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signatures of types 1 and 2 diabetes highlight
disease-specific dysfunction pathways

Emanuele Bosi,1,2,7,* Piero Marchetti,1 Guy Allen Rutter,3,4,5 and Decio Laks Eizirik6

SUMMARY

Although glucagon secretion is perturbed in both T1D and T2D, the pathophysi-
ological changes in individual pancreatic alpha cells are still obscure. Using
recently curated single-cell RNASeq data from T1D or T2D donors and their con-
trols, we identified alpha cell transcriptomic alterations consistentwith both com-
mon and discrete pathways. Although alterations in alpha cell identity gene (ARX,
MAFB) expressionwere conserved, cytokine-regulated genes and genes involved
in glucagon biosynthesis and processing were up-regulated in T1D. Conversely,
mitochondrial genes associated with ROS (COX7B, NQO2) were dysregulated
in T2D. Additionally, T1D alpha cells displayed altered expression of autoim-
mune-induced ER stress genes (ERLEC1, HSP90), whilst those from T2D subjects
showedmodified glycolytic and citrate cycle gene (LDHA?, PDHB, PDK4) expres-
sion. Thus, despite conserved alterations related to loss of function, alpha cells
display disease-specific gene signatures which may be secondary to the main
pathogenic events in each disease, namely immune- or metabolism-mediated-
stress, in T1D and T2D, respectively.

INTRODUCTION

Both types 1 (T1D) and 2 diabetes (T2D) are characterized by varying degrees of pancreatic beta cell failure

(Eizirik et al., 2020; Marchetti et al., 2020). This is paralleled by the dysfunction of alpha cells, which in T1D

may contribute to insulin-induced hypoglycemia and in T2D, at least at the initial phases of the disease, to

hyperglycemia (Brissova et al., 2018; Gromada et al., 2018).

Alpha and beta cells are intermingled in human pancreatic islets (Bosco et al., 2010) and there is a crosstalk

between these cells that regulates at least in part their function (Campbell and Newgard, 2021). It is thus

conceivable that the reduced functional beta cell mass in T1D and T2D impacts alpha cells and contributes

to their dysfunction in each disease. Alternatively, it may be that mechanisms inherent to each disease, i.e. a

predominance of autoimmunity and consequent islet inflammation in T1D as compared to severe meta-

bolic stress in T2D (Eizirik et al., 2020), directly impair the alpha cells.

Differentiated cells trigger diverse adaptive responses that are determined by the stress to which they are

exposed. For instance, beta cells exposed to pro-inflammatory cytokines trigger branches of the unfolded

protein response that are different from the ones triggered in response to themetabolic stressor palmitate,

and the global gene signatures of islets obtained from patients affected by T1D or T2D are markedly

different (Eizirik et al., 2020). The cellular responses to diverse stresses may leave gene expression foot-

prints—particularly in long-lived cells such as human alpha and beta cells—that can be detected by

RNA sequencing. Examination of these footprints may enable to the differentiation of the principal cause(s)

of the alpha cell stress present in T1D and T2D. If the leading cause of alpha cell stress is the relative or

absolute loss of neighboring beta cells, and the deficiency of insulin leads to hyperglycemia, we may

expect to find similar gene signatures on alpha cells from patients with T1D or T2D; on the other hand,

if the stress is disease-specific then alpha cells should show different signatures in each case, for instance,

immune-induced stress in T1D and more metabolic changes T2D.

To test these hypotheses we presently used recently curated human islet single-cell transcriptomic data

from control donors or individuals affected by either T1D or T2D that are publicly available (Kaestner
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Canada

4Section of Cell Biology and
Functional Genomics,
Division of Diabetes,
Endocrinology and
Metabolism, Department of
Metabolism, Digestion and
Reproduction, Imperial
College London, London, UK

5Lee Kong Chian School of
Medicine, Nanyang
Technological University,
Singapore, Singapore

6ULB Center for Diabetes
Research, Université Libre de
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et al., 2019). The results indicate similar patterns, but also major divergences between the gene expression

signatures present in alpha cells from patients with T1D or T2D, arguing in favor of disease-specific mech-

anisms leading to alpha cell dysfunction in each case.

RESULTS

Assembling single-cell datasets from the Human Pancreas Analysis Program (HPAP) database

The populations of T1D and T2D donors are characterized by different clinical features, with the most

prominent differences being in age and body mass index (BMI), which usually are higher in T2D (American

Diabetes Association, 2010). For this reason, separate control groups were assembled tomatch (as much as

possible) the clinical features of the affected donors, controlling: (i) single-cell technology used to assess

transcriptomes, ii) age, iii) BMI, and iiii) sex. Normoglycemic donors showing positivity toward pancreatic

auto-antibodies were excluded. After the selection of control donors on the basis of such criteria, the T1D

dataset included 7 diabetic donors and 6 controls, whereas T2D contained 5 affected donors and 5 controls

(Figure 1A). The features of the donors included in this study are reported in Table S1.

HPAP single-cell 
database

7 T1D donors
6 ND matched controls

5 T2D donors
5 ND matched controls

T1D dataset T2D dataset

T1D ND

Sex (M/F) 4/3

15.9 ± 8.4 19.8 ± 10.0
19.9 ± 4.8 25.3 ± 9.7

3/3

Age (mean ± SD)
BMI (mean ± SD)

T2D ND

Sex (M/F) 1/4

47.8 ± 11.3 44.4 ± 8.6
36.2 ± 7.5 28.6 ± 7.1

2/3

Age (mean ± SD)
BMI (mean ± SD)

A

B

Figure 1. T1D and T2D single-cell transcriptomics datasets

(A) Single-cell transcriptomic samples were obtained from the database of the Human Pancreas Analysis Program (HPAP)

and divided among two datasets, T1D and T2D. Samples from non-diabetic donors were assigned to a dataset according

to donor and technical features in order to match those of the T1D and T2D samples. The tables report the donor features

of T1D and T2D datasets.

