
TYPE Original Research

PUBLISHED 22 August 2022

DOI 10.3389/fcomp.2022.921454

OPEN ACCESS

EDITED BY

Catherine Schuman,

The University of Tennessee, Knoxville,

United States

REVIEWED BY

Changbo Wang,

East China Normal University, China

Jeronimo Castrillon,

Technical University Dresden,

Germany

*CORRESPONDENCE

Edward Stow

edward.stow16@imperial.ac.uk

SPECIALTY SECTION

This article was submitted to

Software,

a section of the journal

Frontiers in Computer Science

RECEIVED 15 April 2022

ACCEPTED 18 July 2022

PUBLISHED 22 August 2022

CITATION

Stow E and Kelly PHJ (2022)

Convolutional kernel function algebra.

Front. Comput. Sci. 4:921454.

doi: 10.3389/fcomp.2022.921454

COPYRIGHT

© 2022 Stow and Kelly. This is an

open-access article distributed under

the terms of the Creative Commons

Attribution License (CC BY). The use,

distribution or reproduction in other

forums is permitted, provided the

original author(s) and the copyright

owner(s) are credited and that the

original publication in this journal is

cited, in accordance with accepted

academic practice. No use, distribution

or reproduction is permitted which

does not comply with these terms.

Convolutional kernel function
algebra

Edward Stow* and Paul H. J. Kelly

Software Performance Optimisation Group, Department of Computing, Imperial College London,

London, United Kingdom

Many systems for image manipulation, signal analysis, machine learning,

and scientific computing make use of discrete convolutional filters that are

known before computation begins. These contexts benefit from common

sub-expression elimination to reduce the number of calculations required,

both multiplications and additions. We present an algebra for describing

convolutional kernels and filters at a su�cient level of abstraction to enable

intuitive common sub-expression based optimizations through decomposing

filters into smaller, repeated, kernels. This enables the creation of an enormous

search space of potential implementations of filters via algebraic manipulation.

We demonstrate how integral image and sliding window optimizations can

be expressed in the context of common sub-expression elimination as well

as show the direct use case for this algebra in massively SIMD multiply-free

contexts such as in cellular processor arrays. We then show that this algebra

is general enough to express and optimize kernels that use non-standard

semi-rings to enable shortest path algorithms.

KEYWORDS

convolution, stencil, compiler, Focal-Plane Sensor-Processor, algebra, optimization

1. Introduction

Discrete convolutional kernels are a staple of vision and graphics processing

from traditional edge detection algorithms to artificial intelligence and machine

learning applications. As a subset of stencil functions they provide a way to describe

transformations that are agnostic to absolute position within an image and instead the

output at any pixel position is based only on a corresponding neighborhood of pixels in

the input.

The aim of this algebra is to model the enormous space of semantically correct

computational paths to produce specific kernels: decompositions. A decomposition is

formed as an expression combining convolutional filters that produce the specific desired

convolutional filter, where each of the filters in the decomposition models a hardware

instruction or can otherwise be compiled for the target architecture. From this we can

describe and compare methods of common sub-expression elimination (CSE) as well as

other arithmetic reducing optimizations.

Frontiers inComputer Science 01 frontiersin.org

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://doi.org/10.3389/fcomp.2022.921454
http://crossmark.crossref.org/dialog/?doi=10.3389/fcomp.2022.921454&domain=pdf&date_stamp=2022-08-22
mailto:edward.stow16@imperial.ac.uk
https://doi.org/10.3389/fcomp.2022.921454
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcomp.2022.921454/full
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Stow and Kelly 10.3389/fcomp.2022.921454

The algebra primarily formalizes the compilation search

processes used in the AUKE (Debrunner et al., 2019) and

Cain (Stow et al., 2022) compilers but we have found it enables

us to model other stencil and convolution optimizations in

very different contexts. AUKE and Cain are both compilers that

target the SCAMP-5 Focal-Plane Sensor-Processor; this cellular

processing array consists of a grid of 65,536 pixels each co-

located with a very simple processing element (PE) (Dudek and

Hicks, 2005). Every one of the PEs acts in lockstep completing

the same instruction from a common bus making the SCAMP-

5 a massively parallel SIMD architecture. With each PE having

communication with its four local neighboring PEs, all in-

plane image processing is done via local communication hops;

furthermore each PE only has a very limited number of registers

to store intermediate results and no addressable memory. The

architecture is multiply-free as it has no multiply-unit; the

only arithmetic operations available are addition, subtraction,

negation, and division-by-2. As will be seen in Section 5, Cain’s

code generation process is directly linked to this algebra and

serves as an open-source example of a search based compilation

technique based on the symbolic manipulations that we have

now formalized.

Within a larger compiler pipeline for convolutional filter

optimizations on most architectures there will be several

decisions and optimization passes outside of CSE that are not

discussed within the context of this algebra such as data layout

and locality optimizations, appropriate floating-point precision

selection, kernel approximation, and quantization techniques, as

well as loop unrolling and specific parallelization opportunities.

The use for an algebra that provides a means to a search space of

kernel decompositions is to help usmake some of these decisions

such as ones whereby the tolerance of an approximation can be

reasoned about in terms of the arithmetic reduction it might

enable. On the other hand, loop tiling and cache optimizations

are generally applied after arithmetic reduction and are not

modeled by the algebra. Hence the place for such an algebra in

a convolutional kernel compiler pipeline for more traditional

architectures lies early on in the stages at the point where a

convolution has been concretely decided, perhaps based on

some domain specific mathematics. We hope compiler creators

can use this algebraic manipulation to search for decompositions

that use a set of filters that can each be efficiently computed faster

than a direct implementation of the original convolutional filter.

Our contributions include:

• An exploration of decomposition techniques for

convolutional filters, targeted primarily at multiply-

free, massively parallel devices such as Focal-Plane

Sensor-Processors.

• A description of an algebra that provides the language

and tools with which we can discuss arithmetic

optimizations for constant-coefficient convolutional

filters, as demonstrated through techniques such as

kernel separability, sliding window optimizations, and

summed-area tables.

• A formalization of the code-generation techniques

deployed to various extents in the Cain and AUKE

compilers for the SCAMP-5 FPSP.

• A demonstration that our algebra allows kernels using

non-standard semi-rings to be optimized, as well as non-

standard index spaces.

We begin with a brief look at the background followed by

defining convolution kernels in the abstract, and the various

operators and transformations that can be done with and to

them. Next we look at how this theory is put into practice

in tools like AUKE and Cain and show that we can use

the algebra to describe how Devito (Luporini et al., 2020),

a stencil optimization compiler targeting CPUs, manipulates

convolutional kernel expressions and compare the extents to

which CSE optimization is performed. This is followed by an

exploration of further optimizations and concepts that can be

modeled in the algebra. Next we discuss some of the related

works and finally we discuss the future work for expanding

the uses of this algebra and our conclusions on the proper

place for this algebra within the world of convolutional filter

optimizations.

2. Background

Optimizing various aspects of convolution filters, FIR filters,

and stencils has a long history. Winograd showed that the lower

bound on multiplicative complexity of general FIR filters is

m+n−1 wherem is the number of outputs given an input vector

and an n-tap filter (Winograd, 1980). However, if the filter has

constant coefficients the multiplicative complexity is a function

of the weights themselves and so potentially much smaller, in

extreme cases the lower bound becomes 0.

In constant coefficient multiply-free settings, using both

digital and analog signals, the choice of representation for the

coefficients can be used to increase the common-sub expressions

within a filter allowing for reduced circuit complexity. The

minimal signed digit (MSD) representation is a good example

as every value can have multiple MSD representations (Park

and Kang, 2001). This allows the choices of representations for

each filter coefficient to be co-optimized to maximize reuse and

minimize the required shifting/scaling and addition operations.

Separability of convolutions is a long established technique

for reducing arithmetic redundancy in 2D filters (Lim, 1990)

as well as in convolutional neural networks (CNNs) (Sifre,

2014). In CNNs however, it is generally used as a method to

reduce the number of weights that need to be trained rather

than to accelerate predefined filter weights. This is because

in general an n-dimensional filter is not separable into n

1-dimensional filters. Separability takes advantage of the fact

Frontiers inComputer Science 02 frontiersin.org

https://doi.org/10.3389/fcomp.2022.921454
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Stow and Kelly 10.3389/fcomp.2022.921454

that a subset of convolutional kernels can be computed in two

steps, each applying a simpler kernel with better performance

characteristics such as fewer multiplies or a smaller effective size.

