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ST CrossingPose: A Spatial-Temporal Graph
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Abstract— Pedestrian crossing intention prediction is crucial
for the safety of pedestrians in the context of both autonomous
and conventional vehicles and has attracted widespread inter-
est recently. Various methods have been proposed to per-
form pedestrian crossing intention prediction, among which
the skeleton-based methods have been very popular in recent
years. However, most existing studies utilize manually designed
features to handle skeleton data, limiting the performance of these
methods. To solve this issue, we propose to predict pedestrian
crossing intention based on spatial-temporal graph convolutional
networks using skeleton data (ST CrossingPose). The proposed
method can learn both spatial and temporal patterns from
skeleton data, thus having a good feature representation abil-
ity. Extensive experiments on a public dataset demonstrate that
the proposed method achieves very competitive performance in
predicting crossing intention while maintaining a fast inference
speed. We also analyze the effect of several factors, e.g., size
of pedestrians, time to event, and occlusion, on the proposed
method.

Index Terms— Pedestrian crossing intention, human pose,
human skeleton, graph convolutional networks, intelligent
vehicle.

I. INTRODUCTION

ROAD safety has been one of the main public health
issues. In 2017 alone, 25,300 people lost their lives

on EU roads, with human errors involved in around 95%
of all road traffic accidents.1 In 2020, 18,800 people were
killed in EU’s road accidents.2 Autonomous vehicles (AVs)
are expected to reduce these figures drastically and improve
road safety.
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Fig. 1. Given 16 observation frames, our aim is to predict whether the
pedestrian will cross the street or not in the future one to two seconds.

Safety is crucial in the context of AVs, especially for
less structured environments where interaction between AVs
and pedestrians is possible, such as pedestrian junctions and
mixed traffic environments. In these cases, more fundamen-
tal research on safety aspects is needed since even minor
contact between humans and vehicles poses severe dangers
to unprotected humans. Pedestrian crossing intention predic-
tion (Fig. 1(a)) is crucial for safe and smooth AV opera-
tion. However, although human drivers can generally make
accurate inferences about the pedestrians’ crossing intention in
hundreds of milliseconds after seeing them, it is challenging
for AVs to achieve this. Not being able to understand the
crossing intention of pedestrians is a key factor in reducing
the safety level of AVs, which can lead to traffic accidents
or erratic behaviors towards pedestrians. Furthermore, if AVs
cannot predict pedestrian intention, they might stop (possibly
suddenly) for every pedestrian on the road. This unpredictable
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behavior for other road users may not only result in rear-end
accidents but also annoy other drivers and passengers. There-
fore, pedestrian crossing intention prediction is crucial and has
attracted a lot of interest in the computer vision and robotics
communities [2]–[5]. It is worth mentioning that pedestrian
crossing intention prediction is not only beneficial for AVs but
also very relevant to conventional vehicles via the increasing
adoption of advanced driving assistance systems.

Various methods have been proposed to predict or recognize
the intention of pedestrians. The most common methods are
based on the trajectory prediction of pedestrians [6]. However,
merely relying on pedestrian trajectory is subject to error
in many cases where pedestrians initiate walking suddenly
or change their direction abruptly. Another kind of method
developed recently first predicts future frames using the latest
computer vision techniques and then recognizes the crossing
action based on these predicted frames [7], [8]. These methods
are essentially similar to trajectory-based ones, i.e., rely on
motion features, so they suffer from similar problems. Alterna-
tively, other information, such as body poses [9] or skeletons3

and head orientation [10], have also been utilized to predict
pedestrian crossing intention because such information is
a good predictor of their situational awareness and future
actions. In addition, the visual relationship between pedestri-
ans and surroundings can also be used to predict intention [11].

