
1

Bivariate Polynomial Codes for Secure Distributed
Matrix Multiplication

Burak Hasırcıoğlu, Graduate Student Member, IEEE, Jesús Gómez-Vilardebó, Senior Member, IEEE,
and Deniz Gündüz, Fellow, IEEE

Abstract—We consider the problem of secure distributed ma-
trix multiplication (SDMM). Coded computation has been shown
to be an effective solution in distributed matrix multiplication,
both providing privacy against workers and boosting the compu-
tation speed by efficiently mitigating stragglers. In this work, we
present a non-direct secure extension of the recently introduced
bivariate polynomial codes. Bivariate polynomial codes have been
shown to be able to further speed up distributed matrix multi-
plication by exploiting the partial work done by the stragglers
rather than completely ignoring them while reducing the upload
communication cost and/or the workers’ storage’s capacity needs.
We show that, especially for upload communication or storage
constrained settings, the proposed approach reduces the average
computation time of SDMM compared to its competitors in the
literature.

Index Terms—coded secure computation, bivariate polynomial
codes, distributed computation, secure distributed matrix multi-
plication

I. INTRODUCTION

Matrix multiplication is a fundamental building block of
many applications in signal processing and machine learning.
For some applications, especially those involving massive ma-
trices and stringent latency requirements, matrix multiplication
in a single computer is infeasible, and distributed solutions
need to be adopted. In such scenarios, the full multiplication
task is first partitioned into smaller sub-tasks, which are then
distributed across dedicated workers.

In this work, we address two main challenges in distributed
matrix multiplication. The first one is referred to as the
stragglers problem, which refers to unresponsive or slow
workers. If completing the full task requires the completion of
the computations assigned to all the workers, then straggling
workers become a significant bottleneck. To avoid stragglers,
additional redundant computations can be assigned to workers.
It has been recently shown that the use of error-correcting
codes, by treating the slowest workers as erasures instead of
simply replicating tasks across workers, significantly lowers
the overall computation time [2]. In the context of straggler

This work was partially funded by the European Research Council (ERC)
through Starting Grant BEACON (no. 677854) and by the UK EPSRC
(grant no. EP/T023600/1) under the CHIST-ERA program. The work of J.
Gómez-Vilardebó was supported in part by the Catalan Government under
Grant SGR2017-1479, and by the Spanish Government under Grant RTI2018-
099722-B-100 (ARISTIDES).

Burak Hasırcıoğlu and Deniz Gündüz are with the Department of Elec-
trical and Electronic Engineering, Imperial College London, UK. E-mail:
{b.hasircioglu18, d.gunduz}@imperial.ac.uk

Jesús Gómez-Vilardebó is with Centre Tecnològic de Telecomunicacions de
Catalunya (CTTC/CERCA), Barcelona, Spain. E-mail: jesus.gomez@cttc.es

A preliminary version of this paper has been accepted for a presentation in
2021 IEEE International Symposium on Information Theory (ISIT) [1].

mitigation, polynomial-type codes are studied in [3]–[6]. In
these schemes, matrices are first partitioned and encoded using
polynomial codes at the master server. Then, workers compute
sub-products by multiplying these coded partitions and send
the results back to the master for decoding. The minimum
number of sub-tasks required to decode the result is referred to
as the recovery threshold and denoted by Rth. All these works
assume that only one sub-product is assigned to each worker,
and therefore, any work done by the workers beyond the fastest
Rth is completely ignored. This is sub-optimal, particularly
when the workers have similar computational speeds. This
problem is addressed by the multi-message approaches in [7]–
[10]. In these works, multiple sub-products are assigned to
each worker, and the result of each sub-product is communi-
cated to the master as soon as it is completed. This results in
faster completion of the full computation as it allows to exploit
partial computations completed by stragglers. Moreover, the
multi-message approach makes finishing the task possible even
if there are not as many available workers as the recovery
threshold. However, as discussed in [10], a direct extension of
polynomial-type codes to the multi-message setting by simply
assigning multiple sub-products to the workers increase the
upload communication costs, which is defined as the number
of bits sent from the master to each worker, or equivalently,
the storage required per worker. To combat this effect, product
codes are proposed in [7] for the multi-message distributed
matrix multiplication problem. However, with product codes,
every sub-product is not equally useful while decoding the
full-product, i.e., they are not one-to-any replaceable, which
degrades their performance. The bivariate polynomial codes
are introduced in [10] to address this issue, achieving a better
trade-off between the upload cost and average computation
time.

The second challenge we tackle in this paper is privacy.
The multiplied matrices may contain sensitive information,
and even partially sharing these matrices with the workers
may cause a privacy breach. Moreover, several workers can
exchange information with each other to learn about the
multiplied matrices. Such a collusion may result in a leakage
even if no information is revealed to individual workers. The
first application of polynomial codes to privacy-preserving
distributed matrix multiplication is presented in [11]. To hide
the matrices from the workers, random matrix partitions are
created, and linearly encoded together with the true matrix
partitions using polynomial codes. This requires increasing
the degree of the encoding polynomial and thus increasing the
recovery threshold. The recovery threshold has been improved

2

in subsequent works [12], [13], by carefully choosing the
degrees of the encoding monomials so that the resultant decod-
ing polynomial contains the minimum number of additional
coefficients. In [14]–[16], lower recovery threshold values
than [13] are obtained by using different matrix partitioning
techniques and different choices of encoding polynomials, at
the expense of a considerable increase in the upload cost. In
[17], a novel coding approach for distributed matrix multi-
plication is proposed based on polynomial evaluation at the
roots of unity in a finite field. It has constant time decoding
complexity and a lower recovery threshold than traditional
polynomial-type coding approaches, but the sub-tasks are not
one-to-any replaceable and its straggler mitigation capability
is limited. In [18], a multi-message approach is proposed for
SDMM by using rateless codes. Computations are assigned
adaptively in rounds, and in each round, workers are classified
into clusters depending on their computation speeds. Results
from a worker in a cluster are useful for decoding only if
the results of all the sub-tasks assigned to that cluster and
also to the fastest cluster are collected, making computations
not one-to-any replaceable. Still, the strategy exhibited good
average computation times by estimating and adapting to the
computation speeds of the workers.

In this work, we propose Secure Bivariate Polynomial (SBP)
codes, for the multi-message, straggler-resistant, SDMM task
based on bivariate Hermitian polynomial codes. We show that
under a limited upload cost budget, or when the number of
fast workers is limited, SBP codes outperform other schemes
in the literature in terms of the average computation time. We
also show that this scheme retains its low average computation
time when the computation speeds of the workers significantly
differ, i.e., heterogeneous scenario, or when they are close
to each other, i.e., homogeneous scenario. In addition, we
propose an extension of GASP codes [13] to the multi-message
setting and evaluate its performance. We show that when the
upload cost budget is sufficiently high, the proposed extension
could considerably lower the average computation time of the
SDMM task.

II. PROBLEM SETTING

We study distributed matrix multiplication with strict pri-
vacy requirements. The elements of our matrices are in a finite
field F, and we denote the size of the finite field by q. The
master wants to multiply statistically independent matrices
A ∈ Fr×s and B ∈ Fs×t, r, s, t ∈ Z+, with the help
of N dedicated workers, which possibly have heterogeneous
computation speeds and storage capacities.

To offload the computation, the master divides the mul-
tiplication task into smaller sub-tasks, which are then as-
signed to workers. The master partitions A into K sub-
matrices as A =

[
AT

1 AT
2 · · · AT

K

]T
, where Ai ∈ F r

K ×s,
∀i ∈ [K] ≜ {1, 2, . . . ,K}, and B into L sub-matrices as
B =

[
B1 B2 · · · BL

]
, where Bj ∈ Fs× t

L , ∀j ∈ [L]. The
master sends coded versions, i.e., linear combinations, of these
partitions to the workers. We assume that there is an upload
cost constraint per worker, denoted by ui for worker i, which
limits the maximum number of bits that can be transmitted
from the master to each worker. This upload cost is a limiting

factor on the number of coded partitions of A, denoted by
mA,i, and of B, denoted by mB,i, that can be sent to each
worker. More specifically, for worker i, mA,i and mB,i must
satisfy (mA,irs/K +mB,ist/L) log2(q) ≤ ui. Provided that
they comply with the upload cost constraint, mA,i and mB,i

are chosen depending on the underlying coding scheme and
the master sends coded partitions Ãi,k and B̃i,l to worker i,
where i ∈ [N], k ∈ [mA,i] and l ∈ [mB,i]. For simplicity, we
describe a static setting, in which all the coded matrices are
sent to the workers before they start computations. In a more
dynamic scenario, matrix partitions can be delivered when they
are needed, which would reduce the memory required at the
workers. The workers multiply the received coded partitions
of A and B as instructed by the underlying coding scheme
and send the result of each computation to the master as
soon as it is completed. Once the master receives a number
of computations equal to the recovery threshold, Rth, it can
decode the desired multiplication AB.