Since this is often not possible, approximations are sometimes

used, or those parts of the kernel that cannot be produced via

separability are computed and added in another step.

There are several tools, languages, and compilers for

preforming convolutional filter operations with high-

performance and efficiency (Holewinski et al., 2012;

Ragan-Kelley et al., 2013; Debrunner et al., 2019; Luporini

et al., 2020; Stow et al., 2022). Cain and AUKE are both

searching compilers in the sense that from a convolutional

kernel they each construct a search graph of decomposition

steps to find a execution path from input value to computed

convolutional kernel in a massively SIMDmultiply-free context.

We show how an algebra for convolutional filters can enable

a larger search space than could be constructed in some

existing search based compilers thus giving the opportunity and

possibility of finding more optimal execution paths.

3. Definition

The simple premise for convolutional operators is that for

each coordinate i ∈ Z
d in an output array O ∈ R

n1×n2...×nd ,
Oi is a linear combination of the neighbors of i from an input
array A.

O = A ∗ K where A ∈ R
m1×m2 ...×md ,K ∈ Z

d 7→ R H⇒ (1)

Oi =

dom(K)
∑

x

(

K(x)× Ai1+x1 ,...id+xd

)

(2)

In the simple 2D case we can think of K as a matrix of weights

that we overlay onto the input array at every position where it

will fit. Then each weight is multiplied by the corresponding

input and the sum over these is the output. K is a kernel, defined

as a mapping from relative coordinates to the coefficients used

in the linear combination.

In this definition however, the sizes of n1, n2, ...nd are

ambiguous or we must assume infinite. This can become

unintuitive for real world applications where the output needs

to be stored in finite memory. To alleviate this we look to the

function based definition of a convolution: the two inputs are

functions and the output is a function on a relative shifts of

the integral over the product of the functions: (f ∗ g)(t) : =
∫∞
−∞ f (τ)g(t − τ) dτ . For discrete and bounded inputs we

propose that we should consider both the input image and the

convolutional kernel as partial functions—mappings from the

index space to values, which will produce an output mapping.

An index space, common between all these mappings, can be an

n-dimensional integer vector as would be expected to index into

an array or any other Abelian group: S = (V ,⊕). Examples of

non-standard index spaces include discretizations of positions

on a torus or rotations about a single axis. The values can be from

any semi-ring though we shall use real numbers with ordinary

addition and multiplication.

A ∈ V 7→ R, K ∈ V 7→ R, O ∈ V 7→ R (3)

A ∗ K = O

=

v 7→

dom(K)
∑

x

(

K(x)A(v⊕ x)
)

∣

∣

∣

∣

∣

∣

v ∈ V ∧ ∀x ∈ dom(K).

(v⊕ x) ∈ dom(A)

(4)

This definition mirrors the definition given in Equation 2

closely, but it also puts in place specific constraints on the

domain of the output mapping such that the size of the output

is unambiguous, and need not be infinite. This definition also

means that the operation is not guaranteed to be commutative

unlessA andK have mappings for all values in their index spaces

which would make them functions rather than partial-functions

so that there are no indices where a result cannot be produced.

The most common index space are the 1 and 2 dimensional

integer vector space with ordinary addition. This corresponds

to 1D and 2D images and filters as we usually expect them and

will be the focus of the notation and methods used. Extensions

to regular convolutions such as dilated filters can be supported

within our algebra, with dilated filters simply represented by

replacing the kernel mappings with ones that reflect the dilated

positions of coefficients. Strided convolutions are not so trivial

as there is no standard convolution that can be used to represent

the effect of a stride. A stride acts like a filter on the index space

available but since this algebra deals with kernels defined in

terms of relative offsets and a index space filter operation would

need some origin to align the stride to we choose not to consider

stride in kernels.

4. Formalization

In this section, we will describe the algebra and the

manipulations that can be applied to kernels. Several pieces

of notation to improve brevity are introduced throughout, for

expanding the algebra from the simplest representations with

addition tomore complex decompositions into filters that model

instruction and are carefully aware of multiple channels.

4.1. Notation

To represent the weights of convolutional kernels, matrices

are often used; probably because they are easily readable for the

common 1 and 2 dimension kernels. To extract the mapping K

from a matrix we must decide on the origin and then we can

simply read off the weights at each relative coordinate within the

matrix.

[

1 0 −1
]

H⇒ {−1 7→ 1, 1 7→ −1} (5)

Frontiers inComputer Science 03 frontiersin.org

https://doi.org/10.3389/fcomp.2022.921454
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Stow and Kelly 10.3389/fcomp.2022.921454

Note that in this form we ignore zeros in the matrix as they will

not contribute to the function. Unfortunately this leaves us with

the ambiguity that matrix with zeros at the extremities is not

fully accounted for in terms of the affect they will have on the

size of the output array. For example:

A ∈ Z 7→ Rn

K1 =
[

1 0 −1
]

H⇒ (A ∗ K1) ∈ Z 7→ R
n−2

K2 =
[

0 1 0 −1 0
]

6H⇒ (A ∗ K2) ∈ Z 7→ R
n−4

(6)

This is pertinent because there are cases when it is more efficient

to implement a “larger” but otherwise equal convolutional kernel

or because the specific output size is of great importance.

Scaling to two dimensions is trivial for the matrix

representation but for the wights mappingK becomes a function

of a coordinate: K ∈ Z
2 → R, and writing out the mapping

in set-notation becomes unwieldy for anything but the most

trivial cases. To accurately represent a convolutional kernel with

minimal ambiguity we propose the following notation:

K =

〈 · · · · ·
· 1 · −1 ·
· 2 · −2 ·
· 1 · −1 ·
· · · · ·

〉

(7)

In this representation, we enforce that there must always be

an odd width and height so the center is unambiguous and

we differentiate between zero and no value using a “·.” Unlike

the matrix notation, therefore, this notation gives us the nice

property that you can “zoom out” or add a ring of dots around

the edge without any impact on the meaning. In the mapping

notation, K from Equation (7) is defined as:

K =

[

−1
1

]

7→ 1,
[

1
1

]

7→ −1,

[

−1
0

]

7→ 2,
[

1
0

]

7→ −2,
[

−1
−1

]

7→ 1,
[

1
−1

]

7→ −1

(8)

4.2. Addition

Addition of kernels is perhaps themost important operation,

it is what allows for decomposition of more complex kernels

into smaller manageable chunks, potentially reducing the overall

complexity of producing a result. Quite simply:

〈

1 · ·
2 1 ·
1 · ·

〉

+

〈

· · −1
· −1 −2
· · −1

〉

=

〈

1 · −1
2 0 −2
1 · −1

〉

(9)

The point is that the convolutional operator should always be

distributive over operations on kernels:

(

A ∗
〈

1 · ·
2 1 ·
1 · ·

〉)

+

(

A ∗

〈

· · −1
· −1 −2
· · −1

〉)

= A ∗

〈

1 · −1
2 0 −2
1 · −1

〉

(10)

Since the kernels and outputs are both weight mappings we can

formalize addition for both as:

J + L =
{

i 7→ J(i)+ L(i) | i ∈ dom(J) ∩ dom(L)
}

∪
{

i 7→ J(i) | i ∈ dom(J) \ dom(L)
}

∪
{

i 7→ L(i) | i ∈ dom(L) \ dom(J)
}

(11)

And we get the following properties of addition of kernels:

identity = I+ = 〈 · 〉 ≡
〈

· · ·
· · ·
· · ·

〉

= ∅ (12)

K + I = K (13)

K + J = J + K (14)

K + (J + L) = (K + J)+ L (15)

K = J + L H⇒ A ∗ K = (A ∗ J)+ (A ∗ L) (16)

4.3. Scalar multiplication

It is trivial to multiply a kernel by a scalar, the process is

simply to multiply each value in the mapping of a kernel by said

scalar:

K × n =
{

v 7→ n× K(v) | v ∈ dom(K)
}

(17)

This gives us the following properties, where the × symbol is

often removed since it is obvious in context:

K × n ≡ Kn (18)

identity = I× = 1 (19)

KI× = K (20)

Kn = nK (21)

K = Jn H⇒ A ∗ K = (A ∗ J)× n (22)

With composition we will then see that multiplying by a scalar

is equivalent to composing with a single entry kernel, with the

scalar value in the center.