Among these methods, the skeleton-based ones have been
popular recently because skeletons convey important informa-
tion about human actions. For example, a skeleton reveals
information about the walking pattern, and existing studies [9],
[19] have demonstrated that the walking pattern of pedestrians
can be used to determine the crossing intention. To the
best of our knowledge, Furuhashi et al. [12] presented the
first pedestrian crossing intention estimation method based
on poses. Subsequently, several researchers have developed
skeleton-based methods to predict pedestrian crossing inten-
tion [9], [13]. A summary of representative skeleton-based
pedestrian crossing recognition and prediction studies is pre-
sented in Table I.

However, existing skeleton-based methods have some short-
comings. First, hand-crafted features designed based on skele-
ton information (e.g., angles and distances between keypoints),
which may not be very effective, are used in many methods
[9], [14], [15], limiting their performance. Second, some meth-
ods [16]–[19] only recognize crossing action in the current
frame or predict crossing intention in the next frame. They
do not perform prediction for a longer time horizon. Finally,
in some methods [20], skeletons are used together with other
information for intention prediction. However, the inference
speed of these methods is usually not very fast due to a large
number of model parameters.

To solve these issues, in this paper, we propose to predict
pedestrian crossing intention using spatial-temporal graph con-
volution networks (ST-GCNs), inspired by ST-GCN [22] that
achieves good action recognition performance. The proposed
method takes as input a sequence (16 frames) of 2D skeletons
and learns high-level features leveraging both spatial and

3We do not distinguish between skeleton and pose in this paper.

TABLE I

MAIN EXISTING SKELETON-BASED PEDESTRIAN CROSSING
RECOGNITION AND/OR PREDICTION METHODS

temporal information to predict pedestrian crossing intention
in a future time window (one to two seconds), as shown in
Fig. 1(b).

Note that although some studies have used a com-
mon dataset, i.e., the Joint Attention for Autonomous
Driving (JAAD) dataset [1], for intention prediction, the
preprocessing of the dataset and the problem formulation
are not uniform between the attempted approaches [5], [9],
[16]. Consequently, it is very difficult to compare the per-
formance of those methods fairly. Fortunately, an excellent
benchmark was recently released by Kotseruba et al. [20],
which makes it possible to compare algorithm performance
under the same standard. In this work, we adopt the same
protocol as this benchmark using the JAAD dataset to ensure
a fair comparison.

In summary, the main contributions of this paper are:
• We propose to predict pedestrian crossing intention based

on spatial-temporal graph convolutional networks using
2D skeleton data. The proposed method can efficiently
process skeleton data to extract spatial-temporal fea-
tures. To the best of our knowledge, this is the first
work to explore the application of spatial-temporal graph
convolution networks in the pedestrian crossing intention
prediction task using only skeleton data.

• Extensive experiments on a public benchmark dataset
demonstrate that the proposed method achieves very
competitive performance with a fast inference speed.

• A number of experiments have been carried out to
investigate the effect of different factors, including loss
function, time to event, pedestrian size, and occlusion,
on the performance of the proposed method.

II. RELATED WORK

A. Human Activity Recognition and Prediction

Human activity recognition and prediction can be achieved
using various modalities of input data, such as depth,
appearance, and skeleton. Among human activity recogni-
tion methods, one of the most popular ones in recent years
is the spatial-temporal graph-based method using skeleton
data. For example, Yan et al. [22] proposed one of the first
ST-GCN-based human activity recognition methods to recog-
nize different human activities from skeleton data. Since
then, many methods have been proposed following this way
[23]–[25]. For example, Cheng et al. [24] proposed a shift
graph convolutional network, which is composed of spatial and
temporal shift graph convolution. Zhang et al. [25] proposed
a context-aware graph convolution to utilize context infor-
mation in addition to localized graph convolution. The main
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Fig. 2. The Overall framework of the proposed method. Firstly, a sequence of skeleton data (16 frames) is extracted using pose estimation methods or captured
using motion capture devices. The skeleton data is then constructed as a spatial-temporal graph (black lines illustrate spatial edges, and red lines illustrate
temporal edges). A ST-GCN model is then applied to the spatial-temporal graph to extract features that encode both spatial and temporal information. Finally,
binary classification is performed based on the features to predict whether the pedestrian will cross or not in the future one to two seconds.

advantage of ST-GCN-based methods is that ST-GCN can
extract effective features considering both spatial and temporal
information. Because of its advantages, ST-GCN has also been
applied to other tasks [26].

