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a b s t r a c t

In the present paper, we present a method for solving the population balance equation (PBE) with the
complete range of kinetic processes included: namely aggregation, fragmentation, nucleation and
growth. The method is based on the finite volume scheme and features guaranteed conservation of the
first moment by construction, accurate prediction of the size distribution, applicability to an arbitrary
non-uniform grid, robustness and computational efficiency which is instrumental for coupling with com-
putational fluid dynamics (CFD). The treatment of aggregation is based on the previous work by Liu and
Rigopoulos (2019). An analysis of the aggregation terms in the PBE is made, and the source of conserva-
tion error in finite element/volume methods is elucidated. It is subsequently shown how this error is
overcome in the present method via a coordinate transformation applied to the aggregation birth double
integral resulting from the application of the finite volume method. The contributions to the birth term
are delineated and their corresponding death fluxes identified. An aggregation map is then constructed
for mapping birth and death fluxes, thus allowing the finite volume method to operate in terms of fluxes
and achieve conservation of mass. The method is then extended to fragmentation, for which a map is also
constructed to represent the birth and death fluxes. In the implementation, the aggregation and fragmen-
tation maps are pre-tabulated to allow fast computation. It is also shown how the method can be coupled
with a total variation diminishing (TVD) scheme for the treatment of growth with minimal numerical dif-
fusion. The method is validated with a number of test cases including analytical solutions and numerical
solutions of the discrete PBE for aggregation (theoretical and free molecule/Brownian kernels), fragmen-
tation, aggregation-fragmentation and aggregation-growth. In all cases, the method produces very accu-
rate results, while also being computationally efficient due to the pre-tabulation of the maps and the
simplicity of the algorithm carried out per time step.
� 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

The Population Balance Equation (PBE) governs a wide range of
problems featuring a population of entities with a distribution of
one or more properties. Examples include particulate processes,
aerosols, colloids, polymers and biochemical problems. The earliest
form of the PBE is a discrete equation proposed by Smoluchowski
(1917) to describe the coagulation of colloidal particles. Since then,
the scope of that formulation has been expanded by several
authors to a more general and continuous equation that accounts
for a range of kinetic processes, namely aggregation, fragmenta-
tion, nucleation, growth, as well as transport in physical space.
Reviews of the general aspects of the PBE can be found in
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Ramkrishna (1985, 1998, 2000, 2002, 2014, 2012, 2015), among
others. There are also more specific reviews focussing on particular
processes and applications such as: Kostoglou et al. (2007) for
breakage processes, Williams and Loyalka (1991) for aerosols,
and Rigopoulos (2019) for soot formation. Reviews focussed on
solution methods are (Drake et al., 1972; Williams and Loyalka,
1991; Kumar et al., 2007), and reviews aimed at the coupling of
PBE with fluid dynamics are (Rigopoulos, 2010; Raman and Fox,
2016; Shiea et al., 2020). It should also be mentioned that various
forms of the PBE have appeared under different names, such as
Smoluchowski equation or General Dynamic Equation (GDE).

The PBE for a spatially homogeneous system is shown below:
@n v; tð Þ
@t

þ @ G vð Þn v ; tð Þð Þ
@v ¼ Bd v � vnucð Þ

þ1
2

Z v

0
bðw;v �wÞnðw; tÞnðv �w; tÞdw

�n v; tð Þ
Z 1

0
b v;wð Þn w; tð Þdw

þ
Z 1

v
cðwÞpðv ;wÞnðw; tÞdw� cðvÞnðv ; tÞ

ð1Þ
where n v; tð Þ is the number density of particles with volume
between v and v þ dv , and is also known as the particle size distri-
bution, G vð Þ is the growth rate, B is the nucleation rate, vnuc is the
size of the nuclei, b v ;wð Þ is the aggregation kernel (rate of aggrega-
tion events), c vð Þ is the fragmentation kernel (rate of fragmentation
events) and p v;wð Þ is the fragment size distribution or daughter
size distribution. The formulation in terms of particle volume (or
equivalently mass for constant density particles) is advantageous
for problems involving aggregation and fragmentation, as particle
volume is conserved throughout these processes. The equation
can be extended to multiple dimensions, when more than one dis-
tributed property among particles is involved. Furthermore, in
problems involving fluid flows, spatial transport terms accounting
for convective and diffusive transport can be included. This leads
to the coupling of the PBE with the flow field.

The solution of the continuous PBE in its most general form is a
difficult problem to which a considerable volume of literature has
been devoted. The difficulty arises partly from the need to accom-
modate several processes with different characteristic features. For
example, aggregation and fragmentation processes give rise to
integro-differential equations, while growth endows the PBE with
the nature of a hyperbolic partial differential equation. Very few
analytical solutions have been found, and apply only to special
cases. Numerical methods are thus required for solving the PBE
in practical problems. The main classes of solution methods
employed in practice are Monte Carlo, moment and discretisation
methods. Monte Carlo methods for the PBE date from the work
of Spielman and Levenspiel (1965) and a review of early works
can be found in Ramkrishna (2000). They are computationally
expensive but able to accommodate multi-dimensional problems
without an accompanying exponential increase in computational
time. Moment methods, originating in early works such as those
of Hulburt and Katz (1964) and Thompson (1968), aim to solve
for the moments of the distribution. As such, they represent the
most economical method of solution, but do not compute the par-
ticle size distribution itself, and require further models as the
moment equations are generally unclosed - except for certain spe-
cial cases. Discretisation methods, of which early examples are the
works of Bleck (1970) and Gelbard and Seinfeld (1978), offer pre-
diction of the particle size distribution and do not require closure,
but need considerable attention to minimise numerical and con-
servation errors, and become expensive for high-dimensional
problems. Methods have also been proposed that combine
2

concepts of moment and discretisation methods (e.g. Nguyen
et al. (2016);Laurent et al. (2016);Yang and Mueller (2019)).

While every one of these categories of methods offers its own
advantages and disadvantages that render it more or less suitable
for particular purposes, the present work is devoted to discretisa-
tion methods. This class of methods has attracted increased inter-
est lately, due to the need to predict the distributions of important
properties in a number of problems. For example, the particle size
distribution is of utmost importance in atmospheric aerosols, as it
determines the health impacts of the aerosol pollutants - ultrafine
particles, for instance, can penetrate deep into the lungs. In appli-
cations involving the formation of a particulate product such as
flame synthesis of nanoparticles and crystallisation, the distribu-
tion of size and morphology determines the properties of the pro-
duct and must be tailored to specific applications. Another
emerging issue is the coupling of PBE solution methods with com-
putational fluid dynamics (CFD), which is needed for many prob-
lems such as aerosol formation and crystallisation that involve a
fluid flow. This coupling requires the solution of a very large num-
ber of local PBEs (resulting from the spatial discretisation of the
spatially dependent PBE), bringing the efficiency of the method
to the fore. Furthermore, several sources of error (CFD solution,
PBE solution, physical and chemical models, turbulence-
chemistry interaction) may be present in the results, which makes
the comparison with experiments very difficult. Highly accurate
numerical methods are pivotal for minimising numerical uncer-
tainties and preventing compensation of errors.

The literature on discretisation methods for the PBE includes a
large number of works. In order to put the present contribution
into context, it is helpful to identify certain groups of methods with
common features. The discretisation of the aggregation-
fragmentation terms will be discussed first, and three main groups
of methods can be identified.

Methods in the first group approximate the distribution as a
sum of delta functions, thus replacing the continuous PBE with a
discrete equivalent. In the case of a uniform grid, this is equivalent
to the discrete PBE but requires an excessive amount of nodes.
When a non-uniform grid is employed, most of the daughter parti-
cles do not lie on grid nodes and therefore their mass must be dis-
tributed among neighbouring nodes using correction factors. This
operation is performed such that one or more moments are con-
served, and thus methods in this class are conservative (with
respect to the particular moments) by construction. However, this
procedure results in modifications in the particle size distribution.
The earliest method in this category is that of Batterham et al.
(1981) and conserves only mass. The method of Hounslow et al.
(1988) conserves both number of particles as well as mass, and
also accommodates nucleation and growth together with aggrega-
tion. The later methods of Litster et al. (1995) and Hill and Ng
(1996) allow for a wider range of grids. This concept was further
extended by Kumar and Ramkrishna (1996a,b) (the fixed and mov-
ing pivot techniques), whose method is applicable to an arbitrary
grid. Kumar et al. (2006), further improved the discretised repre-
sentation of the distribution (the cell average technique), and
Kostoglou (2007) extended the cell average technique to the con-
servation of three moments.

A second group of methods directly discretise the population
balance with finite element or finite volume schemes. However,
the PBE with aggregation and fragmentation is an integro-
differential equation, and therefore the application of such a
method results in double integrals. In methods belonging to this
class, the inner integrals generated are approximated with one-
dimensional quadrature, and the resulting polynomial expression
is then integrated again over an element. Therefore, these methods
focus on correct prediction of the particle size distribution, but face
problems with conservation of moments that can only be miti-
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gated by increased accuracy achieved via higher order approxima-
tions or finer grids. The origin of the conservation error will be
elaborated further in the present paper (cf. Section 2.3), but we
briefly mention here that it is associated with the convolution-
like aggregation birth term. Methods in this category include the
earlier approach of Gelbard and Seinfeld (1978) and the methods
of Nicmanis and Hounslow (1998) and Roussos et al. (2005).
Rigopoulos and Jones (2003) presented a method of this type that
aimed to reduce the conservation error and shares some concepts
with the present work.