4.4. Composition

Next we can look at composing kernels, this provides us with

a neat way to show repeated patterns in kernels and translate

patterns and kernels using other, simple, kernels. We treat the

composition of kernels much like the multiplication of numbers:

K · J ≡ KJ (23)

identity = I· = 〈 1 〉 ≡
〈

· · ·
· 1 ·
· · ·

〉

(24)

KI· = K (25)

KJ = JK (26)

K(JL) = (KJ)L (27)

(K + J)L = KL+ JL (28)

K = JL H⇒ A ∗ K = (A ∗ J) ∗ L (29)

Frontiers inComputer Science 04 frontiersin.org

https://doi.org/10.3389/fcomp.2022.921454
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Stow and Kelly 10.3389/fcomp.2022.921454

The exception is that there is not an inverse element for every

kernel that has more than a single entry. Much like applying

a convolution to an image, composing convolutions can be

defined as:

K · J =
∑

x∈dom(K)

{

x⊕ y 7→ K(x)J(y) | y ∈ dom(J)
}

(30)

This can be read as the repeated sum of copies of K weighted
and translated by each mapping in J. Alternatively, we can
define composition equivalently without relying on addition
over kernels as an intermediary step:

K · J =

v 7→
∑

K(x)J(y)

∣

∣

∣

∣

∣

∣

∣

x ∈ dom(K)

∧y ∈ dom(J)

∧x⊕ y = v

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

v ∈ V∧

∃x ∈ dom(K).

∃y ∈ dom(J).

x⊕ y = v

(31)

Composition has a similar effect to convolution except that

the requirement for the kernel to “fit” inside the input image

is relaxed and the application of the kernel is inverted along

each axis. Composition gives us a neat way to rewrite K from

Equation (7):

〈

1 · −1
2 · −2
1 · −1

〉

=
〈

1 · ·
2 · ·
1 · ·

〉

+

〈

· · −1
· · −2
· · −1

〉

(32)

=
(〈

· 1 ·
· 2 ·
· 1 ·

〉 〈

· · ·
1 · ·
· · ·

〉)

+
(〈

· 1 ·
· 2 ·
· 1 ·

〉 〈

· · ·
· · −1
· · ·

〉)

(33)

=
〈

· 1 ·
· 2 ·
· 1 ·

〉 (〈

· · ·
1 · ·
· · ·

〉

−
〈

· · ·
· · 1
· · ·

〉)

(34)

=
(〈

· 1 ·
· 1 ·
· · ·

〉

+
〈 · · ·
· 1 ·
· 1 ·

〉) (〈

· · ·
1 · ·
· · ·

〉

−
〈

· · ·
· · 1
· · ·

〉)

(35)

=
(〈

· 1 ·
· 1 ·
· · ·

〉

I· +
〈

· 1 ·
· 1 ·
· · ·

〉 〈

· · ·
· · ·
· 1 ·

〉) (〈

· · ·
1 · ·
· · ·

〉

−
〈

· · ·
· · 1
· · ·

〉)

(36)

=
〈

· 1 ·
· 1 ·
· · ·

〉 (

I· +
〈

· · ·
· · ·
· 1 ·

〉) (〈

· · ·
1 · ·
· · ·

〉

−
〈

· · ·
· · 1
· · ·

〉)

(37)

=
(

I· +
〈

· 1 ·
· · ·
· · ·

〉) (

I· +
〈

· · ·
· · ·
· 1 ·

〉) (〈

· · ·
1 · ·
· · ·

〉

−
〈

· · ·
· · 1
· · ·

〉)

(38)

We are able to decompose this kernel entirely, into a

composition of factors, where each factor is a sum of

single entry unit kernels (kernels with only one mapping

whose value is 1). This decomposition suggests there are

efficiencies to be had that are not obvious in the naive way

to produce this kernel by simply multiplying inputs from

different positions:

〈

1 · −1
2 · −2
1 · −1

〉

=

1
〈

1 · ·
· · ·
· · ·

〉

+ 2
〈

· · ·
1 · ·
· · ·

〉

+ 1
〈

· · ·
· · ·
1 · ·

〉

−1
〈

· · 1
· · ·
· · ·

〉

− 2
〈

· · ·
· · 1
· · ·

〉

− 1
〈

· · ·
· · ·
· · 1

〉 (39)

4.5. Channels

While the addition and composition of kernels goes a

long way toward describing the decomposition of kernels, the

definitions we have given do not account for kernels with

multiple channels. These provide a means for a weight in a

kernel to apply over a vector of inputs at the weight’s relative

position. We can motivate this with the example of RGB

images, where we have three channels, or we might think about

having a different channel for temperature, pressure, and each

component of velocity etc. for weather simulation.

Naively, we could consider using vectors instead of scalar

kernel coefficients such that A,K,O ∈ V 7→ R
|channels|, using

element wise multiplication and addition. This, however, does

not allow us to model the summation across the channels to

produce a single scalar output. Alternatively, we could adjust

V to include an extra dimension, this would allow us represent

kernels that have multiple input channels and produce a single

value, but then this kernel cannot be usefully decomposed as

only the first kernel applied to the input could use multiple

channels; the rest could only use the single channel produced

by the first.

Instead we must produce a system where in kernels can act

upon multiple inputs and produce multiple outputs. This allows

us to reason about convolutional filters with multiple input

channels as well as multiple outputs, each output being the result

of a different kernel while exploiting common sub-expressions

between these different kernels. For clarity we say that a kernel

may only have one input channel and always produces a single

output; and a filter can have multiple input and output channels.

For a set of Channels C:

F ∈ (C × V × C) 7→ R (40)

In this definition the first C in the triple refers to the input

channel and the last C refers to the output channel of a kernel

coefficient. For simplicity of notation we assume that C can

be labeled by the natural numbers. In our notation we use the

idea of kernels that map from input to output to form filters,

for example a filter that applies a vertical Sobel kernel to input

channel 2 and outputs the result on channel 3 can be written as:

2 〈 1 · −1
2 · −2
1 · −1

〉3

(41)

If we want to have multiple inputs channels combining to

the same output then we use a vector notation as the coefficients

in the filter:

F =

1
2
3
〈 · · ·
[

0
·
1

]

·

[

0
·
·

]

· · ·

〉4

≡

(1,
[

−1
0

]

, 4) 7→ 0,

(3,
[

−1
0

]

, 4) 7→ 1,

(1,
[

1
0

]

, 4) 7→ 0

(42)

To notate filters with multiple output channels we use a

combination operator [F,G, ...,H], that accepts filters with only

one distinct output channel each and produces a filter with

Frontiers inComputer Science 05 frontiersin.org

https://doi.org/10.3389/fcomp.2022.921454
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Stow and Kelly 10.3389/fcomp.2022.921454

multiple channels:

F = [G1,G2, ...Gm] ≡
⋃

o∈[1,m]

{(i, v, o)

7→ Go(i, v, o)|(i, v, o) ∈ dom(Go)} (43)

If the output channels are consecutive starting from 1 then

we can omit the explicit channel naming.

We can then define composition on filters as:

F · G =

(i, v, o) 7→ S(F,G, i, v, o)

∣

∣

∣

∣

∣

∣

∣

∣

∣

v ∈ V ∧ i, o ∈ C∧

∃(i, x, c) ∈ dom(F).

∃(c, y, o) ∈ dom(G).

x⊕ y = v

where:

S(F,G, i, v, o) =
∑

F(i, x, c)

×

G(c, y, i)

∣

∣

∣

∣

∣

∣

∣

(i, x, c) ∈ dom(F)∧

(c, y, o) ∈ dom(G)∧

x⊕ y = v

(44)

In the example below we take the vertical Sobel filter and

decompose it into effectively the same components as seen in

Equation (38) but without using explicit addition. Instead we

use a filter that performs an identical role while not requiring

a larger set of rules in the algebra. From Equation (48) onward

we omit the input and output channel names when they can be

assumed from the filters themselves. In these places the names of

the channels are not important as long as they match up.

