses. Several studies have provided evi-

dence for profoundly altered immune responses caused by

SARS-CoV-2 infection, including sustained functional changes

in circulating immune cells. Lymphopenia,8–12 increased inflam-

matory plasma cytokine levels,11,13,14 dysregulated innate im-

mune cell function,15–18 and abnormal T cell activation and

exhaustion11,19,20 have been observed, particularly in hospital-

ized patients with severe COVID-19. However, prior studies

have primarily focused on patients with severe COVID-19, while

fewer studies have included non-hospitalized patients with mild

and moderate COVID-19.18,21,22 In addition, while prior studies

have reported on the distribution, phenotype, and transcriptional

profile of peripheral immune cells, how SARS-CoV-2 infection al-

ters immune cell signaling responses to inflammatory challenges

(or immune signaling networks) has not been determined. As

such, the immunological mechanisms that differentiate patients

with mild, moderate, and severe COVID-19 are poorly under-

stood. Unraveling the underlying immune pathogenesis across

the spectrum of COVID-19 presentations is important to both un-

derstand the drivers of disease severity as well as to identify clin-

ically relevant biological signatures that could inform therapeutic

interventions.

High-dimensional mass cytometry immunoassays are

uniquely adapted to the analysis of immune cell signaling net-

works as multiple intracellular signaling events (e.g., post-trans-

lational protein modifications) are simultaneously quantified in

precisely phenotyped immune cells in their endogenous state

and in response to ex vivo stimulations.23 The approach has pre-

viously enabled the identification of clinically relevant biological

signatures predictive of patient outcomes in several clinical con-

texts, including infection, immunization, malignancies, stroke,

and traumatic injury.24–31
2 Cell Reports Medicine 3, 100680, July 19, 2022
In this cross-sectional study, we combined the mass cytome-

try analysis of immune cell signaling responses with the high-

content proteomic analysis of plasma analytes in blood samples

from patients identified with mild, moderate, and severe COVID-

19 to establish biological signatures that demarcate COVID-19

clinical manifestations. The integrated single-cell and plasma

proteomic analysis allowed including an additional dimension

in the characterization of immune signaling networks by ac-

counting for the plasma environment of circulating immune cells.

RESULTS

Combined plasma and single-cell proteomic analysis of
peripheral blood samples from patients with mild,
moderate, and severe COVID-19
Ninety-seven SARS-CoV-2-positive patients with mild, moder-

ate, or severe COVID-19 were enrolled in this cross-sectional

study at Stanford University Medical Center (CA, USA) (Fig-

ure 1A). Patient characteristics can be found in Table 1.

COVID-19 severity was determined using previously defined

clinical National Institute of Health (NIH) criteria and assigned

at the time of a SARS-CoV-2 qRT-PCR test32,33 (see STAR

Methods). In brief, SARS-CoV-2-positive patients categorized

as mild had zero or mild COVID-19 symptoms without any

breathing issues. Moderate patients had signs of lower respira-

tory tract disease with an oxygen saturation above 94%. All se-

vere patients were hospitalized due to respiratory distress.

Importantly, none of the patients had received COVID-19 treat-

ment at time of sample collection. Samples from SARS-CoV-2-

positive patients were examined alongside those from 40 healthy

controls collected at Stanford in 2019, before the detection of

SARS-CoV-2 in the geographic region.

Blood samples were used to isolate both plasma and periph-

eral blood mononuclear cells (PBMCs). PBMCs were stimulated

ex vivo to trigger pathogen sensing and cytokine signaling

response pathways in innate and adaptive immune cells relevant

during infection (TLR4 stimulant lipopolysaccharide [LPS] and

TLR7/8 agonist CL097, interferon alpha [IFNa], interleukin-2

[IL-2], IL-4, and IL-6 cytokine cocktail, and cell stimulation cock-

tail consisting of phorbol 12-myristate 13-acetate [PMA] and
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Figure 1. Combined plasma and single-cell proteomic profiling of patients with mild, moderate, and severe COVID-19

(A) Patients with mild (n = 50), moderate (n = 21), and severe (n = 26) COVID-19 were examined together with healthy controls (n = 40).

(B) Schematic representation of the experimental workflow. Plasma proteins were measured using the Olink Explore 1536 assay, while PBMCs were stimulated

with either LPS + CL097, IFNa + IL-2 + IL-4 + IL-6, PMA + ionomycin (PI), or left unstimulated (Unstim) for endogenous signaling before barcoding, antibody stain-

ing, and analysis by single-cell mass cytometry.

(C and D) Correlation networks of single-cell mass cytometry and proteome dataset. Each node represents a feature, with edges representing the correlation

between features (cor > 0.9). Node size reflects -log10 of p value of the correlation with severity (Spearman), and node color represents the different data layers.

(E) Bivariate scatterplot of patients with COVID-19 and healthy controls plotted along factors 3 and 10 identified by multi-omics factor analysis (MOFA; see also

Figure S3).
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ionomycin [I] [PI]) (Figure 1B). The frequencies of 44 manually

gated immune cell subsets representing major circulating

innate and adaptive immune cells were determined using a

42-parameter single-cell phospho-mass cytometry immuno-

assay (Figure S1). For each immune cell subset, the frequency

was determined, alongside endogenous signaling activity (unsti-

mulated condition) and signaling response capacity of cells to

ex vivo stimulation with inflammatory reagents, which were

measured by examining the phosphorylation state of 15 intracel-

lular signaling proteins and 5markers that relate to immune-sub-

set-specific functionality (see STAR Methods and Figure S2).23

After penalization, the mass cytometry analysis generated a total
of 2,662 immune cell response features per PBMC sample. To

complement this single-cell analysis, 1,472 circulating plasma

proteins were measured using the proximity extension assay

(PEA) platform from Olink Proteomics. Five mass cytometry

(cell frequency, endogenous signaling, IFNa/IL-2/IL-4/IL-6

signaling response, LPS/CL097 signaling response, and PI

signaling response) and one plasma proteomic data layer(s)

were collected, resulting in six data layers in total. Correlation

networks demonstrate the existence of strong inter- and intra-

layer correlations between features (Figures 1C and 1D).

To understand the relationships between the different data

layers and COVID-19 severity, we first applied unsupervised
Cell Reports Medicine 3, 100680, July 19, 2022 3



Table 1. Patient characteristics

Control (N = 40) Mild (N = 50; 2 asymptomatic) Moderate (N = 21) Severe (N = 26)

Age 48 (23–73) 41.5 (23–78) 45 (19–78) 52.5 (29–78)

Gender N % N % N % N %

M 16 40 23 46 8 38 12 46.2

F 24 60 27 54 13 62 14 53.8

Race N % N % N % N %

Asian 11 27.5 12 24 2 9.5 2 7.7

Hispanic/Latino 0 0 5 10 3 14.3 12 46.2

White 15 37.5 23 46 10 47.6 4 15.4

Black 1 2.5 3 6 0 0 3 11.5

Multi-racial 3 7.5 0 0 1 4.8 0 0

Middle Eastern 1 2.5 0 0 0 0 0 0

Not reported 9 22.5 7 14 5 23.8 5 19.2

HispanicRace/Ethnicity N % N % N % N %

Yes 0 0 9 18 4 19 14 53.8

No 31 77.5 34 68 13 61.9 7 26.9

Not reported 9 22.5 7 14 4 19 5 19.2

Comorbidities

Diabetes N % N % N % N %

Yes 0 0 4 8 1 4.8 9 34.6

Prediabetic 1 2.5 3 6 1 4.8 0 0

No 32 80 34 68 15 71.4 14 53.8

Not reported 7 17.5 9 18 4 19 3 11.5

Asthma N % N % N % N %

Yes 4 10 7 14 5 23.8 8 30.7

No 29 72.5 33 66 12 57.1 11 42.3

Not reported 7 17.5 10 20 4 19 7 26.9

CV Condition N % N % N % N %

Yes 5 12.5 2 4 1 4.8 7 26.9

No 28 70 48 96 20 95.2 19 73.1

Not reported 7 17.5 0 0 0 0 0 0

Obesity N % N % N % N %

Yes 0 0 3 6 2 9.5 13 50

No 33 82.5 32 64 14 66.7 10 38.5

Not reported 7 17.5 15 30 5 23.8 3 11.5

Outcome, death 0 0 0 0 0 0 3 11.5

Days between self-reported symptom onset and sample collection 25.5 (-1–69) 22 (-1–66) 5 (0–75)

