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Abstract

Trapped ions are one of the promising platforms that realise a quantum bit, or qubit,
in quantum computation. The fundamental quantum operations, such as single-
and two-qubit gates, have been demonstrated. However, the fidelity of a quantum
gate is easily compromised by inadequate qubit initialisation or incorrect settings of
experimental parameters. This thesis aims to address those issues, allowing for the
complete coherent control of the trapped ion qubit.

This thesis describes the construction and testing of a new ion trap apparatus
for optimal control of a trapped ion qubit, which ideally makes the quantum gates
more robust against experimental parameters.

This thesis extends the two-level Ramsey interferometry to higher order in
a trapped ion. Creation and certification of the motional superposition require
excellent control of the trapped ion qubit. We prepare a motional superposition
state with undesired AC Stark shift due to the off-resonant carrier compensated
by our compensation scheme. We successfully certify the superposition consists of
three motional Fock states, (|0⟩+ |1⟩+ |2⟩)/

√
3, using a robust certifier derived from

statistical moments of the interference pattern.

The thesis presents the results of a Bayesian estimator that estimates the Rabi
frequency and detuning frequency by processing the measurement records via Bayes’
theorem. We compare the estimate from the Bayesian estimator and the standard
fitting method, in which Rabi frequency and detuning are estimated by fitting the
Rabi oscillation and the frequency spectrum of the ion, and found the Bayesian
estimator can estimate those unknown parameters as accurately as the standard
fitting method, but only requires less than one-hundredth of measurements necessary
for the fitting method.

We also experimentally demonstrate measurement-based cooling, which is an
alternative way to cool the ion to its ground state. Contrary to resolved sideband
cooling, which is routinely used for the ground state cooling in our experiment, this
cooling method probabilistically prepares the ion in its motional ground state. We
perform a state-dependent mapping operation that maps the ion’s atomic state to
either |g⟩ or |e⟩ conditioned on its motional states: the ion’s atomic state is mapped
to |e⟩ if its motional state is |0⟩; otherwise the ion’s atomic state is mapped to |g⟩.
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The following projective measurement of the atomic state of the ion enables the
discrimination between the motional ground state and the motional excited states.
Therefore we can prepare the ion in the motional ground state by selecting the
instances where the ion is measured to be in |e⟩, which heralds the motional ground
state.

In the near future, the group will begin a project to implement and evaluate
recent proposals for making quantum gates robust against a mis-set of frequency
using a polychromatic light field.
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Chapter 1

Introduction

1.1 Background and Motivation

The profound advancements in science and engineering in the last few decades would
not be possible without the invention of the computer, and the sustained improvement
of technology comes along with the continuing improvement of the computing power
of the digital computer; in modern scientific research, a supercomputer is widely
used and plays an essential role. However, for the last few decades, certain types of
problems have been proved to be fundamentally intractable by the classical computer;
for instance, factorising large composite integers cannot be efficiently completed even
by the world’s fastest supercomputer. This fact acts as the fundamental foundation
of modern cryptography [1].

Simulating a quantum system is one such problem. In 1982, Richard Feynman
[2] proposed the idea of a quantum simulator, arguing that conventional Turing
machines, which provide the technological basis for the digital computer, could not
efficiently simulate a quantum system due to the probabilistic nature of a quantum
system: simulating a quantum system requires an exponential increase in the size
of computational resources with the growth in scale of the system. He argues
that a quantum computer could address those issues, but he failed to provide a
comprehensive methodology – it was just an early theoretical proposal.

The first theoretical groundwork for quantum computation was done by David
Deutsch [3]. He proposed the existence of a universal quantum Turing machine that
processed information using the probabilistic nature of quantum mechanics. In 1992,
he expanded on this idea in partnership with Richard Jozsa [4] as they demonstrated
the Deutsch-Jozsa algorithm; the first quantum algorithm that tests whether a hidden
Boolean function f , which takes n bits as an input and returns either 0 or 1, is
constant or balanced. If it is balanced, the function gives 0 or 1 equally for many
inputs, otherwise, it is constant and always outputs 0 or 1 regardless of the input.
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They also observed that this algorithm was exponentially faster than any classical
algorithm. Although the algorithm does not provide any practical application, it
was the first quantum algorithm to demonstrate that quantum computing can bring
exponential speed-up to certain computational problems. Meanwhile, Seth Lloyd
[5] showed that quantum computers, even with tens of qubits, can simulate another
quantum system much more efficiently than the latest supercomputer can.

In 1994, Peter Shor [6] published a paper that demonstrated a quantum algorithm
for integer factorisation, Shor’s algorithm. The algorithm drew considerable attention
from computer scientists as well as physicists because this algorithm enables a
quantum computer to solve the factorisation of large integers, an intractable problem
for classical Turing machines because of the exponential increase in the size of the
required computing resources. The tremendous difficulty of the factorisation problem
even when using the latest supercomputer underpins the current cryptosystem.
Quantum computation has attracted massive attention as those algorithms have
theoretically proved that quantum computers are practically valuable, providing an
exponential acceleration in some applications.

In 2019, there was a monumental event in the history of quantum information
science. Google experimentally demonstrated quantum supremacy for the first time
using their superconducting circuits that accommodate 53 superconducting qubits
[7]. It was the first experimental demonstration of quantum supremacy. Using
their superconducting qubits, they perform a calculation that is expected to take
more than a million years even with the world’s best supercomputer within 200
seconds. Although the calculation itself the quantum computer performs has no
practical interest, this provides a milestone of quantum information science as it
experimentally proves a quantum computer can provide exponential speed-up of a
quantum computer compared to its classical counterpart.

The feasibility of quantum computing has been proved not only theoretically
but also experimentally. As the discovery of several quantum algorithms promised
that a quantum computer could outperform a classical computer when dealing with
particular problems, researchers became more interested in the physical realisation
of a quantum computer. In 2000, DiVincenzo suggested specific requirements we
have to consider to physically realise the quantum computing device, the so-called
DiVincenzo’s criteria [8]:

• A scalable physical system with well-characterised qubits

• The ability to initialise the state of the qubits to a simple fiducial state

• Long relevant decoherence times

• A ‘universal’ set of quantum gates
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• A qubit-specific measurement capability

Until now, many different platforms have been experimentally demonstrated,
fulfilling the creteria above : superconducting circuits [9, 10, 11, 12, 13, 14], nitrogen
vacancy (NV) centres [15, 16, 17, 18], silicon [19, 20, 21, 22, 23], ion traps [24, 25, 26,
27, 28, 29]. However, the development of quantum computing is still in its infancy,
and it is still uncertain which physical system would be ideal for making the quantum
computer a reality. However, researchers and engineers have reached a consensus
that the creation of a quantum computer is a feasible goal [1, 30].