2 〈 1 · 91
2 · 92
1 · 91

〉3
(45)

=

[

2 〈 1 · ·
2 · ·
1 · ·

〉1
,
2 〈 · · 1

· · 2
· · 1

〉2
]

·

1
2
〈 · · ·

·
[

1
91

]

·

· · ·

〉3

(46)

=

[

2 〈 · 1 ·
· 2 ·
· 1 ·

〉1
·
1 〈 · · ·

1 · ·
· · ·

〉1
,
2 〈 · 1 ·

· 2 ·
· 1 ·

〉1
·
1 〈 · · ·

· · 1
· · ·

〉2
]

·

1
2
〈 · · ·

·
[

1
91

]

·

· · ·

〉3

(47)

=
2 〈 · 1 ·

· 2 ·
· 1 ·

〉

·
[〈

· · ·
1 · ·
· · ·

〉

,
〈

· · ·
· · 1
· · ·

〉]

·

〈 · · ·

·
[

1
91

]

·

· · ·

〉3

(48)

=
2 〈 · 1 ·

· 1 ·
· · ·

〉

·
〈 · · ·
· 1 ·
· 1 ·

〉

·
[〈

· · ·
1 · ·
· · ·

〉

,
〈

· · ·
· · 1
· · ·

〉]

·

〈 · · ·

·
[

1
91

]

·

· · ·

〉3

(49)

=

([

2 〈 · 1 ·
· · ·
· · ·

〉

,
2 〈 · · ·

· 1 ·
· · ·

〉

]

·

〈 · · ·

·
[

1
1

]

·

· · ·

〉)

·
〈 · · ·
· 1 ·
· 1 ·

〉

·
[〈

· · ·
1 · ·
· · ·

〉

,
〈

· · ·
· · 1
· · ·

〉]

·

〈 · · ·

·
[

1
91

]

·

· · ·

〉3
(50)

=

[

2 〈 · 1 ·
· · ·
· · ·

〉

,
2 〈 · · ·

· 1 ·
· · ·

〉

]

·

〈 · · ·

·
[

1
1

]

·

· · ·

〉

·
[〈

· · ·
· 1 ·
· · ·

〉

,
〈

· · ·
· · ·
· 1 ·

〉]

·

〈 · · ·

·
[

1
1

]

·

· · ·

〉

·
[〈

· · ·
1 · ·
· · ·

〉

,
〈

· · ·
· · 1
· · ·

〉]

·

〈 · · ·

·
[

1
91

]

·

· · ·

〉3

(51)

In Equation (48), we see that distributively through filter

combination holds with the general rules:

[
a
Fb ·bG

c
,
a
Fb ·bHd] =

a
Fb · [bG

c
,bHd] (52)

[
a
Gb ·bF

c
,dH

e
·
e
J f] = [

a
Gb,dH

e
] · [bF

c
,
e
J f] (53)

Associativity also holds but commutativity is not as straight

forward with filter composition as with kernel composition.

While it applies in the simple case, it does not always apply when

more than one channel is used:

a
F
a
·
a
G
a
=

a
G
a
·
a
F
a

(54)

In modeling convolutions in architectures like SCAMP-5

it is helpful to represent each instruction as a filter acting on

the PE registers as channels. It is useful to think about exactly

what the semantics of an instruction used in this context would

be. We have seen how we can use a filter that applies addition

over multiple input channels but the meaning of an instruction

generally has the nuance that it acts as a “pass-through” filter for

all the channels that are not otherwise effected by the instruction.

For example, an addition instruction over channels 1 and 2

that outputs its result into channel 3 also preserves the original

values of 4, 5, 6, ...; and maybe 1 and 2 as well depending on

implementation. We use the shorthand of an underscore to

denote filters that we can assume have a “pass through”/identity

kernel for all unspecified channels:

a
Fb ≡

a
Fb∪

{

(c,
[

0
0

]

, c) 7→ 1|c ∈ C ∧ c 6= b
}

(55)

For example:

1
2
〈 · · ·

·
[

1
1

]

·

· · ·

〉3

≡

(1,
[

0
0

]

, 3) 7→ 1, (2,
[

0
0

]

, 3) 7→ 1,

(1,
[

0
0

]

, 1) 7→ 1,

(2,
[

0
0

]

, 2) 7→ 1,

(4,
[

0
0

]

, 4) 7→ 1,

(5,
[

0
0

]

, 5) 7→ 1,

...

(56)

We can use this concept to lower our Sobel filter

decomposition further, removing the combination operator that

would implies parallel execution of the simpler instructions:

≈
2 〈 · 1 ·

· · ·
· · ·

〉1
·
2 〈 · · ·

· 1 ·
· · ·

〉2
·

1
2
〈 · · ·

·
[

1
1

]

·

· · ·

〉1

·
1 〈 · · ·

· 1 ·
· · ·

〉1
·
1 〈 · · ·

· · ·
· 1 ·

〉2

·

1
2
〈 · · ·

·
[

1
1

]

·

· · ·

〉1

·
1 〈 · · ·

1 · ·
· · ·

〉2
·
1 〈 · · ·

· · 1
· · ·

〉3
·

2
3
〈 · · ·

·
[

1
91

]

·

· · ·

〉3
(57)

=
2 〈 · 1 ·

· · ·
· · ·

〉1
·

1
2
〈 · · ·

·
[

1
1

]

·

· · ·

〉1

·
1 〈 · · ·

· · ·
· 1 ·

〉2

·

1
2
〈 · · ·

·
[

1
1

]

·

· · ·

〉1

·
1 〈 · · ·

1 · ·
· · ·

〉2
·
1 〈 · · ·

· · 1
· · ·

〉3
·

2
3
〈 · · ·

·
[

1
91

]

·

· · ·

〉3
(58)

=

[

2 〈 · 1 ·
· 2 ·
· 1 ·

〉1
,
2 〈 1 · ·

2 · ·
1 · ·

〉2
,
2 〈 1 · 91

2 · 92
1 · 91

〉3
]

(59)

In the final filter of Equation (57), we see that the choice

of channels can not always be a direct copy of the pre-lowered

Frontiers inComputer Science 06 frontiersin.org

https://doi.org/10.3389/fcomp.2022.921454
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Stow and Kelly 10.3389/fcomp.2022.921454

decomposition as we must ensure that we do not overwrite

results that are now sequentially needed. In Equation (58), we see

that two identity kernels in our decomposition can be removed

as these would effectively correspond to a noOp instruction. This

lowering step changes the semantic meaning of the filter that we

produce by introducing side effects on channels 1 and 2. The

choice of channels that are effected can be made in anyway that

satisfy the requirements and limitations on the channels and

instructions.

4.6. Modeling implementation constraints

What we have seen so far is a nice mathematical

representation of kernels and their operators, but there is an

important aspect missing that ties the theory of our algebraic

manipulations to the realities of computation, implementation

constraints. In an implementation we must be aware of the

storage and memory requirements of the platform performing

each kernel operation. This means, for example, that to store an

image we need to hold each pixel value in some form of memory.

In traditional CPUs this amounts to understanding the

specific sizes of arrays that might need to store intermediate

results. For more specialized and novel processors like Focal-

plane Sensor-processors we must consider which processors in

an array of processing elements must be active to produce a

result of a size we want.

We propose that every operation required to produce a

convolutional filter can be expressed as a filter—and so can be

written in our kernel algebra. Addition and multiplication are

trivial and we have already seen them both. In a CPU we see that

when iterating through an array to compute a kernel, accessing

elements of the input at relative positions is captured by a unit

single entry kernel as seen in Equation (39).

A fundamental constraint in most processor architectures is

that the result of applying a kernel is a value that must be stored

somewhere. The affect on the kernels that can be computed is

simple:

A kernel can only be applied where memory exists to

store the result.

In a CPU context this means there must be an output array

large enough to store the value, and in an FPSP like SCAMP-5 it

means the result is stored in a PE at the center of the kernel.

Since we are now dealing with instructions encoded as

filters, the order in which we apply the instructions becomes

important, so we define a new left-associative operator “�” to

represent composing two kernels and then adding a another

kernel that encodes the constraints in the architecture. � is not

commutative or associative since instructions are processed in

order. Starting with I·, the identity filter under composition, we

apply a “Move Down” instruction, that models the SCAMP-5

architecture, encoded in the filter.