In our threat model, the workers are honest but curious.
They follow the protocol, but they can use the received
encoded matrices to obtain information about A and B.
We assume that any T workers can collude, i.e., exchange
information among themselves. Our privacy requirement is
that no T workers are allowed to gain any information about
the content of the multiplied matrices. That is,

I
(
A,B; {Ãi,k, B̃i,l | i ∈ N , k ∈ [mA,i], l ∈ [mB,i]}

)
= 0,

where I is the mutual information and N is the any subset of
[N] with cardinality at most T .

Under this setting, the main problem we attempt to solve is
minimizing the average computation time, which is defined
as the time required for the master to collect sufficiently
many computations to decode the desired computation AB.
We assume that the workers’ computation speeds can be
homogeneous, i.e., the average speed of each available worker
is close to each other, or heterogeneous, in which the average
speeds of the workers vary. Workers can also straggle, i.e.,
become unresponsive temporarily.

III. EXTENSION OF BIVARIATE POLYNOMIAL CODES FOR
SECURE DMM

As a first attempt to improve the upload cost efficiency of
SDMM, we provide the naive extension of bivariate polyno-
mial codes proposed in [10] to SDMM. In [10], the partitioning
of the matrices is as described in Section II and the two
encoding polynomials are generated as

A(x) = A1 +A2x+ · · ·+AKxK−1, (1)

B(y) = B1 +B2y + · · ·+BLy
L−1. (2)

Therefore, at the master, the goal is to interpolate the following
polynomial.

A(x)B(y) =

K∑
i=1

L∑
j=1

AiBjx
i−1yj−1. (3)

Since worker i ∈ [N] can store mA,i partitions of A and mB,i

partitions of B, the master sends the first mA,i derivatives

3

of A(x) and first mB,i derivatives of B(y), evaluated at
xi and yi, respectively, which are evaluation points of the
encoding polynomials chosen distinct for each worker. Each
worker multiplies the received encoded partitions of A(x)
and B(y) following a specific order from the smaller-order
derivatives to larger-order derivatives and sends the results
of each computation as soon as it is finished. Then, once
the master receives KL computations from the workers, it
instructs all the workers to stop and starts decoding A(x)B(y).

In order to provide a simple direct extension of this scheme
to SDMM in which T worker collude, we limit the analysis to
the case mA,i = mA and mB,i = mB , ∀i ∈ [N]. Thus, from
a security point of view, each worker gets mA and mB coded
partitions of A and B, respectively. Since up to T workers
collude, in total, mAT coded partitions of A and mBT coded
partitions of B are leaked to the workers. To protect such
a leakage, we need to add mAT and mBT random matrix
partitions to A(x) and B(y), respectively. Thus, the encoding
polynomials for this naive extension of bivariate polynomial
codes to SDMM becomes

A(x) = A1 +A2x+ · · ·+AKxK−1 +

mAT∑
i=1

Rix
K+i−1, (4)

B(y) = B1 +B2y + · · ·+BLy
L−1 +

mBT∑
i=1

Six
L+i−1, (5)

where Ri and Si are matrix partitions chosen uniformly at
random from the elements of Fq . Therefore, the polynomial
to be interpolated at the master becomes

A(x)B(y) =

K∑
i=1

L∑
j=1

AiBjx
i−1yj−1

+

K∑
i=1

mBT∑
j=L+1

AiSjx
i−1yj−1 +

mAT∑
i=K+1

L∑
j=1

RiBjx
i−1yj−1

+

mAT∑
i=K+1

mBT∑
j=L+1

RiSjx
i−1yj−1. (6)

Therefore, considering the number of monomials of A(x)B(y)
in (6), Rth = (K+mAT)(L+mBT) evaluations of A(x)B(y)
are needed to interpolate it, which is O(T 2) has a quadratic
dependence on T .

Observe that in this naive extension, for a worker to provide
m = mAmB computations, uploading mA coded partitions
of A and mB coded partitions of B are enough. This means
that the upload cost of the scheme is on the order of

√
m.

However, the price we pay for such a reduced upload cost
is a quadratic dependence of the recovery threshold on the
number of colluding workers. Such dependence on T may
quickly become restrictive for typical T values and hence, the
benefits of the naive extension of bivariate polynomial codes
to SDMM may be out-weighted by its drawbacks. Thus, we
need more sophisticated schemes that can keep this low upload
cost with a better scaling behaviour for the recovery threshold
with respect to m and T . In the next section, we present our
proposed solution for such a problem.

IV. SECURE BIVARIATE POLYNOMIAL (SBP) CODES

Our coding scheme is based on bivariate polynomial codes
[10]. Compared to their univariate counterparts, bivariate poly-
nomial codes allow workers to complete more sub-tasks under
the same upload cost budget, which improves the average
computation time and helps to satisfy the privacy requirements.

A. Encoding

In SBP coding scheme, coded matrices are generated by
evaluating the following polynomials and their derivatives:

A(x) =

K∑
i=1

Aix
i−1 +

T∑
i=1

Rix
K+i−1, (7)

B(x, y) =

L∑
i=1

Biy
i−1 +

T∑
i=1

m∑
j=1

Si,jx
K+i−1yj−1, (8)

where m ≤ L is the maximum number of sub-tasks any
worker can complete. Matrices Ri ∈ F

r
K ×s
q and Si,j ∈ Fs× t

L
q

are independent and uniform randomly generated from their
corresponding domain for i ∈ [T] and j ∈ [m]. For each
worker i, the master evaluates A(x) at xi and the deriva-
tives of B(x, y) with respect to y up to the order m − 1
at (xi, yi). We only require these evaluation points to be
distinct. Thus, the master sends to worker i, A(xi) and
Bi = {B(xi, yi), ∂1B(xi, yi), . . . , ∂m−1B(xi, yi)}, where ∂i
denotes the ith partial derivative with respect to y. Thus, we
require mA,i = 1 and mB,i = m.

In (7) and (8), the role of Ri’s and Si,j’s is to mask the
actual matrix partitions for privacy. The following theorem
states that the evaluations of A(x), B(x, y) and its derivatives
do not leak any information about A and B to any T colluding
workers.

Theorem 1. For the encoding scheme described above, we
have I(A,B; {A(xi),Bi : i ∈ N}) = 0, ∀N ⊂ [N] such that
|N | ≤ T .

Proof. Since A and B are independent, we have

I(A,B; {A(xi),Bi : i ∈ N}) = I(A; {A(xi) : i ∈ N})
+ I(B; {Bi : i ∈ N}). (9)

Let us first bound I(A; {A(xi)|i ∈ N}) as follows.

I (A; {A(xi) : i ∈ N})
= H ({A(xi) : i ∈ N})−H ({A(xi) : i ∈ N}|A) (10)
= H ({A(xi) : i ∈ N})−H ({Ri : i ∈ [T]}|A) (11)
(a)
= H ({A(xi) : i ∈ N})− T

rs

K
log(q) (12)

(b)

≤
|N |∑
i=1

H(A(xi))− T
rs

K
log(q) (13)

= |N |rs
K

log(q)− T
rs

K
log(q)

(c)

≤ 0, (14)

where (a) follows from the fact that Ri’s are independent from
each other and from A, (b) is due to the fact that joint entropy
of several random variables is upper bounded by the sum of

4

the individual entropies of these random variables and (c) is
due to N ≤ T .

We can bound I(B; {Bi : i ∈ N}) similarly as follows.

I (B; {Bi : i ∈ N})
= H ({Bi : i ∈ N})−H ({Bi : i ∈ N}|B) (15)
= H ({Bi : i ∈ N})−H({Si,j : i ∈ [T], j ∈ [m]}|B) (16)

= H ({Bi : i ∈ N})− Tm
st

L
log(q) (17)

≤
|N |∑
i=1

m∑
j=1

H(B(xi, yj))− Tm
st

L
log(q) (18)

= |N |mst

L
log(q)− Tm

st

L
log(q) ≤ 0. (19)

The claim follows by substituting (14) and (19) into (9).

B. Computation

Worker i multiplies A(xi) and ∂j−1B(xi, yi) with the in-
creasing order of j ∈ [m]. That is, jth completed computation
is A(xi)∂j−1B(xi, yi). As soon as each multiplication is
completed, its result is communicated back to the master.

C. Decoding

After collecting sufficiently many computations from the
workers, the master can interpolate A(x)B(x, y). Note that, in
our scheme, every computation is equally useful; that is, the
sub-tasks are one-to-any replaceable. In the following theorem,
we give the recovery threshold expression, which specifies the
minimum number of required computations and characterizes
the probability of decoding failure, i.e., bivariate polynomial
interpolation, due to the use of a finite field.

Theorem 2. Assume the evaluation points (xi, yi) are chosen
uniform randomly over the elements of F. If the number of
computations of sub-tasks received from the workers, which
obey the computation order specified in Subsection IV-B is
greater than the recovery threshold Rth ≜ (K+T)L+m(K+
T − 1), then with probability at least 1− d/q, the master can
interpolate the unique polynomial A(x)B(x, y), where

d ≜
m

2

(
3(K + T)2 +m(K + T)− 8K − 6T −m+ 3

)
+

(K + T)L

2
(K + L+ T − 2) . (20)

We give the proof sketch of Theorem 2 in Section VII.
Theorem 2 states that we can make the probability of failure
arbitrarily small by increasing the order q of the finite field.