(B) The UMAP plots provide a representation of the T1D (left) and T2D (right) datasets. Each dot corresponds to the

transcriptomic profile of a single cell projected in a two-dimensional space (UMAP1, UMAP2).
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Analysis of raw sequencing data and exclusion of low-quality cells and genes (Figure S1) delivered

a T1D dataset comprising 17,503 cells and 31,890 genes, and a T2D dataset with 5,772 cells and

32,221 genes. The quality control (QC) thresholds are reported in Table S2. The datasets have

been corrected for technical covariates (single-cell technology and sequencing batch) and visualized

in a Uniform Manifold Approximation Projection (UMAP) space (Figures 1B, S2, and S3). Clusters of

single cells were identified with the Louvain algorithm and annotated considering the expression of

marker genes (Figure 2). The genes highly expressed in the annotated clusters were compared

with the marker genes reported in PanglaoDB (Franzén et al., 2019) to confirm the cell type annota-

tion. Some marker genes displayed low expression levels across different cell types, an effect likely

owing to ambient RNA contamination that requires the application of specific tools (such as DecontX,

SoupX, EmptyDrops) (Lun et al., 2019; Yang et al., 2020; Young and Behjati, 2020). As the contamina-

tion levels were of low magnitude, we decided not to apply such correction to the expression

matrices.

The number of cells for each cell type in each dataset is reported in Table 1. Alpha cells were then analyzed

separately in each dataset to find transcriptomic alterations potentially linked to diabetes.

Figure 2. Cell type annotation of T1D and T2D datasets

The single cells in the UMAP plots of T1D (left) and T2D (right) datasets have been clustered and annotated to a pancreatic cell type (top) based on the

expression of known marker genes (bottom).
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The transcriptional signatures of alpha cells in T1D

The T1D dataset comprised 2,362 alpha cells, collectively expressing 6,265 genes (after filtering). A more

detailed breakdown of the number of cells at the level of individual, single-cell technology used, and dia-

betes status is reported in Table S3. After removing cells from individuals with less than 50 alpha cells, the

resulting dataset, including 2,225 alpha cells, was analyzed with MAST to identify genes differentially ex-

pressed in T1D cells.

A total of 346 differentially expressed genes (DEGs) were identified, of which 193 were up-regulated and

153 were down-regulated versus cells from the control, normoglycemic group (Table S4). A pattern

observed among the DEGs was the over-expression of genes involved in Reactive Oxygen Species

(ROS) response (PRNP, NDUFA6, NDUFB4, GLRX, and TXN), and protein folding stability via chaperone

activity (HSP9, HSP90AA1, and HSP90AB1). We also observed overexpression of IL-8 and HLA-A, genes

downstream of the transcription factors (TFs) NF-kB and STAT1/STAT2 that are regulated by the pro-in-

flammatory cytokines IL-1b and types I and II interferons (IFNs) and participate in the immune system-islet

cell dialogue present in T1D (Eizirik et al., 2020). Importantly, these genes were not overexpressed in alpha

cells from patients affected by T2D (see later in discussion). The over-expression of DDIT3 (also known as

CHOP), a key mediator of ER stress induced-beta cell death (Eizirik et al., 2008), fits with this scenario.

Another trend of pathophysiological relevance was the significant downregulation of genes implicated

in endocrine function, namely PCSK2, CHGA, SRP14, and PAK3. These genes contribute to proglucagon

peptide maturation and eventual exocytosis, and their decreased expression could contribute to reduced

glucagon secretion from alpha cells in human T1D (Gerich et al., 1973). Thus, in PCSK2 gene-null mice lack-

ing the prohormone convertase in alpha cells, proglucagon maturation to the mature hormone is blocked

(Furuta et al., 2001). Of interest, there was also down-regulation (�2.5-fold change) of PCSK1N, a specific

inhibitor of PCSK1.

A comprehensive investigation focusing on the functional signatures enriched in T1D was performed with

an enrichment test as implemented in MAST, using six different collections (mSIGDB, Reactome, KEGG,

GO-MF, GO-BP, GO-CC) encompassing broad (i.e. mSIGDB, KEGG) or very specific (i.e. GO) functional

terms (Table S5). Collectively, there were a total of 1,539 significantly enriched terms, with 1,159 positively

and 380 negatively enriched. Of these, 1,207 were GO terms (159 MF, 896 BP, 152 CC), whereas mSIGDB,

KEGG, and Reactome presented 22, 49, and 261 enriched terms. Some of these terms were consistent with

the patterns observed with the results of the differential expression analysis, in that functional categories

related to ROS and unfolded protein response (UPR) and exposure to immune mediators were consistently

enriched in the different datasets, thus reinforcing the view that T1D alpha cells endure higher levels of

these stresses. To better highlight the most important signatures of T1D alpha cells, the enrichment results

were ranked according to the obtained significance (Figure3). The top three KEGG categories positively

enriched were related to immunity (ALLOGRAFT REJECTION, AUTOIMMUNE THYROID DISEASE,

ANTIGEN PROCESSING, AND PRESENTATION), consistently with the inflammation associated with islets

in T1D (Eizirik et al., 2020). The most positively enriched KEGG terms also included RIBOSOME and