I· �
1 〈 · 1 ·

· + ·
· · ·

〉1
=

(

I· ·
1 〈 · 1 ·

· · ·
· · ·

〉1
)

+1 〈 0 〉1=
1 〈 · 1 ·

· 0 ·
· · ·

〉1
(60)

For each + in the instruction we add a corresponding 0

to the result of the composition. In this case it encodes our

principal that the output must be stored at the center of the

kernel. This does not mean the result is stored back into the

input array but that the output array has a place for the value to

go. The meaning is mostly lost on CPUs where the there are few

constraints on what memory can be accessed relative to current

position of a kernel as we scan across the input. However, when

composing multiple modeled SCAMP-5 instructions we see how

this affects the shape of the kernels actually being calculated:

I· �
〈

· 1 ·
· + ·
· · ·

〉

�

〈

· · ·
1 + ·
· · ·

〉

=
〈

· 1 ·
· 0 ·
· · ·

〉

�

〈

· · ·
1 + ·
· · ·

〉

=
〈

1 · ·
0 0 ·
· · ·

〉

(61)

I· �
〈

· · ·
1 + ·
· · ·

〉

�

〈

· 1 ·
· + ·
· · ·

〉

=
〈

· · ·
1 0 ·
· · ·

〉

�

〈

· 1 ·
· + ·
· · ·

〉

=
〈

1 0 ·
· 0 ·
· · ·

〉

(62)

We can express an entire program such that working

through the compositions will result in true size of the program

being expressed. The first step is to take our decomposition,

ensuring that all the filters it uses express available instructions

in our instruction-set. To improve clarity and demonstrate the

direct mapping to SIMD CPA instructions we can simply define

an add(a, b, c) (2 operand) instruction in place of writing out

kernels:

add(a, b, c) =

a
b
〈

[

1
1

]

〉c
(63)

From Equation (58), we see that all the filters are simple

translations that we will assume are in our instruction set, or 2

operand additions and subtractions.

I· �
2 〈 · 1 ·

· + ·
· · ·

〉1
� add(1, 2, 1)�

1 〈 · · ·
· + ·
· 1 ·

〉2
� add(1, 2, 1)

�

1 〈 · · ·
1 + ·
· · ·

〉2
�

1 〈 · · ·
· + 1
· · ·

〉3
� sub(2, 3, 3)

(64)

We can now work through this program step by step—in

execution order.

=
2 〈 · 1 ·

· 0 ·
· · ·

〉1
� add(1, 2, 1)�

1 〈 · · ·
· + ·
· 1 ·

〉2
� add(1, 2, 1)

�

1 〈 · · ·
1 + ·
· · ·

〉2
�

1 〈 · · ·
· + 1
· · ·

〉3
� sub(2, 3, 3)

(65)

=
2 〈 · 1 ·

· 1 ·
· · ·

〉1
�

1 〈 · · ·
· + ·
· 1 ·

〉2
� add(1, 2, 1)

�

1 〈 · · ·
1 + ·
· · ·

〉2
�

1 〈 · · ·
· + 1
· · ·

〉3
� sub(2, 3, 3)

(66)

=

[

2 〈 · 1 ·
· 1 ·
· · ·

〉1
,
2 〈 · · ·

· 1 ·
· 1 ·

〉2
]

� add(1, 2, 1)

�

1 〈 · · ·
1 + ·
· · ·

〉2
�

1 〈 · · ·
· + 1
· · ·

〉3
� sub(2, 3, 3)

(67)

Frontiers inComputer Science 07 frontiersin.org

https://doi.org/10.3389/fcomp.2022.921454
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Stow and Kelly 10.3389/fcomp.2022.921454

=

[

2 〈 · 1 ·
· 2 ·
· 1 ·

〉1
,
2 〈 · · ·

· 1 ·
· 1 ·

〉2
]

�

1 〈 · · ·
1 + ·
· · ·

〉2
�

1 〈 · · ·
· + 1
· · ·

〉3
� sub(2, 3, 3)

(68)

=

[

2 〈 · 1 ·
· 2 ·
· 1 ·

〉1
,
2 〈 1 · ·

2 0 ·
1 · ·

〉2
]

�

1 〈 · · ·
· + 1
· · ·

〉3
� sub(2, 3, 3) (69)

=

[

2 〈 · 1 ·
· 2 ·
· 1 ·

〉1
,
2 〈 1 · ·

2 0 ·
1 · ·

〉2
,
2 〈 · · 1

· 0 2
· · 1

〉3
]

� sub(2, 3, 3) (70)

=

[

2 〈 · 1 ·
· 2 ·
· 1 ·

〉1
,
2 〈 1 · ·

2 0 ·
1 · ·

〉2
,
2 〈 1 · 91

2 0 92
1 · 91

〉3
]

(71)

This all means that the example kernel in Equation (7)

hasn’t been perfectly compiled into instructions but instead we

have modeled both the side effects and corrected filter shape

given an implementation that allows us to understand the real

consequences of the operation while performing optimizations

on the way.

〈

1 · −1
2 · −2
1 · −1

〉

H⇒

[

2 〈 · 1 ·
· 2 ·
· 1 ·

〉1
,
2 〈 1 · ·

2 0 ·
1 · ·

〉2
,
2 〈 1 · 91

2 0 92
1 · 91

〉3
]

(72)

5. Modeling existing works with our
Kernel algebra

Both the AUKE compiler (Debrunner et al., 2019) and

Cain compiler (Stow et al., 2022) accept a kernel that is first

approximated such that the coefficients are integers multiples

of binary fractions, n
2d
, they then work backwards in their own

ways to produce a plan for computing the kernel. In AUKE a

kernel is represented by “atoms”—indivisible units at various

children(F) =

⋃

x∈[1..n]

{

(F \ {Kx}) ∪ {L,R}
∣

∣L ∈ (Z× Z) 7→ Z ∧ R ∈ (Z× Z) 7→ Z ∧ L+ R = Kx
}

∪
{

(F \ {Kx}) ∪ {L,R}
∣

∣L ∈ (Z× Z) 7→ Z ∧ R ∈ (Z× Z) 7→ Z ∧ L− R = Kx
}

∪
{

(F \ {Kx}) ∪ {L}
∣

∣

∣
L ∈ (Z× Z) 7→ Z ∧ L

〈

· 1 ·
· · ·
· · ·

〉

= Kx

}

∪
{

(F \ {Kx}) ∪ {L}
∣

∣

∣
L ∈ (Z× Z) 7→ Z ∧ L

〈

· · ·
· · 1
· · ·

〉

= Kx

}

∪
{

(F \ {Kx}) ∪ {L}
∣

∣

∣
L ∈ (Z× Z) 7→ Z ∧ L

〈

· · ·
· · ·
· 1 ·

〉

= Kx

}

∪
{

(F \ {Kx}) ∪ {L}
∣

∣

∣
L ∈ (Z× Z) 7→ Z ∧ L

〈

· · ·
1 · ·
· · ·

〉

= Kx

}

(73)

positions within the kernel each worth 1
2d

that make up the

kernel coefficients. This kernel of atoms is decomposed by

splitting it into parts that can be shifted and combined. This is

done to produce 1, 2, or 3 simpler kernels labeledU, L, andR that

can be combined to output the desired kernel F. This is repeated

until we have a single identity kernel, which will have 2d atoms

in the center. From these transformations a data flow graph can

be built. Modeling the kernels as a collection of atoms is the

quantified basis that our algebra builds on and formalizes. Hence

Debrunner’s method is captured by our notion of decomposition

fairly simply: each of these transformations in AUKE has the

following form:

[

Ll,Rr
]

·
{

(l,
[x
y
]

, u) 7→ ±29k
}

·

u
l
r
〈

[

1
1
1

]

〉f

(74)

where x and y allow for shifting of L to produceU, and±29k, k ∈

Z
+
0 allows for negation and repeated dividing by two AUKE

uses these transformations to produce a graph of kernel states

that can then be manipulated in an equivalent fashion to the

algebraic manipulations we use in decomposing kernels. These

are then trivially reduced to individual SCAMP-5 instructions

for shifting, adding, subtracting, and dividing.

In Cain kernels are represented as integer quantities of

atoms, an optimization on the approach in AUKE. Cain has

a similar but different approach to creating a searching where

each available instruction in SCAMP-5 is directly represented

as a filter as seen for decompositions in Section 4.6. Cain finds

ways to apply the inverse of these instructions to the input

filter to produce a list of many potential filters that by the

application of that one instruction will produce the desired

resulting filter. Again, this process is repeated until the filter to

compile is simply the identity filter. This method produces a list

of instructions that are both directly the instructions to apply

register allocation to, and each a filter as can be represented in

our algebra. Instructions like addition are not simply invert-

able so every possible pair of filters that would sum to the

desired result must be included in the search graph for an

exhaustive search.