Data are shown as a number and a percentage. Age is reported in median years (minimum to maximum), and the days between onset of self-reported

COVID-19 symptoms and sample collection is reported in median days (minimum to maximum). The category multiracial includes the variables Multi-

racial, Asian/Native American, White/Asian/Pacific Islander, and/or Mexican/Native American. The category White includes White, White/Hispanic,

andWhite/non-Hispanic. The category Black includes both Black and Black/Hispanic/Latino. The category Hispanic/Latino includes the variables His-

panic, Hispanic/Latino, and Mexican/Hispanic. Ethnicity makes the distinction between those who reported as Hispanic and those who did not.
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dimensionality reduction with multi-omics factor analysis

(MOFA34),which infersasetof factors thatcapture sharedsources

of variability across different datasets. We supplied all six data

layers for the analysis, resulting in a MOFA model with 17 factors

(Figure S3A, model trial 6). Both single-cell immune response

(endogenous signaling and signaling response to IFNa/IL-2/IL-4/

IL-6 and LPS/CL097; factor 10) and plasma proteome (factor 3)

data contributed strongly to the variance observed in our samples
4 Cell Reports Medicine 3, 100680, July 19, 2022
(Figure S3B) and were significantly associated with COVID-19

severity (Figure S3C). A gradient with increasing disease severity

across factors 3 and 10 (Figure 1E)was alsoobserved, suggesting

that single-cell immune response and plasmaproteomedata both

contain clinically important biological events. The results promp-

ted us to perform an integrated analysis to determine whether a

classifier of COVID-19 severity could be derived from the com-

bined plasma and single-cell proteomics data.



Figure 2. Integrated modeling of plasma and

single-cell proteomic events categorizes

COVID-19 severity

(A) LASSO linear regression models were trained for

each individual data layer before integration of all six

data layers (proteome, frequency, endogenous

signaling, LPS/CL097 signaling response, IFNa/

IL-2/IL-4/IL-6 signaling response, and PI signaling

response) using a stacked generalization (SG)

method.

(B and C) Outcome of predicted versus true disease

severity derived from SG model for the (B) training

(r = 0.61, p = 4.2e-6, n = 74) and (C) validation cohort

(r = 0.69, p = 7.7e-6, n = 73).

(D and E) Multi-class area under the curve receiver

operating characteristic (ROC) analysis of the

training (D; AUC = 0.799, n = 74) and validation (E;

AUC = 0.773, n = 63) severity model (see Table S2

for individual AUCs). 1 = control, 2 = mild, 3 = mod-

erate, and 4 = severe.

For boxplots, the center line represents the median

value; upper and lower box limits indicate first (Q1)

and third (Q3) quartile, respectively; whiskers, mini-

mum (Q1�1.5*IQR) and maximum (Q3+1.5*IQR).

IQR, interquartile range. AUC, area under the curve.

See also Figure S6 and Tables S1–S4.
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Integratedmodeling of plasma and single-cell proteome
differentiates COVID-19 severity
A high-dimensional computational analysis pipeline was applied

to train and independently validate (training cohort: n = 74; 25

control, 20 mild, 10 moderate, and 19 severe patients; validation

cohort: n = 63; 15 control, 30mild, 11moderate, and 7 severe pa-

tients) an integrated model of COVID-19 severity based on the

combined proteomic and single-cell immune response data.35

In this approach, the six data layers were considered separately,

and a two-step process was used to combine these data layers

in a multi-omic fashion (Figure 2A). Cross-validated multi-variate

least absolute shrinkage and selection operator (LASSO) linear
Cell R
regression models36 were first trained for

each individual data layer of the training

cohort, with disease severity used as a

ranked order variable (i.e., control classed

as 1 to severe classed as 4), and second,

the individual LASSO models were inte-

grated into a single model by stacked

generalization (SG)35 (Figure 2A). The sec-

ond step uses the estimations of disease

severity of each LASSO model as predic-

tors for a constrained regression model.

The analysis identified an SG model

(‘‘severity model’’) that classified COVID-

19-severity categories at time of sampling

for patients in the training cohort (r =

0.61, p = 4.2e-6, n = 74). The generaliz-

ability of the severity model was indepen-

dently tested in patients from the validation

cohort (r = 0.69, p = 7.7e-6, n = 63)

(Figures 2B and 2C). The contribution of in-
dividual data layers to the overall severity model was highest for

the plasma proteome and lowest for the signaling responses to

LPS/CL097 stimulation, according to severity model coefficients

(Table S1).

To estimate the performance of the severity model, a multi-

class area under the curve receiver operating characteristic

(ROC) analysis was performed for the training and validation

cohort (Figures 2D and 2E). The multi-class ROC analysis

showed that the severity model performed well at classifying

patients across disease-severity categories (multi-class

area under the curve [AUC]training = 0.799; multi-class

AUCvalidation = 0.773).37,38 The most accurate classification
eports Medicine 3, 100680, July 19, 2022 5



Figure 3. An iterative bootstrapping method identifies robust informative features for the differentiation of mild, moderate, and severe
COVID-19

(A) Workflow of the iterative bootstrap method used to identify informative features in the six data layers of the severity model. LASSO regression model was run

1,000 times on random sub-samples with replacement for each data layer, Xi, then the number of times an individual feature was selected in one of the bootstrap

iterations was counted, and the features were ranked according to the frequency of selection in the bootstrap models.

(legend continued on next page)
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was achieved when classifying severe patients from the other

patient groups (Table S2), with a model performance similar

to the classifier of severe disease described by Filbin et al.39

In addition, different regression strategies were tested showing

similar results, with the best overall performance obtained us-

ing LASSO regression (Table S3). Among patients for whom

infection-related clinical laboratory parameters were available,

model values for signatures of COVID-19 severity significantly

correlated with both CRP and D dimer (Spearman correlation:

CRP, r = 0.803, p = 0.0002; D dimer, r = 0.695, p = 0.0051).

Results from the severity model indicate that mild, moderate,

and severe COVID-19 manifestations can be differentiated from

the measurement of plasma proteins and single-cell immune

signaling events in patient’s peripheral blood. Several clinical

and (socio)demographic variables such as old age, male gender,

high BMI, and Hispanic ethnicity have previously been shown to

be risk factors for COVID-19 severity.12,39–44 In addition, recent

studies have highlighted the dynamic changes of innate and

adaptive immune responses over the course of COVID-19 dis-

ease,9,18 such that the timing of sample collection (Figure S4)

may affect the detection of immune features related to disease

severity.We observed significant correlations between the cova-

riates of obesity, Hispanic ethnicity, and days since symptom

onset with COVID-19 severity (Figure S5). To account for inter-

patient variability in these key clinical, (socio)demographic, and

experimental variables, we performed a confounder analysis.

The results showed that theSGmodel remained significantly pre-

dictive of COVID-19 severity when accounting for the variables

age, gender, obesity, Hispanic ethnicity, and time between re-

ported symptom onset and sample collection (Table S4).

Our SG severity model was built and independently tested in a

cohort of patients recruited at a single center. A recent proteomic

study39 of patients enrolled at the Mass General Hospital (MGH,

Boston, MA, USA) that used an identical proteomic assay (the

Olink Explore 1536) provided an opportunity to examine, at least

partially, the generalizability of our findings to a broader patient

population. A severity model built on the plasma proteomic

data from the Stanford cohort accurately predicted the disease

severity of patients included in the MGH cohort (Figure S6; r =

�0.453541; p < 2e-16), providing independent validation of the

plasma proteomic component of our predictive model in a sec-

ond patient cohort. Notably, a significant correlation was found

between the two studies for the set of 195 proteomic features

associated with COVID-19 severity described in Filbin et al.39

(r = 0.40, p < 0.0001, Pearson, -log-adjusted p value; Data S1B).

Biological signatures of COVID-19 severity
To facilitate biological interpretation of the high-dimensional

severity model, the contribution of individual plasma and sin-

gle-cell proteomic features to the severity model performance

was quantified by measuring repeated selection during a

1,000-iteration bootstrap procedure45,46 (Figure 3). This boot-
(B and C) Correlation network depicting single-cell (B) or plasma (C) proteomic fea

Blue/orange nodes highlight positive/negative correlation with disease severity.

bootstrap-selected informative single-cell (B) or plasma (C) proteomic features a

(D) Interomic correlations between features of the six data layers are visualized

bootstrap with absolute Spearman correlation coefficients between 0.5 and 1.0
strap procedure recreates the dataset 1,000 times by sampling

from the original dataset with replacement, and a new cross-vali-

dated LASSOmodel is trained for each iteration.45,46 The relative

importance of each feature to themodel is based on frequency of

selection for a given feature (Data S1). We examined in detail the

top 10%of total features ranked by the bootstrap procedure and

that thus contributed strongly to the overall model (Figures 3B

and 3C; Data S1).