Theorem 3. The total upload cost of the SBP coding scheme
is N (rs/K +mst/L) log2(q) bits.

Proof. The SBP coding scheme assigns m computations to
each worker, by sending one coded partition of A and m coded
partitions of B. Remember that each coded partition of A is
a matrix of size r

K × s and each coded partition of B is a
matrix of size s × t

L . Since there are N workers, the master
uploads N (rs/K +mst/L) elements of the field F. Since,
in total, there are q elements in F, the total upload cost is
N (rs/K +mst/L) log2(q) bits.

Remark 1. The SBP scheme does not exploit any parameter of
the underlying statistical model of the workers’ speeds. Under
a total upload cost constraint, if no prior information about the
computation speeds of the workers is available, then assigning
more computation load, m, to every worker is a favorable
approach. Although this increases the recovery threshold, i.e.,
the term m(K + T − 1), the faster workers do not run out of
computations easily, avoiding the slowest workers dominating
the computation time. The benefit of this prevails over the
detriment due to the increase in the recovery threshold. Surely,
if prior information about the computation speeds of the
workers is available, we could exploit it by assigning more,
but still less than L, computations to faster workers, which
would result in fewer number of coded partitions leaked to the
colluding workers. In this case, the recovery threshold would
be lower, further increasing the protection against stragglers.
However, the SBP scheme has been designed as agnostic to the
delay model of the workers and specifically to maximize the
number of sub-tasks delivered by a worker under an upload
cost constraint. Thanks to the extra computations at workers,
we show in our simulation results that a model-independent
version of SBP is enough to beat model-dependent schemes
such as the one in [18]. Thus, we expect the SBP scheme to
work for large varieties of statistical models of the worker’s
speeds.

V. EXTENSION OF GASP CODES TO MULTI-MESSAGE
SETTING

State of the art schemes in SDMM [11], [12] are combined
and improved in [13], referred to as GASP codes. Originally,
GASP codes are designed for the single-message scenario, in
which each worker is assigned a single computation task. In
this section, we extend the GASP codes to the multi-message
setting, which we call multi-message GASP (MM-GASP)
scheme. The encoding polynomials for the GASP codes are

A(x) =

K∑
i=1

Aix
αi +

T∑
i=1

Rix
αK+i ,

B(x) =

L∑
i=1

Bix
βi +

T∑
i=1

Six
βL+i ,

where Ri’s and Si’s are random matrix partitions, and αi’s and
βi’s are determined such that AiBj , ∀i ∈ [K],∀j ∈ [L] can
be decoded and the number of monomials whose coefficients
consist of undesired terms, such as multiplications involving
Ri’s and Si’s, in A(x)B(x), are minimized. We do not cover
the details of how αi’s and βi’s are determined, but as a result
of the process detailed in [13], the recovery threshold becomes
RGASP

th (K,L, T) =
KL+K + L, 1 = T < L ≤ K

KL+K + L+ T 2 + T − 3, 1 < T < L ≤ K

(K + T) (L+ 1)− 1, L ≤ T < K

2KL+ 2T − 1, L ≤ K ≤ T.
(21)

For the extension of GASP codes to the multi-message
setting, i.e., MM-GASP, we assign m > 1 tasks to each

5

worker. Thus, a worker can see m evaluations of A(x) and
B(x), and any T colluding workers can see mT evaluations.
Thus, to make the scheme secure against T colluding workers,
we need to add mT random matrix partitions to each encoding
polynomial, instead of T . Thus, we have

A(x) =

K∑
i=1

Aix
αi +

mT∑
i=1

Rix
αK+i ,

B(x) =

L∑
i=1

Bix
βi +

mT∑
i=1

Six
βL+i .

Theorem 4. The recovery threshold of MM-GASP is given by
RMM−GASP

th (K,L, T) =
KL+K + L, 1 = mT < L ≤ K

KL+K + L+ (mT)2 +mT − 3, 1 < mT < L ≤ K

(K +mT) (L+ 1)− 1, L ≤ mT < K

2KL+ 2mT − 1, L ≤ K ≤ mT.
(22)

Proof. We can define T̃ = mT and write

A(x) =

K∑
i=1

Aix
αi +

T̃∑
i=1

Rix
αK+i , (23)

B(x) =

L∑
i=1

Bix
βi +

T̃∑
i=1

Six
βL+i . (24)

Now let us consider

A(x)B(x) =

K∑
i=1

L∑
j=1

AiBjx
αi+βi +

K∑
i=1

T̃∑
j=1

AiSjx
αi+βL+i

+

T̃∑
i=1

L∑
j=1

RiBjx
αK+i+βi +

T̃∑
i=1

T̃∑
j=1

RiSjx
αK+i+βL+i . (25)

According to the proof of (21) in [13], αi’s and βi’s are
chosen such that: 1) from the evaluations of A(x)B(x),
AiBj’s ∀i ∈ [K], j ∈ [L] are decodable and 2) the number
of monomials in A(x)B(x) whose coefficients are undesired
terms are minimized. For this, we only need to consider the
structure of A(x)B(x) and m itself is not related other than
determining the value of T̃ . Therefore, the problem reduces
to deriving the recovery threshold of a classical GASP coding
scheme when T̃ workers collude, which is RGASP

th (K,L, T̃)
by (21). If we substitute T̃ = mT , then we obtain (22).

Remark 2. In multi-message univariate polynomial coding
schemes, such as in MM-GASP codes we have just introduced,
if a worker is assigned m sub-tasks, then m coded partitions
of both A and B are required. Thus, the total upload cost of
MM-GASP is Nm (rs/K + st/L) log2(q) bits, which is larger
than that of SBP coding scheme.

The recovery thresholds of the MM-GASP codes and SBP
codes can be compared as a function of the number of coded
partitions m, by direct inspection of the recovery thresholds

0 20 40 60 80 100

1.5

2

2.5

·104

Number of computations per worker (m)

R
th

SBP
MM-GASP

Fig. 1. Rth vs. the number of computations assigned to each worker for SBP
coding scheme and the MM-GASP scheme for K = L = 100 and T = 30.

in (22) and Theorem 2. Observe that SBP coding scheme’s
recovery threshold is smaller than that of the MM-GASP code
if L ≤ mT < K, and K ≤ TL + 1, which is satisfied as K
and L become close to each other, or, if L ≤ K ≤ mT , and
(K−T)(L−m) ≥ (1−m) is satisfied. In Fig. 1, we provide
the recovery thresholds of the two schemes as a function of
the number of computations allocated to each worker for K =
L = 100 and T = 30.

We note that such a comparison may only be meaningful
in the unlimited upload cost budget scenario. Otherwise,
comparing the recovery thresholds for the same m might be
misleading since, for a given upload cost constraint, each
scheme provides a different number of sub-tasks, m, to work-
ers, as detailed in Theorem 3 and Remark 2, for SBP and
for MM-GASP, respectively. We provide further discussion
on this issue in the next section, see Fig. 3, where we show
the recovery thresholds as a function of the total upload cost
budget for a scenario with K = L = 100 and T = 30.

VI. SIMULATION RESULTS AND DISCUSSION

In this section, we compare SBP codes with MM-GASP and
the rateless coding scheme proposed in [18] in terms of the
trade-off between the average computation time (ACT) and
the total upload cost budget (UCB), under the scenarios with
heterogeneous and homogeneous workers.

The comparison between the MM-GASP scheme and SBP
coding scheme is direct, as both are based on the same set
of assumptions. They achieve different recovery thresholds
as a function of the L,M, T and m, but they both assume
that the coded submatrices are uploaded only once before the
computations start, no prior knowledge of the computation
speeds of workers is needed or can be exploited, and the first
Rth results received from any subset of the workers allow
recovering the desired computation. However, the setting and
the assumptions in [18] are slightly different. In the rateless
coding scheme proposed in [18], computations are organized
in rounds. If the speeds of the workers are not already known,
in the first round, every worker is assigned one computation to
estimate their speeds. Then, based on the known or estimated
speeds, workers are grouped into c clusters, such that the
workers with similar speeds are in the same cluster. We denote
by nu the number of workers belonging to cluster u, u ∈ [c].