For a given set of kernels F = {K1, ...,Kn} where Kx ∈

(Z×Z) 7→ Z and using simple add, subtract, and neighbor-move

instructions, Cain’s search graph can be produced as:

If choices for L and R are exhaustive for all instructions

then we can say that the search space includes every way

to achieve the desired result given the available instructions

and so includes the optimal solution. An exhaustive search

is intractable because there are an infinite number of

ways to produce any filter as the addition of two filters,

but through heuristics Cain is able to ignore unlikely

candidates and steer the search toward effective and profitable

optimizations.

Frontiers inComputer Science 08 frontiersin.org

https://doi.org/10.3389/fcomp.2022.921454
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Stow and Kelly 10.3389/fcomp.2022.921454

Devito is a python based framework that automates much of

the process of numerically solving partial-differential equations

using the finite-difference method (Luporini et al., 2020).

The framework heavily relies on producing high-performance

C++ code that compute stencils to solve problems such as

full waveform inversion. Within Devito, stencil optimizations

include symbolic analysis that finds common sub-expressions

between coefficients at different positions in a stencil. Their

optimizations are described in Section 5.1 of Luporini et al.

(2020) and here we show how these can map into our algebra,

starting with reused variables as coefficients:

〈 · · · · (9.0×dt×dt) (−18.0×dt×dt) (9.0×dt×dt) 〉 H⇒

〈 · · · · (9.0×temp) (−18.0×temp) (9.0×temp) 〉

where: temp = dt× dt
(75)

Factorizations of the stencil can be found where the

coefficients are equal:

〈 · · · · (9.0×temp) (−18.0×temp) (9.0×temp) 〉 H⇒

(〈 · · · · 1 · 1 〉 〈 9.0×temp 〉 + 〈 · · · · −18.0×temp 〉) (76)

This factorization is made as a distinct optimization to

extraction in whichDevito explicitly creates a temporary array to

store an intermediary result. This difference is a choice of where

within a series of nested loops the computation should take

place. Such a choice can be clearly represented with bracketing to

explicitly show the order of execution though composition does

not formally define this schedule—this would be for a lowering

step that interprets this expression as presented to control:

(〈 · · · · 1 · 1 〉 〈 9.0×temp 〉 + 〈 · · · · −18.0×temp 〉) H⇒
(

[

1 〈 · · · · 1 · 1 〉2
]

)

·

1
2
〈

·
[

·
9.0×temp

] [

−18.0×temp
·

]

〉

(77)

Lastly, Devito extracts “shift invariant” expressions. In Devito,

this is a separate analysis task to factorization and extraction but

in this algebra they are clearly related and can be transformed

between one another:

(〈 · · · · 1 · 1 〉 〈 9.0×t 〉 + 〈 · · · · −18.0×t 〉) H⇒
(

[

1 〈 9.0×t 〉2
]

)

·

1
2
〈

· · · ·
[·
1
]

[

−18.0×t
·

]

[·
1
]

〉

(78)

=

(

[

1 〈 9.0×t 〉2
]

)

·
[

1 〈 · · · · −18.0×t 〉1 ,2 〈 · · · · 1 · 1 〉2
]1
2
〈

[

1
1

]

〉

(79)

=

(

[

1 〈 9.0×t 〉2 ·2 〈 · · · · 1 · 1 〉2
]

)

·
[

1 〈 · · · · −18.0×t 〉1 ,2 〈 1 〉2
]1
2
〈

[

1
1

]

〉

(80)

=

(

[

1 〈 · · · · 1 · 1 〉2 ·2 〈 9.0×t 〉2
]

)

·
[

1 〈 · · · · −18.0×t 〉1 ,2 〈 1 〉2
]1
2
〈

[

1
1

]

〉

(81)

=

(

[

1 〈 · · · · 1 · 1 〉2
]

)

·
[

1 〈 · · · · −18.0×t 〉1 ,2 〈 9.0×t 〉2
]1
2
〈

[

1
1

]

〉

(82)

=

(

[

1 〈 · · · · 1 · 1 〉2
]

)

·

1
2
〈

·
[

·
9.0×t

] [

−18.0×t
·

]

〉

(83)

Devito goes on to perform several optimizations at the

iteration-space and loop levels to reduce data movement

and maximize cache hit-rate to improve performance. It

is a limitation of this algebra that such optimizations

are not obviously representable. Optimizations that improve

spacial and temporal locality based on the assumption of

loops in a CPU architecture rather than reducing the total

number of operations required are step beyond the focus of

this work.

We have shown here that this algebra can be used to produce

an enormous search space of decompositions that encompasses

those used in exiting tools for arithmetic reduction.

6. Further uses

In this section, we describe optimizations and

generalizations of the algebra that go beyond the standard

methods of common sub-expression elimination. These are

well-known techniques that on first glance appear to be separate

from the focus of the algebra but we show how they can be

modeled in using our existing rules, with no or minimal caveats

and qualifications.

6.1. Recursion

A well known optimization for computing a 1D box filter

kernel of width n is to consider the kernel as a sliding window

with an accumulation variable. Every time we slide the window

across one space to compute the kernel output at the new

position we simply take the previous value, subtract the value

that has just been left out of the window, and add the value

that has just entered the window. This means for no matter how

Frontiers inComputer Science 09 frontiersin.org

https://doi.org/10.3389/fcomp.2022.921454
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Stow and Kelly 10.3389/fcomp.2022.921454

large n is, each new output only takes one subtraction and one

addition.

If n = 5 then we have as our kernel:

K = 〈 1 1 1 1 1 〉 (84)

From here we can represent this optimization quite simply:

K = 〈 · 1 1 1 1 1 · 〉 (85)

= 〈 · · 1 1 1 1 1 〉 〈 1 · · 〉 (86)

= (〈 · 1 1 1 1 1 · 〉 − 〈 · 1 · · · · · 〉 + 〈 · · · · · · 1 〉) 〈 1 · · 〉 (87)

= (K − 〈 · 1 · · · · · 〉 + 〈 · · · · · · 1 〉) 〈 1 · · 〉 (88)

= K 〈 1 · · 〉 − 〈 · 1 · · · · · 〉 〈 1 · · 〉 + 〈 · · · · · · 1 〉 〈 1 · · 〉 (89)

= K 〈 1 · · 〉 − 〈 1 · · · · · · 〉 + 〈 · · · · · 1 · 〉 (90)

We can clearly see the optimization as described: taking the

previous value, subtracting the element as it leaves the window

and adding the new element in. If we tried to produce

instructions for this kernel naively we would have an infinitely

long list of instruction as this expression does not tell us how

to produce the base case. But if we were to produce a base case

without recursion this decomposition shows that as long as we

iterate to the right (such that the K to our left already exists)

then we can make this optimization. While the example shown

is a simple box filter kernel it is clear that the same technique can

be applied to any arbitrary filter, with mixed results in terms of

potential performance improvement.

6.2. Integral image

To describe Integral Maps, also called Summed-area Tables,

we first need to represent infinite kernels:

T =

〈 · · · · ·
· · · · ·
∼ 1 1 · ·
∼ 1 1 · ·

∼ ∼ ∼ · ·

〉

(91)

T =
{[x

y
]

) 7→ 1
∣

∣x ∈ Z, y ∈ Z, x ≤ 0, y ≤ 0
}

(92)

Here we see that this kernel could only be used on a theoretical

infinite input array. But like with the recursive case if we

assume a base case or boundary then this kernel is simply a

representation of producing an integral image or Summed-area

table. We can then use this kernel like any other to produce an

output such a box filter in the classic use case:

K =
〈

1 1 1
1 1 1
1 1 1

〉

=

〈 · · · · ·
· 1 1 1 ·
· 1 1 1 ·
· 1 1 1 ·
· · · · ·

〉

=

〈 · · · · ·
· · · · ·
1 1 1 · ·
1 1 1 · ·
1 1 1 · ·

〉

〈

· · 1
· · ·
· · ·

〉

(93)

=

−T ·
{[

−3
0

]

7→ 1
}

+T

+T ·
{[

−3
−3

]

7→ 1
}

−T ·
{[

0
−3

]

7→ 1
}

〈

· · 1
· · ·
· · ·

〉

(94)

This shows how we can represent the efficient decomposition of

a simple Box filter assuming we have already calculated T.