A third group comprises methods that are also based on the
application of the finite volume method to the population balance.
The difference with the methods in the second group is that the
double integrals are here treated directly with two-dimensional
quadrature. This feature allows the methods in the third group to
accomplish exact conservation of one moment (typically the first
one) without modifying the distribution. The first of such methods
was developed by Bleck (1970), and was derived in an ad hoc man-
ner. However, the complexity of dealing with the bounds of the
double integrals has limited many such methods to geometric
grids. These include, apart from the work of Bleck (1970), the
methods of Gelbard et al. (1980,) and Landgrebe and Pratsinis
(1990). Filbet and Laurençot (2004) developed a method based
on an alternative form of the aggregation equation, and investi-
gated its mathematical properties. Liu and Rigopoulos (2019)
developed a conservative finite volume method that is applicable
to arbitrary grids and forms the basis for the present work.

Several of the methods mentioned above (Batterham et al.,
1981; Kumar and Ramkrishna, 1996a; Kumar and Ramkrishna,
1996b; Nicmanis and Hounslow, 1998; Rigopoulos and Jones,
2003) for aggregation accommodate fragmentation as well. The
latter involves an integral term, but its treatment is nevertheless
simpler than that of aggregation (due to the lack of a
convolution-like form). However, certain works have focussed on
the fragmentation equation only, employing concepts in line with
those in the above categories. Examples include Hill and Ng (1995)
- which is based on the concept of the discrete equivalent equation
and use of correction factors, and the works of Kumar et al. (2015)
and Singh and Walker (2022) - which are based on the finite vol-
ume method and include an analysis of the convergence properties
of the method. Several works have also compared discretisation
methods for aggregation and fragmentation, these include
Kostoglou and Karabelas (1994) and Vanni (2000).

The treatment of growth problems, whether alone or in con-
junction with aggregation and/or fragmentation, presents a differ-
ent numerical challenge: that of numerical diffusion. The growth
term renders the PBE a first-order hyperbolic equation. Several
solutions have been proposed for this problem, including methods
based on the method of characteristics (Tsang and Brock, 1982;
Kumar and Ramkrishna, 1997; Campos and Lage, 2003), hybrid sta-
tionary/moving grid methods (Jacobson, 1997), total variation
diminishing (TVD) schemes (Ma et al., 2002; Qamar et al., 2006),
an adaptive grid (in the particle size domain) for the spatially inho-
mogeneous PBE (Sewerin and Rigopoulos, 2017a) which was later
coupled with the equations of fluid dynamics (Sewerin and
Rigopoulos, 2017b; Sewerin and Rigopoulos, 2018), a hybrid Monte
Carlo - discretisation method (Bouaniche et al., 2019) and a
method based on an embedded reduced order representation
(Sewerin, 2022).

It is clear that the solution of the PBE by discretisation poses
several distinct challenges, and that different methods may priori-
tise different aspects - sometimes at the expense of other ones. The
conservation of moments, accurate prediction of the distribution,
mitigation of numerical diffusion, and the ability to deal with an
arbitrary grid, can all compete and conflict with each other in the
choice of a numerical method for solving the PBE. The present
3

paper is the latest in a line of research seeking a method that
addresses as many of these needs as possible. In particular, we
aim to provide a method that allows for accurate solution of the
PBE with all processes present, namely aggregation, fragmentation,
nucleation and growth, while at the same time being conservative
with respect to the total volume (or equivalently mass) of the par-
ticles in aggregation and fragmentation, as the particle volume
should be invariant in these two processes. We also aim for the
method to be applicable to an arbitrary grid, and sufficiently inex-
pensive computationally to allow for its incorporation in CFD-PBE
implementations.

The essence of the approach presented here is to apply the finite
volume method to the PBE, and compute the double integrals that
arise from aggregation and fragmentation processes as fluxes of
particles between different parts of the size domain, such that
the birth and death terms are balanced. This was the concept
behind the method of Liu and Rigopoulos (2019) for aggregation
problems, which was applied to the modelling of soot formation
and aggregation in flames (Liu and Rigopoulos, 2019; Liu et al.,
2020; Sun et al., 2021). In the present work, the derivation of the
method is presented in a more general way, as well as illustrated
with a graphical procedure that illuminates the main concepts
and facilitates its implementation. Another aim of this paper is to
analyse the origin of the conservation error in finite element/vol-
umemethods, and show how it is overcome in the present method.
In particular, it is shown that the double integrals are partitioned in
such a way that the integration of the aggregation birth term is
exact, and the only remaining approximation is the integration of
the kernel. With respect to the latter, a Gaussian quadrature
approach is employed and tested here in addition to our previous
one-point integration. Subsequently, the method is extended to
the discretisation of fragmentation processes. Finally, an improved
scheme for the coupling of method with TVD schemes for growth
discretisation is presented. Altogether, the method is able to deal
with the solution of the PBE with any combination of kinetic pro-
cesses and can also be coupled with fluid dynamics and CFD.

The paper is organised as follows. First, the discretisation of the
aggregation terms is shown, together with a discussion of the nat-
ure of the problems involved in applying the finite volume method
to the integral terms in the aggregation PBE. Subsequently, the dis-
cretisation of fragmentation and the combination with nucleation
and growth are presented. The paper culminates with a number
of test cases where the method is validated by comparing numer-
ical solutions against known analytical and similarity solutions, as
well as highly accurate solutions arising from the use of the dis-
crete PBE.
2. The conservative finite volume method for aggregation

2.1. The aggregation PBE

First consider the discretisation of the aggregation terms. To
this end, the population balance for a pure aggregation process,
comprising a birth and a death term at the right-hand side is
presented:

@n v; tð Þ
@t

¼ 1
2

Z v

0
b w; v �wð Þn wð Þn v �wð Þdw|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Birth term

�n vð Þ
Z 1

0
b v;wð Þn wð Þdw|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Death term

ð2Þ

The kernel, b v;wð Þ, encapsulates the physical mechanism of the
aggregation process and may assume several forms corresponding
to, for example, aggregation due to Brownian motion or shear; its
particular form will not play any role in the derivation of the
discretisation method. Aggregation poses a difficult problem for
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discretisation methods, largely because of the non-linear birth inte-
gral term. This term is treated with numerical quadrature in the
finite element or finite volume methods that belong to the second
group of the classification presented in Section 1. Methods in this
group face a difficulty with respect to the conservation of moments,
the reasons for which will be discussed in Section 2.1. The essence
of the method presented here is to ensure that the domain of this
integral is partitioned in such a way that the product of number
densities is constant within each partition. As such, the integration
of this term is exact apart from the treatment of the kernel, which
may still require numerical quadrature if it is nonlinear. This is a
task that can be accomplished with high accuracy, as will be shown
in Section 5.8. Therefore, the only remaining reason for discrepan-
cies in the present method is the discrete representation of the dis-
tribution, which is the case with all discretisation methods, and can
be controlled by refining the grid or using a higher order approxi-
mation of the distribution within each interval.

The shape of the resulting aggregates does not play any role in
the development of the present method. The simplest case is coa-
lescence to spherical particles, but fractal aggregates can also be
considered via a suitable formulation of the kernel. If it is desirable
to consider the shape and surface area of aggregates, then Eq. 2
must be either expanded into a two-dimensional population bal-
ance equation, or augmented by an additional equations for surface
area or number of particles per aggregate. A numerical method for
a two-PBE formulation based on the same principles as the method
presented here can be found in Sun et al. (2021).

Before proceeding, Eq. 2 is recast into a more convenient form.
First, the factor of 1=2 in the birth term can be omitted by changing
the limits of integration, and hence, not double counting particle
combinations. This results in considerable savings in CPU time.
Second, the semi-infinite domain is truncated to vmin;vmax½ �, with
vmin and vmax being the smallest and largest possible particle vol-
umes. This truncation is necessary in order to develop a numerical
solution method, although it implies that the equation is no longer
strictly conservative, as particles may aggregate out of the domain.
In practice, this loss of mass is negligible due to the very small
number of such collision events - if this is not the case, this indi-
cates that vmax was not chosen appropriately. In particular, vmax

must represents a point at the tail of the distribution where the
number density is expected to be practically zero - based on the
physics of the process being considered. Finally, the equation is
multiplied by particle volume, in preparation for the development
of a method that conserves particle volume or volume fraction. It
should be noted that if the equation is multiplied by vk, the
method will instead conserve the k-th moment of the distribution.
With all these considerations, the resulting equation is:

@

@t
vn v ; tð Þð Þ ¼

Z v
2

vmin

vb w; v �wð Þn w; tð Þn v �w; tð Þdw

�vn v; tð Þ
Z vmax

vmin

b v ;wð Þn w; tð Þdw
ð3Þ

Next, a grid of points, v i 2 vmin;vmax½ �, is generated. The finite vol-
ume cells will be denoted as Dv i ¼ v i � v i�1, where i 2 0;mð Þ. The
method to be derived is applicable to an arbitrary grid.

2.2. A note on the finite volume method

The finite volume method has found most of its applications in
the field of fluid mechanics, largely because it enforces conserva-
tion of mass. This is particularly important in fluid mechanics
because mass flows from one part of the domain to another.
Conservation of mass is also important for aggregation and
fragmentation because mass is invariant in these processes.
Furthermore, in a population balance formulation that includes
4

aggregation, fragmentation and growth, ensuring conservation of
mass in the first two processes provides the foundation for the cor-
rect prediction of mass change due to growth. These facts provide
the motivation for adapting the finite volume method to the solu-
tion of the PBE. However, the application of the method to aggre-
gation and fragmentation (particularly to the former) is by no
means straightforward.