Among the many possible candidates, an ion trap has been considered to be
one of the promising candidates to realise the quantum computer in reality. An ion
trap is a device where the charged particles are confined in free space, providing a
system well isolated from its environment. The atomic structure of the ion provides a
long-lived state, which can define a qubit, and applicable transitions that can be used
for cooling and manipulation of the ion. Each trapped ion can act as a qubit, and
well-studied light-matter interaction via coherent light sources such as a laser can
allow for coherent manipulation of the qubits. When multiple ions are trapped in the
same trap, the ions share the harmonic motion as the ions interact with each other
via long-range Coulomb interaction. This shared motional degree of freedom can
be used as the quantum bus that transports the quantum information between the
ions, realising the multi-qubit operation, which is essential for a large-scale quantum
computing device.

In 1995, Ignacio Cirac and Peter Zoller [31] suggested a viable approach of
creating the controlled-NOT gate via a collective motional degree of freedom that
can be excited by a laser field directed at each target ion, as well as a two-qubit
logic operation with a trapped ion. The gate was experimentally realised later that
same year [32]. However, it imposes strict requirements that the ion must be in its
motional ground state. A few years later, In 1999, Mølmer and Sørensen proposed a
two-qubit gate, namely the Mølmer–Sørensen (MS) gate, by using state-dependent
force generated by a bichromatic light field [33, 34]. The MS gate relaxes the ground
state cooling requirement, which is imposed on the Cirac-Zoller gate. This scheme
was experimentally implemented in Be+ ions in 2000 [35]. Since then, the fidelity
of the two-qubit gate was improved to 99.6% for optical qubits [36] and 99.91% for
hyperfine qubits [37].

However, as the number of trapped ions increases (i.e. a large-scale quantum
computer), the cooling becomes more difficult, and the gate is more sensitive to
experimental conditions, requiring a better understanding of the environment and
capability of more robust control of the trapped ion qubits. There have been many
variants of the MS gate scheme where more complicated pulse sequences are employed
[38, 39].
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The focus of this thesis is to build a system capable of doing this and to demon-
strate the capability of our system to more rapidly characterise the trapped ion qubit
and control the qubit more robustly against the imperfection of the experiment. Our
long-term goal is to demonstrate the experimental implementation of those robust
two-qubit gate schemes proposed, proving the viability of quantum computation
with the presence of noise and disturbance of the system.

1.2 Outline of Thesis

The rest of thesis will be structured as the follows :

• Chapter 2 provides an underlying theory of a linear Paul trap. First, we treat
an ion as a classical particle and describe the ion’s motion using a classical
equation of the motion derived from the ion’s electromagnetic interaction with
the applied field. We next quantise the ion’s motion, providing a complete
quantum mechanical picture of the trapped ion: atomic state and a quantum
harmonic oscillator. Also, this chapter aims to give a concise explanation
of how we can use the trapped ion as a qubit, showing the relevant atomic
transitions of 40Ca+ for Doppler cooling, state detection, state initialisation,
and manipulation of the ion.

• Chapter 3 begins with a succinct summary of how an ion confined in an ion
trap interacts with an applied light field, showing how the atomic state and
the motional state of the ion can be coherently entangled via the sideband
transitions. The second section explains the Raman interaction, which can
make the effective coupling between the Zeeman sublevels of S1/2, allowing the
two Zeeman sublevels to form a qubit (i.e. Zeeman qubit).

• Chapter 4 explains how we can cool the ion down to its motional ground
state using laser cooling methods, including Doppler and sideband cooling.
The chapter begins with a quantitative description of Doppler cooling, which
rapidly cools the ion to the Doppler limit, and the following section gives a
concise explanation of resolved sideband cooling with two different schemes:
pulsed and continuous sideband cooling.

• Chapter 5 presents the brief descriptions of each experimental apparatus,
which includes lasers at different wavelengths, and optics to steer the beams to
the trap and collect the florescence from the ion.

• Chapter 6 presents the initialisation of the new 729 nm laser.
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• Chapter 7 explains why off-resonant coupling is unavoidable and how the
undesirable off-resonant coupling influences the coherent operations on the ion.
The chapter also presents the methods to counteract the adverse effects, and
the experimental demonstration of creating motional superposition states and
verification of motional coherence.

• Chapter 8 explains the working principle of Bayesian inference and how we
can apply the Bayesian inference to characterise a trapped-ion qubit (Rabi
frequency and detuning frequency of the driving laser).

• Chapter 9 explains the general principle of measurement-based cooling, which
can be applied to an oscillator coupled to an auxiliary level (e.g. trapped ions).
As rapid adiabatic passage (RAP) is the primary operation, the chapter gives
a brief introduction of RAP and the results of the transfer efficiency achieved
through RAP. The chapter also presents the measured cooling efficiency of the
measurement-based cooling with the use of RAP.

• Chapter 10 summarises experimental results presented in this thesis and
proposes possible future projects where the results can be applied to extend
the ideas discussed in the thesis for different purposes.
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Chapter 2

The Linear Paul Trap

An ion trap provides a well-isolated quantum system by localising and confining
atomic particles in free space. Thus, an ion trap has been used in different quantum
applications ranging from precision frequency metrology to quantum computation.
The basic idea of an ion trap is to confine charged particles in free space using their
electromagnetic interaction with applied fields. In simple terms, three-dimensional
confinement requires a potential that has a minimum in space, leading to restoring
forces in all three directions. An electrostatic field would be the most straightforward
choice if it could be set in the form of a three-dimensional harmonic potential.
Earnshaw’s theorem, however, clearly states that an electrostatic potential cannot be
set in such a configuration [40]. Two common configurations are used to circumvent
that limitation imposed by the theorem – Penning and Paul traps. The Penning
trap uses a combination of electrostatic and magnetic fields [41], while the Paul trap
only uses an electric field. However, the field consists of static and time-varying
components and produces a time-averaged trapping force [42].

In this chapter, general working principles of a linear Paul trap, which is the
configuration used in our experiment, will be discussed. The classical and quantum
mechanical dynamics of a single trapped ion are presented. Also, this chapter
discusses the use of 40Ca+, which is our choice of ion species, as a qubit – the atomic
energy structure of 40Ca+, how to create and load the ion into the trap, and our
method to detect the qubit state of the ion.

2.1 Trapping an Ion

A generalised harmonic potential that leads to trapping force in three dimensions is
given by

ϕ(x, y, z) = ax2 + by2 + cz2, (2.1)
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Figure 2.1: Contour plot of an equipotential surface of the time-varying quadrupole
potential applied for a Paul trap on a radial plane with vectors indicating
the direction of resulting forces at t = 0 (left) and t = T/2 (right). In the
radial plane, one axis becomes stable and the other unstable, and each axis
alternates between trapping and anti-trapping with a period of T , leading to
a time-averaged radial trapping force.

where a, b, and c are constants, and the electric field derived from this electric
potential ϕ(r) where r = {x, y, z} is

E⃗(r) = −∇ϕ(r) = −2axı̂− 2byȷ̂− 2czk̂. (2.2)

Gauss’s law states that the divergence of an electric field must be zero unless extra
charges are present ∇ · E = 0. Therefore, at least one of coefficients (a, b, c) in
Eqn. (2.1) must be negative unless all coefficients are zero, which is equivalent to
free space. In other words, the ion is pushed away from the trap centre in at least
one direction, which is anti-trapping. To overcome this problem, the Paul trap
employs an electrostatic field superimposed on the time-dependent oscillating field.
As illustrated in Fig. 2.1, the time variation of the field makes each axis alternate
between trapping and anti-trapping. With appropriate settings of frequency and
amplitude of the applied oscillating field, a time-averaged trapping potential in all
three dimensions can be achieved [43]. A more rigorous mathematical description of
the trapping technique will be presented in section 2.1.1.