6.3. Non-standard semi-rings

Using linear algebra paradigms and semi-rings allows us

to describe graph algorithms such as shortest path algorithms

where by the standard multiplication and addition operators are

replaced with addition and minimum operations. A row vector

of nodes repeatedly multiplied by an adjacency weight matrix

will produce a vector of shortest distances:

0

∞

∞

∞

∞

T

·

0 1 ∞ ∞ ∞

2 0 7 ∞ 2

∞ 6 0 5 2

∞ ∞ 5 0 ∞

∞ 2 3 ∞ 0

=

min

(

0+ 0, ∞+ 2,

∞+∞, ...

)

min

(

0+ 1, ∞+ 0,

∞+ 6, ...

)

∞

∞

∞

T

(95)

0

1

∞

∞

∞

T

·

0 1 ∞ ∞ ∞

2 0 7 ∞ 2

∞ 6 0 5 2

∞ ∞ 5 0 ∞

∞ 2 3 ∞ 0

=

0

1

8

∞

3

T

(96)

0

1

8

∞

3

T

·

0 1 ∞ ∞ ∞

2 0 7 ∞ 2

∞ 6 0 5 2

∞ ∞ 5 0 ∞

∞ 2 3 ∞ 0

=

0

1

6

13

3

T

(97)

0

1

6

13

3

T

·

0 1 ∞ ∞ ∞

2 0 7 ∞ 2

∞ 6 0 5 2

∞ ∞ 5 0 ∞

∞ 2 3 ∞ 0

=

0

1

6

11

3

T

(98)

In a similar way, we can look at how non-standard semi-

rings can be used in convolutions, for example the min-sum

semi-ring could be used to find the number of steps it would

take a knight to move to various point on a chess board. In this

case A is the board with its size (8, 8) but that conceptually at all

other indices of A, not shown, we have ∞ which means we can

assume the size of A ∗ K is not any smaller.

K =

〈 · 1 · 1 ·
1 · · · 1
· · 0 · ·
1 · · · 1
· 1 · 1 ·

〉

(99)

Ai+1 =Ai ∗ K (100)

A0 =

{

[

x
y

]

7→

{

0,
[

x
y

]

∈ StartPos

∞, otherwise

}
∣

∣

∣

∣

∣

x ∈ Z, y ∈ Z

}

(101)

Frontiers inComputer Science 10 frontiersin.org

https://doi.org/10.3389/fcomp.2022.921454
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Stow and Kelly 10.3389/fcomp.2022.921454

A0 =

∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

∞ 0 ∞ ∞ ∞ ∞ 0 ∞

(102)

A1 =

∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

1 ∞ 1 ∞ ∞ 1 ∞ 1

∞ ∞ ∞ 1 1 ∞ ∞ ∞

∞ 0 ∞ ∞ ∞ ∞ 0 ∞

(103)

A2 =

∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

∞ 2 ∞ 2 2 ∞ 2 ∞

2 ∞ 2 2 2 2 ∞ 2

1 2 1 ∞ ∞ 1 2 1

2 ∞ 2 1 1 2 ∞ 2

∞ 0 2 2 2 2 0 ∞

(104)

Like with the linear algebra example, through repeated

application we can achieve a map of shortest path lengths to

have one of our knights reach the a target. We can still perform

decompositions on K but we must be careful to obey the new

meanings of multiplication and addition:

K =

〈 · 1 · 1 ·
1 · · · 1
· · 0 · ·
1 · · · 1
· 1 · 1 ·

〉

=〈 0 〉 +

〈 · 1 · · ·
1 · · · ·
· · · · ·
· · · · ·
· · · · ·

〉

+

〈 · · · · ·
· · · · ·
· · · · ·
· · · · 1
· · · 1 ·

〉

+

〈 · · · 1 ·
· · · · 1
· · · · ·
· · · · ·
· · · · ·

〉

+

〈 · · · · ·
· · · · ·
· · · · ·
1 · · · ·
· 1 · · ·

〉

(105)

=

[

〈 0 〉1 ,
〈

· 1 ·
1 · ·
· · ·

〉2
,
〈 · · ·
1 · ·
· 1 ·

〉3
]

〈

· · · ·

[

·
·
0

]

·

[

·
0
·

]

· · ·

· ·

[

0
·
·

]

· ·

·

[

·
·
0

]

· · ·

· · · ·

[

·
0
·

]

〉

(106)

7. Related work

General background in covered in Section 2; in this

section we focus on prior work in compilers for common

sub-expression elimination and symbolic expressions of

convolutional filters used to automate optimization decisions,

and how this relates to this work. There are several works

that attempt to reduce the arithmetic complexity of constant

coefficient convolutional filters. We have already discussed Cain

and AUKE, two compilers for multiply-free convolutional

filters; as well as Devito’s Symbolic Engine, a tool for

exploiting common sub-expressions in stencils produced

in the implementation of the finite-difference method, in

Section 5.

Domain specific programming languages such as Halide

improve the maintainability and performance of convolutional

filter code (Ragan-Kelley et al., 2013). Halide decouples the

functionality of chains of filters from the execution policy. This

means algorithmic development and performance optimization

can be tackled separately. Users specify filters in a functional

language embedded in C++ and can then either define a schedule

of execution manually or use an automated scheduler. While

Halide is able to transform a functional filter specifications

with constant coefficients to high performance executables it

does not perform symbolic analysis of the filters to determine

automatically if the filter is separable or could be factorized.

We see this as an opportunity for a producing a tool that

pipelines filters specified in our algebra into Halide. While our

algebra aims to tackle arithmetic reduction and common sub-

expression elimination it is clear that there is a great gap between

flop-optimal filter design and executable functions that Halide

could provide.

In Stock et al. (2014), the associativity and commutativity

of kernel weights are exploited to enable better reuse of input

data. In a naive optimization of an n × n kernel we might

use a loop nest over the rows and columns of the data,

with unrolled loops over the kernel to perform the product

and summation into an output array. For maximum reuse

between consecutive iterations along the columns we need

n × (n − 1) registers, this means only n new values each

iteration need to be loaded from the cache. The problem is

that this causes register spilling for higher values of n which

degrades the performance. Stock et al. developed strategies

reduce the number of registers required. While this work utilizes

associativity and commutativity to reduce register pressure and

increase data reuse it is independent of common sub-expressions

within the kernel weights and so like Halide, it is distinct from

our algebra.

Linnea is a linear algebra compiler that works from an

abstract syntax tree to encoding an expression to search for

high-performance ways to compute said expression (Barthels

et al., 2021). Linnea creates a directed acyclic graph, the root

node being the whole expression, and each edge being a step

that would simplify the parent node—either by computing

some value or by symbolically rewriting the expression. By

using knowledge of liner algebra in the form of lemmas and

inference rules, Linnea can lower the flop-count of algorithms

for calculating input expressions. The approach taken by

Linnea appeals as a potential future work for our algebra;

now we have a formalized set of rules for rewriting and

inferring properties that can be applied to expressions of

convolutional kernels.

Frontiers inComputer Science 11 frontiersin.org

https://doi.org/10.3389/fcomp.2022.921454
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Stow and Kelly 10.3389/fcomp.2022.921454

In existing works on common sub-expression elimination,

the process is often described and notated using an array

index notation or wiring diagrams (Pasko et al., 1999; Mori

et al., 2012; Fukushima et al., 2018). While these notations are

sufficient for explanation, they do not make the limitations of

the manipulations being used apparent, and so make it difficult

to consider how different optimizations could be combined.

It is clear that the varied methods for communicating how

convolutional kernel optimizations are performed are not always

compatible, this can mean readers must gain an intuition for the

optimization before find it is equivalent or related to another

method, as well as being able to decide correctness.

8. Future work

The algebra we present is designed with compilers in

mind, it enables us to produce a more formal understanding

of the transformations that would reduce arithmetic cost in

executing convolutions. For this to be useful and practical in

implementation we must consider how a cost function can

be applied to arbitrary expressions in our algebra. The Cain

compiler uses a cost model partly based on picking which

child node reduces the number of non-zeros in the kernels to

produce while maximizing common patterns between kernels.