6

In each round, for any computation within a cluster to be
useful for decoding, we need that all the workers in that cluster
and also all workers in cluster one, which is special, to finish
their assigned tasks. Once all the workers in cluster u and
cluster 1 finish their tasks, they provide du, and d1 useful
computations to the master, where d1 = ⌊(n1 − 2T + 1)/2⌋
and du = ⌊(nu − T + 1)/2⌋ for 2 ≤ u ≤ c. No further
synchronization is needed among clusters, and a new task can
be assigned to a worker as soon as it finishes its assigned
task. Once KL(1 + ϵ) useful computations are collected by
the master from different clusters across multiple rounds, the
decoding procedure can start. Here, ϵ is the overhead due to
the Fountain codes used in [18], which in our simulations is
set to 0.05. The performance of this scheme depends critically
on how good the distribution of the workers’ speeds can be
estimated. Observe that, in the event that a worker in a "fast"
cluster straggles, the finishing time of the overall cluster can be
arbitrarily delayed. This is the main drawback of this scheme
in comparison with SBP coding scheme and the MM-GASP,
for which any computation at any worker is equally useful.
The clear advantage of the rateless coding scheme is that the
computation load mi, i.e., the number of tasks assigned to
worker i, does not need to be specified in advance, and tasks
can be dynamically allocated to workers in each cluster across
rounds. Moreover, the recovery threshold is not dominated
by the maximum computation load m = maxmi, as is the
case for SBP coding and the MM-GASP schemes. Therefore,
in order to allow the rateless coding scheme to benefit from
this flexibility, in our simulations, we consider a total upload
cost for [18], i.e., the computations are assigned to clusters
until the total upload communication budget is met, while for
MM-GASP and SBP we impose an upload cost constraint per
worker. We emphasize that this is a relaxation of the problem
formulation introduced in Section II, and is only applied to
the rateless coding scheme. Although SBP coding scheme
and the MM-GASP code can also benefit from this relaxation
when the computation statistics of the workers are known,
such optimization is out of the scope of this paper and will be
considered in future work.

In our simulations, following the literature [2], [19], we
assume that the time for a worker to finish one sub-task
is distributed as a shifted exponential random variable with
density f(t) = λe−λ(t−ν) for t ≥ ν, and f(t) = 0 otherwise,
where the scale parameter λ controls the speed of the worker
and the shift parameter ν is the minimum time duration for
a task to be completed. Smaller λ implies slower workers
and more tendency to straggle. In each scenario, we run
1000 experiments independently with the given parameters
and present the average computation time. We assume that
the partitions of matrices A and B have the same size,
i.e., r

K = t
L , in all of the scenarios considered. Given that

the computation time per sub-task is a fraction 1
KL of the

complete task, to facilitate the comparison between different
configurations, we choose λ ∝ KL, and ν ∝ 1

KL , in all
simulation setups.

2 · 104 1 · 105 4 · 105

0.6

100

5

Total upload cost budget (UCB) (matrix partitions)

A
ve

ra
ge

co
m

pu
ta

tio
n

tim
e

(A
C

T
)

(s
ec

on
ds

)

SBP
MM-GASP
Rateless, c=3
Rateless, c=5
Rateless, c=6
Rateless, c=7

Fig. 2. ACT vs. total UCB trade-off of the compared schemes with
heterogeneous and stable workers.

A. Heterogeneous Workers

In this subsection, we assume that the computation speeds
of the workers are heterogeneous. Specifically, we assume six
heterogeneity classes, with scale parameters λ1 = 10−1×KL,
λ2 = 10−1.5 × KL, λ3 = 10−2 × KL, λ4 = 10−2.5 × KL,
λ5 = 10−3×KL and λ6 = 10−3.5×KL, and a common shift
parameter of ν = 10/(KL) seconds. There are 75 workers
for each class summing up to N = 450 workers in total, and
assume that any subset of at most T = N/15 workers can
collude. We divide both matrices A and B into K = L = 100
partitions. We evaluate the scheme in [18] for several numbers
of clusters, c, to observe the effect of the mismatch between
the actual number of heterogeneity classes and the chosen c
value. While generating the clusters, we simply assign around
N/c workers to each cluster, according to the estimated speeds
in the first round. We do not change the parameter c across
rounds.

First, we assume that workers’ scale parameters do not
deviate at all from the given parameters across the rounds. We
call such workers as stable workers. In Fig. 2, we plot the ACT
of the compared schemes versus the total UCB by assuming
stable workers. In Fig. 3, we also present the actual recovery
thresholds of SBP coding scheme, MM-GASP, as well as, the
average recovery threshold of the rateless coding scheme for
different c values. As the name suggests, the rateless scheme
does not have a constant recovery threshold. The actual value
depends on the computation speeds of the workers, the number
of clusters, and the number of workers assigned to them.
Therefore, we present the average recovery threshold for this
scheme.

As observed in Fig. 2, the SBP coding scheme is able to
finish the overall task for much lower UCB values than the
other two schemes. This is thanks to the fact that SBP is able
to provide more computations, m, to workers for the same
UCB, as highlighted in Remark 1. Moreover, although by
increasing the total UCB we increase m and therefore Rth,
as observed in Fig. 3, and thus workers need to provide more
computations to the master, the benefit from having more
computations at workers pays off and the ACT decreases when
UCB increases. The reason for this is the heterogeneity of the

7

1 · 105 2 · 105 3 · 105 4 · 105

2

4

6

8
·104

Total upload cost budget (UCB) (matrix partitions)

R
th

SBP MM-GASP
Rateless, c=3 Rateless, c=5
Rateless, c=6 Rateless, c=7

Fig. 3. Average Rth of the compared schemes with heterogeneous and stable
workers

workers’ speeds. That is, for a low total UCB, m is so small
that the master cannot complete all Rth computations from
only fast workers. When we increase m, the maximum number
of computations the fast workers can provide also increases,
and the benefit of this increase dominates over the increase
in the Rth. For the SBP scheme, this is so until we reach a
total UCB value corresponding to m = L i.e., total UCB of
L × N = 45000. After this point, the ACT of SBP coding
scheme stays constant. This is an inherent limitation of SBP
coding scheme since the maximum value of m is L. Beyond
that value, we cannot benefit from the additional UCB.

For MM-GASP codes, we observe that, although their
recovery threshold is close to that of SBP coding scheme in the
low UCB regime, as seen in Fig. 3, the minimum total UCB for
which MM-GASP codes are able to complete the overall task
is larger than SBP coding scheme. That is because the MM-
GASP scheme is a univariate scheme; and thus, for the same
total UCB, the maximum number of computations a worker
can provide is less than the one in SBP coding scheme. For the
same reason, at intermediate total UCB availability, i.e., values
less than 9×104 partitions, the ACT of the MM-GASP scheme
is quite large compared to SBP coding scheme. However, for
larger values of total UCB, we observe in Fig. 2 that MM-
GASP’s ACT decreases rapidly, substantially outperforming
the other two schemes. However, after a critical point, if the
total UCB further increases, then the ACT starts to increase
again. After that critical point, the increase in the recovery
threshold is not compensated by the additional computations
at workers and the ACT starts to increase. Unfortunately,
operating at this point may not be always possible. Especially
when we do not have any prior information about the statistics
of the workers’ speeds. Nevertheless, some heuristics can still
be useful to approximate it and even if the optimal point cannot
be found, a sufficiently close point can still be beneficial. Thus,
we can conclude that, if a good heuristic can be found to
identify a near-optimal m value, for large UCB values, MM-
GASP codes can complete the overall task faster than SBP
coding scheme as well as the rateless coding scheme. This
makes MM-GASP codes a good alternative for the scenarios
with high UCB availability.

Finally, for the rateless codes, as observed for MM-GASP
codes, we observe that this scheme starts being able to
complete the overall task only at a relatively high total UCB
value. That is because the rateless coding scheme assigns
a new sub-task to a worker as soon as it finishes its task
without waiting for the other clusters to finish. Thus, the UCB
is greedily invested in the fastest cluster. However, despite
its speed, in terms of the number of useful computations
provided, the fastest cluster is less efficient than the other
clusters. Please remember that d1 = ⌊(n1 − 2T + 1)/2⌋, but
du = ⌊(nu − T + 1)/2⌋ for 2 ≤ u ≤ c. Therefore, if the
number of workers in the fastest cluster is limited, then for
the low UCB values, the rateless scheme cannot complete the
overall task since it runs out of the necessary upload resources
before the master receives the minimum number of useful
computations to decode AB, which is KL(1 + ϵ). Moreover,
we observe in Fig. 3 that when the number of clusters is low,
the recovery threshold is also lower, and the rateless scheme
starts completing the overall task at a lower value of total
UCB. That is because when c is low, since we assign N/c
workers per cluster, there are more workers in the fastest
cluster. However, in Fig. 2, we also observe that this does not
always have a positive impact on the ACT. On the other hand,
when UCB is large enough for rateless codes to complete the
overall task, its ACT is slightly better than SBP coding scheme
for c = 3 and c = 6, but for c = 5 and c = 7, SBP coding
scheme performs better. In general, we expect that the rateless
coding scheme performs well when c is equal to the number
of heterogeneity classes, but, in this case, we also observe that
it performs equally well for c = 3. That is because, for c = 3,
there is no λi, i ∈ [6] appearing in more than one cluster, i.e.,
workers in the same heterogeneity class are allocated to the
same cluster. Therefore, for rateless codes, it is important to
choose the design parameter c carefully. In practice, we may
not know the number of heterogeneity classes, such a clear
grouping of computation statistics may not be possible. For
such cases, SBP coding scheme or the MM-GASP may be
preferable over the rateless coding scheme.