OXIDATIVE PHOSPHORYLATION, both associated with increased ROS production. Mitochondrial activity

is a major source of ROS, whereas oxidative stress impairs protein biosynthesis andmodifies rRNA (Shcher-

bik and Pestov, 2019), requiring an increased turnover of these molecules by activating mechanisms to

repair or recycle damaged molecules. Pathways associated with immunity and ROS production/response

were among the most positively enriched pathways in all databases. In Reactome we found, related to im-

munity, a positive enrichment of interferon-gamma signaling, endosomal/vacuolar pathway of antigen pre-

sentation, and trafficking/processing of endosomal toll-like receptor (TLR). Related to ROS there is an in-

crease in mitochondrial fatty acid oxidation, metallothionein ROS scavenging, and actin folding. In

mSIGDB hallmark, the top ten pathways included allograft rejection, oxidative phosphorylation, apoptosis,

interferon gamma response, unfolded protein response, and reactive oxygen species. The top three GO

Table 1. Cell type distributions in the T1D and T2D datasets

INS + GCG+ SST + GCG+ PP Acinar Alpha Beta Delta Ductal Stellate

T1D 140 0 97 7909 2362 736 145 4996 1118

T2D 382 61 43 1246 1757 1098 102 564 518

The table reports the number of cells assigned to each cell type in the T1D and T2D datasets.
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biological processes were negative regulation of cell killing, negative regulation of leukocyte mediated

cytotoxicity, and positive regulation of T-cell mediated cytotoxicity. The other highly enriched pathways

include positive regulation of protein depolymerization, positive regulation of actin filament depolymeriza-

tion, and negative regulation of IRE1-mediated unfolded protein response.

The transcriptional signatures of alpha cells in T2D

After filtering out low-quality cells, in the T2D dataset, there were 1,757 alpha cells expressing a total of

6,872 genes. Following the approach used for the T1D dataset, we detailed the number of alpha cells at

the levels of individual, single-cell technology, and diabetes status (Table S3). Two donors had a low num-

ber of cells and were excluded from the differential expression analysis; the remaining cells (1,718) were

analyzed with MAST.

There were 466 genes differentially expressed in T2D versus control alpha cells, 238 up-regulated and 228

down-regulated (Table S6). Among the over-expressedDEGs, there were activators of stress and apoptosis

mediated by p53, i.e. CCNK, JUN, BTG1, GADD45A, GADD45B, XPC, CDKN2AIP, DDIT3, TXNIP, and

ATF3. Of these, XPC, GADD45A, GADD45B, and CDKN2AIP respond to DNA oxidative damage (Hasan

et al., 2009; Salvador et al., 2013; Wang et al., 2012), while DDIT3 is activated by endoplasmic reticulum

(ER) stress (Eizirik et al., 2008; Ohoka et al., 2005; Yamaguchi andWang, 2004). TXNIP and ATF3 are instead

modulated by glucose concentration and play a role in both apoptosis and hormone secretion. TXNIP

controls a pathway (miR-204/MafA/insulin) that reduces insulin expression (Xu et al., 2013), whereas
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Figure 3. Comparison of most significantly enriched pathways in T1D and T2D

Gene-set enrichment analysis was performed for T1D (left) and T2D (right) datasets. The barplots report the normalized enrichment score (bar length) and

the significance (bar color) of the most significant 15 positively and negatively enriched pathways from KEGG (top) and Reactome (bottom).
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ATF3 increases the expression of proglucagon, as well as regulating the expression of genes related to

apoptosis (such as GADD45, BNIP3, and NOXA).

The over-expression of such genes, and others related to ROS (SBNO2, EGLN2, MBP) and the unfolded

protein response (UPR; EEF2, ATF4, HERPUD1) suggests that alpha cells in T2D are subject to oxidative

stress, a hallmark of toxicity induced by elevating glucose levels (Gromada et al., 2018; Kawahito et al.,

2009). The downregulation of genes involved in pyruvate metabolism (LDHA, PDHB, PDK4) and oxidative

phosphorylation (COX7B, NQO2, SUCLA2, UQCR10, SLC25A4) is also consistent with oxidative stress

pathways, in that these may affect ROS production by mitochondria.

Of functional relevance to hormone biosynthesis, the genes encoding prohormone convertases PCSK1

and PCSK2 were both down-regulated, as well as SCGN and SYT13, involved in hormone storage and

exocytosis, respectively (Andersson et al., 2012; Yang et al., 2016), and the transcription factor MAFB,

crucial for preproglucagon gene expression and the production and release of the hormone (Katoh

et al., 2018).

As for the T1D dataset, a gene set enrichment analysis was performed to identify functions and pathways

significantly enriched in the T2D alpha cells (Figure 3). Overall, 1,973 significantly enriched terms were iden-

tified, of which 494 were positively and 1,479 were negatively enriched (Table S7). Most of these (1,552)

were Gene Ontology (GO) terms (207 MF, 1158 BP, 187 CC), while the enriched terms in mSIGDB,

KEGG, and Reactome were 12, 99, and 310, respectively.

The 6 mSIGDB pathways positively enriched ("INTERFERON GAMMA RESPONSE," "INTERFERON

ALPHA RESPONSE," "P53 PATHWAY," "ALLOGRAFT REJECTION," "TNFA SIGNALING VIA NFKB,"

"APOPTOSIS’’) are associated to inflammation, whereas the negatively enriched terms are mostly involved

in the energetic metabolism ("OXIDATIVE PHOSPHORYLATION," "ADIPOGENESIS," "GLYCOLYSIS’’).