2.1.1 Classical Motion of a Trapped Single Ion

A linear Paul trap, which is a variant of the conventional Paul trap, is used in our
experiment. The linear Paul trap allows for more optical access than the conventional
Paul trap arrangement, whose electrodes are in hyperbolic shape. More optical access
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Figure 2.2: Schematic diagram of linear Paul trap based on a quadrupole mass analyser.
Left: Electrodes for the Paul mass filter. The circular shaped inner surface
results in a quadrupole potential. Right: Side view of the trap. A pair of
end-caps is added to the electrodes shown in the left image to confine the ion
axially.

is advantageous in state detection, where photons emitted from ions are collected,
and in laser-induced logic operations. The symmetry of the linear Paul trap along
the trap axis makes an elongated rf zero-potential along the trap axis, and this makes
the trapped ions form a linear chain of single ions aligned along the trap axis when
multiple ions are trapped. Each ion is stored close to the zero-potential line where
ions experience reduced micromotion, and the actual potential near the trap axis can
be approximated to a quadrupole-like shape [44, 45]. An oscillating rf field of the
form Vac cosΩt is applied to one pair of diagonally opposite radial electrodes, and
the other pair is grounded. Also, a static voltage Vdc is applied to two end-caps. The
resulting electric potential generated by applied voltages to those electrodes is in the
following form:

ϕ(x, y, z, t) =
krVac cos(Ωt)

2r20

(
x2 − y2

)
+
kzVdc
2z20

(
2z2 − x2 − y2

)
, (2.3)

where r0 and z0 (defined in Fig. 2.2) are trap dimensions, and kr and kz are geometric
factors, which are reduced from the ideal of unity to account for non-hyperbolic
shape of electrodes. An ion with mass m and charge −e placed in electric field
E⃗ = −∇ϕ(r, t) experiences a force F⃗ = −e∇ · E⃗. Thus, the classical equations of
motion can be written as

∂2x

∂t2
+

[
−ekzVdc
mz20

+
ekrVac
mr20

cosΩt

]
x = 0

∂2y

∂t2
+

[
−ekzVdc
mz20

− ekrVac
mr20

cosΩt

]
y = 0

∂2z

∂t2
+

2qkzVdc
mz20

z = 0.

(2.4)
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An axial confinement is achieved by the static field, and it is straightforward to show
that the axial motion is a simple harmonic oscillator at frequency

ωz =

√
2qkzVdc
mz20

. (2.5)

The radial equation is more complicated. However, by introducing new parameters
au and qu for {u = x, y}, which are defined by experimental conditions,

ax = ay = −
4qkzVdc
mz20Ω

2

qx = −qy =
2qkrVac
mr20Ω

2
,

(2.6)

the equations of radial motion (in x− y plane) in Eqn. (2.4) can be transformed into
the Mathieu equation[46], which is a special form of a linear differential equation:

∂2u

∂t2
+ [au + 2qu cosΩt]

Ω2

4
u = 0. (2.7)

The Mathieu equation Eqn.(2.7) can be solved using Floquet’s theorem [47], and its
solutions are given as

u(t) = A
∞∑

n=−∞

C2n cos (β + 2n)
Ωt

2
+B

∞∑
n=−∞

C2n sin (β + 2n)
Ωt

2
, (2.8)

where A and B are constants determined by the initial position and velocity of the
ion, and C2n are the amplitudes of the Fourier components of the solution. The
oscillation of the ion’s motion is characterised by

ωu =
1

2
βuΩ, (2.9)

where β is written as an iterative fraction of au and qu:

β2
u = au +

q2u

(βu + 2)2 − au − q2u

(βu+4)2−qu− q2

(βu+6)2−qu−···

+
q2u

(βu − 2)2 − au − q2u

(βu−4)2−qu− q2

(βu−6)2−qu−···

(2.10)

The solutions can be either stable or unstable, depending on the choices of au and qu.
Fig. 2.3 shows that there is a region in parameter space of au and qu where the ion
is stably trapped. If qu < 0.4 and au ≪ qu, the solutions (Eqn. 2.8) can be simplified
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Figure 2.3: Stability diagram for the Mathieu equation as a function of trap parameters
(au, qu), showing stability regions for the ion in the linear rf trap. Left: the
trap parameters have to lie within the overlapping regions. Right: the zoom-in
of the boxed area in the figure on the left. The diagram is adapted from
Johannes [48].

by using an adiabatic approximation [49, 50]:

u(t) = Ru cosωut
(
1 +

qu
2
cosΩt

)
(2.11)

with

βu =

√
au +

q2u
2
, and ωu =

1

2
βuΩ, (2.12)

where the first term describes the harmonic oscillation with the frequency ωu, which
is called secular motion, and the second represents additional contribution at the
frequency Ω, which is referred to as micromotion. The adiabatic approximation
ensures the amplitude of the micromotion is small compared to that of the secular
motion; the micromotion is usually ignored.

2.1.2 Excess Micromotion

In an ideal case of trapping potential, the minimum of the static field coincides with
the null of the rf field. There are, however, several occasions where the minimum
of static potential and rf null are misaligned – for example, the phase of the rf
field applied to each blade is different, the electrodes are misaligned during the
assembly, or unevenly distributed patches of neutral calcium are created on the
surface of the trap electrodes during loading of the ion. The misalignment of the
two fields effectively introduces an additional static field to the trapping field Edu0,
and consequently, the equations of motion are modified as follows:
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∂2u

∂t2
+ [au + 2qu cosΩt]

Ω2

4
u =

qEdu0
m

. (2.13)

The solution of Eqn. (2.13) resembles Eqn. (2.11):

u(t) = [ui,0 cos (ωi,1t) + uu,1][1 +
qu
2
cos (Ωt)], (2.14)

where uu,1 quantifies the strength of the additional contribution to the micromotion,
which is usually referred to as excess micromotion. The amplitude of the excess
micromotion is proportional to the displacement of the ion. The excess micromotion
can significantly affect the ion motion, degrading the fidelity of coherent operation on
a trapped ion. Thus, it is crucial to measure and compensate for excess micromotion.
An in-depth discussion of excess micromotion compensation and the experimental
results will be presented in Section 5.5.

2.2 Quantisation of Motion of Trapped Single Ion

As discussed in the previous section, the dynamics of a single trapped ion follow
a trajectory described by a harmonic oscillator. In other words, the ion can be
considered to be confined by a harmonic quasi-potential. This argument is valid
even in a quantum regime, and therefore the motion of the ion can be quantised as
motional Fock states |n⟩ that are the solutions of the quantum harmonic oscillator.
The harmonic frequency is given by the frequency of secular motion, and the resultant
Hamiltonian can be written as a three-dimensional harmonic oscillator:

Ĥ =
∑
u

1

2
ωuâuâ

†
u, u ∈ {x, y, z}. (2.15)

ωu is harmonic frequency, and âu (â†u) is an annihilation (creation) operator.