In addition to choosing c optimally, estimating the instan-
taneous speeds of the workers is another issue we need to
address in rateless codes. In real-world scenarios, the speeds
of the workers can occasionally change due to temporary
failures, parallel job assignments, etc. To model this, we
introduce another simulation scenario, in which workers’ scale
parameters can deviate from their original values with a very
low probability ρ. We refer to such workers as mostly-stable
workers. That is, in any round, a worker with λi sticks to λi

with probability 1−ρ, but with a small probability ρ, it draws
its scale parameter uniform randomly from {λj | j ∈ [6]}. We
consider such a scenario to model the instantaneous changes
in workers’ speeds since the detection of such changes by the
master and putting this worker to the correct cluster takes at
least one round. Taking ρ = 0.001, we plot the ACT of the
compared schemes in Fig. 4.

We observe that even with such a small probability deviation
from the estimated scale parameters, the performance of [18]
degrades considerably. Thus, we can argue that, in addition to
the substantial improvement in the low and the intermediate

8

2 · 104 1 · 105 4 · 105

0.6

100

5

Total upload cost budget (UCB) (matrix partitions)

A
ve

ra
ge

co
m

pu
ta

tio
n

tim
e

(A
C

T
)

(s
ec

on
ds

)
SBP MM-GASP
Rateless, c=3 Rateless, c=5
Rateless, c=6 Rateless, c=7

Fig. 4. ACT vs. total UCB trade-off of the compared schemes with
heterogeneous and mostly-stable workers.

2 · 104 1 · 105 4 · 105

0.6

100

Total upload cost budget (UCB) (matrix partitions)

A
ve

ra
ge

co
m

pu
ta

tio
n

tim
e

(A
C

T
)

(s
ec

on
ds

)

SBP MM-GASP
Rateless, c=1 Rateless, c=2
Rateless, c=3

Fig. 5. ACT vs. total UCB trade-off of the compared schemes with
homogeneous and stable workers.

UCB values, SBP coding scheme can be advantageous over
[18] in the presence of a high UCB as well depending on the
statistics of the workers’ speeds.

B. Homogeneous Workers

In this subsection, we assume that the computation speeds
of the workers are homogeneous, and we compare the ACTs
of the considered schemes with respect to the available total
UCB. That is, we have 450 workers as in Subsection VI-A,
but this time, all the workers follow the same computation
statistics with λ = 10−2×KL and ν = 10/(KL). We assume
at most T = N/15 workers can collude, and we divide A and
B into K = L = 100 partitions. For the rateless scheme
in [18], although, the workers’ speeds are homogeneous, we
consider different numbers of clusters c ∈ [3] in order to
analyse its effect. In Fig. 5, we present the ACT versus UCB
plot for this setting.

Similarly to the heterogeneous case discussed in Subsec-
tion VI-A, due to the upload cost efficiency of the bivariate
polynomial codes, we observe that the minimum UCB for
which SBP can complete the overall task is smaller than for
the other schemes. Moreover, in this homogeneous case, we
observe that the ACTs of SBP and MM-GASP only increase

2 · 104 1 · 105 4 · 105

0.5

100

101

Total upload cost budget (UCB) (matrix partitions)

A
ve

ra
ge

co
m

pu
ta

tio
n

tim
e

(A
C

T
)

(s
ec

on
ds

)

SBP
MM-GASP
Rateless, c=1
Rateless, c=2
Rateless, c=3

Fig. 6. ACT vs. total UCB trade-off with homogeneous and mostly-stable
workers.

with the total UCB. That is because, due to the similarity
in workers’ speeds, there is no need for the faster workers
to compensate for the slower ones. Therefore, rather than
improving the ACT, increasing m beyond the minimum value,
for which the schemes complete the overall task, results in a
higher ACT since it also increases Rth. Therefore, we depict
the best ACT for SBP and MM-GASP coding schemes in
Fig. 5 and Fig. 6 by flat dashed lines.

On the other hand, for the rateless codes, we observe
that, regardless of the number of clusters, c, considered, they
perform significantly worse than SBP coding scheme for all
UCB values. That is because, while the sub-tasks are one-to-
any replaceable in SBP coding scheme, i.e, the result of any
sub-task can compensate for the absence of any other sub-
task, this is not the case in the rateless coding scheme. Since
we consider the homogeneous workers in their speeds, there is
not much difference between the clusters in the rateless coding
scheme. Since, to decode the sub-tasks in a cluster, all of the
workers in that cluster must finish their sub-tasks, the ACT
increases.

As we stated in Subsection VI-A, in a real-world scenario,
the speeds of workers can occasionally change. To model this
effect, in Fig. 6, we provide the ACT versus UCB trade-
off in the scenario in which the workers are mostly-stable
with a transition probability ρ = 0.001. Since there is only
one heterogeneity class in the homogeneous case, to simulate
mostly-stable workers, we assume that a worker sticks to
λ = 10−2×KL with probability ρ, but with probability 1−ρ,
its λ parameter is chosen uniformly between λ = 10−3×KL
and λ = 10−4 ×KL.

We observe that the effect of such a low probable deviation
from the original parameters is considerable in the rateless
codes since in order to utilize the computations in a cluster,
all the workers in that cluster must complete their sub-tasks.
If some of these workers straggle even only for one round, it
can delay the overall computation significantly.

To conclude, we observe that, in the cases in which the
workers’ speeds are known to be close to each other, i.e.,
homogeneous, SBP coding scheme is preferable over both the
rateless coding and the MM-GASP schemes.

9

· · ·· · ·

· · ·

· · ·

0

0

K + T − 1

m− 1

L− 1

2K + 2T − 2

deg(x)

deg(y)

Fig. 7. The visualization of the degrees of the monomials of A(x)B(x, y)
in the deg(x)− deg(y) plane.

VII. PROOF OF THEOREM 2
In Fig. 7, we visualize the degrees of the monomials of

A(x)B(x, y) in the deg(x) − deg(y) plane. From Fig. 7,
we see that the number of monomials of A(x)B(x, y) is
(K + T)L + m(K + T − 1). We need to show that every
possible combination of so many responses from the workers
interpolates to a unique polynomial, implying (K + T)L +
m(K + T − 1) is the recovery threshold.

Definition 1. Bivariate polynomial interpolation problem can
be formulated as solving a linear system of equations, whose
unknowns are the coefficients of A(x)B(x, y) and whose
coefficient matrix consists of the monomials of A(x)B(x, y)
and their derivatives with respect to y evaluated at the
evaluation points of the workers, (xi, yi), i ∈ [N] . We
refer to this coefficient matrix as the interpolation matrix
and denote it by M . Since the number of monomials of
A(x)B(x, y) is Rth = (K+T)L+m(K+T −1), we require
Rth equations to interpolate it, and hence, M ∈ RRth×Rth .
Each row of M corresponds to the result of one sub-task sent
by a worker to the master. For example, when K = L = 2,
m = 2 and T = 1, we have Rth = 10, and one possible
interpolation matrix formed by any 5 workers, each of which
provides m = 2 computations, is as follows:

M =

1 x1 x2

1 x3
1 x4

1 y1 x1y1 x2
1y1 x3

1y1 x4
1y1

0 0 0 0 0 1 x1 x2
1 x3

1 x4
1

...
...

...
...

...
...

...
...

...
...

1 x5 x2
5 x3

5 x4
5 y5 x5y5 x2

5y5 x3
5y5 x4

5y5
0 0 0 0 0 1 x5 x2

5 x3
5 x4

5

 .

Observe that the first row represents the direct evaluation
A(x1)B(x1, y1) from worker 1, and the second row represents
A(x1)∂1B(x1, y1), again from worker 1. In general, any in-
terpolation matrix formed by Rth = 10 computations received
from any subset of workers is also valid, as long as the workers
follow the computation order specified in Section IV-B.

The problem of showing that any Rth responses from the
workers interpolates to a unique polynomial is equivalent to
showing that the corresponding interpolation matrix is non-
singular. The theorem claims that this is the case with high
probability. First, we need to show that there exist some
evaluation points for which the determinant of the interpolation
matrix is not zero. That is equivalent to showing that det(M)
is not the zero polynomial of the evaluation points. In [10],
such a result for the same type of interpolation matrices is
shown for the real field R. Here, we extend this proof to F. We

show that det(M) is non-zero for some evaluation points by
using Taylor series expansion of det(M), as done in [10]. This
can be done since Taylor series expansion is also applicable
in F, as long as, the degree of the polynomial A(x)B(x, y)
is smaller than the field size q. This can be guaranteed by
choosing a large q. For further details on the applicability of
Taylor series expansion in finite fields, see [20] and [21].

Without losing generality, let us assume first that n work-
ers with n ≤ N , provide, together, enough responses, i.e.,
Rth, to interpolate A(x)B(x, y). Let us assume (xi, yi) and
(xj , yj) are two evaluation points for which the evaluations
of A(x)B(x, y) and some of its derivatives at these points are
received by the master. We write the Taylor series expansion of
det(M) around (xi, yi) by taking the evaluation point (xj , yj)
as the variable:

det(M) =
∑

(α1,α2)∈N2

1

α1!α2!
(xj−xi)

α1(yj−yi)
α2Dα1,α2(Z̃),

(26)
where Z̃ ≜ {(xk, yk) : k ∈ [n]} \ {(xj , yj)} and

Dα1,α2(Z̃) ≜
∂α1+α2

∂xα1
j ∂yα2

j

det(M)(xj , yj)

∣∣∣∣
xj=xi,yj=yi

.