This trend is consistent in the other sets: for instance, in KEGG the terms such as ‘‘P53 SIGNALING

PATHWAY’’ and ‘‘TOLL LIKE RECEPTOR SIGNALING PATHWAY’’ are positively enriched, while negatively

enriched ones included metabolic terms such as "PYRUVATE METABOLISM," "KEGG STARCH AND

SUCROSE METABOLISM" and "CITRATE CYCLE TCA CYCLE." Similarly, among the Reactome positively

enriched pathways there are "INTERFERONGAMMA SIGNALING,’’ "INFLAMMASOMES’’ and "ANTIGEN

PRESENTATION FOLDING ASSEMBLY AND PEPTIDE LOADING OF CLASS I MHC,’’ while the negatively

enriched ones include "REGULATION OF PYRUVATE DEHYDROGENASE PDH COMPLEX," "THE CITRIC

ACID TCA CYCLE AND RESPIRATORY ELECTRON TRANSPORT" and "GLUCOSE METABOLISM." Of in-

terest, we report a number of negatively enriched terms specifically linked to alpha cell function:

"GLUCAGON SIGNALING IN METABOLIC REGULATION," "PKA ACTIVATION IN GLUCAGON SIGNAL-

LING," "GLUCAGON LIKE PEPTIDE 1 GLP1 REGULATES INSULIN SECRETION" and "GLUCAGON TYPE

LIGAND RECEPTORS," among the Reactome terms; "CELLULAR RESPONSE TOGLUCAGON STIMULUS"

and "RESPONSE TO GLUCAGON" among the GO-BP terms.

Contrasting the alpha cell signatures of T1D and T2D

By analyzing the changes in gene expression in alpha cells separately in T1D and T2D the corresponding

transcriptomic signatures were identified and described, revealing a number of similarities, such as upre-

gulated DEGs involved in the stress response or the downregulation of genes relevant for the secretory

function. To quantify more precisely the extent to which the two series overlap and to underscore their

differences, a systematic comparison of the obtained results was undertaken next.

In T1D and T2D therewere a total of 770DEGs (Table S8). Of these, 42 were shared, while DEGs present only in

T1D and T2D were 304 and 424, respectively. Considering only up-regulated genes, there were 420 DEGs, of

which 11 were shared, 182 were T1D-specific and 227 were T2D-specific (Figure 4). The shared up-regulated

genes are EIF4A2, DDIT3, RRAGD, RPL26, SNHG6, C9orf16, KIF1A, ZNF706, SERTAD1, RSL24D1, and

HNRNPF. For the down-regulated genes, from a total of 368 DEGs, there were 13 shared, 140 T1D-specific,

and 215 T2D-specific. The down-regulated DEGs in common are C4orf48, KRT10, C1QBP, PCSK2, REG1B,

PEG10, PAM, CTRB2, PRSS3P1, CTNND2, CTRB1, ARL3, and ATXN10. The overlap of DEGs regulated in

different directions in T1D and T2D was assessed as well. There were 10 genes in common between the T1D

up-regulated and the T2D down-regulated DEGs (STXBP2, CSTB, ATP5B, SERF2, RPN2, GNG4, ATP5I,

CELA3A, CD99, and POLR2K), while the shared genes between the T1D down-regulated and the T2D
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T1D dataset T2D dataset

182 11 227

183 10 218

140 13 215

145 8 230

193 Up-regulated 
DEGs

Up-regulated in T1D
Up-regulated in T2D

Up-regulated in T1D
Down-regulated in T2D

Down-regulated in T1D
Up-regulated in T2D

Down-regulated in T1D
Down-regulated in T2D

153 Down-regulated 
DEGs

238 Up-regulated 
DEGs

228 Down-regulated 
DEGs

ND

T1D

T2D

Figure 4. Comparison of differentially expressed genes in T1D and T2D alpha cells

Alpha cells from T1D (top left) and T2D (top right) datasets were separately analyzed contrasting the expression

signatures of cells from affected and ND individuals. The differentially expressed genes (DEGs) were compared to identify

shared and dataset-specific DEGs. The violin plots report the expression values of these such genes. It should be noted

that the expression values reported are not corrected for the effect of covariates.
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up-regulated were 8 (IER2, JUND, TXNIP, EIF5A, INO80E, C19orf43, TRAK1, and TBL1XR1). Finally, as DEGs

were identified based both on the significance and fold-change thresholds, there are several genes that

have a significant change but with fold-change below the threshold. Although these genes have not been re-

ported as DEGs, some could provide relevant information. For instance, genes related to alpha cell identity

(notably the TFs ARX andMAFB) were significantly down-regulated in both T1D and T2D, and, although their

fold-change fell below a 0.5 threshold, this provides evidence that both diseases are associated with the alter-

ation of alpha cell identity and function. Other TFs linked to alpha cell development and function (Gromada

et al., 2007), i.e. RFX6, PAX6, FOXA2, NEUROD1, and ISL1, were found significantly dysregulated in T1D: while

the change in RFX6 expression wasminimal, all the other TFs were up-regulated. In T2Dwe found a significant

change only for ISL1, whereas all the other TFs were down-regulated, although with low significance.

Examining the extent of the overlap between Gene Set Enrichment Analysis (GSEA) results, from a total of

2,974 terms significantly enriched either in T1D or T2D (Table S9), 506 were shared, 1,033 were unique to

T1D and 1,435 to T2D. Considering only the positively enriched terms (in T1D, T2D, or both), there were

1,475 terms, 171 of which, in common; the negatively enriched ones were 1,781 in total, with 53 shared.

There were 282 terms enriched in different directions: 261 of these were positively enriched in T1D and

negatively in T2D, whereas 21 were shared between positively enriched in T2D and negatively in T1D. A

breakdown of the overlapping terms in T1D and T2D (in different directions, and their combinations) across

the different datasets used for GSEA is reported in Table S9.

Although the signatures retrieved for T1D and T2D indicate a partial overlap of stress response genes, we

found some remarkable differences between the two series. In T1D, genes linked with ER stress and UPR

are either significantly up-regulated (ERLEC1, HSP90) or with a significant change that is below the fold-

change threshold, we used (ATF6, ER mannosidase I, TRAM1), an effect that was not observed in T2D (Fig-

ure S4). Concerning the insulin signaling pathway, the overall trend was for repression, which was more

marked in T1D as compared to T2D (Figure S5). For instance, the downregulation of PI3K is doubled in

T1D with respect to T2D, whereas IRS2 is up-regulated in T1D and down-regulated in T2D.