The basic concept of the finite volume method is to discretise
the domain into a grid of cells, or size intervals in the case of the
PBE, and to consider for each interval, the fluxes of mass into or
out of the interval. By focussing on fluxes (rather than integrating
over the intervals with weight functions, as in finite element meth-
ods), the method attains conservation of mass because every flux
represents both an outflow from one interval, and an inflow into
another. This is easy to attain in fluid mechanics, where the fluxes
are constrained between neighbouring intervals.

Two complications arise when the finite volume method is
applied to aggregation and fragmentation in a straightforward
manner. First, the fluxes into an interval do not originate solely
from its neighbours; rather, they may originate anywhere in the
domain where particles are smaller, in the case of aggregation -
or larger, in the case of fragmentation. The second issue is particu-
lar to aggregation, whose birth term resembles a convolution. This
term does not permit separating the fluxes, and identifying their
sources. These problems are more pronounced when dealing with
arbitrary grids. The present method addresses the first of these
issues by constructing a map of the aggregation and fragmentation
fluxes, and the second one via a coordinate transformation that
allows delineating of the fluxes, and finding their sources. These
concepts are explained in the following sections.

2.3. Discretisation of the aggregation PBE via the finite volume method

The first step in the discretisation process with the finite vol-
ume method is to integrate Eq. 3 over an interval, Dv i:

d
dt

Z v i

v i�1

vn v ; tð Þdv

¼
Z v i

v i�1

Z v
2

vmin

vbðw;v �wÞnðw; tÞnðv �w; tÞdwdv

�
Z v i

v i�1

n v; tð Þ
Z vmax

vmin

vb v ;wð Þn w; tð Þdwdv

ð4Þ

The particle size distribution is now approximated as a piecewise
constant function with constant value within each interval, i.e.
n vð Þ ¼ ni for v i�1 < v 6 v i, as is customary in finite volume
methods:

v̂ i
dni

dt
¼
Z v i

v i�1

Z v
2

vmin

vbðw;v �wÞnðw; tÞnðv �w; tÞdwdv

�ni

Z v i

v i�1

Z vmax

vmin

vbðv ;wÞnðw; tÞdwdv
ð5Þ

where:

v̂ i ¼ v2
i � v2

i�1

2
ð6Þ

As mentioned in Section 2.2, the essence of a finite volume method
is to compute a single flux for every mass exchange, thus ensuring
that all inflows and outflows are balanced. These fluxes are most
easily identified in the death term, which can be expressed in the
following way:

ni

Z v i

v i�1

Z vmax

vmin

vb v ;wð Þn w; tð Þdwdv

¼
Xm
j¼1

ninj

Z v i

v i�1

Z wj

wj�1

vb v;wð Þdwdv
 ! ð7Þ



Fig. 1. Schematic of the aggregation-triplet of particles sizes: Dwk;Dwj and Dv i .
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where each term in the sum on the right-hand side is an individual
death flux.

In order to illustrate the correspondence of birth and death
fluxes, let us consider the aggregation of two parent particles in
intervals Dwj and Dwk, forming a daughter particle in interval
Dv i. The following relationship can be written about the fluxes:

Bi ¼ Dj þ Dk ð8Þ
where Bi is the birth flux into interval Dv i, while Dj and Dk are the
death fluxes from intervals Dwj and Dwk, respectively. This relation-
ship is represented schematically in Fig. 1. While the death fluxes
can be easily identified and related to the intervals they originate
in, the convolution-like form of the birth term in Eq. 5 prevents
its splitting into its constituent fluxes. This term is thus responsible
for the complexity in the discretisation of the aggregation PBE.

2.4. Transformation of the aggregation birth term

A transformation is now employed to delineate the contribu-
tions to the aggregation birth term, and map them to the death
fluxes. Let v be the volume of the daughter particle and u;w be
the volumes of the parent particles, such that v ¼ uþw. By apply-
ing the change of coordinate u ¼ v �w to the birth term integral in
Eq. 4, the integral is split into two terms that describe the birth of
particles in interval Dv i due to the constituent death terms in the
corresponding parent intervals. This transformation was first intro-
duced by Thompson (1968) in order to derive a closed equation for
the moments of the aggregation PBE. Noting that the Jacobian of
this transformation is 1, the resulting equation is:

v̂ i
dni

dt
¼
Z v i�w

v i�1�w

Z uþw
2

vmin

ub w0;uð Þn w0; tð Þn u; tð Þdw0du

þ
Z v i�w

v i�1�w

Z uþw
2

vmin

w0b w0;uð Þn w0; tð Þn u; tð Þdw0du

�
Xm
j¼1

ninj

Z v i

v i�1

Z wj

wj�1

vb v ;wð Þdwdv
 ! ð9Þ

The convolution-like birth term has now been transformed into two
terms of similar form to the death term, which correspond to its
constituent death fluxes, as indicated by Eq. 81. By considering the
set of death fluxes and their corresponding aggregation triplets, it
is now possible to construct the entire set of discretised equations,
in the spirit of the finite volume method.

The final step is to convert the two birth integrals in Eq. 9 into
sums of fluxes, as we did for the death integral in Eq. 7, and to map
the regions where the death fluxes originate to the regions where
they contribute. This mapping will be called the aggregation map.

2.5. Construction of the aggregation map

First note, that the two integrals corresponding to the birth
term on the RHS of Eq. 9 are both over the same region in w-u
space, which will be called the parent space. The region of integra-
tion represented by the limits of the double integrals in the birth
term is shown in Fig. 2 as a shaded region. This region corresponds
to the birth of particles in the interval Dv i; a set of regions with
similar shapes can be constructed for the birth terms in all other
intervals.

It can be seen in Fig. 2 that, in an arbitrary grid, the boundaries
of the shaded region do not coincide with the grid nodes. There-
fore, an auxiliary grid of complementary nodes is introduced that
1 Note that the double integral must be further partitioned before being evaluated,
which will result in the limits of the outer integral becoming constant - see also Eq.
11.
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allows this region to be partitioned into smaller ones, such that
their boundaries coincide with the grid nodes. For a daughter inter-
val, Dv i, and a parent interval, Dwj, the complementary nodes are
defined as follows:

U1 ¼ v i�1 �wj ð10aÞ
U2 ¼ v i�1 �wj�1 ð10bÞ
U3 ¼ v i �wj ð10cÞ
U4 ¼ v i �wj�1 ð10dÞ
These nodes are shown in Fig. 3 and indicate complementary parent
particle sizes that aggregate with the particles found at the outer
boundaries of the parent interval that combines with Dwj in order
to form daughter particles at the boundaries of Dv i. Every combina-
tion of Dv i and Dwj requires a new and unique set of complemen-
tary nodes, and thus the complementary nodes form a two-
dimensional array, Uk Dv i;Dwj

� �
. Fig. 3 shows the region of integra-

tion in the parent space for a single combination of Dv i and Dwj, as
well as the auxiliary grid corresponding to this particular combina-
tion (which is only part of the total integration region for the birth
term in Dv i, shown in Fig. 3). The fully partitioned aggregation map
is shown in Fig. 4.

Owing to the approximation of the distribution via pairwise
constant functions, the birth term can now be split into a sum
of terms involving products of constant number densities. Each
of these terms corresponds to an integration region with a cer-
tain shape and integration limits. For brevity, only a few
shapes will be discussed here in detail, while the method for
deriving the remaining shapes is analogous. The complete list
of shapes that may appear on an arbitrary grid is shown in
Appendix A.

Consider, the grid shown in Fig. 5. Three shapes can be identi-
fied, indicated as A;B1 and B2. The birth term integral over sub-
region A takes the following form:

IA ¼ njnk

Z wj

wj�1

Z U2

v i�1�w0
ub w0;uð Þdudw0

þ njnk

Z wj

wj�1

Z U2

v i�1�w0
w0b w0;uð Þdudw0

ð11Þ

Considering now the rest of the shaded region, it can be seen that it
is crossed by a grid node boundary. Therefore, the region is split into
the two sub-regions B1 and B2, each corresponding to a different
product of number densities:

IB1 ¼ njnk

Z wj

wj�1

Z uk

U2

ub w0;uð Þdudw0 þ njnk

Z wj

wj�1

Z uk

U2

w0b w0;uð Þdudw0

ð12aÞ



Fig. 2. Depiction of parent space, with the shaded region representing the region of integration for a given daughter interval, Dv i . The dotted lines represent the grid in two
dimensions.

Fig. 3. A single combination of Dv i and Dwj leading to an auxiliary grid Uk Dv i;Dwj
� �

. The shaded region indicates the region of integration for the chosen combination of
intervals, which is a part of the integration region for the birth term in Dv i .
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IB2 ¼ njnkþ1

Z wj

wj�1

Z U3

uk

ub w0;uð Þdudw0

þnjnkþ1
Rwj
wj�1

R U3
uk

w0b w0;uð Þdudw0
ð12bÞ

In order to generalise this procedure, let S represent the region of
integration in the aggregation birth term for interval i. This region
is partitioned into P ið Þ sub-regions such that the number density
products are constant over each sub-region, with each sub-region
denoted by Sp where p 2 1;2;3 . . . :; P ið Þf g. The complete discretised
equation takes the following form:

v̂ i
dni

dt
¼
XP ið Þ

p¼1

nj pð Þnk pð Þ

Z
Sp

ub w0;uð Þdw0du|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}Ik pð Þ þ nj pð Þnk pð Þ

Z
Sp

w0b w0;uð Þdw0du|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}Ij pð Þ

0
B@

1
CA

�
Xm
j¼1

ninj

Z v i

v i�1

Z wj

wj�1

vb v;wð Þdwdv
 !