B. Pedestrian Crossing Intention Prediction

Pedestrian crossing intention prediction can be achieved
using various methods, such as trajectory-based meth-
ods [6], future frame prediction-based methods [7], [8],
and context-based methods [4], [11]. In addition, pedestrian
crossing intention prediction methods based on skeleton infor-
mation have attracted much attention in recent years. For
example, Fang et al. [14] proposed to determine whether a
pedestrian is going to cross or not (C/NC) by analyzing the
skeleton in several frames. This method was then extended
to naturalistic driving conditions [15] to predict the cross-
ing intention of both pedestrians and cyclists [9]. Later,
Wang et al. [19] extended C/NC recognition to C/NC/LONG
recognition. A major problem of these methods is that they
use hand-crafted features to encode skeleton data, which
may not be robust and effective. To solve this problem,
Cadena et al. [16] proposed the first GCN-based crossing
intention recognition method using skeleton data. However,
only spatial information was utilized in that method, and it
focused on action recognition rather than intention predic-
tion. Recently, Zhang et al. [2] proposed to predict the cross-
ing intention of pedestrians at intersections’ red-light using
pose data. However, they neglected moving pedestrians. To
solve these issues, we propose to predict pedestrian crossing
intention based on a spatial-temporal graph convolutional net-
work using skeleton information, inspired by Yan et al. [22].

III. METHOD

A. Problem Formulation

As pointed in [20], although many works have been con-
ducted regarding pedestrian crossing recognition and pre-
diction, different datasets or different problem settings are
used. Therefore, it is not easy to compare the performance
of those methods. To ensure a fair performance comparison,
we follow the problem formulation proposed in [20], where

the crossing intention prediction is formulated as a binary
classification problem. Specifically, we aim to predict whether
a pedestrian is going to cross the street or not in the future 1 to
2 seconds based on 16 observation frames. Mathematically,
we aim to predict the crossing intention A ∈ {0, 1}, given the
skeleton of a pedestrian in 16 consecutive frames, i.e., Pobs,i =
{pt−15

i , . . . , pt
i }, where pi consists of 2D coordinates of

18 joints provided by OpenPose [27], 0 indicates not-crossing
and 1 indicates crossing. The frames per second (FPS) of the
JAAD dataset used in [20] is 30. Therefore, the observation
period is around 0.5 seconds, and the prediction horizon is
30 to 60 frames.

B. Overall Framework

The overall framework of the proposed method is shown
in Fig. 2. A sequence of skeletons is first obtained. For each
pedestrian, we construct a spatial-temporal graph. The joints
in skeletons are used as nodes, and the natural connections
between the joints are used as spatial edges. For the same
node at different time steps, we connect them using temporal
edges. We denote a graph as G(V , E), where V denotes nodes
and E denotes the spatial edges between these nodes. The
adjacency matrix A denotes the connections between joints. G
is a set of spatial graphs at different time steps t , i.e., Gt . Cor-
respondingly, A is a set of At .

Spatial-temporal graph convolutional networks [22], [23]
are usually adopted for processing spatial-temporal graphs
because they are able to extract both spatial and temporal
features. In our framework, a spatial-temporal GCN model
is applied to the spatial-temporal graph to extract features
that encode both spatial and temporal information. Binary
classification is then performed to predict pedestrian crossing
intention based on these features.

C. Skeleton Information Used in This Work

The input skeletons can either be obtained using motion cap-
ture devices or pose estimation methods. In this work, we use
the skeleton data of the JAAD dataset [1] provided in the
benchmark [20] mentioned above. Specifically, 2D skeleton
data with 18 joints generated by OpenPose [27] is used. The
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Fig. 3. The 18 joints utilized in this work and the corresponding adjacency
matrix that is based on the natural connection between joints.