Another major difference between T1D and T2D involved metabolism i.e. glycolysis, citrate cycle, and

oxidative phosphorylation (Figure S6). Notably, in T1D we observed little changes in the expression of

genes involved in glycolysis and citrate cycle, but increased levels of those contributing to oxidative phos-

phorylation, while these pathways were repressed in T2D: most of the genes involved in glycolysis were

down-regulated, and four with high significance (PKM, ENO1, ALDH2, TPI1) and three with high signifi-

cance and fold-change (LDHA, ALDH9A1, and PDHB); strikingly, most of the citrate cycle genes were

down-regulated in alpha cells from T2D donors, with six genes displaying a significant change; among

the complexes involved in oxidative phosphorylation, genes contributing in complex III were the most

negatively affected, with almost all genes being under-expressed in diseased alpha cells.

DISCUSSION

Analysis of single-cell data sets provides a unique opportunity to better understand the changes at the level of

the alpha cell which drive dysregulated glucagon secretion in T1D and T2D. In the present work, we used pub-

licly available single-cell transcriptomic data from human islets to test whether the dysfunction of alpha cells in

T1D and T2D had common bases or if the transcriptional signatures are more disease-specific. This revealed

both shared features (i.e. down-regulation of genes related to alpha cell identity and function, and the

up-regulation of stress response mechanisms and inflammation signatures) and, more importantly, disease-

specific stress pathways. In T1D, several of the alpha cell alterations were traced back to ER stress, a process

associated with chronic inflammation and autoimmune diseases. In T2D, up-regulation of ROS defense mech-

anisms (SBNO2, EGLN2, MBP) was accompanied by the modification of the central metabolism, with the

repression of genes involved in glycolysis (LDHA, PDHB, PDK4), citrate cycle, and mitochondrial respiration

(COX7B, NQO2, SUCLA2, UQCR10, SLC25A4). We note that some of these gene expression changes in

T2D alpha cells are akin to findings reported in a recent study using a separate data set (Dai et al., 2022) which

highlighted the alteration ofmitochondrial respiratory complex genes in T2D and the inhibitory role of H2O2 in

glucagon secretion. However, no data were provided in the latter report on alpha cells from patients with T1D,

nor was any comparison made of changes in the two disease types.

We speculate that in the T2D down-regulation of glucose catabolism is adaptive to ROS stress, not only by

leading to a decrease of radicals from oxidative phosphorylation but also by redirecting glucose flux to
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Pentose Phosphate Pathway, increasing NADPH to improve ROS scavenging (Mullarky and Cantley, 2015).

However, the relationship here is complex as lowered LDHA (favoring pyruvate flux into mitochondria) and

PDK4 (favoring PDH dephosphorylation and activation) would seem likely to oppose the impact of lowered

PDHB activate (decreasing PDH-E1 levels and conversion of pyruvate into acetyl-CoA) (Figure S4). Mea-

surements of the corresponding gene products at the protein level will be important to substantiate these

mRNA-based findings (Figure S4). Of note, glucose oxidation is lowered in islets from T2D subjects (Del

Guerra et al., 2005) though the relative contribution of changes in beta and alpha cells is not established.

We also report that, among the respiratory chain genes, the most negatively down-regulated were those

involved in mitochondrial complex III, a major producer of ROS with implications for cellular transduction

(Bleier and Dröse, 2013). Additionally, and complementing the above mechanism, a decreased ability of

mitochondria to synthesize ATP in response to elevated glucose concentrations (Ravier and Rutter,

2005) may contribute to the failure of the alpha cell in T2D to efficiently shut down glucagon secretion

as glucose concentrations rise, consistent with other recent findings (Knudsen et al., 2019).

In T1D we observed signatures of ER stress, with most of the genes involved in ER protein processing being

up-regulated (Figure S6). Considering that in T1D we did not observe repression of the central metabolism

(Figure S4), the partial overlap of ROS response between T1D and T2D could be owing to the fact that ER

stress increases the ROS cellular levels (Zeeshan et al., 2016). Related to ROS production, oxidative phos-

phorylation is enhanced in T1D, a striking difference with respect to T2D alpha cells in which the pathway is

repressed. Finally, alpha cells in T1D display signatures of inflammation, including markers of cytokine

exposure, with multiple related pathways among the most significantly enriched.

Besides a stress response, we reported for T1D the down-regulation of a number of genes involved with

hormone secretion, with a likely relevance in the pathophysiological context. The apparent repression of

PCSK2 transcription is consistent with reduced glucagon production, as well as the decreased expression

of PCSK1N, a repressor of PCSK1. As this gene is involved with glucagon-like peptide 1 (GLP-1) production

from glucagon (Rouillé et al., 1997), the pattern we observed would be consistent with increased endoge-

nous production of GLP-1 and lower glucagon maturation. Also, the down-regulation of CHGA, encoding

chromogranin A, implies impaired hormone secretion with a role in secretory granule biogenesis (Kim

et al., 2001).

Another important aspect investigated is the extent to which genes involved in alpha cell identity changed

in the islet from diabetic donors. We also assessed the expression of specific transcription factors involved

with alpha cell development and function, i.e. RFX6, PAX6, FOXA2, FOXA1, NEUROD1, ISL1, and BRN4

(Gromada et al., 2007). These genes were differently regulated in alpha cells from T1D and T2D: while in

T1D we found an up-regulation of PAX6, FOXA2, NEUROD1, and ISL1, in T2D there was a trend for all these

genes to be down-regulated. These directionally opposing changes may thus contribute to the differences

in overall gene expression in alpha cells in T1D versus T2D.