2.3 40Ca+ as a Qubit

We historically choose the 40Ca+ ion for several reasons. Calcium is one of the
alkali-earth metals, and its atomic structure becomes ‘alkali-like’, which has a simple
energy level structure, when it is singly ionised. Also, all transitions involved in laser
cooling and coherent manipulation of the ion can be addressed by a commercially
available diode laser, providing inexpensive and easy solutions for realising a trapped
ion qubit.
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Figure 2.4: Energy diagram of 40Ca+. All relevant transitions used in experiments
described in this thesis are shown – solid lines indicate transitions actively
driven by lasers, and the curly arrows represent spontaneous decay from the
P3/2 state to S1/2 and D3/2.

2.3.1 Atomic Structure of 40Ca+

Fig. 2.4 shows an atomic structure diagram of 40Ca+ with all transitions relevant to
our experiment. We denote S1/2 and D5/2 as |g⟩ and |e⟩, respectively, and use those
states as a qubit, which is a basic unit of quantum information. D5/2 is meta-stable
state with a lifetime of ≈ 1.2 s [51], which limits the ultimate coherence time of
the qubit. A coupling between these states is made through a weak quadrupole
transition S1/2 ←→ D5/2 mediated by a narrow-linewidth laser at 729 nm. A dipole
transition S1/2 ←→ P1/2 at 397 nm is exploited for Doppler cooling. As this transition
is cyclic, an ion repeatedly absorbs and emits the photons at 397 nm. A fraction of
the population in the P1/2 and P3/2 states can decay to the D3/2 state. However,
this population is pumped back to the P1/2 state by driving a dipole transition
D3/2 ←→ P1/2 at 866 nm. The branching rate to D3/2 is low (6%); this state is often
ignored when we discuss the dynamics related to the qubit.

2.3.2 State Detection

At the end of quantum computation, the stored information is inferred by measuring
the state of the ion or qubit. In an ion trap, state detection is performed via state-
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Threshold

Figure 2.5: Histogram of photon counts collected during the detection period of 5ms.
The ion is prepared in the ‘dark’and ‘bright’state 300 times for each state.
Bright and dark states can be distinguished by thresholding the measurement
records. There are few occasions where the ion is prepared in the dark state,
but those ions scatter as many photons as the ions in the bright state, which
reduce detection fidelity. See the text for more details

dependent fluorescence as only one of the qubit states (S1/2) is coupled to a detection
laser at 397 nm[52, 53, 54]. In our trap, the qubit is defined by one of S1/2 and D5/2

manifolds. When the Doppler transition S1/2 ↔ P1/2 is driven by a laser at 397 nm,
the ion is projected into either S1/2 or D5/2, and the ion scatters the photons from
the laser if and only if the ion is in the S1/2 state. We measure the photons emitted
from the ion using a photomultiplier tube (PMT) or an electron-multiplying CCD
(EMCCD). We also denote S1/2 and D5/2 as bright and dark states. The detection
can be modelled as a series of independent and random events, and the resulting
distribution follows a Poissonian distribution of the number of photons n being
detected in a time interval tD:

P (n) =
e−λλn

n!
, (2.16)

where R is the scattering rate, which varies dependent on the qubit state, and λ = RtD

is a mean photon number. If the ion is in the dark state, the coefficient R includes
only photon scattering from the background Rd; otherwise, R consists of photon
scattering from the ion Rb as well as background counts Rd. The distributions have
different mean photon numbers, and consequently, this state-dependent fluorescence
allows for discrimination between the bright and dark states.

Fig. 2.5 shows histograms of photon counts collected during 5ms when the
ion is prepared in bright (S1/2) and dark (D5/2) states 300 times each. The two
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distributions are clearly separated without significant overlap. However, some of the
dark counts lie within the bright distribution, reducing detection fidelity to 98.9%.
This might be due to the finite lifetime of the D5/2 state. The ion in the dark state
can spontaneously decay to S1/2 during the detection period and stays in S1/2 for the
rest of the detection period although the ion is initially in the D5/2 state. If this is
the case, we can alleviate this issue by reducing the detection time tD so that the ion
in D5/2 is less likely to decay during the detection period, but the two distributions
are then less separated as the mean photon numbers get closer to each other.

The detection efficiency of 98.9% might be underestimated. When we prepare the
ion in D5/2, we use a resonant π pulse. However, the π pulse might not be perfect,
and there is no way to guarantee that the ion is perfectly prepared in the D5/2 state
before performing the measurement. This might suggest that the distribution overlap
should be attributed to imperfect state preparation of the dark state.

For the Raman qubit, the qubit states are defined by S1/2,±1/2. In this case, the
qubit states cannot be distinguished via state-dependent fluorescence because both
states scatter the laser at 397 nm. Hence, using a π pulse of the 729 nm laser that is
resonant to one of the S1/2 states, we completely transfer the population of either of
the S1/2 sublevels to D5/2, so that the standard detection method using the 397 nm
laser can be applied to discriminate one qubit state from the other.

2.3.3 State Preparation

Figure 2.6: State preparation of S1/2,1/2 via optical pumping. The σ+ transition continu-
ously excites the S1/2,−1/2 state until the P1/2,1/2 state spontaneously decays
to S1/2,1/2.

At the beginning of each experiment, we must first initialise the state of the ion
to a specific state of S1/2 – we need a well-defined ground state. Nevertheless, both
sublevels of S1/2 state can be populated during Doppler cooling because the ion in
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either the P1/2 or the P3/2 state can spontaneously decay to both sublevels of S1/2

with equal probability. State preparation of a certain manifold of S1/2 can be achieved
by driving the dipole transition S1/2 ↔ P1/2 with either σ− or σ+ polarised light,
which is known as optical pumping [55]. For example, if we drive the σ+ transition,
the transition cycles between S1/2,−1/2 and P1/2,1/2 until the ion eventually decays to
S1/2,1/2 (see Fig. 2.6): once the ion decays to the S1/2,1/2 state, then there is no state
σ+ transition can couple S1/2,1/2 with, and the ion stays in the S1/2,1/2 state.

2.4 Trap Electrodes

Figure 2.7: Trap electrodes consist of four blades and two end-caps: two end-caps are
axially separated by 5.5 mm, and each blade is distanced 1 mm from the trap
centre (z0 = 2.75mm and r0 = 1mm). This diagram is adapted from Oliver
[56].

We recently built a macroscopic linear Paul trap. We adopt the design of the
Innsbruck linear blade trap detailed in Ref.[45] – the trap electrodes consist of
two end-caps and four blades as illustrated in Fig. 2.7. Using blades that replace
hyperbolically shaped rf electrodes found in the Paul mass filter shown in Fig. 2.2
allows for better optical access, which benefits laser interrogation and fluorescence
collection for state detection. There are holes 600µm in diameter in both end-cap
electrodes. The holes allow us to project the laser along the trap axis, maximising the
Lamb–Dicke (LD) parameter η associated with the axial motion, while nullifying the
η associated with the radial motion, which we want to ignore in qubit manipulation.
A time-dependent voltage at the trap frequency Ω is applied to one pair of diagonally
opposite blades, and the other pair is grounded. The two end-caps are connected to
a static voltage source. Those applied voltages generate the required time-varying
and static electric fields in the forms described in Eqn. 2.3.