We call (xi, yi) the pivot node and (xj , yj) the variable node.

Remark 3. The monomials (xj−xi)
α1(yj−yi)

α2 are linearly
independent for different (α1, α2) pairs if there is no relation
between x and y coordinates of the evaluation points, i.e., xi

and xj do not depend on yi and yj . Thus, det(M) is a zero
polynomial of all evaluation points, if and only if Dα1,α2

(Z̃) =
0,∀(α1, α2) ∈ N2. Therefore, in order to show that M is
non-singular, it suffices to show that there exists at least one
(α1, α2) making Dα1,α2(Z̃) nonzero.

Before looking into Dα1,α2
(Z̃) in more detail, let us define

some notions which will help us understanding its structure.

Definition 2. Derivative Set. In an interpolation matrix M ,
there might be several rows each corresponding to a different
derivative order of A(x)B(x, y) associated with the evaluation
point zi ≜ (xi, yi), which is assigned to worker i. We define
the derivative set of zi, denoted by Uzi,M as the set of
derivative orders of A(x)B(x, y) with respect to x and y
associated to zi in M . That is, (dx, dy) ∈ Uzi,M if and only
if M has a row corresponding to ∂dx+dy

∂xdx
i ∂y

dy
i

A(xi)B(xi, yi).

Definition 3. Derivative order space. The derivative order
space of a bivariate polynomial A(x)B(x, y) is defined as the
2-dimensional space of all its possible derivative orders. Since
the largest derivative order of a bivariate polynomial is its
largest monomial degree, the derivative order space has the
same shape as deg(x)− deg(y) plane depicted in Fig. 7. For
example, consider the 2-D derivative order (K+T,m). Since
all the monomials of A(x)B(x, y) having a degree larger than
m with respect to y have a degree less than or equal to K +
T − 1 with respect to x, the 2-D derivative order (K + T,m)
results in a zero polynomial. Thus, this is not an element of
derivative order space. The derivative set of each evaluation
point can be depicted in the derivative order space separately.

10

Definition 4. Let M be an interpolation matrix for which
some of its rows depend on xj and yj . Let us denote by ri
its ith row and define a simple shift as

∂i,xj
M ≜

[
rT1 , . . . ,

∂

∂xj
rTi , . . . , r

T
KL

]T
(27)

and

∂i,yjM ≜

[
rT1 , . . . ,

∂

∂yj
rTi , . . . , r

T
KL

]T
. (28)

That is, ∂i,xj
and ∂i,yj

transform M into another matrices by
taking the derivative of its ith row with respect to xj and yj ,
respectively. If in the resulting derivative set, i.e., Uxj ,∂i,xj

M

or Uyj ,∂i,yj
M , each element has a multiplicity of one, then the

shift is called a regular simple shift.

Definition 5. Let k and l be vectors such that k ∈
{0, 1, · · · ,K−1}Rth and l ∈ {0, 1, · · · , L−1}Rth . We define
the composition of simple shifts as

∇xj ,yj

k,l M = ∂
k(1)
1,xj

∂
k(2)
2,xj

· · · ∂k(Rth)
Rth,xj

∂
l(1)
1,yj

∂
l(2)
2,yj

· · · ∂l(Rth)
Rth,yj

M.
(29)

That is, the ith element of k denotes the order of the
derivative of ith row of M with respect to the variable xj ,
and the ith element of l denotes the order of the derivative
of ith row of M with respect to the variable yj . In fact, (29)
is not the only way to compute ∇xj ,yj

k,l M since the derivative
operation is commutative. One can compute ∇xj ,yj

k,l M in any
other order. Each of these possible orders are referred to as
a derivative path. If a derivative path involves only regular
simple shifts, i.e. after each derivative there are not two equal
rows, then it is called a regular derivative path. We denote the
number of regular derivative paths by Ck,l(M).

Based on these definitions, we have the following lemma.

Lemma 1 (Lemma 1 in [10]). Let k ∈ {0, 1, · · · ,K− 1}Rth ,
l ∈ {0, 1, · · · , L − 1}Rth and α1 =

∑Rth

i=1 k(i) and α2 =∑Rth

i=1 l(i). Then, we have

∂α1+α2

∂xα1
j ∂yα2

j

det(M)

∣∣∣∣
xj=xi,yj=yi

=
∑

(k,l)∈RM (α1,α2)

Ck,l(M) det
(
∇xj ,yj

k,l M
) ∣∣∣∣

xj=xi,yj=yi

,

(30)

where RM (α1, α2) is the set of (k, l) pairs satisfying
Ck,l(M) ̸= 0, i.e., there is at least one derivative path for
which ∇xj ,yj

k,l can be applied by using only regular simple
shifts.

Definition 6. If RM (α1, α2) has only one element, i.e., there
is only one (k, l) resulting in a regular simple shift, then
(α1, α2) is called a unique shift order and (k, l) is called
a unique shift.

Now, let us go back to Dα1,α2(Z̃). Recall that we would
like to show that at least for one (α1, α2), Dα1,α2

(Z̃) is non-
zero. Observe that it does not depend on (xj , yj) since after
taking the derivatives with respect to (xj , yj), the resulting

expression is evaluated at xj = xi, yj = yi. If (α1, α2) is
a unique shift order, then according to (30), it is enough
to show that det (M1) is not the zero polynomial, where
M1 ≜ ∇xj ,yj

k,l M |xj=xi,yj=yi
. Notice that, M1 no longer

depends on the evaluation point (xj , yj). We call such a
procedure of transforming an interpolation matrix into another
interpolation matrix via unique shifts as the coalescence of the
variable node and the pivot node. After obtaining M1, we can
employ the same idea to show M1 is non-singular. Namely, we
can write the Taylor series expansion of det(M1) by choosing
a new variable node and keeping the same pivot node (xi, yi).
If there is a unique shift for the coalescence, the resultant
matrix M2 will not depend on neither the previous variable
node (xj , yj) nor the current variable node. We can apply such
coalescences successively as long as we can find a unique shift
order (α1, α2) at each coalescence, until Mfinal depends only
on one evaluation point, which is the pivot node, (xi, yi). In
Mfinal, the derivative set of (xi, yi) has all possible elements of
the derivative order space. Thus, Mfinal is a triangular matrix,
and hence, non-singular.

To summarize, to prove that all possible interpolation ma-
trices, M , generated from our scheme are non-singular in
general, we need to show that we can always find at least one
unique shift for all the steps of the coalescence procedure.
Our strategy to show that we can always find a unique shift
in all coalescence steps is based on the idea of keeping the
derivative set of the pivot node to be a lower set. A lower set
is defined as a set in which the presence of an element implies
the presence of all possible elements smaller than this element.
To decide if an element is smaller than any other element, we
need to define an ordering rule. For our case, we define such
an ordering as follows. Assume we denote our pivot node as
zi = (xi, yi) and take two derivative orders (a, b) ∈ Uzi,M and
(c, d) ∈ Uzi,M , where a and c are the orders of the derivative
with respect to xi and b and d are the orders of the derivative
with respect to yi. We say (a, b) < (c, d) if and only if a < c
or a = c and b < d.

Before formally stating our strategy to find a unique shift in
all the coalescence steps, we describe it with two examples.

Example 1. Assume K = L = 5, T = 1 and m = 3 and we
are at the beginning of p-th coalescence step. Let us choose zi
as the pivot node and zj as the variable node. Further, assume
at the beginning we have Uzi,Mp−1

= {(a, b) : (a, b) ≤ (1, 2)}
and Uzj ,Mp−1

= {(a, b) : (a, b) ≤ (0, 2)}. We depict the
derivative sets of Uzi,Mp−1 and Uzj ,Mp−1 in Fig. 8a and
Fig. 8b. We will take smallest possible shift (α1, α2) such
that the resultant Uzi,Mp

after the coalescence. Knowing the
number of elements in Uzi,Mp

after the coalescence, its shape
is uniquely determined under the condition that it must be
a lower set and shown in Fig. 8c. In Fig. 8b and Fig. 8c,
we assign to each element of Uzj ,Mp−1 either the letter "a",
"b" or "c" so that we can track its location during and
after the coalescence procedure. Recall that taking derivatives
corresponds to shifting the elements of the derivative set in
the derivative order space. Thus, in order to shift the elements
of Uzj ,Mp−1 to their locations in the final shape in Fig. 8c, we
need to the total number of shifts in both x and y directions

11

is 4, implying we need to choose (α1, α2) = (4, 4). For this
choice, we have k(ia) = 2, k(ib) = 1, k(ic) = 1, l(ia) = 0,
l(ib) = 2 and l(ic) = 2 where ia is the row-index of the
element a. Given this choice of (α1, α2), there is no other
possible resulting shape for Uzi,Mp

resulting a non-singular
Mp. To see this, observe that, if we write the derivative sets
of Uzi,Mp after-the-coalescence for all possible (k, l) such
that

∑
i k(i) = α1 and

∑
i l(i) = α2, then all, except the one

depicted in Fig. 8c will have overlapping elements making
the corresponding interpolation matrix singular. Therefore,
(α1, α2) = (4, 4) is a unique shift order.