Single-cell (Figure 3B) and plasma (Figure 3C) proteomic fea-

tures were visualized with two correlation networks, highlighting

the correlation between individual features (edges) and between

individual features andCOVID-19 severity (node size/color). Fea-

tures within top 10% of bootstrap selection segregated into

correlated communities, which were annotated according to

the cellular attribute most commonly represented within each

community (immune cell frequency or signaling response for sin-

gle-cell features, Figure 3B; protein name for plasma proteomic

features, Figure 3C). To complement the analysis of ‘‘intraomic’’

correlations within omic datasets, ‘‘interomic’’ correlations be-

tween features from different single cell or plasma proteomic

data layers contributing the most to the severity model were

visualized on a chord diagram (Figure 3D). The chord diagram

highlighted multiple interomic correlations, 29% of which

occurred between plasma proteome and single-cell proteomic

features, with the most correlations between plasma proteome

components and endogenous phosphorylated (p)S6 and pCREB

signal in Ki67+ CD8 T cells and frequency of plasmacytoid den-

dritic cells (pDCs). Plasma proteins correlating with these cellular

features were enriched for those involved in cytokine signaling

(Reactome pathway identification). This analysis highlighted

the interconnected nature of single-cell and plasma proteomic

features of the severity model and underscored the need for an

integrated approach to characterize the inflammatory state of

patients with varying COVID-19 severity.

With respect to cell frequency features contributing the most

to the severity model, we observed changes in immune cell distri-

bution that are reminiscent of recent immunophenotyping studies

in patients with severe COVID-19. For instance, in our study

and prior reports, pDCs and CD161+CD8+ T cell frequencies

were negatively correlated, while Ki67+CD8+ T cell and granulo-

cyte frequencies were positively correlated with COVID-19

severity17–19,47,48 (Figure S7). Furthermore, increased plasmablast

frequencies in severe patients complemented prior reports19,47

(Figure S7). While changes in frequencies of monocyte subsets

were not among the most informative features of our severity

model, a secondary analysis focused on monocyte subsets reca-

pitulated previously reported monocytic changes associated with

disease severity, including increased frequencyof classicalmono-

cytes, decreased frequency of non-classical monocytes, and

decreasedHLA-DRexpressionby (classical, non-classical)mono-

cytes in severe patients (FigureS8).16–18,22,47,49–51 In particular, we

observed a reduction in frequency of CD16+ non-classical
tures. Edges represent the correlation between features (Spearman cor > 0.9).

Node size reflects -log10 of p value (Spearman). Communities containing the

re highlighted and annotated.

in a chord diagram. Interomic correlations of the top 10% features ranked by

are shown.

Cell Reports Medicine 3, 100680, July 19, 2022 7



Figure 4. Severity model features reveal biological signatures that demarcate patients with mild, moderate, and severe COVID-19

Boxplots, classified by disease severity, showing features informative to the model. r and p indicate Spearman coefficient and p value of Spearman correlation of

the feature with disease severity.

(A) Endogenous immune cell signaling (arcsinh transformed values; see STAR Methods).

(B) Immune cell signaling response to PI stimulation is reported as the arcsinh transformed ratio over the endogenous signaling response (see STAR Methods).

(C) Immune cell signaling responses to IFNa/IL-2/IL-4/IL-6 (IFN/IL) stimulation are reported as the arcsinh transformed ratio over the endogenous signaling

response (see STAR Methods).

(D) Plasma protein levels are reported as the normalized protein expression, an arbitrary unit provided by theOlink assay. Tmem,memory T cell; MERTK, tyrosine-

protein kinase Mer.

For boxplots, the center line represents the median value; upper and lower box limits indicate first (Q1) and third (Q3) quartile, respectively; whiskers, minimum

(Q1�1.5*IQR) and maximum (Q3+1.5*IQR). IQR, interquartile range. AUC, area under the curve.

See also Figure S7–S11.
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monocytes,whichwas recently suggested tobemediatedbyanti-

body-mediated SARS-CoV-2 infection and pyroptosis.52

Assays examining endogenous and stimulation-dependent

cell signaling markers revealed alterations in cell states associ-

ated with varying disease severity. A negative correlation was
8 Cell Reports Medicine 3, 100680, July 19, 2022
observed between endogenous signaling in CD8+ T cell subsets

and natural killer T (NKT) cells and COVID-19 severity, notably

for the pS6, total IkBa, and pCREB signals (Figures 4A and

S9A). Negative correlations with COVID-19 severity were also

observed for endogenous p4EBP1 and total IkBa signals in
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granulocytes, while endogenous granulocyte pERK1/2 signal

was positively correlated with disease severity (Figure S9A).

Overall, these results suggest that alterations in endogenous im-

mune cell signaling markers exist between COVID-19-severity

categories. In particular, endogenous signaling activities of key

elements of the mTOR, MAPK, and NF-kB pathway (pS6,

pERK1/2, pCREB, and total IkBa) were diminished with

increasing disease severity in immune cell populations that

play important roles in the defense against viral pathogens,

such as CD8+ T, NKT, and granulocyte cell subsets.

Additionally, immune cell signaling responses to PI stimulation

were largely diminished with increasing disease severity, espe-

cially for innate immune cell populations. Specifically, PI-stimu-

lated signaling responses in granulocytes (pS6, pERK1/2, and

pP38), myeloid dendritic cells (mDCs) (pERK1/2 and pSTAT3),

and CD56brightCD16- NK cells (pP38) were negatively correlated

with disease severity (Figures 4B and S9B). Negative correla-

tions with disease severity were also observed for the pSTAT3

signal in regulatory T cells (Tregs) and pMAPKAPK2 signal in

CD161+CD8+ T cells in response to PI stimulation (Figures 4B

and S9B). Decreased responsiveness to PI stimulation may be

an indication of reduced effector function of circulating innate

and adaptive immune cells during severe COVID-19, driven by

cell-intrinsic effects and/or changes in cytokines and other

modulating factors present in the circulation.

For immune cell signaling responses to IFNa/IL-2/IL-4/IL-6

stimulation, we also observed a negative correlation with dis-

ease severity for the pSTAT4/5/6 signals in both adaptive and

innate immune cells (Figures 4C and S9C), suggestive of an

impaired signaling response to IFN and cytokines in those indi-

viduals with more severe COVID-19. Indeed, others have also

observed an impaired type I IFN activity in peripheral immune

cells of patients critically ill with COVID-19, shown by down-

regulation of IFN-stimulated genes upon whole-blood IFNa

stimulation.53

Among the most robust plasma proteomic features identified

by the severity model were several features that positively corre-

lated with disease severity and which overlapped with prior de-

scriptions of the cytokine storm syndrome described in patients

with severe COVID-19.8,11 For instance, plasma levels of the cy-

tokines IFNg, IL-1b, and IL-33, showed a positive correlationwith

disease severity (Figure 4D). IL-6, one of the first plasma cyto-

kines recognized as elevated during COVID-19,54 also exhibited

a positive correlation with disease severity in our cohort (Fig-

ure S10). Although this feature contributed to the severity

model, it ranked well below the top 10% of bootstrap-selected

informative features (Data S1). A similar positive correlation

was observed for lung-related proteins in circulation, such as

pulmonary surfactant-associated protein A2 (SFTPA2) and

cathepsin H (CTSH), which are involved in surfactant homeosta-

sis (Figure S10).55,56

Angiotensin-converting enzyme 2 (ACE2) is used as a viral en-

try receptor by SARS-CoV-2 and is released from the epithelial

cell surface upon viral binding.57 ACE2 ranked within the top

10% of informative features, and levels showed a positive corre-

lation with severity (Figure S10). The severity model also identi-

fied the protease MME (neprilysin), another key player of the

renin-angiotensin system (RAS),58 as a positive correlate of
COVID-19 severity (Figure S10). MME is also implicated in