15



2.5 Loading

continum

Figure 2.8: Energy diagram that shows the atomic states involved in isotope-selective
photoionisation. Neutral calcium atomic particles are initially excited to the
4s4p state via a laser at 423 nm, and they are subsequently excited to the
continuum state by a laser at 389 nm.

The trapped ion experiment starts with loading ions into the trap. The loading
process has two steps. The first step is to produce an effusive beam of neutral calcium
by resistively heating a tube filled with granules of calcium metal [57]. The tube
has a hole facing the trap so that the emitted neutral calcium atoms are directed
toward the trap centre. The second step is to ionise the neutral calcium. In the past,
ionisation was achieved by bombarding calcium atoms with a high-power Nd:YAG
laser. As this is a non-resonant process, the high-power laser can ionise not only
the desired 40Ca but also other calcium isotopes or potentially other species. Other
calcium isotopes and other species cannot be properly Doppler cooled because the
frequency of the Doppler-cooling laser is specifically tuned to address the dipole
transition S1/2 ↔ P1/2 of 40Ca+; those ions are seen as dark ions when they are
illuminated by the Doppler beam because they do not scatter photons. We currently
use isotope selective photoionisation (PI). The resonant photoionisation involves two
processes [58, 59] – an electron bound to the outermost orbital of neutral calcium is
excited to the 4s4p state via a laser at 423 nm and is subsequently excited to the
continuum state via a laser at 389 nm (ionisation). The atomic ovens are positioned
such that the resulting neutral atomic beam is mainly propagating perpendicular
to the direction of the photoionisation lasers (see. Fig.2.9). As a result, the lasers
experience minimised Doppler shift. A possible adverse consequence of the loading
is to coat the trap electrodes with calcium, which alters the expected trapping field.
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Therefore, we have carefully calibrated the current passed along the tube with the
increase in pressure and typically use a current of 2.9–3.3A to avoid depositing an
excessive amount of calcium during the loading.

PI Lasers

Atomic 
oven

Atomic
beam

Figure 2.9: Geometry of the atomic beam effused from the atomic oven and photoionisa-
tion (PI) lasers. The atomic beam propagates perpendicular to the direction
of the PI beams, minimising the Doppler shift due to moving atomic particles.

When we load ions, we switch on the two PI beams continuously, and ions are
sequentially created and trapped one by one. This allows us to systematically control
the number of ions trapped in our trap. However, sometimes we have more ions than
we need (e.g. two ions when we need a single ion), and we have to extract some
of the ions. We use Doppler heating for extraction. If we blue detune the Doppler
beam, then the beam is heating the ions rather than cooling them, and the orbits
of some ions become bigger and collide with the trap electrodes or a metal surface
and are eventually ejected from the trap. We detune the Doppler beam roughly
100MHz above the resonance for a few seconds and then detune the beam back to
the frequency for Doppler cooling. We repeat this process until we have the number
of ions we need. However, this method is trial and error, and we might lose all the
ions.

17



Chapter 3

Atom-Light Interaction

This chapter focuses on the coherent interaction between an applied light field and a
single trapped ion. This light–matter interaction is employed in many experimental
techniques, such as coherent manipulation of a trapped ion and laser cooling. A
trapped ion represents a composite quantum system that consists of an atomic
internal state and a harmonic oscillator resulting from applied trapping potential.
The internal and motional states of the trapped ion are coherently manipulated
through the interaction between the ion and the resonant light field.

This chapter presents a theoretical foundation to describe the coherent interaction
of the single ion tightly confined in the harmonic potential (i.e. a harmonic oscillator).
In our experiment, two different routes are employed: a weak quadrupole transition
addressing the S1/2 ↔ D5/2 transition and Raman coupling, which is two-photon
interaction, stimulating S1/2,−1/2 ↔ D1/2,1/2 transition.

The interaction effectively couples the atomic internal state and motional degree
of freedom.

3.1 Single Trapped Ion Interacting with Light

We use one of the ground states S1/2 and one of the meta-stable states D5/2 as basis
states that constitute a qubit. We denote S1/2 and D5/2 by |g⟩ and |e⟩, respectively.
These states are coupled via a weak quadrupole transition mediated by a narrow
linewidth laser at 729 nm. As shown in Fig. 2.4, 40Ca+ has many different atomic
energy levels. However, if the frequency of a laser is tuned to the energy difference
between S1/2 and D5/2, then the laser is far off-resonant to the other transitions,
and we can ignore the other levels in our quantum picture and assume that the
system is in a simple two-level structure. Here, we consider only the axial motion,
which is along the trap axis, as our spectroscopic laser is directed along the trap
axis. Consequently, any motion in the radial direction is not coupled to the laser.
Thus, the unperturbed Hamiltonian, which consists of atomic He and motional Hm
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degrees of freedom, is given as

Ĥ0 = Ĥe + Ĥm

=
1

2
h̄ωegσ̂z +

p̂2

2m
+
mω2

z ẑ
2

2

(3.1)

where ωeg and ωz are the energy difference between |g⟩ and |e⟩ and the frequency of
the harmonic oscillator along the trap axis, respectively, and σ̂z is the Pauli operator.
We consider a monochromatic light field that is described by the following equation:

EL(r, t) =
ϵ̂E0

2

[
e+i(kL·r−ωLt+ϕ) + e−i(kL·r−ωLt+ϕ)

]
(3.2)

where ωL, ϵ̂, kL and ϕ are frequency, polarisation vector, wave vector and phase of
the laser. The interaction between the light field and the ion is given by the following
Hamiltonian:

Ĥi =
h̄Ω0

2
(σ̂+ + σ̂−)

[
e+i(kzz−ωLt+ϕ) + e−i(kzz−ωLt+ϕ)

]
(3.3)

where we consider only the axial motion, which is along the trap axis, as our
spectroscopic laser is directed along the trap axis, so kL and r are replaced with kz

and z, respectively. Ω0 is the Rabi frequency, which quantifies the coupling strength
between the ion and the laser1. By quantisation of the ion motion, the position
operator ẑ and the momentum operator p̂ can be written in terms of raising â† and
lowering â:

ẑ =

√
h̄

2mωz

(
â+ â†

)
= z0

(
â+ â†

)
p̂ = i

√
h̄mωz

2

(
â† − â

)
=

ih̄

2z0

(
â† − â

) (3.4)

Also, we define the LD parameter as

η = kLz0 =

√
h̄k2z
2mωz

. (3.5)

The LD parameter is simply given as a product of laser wave vector k and the
spatial extent of the ground state wavefunction z0. The LD parameter quantifies the