Finally, we found dysregulated genes that were previously associated with T1D and/or T2D but whose func-

tion in alpha cells remains unclear: for instance, the genes CTRB1 and CTRB2, down-regulated in both T1D

and T2D, are genetically associated with T1D as well as incretin responsiveness in T2D (Barrett et al., 2009; ’t

Hart et al., 2013). Further investigating such genes could be useful to determine their relevance in the

context of alpha cell dysfunction and the mechanisms linking them to diabetes.

In conclusion, alpha cells in T1D and T2D display limited shared signatures, with the most notable common

changes being the reduced expression of MAFB and ARX. We note that an earlier study (Russell et al.,

2020) has explored the impact on the differentiation of pluripotent stem cells (PSCs) into islet endocrine cells

of MAFB inactivation. Importantly the defective progenitors displayed lower rates of conversion to beta

compared to alpha and delta cells, with GCG expression not significantly affected in MAFB null progenitors.

Thus, changes in MAFB are unlikely to be the major driver of altered gene expression in alpha cells in T1D.

On the other hand, it is possible that there are other shared changes that were missed owing to the

limitations of our study (see later in discussion). On the other hand, alpha cells present important dis-

ease-specific signatures in T1D and T2D, suggesting that these signatures and the consequent alpha

cell dysfunction are secondary to the main pathogenic events characteristic to each disease, namely im-

mune-mediated- or metabolic-mediated-stress, respectively, in T1D and T2D.
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Limitations of the study

The present results should be considered within the context of the limitations associated with single-cell

transcriptomics, particularly related to the limited number of genes than can be detected by this technique

(i.e. around 5.000 genes for scRNAseq vs > 100.000 transcripts detected by deep sequencing bulk RNAseq)

(Colli et al., 2020; Mawla and Huising, 2019). Other issues include relatively small sample size and variability

over donors’ clinical features. As the availability of humanı̀ islet single-cell transcriptomic data grows

further, it will be important to validate the present findings with a larger number of samples and include

proteomics and Western blot analysis to confirm the translation of the differentially regulated transcripts.

The alterations we described as associated with T1D and T2D could include not only pathogenic but also

compensatory mechanisms. For instance, in T2D we reported a significant down-regulation of a number of

factors associated with alpha cell development and function (PAX6, FOXA2, NEUROD1, and ISL1). Interest-

ingly, a previous study identified a subpopulation of alpha cells in mice and T2D donors in which the

expression of these genes was inversely correlated with alpha cell function (Dai et al., 2022). It is thus

conceivable that the differential expression we reported represents a compensatory mechanism.
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Ghandi, M., Mesirov, J.P., and Tamayo, P. (2015).
The Molecular Signatures Database (MSigDB)
hallmark gene set collection. Cell Syst. 1,
417–425.

Luecken, M.D., and Theis, F.J. (2019). Current
best practices in single-cell RNA-seq analysis: a
tutorial. Mol. Syst. Biol. 15, e8746.

ll
OPEN ACCESS

iScience 25, 105056, October 21, 2022 11

iScience
Article

http://refhub.elsevier.com/S2589-0042(22)01328-1/sref1
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref1
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref1
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref2
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref2
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref2
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref2
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref2
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref2
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref2
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref3
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref3
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref3
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref3
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref3
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref3
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref4
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref4
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref4
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref4
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref4
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref4
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref4
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref5
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref5
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref5
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref5
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref6
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref6
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref6
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref6
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref6
https://doi.org/10.1093/nargab/lqaa097
https://doi.org/10.1093/nargab/lqaa097
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref8
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref8
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref8
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref8
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref8
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref8
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref9
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref9
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref9
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref9
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref10
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref10
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref10
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref10
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref10
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref10
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref10
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref11
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref11
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref11
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref11
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref11
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref11
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref12
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref12
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref12
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref12
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref12
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref13
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref13
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref13
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref13
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref14
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref14
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref14
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref15
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref15
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref15
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref15
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref16
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref16
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref16
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref16
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref16
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref16
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref16
https://doi.org/10.1093/database/baz046
https://doi.org/10.1093/database/baz046
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref18
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref18
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref18
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref18
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref18
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref19
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref19
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref19
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref19
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref19
https://doi.org/10.1038/s41574-018-0097-y
https://doi.org/10.1038/s41574-018-0097-y
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref21
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref21
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref21
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref21
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref22
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref22
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref22
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref22
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref22
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref23
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref23
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref23
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref23
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref23
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref24
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref24
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref24
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref24
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref24
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref24
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref25
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref25
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref25
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref26
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref26
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref26
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref27
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref27
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref27
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref27
https://doi.org/10.1128/MCB.00504-17
https://doi.org/10.1128/MCB.00504-17
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref29
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref29
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref29
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref30
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref30
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref30
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref30
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref30
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref30
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref31
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref31
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref31
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref31
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref31
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref31
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref31
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref32
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref32
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref32
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref32
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref32
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref33
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref33
http://refhub.elsevier.com/S2589-0042(22)01328-1/sref33


Lu, H., Halappanavar, M., and Kalyanaraman, A.
(2015). Parallel heuristics for scalable community
detection. Parallel Comput. 47, 19–37.

Lun, A.T.L., Riesenfeld, S., Andrews, T., Dao, T.P.,
and Gomes, T.; Participants in the 1st Human Cell
Atlas Jamboree (2019). EmptyDrops:
distinguishing cells from empty droplets in
droplet-based single-cell RNA sequencing data.
Genome Biol. 20, 63.