neutrophil degranulation,59 and our list of informative model fea-

tures contained multiple other proteins involved in neutrophil

degranulation (protein pathway identified by Reactome; see

STAR Methods; Reactome gene set identifier R-HSA-

6798695.2; Figure S11A), which were mainly positively corre-

lated with severity as well. This dysregulation of neutrophil

degranulation in severe patients is in agreement with recent

plasma proteome findings.60

Our analysis revealed tyrosine-protein kinase Mer (MERTK) as

the most robust feature in the proteome dataset contributing to

the severity model (Data S1). Levels of MERTK, an immunosup-

pressive tyrosine kinase receptor,61 were positively correlated

with disease severity (Figure 4D). MERTK is found on the surface

of macrophages, where it mediates phagocytosis of apoptotic

cells.62 Activation of MERTK has an immunosuppressive effect

by downregulating the production of cytokines and type I

IFNs.61,62 IncreasedMERTKsheddingcould result in reducedsur-

faceexpressionand lossofMERTKsignaling,63whichcouldplaya

central role in the hyper inflammation observed in severe COVID-

19.MERTKalsoplaysa role inplatelet aggregation63andendothe-

lial barrier integrity.64 Plasma MERTK levels were not positively

correlated with most available markers of activation of monocyte

subsets (DataS3). Plasma levels of several other proteins involved

in primary hemostasis (Reactome gene set identifier R-HSA-

109582) were also found to be informative in our model of disease

severity (Figure S11B), with the majority of them displaying posi-

tive correlations with increasing disease severity.

To gain further insight into the dynamic behavior of plasma and

immune cell events in patients with COVID-19, themost informa-

tive severity model features (top 10%) were correlated with time

since symptom onset for each patient severity category and data

layer (Figure S12; Data S1). Only 5 out of 374 model features

examined showed correlations with p values below a false dis-

covery rate (FDR)-adjusted value of 0.05, indicating that the large

majority of model features were not significantly correlated with

time since symptom onset in this dataset (Figure S12A; Data

S1C). Among those 5 features with significant time association,

ITIH3 and LGALS9 levels appear elevated near symptom onset

in severe COVID-19 but decline precipitously thereafter, unlike

more stable trajectories in mild and moderate patients (Fig-

ure S12B). These features may therefore have important diag-

nostic value in distinguishing severe cases soon after infection.

In summary, informative features of the severity model

revealed biological signatures that progressed frommild tomod-

erate and severe COVID-19. Salient characteristics of this bio-

logical progression included cellular elements of immune

signaling networks implicated in defensive immunity against viral

pathogens (such as the progressive dampening of NF-kB,

MAPK/mTOR, and JAK/STAT signaling in multiple innate and

adaptive immune cell subsets) and sentinel proteomic pathways

involved in lung and RAS homeostasis, primary hemostasis,

neutrophil degranulation, and inflammation.

DISCUSSION

This cross-sectional study combined high-content plasma

proteomics with the single-cell analysis of immune signaling
Cell Reports Medicine 3, 100680, July 19, 2022 9
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responses to identify biological determinants of severity across

the spectrum of COVID-19 manifestations. Using a two-step

analytical approach that accounts for the dimensionality of

different data layers, we built and independently validated an in-

tegrated model that classifies COVID-19 severity. The biological

underpinnings of the severity model consisted of coregulated

plasma and single-cell proteomic elements that progressed

with COVID-19 severity, including the inflammatory cytokine

response to SARS-CoV-2, the mobilization of the RAS and pri-

mary hemostasis system, and the dysregulation of the JAK/

STAT, NF-kB, and MAPK/mTOR immune signaling responses.

The identification of biological signatures progressing with

COVID-19 severity provides a set of sentinel events detect-

able in the early phase of infection that may be possible thera-

peutic targets for the prevention and/or treatment of severe

COVID-19.

The ongoing pandemic has fueled major research efforts

toward understanding the host immune response against

SARS-CoV-2 infection.8,13,15–17,19 Previous efforts have been

particularly focused on hospitalized patients with severe

COVID-19, which, while of paramount importance, excludes

the majority of SARS-CoV-2-infected patients who suffer from

mild or moderate COVID-19 and do not require hospitalization.

The comparative analysis of samples from patients with mild,

moderate, and severe disease afforded a more exhaustive char-

acterization of immune responses related to COVID-19 severity.

Our approach dovetails with prior studies identifying an immuno-

logical shift distinguishing the spectrum of COVID-19-infection

states.18,21 Consistent with our results, this switch included an

increase in inflammation, the emergence of CD4 and CD8

T cells with a proliferative-exhausted phenotype, and a distinct

activated myeloid signature.18,21 In previous work, immune cell

function and responses were indirectly inferred through either

phenotype or endogenous single-cell mRNA transcriptomics

changes, while our approach provided a direct assessment of

endogenous intracellular signaling responses of multiple im-

mune cell subsets as well as their capacity to respond to inflam-

matory stimulation.

Two major biological signatures associated with the progres-

sion from mild to moderate and severe disease emerged from

our integrated analysis: (1) the dampening of NF-kB, MAPK/

mTOR, and JAK/STAT intracellular signaling responses in multi-

ple innate and adaptive immune cell subsets, and (2) the mobili-

zation of a proteomic network enriched for elements of the

RAS, lung homeostasis, and hemostasis pathways, alongside ca-

nonical elements of the cytokine storm signature of severe

COVID-19.

Several of the features informative to our severity model reso-

nate with previous findings in patients suffering from severe

COVID-19. For example, plasma levels of cytokines such as

IFNg, IL-1b, IL-33, and IL-6 increased with increasing severity,

consistent with the cytokine storm observed in patients with se-

vere COVID-198,11,14 andwith circulating IL-33 levels as a poten-

tial indicator of damaged lung tissue.65–67 In addition, changing

frequencies of circulating immune cells also aligned with prior re-

ports in severe patients.15,17,19,47,48 Interestingly, an increased

percentage of granulocytes was observed in the PBMC fraction

of patients with severe COVID-19.15,16,18,68,69 Low-density gran-
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ulocytes also appear in the PBMC fraction of patients with in-

flammatory diseases and severe infection.70,71

In addition to previously reported features of COVID-19 dis-

ease severity, the functional analysis of intracellular signaling

events in this study revealed intriguing new biology, notably

with respect to immune cell responses to inflammatory ligands.

The aforementioned low-density granulocytes can display

dysfunctional immune responses,70,71 which supports our

observation of a decreased immune cell signaling response by

the granulocytes present in the PBMC fraction of patients with

severe disease. In addition, in agreement with Overmyer

et al.,60 increasing plasma levels of several proteins involved in

neutrophil degranulation were correlated with disease severity.

Excessive release of granules can result in tissue damage and

is a feature of acute lung injury and septic shock.72 In addition

to granulocytes, other cell types such as mDCs, NK cells, NKT

cells, Tregs, and CD4 and CD8 T cells also showed an inverse

relationship between capacity to respond to cytokine stimulation

and disease severity, suggestive of overall diminished effector

functions of circulating innate and adaptive immune cells with

increasing severity. These results are consistent with several

other studies that have shown decreased functional responses

and exhausted phenotypes in peripheral innate and adaptive im-

mune cells in severe patients as well.15,17,20,53,73,74 In this data-

set, dampened immune cell responsiveness observed in severe

patients was not correlated with time since symptom onset.

These effects may represent a prolonged feature of severe

disease itself, a dampened pre-infection state, or underlying ge-

netic susceptibility.75,76 Furthermore, observations of damp-

ened mTOR or JAK/STAT signaling in innate and adaptive im-

mune cells could be informative for potential treatment

recommendations for COVID-19, as drugs can have different in-

fluences on signaling responses in innate and adaptive immune

cells. For instance, methylprednisolone administration to pa-

tients undergoing surgery inhibits JAK/STAT signaling re-

sponses in the adaptive compartment only.25 As such, restoring

the effector responses of circulating immune cells by immune

potentiators (e.g., immune checkpoint inhibitors) to enhance

host immunity while simultaneously controlling the cytokine

storm (e.g., corticosteroids) may be beneficial in preventing se-

vere disease and overcoming infection.77–79

In addition to dysregulated immune signaling responses, the

examination of the severity model features revealed several

key proteomic pathways that were mobilized with disease

severity, including pathways related to lung homeostasis, RAS

homeostasis, and hemostasis. Notably, the plasma levels of

two proteins implicated in the production of lung surfactant

(SFTPA2 and CTSH55,56) markedly increased with disease

severity. Both SFTPA2 andCTSH are synthesized in type II pneu-

mocytes,55,56 which are primary targets for SARS-CoV-2 infiltra-

tion. As such, these proteins may be early markers of type II

pneumocyte dysfunction, impaired surfactant synthesis, and

lung damage, as SFTPA2 plasma levels are elevated in patients

suffering from acute respiratory failure.80 These results are

consistent with recent transcriptomics analyses of lung biopsies

showing impaired surfactant production in patients with

severe COVID-19.81 Elevated SFTPA2 and CTSH could be

important markers for clinicians to differentiate severe patients
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and stratify those who may be most at need of respiratory

support.