1Approximated expressions for the Rabi frequency vary depending on the type of transitions
(i.e. electric dipole and quadrupole transitions). A detailed discussion and calculations of the Rabi
frequency Ω0 for different types of transitions can be found in Appendix A of Ref [60].
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confinement of the ion with respect to the laser wavelength, indicating the coupling
strength between the atomic internal states and the motional states of the ion.
Substituting â, â† and η into Eqn. (3.1, 3.3) reformulates the laser–ion Hamiltonian
as

Ĥ0 =
1

2
h̄ωegσ̂z +

1

2
h̄ωz(â

†â)

Ĥint =
1

2
h̄Ω0(σ̂+ + σ̂−)

[
ei(η(â+â†)−ωLt+ϕ) + e−i(η(â+â†)−ωLt+ϕ)

] (3.6)

where the zero-point energy of the harmonic oscillator is omitted as it produces
only constant offsets to both of the states. When dealing with a time-dependent
Hamiltonian, moving into the interaction picture makes it straightforward to solve the
Schrödinger equation. In the interaction picture, the Hamiltonian and wavefunction
are transformed as follows:

Ĥint = Û †0ĤiÛ0

|Ψ(t)⟩int = Û †0 |Ψ(t)⟩ ,
(3.7)

and the Schrödinger equation is reformulated as

ih̄
d

dt
|Ψ(t)⟩int = Ĥint |Ψ(t)⟩int . (3.8)

By transforming to interaction picture with respect to Û0 = e−iĤ0 , the laser–ion
Hamiltonian becomes

Ĥint = Û †0ĤiÛ0

=
h̄Ω0

2
e

iĤet
h̄ (σ̂+ + σ̂+)e

−iĤet
h̄ e

iĤmt
h̄ (e−i(ωLt−ηz(â+â†)+ϕ))e

−iĤmt
h̄

=
h̄Ω0

2
(σ̂+e

+i(ηz(ã+ã†)−δt+ϕ) + σ̂−e
−i(ηz(ã+ã†)−δt+ϕ))

(3.9)

where δ = ωL−ωeg is a detuning frequency. The last equation is obtained by making
the rotating wave approximation that eliminates terms in the Hamiltonian oscillating
with frequencies of ωeg + ωz, and raising and lowering operators are transformed as

ã = e−iωztâ and ã† = e+iωztâ†. (3.10)

A general quantum state in the interaction picture can be written as
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|ψ(t)⟩ =
∞∑
n=0

cg,n(t) |g, n⟩+ ce,n(t) |e, n⟩ . (3.11)

Substituting Eqn. (3.11) into Eqn. (3.8) yields

∞∑
n=0

ċg,n |g, n⟩+ċe,n |e, n⟩ = −
i

2
Ω0

∞∑
n

(
ce,ne

iδte−iη(ã+ã†) |g, n⟩+ cg,ne
−iδte+iη(ã+ã†) |e, n⟩

)
.

(3.12)

Multiplying by ⟨g, n| and ⟨e, n| respectively and expanding the exponential in power
series of ã and ã† using the Taylor expansion, we obtain the following coupled
equations:

ċg,n(t) =
−iΩ0

2
ei(δt−ϕ)

∞∑
m=0

ce,m ⟨n|
∞∑
k=0

(−iη)k

k!
(â†ze

−iωzt + âze
iωzt)k |m⟩

ċe,n(t) =
−iΩ0

2
ei(δt−ϕ)

∞∑
m=0

cg,m ⟨n|
∞∑
k=0

(iη)k

k!
(â†ze

iωzt + âze
−iωzt)k |m⟩

(3.13)

Eqn. (3.10) indicates the â and â† operators carry a time-dependent exponential
e−iωzt and e+iωzt, respectively. Therefore, a term with p raising and q lowering
operators in the expansion in Eqn. (3.13) is associated with the total frequency term
of ei(δ−mωz)t where m = p− q. In addition, this term raises or lowers the motional
state |n⟩ to |n+m⟩; the orthogonality of the motional states guarantees this term
preserves only m in the summation. If the laser has a linewidth ∆ωL

≪ ωz, its
associated Rabi frequency Ω0 ≪ ωz, and its frequency is set such that δ −mωz is
close to zero (i.e. the laser is tuned close to the resonance of the mth-order sideband
transition), then only the term associated with the mth-order sideband dominates
the sum, ignoring the terms with the other sidebands, which is analogous to the
rotating wave approximation. Thus, Eqn. (3.13) can be simplified to

ċg,n(t) = −i
Ωn,n+m

2
ei(∆t−ϕ)ce,n+m

ċe,n+m(t) = −i
Ωn,n+m

2
e−i(∆t−ϕ)cg,n

(3.14)

where ∆ = δ −mωz is the detuning with respect to the mth-order sideband. Ωn,n+m

is given as [61, 62]
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Figure 3.1: Relative strength of the carrier and first-order sideband as a function of
a phonon number n with η = 0.9, which is the typical value of η in our
experiment. The dotted line represents the strength of the first-order blue
sideband with the LD approximation applied. Contrary to the LD regime, the
coupling strength does not increase monotonically with n, and the coupling
strength becomes null at n ≈ 65. This point leads to motional trapping when
we perform sideband cooling outside the LD regime because the motional
state at that trapping point no longer interacts with the ion and stays as it is.
[63, 64, 65].

Ωn,n+m = Ω0 ⟨n| eiηz(â+â†) |n+m⟩

= Ω0e
− η2z

2 (iηz)
|m|L

|m|
k (η2z)

[
n!

(n+m)!

] sgn(m)
2 (3.15)

where k = Min(n, n+m), and the generalised Laguerre polynomial is defined by

L
|m|
k (η2) =

k∑
l=0

(−1)l
(
k+|m|
k−l

) η2l
l!
. (3.16)

Fig. 3.1 shows the relative coupling strength as a function of phonon number n. It
is important to note that the coupling strength for all orders, including the carrier,
becomes zero at some phonon numbers but at different n.

If the ion is initially in the internal ground state with motional quantum number
n |g, n⟩ (at t = 0), then the solution of Eqn. (3.14) is given by

Pe(t) =
Ω2

n,n+m

Ω2
n,n+m +∆2

sin2


√
Ω2

n,n+m +∆2

2
t

 . (3.17)

This is a generalised Rabi oscillation, which is periodic population transfer between
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|g, n⟩ and |e, n+m⟩. If we drive the transition on resonance ∆ = 0, the interaction
completely inverts the initially prepared |g, n⟩ state to the |e, n+m⟩ state, and we
define π time at which the complete population inversion occurs.

We now consider a special case where the confinement of the ion, which is
quantified by the wave function spread with an average phonon number n̄, which is
z0
√
2n̄+ 1, is much smaller than the wavelength of the laser:

ηz
√
2n̄+ 1≪ 1. (3.18)

Under this condition, the ion is said to be in the LD regime. In the LD regime, the
ion is significantly coupled to the laser via the carrier and the first-order red and blue
sideband transition, while the higher-order transitions are strongly suppressed. Also,
the coupling strength specified in Eqn. (3.15) can be approximated by expanding
the exponential to the second order:

Ωn,n+l = ⟨n| eiηz(â+â†) |n+ l⟩

= ⟨n| 1 + iηz(â+ â†)− 1

2
η2z(â+ â†)2 |n+ l⟩ .