Marchetti, P., Suleiman, M., De Luca, C., Baronti,
W., Bosi, E., Tesi, M., and Marselli, L. (2020). A
direct look at the dysfunction and pathology of
the b cells in human type 2 diabetes. In Seminars
in Cell & Developmental Biology (Elsevier),
pp. 83–93.

Mawla, A.M., and Huising, M.O. (2019).
Navigating the depths and avoiding the shallows
of pancreatic islet cell transcriptomes. Diabetes
68, 1380–1393.

Mullarky, E., and Cantley, L.C. (2015). Diverting
glycolysis to combat oxidative stress. Innovat.
Med. 3–23.

Ohoka, N., Yoshii, S., Hattori, T., Onozaki, K., and
Hayashi, H. (2005). TRB3, a novel ER stress-
inducible gene, is induced via ATF4-CHOP
pathway and is involved in cell death. EMBO J. 24,
1243–1255.

Park, J.-E., Botting, R.A., Domı́nguez Conde, C.,
Popescu, D.-M., Lavaert, M., Kunz, D.J., Goh, I.,
Stephenson, E., Ragazzini, R., Tuck, E., et al.
(2020). A cell atlas of human thymic development
defines T cell repertoire formation. Science 367,
eaay3224. https://doi.org/10.1126/science.
aay3224.

Plasschaert, L.W., �Zilionis, R., Choo-Wing, R.,
Savova, V., Knehr, J., Roma, G., Klein, A.M., and
Jaffe, A.B. (2018). A single-cell atlas of the airway
epithelium reveals the CFTR-rich pulmonary
ionocyte. Nature 560, 377–381.

Pola�nski, K., Young, M.D., Miao, Z., Meyer, K.B.,
Teichmann, S.A., and Park, J.-E. (2020). BBKNN:
fast batch alignment of single cell transcriptomes.
Bioinformatics 36, 964–965.

Ravier, M.A., and Rutter, G.A. (2005). Glucose or
insulin, but not zinc ions, inhibit glucagon
secretion from mouse pancreatic alpha-cells.
Diabetes 54, 1789–1797.
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STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests should be directed to and will be fulfilled by the lead contact, Emanuele

Bosi (bosiemanuele@gmail.com).

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Single-cell RNA seq data The Human Pancreas Analysis Program - HPAP HPAP-012

Single-cell RNA seq data The Human Pancreas Analysis Program - HPAP HPAP-034

Single-cell RNA seq data The Human Pancreas Analysis Program - HPAP HPAP-036

Single-cell RNA seq data The Human Pancreas Analysis Program - HPAP HPAP-039

Single-cell RNA seq data The Human Pancreas Analysis Program - HPAP HPAP-052

Single-cell RNA seq data The Human Pancreas Analysis Program - HPAP HPAP-056

Single-cell RNA seq data The Human Pancreas Analysis Program - HPAP HPAP-015

Single-cell RNA seq data The Human Pancreas Analysis Program - HPAP HPAP-020

Single-cell RNA seq data The Human Pancreas Analysis Program - HPAP HPAP-021

Single-cell RNA seq data The Human Pancreas Analysis Program - HPAP HPAP-023

Single-cell RNA seq data The Human Pancreas Analysis Program - HPAP HPAP-028

Single-cell RNA seq data The Human Pancreas Analysis Program - HPAP HPAP-032

Single-cell RNA seq data The Human Pancreas Analysis Program - HPAP HPAP-055

Single-cell RNA seq data The Human Pancreas Analysis Program - HPAP HPAP-053

Single-cell RNA seq data The Human Pancreas Analysis Program - HPAP HPAP-054

Single-cell RNA seq data The Human Pancreas Analysis Program - HPAP HPAP-059

Single-cell RNA seq data The Human Pancreas Analysis Program - HPAP HPAP-006

Single-cell RNA seq data The Human Pancreas Analysis Program - HPAP HPAP-014

Single-cell RNA seq data The Human Pancreas Analysis Program - HPAP HPAP-051

Single-cell RNA seq data The Human Pancreas Analysis Program - HPAP HPAP-057

Single-cell RNA seq data The Human Pancreas Analysis Program - HPAP HPAP-058

Single-cell RNA seq data The Human Pancreas Analysis Program - HPAP HPAP-001

Single-cell RNA seq data The Human Pancreas Analysis Program - HPAP HPAP-007

Software and algorithms

STAR 2.7.3a https://github.com/alexdobin/STAR

Custom python and R software used to

generate results

https://github.com/EBosi/scPanBetaT2D scPanBetaT2D

Other

Human reference genome with ENSEMBL

annotation

http://ftp.ensembl.org/pub/grch37/ GRCh37 (release 87)

GO Biological Process gene sets mSigDB 7.4 c5.go.bp.v7.2.symbols.gmt

GO Molecular Function gene sets mSigDB 7.4 c5.go.mf.v7.2.symbols.gmt

GO Cellular Component gene sets mSigDB 7.4 c5.go.cc.v7.2.symbols.gmt

Reactome gene sets mSigDB 7.4 c2.cp.reactome.v7.2.symbols.gmt

KEGG gene sets mSigDB 7.4 c2.cp.kegg.v7.2.symbols.gmt

mSigDB Hallmark gene sets mSigDB 7.4 h.all.v7.2.symbols.gmt
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Materials availability

This study did not generate new unique reagents.

Data and code availability

d This paper analyzes existing, publicly available data. These accession numbers for the datasets are listed

in the key resources table.

d The data and code used for this work has been archived in the GitHub repository at https://github.com/

EBosi/scPanAlpha.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.