Key proteomic features of the COVID-19 severity model also

included two components of the RAS (ACE2 and MME), a com-

plex hormonal system that regulates blood pressure and fluid

homeostasis as well as pulmonary inflammation.58 The involve-

ment of the RAS in the pathogenesis of SARS-CoV-2 infection

is well established, since the interaction between the viral spike

protein and ACE2 is a primary mechanism of viral entry into host

cells.57 High ACE2 and MME plasma levels in severe patients

suggest increased shedding from the cell surface, which may

result in loss of function of these proteins.82 A loss of function

of ACE2 and MME will likely result in a decrease in angiotensin

I (Ang I) and Ang II degradation, which aligns with themulti-organ

injuries observed in severe patients.82,83 Interestingly, increased

plasma ACE2 concentration is associated with an increased risk

for subsequent cardiovascular events in patients with COVID-

19.84 As such, our analysis points at mechanistic markers of

disease severity that may also be implicated in the clinical man-

ifestations of patients recovering from COVID-19, such as car-

diovascular or neurological complications.

The most informative protein feature in our severity model was

soluble (s) MERTK, for which plasma levels increased with

severity. sMERTK can be produced by proteolytic ectodomain

shedding of membrane-bound (mb) MERTK, a member of the

Tyro-Axl-MerTK (TAM) family of receptor tyrosine kinases, the

activation of which leads to immunosuppression and macro-

phage-mediated apoptotic cell phagocytosis.61–63,85 sMERTK

can act as a competitive inhibitor ofMERTK signaling by seques-

tering ligands that could otherwise bind tombMERTK.61–63 In the

context of COVID-19, impaired MERTK signaling has been pro-

posed as a link between the hyperinflammatory and hypercoa-

gulative state observed in patients with severe disease.61,86–88

In the model proposed by Lemke et al., sequestration of

MERTK-ligand protein spike (S) by developing blood clots re-

sults in impaired MERTK signaling in neighboring macrophages

and increased pro-inflammatory cytokine production.61 Seques-

tration of protein S by sMERTKmay also contribute to this effect.

In addition, loss of endothelial mbMERTK has been shown to

exacerbate lung inflammation in the context of acute respiratory

distress syndrome by enhancing endothelial permeability and

leukocyte transendothelial migration at the site of infection.64

The pleiotropic roles of MERTK in the regulation of lung endothe-

lial integrity, coagulation, and inflammation suggest that

impaired MERTK signaling may be a central component of the

pathogenesis of severe COVID-19. sMERTK levels were not

positively correlated with markers of monocyte activation in

this study, raising the possibility that sMERTK could instead be

driven by other factors such as pyroptosis of circulating mono-

cytes,52 by activation of monocyte/macrophages in the tissues,

or by loss of endothelial mbMERTK in the lung. Strategies to

regulate ADAM-17-dependent shedding of mbMERTK may be

worth investigating in the context of COVID-19.89–91

Assessing the dynamic behavior of model features (top 10%)

over the course of disease showed that, consistent with our

confounder analysis, the majority of features of the severity

model (98.66%) did not correlate with time since symptom

onset. The levels of only 5 single-cell or plasma proteomic fea-
tures correlated with the timing of symptom onset. Notably,

ITIH3 and LGALS9 (galectin-9) levels were elevated early after

symptom onset in severe patients and declined over the course

of disease, suggesting that these proteomic features may be

important early indicators of patients with severe disease.

Elevated plasma galectin-9 levels have been proposed to be a

contributor to the cytokine storm observed in SARS-CoV-2-in-

fected patients,92 while serum ITIH3 levels have been found to

be more abundant in fatal COVID-19 cases upon intensive care

unit (ICU) admission, with levels decreasing over the course of

disease in both survivors and non-survivors.93

Determining the underlying immune pathogenesis across the

spectrum of COVID-19 severity remains an important clinical

challenge. Our integrated analysis of plasma and single-cell pro-

teomics in patients with mild, moderate, and severe COVID-19

identified a multi-variate model that differentiates COVID-19

severity. The observations identified by this model contribute

clinically relevant insights into the status of patient’s immune re-

sponses during SARS-CoV-2 infection and provide promising

severity-specific biological signatures for future validation that

may inform decision-making on potential therapeutic targets

for the prevention of disease progression.

Limitations of the study
This study has certain limitations. First, in this cohort, we only as-

sessed peripheral blood samples of patients affected by COVID-

19. If available from future cohorts, it would be highly informative

to assess the local immune and proteome perturbations in paral-

lel by analyzing lung biopsies or bronchoalveolar lavage fluid to

investigate whether the same trends and dampened immune

cell responses are observed locally in the lung as well. Second,

there are discrepancies in the definition of COVID-19-severity

categories—especially for the definition mild—that can hinder

the comparison of different studies. In this study, we defined

mild patients as those SARS-CoV-2-infected patients that only

experience mild symptoms without any breathing issues and

that do not require hospitalization,33 which is similar to the

work done by Chevrier et al.18 and Silvin et al.22 Others, on the

other hand, defined mild as those SARS-CoV-2-infected pa-

tients that were hospitalized but had no or only low oxygen re-

quirements.16,94–96 Despite these differences, the tremendous

effort of the research community to rapidly make research avail-

able is an enormous advantage for much-needed fast-paced

research into COVID-19, and the availability of public datasets

will empower future meta-analyses. Thirdly, while it is becoming

clear that those severe patients that die versus those that survive

can be phenotypically distinct,39 the presence of only 3 non-sur-

vivors in our cohort precludes an adequately powered analysis to

decouple severity-related factors from survival-related factors.

Fourthly, our study is cross-sectional in nature. While a time-

dependent representation of cross-sectional data provides

insight into disease evolution, serial blood sample collection

and longitudinal molecular monitoring will be necessary in future

studies to discern cause versus effect and identify predictive fea-

tures that precede severe COVID-19 disease or the development

of post-acute sequelae. While several longitudinal studies

have indeed shown that fluctuations exist over the disease

course,39,97–101 these studies have mainly been conducted in
Cell Reports Medicine 3, 100680, July 19, 2022 11
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hospitalized patients, and a longitudinal study into the disease

dynamics of non-hospitalized patients with only mild and/or

moderate disease has not been studied rigorously. Finally, while

the results of the plasma proteomic model were validated in an

independent cohort from a different center,39 further validation

with orthogonal methods (i.e., ELISA, flow cytometry, etc.) will

be imperative in the development of future diagnostic tests.
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Antibodies