18 joints and the corresponding adjacency matrix showing the
natural connections between joints are shown in Fig. 3. These
joints include: 0-Nose, 1-Neck, 2-Right Shoulder, 3-Right
Elbow, 4-Right Wrist, 5-Left Shoulder, 6-Left Elbow, 7-Left
Wrist, 8-Right Hip, 9-Right Knee, 10-Right Ankle, 11-Left
Hip, 12-Left Knee, 13-Left Ankle, 14-Right Eye, 15-Left Eye,
16-Right Ear, 17-Left Ear. Note that some studies employ 3D
poses in pedestrian action recognition and prediction [28],
[29]. However, in this study, to ensure a fair performance
comparison with the methods in the benchmark [20], we utilize
2D poses to show the effectiveness of spatial-temporal GCNs
in pedestrian crossing intention prediction.

D. Model Architecture

Our model is based on the work of Yan et al. [22]. The
architecture of our model is shown in Fig. 4. Specifically,
batch normalization is first applied to the input. The output
is then passed to several ST-GCN units to extract spatial-
temporal features. Each ST-GCN unit consists of a graph
convolutional network (GCN) layer and a temporal convolu-
tion network (TCN) layer. Therefore, in each ST-GCN unit,
we first perform spatial convolution and then perform temporal
convolution. Then, global pooling is applied to the spatial-
temporal features, followed by a fully connected layer to make
a prediction. Note that the ResNet mechanism is adopted in
each ST-GCN unit as suggested by Yan et al. [22].

1) GCN: We denote the input features of the GCN in one
frame in unit l as fl

in , then the output features of the GCN in
unit l is

fl
out = �− 1

2 Â�− 1
2 fl

inWl , (1)

where Â = A + I, � is the diagonal matrix with node
degrees of Â, Wl is the matrix of trainable parameters of
GCN layer l. In addition, for the first GCN layer, the feature
vector of each joint is a 2D vector, while for the rest of
GCN layers, the dimension of the feature vector of each joint
depends on the parameters of the previous ST-GCN unit. The
spatial configuration partitioning proposed by Yan et al. [22]
is utilized in our model. Therefore, the matrix Â is divided
into 3 matrices with the same dimension, i.e.,

Â =
3∑

i=1

Ai , (2)

where A1 is I, A2 describes nodes that are closer to the
skeleton gravity center than the root node, while A3 describes
other nodes that are farther to the gravity center than the root
node [22]. Consequently, Equation (1) becomes

fl
out =

3∑
i=1

�
− 1

2
i Ai�

− 1
2

i fl
inWl

i , (3)

where �i is the degree matrix of Ai .
2) TCN: After obtaining the spatial feature map fl

out , TCN
is applied to obtain spatial-temporal features. TCN is imple-
mented as a Kt × 1 convolution along the temporal dimen-
sion [22], where Kt is the temporal kernel size. Concretely,
TCN is first applied to one joint along the temporal dimension
and then moved to the next joint until all joints are covered.

E. Loss Function

As mentioned previously, we formulate the pedestrian
crossing intention prediction as a binary classification prob-
lem. However, the utilized dataset JAAD contains imbalanced
samples. Specifically, there are more positive (crossing) sam-
ples than negative (not-crossing) samples. To handle this,
we utilize the focal loss [30] as our loss function to guide
the training of our model. The focal loss is defined by
Lin et al. [30] as:

F L(pt) = −αt (1 − pt)
γ log(pt ), (4)

where αt is a weight parameter used to handle imbalanced
data, γ is a focusing parameter, pt is defined as:

pt =
{

p if y=1

1 − p otherwise,
(5)

where y ∈ {0, 1} is the ground-truth class, p ∈ [0, 1] is the
probability estimated by the model for the positive class.