This model has been effective on the SCAMP-5 FPSP but it

relies on the premise that each edge in the search graph is one

instruction on the device that each take the same amount of

time: there are no control flows, cache structures, or out of

register storage of intermediate results to consider. Future work

would include developing a framework for modeling the cost of

different expressions in our algebra for more traditional CPU

architectures, FPGAs, and GPUs.

One route to a generalized cost model for the algebra might

include augmenting the algebra to explicitly provide context in

terms of iteration spaces, storage of intermediaries, and tiling

information. While arithmetic complexity of decompositions

can be easily derived from expressions in the algebra it

is well-known that this is often not the bottleneck and

reducing accesses to main memory is more important,

sometimes even at the expense of recomputing values. It

is clear that some decompositions expose ways to combine

effectively one-dimensional kernels in more complex ways

than traditional separability to produce higher dimensional

filters and so provide great opportunities for parallelism and

vectorization in the production of intermediate results. These

sorts of insights for specific kernels could be automated and

exploited if a cost model were able to predict the further

optimizability of kernels that takes into account locality

and parallelism.

With an effective cost model it would become a feasible

endeavor to implement a general searching compiler. The search

space for decompositions is enormous, even when the possible

steps of decomposition are severely restricted as in AUKE

and Cain the search can only be done exhaustively for very

small examples. In Cain’s model the cost function of a whole

program is very reliably found as just the total number of

kernels in the decomposition, but this is not an viable strategy

in general.

9. Conclusion

The space for optimizing convolutional filters is large and

diverse. We have presented an algebra that can be used as a

language to describe and analyse several types of arithmetic

reduction optimization used for different architectures, such

as separability on SCAMP-5 and sliding window optimizations

that are irrelevant on SCAMP-5 but are common place

in CPU convolution algorithms. This algebra underpins

the optimizations and code generation used in the Cain

compiler and for various processor architectures it provides

a meaningful abstraction for understanding and finding high-

level optimizations. The algebra is limited in that it does not

intuitively consider the stride of kernels, neither does it allow

us to reason about tiling the convolution for cache efficiency.

While these are important features and optimizations, we

claim that this algebra provides a more abstract view of the

problem and in no way claim this is the only step in the

optimization path.

Our convolutional kernel algebra sufficiently describes

many abstract optimizations used for stencil filters, FIR

filters, and convolutional filters; and we expect there

are more that we have not shown that could be found

given an extensive search of the problem space as defined

by the algebra. We show simple examples of sliding

window and summed-area-table optimizations but the

same techniques can be applied to many different kernels

given the tools to manipulate the kernels safely. Since

this system allows kernels to be decomposed into other

kernels, its principals could be used without significant

changes to the overall compilation-pipeline of many

existing frameworks.

Data availability statement

The original contributions presented in the study are

included in the article/supplementary material, further inquiries

can be directed to the corresponding author.

Author contributions

Work conducted by ES under the supervision and guidance

of PK. All authors contributed to the article and approved the

submitted version.

Frontiers inComputer Science 12 frontiersin.org

https://doi.org/10.3389/fcomp.2022.921454
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Stow and Kelly 10.3389/fcomp.2022.921454

Funding

This study received funding from the EPSRC

(EP/W007789/1 and EP/R029423/1) and Dyson Technology

Limited. The funders were not involved in the study design,

collection, analysis, interpretation of data, the writing of this

article, and the decision to submit it for publication.

Conflict of interest

The authors declare that the research was conducted in

the absence of any commercial or financial relationships

that could be construed as a potential conflict

of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.

References

Barthels, H., Psarras, C., and Bientinesi, P. (2021). Linnea: automatic
generation of efficient linear algebra programs. ACM Trans. Math. Softw. 47, 1–26.
doi: 10.48550/arXiv.1912.12924

Debrunner, T., Saeedi, S., and Kelly, P. H. J. (2019). AUKE: automatic
kernel code generation for an Analogue SIMD Focal-Plane Sensor-
Processor Array. ACM Trans. Archit. Code Optim. 15, 1–26. doi: 10.1145/329
1055

Dudek, P., and Hicks, P. (2005). A general-purpose processor-per-pixel
analog simd vision chip. IEEE Trans. Circuits Syst. I Regul. Pap. 52, 13–20.
doi: 10.1109/TCSI.2004.840093

Fukushima, N., Maeda, Y., Kawasaki, Y., Nakamura, M., Tsumura, T., Sugimoto,
K., et al. (2018). “Efficient computational scheduling of box and gaussian fir
filtering for cpu microarchitecture,” in 2018 Asia-Pacific Signal and Information
Processing Association Annual Summit and Conference (APSIPA ASC) (Honolulu,
HI), 875–879.

Holewinski, J., Pouchet, L.-N., and Sadayappan, P. (2012). “High-performance
code generation for stencil computations on gpu architectures,” in Proceedings of
the 26th ACM International Conference on Supercomputing, ICS ’12 (New York,
NY: Association for Computing Machinery), 311–320.

Lim, J. S. (1990). Two-Dimensional Signal and Image Processing. Prentice Hall
Signal Processing Series. London: Prentice-Hall International.

Luporini, F., Louboutin, M., Lange, M., Kukreja, N., Witte, P., Hückelheim,
J., et al. (2020). Architecture and performance of devito, a system for automated
stencil computation. ACM Trans. Math. Softw. 46, 1–28. doi: 10.1145/33
74916

Mori, J. Y., Llanos, C. H., and Berger, P. A. (2012). “Kernel analysis for
architecture design trade off in convolution-based image filtering,” in 2012 25th
Symposium on Integrated Circuits and Systems Design (SBCCI) (Brasilia), 1–6.

Park, I.-C., and Kang, H.-J. (2001). “Digital filter synthesis based on minimal
signed digit representation,” in Proceedings of the 38th Design Automation
Conference (IEEE Cat. No.01CH37232) (Las Vegas, NV), 468–473.

Pasko, R., Schaumont, P., Derudder, V., Vernalde, S., and Durackova, D. (1999).
A new algorithm for elimination of common subexpressions. IEEE Trans. Comput.
Aided Des. Integr. Circuits Syst. 18, 58–68. doi: 10.1109/ASAP.2000.862402

Ragan-Kelley, J., Barnes, C., Adams, A., Paris, S., Durand, F., and Amarasinghe,
S. (2013). Halide: A language and compiler for optimizing parallelism, locality,
and recomputation in image processing pipelines. SIGPLAN Not. 48, 519–530.
doi: 10.1145/2499370.2462176

Sifre, L. (2014). Rigid-motion scattering for image classification (Ph.D. thesis).
Ecole Polytechnique, Palaiseau, France.

Stock, K., Kong,M., Grosser, T., Pouchet, L.-N., Rastello, F., Ramanujam, J., et al.
(2014). A framework for enhancing data reuse via associative reordering. SIGPLAN
Not. 49, 65–76. doi: 10.1145/2594291.2594342

Stow, E., Murai, R., Saeedi, S., and Kelly, P. H. J. (2022). “Cain: automatic
code generation for simultaneous convolutional kernels onfocal-plane sensor-
processors,” in Languages and Compilers for Parallel Computing, eds B. Chapman
and J. Moreira (Cham: Springer International Publishing), 181–197.

Winograd, S. (1980). Arithmetic Complexity of Computations. CBMS-NSF
Regional Conference Series in Applied Mathematics. Society for Industrial and
Applied Mathematics.

Frontiers inComputer Science 13 frontiersin.org

https://doi.org/10.3389/fcomp.2022.921454
https://doi.org/10.48550/arXiv.1912.12924
https://doi.org/10.1145/3291055
https://doi.org/10.1109/TCSI.2004.840093
https://doi.org/10.1145/3374916
https://doi.org/10.1109/ASAP.2000.862402
https://doi.org/10.1145/2499370.2462176
https://doi.org/10.1145/2594291.2594342
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

	Convolutional kernel function algebra
	1. Introduction
	2. Background
	3. Definition
	4. Formalization
	4.1. Notation
	4.2. Addition
	4.3. Scalar multiplication
	4.4. Composition
	4.5. Channels
	4.6. Modeling implementation constraints

	5. Modeling existing works with our Kernel algebra
	6. Further uses
	6.1. Recursion
	6.2. Integral image
	6.3. Non-standard semi-rings

	7. Related work
	8. Future work
	9. Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References