Anti-human 4E-BP1 pT37/46 (clone 236B4) CST Cat# 2855; RRID: AB_560835

Anti-human BDCA3 (clone 1A4) BD Biosciences Cat# 559780; RRID: AB_397321

Anti-human CCR7 (clone 150503) R&D Systems Cat# MAB197-100; RRID: AB_2072803

Anti-human CD11b (clone ICRF44) BioLegend Cat# 301302; RRID: AB_314154

Anti-human CD11c (clone Bu15) BioLegend Cat# 337202; RRID: AB_1236381

Anti-human CD123 (clone 7G3) BD Biosciences Cat# 554527; RRID: AB_395455

Anti-human CD14 (clone M5E2) BioLegend Cat# 301802; RRID: AB_314184

Anti-human CD16 (clone 3G8) BioLegend Cat# 302033; RRID: AB_2104002

Anti-human CD161 (clone HP-G310) BioLegend Cat# 339902; RRID: AB_1501090

Anti-human CD19 (clone J3-119) Beckman Coulter Cat# IM1313; RRID: AB_131613

Anti-human CD1c (clone AD5-8E7) Miltenyi Custom Carrier Free; RRID: AB_244309

Anti-human CD235a (clone HIR2) BioLegend Cat# 306602; RRID: AB_314620

Anti-human CD27 (clone O323) BioLegend Cat# 302802; RRID: AB_314294

Anti-human CD3 (clone SP34.2) BD Biosciences Cat# 551916; RRID: AB_394293

Anti-human CD33 (clone AC104.3E3) Miltenyi Custom Carrier Free; RRID: AB_615078

Anti-human CD38 (clone HIT2) BioLegend Cat# 303502; RRID: AB_314354

Anti-human CD4 (clone OKT4) BioLegend Cat# 317402; RRID: AB_571963

Anti-human CD45 (clone HI30) BioLegend Cat# 304002; RRID: AB_314390

Anti-human CD45RA (clone HI100) BioLegend Cat# 304102; RRID: AB_314406

Anti-human CD56 (clone NCAM16.2) BD Biosciences Cat# 559043; RRID: AB_397180

Anti-human CD61 (clone VI-PL2) BioLegend Cat# 336402; RRID: AB_1227584

Anti-human CD66 (clone YTH71.3) Pierce Cat# MA1-36189; RRID: AB_1073288

Anti-human CD7 (clone M-T701) BD Biosciences Cat# 555359; RRID: AB_395762

Anti-human CD8 (clone RPA-T8) BioLegend Cat# 301002; RRID: AB_314120

Anti-human CREB pS133 (clone 87G3) CST Cat# 9198; RRID: AB_2561044

Anti-human Erk1/2 pT202/Y204 (clone D13.14.4E) CST Cat# 4370; RRID: AB_2315112

Anti-human FoxP3 (clone PCH101) Thermo Fisher Cat# 14-4776-82; RRID: AB_467554

Anti-human HLA-DR (clone Immu357) Beckman Coulter Cat# Immu357; RRID: AB_131284

Anti-human IgM (clone G20-127) BD Biosciences Cat# 555780; RRID: AB_396115

Anti-human IkBa amino-terminal (clone L35A5) CST Cat# 4814; RRID: AB_390781

Anti-human Ki67 (clone SolA15) Thermo Fisher Cat# 14-5698-82; RRID: AB_2688057

Anti-human MAPKAPK2 pT334 (clone 27B7) CST Cat# 3007; RRID: AB_490936

Anti-human P38 pT180/Y182 (clone 36/p38) BD Biosciences Cat# 612289; RRID: AB_399606

Anti-human PLCg2 pY759 (clone K86–689.37) BD Biosciences Custom Carrier Free; RRID: AB_647226

Anti-human S6 pS235/236 (clone 2F9) CST Cat# 4856; RRID: AB_2181037

Anti-human STAT1 pY701 (clone 4a) BD Biosciences Cat# 612233; RRID: AB_399555

Anti-human STAT3 pY705 (clone 4) BD Biosciences Cat# 612357; RRID: AB_399646

Anti-human STAT4 pY693 (clone 38) BD Biosciences Cat# 612738; RRID: AB_399957

Anti-human STAT5 pY694 (clone 47) BD Biosciences Cat# 611965; RRID: AB_399386

Anti-human STAT6 pY691 (clone 18) BD Biosciences Cat# 611597; RRID: AB_399013

Anti-human TBK1/NAK pS172 (clone D52C2) CST Cat# 5483; RRID: AB_10693472

Anti-human Zap70/Syk pY319/Y352 (clone 17a) BD Biosciences Cat# 612574; RRID: AB_399864
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REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

RPMI 1640 medium, no glutamine Gibco Cat# Fisher 21870092

Penicillin-Streptomycin Gibco Cat# Fisher 15140122

L-Glutamine Gibco Cat# Fisher 25030081

Fetal Bovine Serum (FBS) Gibco Cat# Fisher 16140071

PBS Gibco Cat# Fisher 14190250

LPS Invivogen Cat# Fisher TLRLPEKLPS

CL097 Invivogen Cat# Fisher NC1203867

IFNa Invitrogen Cat# Fisher PI111012

IL2 R&D Systems Cat# Fisher 202IL010CF

IL4 R&D Systems Cat# Fisher 204IL010CF

IL6 R&D Systems Cat# 206IL010CF

PI Invitrogen Cat# Fisher 00497503

BSA Sigma Aldrich Cat# A3059-50G

Sodium Azide Sigma Aldrich Cat# S2002-25G

Critical commercial assays

Smart Tube Proteomic Stabilizer Smart Tube Inc. Cat# PROT1

FcBlock: Human TruStain FcX Biolegend Cat# 422302

100% Methanol Thermo Fisher Cat# 50-980-487

Iridium DNA Intercalator Fluidigm Cat# 201192B

16% Paraformaldehyde Thermo Fisher Cat# 50-980-487

Four Element Normalization Beads Fluidigm Cat# 201078

Deposited data

Raw and processed data Dryad https://doi.org/10.5061/dryad.9cnp5hqmn

Software and algorithms

Cell Engine Primity Bio https://cellengine.com

Single Cell Debarcoder Nolan Lab https://github.com/nolanlab/single-cell-debarcoder

Bead Normalization Nolan Lab https://github.com/nolanlab/bead-normalization

MOFA2 Argelaguet et al.34 v1.0

Mgcv Wood102 v1.8-31

Other

CyTOF 2 mass cytometer Fluidigm N/A
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Lead contact
Further information and requests for resources and reagents should be directed to an will be fulfilled by the lead contact, Brice Gau-

dillière (gbrice@stanford.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
Raw data (FCS file), original data (Olink plasma proteomic data), processed data (cell frequency, phosphosignal, and chord dia-

gram correlation matrix data), patient characteristics, and Generalized Additive Model (GAM) p values have been deposited to

Dryad: https://doi.org/10.5061/dryad.9cnp5hqmn.

Supplemental files are available from Mendeley Data: https://doi.org/10.17632/xss9pdtc4f.1.

Source code used for analysis can be found on github at https://github.com/julienhed/COVID-Severity.

Any additional information required to reanalyze the reported study is available upon request from the lead contact.
e2 Cell Reports Medicine 3, 100680, July 19, 2022

mailto:gbrice@stanford.edu
https://doi.org/10.5061/dryad.9cnp5hqmn
https://doi.org/10.17632/xss9pdtc4f.1
https://github.com/julienhed/COVID-Severity
https://doi.org/10.5061/dryad.9cnp5hqmn
https://cellengine.com
https://github.com/nolanlab/single-cell-debarcoder
https://github.com/nolanlab/bead-normalization


Article
ll

OPEN ACCESS
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Study design
This study was designed as a cross-sectional study, where samples were obtained from adults with positive test results for SARS-

CoV-2 from analysis of nasopharyngeal swab specimens. Samples were obtained at any point fromMarch to June 2020 at the Stan-

ford Occupational Health Clinic. Testing was accomplished using Stanford Health Care clinical laboratory developed internal testing

capability with a quantitative reverse-transcriptase–polymerase-chain-reaction (qRT-PCR) assay. Mechanical ventilation and thera-

peutics for COVID-19 (when used) were not administered until after collection of blood sample, with the exception of 2 individuals

whowere put onmechanical ventilation one day prior to sample collection (information in supplemental file ‘‘PatientCharacteristics’’).

Patients were excluded from enrollment if they were taking experimental therapeutics for COVID-19 (i.e. those medications not

authorized by a regulatory agency for use in COVID-19). Healthy controls were collected prior to the detection of SARS-CoV-2 in

the region (historical controls). Figure S4 shows self-reported symptom onset and diagnostic qRT-PCR timing in relation to the

day of sample collection.

Data sources and clsinical definitions
We obtained data from self-reported surveys and from Stanford clinical data electronic medical record system as per consented

participant permission. This database contains all the clinical data available from Stanford facilities. The data obtained included pa-

tients’ demographic details, vital signs, laboratory test results, medication administration data, historical and current medication lists,

historical and current diagnoses, time of COVID-19 symptom onset (self-reported), clinical notes, radiological results, biopsy results

as appropriate, historical discharge disposition for previous inpatient hospitalizations, and ventilator use data. Severity diagnosis was

assigned at time of SARS-CoV-2 qRT-PCR alone. Severity diagnosis was assigned according to previously defined National Institute

of Health (NIH) criteria32,33 with the clinical classification of COVID-19 as follows; Asymptomatic: Positive for SARS-CoV-2 but

without COVID-19 symptoms; Mild disease: Various mild symptoms (e.g. cough, fever, sore throat, loss of smell and taste, etc.)

but no breathing issues (shortness of breath, dyspnea, or abnormal chest imaging) are reported; Moderate disease: Evidence of

lower respiratory tract disease but oxygen saturation (SpO2)R 94%; Severe disease: Requires hospitalization because of respiratory

distress (SpO2 % 94%, respiratory frequency <30 breaths/min, PaO2/FiO2 <300 mm Hg, or lung infiltrates >50%).