IV. EXPERIMENTS

A. Implementation Details

In this study, our model consists of three ST-GCN units. The
model is trained in PyTorch using an RTX 3090 GPU. We
trained the model using the Adam optimizer [31] with a
learning rate of 0.000005 for 1000 epochs and selected the
model according to its performance on the validation set. The
batch size is set to 256. We chose the hyper-parameters based
on a series of experiments. In the focal loss, α for not-crossing
samples is set as 0.75, γ is set as 5.

B. Datasets and Evaluation Metrics

We choose the benchmark proposed by
Kotseruba et al. [20] for performance comparison. Specif-
ically, the JAAD dataset [1] is used, which is captured in
real driving scenarios consisting of 346 video clips. In this
dataset, many pedestrians (crossing and not-crossing) are
included. The number of samples is shown in Table II. For
completeness, we briefly introduce how these samples were
generated in [20]. First, an event is defined. For pedestrians
who will cross, the event is the moment that he or she
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Fig. 4. The architecture of our model and the dimension of corresponding tensors.

Fig. 5. Generation of samples using a sliding window technique.

TABLE II

THE NUMBER OF SAMPLES IN THE JAAD DATASET

starts to cross. For pedestrians who will not cross, the event
is the last moment when the pedestrian is visible in the
scene. For each pedestrian, a track consisting of 76 frames
is generated. Then a sliding window technique is applied
to generate more samples, as shown in Fig. 5. The time
to event (TTE) is from 1 second (30 frames) to 2 seconds
(60 frames). For more details, please refer to [20].

As proposed in the benchmark [20], five evaluation metrics
are utilized to evaluate the performance of the proposed
method, i.e., Accuracy, AUC, F1 Score, Precision, Recall. The
definitions of these evaluation metrics are as follows:

Accuracy = TP + TN

TP + TN + FP + FN
, (6)

Precision = TP

TP + FP
, (7)

Recall = TP

TP + FN
, (8)

F1 Score = 2 × Precision × Recall

Precision + Recall
, (9)

where TP is the number of true positive results, TN is true
negative, FP is false positive, and FN is false negative. AUC
is the area under the ROC curve.

C. Compared Methods

The 12 methods integrated in the benchmark [20] are chosen
for comparison. Moreover, Yang et al. [3] recently reported
their results on this benchmark. Therefore, we also compare
with that method, resulting in 13 compared methods:

• Static: A method using only the last frame in the obser-
vation sequence to predict the action based on a fully
connected layer. VGG16 [32] or ResNet50 [33] is used
as the backend.

• ATGC [1]: A method using scene features, pedestrian
gait, and head pose. Three CNN streams are utilized to
process them, respectively. The fused feature is then fed
into an SVM.

• ConvLSTM [34]: This method uses a pre-trained CNN to
extract features, which are then processed by LSTM. The
prediction is made via a fully connected layer based on
the last hidden state.

• SingleRNN [35]: This method is based on recurrent
neural networks (GRU or LSTM), which takes a single
vector containing input features as input. A fully con-
nected layer is used for action prediction.

• StackedRNN [36]: This method is based on a stack of
RNN layers. Each RNN layer takes as input the hidden
state of the RNN layer below.

• MultiRNN [37]: Several RNN streams are utilized to
process different types of features. The hidden states of
RNNs are concatenated and fed into a fully connected
layer for prediction.

• HierarchicalRNN [38]: Several RNN streams are utilized
to process different features. Another RNN is used to
handle the concatenated hidden states of them. A fully
connected layer is employed for prediction.

• SFRNN [39]: This is a modified version of Stacke-
dRNN. In this method, features are fused at each level
gradually. Simpler features are fed at the top, while
complex features are fed at the bottom layers.

• C3D [40]: This method receives a stack of RGB frames
as input. A fully connected layer is used to handle the
extracted features for prediction.

• I3D [41]: This method takes a stack of RGB frames
as input. The prediction is generated through a fully
connected layer.