ð13Þ

where P(i) is the total number of integration shapes that contribute
to the birth term in daughter interval Dv i. The products nj pð Þnk pð ÞIj pð Þ
and nj pð Þnk pð ÞIk pð Þ represent the individual death terms from the two
parents intervals of an aggregation triplet. The construction of the
aggregation map, therefore, involves locating and classifying the
6

sub-regions of integration such that the number density product
is constant over each region.

The final step is the numerical evaluation of the integrals in Eq.
13. In previous work (Liu and Rigopoulos, 2019), these integrals
were evaluated at a single point and weighted by the shape area.
Here, to achieve higher accuracy, a two-dimensional, three-point
Gaussian integration rule is employed. More details on the imple-
mentation of this rule are shown in Appendix B.

All operations involved in the construction of the aggregation
map, i.e. the location and classification of sub-regions and the eval-
uation of integrals, are carried out once in the beginning of the
computation, and the results are tabulated. Thus, the operations
that must be carried out during each time step consist only of
the time advancement of the discretised number densities. The
procedure for the construction of the map can be summarised as
follows:

1. Generate a grid, v i ¼ vmin;vmax½ �, with mþ 1 total points and m
finite volume intervals, defined as Dv i ¼ v i � v i�1.

2. Locate shapes Sp using a nested loop - one loop for all daughter
intervals and one for all parent intervals:
� Establish the auxiliary grid for each combination of daughter

and parent interval, UK Dv i;Dwj
� �

.



Fig. 4. The fully partitioned aggregation map. All possible daughter intervals are shown, and the total shaded region indicates the same region of integration as in Fig. 2. The
lighter shaded region is the same region illustrated in Fig. 3.

Fig. 5. Close view of an individual combination of parent intervals and associated sub-partitioning of the rectangular middle section. The vertical dotted line separating B1

and B2 corresponds to uk , which is a further sub-partitioning node used in Eq. 12a,b.
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� Locate and classify the sub-regions or shapes of constant
number density pairs, Sp.

� Calculate the integrals Ij pð Þ and Ik pð Þ.
� Store the aggregation integrals. For convenience, all unique

combinations i; j; k; Ij; Ik
� �

may be stored into a single array
and indexed by a global pointer (as opposed to using local
indices within each interval Dv i).

2.6. Time advancement

The time advancement of Eq. 13 can be carried out with any
temporal discretisation method. An explicit Euler method is used
in the present work, as the equations are not stiff. For this imple-
mentation, the procedure to be carried out at each time step is
summarised in the following algorithm, while the equations shown
can be easily modified for other time advancement schemes.

1. For every interval, at time step n, the death terms Dn
j pð Þ and Dn

k pð Þ
in all other parts of the domain to which particles contribute to
the given interval are calculated as follows:
7

Dn
j pð Þ ¼ nn

j pð Þn
n
k pð ÞIj pð Þ ð14aÞ

Dn
k pð Þ ¼ nn

j pð Þn
n
k pð ÞIk pð Þ ð14bÞ
2. The birth terms at time step n are computed by summing the
relevant death terms:
Bn
i pð Þ ¼ Dn

j pð Þ þ Dn
k pð Þ ð15Þ

where Bn
i pð Þ is the birth term arising from the death terms Dj pð Þ

and Dk pð Þ.
3. The number densities at time step nþ 1 are now updated into

temporary values (denoted by a star) as follows:
nnþ1;�
i ¼ nn

i þ
Bn
i pð Þ
v̂ i pð Þ

dt ð16aÞ

nnþ1;�
j pð Þ ¼ nn

j pð Þ �
Dn

j pð Þ
v̂ j pð Þ

dt ð16bÞ

nnþ1;�
k pð Þ ¼ nn

k pð Þ �
Dn

k pð Þ
v̂k pð Þ

dt ð16cÞ

where v̂ i pð Þ; v̂ j pð Þ and v̂k pð Þ are defined as in Eq. 6.
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This process is repeated for all aggregation triplets. At the end, the
number density at time step nþ 1 has been calculated as follows:

nnþ1
i ¼ nn

i þ
1
v̂ i

XP ið Þ

p¼1

Bn
i pð Þdt

�nn
i

v̂ i

Xm
j¼1

nn
j

Z v i

v i�1

Z wj

wj�1

vb v ;wð Þdwdvdt
ð17Þ
3. The conservative finite volume method for fragmentation

3.1. The fragmentation PBE

Fragmentation, or breakage, can be viewed as the mirror image
of aggregation. Whereas in aggregation smaller parent particles
combine to form a larger daughter particle, in fragmentation a sin-
gle larger parent particle breaks apart to form two or more smaller
daughter particles. When there are only two daughter particles, the
process is often described as binary fragmentation. The PBE for a
pure fragmentation process is shown below:

@n v ; tð Þ
@t

¼
Z 1

vmin

c zð Þp v ; zð Þn z; tð Þdz|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Birth term

� c vð Þn v ; tð Þ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
Death term

ð18Þ

where c vð Þ is the fragmentation kernel, while p v; zð Þ is the daughter
particle size distribution. As was done in Section 2.1 with the aggre-
gation PBE, Eq. 18 is first multiplied by particle volume in order to
ensure conservation of volume, and furthermore the integral is
truncated to vmax:

@

@t
ðvnðv ; tÞÞ ¼ v

Z vmax

v
c zð Þp v ; zð Þn z; tð Þdw� vc vð Þn v ; tð Þ ð19Þ

The following derivation has many analogies to the one presented
in Section 2, and will thus be more concise. However, some key dif-
ferences arise with fragmentation, and the discussion will focus on
those.

3.2. Discretisation via the finite volume method

As in Section 2, a grid denoted as v i 2 vmin;vmax½ � is set up, with
Dv i ¼ v i � v i�1. The lower truncation of the domain implies that
Fig. 6. a) Initial fragmentation map, showing all possible regions of integration in the par
along the line z ¼ v , whose contribution can be ignored. b) Fragmentation map, showin

8

fragmentation cannot proceed to infinitely smaller particles; this
is ensured by the physics of the fragmentation process as embod-
ied by the fragmentation kernel. Eq. 19 is now integrated across a
finite volume interval:

d
dt

Z v i

v i�1

vnðv; tÞdv ¼
Z v i

v i�1

v
Z vmax

v
cðzÞpðv; zÞnðz; tÞdzdv

�
Z v i

v i�1

vcðvÞnðv ; tÞdv
ð20Þ

or

v̂ i
dni

dt
¼
Z v i

v i�1

v
Z vmax

v
cðzÞpðv; zÞnðz; tÞdzdv � ni

Z v i

v i�1

vcðvÞdv

ð21Þ
The same concept that was used in the discretisation of the aggre-
gation terms to ensure conservation of particle volume is employed
here. Only the fragmentation birth term is calculated, and the vol-
ume subtracted from the parent intervals is assigned to the appro-
priate daughter intervals. However, a key difference between
fragmentation and aggregation arises when considering the double
integral in Eq. 20. Whereas aggregation required a coordinate trans-
formation to recast the aggregation birth term as a function of the
two smaller parent sizes u and w, the fragmentation birth term
can be readily used in its current form to construct the fragmenta-
tion map in z-v-space. This is because only one parent particle is
involved in fragmentation, and thus the birth term does not have
the convolution-like form encountered in aggregation. The con-
struction of the fragmentation map is explained in the following
section.

3.3. Construction of the fragmentation map

The fragmentation map is shown in Fig. 6. Only rectangular and
triangular shapes arise, hence the fragmentation map is simpler
than the aggregation one.

Consider any given triangular integration region along the line
z ¼ v . This class of shapes represents the contribution of parent
particles from interval Dzq fragmenting back into the very same
interval. For the triangular regions along the line z ¼ v , the parent
and daughter interval are the same. When particles are removed
ent-daughter space (or z� v-space). The shaded region indicates a triangular region
g all regions of integration. Only rectangular regions need to be considered.
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and added back into the same interval, there is no net effect on the
given interval number density, and thus it is not necessary to con-
sider the contributions of the triangular sub-regions. The remain-
ing rectangular regions represent the birth of mass into interval
Dv i as a result of the death of mass from several parent intervals
Dzq. For an individual parent-daughter interval pair, the required
integral that needs to be evaluated numerically is shown in Eq.
22, where Sr represents the rectangular region with integration
limits unique to index r, while q is the relevant parent interval that
contributes mass to daughter interval Dv i. The expression in Eq. 22
can be thought of as a constituent fragmentation birth term.

Fq rð Þ ¼ nq rð Þ

Z
Sr

vc zð Þp v; zð Þdz dv|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Iq rð Þ

ð22Þ

It is clear that further sub-partitioning of the integration shapes is
not required when considering fragmentation, as every rectangular
shape is already entirely within a region of constant number den-
sity. Furthermore, the fragmentation birth term is only a function
of one number density per unique shape, as opposed to two in
the context of aggregation. The fragmentation map, thus, consists
of the set of triplets i; q; Izf g, which are indexed by a pointer, as in
aggregation. The fragmentation map is then tabulated and stored.
The procedure for its construction can be summarised as follows:

1. Generate a grid, v i ¼ vmin;vmax½ �, with mþ 1 total points and m
finite volume intervals, with Dv i ¼ v i � v i�1

2. Locate the triangular shapes and remove them from the set of
possible fragmentation integration regions (i.e. those where
i ¼ q).

3. Locate the rectangular integration regions using a nested loop -
one loop over all daughter intervals and one over all possible
parent intervals:
� Calculate the integrals Iq rð Þ.
� Create a unique pointer for each rectangular sub-region and

store the fragmentation triplet, i; q; Iq rð Þ
� �

.

3.4. Time advancement

As with the case of aggregation, the time advancement proce-
dure and relationships for fragmentation based on an explicit Euler
method are shown below. The equations can be easily modified for
another time-integration scheme.