METHOD DETAILS

Analysis of single-cell data and integration with the other datasets

Fastq files and the corresponding metadata were downloaded from the database of the Human Pancreas

Analysis Program (HPAP) (https://hpap.pmacs.upenn.edu). Reads were aligned using STAR 2.7.3a (Dobin

et al., 2013) against the human reference genome GRCh37 (Ensembl 87 annotation) with different param-

eters according to the technology used for library production. For the reads from libraries prepared with

Fluidigm 800 cell IFC, the mapping parameters were ‘‘–quantMode TranscriptomeSAMGeneCounts, –out-

SAMmultNmax �1’’; for the other samples, prepared using 10X with chemistry Single Cell 30 v2 or v3, the

parameters used were ‘‘–soloType Droplet –soloUMIfiltering MultiGeneUMI –soloCBmatchWLtype

1MM_multi_pseudocounts –outSAMmultNmax �1 –outSAMtype BAM SortedByCoordinate –quantMode

TranscriptomeSAM GeneCounts’’. The arguments of two parameters, ‘‘–soloCBwhitelist’’ and ‘‘–soloUMI-

len‘‘, were different for the 10X chemistry kits: ‘‘737K-august-2016.txt’’ and ‘‘10’’ for v2; ‘‘3M-february-

2018.txt’’ and ‘‘12’’ for v3.

After the readmapping step, read count tables were analyzed with ad-hoc python scripts implementing the

toolbox Scanpy (Wolf et al., 2018). In particular, cell-wise and gene-wise metrics were computed for QC to

define excluding criteria of low-quality cells, similarly as previously done (Bosi et al., 2020) and in line with

existing guidelines (Luecken and Theis, 2019). The parameters considered for each cell were: i) the number

of genes with at least one read mapped (expressed genes); ii) the number of reads mapped to genes

(counts); iii) the ratio of reads mapped onmitochondrial genes (mitochondrial fraction). Additionally, genes

with detected expression in three or fewer cells were excluded from the analyses. These values were used

to exclude cells with high counts and expressed genes (likely representing multiplets), and with high mito-

chondrial fraction and low expressed genes (indicative of lysed cells). These variables and their covariation

were considered separately for each sample, as recommended when the distributions of QC covariates

differ between samples (Luecken and Theis, 2019), and as done in previous studies (e.g. (Plasschaert

et al., 2018)). These distributions allowed to define, separately for each sample, threshold values to flag

the cells with at least oneQCmetric below the threshold as ‘‘low quality’’. A QC scheme reporting the strat-

egy used to define the thresholds is reported in Figure S1.

After QC, the processed samples were concatenated and the counts normalized to a total of 10,000 for

each cell, then log-transformed. The dispersion of each gene with respect to its mean value was computed

in the integrated dataset to annotate highly variable genes using the homonymous Scanpy function. The

resulting set of genes displaying high variability was used to perform dataset integration with Batch

Balanced KNN (BBKNN) (Pola�nski et al., 2020), similarly as done by Park and colleagues (Park et al.,

2020). Briefly, BBKNN was first used with the HPAP id as batch key, followed by a Louvain clustering (Lu

et al., 2015) on the corrected dataset. Then, the obtained clusters were used as biological covariates to

perform a ridge regression on the adjusted data, followed by a further BBKNN correction. The transcrip-

tomes of single-cells were visualized using UMAP.

Single-cell clusters were identified with the Louvain modularity algorithm (Lu et al., 2015) as implemented in

Scanpy (https://github.com/vtraag/louvain-igraph) with resolution = 0.5, with further sub-clustering for

groups of interest. The genes with cluster-specific expression were found with the ‘‘rank_genes_groups’’

function of Scanpy, curating their association with known cell types using literature information and

gene expression markers reported in PanglaoDB (Franzén et al., 2019).
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QUANTIFICATION AND STATISTICAL ANALYSIS

Differential expression and gene set enrichment analysis

The DEGs in T1D and T2D as compared to the corresponding controls were identified using MAST (Finak

et al., 2015) with the following mixed effect model: Counts � Diabetes + ngenes + Technology + Race +

Sex + BMI + Age, including also a random effect estimated for each individual (Individual). Since the esti-

mation of such an effect may be hampered by a low number of observations, individuals with %50 alpha

cells (after filtering for QC criteria) were excluded from the analysis. Counts is the matrix of raw count

data, filtered of genes being expressed in less than 20% of the cells with the filterLowExpressedGenes

function, ngenes is a variable encoding the number of expressed genes and Diabetes is a 2-level factor

(Disease, ND) indicating the diabetes status of the donor. Genes with corrected p value (Benjamini-

Hochberg, FDR) lower than 0.05 and absolute fold-change (FC) greater or equal than 0.5 were considered

as DEGs. The robustness of the results obtained with MAST was assessed by obtaining a ‘‘pooled’’ control

group by aggregating the transcriptomes from ND donors of both groups (i.e the ones compared against

respectively T1D and T2D).

GSEA was performed for the following datasets: i) Gene Ontology (GO), separately for Biological Process

(GO BP), Molecular Function (GOMF) and Cellular Component (GO CC) (Ashburner et al., 2000; The Gene

Ontology Consortium, 2019); ii) KEGG (Kanehisa, 2019; Kanehisa et al., 2019; Kanehisa and Goto, 2000); iii)

Reactome 2016 (Jassal et al., 2020); the Hallmark collection from mSigDB (Liberzon et al., 2015). All gene

sets were obtained from mSigDB (Subramanian et al., 2005) (version 7.4) and used to perform GSEA on

the hurdle distributions obtained with MAST: the ‘‘gseaAfterBoot’’ function has been used on 50 distribu-

tions (bootstraps) derived with the ‘‘bootVcov1’’ function.
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