• TwoStream [42]: Two CNN branches are utilized to
process RGB images and optical flow, respectively. The
final prediction is the average of the predictions made for
each frame in the sequence.

• PCPA [20]: An attention-based method that uses the
bounding box, pose, vehicle speed, and local context.

• Yang et al. [3]: A spatial-temporal method using differ-
ent phenomena, including RGB sequences, segmentation
masks, pose, and ego-vehicle speed.

Some methods have different variants. For example, the
Static method can use VGG16 or ResNet50 as the back-
end. In this paper, we also compare these variants with our
method. For more details of these methods, please refer to
the corresponding references and [20]. There are also other
crossing intention prediction algorithms. However, because
very few of them provided their code and different experiment
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TABLE III

PERFORMANCE COMPARISON OF THE PROPOSED METHOD WITH OTHER METHODS. THE RESULTS OF [3] ARE EXTRACTED FROM THE CORRESPONDING
PAPER, AND THE RESULTS OF OTHER METHODS ARE EXTRACTED FROM THE PEDESTRIAN CROSSING BENCHMARK [20].

THE BEST VALUES ARE MARKED IN BOLD, AND THE SECOND-BEST VALUES ARE UNDERLINED

Fig. 6. Confusion matrices of all compared methods.

configurations were utilized, we do not compare our method
with them.

D. Results

1) Quantitative Results: As illustrated in Table III, the
proposed method obtains very competitive results on the JAAD
dataset. Specifically, our ST CrossingPose obtains the best
results in terms of Acc and the second-best results in terms of
AUC and F1 Score. Our performance of precision and recall
is also very competitive. It is worth pointing out that only
skeleton data is used in the proposed ST CrossingPose, while
several other methods (e.g., PCPA and Yang et al. [3]) utilize
different additional types of information, such as bounding
boxes and context information. This clearly demonstrates the
effectiveness of the proposed method in predicting pedes-
trian crossing intention with spatial-temporal graph neural
networks.

Because JAAD is an imbalanced dataset, we also show the
confusion matrix of each method in Fig. 6 to better compare
the quantitative results.4 As can be seen, although some

4The confusion matrices of compared methods (except the method of
Yang et al. [3]) were obtained according to Table III.

methods (Static-ResNet50, ConvLSTM, SingleRNN, Stacke-
dRNN, HierarchiRNN, SFCNN, TwoStream) can correctly
predict more not-crossing samples than our method, their
ability to correctly predict crossing samples is not good. By
contrast, some algorithms (MultiRNN, C3D, I3D-Optiflow,
Yang et al. [3]) can successfully predict more crossing sam-
ples than our method, but they cannot predict not-crossing
samples very well. A very competitive method is I3D-RGB,
which has relatively good performance on both crossing
and not-crossing samples. However, the proposed ST Cross-
ingPose has better Acc, F1, and recall than I3D-RGB.
In summary, the proposed ST CrossingPose achieves a
better balance in predicting crossing and not-crossing
samples.

2) Qualitative Results: We compare our method qualita-
tively with a state-of-the-art method (PCPA) proposed in the
above-mentioned benchmarking study [20].5 PCPA employs
various information, including bounding box, local context,
pose, and vehicle speed, to make the prediction. Figure 7

5The qualitative results of PCPA shown in this section were pro-
duced by us using the code provided at https://github.com/ykotseruba/
PedestrianActionBenchmark
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Fig. 7. Qualitative results. (a) and (b) are not-crossing examples, while (c) and (d) are crossing examples. As can be seen, our method successfully predicts
the crossing intention in these cases, while the PCPA method fails.