1. For each interval i and time step n, the fragmentation birth
terms, Fn

q rð Þ, are calculated using the tabulated integrals Iq rð Þ:
Fn
q rð Þ ¼ nn

q rð ÞIq rð Þ ð23aÞ

2. The number densities at time step nþ 1 are now augmented as

follows:
nnþ1;�
i ¼ nn

i þ
Fn
q rð Þ
v̂ i

dt ð24aÞ

nnþ1;�
q ¼ nn

q �
Fn
q rð Þ
v̂q

dt ð24bÞ

nnþ1
i ¼ nn

i þ
1
v̂ i

XR ið Þ

r¼1

Fn
q rð Þ

" #
dt � 1

v̂ i

XS ið Þ

s¼1

Fn
q sð Þ

" #
dt ð25Þ

where v̂ i are defined as in Eq. 6. R(i) represents the number of
integration shapes that contribute mass to interval Dv i, and
S(i) represents the number of shapes where Dv i is the parent
interval. Thus, in a similar manner to Eq. 16, the constituent
fragmentation birth terms to other intervals where Dv i is the
9

parent, are reassembled to form the original death term in
Eqn. 21.

4. Nucleation and growth

The treatment of the nucleation term does not pose any partic-
ular issue, apart from the need for a grid with sufficient resolution
around the nuclei size. However, the presence of growth gives rise
to the problem of numerical diffusion due to the hyperbolic nature
of the resulting equation. A number of solutions have been pro-
posed for this problem, from total variation diminishing (TVD)
schemes (Ma et al., 2002; Qamar et al., 2006) to adaptive grid
methods (Sewerin and Rigopoulos, 2017a). The discretisation
method presented in the present work for aggregation and frag-
mentation can be combined with most of the existing schemes
for growth. The coupling with a TVD scheme, such as the one of
Qamar et al. (2006), is shown.

The PBE for a problem involving nucleation and growth as well
as other processes can be written as follows:

@n v; tð Þ
@t

þ @ G vð Þn v; tð Þ½ �
@v ¼ Bd v � vnucð Þ þ S ð26Þ

where S is a source term accounting for aggregation and fragmenta-
tion. For a finite volume discretisation in terms of volume fraction,
Eq. 26, is multiplied by v and integrated over an arbitrary interval
Dv i:

d
dt

Z v i

v i�1

vndv þ
Z v i

v i�1

v @ G vð Þn vð Þ½ �
@v dv

¼
Z v i

v i�1

vBd v � vnucð Þdv þ
Z v i

v i�1

vSdv
ð27Þ

The treatment of nucleation is straightforward. If the nuclei volume
is located within the first interval, we have:Z v1

vmin

vBd v � vnucð Þdv ¼ vnucB ð28Þ

Rewriting the growth term using product rule and performing the
integration yields the fluxes at the boundaries of interval Dv i, as
well as a new source term representing the addition of mass to
the particles within Dv i:Z v i

v i�1

v @ G vð Þn v ; tð Þð Þ
@v dv ¼ Gnv½ �v i

� Gnv½ �v i�1
�
Z v i

v i�1

Gndv ð29Þ

In order to minimise numerical diffusion, the flux terms in Eq. 29
can be dealt with a TVD scheme, which approximates them as func-
tions of values at neighbouring intervals and a flux limiter function.
In the present work we employ the approach of Qamar et al. (2006,
2009), which is based on a TVD scheme due to Koren et al. (1993).
The reader may refer to the above references for the derivation, and
the final expression for the limiter is:

G vð Þnv½ �v i
¼ v iG v ið Þ nu v ið Þ þ / rið Þ

2
nu v ið Þ � nuu v ið Þ
� �	 


ð30Þ

where nu v ið Þ and nuu v ið Þ are the number densities of the two intervals
upstream of node v i, and / rið Þ is the flux limiter at node v i given by:

/ rið Þ ¼ max 0;min 2ri;min
1
3v i � v i�1

vm;i � vm;i�1
þ 2ri

3
v i � v i�1

vm;iþ1 � vm;i
;2

	 
	 
	 

ð31Þ

where vm;i ¼ 0:5 v i þ v i�1ð Þ and ri is the upwind ratio of two consec-
utive number density gradients (Koren et al., 1993):

ri ¼ niþ1 � ni þ �
ni � ni�1 þ �

ð32Þ

where � is a small number employed to avoid division by zero.
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The growth source term requires additional treatment. By mul-
tiplying and dividing by v, we obtain:Z v i

v i�1

Gndv ¼
Z v i

v i�1

G
v nvdv ð33Þ

We now treat the integrand as a product of two functions, namely
G=v and nv, and invoke the Mean Value Theorem for Integrals
(see Spivak (1994), p. 274) to write the growth source term as
follows:Z v i

v i�1

G
v nvdv ¼ G fð Þ

f

Z v i

v i�1

nvdv ¼ G fð Þ
f
v̂ ini ð34Þ

where f 2 v i�1;v i½ �. While the theorem guarantees that a value of f
exists, it does not help us to find it. We therefore approximate f
with the midpoint of the interval and obtain:

G fð Þ
f
v̂ ini ¼

G vm;i
� �
vm;i

v̂ ini ð35Þ

This reformulation of the TVD growth discretisation is necessary in
order to ensure that the numerical scheme for growth has consis-
tent number density definitions with that for aggregation-
fragmentation. The latter is derived from a mass-based description,
as the first moment is an invariant in these processes. However, in
the case of pure growth, it is the total number density or zeroth
moment that is invariant, while the mass increases over time. The
original work of Qamar et al. (2006) uses a number-based definition
for the discretised number densities. However, if that scheme is
combined with a mass-based description, it can be shown that an
error is introduced. By modifying the growth discretisation to be
mass-based, this error can be avoided. A comparison of the two
formulations on an aggregation-growth test case will be shown in
Section 5.6.

5. Results and discussion

In order to validate the approach developed in the present
paper, a series of test cases that have analytical solutions will
now be considered. To extend the range of test cases, the numerical
solution of the discrete PBE (DPBE) will also be employed for vali-
dation purposes, since it can be obtained with very high accuracy
(albeit at high computational cost) and can thus be considered as
equivalent to an analytical solution. The test cases are summarised
in Table 1. Finally, an analysis of the accuracy of certain aspects of
the method and of the computational performance will be carried
out.

5.1. Aggregation

5.1.1. Analytical solutions
Very few analytical solutions have been obtained for aggrega-

tion problems. An analytical solution for the case of the constant
kernel was first derived by Schumann (1940), while Scott (1968)
Table 1
Summary of test cases.

Test Case b v ;wð Þ p v ;wð
Aggregation, constant kernel 1 -
Aggregation, sum kernel v þw -
Aggregation, free-molecule kernel 1

v þ 1
w

� �0:5 v1
3 þw

1
3

 �2 -

Aggregation, Brownian kernel 1
v
� �1

3 þ 1
w

� �1
3

h i2 -

Ternary fragmentation - 6
w 1��

Uniform binary fragmentation - 2
w

Aggregation-growth 1 -
Aggregation-fragmentation 1 2

w
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carried out a comprehensive analytical study with several kernels.
Here, we will employ the solutions in the form presented by
Gelbard and Seinfeld (1978). The solutions are for the following
exponential initial distribution:

n v;0ð Þ ¼ N0

v0
e�v=v0 ð36Þ

where N0 is the initial number of particles and v0 is the initial aver-
age particle volume. The first solution is for the constant kernel:

b v ;wð Þ ¼ b0 ð37Þ
The solution is:

n vð Þ ¼ b0
4N0

T þ 2ð Þ2
exp � v

v0

2
T þ 2

� �
ð38Þ

where T is a dimensionless time defined as follows:

T ¼ b0N0t ð39Þ

The second solution is for the sum kernel:

b v ;wð Þ ¼ b0 v þwð Þ ð40Þ
and the initial condition defined by Eq. 36. The solution is:

n vð Þ ¼ N0 1� Tð Þ
vT1=2 exp � 1þ Tð Þw½ �I1 2wT1=2

 �
ð41Þ

where I1 is the modified Bessel function of the first kind of order
one, while the dimensionless time, T is defined as follows in this
case:

T ¼ b0N0v0t ð42Þ
Fig. 7 and Fig. 8 show excellent agreement with the analytical

solutions describing the evolution of the particle size distribution.
In these and the following figures, the notation due to Friedlander
(2000) indicating the particle size dimension with l and the phys-
ical space dimensions with L is adopted.

5.2. Numerical solutions of the discrete PBE for problems with self-
similarity

Since the number of population balance problems that have
analytical solution is very limited, we will also compare with some
solutions obtained with the discrete population balance equation
(DPBE) for aggregation (Smoluchowski equation):

dn1

dt
¼ �n1

X1
j¼1

bijnj ð43aÞ

dni

dt
¼ 1

2

Xi�1

j¼1

bj;i�jnjni�j � ni

X1
j¼1

bijnj 8i > 1 ð43bÞ

Solutions of this equation are equivalent to those of the continuous
PBE for aggregation. Eqs. 43 can be solved with an explicit Euler
method as follows:
Þ c wð Þ Growth Reference solution

- - Gelbard and Seinfeld (1978)
- - Gelbard and Seinfeld (1978)
- - DPBE solver

- - DPBE solver

v
w

�
w2 - Ziff (1991)

w - Ziff and McGrady (1985)

- kgv Ramabhadran et al. (1976)
2w - Lage (2002)



Fig. 7. Pure aggregation process using the constant aggregation kernel. Solid lines
are the analytical solution, while square and triangular marks are the numerical
solutions at 1 s and 10 s, respectively. 80 grid points were used, while b0 = 1.