Phlebotomy and initial blood processing
Blood was collected from 97 patients positive for SARS-CoV-2 and 40 controls via venipuncture. Anticoagulated blood was pro-

cessed into peripheral blood mononuclear cells (PBMC) by density gradient centrifugation using published methods.103 PBMC

were stored in 10% DMSO and frozen in liquid nitrogen until thawing and staining. Plasma was isolated from blood collected in

EDTA tubes as follows: Within 4hrs of collection, tubes were centrifuged at 500 x g for 10 min at room temperature (RT), plasma

was transferred into fresh conical tubes and centrifuged again (500 x g, 10 min, RT) before aliquoting into 500 mL cryovials and trans-

ferred to �80�C for long-term storage.

Study approval
We conducted this study at Stanford University Medical Center, where the samples from COVID-19 patients were collected at the

Stanford Occupational Health Clinic under an IRB approved protocol (55,689; Protocol Director Dr. Nadeau). Informed consent

was obtained from each patient prior to enrolling in the study or from the patient’s legally authorized representative if the patient

was unable to provide consent. Healthy controls (historical controls) were consented using a separate IRB-approved protocol

(8629; Protocol Director Dr. Nadeau).

METHOD DETAILS

Mass cytometry analysis of single-cell immune cell responses in PBMC
In vitro PBMC stimulation

Cryopreserved PBMC were quickly thawed, washed two times with supplemented medium, and rested for 1h at 37�C in RPMI 1640

medium supplemented with 10% fetal bovine serum, 1% Penicillin-Streptomycin, and 1% L-Glutamine. PBMC were counted and

checked for viability. 0.5-1x106 cells were either stimulated with lipopolysaccharide (LPS; 1 mg/ml) and CL097 (TLR7/8 agonist;

1 mg/ml), interleukin-2 (IL-2), IL-4, IL-6 and interferon-a (IFNa; all 100 ng/mL), a cocktail of phorbol 12-myristate 13-acetate (PMA),

ionomycin, brefeldin A and monensin (1x; PI cocktail), or left unstimulated for 15 min at 37�C. After stimulation, samples were fixed

with Proteomic Stabilizer (SmartTube) and stored at �80�C until further processing for mass cytometry analysis.

Barcoding and antibody staining

The 42-marker mass cytometry antibody panel included 25 cell surface antibodies and 17 intracellular antibodies recognizing primar-

ily phospho-specific signaling epitopes (Data S2). In brief, following in vitro stimulation, fixed PBMCs were thawed, reconstituted in

cell staining medium, and arranged in a 96-well block. Subsequent steps were performed using a previously described robotics plat-

form.104 Sets of 16 samples were barcoded with palladium metal105 and pooled into a single well. Pooled barcoded samples were

treated with FC-block (Human TruStain FcX, Biolegend) for 10 min then surface antibody stained for 30 min in cell staining medium
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(PBS with 0.5%BSA and 0.02% sodium azide). After surface staining, cells were permeabilized in ice-cold 100%methanol, washed,

and stained for 60 min with intracellular antibodies in cell staining medium. Following intracellular staining, cells were washed and

resuspended in an iridium intercalator (Fluidigm) solution containing 1.6% paraformaldehyde. Finally, samples were washed, resus-

pended in 1X five-element normalization beads (La, Pr, Tb, Tm, Lu) (Fluidigm), and analyzed on a freshly cleaned and tuned CyTOF

instrument. The resulting mass cytometry data were bead-normalized across all runs and debarcoded as previously described.106

Minimization of experimental batch effects

Tominimize potential batch effects, each of the unstimulated and stimulated samples from the same individual were processed, bar-

coded, stained, and measured simultaneously in the same tube. Samples were processed, barcoded, stained, and measured simul-

taneously in batches equalized to the extent possible for age, gender, healthy control, mild, moderate, and severe categories. Internal

controls – i.e. aliquots of the same sample – were added during each mass cytometer run to evaluate consistent performance be-

tween runs. To control for consistent tuning parameters of the mass cytometer, batches of samples measured on separate days

were normalized to metal impregnated beads mixed with samples during runs.

Cell frequency, endogenous intracellular signaling, and intracellular signaling responses

Mass cytometry data was examined using CellEngine (Primity Bio) to define cell populations using manual gates and quantify differ-

ential expression of signaling markers in response to stimulation. The gating strategy and representative example of phosphosignal-

ing responses can be found in Figure S1 and S2.

Cell frequencies were expressed as a percentage of gated singlet mononuclear cells (DNA+CD235a�CD61�CD66�), except for
granulocyte frequency which was expressed as a percentage of singlet leukocytes (DNA+CD235a�CD61�). Signal intensity was

quantified per single cell for each phospho-signaling protein (pSTAT1, pSTAT3, pSTAT4, pSTAT5, pSTAT6, pMAPKAPK2, pCREB,

pPLCg2, pS6, pERK1/2, pP38, pZAP70/Syk, pTBK1, p4EBP1, and total IkBa) and for a set of markers that relate to immune subset

specific functionality (HLA-DR, FoxP3, CD38, IgM, and Ki67) using an arcsinh transformed value (arcsinh(x/5)) from themedian signal

intensity. Endogenous intracellular signaling activity was derived from the analysis of unstimulated cells, while intracellular signaling

responses to stimulation were reported as the arcsinh transformed ratio over the endogenous signaling, i.e., the difference in arcsinh

transformed signal intensity between the stimulated and unstimulated condition. For cell subsets in a given sample that had an event

count below 20 events, that cell subset and related phospho-signal were excluded from downstream analysis. A combination of five

stimulations x 44 immune cell subsets x 20 functional proteins (i.e. 15 phospho-signaling + 5 functionality-specific proteins) resulted

in a total of 4400 single features obtained per sample. A penalization matrix, based on mechanistic immunological knowledge, was

applied to the immune cell response data,35,107 resulting in a final total of 2662 features for each sample that was used for further

analysis. These included 44 innate and adaptive immune cell subset frequency features, 789 endogenous signaling features, 299

LPS/CL097 stimulation response features, 752 IFNa/IL-2/IL-4/IL-6 stimulation response features, and 778 PI stimulation response

features.

Plasma protein profiling using olink multiplex panel

Plasma protein levels were quantified using Olink multiplex proximity extension assay (PEA) panels (Olink Proteomics; www.olink.

com) according to the manufacturer’s instructions and as described before.108 The basis of PEA is a dual-recognition immunoassay,

where two matched antibodies labeled with unique DNA oligonucleotides simultaneously bind to a target protein in solution. This

brings the two antibodies into proximity, allowing their DNA oligonucleotides to hybridize, serving as a template for a DNA polymer-

ase-dependent extension step. This double-stranded DNA which is unique for a specific antigen will get amplified using P5/P7 Illu-

mina adapters along with sample indexing, which is quantitatively proportional to the initial concentration of target protein. These

amplified targets will finally get quantified by Next Generation Sequencing using Illumina Nova Seq 6000 (Illumina Corporation.

SanDiego, California). In this study, we have used the Explore 1536 panel whichmeasures 1,472 proteins using 3 mL plasma samples,

which were treated with 1% Triton X-100 and incubated at room temperature for 2 h to inactivate the virus.

The raw expression values obtained with the Olink assay are provided in the arbitrary unit Normalized Protein Expression (NPX),

where high NPX values represent high protein concentration. Values were log2-transformed to account for heteroskedasticity. Pro-

teins close to the limit of detection are flagged in the raw data.

Benchmarking of models
In addition to the LASSO model for which we built the stack generalization model (see ‘‘Multivariate analysis and stacked general-

ization’’), we also compared the performance of the LASSO regression with different regression strategies, including: ordinary least

square regression, random forest regressor, elastic-net regression, and support vector machine regression. For all these methods,

we report (1) the RMSE (root-mean-square-error) obtained through the leave-one-out cross validation (LOOCV) strategy and (2) the

RMSE on the validation set (Table S3).