TABLE IV

EFFECTIVENESS OF FOCAL LOSS. THE BEST

VALUES ARE MARKED IN BOLD

TABLE V

THE EFFECT OF NUMBER OF ST-GCN UNITS. THE BEST VALUES ARE

MARKED IN BOLD. α = 0.75 AND γ = 5 ARE USED IN THESE
EXPERIMENTS. THE TOTAL RUNNING TIME ON THE TEST SET

(1881 SAMPLES) IS ALSO SHOWN FOR COMPARISON

shows the qualitative results of PCPA and the proposed method
in four cases. As can be seen, in these cases, the proposed
method correctly predicts the crossing intention of pedestrians,
while PCPA has difficulties. This is due to the effectiveness of
the proposed method in extracting both spatial and temporal
features using ST-GCNs.

Fig. 8. The relationship between accuracy and TTE.

E. Ablation Studies

1) Effectiveness of Focal Loss: To show the effectiveness
of focal loss, we trained several variants of our model. We
first used the cross-entropy loss during training. We denote
this variant as V1. Then, we used class weights, which are
inversely proportional to the percentage of samples (the weight
for not-crossing samples is 0.82), in the cross-entropy loss
function as suggested in [20]. We denote this variant as
V2. We also chose other weights, i.e., 0.75 (V3) and 0.7
(V4). Moreover, we chose different combinations of α and
γ in the focal loss (Equation (4)), giving another nine vari-
ants. The performance comparison of these variants is shown
in Table IV. As can be seen, the usage of class weights sig-
nificantly improves the performance of our model. Moreover,
the usage of focal loss further improves our method to have
better performance. In addition, the value of α and γ used in
Equation (4) has a significant impact on the results. To have
a good balance between crossing and not-crossing samples,
we selected α = 0.75 and γ = 5.
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Fig. 9. The relationship between results and bounding box height (in pixels). Left: all samples. Middle: crossing examples. Right: not-crossing samples.

Fig. 10. The relationship between results and the number of occluded frames. Left: all samples. Middle: crossing examples. Right: not-crossing samples.

2) Effect of the Number of ST-GCN Units: We trained
several variants with different numbers of ST-GCN units. The
results are presented in Table V. As can be seen, the num-
ber of ST-GCNs has a significant impact on the prediction
performance. However, more units do not necessarily ensure
better performance. In our study, the model shows the best
performance when three ST-GCN units are used. As a result,
we adopt three ST-GCN units.

F. Analysis of the Performance w.r.t. Properties of the Data

1) Effect of TTE: The relationship between accuracy and
TTE is shown in Fig. 8. Generally speaking, the accuracy
decreases as TTE increases from 30 to 60. This is as expected
because when the TTE is longer, there is a higher possibility
that the pedestrian shows different motion patterns from the
observation frames. Another possible explanation is that the
pedestrian is usually larger when the TTE is shorter. Therefore,
better skeleton data can be extracted.

2) Effect of Pedestrian Size: The size (bounding box height)
of pedestrians can implicitly reveal the distance between
pedestrians and the ego vehicle. The relationship between
results and the average bounding box height (in pixels) of each
sample is shown in Fig. 9. From the figure, we can see that
there is no apparent relationship between the results and the
size of pedestrians. However, in general, when the bounding
box height is greater than 400, the model shows good overall
performance. This is because better skeletons can be extracted
from the images in these cases. Therefore, our model has better
input data.

3) Effect of Occlusion: In the JAAD dataset, some pedes-
trians are partially (>25% of the pedestrian is occluded) or
fully (>75% of the pedestrian is occluded) occluded [1]. We
also investigated the relationship between prediction results
and occlusion, as shown in Fig. 10. From the left figure in
Fig. 10, we can see that the accuracy of our model fluctuates
with the occluded samples. We also show the accuracy on
crossing and not-crossing samples in the middle and right

TABLE VI

THE EFFECT OF OBSERVATION LENGTH ON PERFORMANCE

figure in Fig. 10. As can be seen, for crossing samples, our
model shows good performance in general. Although some
frames are occluded, our model consistently obtains recall
values larger than 0.8. By contrast, for not-crossing samples,
the performance is significantly affected by occlusion. Specif-
ically, when the number of occluded frames is 3, 6, 7, 9, 10,
11, 12, 13, and 15, our model cannot correctly predict any
not-crossing samples.