Fig. 8. Pure aggregation process using the sum aggregation kernel. Dashed lines are
the analytical solution, while the square and triangular marks are the numerical
solutions at 0.5 s and 2.5 s, respectively. 80 grid points were used, while b0 =1.
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ntþdt
i ¼ nt

i þ dt
1
2

Xi�1

j¼1

bijn
t
j n

t
i�j � bijn

t
i

X1
j¼1

nt
j

 !
ð44Þ

While computationally expensive, the solution of the discrete equa-
tion with this direct method is very accurate and can be regarded as
a substitute for an analytical solution, thus allowing us to employ
any kernel and initial condition. We are particularly interested in
two important kernels that appear in physical processes. The first
one is the kernel for aggregation in the free molecular regime
(Friedlander, 2000):

b v;wð Þ ¼ 3
4p

� �1=6 6kT
qp

 !1=2
1
v þ 1

w

� �1=2

v1=3 þw1=3� �2 ð45Þ

The second one is the kernel for aggregation due to Brownian
motion (Friedlander, 2000):

b v;wð Þ ¼ 2kT
3l

1
v1=3 þ

1
w1=3

� �
v1=3 þw1=3� � ð46Þ
11
In the above equations, k is the Boltzmann constant, qp is the den-
sity of the particles and l is the viscosity of the fluid. However, in
the tests the entire multiplicative factor has been set equal to 1,
as indicated in Table 1.

After sufficiently long time, an aggregation process with these
kernels reaches a self-similar solution that is independent of the
initial condition. Approximations to this solution have been
derived analytically by Swift and Friedlander (1964, 1966, 1972)
and numerically by Landgrebe and Pratsinis (1989). In the present
work, this solution was obtained by a numerical solution of Eq. 43
using the discretisation method described by Eq. 44, as well as by
solution of the continuous equation using our conservative finite
volumemethod. The results are presented in terms of the following
similarity variable:

g tð Þ ¼ v
vm tð Þ ð47Þ

where vm tð Þ is defined in terms of the zeroth and first moment as
follows:

vm tð Þ ¼ M1

M0 tð Þ ð48Þ

Note that M1 is constant when only aggregation is present.
Fig. 9 shows a comparison of the two solutions for aggregation

in the free molecule regime.80 grid nodes were employed for the
solution of the continuous PBE with the conservative finite volume
method, and excellent agreement obtained. Fig. 10 shows a com-
parison of the solutions for the Brownian kernel. Again, excellent
agreement is observed. For both cases, the numerical solution of
the discrete PBE involved the solution of 10,000 ODEs representing
every possible particle size. As before, the first moment was con-
served exactly in these two simulations.

5.3. Fragmentation

Ziff and McGrady (1985) considered binary fragmentation with
a number of different initial conditions. An exponential initial par-
ticle size distribution was used for this work and the resulting
solution and initial condition is shown in Eq. 49.

n v;0ð Þ ¼ N0

v0
exp

�v
v0

	 

ð49aÞ

n v; tð Þ ¼ 1þ t2
� �

exp �v 1þ tð Þ½ � ð49bÞ

where N0 ¼ 1 and v0 ¼ 1.
Ziff (1991) went further, and considered a general class of scal-

ing solutions to the fragmentation equation that allowed for the
treatment of a variety of fragmentation kernels as well as kernels
that describe multiple fragments being produced. The special case
of ternary fragmentation with a monodisperse initial condition is
shown in Eq. 50:

n v;0ð Þ ¼ d v � vmaxð Þ ð50aÞ
n v ; tð Þ ¼ 1

vmax
exp �tv2

max

� �
d v � vmaxð Þ þ 6tv

R vmax

v y�2 exp �ty3
� �

dy

ð50bÞ
Fig. 11, shows good agreement in the binary fragmentation case

with 80 grid points. The particle size distribution is shown at t = 1
s and t = 10 s.

Fig. 12, shows good agreement with the analytical solution for
batch ternary breakage.Fig. 13 and 14.

For both of these fragmentation test cases, it is important to
highlight that there was no adjustment required to the numerical
scheme, in terms of the fragmentation map or the integration cal-
culations. Fragmentation kernels with multiple fragments - three



Fig. 9. Pure Aggregation with the free-molecule regime kernel, self-similar solution.
The solid line is the DPBE solution and the points are the results with the present
method. 80 grid points were used.

Fig. 10. Pure aggregation process using the Brownian aggregation kernel, self-
similar solution. The solid line is the DPBE solution and the points are the results
with the present method. 80 grid points were used.

Fig. 11. Evolution of the particle size distribution for batch binary breakage;
analytical and numerical solutions are shown for t = 1 s and t = 10 s. 80 grid points
were used.

Fig. 12. Evolution of particle size distribution for batch ternary fragmentation;
analytical and numerical solutions are shown for t = 1 s and t = 10 s. 80 grid points
were used.
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or more - can be solved for without need for any change in the
implementation of the methodology.
5.4. Aggregation and fragmentation

In order to demonstrate the aggregation map and fragmenta-
tion map working together, we investigated a joint constant aggre-
gation and uniform binary fragmentation problem that happens to
be one of the few aggregation-fragmentation cases that have an
analytical solution. The solution was derived by Patil and
Andrews (1998) and corrected by Lage (2002). It describes the tem-
poral evolution of the particle size distribution in non-dimensional
terms for limited initial conditions. The joint constant aggregation
and uniform binary breakage case will form a steady-state solution
independent of the initial distribution, and it is this solution that
will be the focus of this test case. Essentially, one of the initial con-
ditions outlined in Lage (2002) is the steady-state solution itself -
in which case the particle size distribution remains invariant for
12
all time. A more challenging scenario is to initiate the distribution
as either breakage-dominated or aggregation-dominated, and to
compare with the steady-state behaviour of the distribution as
well as its moments. The latter have analytical solutions for their
steady-state behaviour, independent of the initial condition used.
As the particle size distribution evolves to a steady-state solution,
the zeroth moment becomes invariant. For every aggregation event
where two particles become one larger particle, there is an equal
and opposite fragmentation event where a large particle breaks
into 2 smaller ones. The analytical solutions are shown in Appendix
C.

The numerical scheme employing both aggregation and frag-
mentation maps accurately reproduces the steady-state solution,
as well as crucially conserving mass and, once steady-state has
been achieved, conserving total number density as well.

5.5. Aggregation and growth

Ramabhadran et al. (1976) considered a joint aggregation and
growth case where the constant aggregation kernel and a linear



Fig. 13. Steady state solution of the joint aggregation-fragmentation test case (Lage,
2002); 80 grid points were used.

Fig. 14. Evolution of zeroth and first moments in joint aggregation-fragmentation
test case. Note the total number density as well as the 2/3 moment becoming
constant as the system evolves to a steady state.

Fig. 15. Joint aggregation-growth test case. Constant aggregation kernel with a
linear size-dependent growth kernel i.e. G vð Þ ¼ kgv where in this case kg = 0.5.
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size-dependent growth kernel (G vð Þ ¼ kgv) were used. The initial
condition is again the exponential distribution Eq. 36. The solution
for the number density involves the zeroth and first moments, for
which equations have also been derived, as shown below:
n v; tð Þ ¼ M2
0

M1
exp �M0

M1
v

� �
ð51aÞ

M0 tð Þ ¼ 2N0

2þ b0N0t
ð51bÞ

M1 tð Þ ¼ N0v0 exp r1tð Þ ð51cÞ
The analytical solution is compared with the numerical solution
with the conservative finite volume method obtained with 80 grid
points in Fig. 15. The comparison between the two solutions is very
good for all time instances considered, indicating that the aggrega-
tion discretisation method performs very well in the presence of
growth.
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5.6. Mass-based versus number-based growth TVD scheme

As discussed in Section 4, in order to render the discretisation of
the growth term fully consistent with that of aggregation and frag-
mentation, a mass-based formulation must be employed - which
results in an extra source term. In order to examine this aspect
of the method, the aggregation-growth test case was run twice,
once using the original number-based TVD scheme for growth
and once using the mass-based formulation. The zeroth, two-
third (which is proportional to the particle surface area) and first
moments were calculated and the results for various grids are
shown in Fig. 16. It can be seen that the number-based scheme
produces slightly more accurate predictions of the zeroth moment,
with the error dropping below 1% with 60 intervals, while the same
occurs with 80 intervals in the case of the mass-based formulation.
However, the mass-based formulation considerably outperforms
the number-based formulation when predicting the two-third
moment, producing an error of roughly 1% with 60 intervals, as
opposed to more than 100 intervals in the case of the latter. This
is significant, as the two-third moment is important in problems
involving surface chemistry such as crystallisation and flame syn-
thesis of nanoparticles. Finally, with respect to the first moment,
the mass-based formulation produces effectively zero error with
all grids, confirming the conservation property of the method,
while the CFV-TVD number-based formulation requires close to
200 intervals to achieve an error of less than 1%.

5.7. Accuracy of moment prediction

We will now examine the evolution of the moments as pre-
dicted by the conservative finite volume method. The moments
to be examined are the zeroth moment (total number of particles),
the two-third moment (proportional to the total particle surface
area) and the first moment (total particle volume). The moment
evolution will be considered for all test cases, and comparison will
be made with analytical solutions or DPBE. In the aggregation-
fragmentation test case, the steady-state moments will be com-
pared with their analytical solution. In order to evaluate the mean
error during the entire temporal evolution, the moments were
evaluated at 100 instances for each test case.