MGH dataset validation
We used a recent proteomic study39 of patients enrolled at the Mass General Hospital (MGH, Boston, MA) as an independent vali-

dation cohort of the severity model trained on the plasma proteomic data. For this analysis, we used our previous proteomic model

fitted on our training cohort to predict disease severity and compared to the WHO scale established for those samples at day 0 to

reproduce the hypothesis of our model. We report the r and p value of the Spearman correlation test between the predictions of our

model and the WHO scale labels (Related to Figure S6 and Data S1). As the MGH dataset was missing 43 protein expressions
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compared to the assay that we used, we imputed the median value of the training cohort to samples of the MGH dataset before

predicting.

QUANTIFICATION AND STATISTICAL ANALYSIS

Univariate analysis
We used the R environment (http://www.r-project.org/) for statistical analysis. We chose to apply a ranked regression analysis for

each feature relative to the severity of the patient at the time of sampling using a spearman correlation test. Healthy controls were

labeled with the numerical value 1, mild cases with 2, moderate = 3, and severe = 4. For each statistic, we report both p values asso-

ciated with the spearman correlation coefficient, and the r correlation coefficient.

Multi-omic factor analysis
Multi-omic factor analysis (MOFA) was applied simultaneously across plasma (Olink) and the single-cell proteomics data (cell fre-

quency, endogenous signaling, IFNa/IL-2/IL-4/IL-6 signaling response, LPS/CL097 signaling response, and PI signaling response).

MOFA infers a set of factors that capture both biological and technical sources of variability that are shared across different datasets.

MOFA models were constructed using the six data layers which were supplied as a list of matrices. We followed the developers’ di-

rections formodel selection and downstream analysis.34 SinceMOFA is not guaranteed to find a global optimum, 10model trials were

performed using different random initializations. For each trial, the number of factors was calculated by requiring at least 2% variance

explained for any single dataset. The model with the highest evidence lower bound was selected out of these 10 trials (model 6, Fig-

ureS3A). The factors calculated bymodel six of our 10 trialswere extracted for downstreamanalysis.MOFAenables variance decom-

position of the calculated factors and uses a coefficient of determination (R2) to quantify the fraction of variance explained by each

factor for each dataset, which we examined first to determine how each dataset contributes to each factor (Figure S3B). Next, we re-

gressed the 17 factors on COVID-19 severity, which was dummy encoded as follows: Control = 1, Mild = 2, Moderate = 3, Severe = 4.

Regression estimates, 95% confidence intervals, and p values were examined (Figure S3C). Factors 3, 8, and 10 were significantly

associated with COVID-19 severity. To assess the robustness of factors across model trials, we calculated Pearson correlation co-

efficients between every pair of factors across all trials. Factors 3 and 10 were consistently discovered in all model instances (data

not shown). Finally, we visualized our samples across factors 3 and 10 using a bivariate scatterplot (Figure 1D).

Covariate analysis
Correlations between the covariates ‘‘age’’, ‘‘gender’’, ‘‘obesity’’, ‘‘Hispanic ethnicity’’, and ‘‘days between self-reported symptom

onset and sample collection’’ with our outcome ‘‘severity’’ was assessed with Pearson correlation and are reported as a correlation

heatmap (Figure S5). Gender was encoded as ‘Male’ = 0, ‘Female’ = 1. Obesity was encoded as ‘not obese’ = 0, ‘obese’ = 1. Hispanic

ethnicity was encoded as ‘not Hispanic’ = 0, ‘Hispanic’ = 1.

Multivariate analysis and stacked generalization
For the multivariate analysis, a LASSO model was trained independently on each omics dataset independently using the caret and

glmnet packages. For a matrix X of all biological features from a given -omic dataset of N samples, and a vector of disease severity Y,

the LASSO algorithm (29) calculates coefficients b to minimize the error term LðbÞ = 1
NðY � XBÞ2 + ljjBjj

1
. The L1 regularization

is used to increase model sparsity for the sake of biological interpretation and model robustness. Once a LASSOmodel is trained for

each omics modality (individual model performance Table S2), the multi-omics analysis can be carried out by performing stacked

generalization35 on the new representation of the data by using the outputs of the previous layer of models as predictors with the

constraint that their participation should be a non-negative coefficient. Specifically, a LASSO model is first constructed on each

omics modality, then all estimations of disease severity are used as predictors for a second-layer constrained regression model.

Intrinsically, this is equivalent to a weighted average of the individual models with the coefficients of the LASSO model as desired

weights.

Leave-one-out cross-validation
An underlying assumption of the LASSO algorithm is statistical independence between all observations. At each iteration of this al-

gorithm, one sample is kept for independent validation. This is an extreme case of the k-fold cross validation called leave-one-out

cross validation (LOOCV).109 The model is trained on all the samples except the one blinded sample and the reported results are

exclusively based on the blinded subject. We repeat this method for every sample, hence building N successive models. For stacked

generalization, a cross-validation was implemented in a two-step approach where the first layer selects the best values of l for each

individual omic and reports the intermediate prediction. Then, the second layer optimizes the constrained regression of all predictors

for the stacked generalization step.

The results of the training cohort were validated with an independent cohort that is totally blinded during the design and fitting of the

models. This independent validation is used only for performance evaluation throughout the results and used to assess the perfor-

mance as a second step after the cross-validation.
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Multi-class receiver operating characteristics (AUC)
To characterize our predictions’ separability in a multi-class setting, we used a combined metric of the area under the receiver oper-

ating curve (AUC) in both the training and validation model. This metric for multi-class analysis uses every combination of labels in

one-to-one comparisons. Every subset of predictions on a pair of classes is considered independently, and the AUC is calculated for

each specific pair. Once all the subset AUCs are computed, the generalizable AUC combines them, taking their mean across all com-

parisons, to give the multi-class model’s overall performance.110

Bootstrap analysis for feature selection
For each omics dataset, we performed a bootstrap analysis where we repeat a bootstrapping procedure on the dataset and train a

cross-validated model. At each iteration, we keep the non-zero coefficients selected by the LASSO procedure on the bootstrapped

dataset and we repeat the procedure 1,000 times.45,46 We report the frequency of selection of the features as well as their median

coefficient in all the bootstrap models. This method selected 44 frequency, 599 endogenous, 536 PI-response, 492 IFNa/IL-2/IL-4/

IL-6, and 783 proteome features that were informative in at least one iteration of the bootstrap procedure (see Data S1). To assess the

relative importance of each feature to the model, we ranked features in each data layer based on their frequency of selection.

Correlation network
The features are visualized using a correlation graph structure to identify correlated feature populations. We used a tSNE111 layout for

the visualization of all the features calculated from thematrix including all the samples available. On this graph, each biological feature

is denoted by a node whose size is dependent on the -log10 of p value of correlation with disease severity (Spearman). The correlation

network between the features is represented by an edge where the width of the edges is proportional to the Spearman p value of the

correlation between a pair of nodes on a log10 scale.

Confounder analysis
A post-hoc linear regression analysis was used as a statistical method to exclude the likelihood that certain clinical or demographic

variables confounded the predictive accuracy of the severity model. We considered the following confounders: ‘‘days between

symptoms onset and sample collection’’, ‘‘age’’, ‘‘gender’’, ‘‘Hispanic ethnicity’’, and ‘‘obesity’’. This analysis fits a regression using

the values of the cross-validated SG model and adds the confounders together to regress them against the severity predictor. The

resulting coefficients of the regression are computed and reported in Table S4. Their significance is reported using the F-statistic from

which we derive the p value for the model coefficient and the confounders.

Plasma proteomic pathway identifier
To obtain pathway information of selected proteome features, we utilized Reactome (www.reactome.org), a web-based resource for

identifying biological pathways, in which we used the list of the 10% bootstrap-selected proteins as an input. Reactome provided a

list of pathways, identified by a Reactome gene set identifier, which we assessed for the proteins part of specific pathways.

Longitudinal modeling
Correlation analysis of bootstrap selected features (10%) with ‘‘time since symptom onset’’ were calculated with a generalized ad-

ditive model (GAM) using the R package ‘‘mgcv’’.102 For each feature, a factor-smooth interaction GAM was constructed with

Severity and ‘‘time since symptom onset’’ as explanatory variables. Three knots were used to represent the smooth term.

P-values of smooth terms for Mild, Moderate, and Severe groups were corrected for false discovery per data layer with Benja-

mini-Hochberg,112 and are reported in Data S1C.

Model formula (R notation) y � Severity + s(DOS, by = Severity, k = 3).
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