4) Effect of Observation Length: We have shown the
results of using 16 observation frames as per the bench-
mark [20]. However, it is interesting to investigate the
effect of observation length on performance. To this end,
we chose different observation frames and retrained the pro-
posed method. Specifically, we chose five different observation
lengths, i.e., 4, 8, 12, 20, and 24. For each case, we adopted
the above-mentioned sliding window technique to generate
samples. All other settings were kept the same. The results
are shown in Table VI. As can be seen, our model works with
different observation lengths, showing its effectiveness. Gen-
erally speaking, better results are obtained when a shorter
observation length is used. This is because when a shorter
observation length is chosen, more samples can be generated
from the JAAD dataset using the sliding window technique.
Therefore, the model is trained with more data.

G. Failure Cases

Figure 11 presents two failure cases of our method. In the
first case, the pedestrian is walking along the road. However,
because the car is turning left, the relative motion of the
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Fig. 11. Failure cases.

pedestrian appears like a crossing. Therefore, our method
erroneously predicts that the pedestrian will cross. In the
second case, the pedestrian is partially occluded by the car, or a
part of her body is outside the camera view in most observation
frames. Therefore, it is difficult to detect all 18 joints of the
skeleton. Consequently, our method erroneously predicts that
this pedestrian will not cross.

H. Inference Time

The inference time of our model with different numbers
of ST-GCN units is given in Table V. As can be seen, the
inference time increases as more ST-GCN units are used
because more ST-GCN units indicate a larger model. For the
model with three ST-GCN units, it takes 1.86 seconds to
predict the 1881 test samples of the JAAD dataset. Therefore,
the average inference time for each sample is 0.99ms. For
comparison, we also run the PCPA method [20] and the
method of Yang et al. [3] using the same machine, which
needs 32.21 seconds and 26.06 seconds for 1881 samples,
respectively. Therefore, our method is more efficient. This is
because we only utilize skeleton data and a spatial-temporal
GCN with three ST-GCN units. Consequently, our model is
less complicated than PCPA and the method of Yang et al. [3]
that have multiple branches to process different kinds of source
information. Note that we only countered the inference time
after all required features (for example, skeletons and context
information) of the JAAD dataset had been extracted.

V. CONCLUSION AND FUTURE WORK

In this work, we proposed to predict pedestrian crossing
intention using spatial-temporal graph neural networks based
on pedestrian skeletons. Specifically, given the skeleton data
of an observation sequence of 16 frames, the proposed ST
CrossingPose can handle the skeleton data of pedestrians to
extract both spatial and temporal features. Experiments on
a public dataset, i.e., JAAD, demonstrate that the proposed
method achieves very competitive prediction performance. In
particular, although only skeleton data is used, the proposed
ST CrossingPose outperforms several algorithms that utilize
different kinds of information (such as bounding box and pose)
on the JAAD dataset. This further demonstrates the effective-
ness of the proposed method. Moreover, the proposed method

can perform prediction efficiently. The proposed method is
not only beneficial for autonomous vehicles but also very
useful for conventional vehicles via the increasing adoption
of advanced driving assistance technologies.

Note that the proposed method can also be extended to
multiple pedestrians. A possible idea is to first extract the pose
of multiple pedestrians in different frames and then construct
a graph for each pedestrian. The proposed method can then
be employed to predict their crossing intention. Moreover,
although we do not explicitly use vehicle speed information
in our model, vehicle movement is implicitly embedded in
pedestrian poses in the observation frames and utilized by our
spatial-temporal model. In our future work, we will explore
combining context information with pedestrian pose to predict
pedestrian crossing intention. Finally, we only employed 2D
poses of pedestrians to perform crossing intention predic-
tion. However, the real world is 3D. Therefore, it is worth
investigating the application of 3D poses [28], [29] in pedes-
trian crossing intention prediction using spatial-temporal graph
convolutional networks.
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