The results are shown in Table 2. The errors are generally small
and less than 1% in most cases. The largest errors appeared in the
sum kernel and the aggregation-growth case which, exhibited an
error of 0.78% and 0.83%, respectively. This can be expected given



Fig. 16. Relative error in the moments for the two differing joint aggregation-growth schemes as compared with the analytical moments equations. Note, the wholly mass-
based formulation has zero relative error in M1 for all grids used.

Table 2
Relative error in the moments of the particle size distribution, average over 100 time instances.

Test case M0 M2=3 M1 Intervals vmin; vmax½ �
Constant aggregation 0.30% 0.28% 0% 80 2:5 � 10�6;1:6 � 102

h i
Sum aggregation 0.78% 1.11% 0% 80 5 � 10�6;5 � 104

h
]

Free-molecule aggregation 0.20% 0.18% 0% 80 10�1;1:5 � 104
h i

Brownian aggregation 0.12% 0.13% 0% 80 10�1;1:5 � 104
h i

Ternary fragmentation 0.30% 0.17% 0% 80 10�5;1
h i

Uniform binary fragmentation 0.63% 0.29% 0% 80 10�5;102
h i

Aggregation-growth 0.83% 0.50% 0% 80 0;104
h i

Aggregation-fragmentation 0.46% 0.27% 0% 80 10�5;5 � 101
h i
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the fact that, the distribution moves rapitdly towards the right end
of the domain where the grid is more coarse. The error in M1 is
always 0%, confirming the fact that the method is conservative
by construction.
14
5.8. Accuracy of aggregation kernel integration

As mentioned in Section 2.1, the partitioning of the aggregation
integral terms allows for exact evaluation of the number density
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products, and the only approximation involved is the numerical
integration of the kernel. Therefore, it is important to examine
the accuracy involved in this step. In the present section, the rela-
tive error in the integration of four non-linear kernels, namely the
free-molecule, Brownian, shear and gravitational kernel is investi-
gated. The equations for the first two have already been shown
(Eqs. 45 and 46, respectively). The kernel for laminar shear is:

b v;wð Þ ¼ 1
p

du
dx

v1=3 þw1=3
� �3 ð52Þ

Finally, the gravitational kernel for small particles, creeping flow
and continuum regime, is:

b v;wð Þ ¼
qp � q
 �

g

6l
3
4p

� �1
3

v1
3 þw

1
3

 �2
v2

3 �w
2
3

��� ��� ð53Þ

More information on the physics of these kernels can be found in,
Friedlander (2000). As before, only the volume-dependent part of
the kernel will be considered, as the rest is a multiplicative factor
that can be taken out of the integral.

For clarity, the integral in Eq. 11 is rewritten here in the follow-
ing way:
Fig. 17. Kernel integration relative errors (%) for the

15
I ¼ nj pð Þnk pð Þ

Z Z
Sp

uþw0ð Þb w0;uð Þdudw0 ð54Þ

The double integral in Eq. 54 was evaluated analytically for all inte-
gration shapes where possible, using the MATLAB symbolic integra-
tion functionality. In cases where the analytical procedure was not
possible, the function vpaintegral (MathWorks, 2022) was used; this
function has an adjustable relative error parameter that was set to
10�9. Essentially, this procedure evaluates the integral numerically
using a large number of integrand evaluations (up to 105) until the
relevant error tolerance is met. By comparing the output of the 3-
point Gauss quadrature, 2-point Gauss quadrature and 1-point eval-
uation with the results of exact integration, the error of the numer-
ical integration of the kernels can be evaluated.

The results are shown in Fig. 17. As expected, the greater the
number of intervals used, the smaller the resultant sub-
partitioned integration shapes, and the lower the error. Further-
more, the error reduces with the use of more accurate integration
rules. However, even with the 1-point integration scheme, which
was employed in previous works such as Liu and Rigopoulos
(2019), 40 intervals are sufficient to make the error less than 1%.
With 3-point Gaussian quadrature, the numerical integration is
most important non-linear aggregation kernels.



Fig. 18. CPU time taken per time-step to evaluate time-integration of aggregation
routine in a pure aggregation case.
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close to the exact result as an error less than 0.3 % is found across
all kernels with as few as 10 intervals. It can be concluded that the
error involved in the integration of the non-linear kernels is very
small, and easily controlled. It should be emphasised that this is
the only error involved in the treatment of the aggregation integral
terms in the proposed method. This does not include, of course, the
error associated with the discrete representation of the distribu-
tion, which is present in every discretisation method and can only
be reduced by using a finer grid or a higher order approximation of
the distribution itself within each interval.

5.9. Note on computational performance

The validation of the method has been carried out against solu-
tions of the homogeneous PBE. With respect to the computational
performance, it must first be acknowledged that any discretisation
method would be very fast on modern computers when it comes to
solving a single homogeneous PBE. However, efficiency becomes
important if the method is to be coupled with CFD or used for opti-
misation where a very large number of PBEs must be solved.

In order to demonstrate the feasibility in the context of a larger
CFD problem, it is important to take into account the parallel archi-
tecture typically employed for such simulations. A large CFD grid
with millions of cells will have its domain split into many sub-
domains, each of which will be sent to an individual CPU. This gives
rise to a need to communicate results at each sub-domain bound-
ary in order to evaluate the convection–diffusion step. Crucially, as
a rule of thumb, an order of 104 CFD cells are assigned per proces-
sor. As with all parallel computing tasks, there is a trade-off
between parallelisation and communication overhead. The PBE,
alongside chemical reactions, is evaluated as part of the source
term in a CFD solver. The source term is typically evaluated after
the convection–diffusion step, and its output is required for the
next convection–diffusion step to begin. If the number of CFD cells
used per processor is considerably more than 104, the source term
will take too long to evaluate, thus defeating the purpose of split-
ting the domain in the first place. On the contrary, if too few CFD
cells are used per processor, then the reaction step may take too
short a time relative to the communication overhead.

Based on the above, we can set a rough target for the duration of
an individual PBE integration to be of the order 10�4 s. When
scaled for 104 CFD cells, this yields approximately 1 s (i.e. 10�4 x
16
104) for the source term evaluation in the entire domain, which
should be viable in the context of a larger CFD program. Fig. 18
shows that for grids of 80 intervals or less, this time step criterion
is met. Furthermore, with the use of pre-tabulation of the relevant
aggregation integrals, the CPU time per time step is independent of
the choice of aggregation or fragmentation kernel.

It is also worth noting that the aggregation-growth part of the
method in the Liu and Rigopoulos implementation (Liu and
Rigopoulos, 2019) has been employed in coupled CFD-PBE simula-
tions of soot formation in laminar flames (Liu and Rigopoulos,
2019; Liu et al., 2020; Sun et al., 2021) as well as in a DNS-PBE sim-
ulation of turbulent coagulation (Tsagkaridis et al., 2022). In Liu
and Rigopoulos (2019), a detailed breakdown of CPU time was
reported and the time taken by the PBE solver was 8.2% of the time
taken by the whole simulation over an average over 200 time
steps. The extension to fragmentation in the present paper requires
fewer operations per time step than aggregation, while the use of
Gaussian quadrature is carried out in the pre-tabulation step.
These facts indicate that the computational demands of the
method are modest and allow for its integration within CFD codes.
6. Conclusions

In the present work, a comprehensive approach for solving the
PBE in problems featuring any combination of the population bal-
ance kinetic processes, namely aggregation, fragmentation, nucle-
ation and growth was presented. The approach is based on the
finite volume method, and emphasises conservation of the first
moment - which is proportional to mass. The major source of con-
servation error was identified to be the aggregation birth term,
whose convolution-like form prevents identifying the intervals
from which the parent particles originate. A coordinate transfor-
mation was used to delineate the contributions to the aggregation
birth term, and relate them to the appropriate death fluxes. An
aggregation and a fragmentation map were constructed, which
illustrate graphically how mass fluxes are assigned across the
domain. Furthermore, the aggregation and fragmentation maps
define the regions of integration resulting from the double inte-
grals that arise from the application of the finite volume method
to the integral terms in the PBE. The essence of the method is to
partition the aggregation birth double integral in such a way, using
the aggregation map, that its evaluation is exact apart from the
kernel - for which numerical integration has to be employed. It
was also shown that the non-linear kernels corresponding to phys-
ical processes can be integrated with high accuracy, thus practi-
cally eliminating the integration error. The method is
conservative with respect to the first moment because it operates
with fluxes, such that any outflow of parent particles results in a
corresponding inflow at another part of the domain. It was also
shown how the method can be combined with a TVD scheme in
order to minimise numerical diffusion in problems including
growth; an additional source term results in a mass-based TVD for-
mulation and it was demonstrated that when accounting for, the
first moment is predicted exactly in aggregation-growth problems.

The method was validated with a number of reference solutions
for aggregation, fragmentation, aggregation-fragmentation and
aggregation-growth. In all cases, the method was able to yield very
accurate solutions for both the particle size distribution and
moments, with a relatively small number of nodes. Another feature
of the method is the ability to use an arbitrary grid, which makes it
suitable for combining with adaptive grid methods such as the one
presented in Sewerin and Rigopoulos (2017a). The implementation
of the method is also computationally efficient, owing to the pre-
tabulation of the aggregation and fragmentation maps. The opera-
tions that need to be performed at every time step are thus, very



Fig. 19. Example of an interval on a contracting grid, used to highlight the left
triangle, right triangle as well as the new parallelogram shape found in the region of
integration.
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few and straightforward. This feature renders the method suitable
for problems where the PBE has to be coupled with CFD, and ele-
ments of the method (the aggregation approach in particular) have
already been coupled successfully with CFD programs.