Example 2. Let us consider the same setting in Example 1,
but assume Uzi,Mp−1 = {(a, b) : (a, b) ≤ (6, 1)}. Since the
maximum number of computations a worker can provide is
m = 3, the cardinality of the derivative set of the variable
node Uzj ,Mp−1

, in this example, is at its maximum. Thus, we
can directly follow the same procedure as in Example 1. Note
that after the coalescence, UziMp will have 34 elements, and
the lower set having 34 elements is unique and well defined.
To obtain the shape in Fig. 9, we need (α1, α2) = (0, 19) with
k(ia) = 7, k(ib) = 6 and k(ic) = 6, and it is a unique shift
order since any other assignment of 19 shifts to a, b and c
results in a non-singular Mp.

Next, we formally state our strategy for an arbitrary coales-
cence step p. Since we choose one pivot node and use it for
every coalescence step, we guarantee that the variable node’s
derivative set has always at most m elements. To generalize
the procedure in Example 1 and Example 2, let us assume
(px, py) is the largest element of the derivative set of the pivot
node zi, i.e., Uzi,Mp−1

= {(a, b) : (0, 0) ≤ (a, b) ≤ (px, py)}
and (0, vy) is the largest element of the derivative set of the
variable node zj , i.e., Uzj ,Mp−1 = {(0, b) : 0 ≤ b ≤ vy}.
While calculating (α1, α2) pair, we first determine α2, which
is the total derivative order with respect to yj , or equivalently
the number of shifts towards y-direction in the derivative
order set. This means that we first take the derivatives with
respect to yi, and then with respect to xi. In Fig. 10a,
in the derivative order space, for px ≤ K + T − 1, we
depict the derivative set of the pivot node, i.e., Uzi,Mp−1

,
by filled circles, and the locations to which the elements
of Uzj ,Mp−1

will be placed after the coalescence by unfilled
circles. Note that we determine these locations by inserting the
elements of Uzj ,Mp−1 into Uzi,Mp−1 such that the derivative
set of the pivot after the coalescence, i.e., Uzi,Mp

, satisfies
the lower set property. In Fig. 10b, instead of the elements
of Uzi,Mp−1

, we depict the elements of Uzj ,Mp−1
together

with the locations they will be placed after the coalescence
to facilitate visualization of the necessary shifts. To be able
to keep track of the elements, we depict each one of them
by Φi, i ∈ [vy + 1]. We denote the number of elements in
Uzj ,Mp−1

to be shifted towards y-direction, by µ. We further
define ξ ≜ vy + 1 − µ. As shown in Fig. 10a, when the
number of empty spaces in the rightmost partially occupied
column of Uzi,Mp−1

is smaller than |Uzj ,Mp−1
| = vy + 1,

µ becomes this number, i.e., µ = L − py − 1, since these
spaces must be filled. Otherwise, to fill as many as spaced

possible, all elements of the derivative set of the pivot node
are shifted towards y-direction and µ becomes vy + 1. Thus,
µ = min{L − py − 1, vy + 1} if px ≤ K + T − 1. When
px > K + T − 1, in fact, the same logic also applies but the
maximum number of elements that can be placed in a column
in Fig. 10a would be m instead of L. Thus, the expression
for µ is modified as µ = min{m− py − 1, vy + 1}, which is
obtained by replacing L with m.

Next, recall that only regular simple shifts are considered
for unique shifts. Thus, while taking y-directional derivatives,
i.e., shifts towards y-direction in Fig. 10b, the sequence of the
elements in the y-axis does not change. For instance, Φvy+1

stays always on top of the elements denoted by Φi, i ∈ [vy].
If, for example, as a result of some shifts, Φvy is placed
on top of Φvy+1, then this would be possible only if the
element Φvy is located in the same location as Φvy+1 at some
point, and this would contradict the assumption of regular
simple shifts. Hence, there is only one resulting order after
shifting the uppermost µ elements towards y-direction. We
show the elements of the variable node’s derivative set after
y-directional shifts in Fig. 10c. All the remaining shifts, now,
are the ones towards x-direction so that the elements of
Uzj ,Mp−1

are located to their intended locations, i.e., unfilled
circles in Fig. 10c. Notice that each Φi is already aligned
with its final location in y-direction, and hence, each one
of them will be shifted towards x-direction by a sufficient
amount. Therefore, these shifts also result in a unique shape.
From these observations, we can conclude that whenever the
derivative sets of the pivot node and the variable node are
lower sets, there exists a unique shift for their coalescence.

From this discussion, we can conclude that det(M) is not
zero polynomial for large enough q. Next, we need to find
the upper bound on the probability det(M) = 0, when the
evaluation points are sampled uniform randomly from F.

Lemma 2. [22, Lemma 1] Assume P is a non-zero, v-variate
polynomial of variables αi, i ∈ [v]. Let d1 be the degree of
α1 in P (α1, . . . , αv), and P2(α2, . . . , αv) be the coefficient of
αd1
1 in P (α1, . . . , αv). Inductively, let dj be the degree of αj in

Pj(αj , . . . , αv) and Pj+1(αj+1, . . . , αv) be the coefficient of
αj in Pj(αj , . . . , αv). Let Sj be a set of elements from a field
F, from which the coefficients of P are chosen. Then, in the
Cartesian product set S1×S2×· · ·×Sv , P (α1, . . . , αv) has at
most |S1 × S2 × · · · × Sv|

(
d1

|S1| +
d2

|S2| + · · ·+ dv

|Sv|

)
zeros.

In our case, det(M) is a multivariate polynomial of the
evaluation points (xi, yi) since the elements of M are the
monomials of A(x)B(x, y) and their derivatives with respect
to y, evaluated at some (xi, yi). Thus, v is the number of dif-
ferent evaluation points in M . We choose the evaluation points
from the whole field F. Thus, Sj = F and |Sj | = q,∀j ∈ [v],
and |S1 × S2 × · · · × Sv| = qv . Then, the number of zeros of
det(M) is at most qv−1(d1+d2+ · · ·+dv). If we sample the
evaluation points uniform randomly, then the probability that
det(M) = 0 is (d1 + d2 + · · · + dv)/q, since we sample
a v-tuple of evaluation points from S1 × S2 × · · · × Sv .
To find d1 + d2 + · · · + dv , we resort to the definition of
determinant, that is det(M) =

∑Rth

i=1(−1)1+im1,iM1,i, where

12

0 1 2 3 4

0

1

3

5

2

4

109876

(a)
0 1 2 3 4

0

1

3

5

2

4

109876

a

b

c

(b)
0 1 2 3 4

0

1

3

5

2

4

109876

a

b

c

(c)
Fig. 8. Depictions of the derivative sets in Example 1.

0 1 2 3 4

0

1

3

5

2

4

109876

a

c

b

Fig. 9. Depiction of Uzi,Mp after coalescence in Example 2

m1,i is the element of M at row 1 and column i and M1,i is
the minor of M when row 1 and column i are removed [23,
Corollary 7.22]. Thus, to identify the coefficients in Lemma 2,
in the first row of M , we start with the monomial with the
largest degree. Assuming the monomials are placed in an
increasing order of their degrees, the largest degree monomial
is at column Rth. If that monomial is univariate, then d1
is the degree of the monomial and the coefficient of αd1

1 is
P2(x2, . . . , xv) = det(M1,1). If the monomial is bivariate,
then we take the degree of the corresponding evaluation of x,
i.e., α1, as d1, and the degree of the corresponding evaluation
of y, i.e., α2, as d2. In this case, the coefficient of αd2 is
P3(α3, . . . , αv) = det(M1,1). Next, we take M1,1, and repeat
the same procedure. We do so until we reach a monomial of
degree zero. In this procedure since we visit all the monomials
of A(x)B(x, y) evaluated at different evaluation points, i.e.,
αi’s, the sum d1 + d2 + · · ·+ dv becomes the sum of degrees
of all the monomials of A(x)B(x, y). The next lemma helps
us in computing this.

Lemma 3. Consider the polynomial P (x, y) =∑a
i=0

∑b
j=0 cijx

iyj , where ci,j’s are scalars. The sum
of the degrees of all the monomials of P (x, y) is given by
ξ(a, b) ≜ a(a+1)

2 (b+ 1) + b(b+1)
2 (a+ 1).

Proof. The sum of the degrees of all the monomials are given
by

a∑
i=0

b∑
j=0

(i+ j) =

a∑
i=0

i(b+ 1) +

a∑
i=0

b∑
j=0

j

=
a(a+ 1)

2
(b+ 1) +

b(b+ 1)

2
(a+ 1). (31)

By using Lemma 3, the sum of monomial degrees in the
diagonally shaded rectangle in Fig. 7 is

ξ(K + T − 1, L− 1) =
(K + T − 1)(K + T)

2
L

+
(L− 1)L

2
(K + T) =

(K + T)L

2
(K + L+ T − 2). (32)

The sum of monomial degrees in the rectangle shaded by
crosshatches in Fig. 7 is given by

ξ(2K + 2T − 2,m− 1)− ξ(K + T − 1,m− 1)

=
(2K + 2T − 2)(2K + 2T − 1)

2
m+

(m− 1)m

2
(2K+2T−1)

− (K + T − 1)(K + T)

2
m− (m− 1)m

2
(K + T)

=
m

2

(
3(K + T)2 +m(K + T)− 8K − 6T −m+ 3

)
.