(3.19)

Then, the approximate Rabi frequencies for the carrier and the first-order red and
blue sdiebands are given by

Ωn,n−1 = Ω0ηz
√
n

Ωn,n = Ω0

(
1− 1

2
η2z(2n+ 1)

)
Ωn,n = Ω0ηz

√
n+ 1.

(3.20)

3.2 Raman Interaction

We can also use the two Zeeman sublevels of S1/2 as a qubit. These states nearly do
not decay from one state to another, leading to substantially long energy relaxation
time T1. Thus, S1/2 manifolds can form a stable qubit. There are two straightforward
ways to couple these states – the first is that we can directly couple these two states
using a microwave field whose frequency matches the energy difference between the
states, and the other is that we can indirectly couple them using two-photon Raman
interaction. The first method has a significant downside in that this interaction
results in relatively weak coupling between the internal and the motional states
due to a small LD parameter η because the microwave field has a relatively long
wavelength compared to typical optical lasers used in ion trap experiment, and
this long wavelength corresponds to a small LD parameter, making extremely weak
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Figure 3.2: A level diagram for a three-level system that demonstrates a Raman interaction.
We make an indirect coupling between |↑⟩ and |↓⟩ by off-resonantly driving the
transitions |↓⟩ ↔ |aux⟩ with Rabi frequency Ω1, detuning δ1 and |↑⟩ ↔ |aux⟩
with Rabi frequency Ω2 and detuning δ2.

coupling between atomic internal and motional states. Thus, we exploit two-photon
Raman interaction in a realisation of a Zeeman qubit in our experiments.

3.2.1 Raman Coupling

We first consider a three-level system that consists of |↓⟩, |↑⟩ and |aux⟩. As illustrated
in Fig. 3.2, we off-resonantly drive the transitions |↓⟩ ↔ |aux⟩ and |↑⟩ ↔ |aux⟩ with
Rabi frequencies, detunings, phases and wave vectors Ω1, ∆1, ϕ1, k1 and Ω2, ∆2, ϕ2,
k2. In the interaction picture, the Hamiltonian that describes the dynamics driven
by those interactions can be written as

H =
h̄

2
Ω1e

i(k1·r−∆1t+ϕ1) |aux⟩ ⟨↓|+ h̄

2
Ω2e

i(k2·r−∆2t+ϕ2) |aux⟩ ⟨↑|+ h.c. (3.21)

If the detuning of each laser is set to be far off-resonant, we can ignore a direct
population transfer between |aux⟩ and the two ground states, |↓⟩ and |↑⟩. In addition,
if |δ1 − δ2| ≪ δ1, δ2, we can simplify the Hamiltonian in Eqn. (3.21) to the following
effective Hamiltonian by applying the James–Jerk approximation [66]:

H =
h̄Ω2

1

4δ1
(|↓⟩ ⟨↓| − |aux⟩ ⟨aux|) + h̄Ω2

2

4δ2
(|↑⟩ ⟨↑| − |aux⟩ ⟨aux|)

+
h̄Ω1Ω2

4∆

(
ei∆k·r−iδt+iϕ |↑⟩ ⟨↓|+ h.c.

) (3.22)

where ϕ := ϕ1 − ϕ2, ∆k := k1 − k2, 1/∆ := 1
2

(
1
δ1
+ 1

δ2

)
and δ := δ1 − δ2. The

first two terms in Eqn. (3.21) correspond to the AC Stark shift, and the last term
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indicates an effective coupling between |↓⟩ and |↑⟩. This effective coupling term is
in a similar form to the standard light–matter interaction described by Eqn. (3.3),
with k → ∆k, ϕ→ ϕ1 − ϕ2, and δ → δ1 − δ2; with an appropriate choice of δ, the
Raman interaction can be applied to address the carrier (δ = 0) and the first-order
sideband transitions (δ = ±ωz).

3.2.2 Photon Scattering

In the typical implementation of Raman interaction, the detunings, δ1 and δ2, are set
to be sufficiently large to ensure the upper level |aux⟩ is barely populated. However,
the ion can be excited to the |aux⟩ state with finite detunings, although it is very
unlikely with large detunings. The ion in the |aux⟩ state spontaneously decays to
either |↓⟩ or |↑⟩. According to the Kramers–Heisenburg formula, the scattering rate
from |i⟩ to |f⟩ is given by [67, 68]

Γi,f = γ
∑
j

∣∣∣∣Ωi,ejΛej ,f

δej

∣∣∣∣2 (3.23)

where the sum runs over all auxiliary states |aux⟩j, γ is the Einstein A coefficient
for P1/2 manifold, Ωi,ej is the Rabi frequency of the driving field on the transition
|i⟩ ↔ |ej⟩ and Λej ,f is the respective 3-j symbol. There are two distinct routes
– the first is Raman scattering, where the final state is different from the initial
state, and the other is Rayleigh scattering, where the excited ion decays back to the
initial state. Both scattering processes accompany a momentum kick resulting from
photon emission and consequently result in motional decoherence. Raman scattering
decoheres the internal state of the atom because the Raman scattering alters the
ion’s internal state; thus, the internal state is entangled with the scattered photon
while the Rayleigh scattering does not always result in decoherence – the Rayleigh
scattering barely induces decoherence if the scattering rates from both qubit states
are approximately equal [69], but if the scattering rates are quite different, then the
rate of decoherence due to the Rayleigh scattering is proportional to the difference
in the scattering probabilities [70].

3.3 Raman Interaction in 40Ca+

Fig. 3.3 presents a simplified energy level structure of 40Ca+ with the atomic
transitions relevant to implementation of the Raman coupling. Unlike the theoretical
model described in Sec 3.2.1, our system consists of four levels, including two
auxiliary levels (P1/2,±1/2) instead of one. An applied external magnetic field B ≈
0.32mT produces Zeeman splitting between P1/2,±1/2 states of ≈ 3.04MHz, which
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28 GHz/T

Figure 3.3: Simplified energy level diagram of 40Ca+ with the transitions involved in
realisation of the Raman coupling between the S1/2,−1/2 and S1/2,1/2 states.
Zeeman splittings for the S1/2 and P1/2 levels are shown. A pair of Raman
beams shown in Fig. 3.4 (perpendicular and parallel beams) drives π and σ±
transitions between the S1/2 and P1/2 manifolds.

is comparable to the linewidth of the driving lasers. Hence, we cannot couple each
S state exclusively to one of the P states, and we drive four different transitions
simultaneously, including two π and σ± transitions. As illustrated in Fig. 3.4,
two 397 nm beams are used as Raman beams – one of the beams is directed along
the quantisation axis, which is labelled parallel beam, while the other propagates
perpendicular to the quantisation axis, which is called perpendicular beam. The
parallel and perpendicular Raman beams drive two π and σ± transitions respectively.
Each pair of π and σ transitions induces the Raman coupling between S1/2,−1/2 and
S1/2,1/2 but via different routes.