Future work will demonstrate the efficiency of the method in
problems that feature complex combinations of transport and
kinetic processes. The potential for accurate and conservative pre-
dictions will also be crucial for minimising numerical errors when
comparing simulations with experiments. This will significantly
aid in the identification of errors due to other sources such as:
the flow field, the physical or chemical modelling itself and exper-
imental uncertainties.
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Appendix A: Shapes in the aggregation map

In order to find and identify all the relevant shapes in the aggre-
gation map in the context of an arbitrary grid, all possible relative
sizes between parents cells (namely expanding, uniform and con-
tracting) will have to be considered systematically. As outlined in
the main body of the paper, the auxiliary grid is a function of both
the daughter interval, and one of the parent intervals - thus:
Uk Dv i;Dwj
� �

. Therefore, in order to examine the possible shapes
and permutations, it is necessary to begin with the 3 basic cases
that arise when comparing Dv i and Dwj in a given interval.

� Expanding interval: Dv i > Dwj

- Calculate auxiliary grid, Uk Dv i;Dwj
� �

:
- U1 ¼ v i�1 �wj;U2 ¼ v i�1 �wj�1;U3 ¼ v i �wj; U4 ¼ v i �wj�1;
- Some key relations: U3 � U1 ¼ Dv i ; U4 � U2 ¼ Dv i ;

U3 � U2 ¼ Dv i � Dwj ;
- Since Dv i > Dwj ! U3 > U2

- 3 classes of shapes appear: a left-side triangle, a rectangular
middle section and a right-side triangle. Note how the auxil-
iary grid aligns with the boundaries of each shape (Fig. 3).

- As the auxiliary grid does not, in general, align with the grid,
the next step is to locate any grid boundaries that divide the
exiting shapes into smaller ones. This allows for the product
of number densities in the integral to be taken out of the
integral, as they are constant, and leads to each subsequent
shape existing in a region of constant number density pairs.
For clarity, the integrand remains the same in each one of the
following integrals and will be denoted
h u;w0ð Þ ¼ uþw0ð Þb u;w0ð Þ

- Integrals for whole shapes, before checking for sub-
partitioning:

* Left-side triangle: I ¼ Rwj
wj�1

R U2
u¼v i�1�w h u;w0ð Þdudw0

* Rectangular region: I ¼ Rwj
wj�1

R U3
U2

h u;w0ð Þdudw0
* Right-side triangle: I ¼ Rwj

wj�1

R u¼v i�w
U3

h u;w0ð Þdudw0
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- Integrals for generalised shapes, to account for sub-partitions:
* Let wLB < w < wUB and uLB < u < uUBdefine the sub-region.
* Left-side triangles: I ¼ RwUB

wLB

R uUB
u¼vLB�w h u;w0ð Þdudw0where

vLB ¼ wUB � uLB

* Rectangular region: I ¼ RwUB
wLB

R uUB
uLB

h u;w0ð Þdudw0
* Right-side triangle: I ¼ RwUB

wLB

R u¼vUB�w
uLB

h u;w0ð Þdudw0 where

vLB ¼ wUB � uLB

� Uniform interval: Dv i ¼ Dwj

- Calculate auxiliary grid, Uk Dv i;Dwj
� �

:
- U1 ¼ v i�1 �wj;U2 ¼ v i�1 �wj�1;U3 ¼ v i �wj;U4 ¼ v i �wj�1;
- Some key relations: U3 � U1 ¼ Dv i ; U4 � U2 ¼ Dv i ;

U3 � U2 ¼ 0 ;
- Since Dv i ¼ Dwj ! U3 ¼ U2. Thus, the central rectangular

region found in the expanding case collapses and just two
triangular regions are left to be evaluated.

* Left-side triangle: I ¼ Rwj
wj�1

R U2
u¼v i�1�w h u;w0ð Þdudw0

* Right-side triangle: I ¼ Rwj
wj�1

R u¼v i�w
U3

h u;w0ð Þdudw0

� Contracting interval: Dv i < Dwj

- Calculate auxiliary grid, Uk Dv i;Dwj
� �

:
- U1 ¼ v i�1 �wj;U2 ¼ v i�1 �wj�1;U3 ¼ v i �wj;U4 ¼ v i �wj�1;
- Some key relations: U3 � U1 ¼ Dv i ; U4 � U2 ¼ Dv i ;

U3 � U2 ¼ Dv i � Dwj ;
- Since Dv i < Dwj ! U3 < U2. Thus, U3 is now to left of U2 by

definition and the remaining overall shape can be viewed
as a left-side triangle, a right-side triangle and a parallelo-
gram in between, Fig. 19.

* Left-side triangle: I ¼ Rwj
wj�1

R U2
u¼v i�1�w h u;w0ð Þdudw0

* Parallelogram: I ¼ R U2
U3

Rw¼v i�u
w¼v i�1�u h u;w0ð Þdudw0

* Right-side triangle: I ¼ Rwj
wj�1

R u¼v i�w
U3

h u;w0ð Þdudw0
Appendix B: Integration of the kernel with Gaussian quadrature

In essence, the integral is transformed with a change of vari-
ables such that the integral now exists over a square ranging from
�1 to 1 in the transformed space coordinates. This is straightfor-
ward for the rectangular integration shapes within the aggregation
map, while the triangular regions will be treated below. Subse-
quently, the integrand is evaluated at the Gauss points and
weighted by the appropriate Gauss weights (Heath, 2002). In the
case of 2D 3-point Gauss quadrature, the integrand is sampled 9
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times at the appropriate Gauss points within each sub-region of
integration, Sp. Such a scheme can integrate polynomials of order
2� 3� 1 ¼ 5 exactly.

Applying the Gaussian quadrature scheme to the triangular
regions requires more attention, due to the variable integration
limit representing a linear relationship between u and w i.e.
w ¼ v i � u. The first step is to transform the inner integral to the
domain [-1,1] with a change of variables. The general case for an
arbitrary function is shown below:Z b

a
f xð Þdx ¼

Z 1

�1
f gð Þ b� a

2
dg ð55Þ

where

x ¼ b� a
2

gþ aþ b
2

ð56Þ

However, when this procedure is applied to the inner integral from
Eq. 11, the lower limit is now in terms of w0, and this carries into the
transformation itself. Let g u;w0ð Þ represent either integrand from
Eq. 11. Thus:Z U2

u¼v i�1�w0
g u;w0ð Þdu !

Z 1

�1
g g;w0ð ÞU2 � v i�1 �w0ð Þ

2
dg ð57Þ

using:

u ¼ U2 � v i�1 �w0ð Þ
2

gþ U2 þ v i�1 �w0ð Þ
2

ð58Þ

The transformed integral in Eq. 57 is now approximated using the
Gaussian quadrature rules leading to the sum of the products of
the necessary weights and integrand evaluations at the Gauss
points (an and gn, respectively).Z 1

�1
g g;w0ð ÞU2 � v i�1 �w0ð Þ

2
dg

�
XNQP
n¼1

ang gn;w
0ð ÞU2 � v i�1 �w0ð Þ

2
ð59Þ

Now, the remaining sum is only a function of w0 and the procedure
is repeated for the outer integral in Eq. 11, with constant integration
limits wj�1 to wj. Thus:

�
XNQP
m¼1

XNQP
n¼1

anbngðgn; fmÞYðfmÞ ð60aÞ

where : YðfmÞ 	
U2 � ðv i�1 � ðwj�wj�1

2 fm þ wjþwj�1
2 ÞÞ

2
wj �wj�1

2
ð60bÞ

Note that the transformation for w0 appears not only as an indepen-
dent variable of g gn; fmð Þ but also in the ratio that immediately fol-
lows. This is due to the originally triangular region being
transformed into a standardised square domain then approximated.
For 2D 3-point Gaussian quadrature, NQP ¼ 3, and the weights can
be found in standard references such as Abramowitz and Stegun
(1965).

Appendix C: Analytical solution for aggregation-breakage

The Patil-Andrews-Lage solution (Patil and Andrews, 1998;
Lage, 2002) takes form as the results of an inverse-Laplacian oper-
ation and is shown in non-dimensional terms below:

w gð Þ ¼
X2
i¼1

K1 sð Þ þ piK2 sð Þ
L2 sð Þ þ 4pi

exp pigð Þ ð61Þ

where the non-dimensionalisation is done as follows:
18
w gð Þ ¼ n v ; tð Þ/
N2

0

ð62aÞ

g ¼ vN0

/
ð62bÞ

s ¼ N0Ct ð62cÞ
Furthermore, a key criterion of this particular result is the balancing
of coagulation and breakage rates such that Eq. 63 is satisfied. Note
C is the coagulation kernel, S is the breakage rate, / is the first
moment in-terms of particle volume and N0 is the initial total num-
ber density.ffiffiffiffiffiffiffiffiffi
2S/
C

r
¼ N0 ð63Þ

and the factors in Eq. 61 are defined below:

K1 sð Þ ¼ 7þ sþ e�s ð64aÞ
K2 sð Þ ¼ 2� 2e�s ð64bÞ
L2 sð Þ ¼ 9þ s� e�s ð64cÞ

p1;2 ¼ 1
4

e�s � s� 9ð Þ 
 1
4

ffiffiffiffiffiffiffiffiffi
d sð Þ

q
ð64dÞ

d sð Þ ¼ s2 þ 10� 2e�sð Þsþ 25� 26e�s þ e�2s ð64eÞ
In the test case used, the breakage rate S, was set to 2 and the aggre-
gation rate C, was set to 1. The steady total number density is thus
found as follows (note that / = 1 throughout):

N0 t ! 1ð Þ ¼
ffiffiffiffiffiffiffiffiffi
2S/
C

r
ð65Þ

or N0 t ! 1ð Þ ¼ 2.
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