(33)

By summing them we obtain d1 + d2 + · · · +
dv = m

2

(
3(K + T)2 +m(K + T)− 8K − 6T −m+ 3

)
+ (K+T)L

2 (K + L+ T − 2), which concludes the proof.

VIII. CONCLUSION

In this work, for straggler exploitation in SDMM, we
have proposed storage- and upload-cost-efficient bivariate Her-
mitian polynomial codes named SBP codes. Although the
previous works usually assume the availability of at least as
many workers as the recovery threshold, the multi-message
approach allows the completion of the task even if the number
of workers is less than the recovery threshold. Compared
to univariate polynomial coding based approaches including
MM-GASP codes, SBP coding scheme has a lower upload cost
and less storage requirement, making the assignment of several
sub-tasks to each worker more resource efficient. Thanks to
these properties, SBP codes improve the average computation
time for SDMM, especially when the number of workers, the
upload cost budget, or the storage capacity is limited.

REFERENCES

[1] B. Hasircioglu, J. Gómez-Vilardebó, and D. Gunduz, “Speeding up
private distributed matrix multiplication via bivariate polynomial codes,”
2021 IEEE International Symposium on Information Theory (ISIT), pp.
1853–1858, 2021.

[2] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran,
“Speeding up distributed machine learning using codes,” IEEE Trans-
actions on Information Theory, vol. 64, no. 3, pp. 1514–1529, 2017.

[3] Q. Yu, M. Maddah-Ali, and S. Avestimehr, “Polynomial codes: an
optimal design for high-dimensional coded matrix multiplication,” in
Advances in Neural Information Processing Systems, 2017, pp. 4403–
4413.

[4] S. Dutta, M. Fahim, F. Haddadpour, H. Jeong, V. Cadambe, and
P. Grover, “On the optimal recovery threshold of coded matrix mul-
tiplication,” IEEE Transactions on Information Theory, vol. 66, no. 1,
pp. 278–301, 2019.

[5] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Straggler mitigation
in distributed matrix multiplication: Fundamental limits and optimal
coding,” IEEE Transactions on Information Theory, vol. 66, pp. 1920–
1933, 2020.

[6] Z. Jia and S. A. Jafar, “Cross subspace alignment codes for coded dis-
tributed batch computation,” IEEE Transactions on Information Theory,
vol. 67, pp. 2821–2846, 2021.

13

0 K + T − 1 2K + 2T − 2

0

m− 1

L− 1

...

...

...

...

...

...

...

...

...

...
...

...

...

...

...

µ

ξ

px

py...

(a)
0 K + T − 1 2K + 2T − 2

0

m− 1

L− 1

...

...
...

...

Φ1

Φvy+1

µ

ξ

(b)
0 K + T − 1 2K + 2T − 2

0

m− 1

L− 1

...

...
...

...

...

Φ1

Φξ

Φvy+1

Φξ+1

µ

ξ

(c)
Fig. 10. Visualization of the pivot node and the variable node during a coalescence

[7] S. Kiani, N. Ferdinand, and S. C. Draper, “Exploitation of stragglers in
coded computation,” in IEEE International Symposium on Information
Theory, 2018.

[8] M. M. Amiri and D. Gündüz, “Computation scheduling for distributed
machine learning with straggling workers,” IEEE Transactions on Signal
Processing, vol. 67, no. 24, pp. 6270–6284, 2019.

[9] E. Ozfatura, S. Ulukus, and D. Gündüz, “Straggler-aware dis-
tributed learning: Communication–computation latency trade-off,” En-
tropy, vol. 22, no. 5, p. 544, 2020.

[10] B. Hasırcıoğlu, J. Gómez-Vilardebó, and D. Gündüz, “Bivariate polyno-
mial coding for efficient distributed matrix multiplication,” IEEE Journal
on Selected Areas in Information Theory, vol. 2, no. 3, pp. 814–829,
2021.

[11] W.-T. Chang and R. Tandon, “On the capacity of secure distributed ma-
trix multiplication,” in 2018 IEEE Global Communications Conference
(GLOBECOM). IEEE, 2018, pp. 1–6.

[12] J. Kakar, S. Ebadifar, and A. Sezgin, “Rate-efficiency and straggler-
robustness through partition in distributed two-sided secure matrix
computation,” arXiv preprint arXiv:1810.13006, 2018.

[13] R. G. L. D’Oliveira, S. El Rouayheb, and D. Karpuk, “GASP codes
for secure distributed matrix multiplication,” IEEE Transactions on
Information Theory, vol. 66, no. 7, pp. 4038–4050, 2020.

[14] M. Aliasgari, O. Simeone, and J. Kliewer, “Private and secure distributed
matrix multiplication with flexible communication load,” IEEE Trans-
actions on Information Forensics and Security, vol. 15, pp. 2722–2734,
2020.

[15] Z. Jia and S. A. Jafar, “On the capacity of secure distributed batch matrix
multiplication,” 2019.

[16] J. Kakar, A. Khristoforov, S. Ebadifar, and A. Sezgin, “Uplink cost
adjustable schemes in secure distributed matrix multiplication,” 2020
IEEE International Symposium on Information Theory (ISIT), pp. 1124–
1129, 2020.

[17] N. Mital, C. Ling, and D. Gunduz, “Secure distributed matrix computa-
tion with discrete Fourier transform,” arXiv preprint arXiv:2007.03972,
2020.

[18] R. Bitar, M. Xhemrishi, and A. Wachter-Zeh, “Rateless codes
for private distributed matrix-matrix multiplication,” arXiv preprint
arXiv:2004.12925, 2020.

[19] G. Liang and U. C. Kozat, “TOFEC: Achieving optimal throughput-
delay trade-off of cloud storage using erasure codes,” in IEEE INFO-
COM 2014-IEEE Conference on Computer Communications. IEEE,
2014, pp. 826–834.

[20] K. Hoffman and R. Kunze, “Linear algebra,” Englewood Cliffs, New
Jersey, 1971.

[21] F. Fontein, “The Hasse derivative,” Aug 2009. [Online]. Available:
https://math.fontein.de/2009/08/12/the-hasse-derivative/

[22] J. T. Schwartz, “Fast probabilistic algorithms for verification of polyno-
mial identities,” Journal of the ACM (JACM), vol. 27, no. 4, pp. 701–717,
1980.

[23] J. Liesen and V. Mehrmann, Linear algebra, ser. Springer Undergraduate
Mathematics Series.

Burak Hasırcıoğlu received his B.Sc. degree in
Electrical and Electronics Engineering from Middle
East Technical University (METU), Ankara, Turkey
in 2014 and M.Sc. degree in Communication Sys-
tems from Ecole Polytechnique Fédérale de Lau-
sanne (EPFL), Switzerland in 2017. He is a Ph.D.
student at Information Processing and Communica-
tions Lab, Imperial College London since December
2018. His research interests are information security,
privacy, coded computing and machine learning.

Jesús Gómez-Vilardebó received the M.Sc. and
Ph.D. degrees in telecommunication engineering
from the Universitat Politècnica de Catalunya (UPC)
in 2003 and 2009, respectively. His Ph.D. degree in
signal theory and communications from UPC was
granted by the Centre Tecnològic de Telecomuni-
cacions de Catalunya (CTTC/CERCA) in 2005. He
is currently with CTTC holding a Senior Research
Associate position. His research interests are in
the areas of information and communication theory,
and their applications in multi-user communications,

coded computing, coded caching and information privacy.

Deniz Gündüz [S’03-M’08-SM’13-F’22] received
his Ph.D. degree in electrical engineering from NYU
Tandon School of Engineering (formerly Polytechnic
University) in 2007. He is currently a Professor of
Information Processing in the Electrical and Elec-
tronic Engineering Department of Imperial College
London, UK, and a part-time faculty member at
the University of Modena and Reggio Emilia, Italy.
Previously he served as a postdoctoral research
associate at Princeton University, as a consulting
assistant professor at Stanford University, and as

a research associate at CTTC in Spain. He has held visiting positions at
University of Padova (2018-2020) and Princeton University (2009-2012). Prof.
Gündüz is a Distinguished Lecturer for the IEEE Information Theory Society
(2020-22). He is the recipient of the IEEE Communications Society - Com-
munication Theory Technical Committee (CTTC) Early Achievement Award
in 2017, a Starting Grant of the European Research Council (ERC) in 2016,
and several best paper awards. He is an Area Editor for the IEEE Transactions
on Communications, the IEEE Transactions on Information Theory, and the
IEEE Journal on Selected Areas in Communications (JSAC) Special Series on
Machine Learning in Communications and Networking. He also serves as an
Editor of the IEEE Transactions on Wireless Communications. His research
interests lie in the areas of communications and information theory, machine
learning, and privacy.