P1/2 states can also decay to D3/2, which is not included in the energy level
diagram, and we have to empty the population of D3/2 to avoid population trapping
in this state. So, we exploit a laser at 866 nm, which drives a dipole transition
D3/2 ↔ P1/2, as a re-pumper. The branching ratio to D3/2 is relatively small, and
thus we ignore this in the rest of the discussion.

3.3.1 Rabi Frequencies and AC Stark Shifts

Although our system includes two auxiliary states, unlike the theory presented in
Sec 3.2.1, the effective Rabi frequency of the coupling between the Zeeman sublevels
is simply given as the sum of each path as long as the condition that detunings are
far off-resonant is satisfied:

Ω12 =
Ωπ1Ωσ−

2∆1

+
Ωπ2Ωσ+

2∆2

(3.24)
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Figure 3.4: Orientation and polarisation of the Raman beams with respect to the trap
electrodes and an applied magnetic field, which define quantisation axis.
Two linearly polarised 397 nm laser beams are used. One beam propagates
perpendicular to the applied magnetic field (perpendicular Raman beam),
while the other is directed along the magnetic field (parallel Raman beam).

where Ωi is the Rabi frequency of each transition, and ∆i is the mean detuning of
the beams with respect to the corresponding |aux⟩i state (defined in Eqn. 3.22).

The AC Stark shift due to the off-resonant coupling of each beam is given as

∆ac,↓ =
Ω2

π2

4δπ2

+
Ω2

σ−

4δσ−

∆ac,↑ =
Ω2

π1

4δπ1

+
Ω2

σ+

4δσ+

(3.25)

where δi is detuning of each beam.

3.3.2 Ratio of Scattering Rate to AC Stark Shift

To characterise our Raman qubit, we wish to measure the scattering rate, which
quantifies the decoherence of the qubit due to photon scattering. The scattering rate
varies depending on the power of the beam, but as we take a ratio of the scattering
rate Γ to the AC Stark shift ∆SS, we can obtain the power-independent quantity:

Γ

∆SS

=
5

12
γ

∣∣∣∣ ω0

∆(δ − ω0)

∣∣∣∣ (3.26)

where ∆ is detuning from the resonance of S1/2 ↔ P1/2 transition, and ω0 is the
Zeeman splitting of S1/2.

In our experiment, we initially prepare the ion in the S1/2,1/2 state. We then turn
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Figure 3.5: Ratio of Raman scattering ratio to the AC Stark shift to |↓⟩. The solid line
indicates the theoretical prediction. The measurements well agree with the
theory, except for one point at δ = −20GHz.

on one of the Raman beams and measure the population of the S1/2,1/2 state. The
population of S1/2,1/2 is initially unity but exponentially decays and converges to
the half as the Raman beam excites the ion to the P1/2 state, and the ion decays to
either sub-level of S1/2,1/2 with equal probability:

PS1/2,1/2(t) =
1

2
(1 + e−Γt) (3.27)

3.3.3 Differential AC Stark Shift

All transitions involved in Raman interaction are driven off-resonantly, so these
off-resonant interactions produce an AC Stark shift to the two lower-level states, |↓⟩
and |↑⟩. If the shift to each level is in the same direction with the same amount, the
energy difference between |↓⟩ and |↑⟩ stays the same; otherwise, the energy difference
can be shifted, and the net change ∆↓,↑ can be obtained by rearranging Eqn. 3.25:

∆↓,↑ = ∆SS,↑ −∆SS,↓

=

[
Ω2

π2

4δπ2

+
Ω2

σ−

4δσ−

]
︸ ︷︷ ︸

∆SS,↑

−

[
Ω2

π1

4δπ1

−
Ω2

σ+

4δσ+

]
︸ ︷︷ ︸

∆SS,↓

(3.28)

A pair of π transitions are addressed by a single laser, which is labelled as the parallel
beam, leading to the same amount of Ωπ1 and Ωπ2 and no net change in energy
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difference between the two lower states. However, the two σ± are driven by orthogonal
components of a laser (left and right circularly polarised components). Thus, the
Rabi frequency of each transition can be different, although those transitions are
also addressed by the single laser, which is referred to parallel beam, if the laser
contains different powers of σ− and σ+ beams. As shown in Fig. 3.4, this laser is
directed along the quantisation axis, and the beam is linearly polarised. Hence, in
principle, the beam contains an equal amount of left and right circularly polarised
components, resulting in no differential AC Stark shift. However, if the beam contains
any ellipticity, then the Rabi frequency of each σ transition is different, causing a
differential AC Stark shift and a net change in ∆↓,↑. This differential AC Stark shift
is power dependent; this power-dependent differential shift requires us to calibrate
the qubit resonance frequency every time we use a different power of the beam and,
more importantly, convert the power fluctuation of the beam to the fluctuation of
the phase accumulated on the qubit, leading to the faster decoherence of the qubit.
Therefore, we need to measure the ellipticity of the laser and ensure the differential
shift is zero.

In our experiment, the differential AC Stark shift is measured using a Ramsey-
type scan where we apply two π/2 pulses separated by a fixed wait time T , and
only the parallel Raman beam, which induces σ± transitions, is switched on for
a variable amount of time τ < T/2. The spin-echo pulse, which is a π pulse of
Raman interaction, is applied at T/2 to eliminate phase accumulated due to constant
detuning with respect to the Raman qubit frequency. We also measure the AC Stark
shift due to only the σ− polarised beam using the Ramsey scan, but here we apply
the π and π/2 pulses of the S1/2,1/2 ↔ D5/2,1/2 transition at 729 nm in this Ramsey
experiment to infer only the frequency shift to S1/2,1/2. To measure the ellipticity
of the beam, we need to know the ratio between Ω2

σ+
and Ω2

σ− . This ratio can be
calculated through the differential AC Stark shift ∆↓,↑ and ∆SS,↓:

Ω2
σ+

Ω2
σ+

= 1−R (3.29)

where R := ∆↓,↑/∆SS,↑,and we assume δσ+ ≃ δσ− .

Fig. 3.6 clearly suggests that the differential AC Stark shift varies with the
angle of the waveplate that changes the angle of linearly polarised parallel beam
– this indicates that the amount of ellipticity of the beam changes as we change
the waveplate angle. The birefringence of the vacuum window can account for this
observation. The windows introduce retardance of the two components that are
parallel and orthogonal to the principal axis of the window, leading to ellipticity
in the linearly polarised beam. The amount of the ellipticity varies depending on
the relative polarisation angle of the beam with respect to the principal axis of the
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Figure 3.6: Ratio between the AC Stark shifts to two lower states |↓⟩ and |↑⟩ as a function
of waveplate angle. The solid line represents a fit curve modelled by the
birefringence of the vacuum window, which introduces ellipticity into the
beam.

window. Fig. 3.6 includes a fitting curve that is modelled by the birefringence of
the window. The fitting curve follows the experimental results in their overall shape,
but each data point is relatively inconsistent with the fitting curve. This might
suggest that other sources add ellipticity to the Raman beam, but unfortunately,
they are unknown. Fig. 3.6 indicates there are several waveplate angles such that
the differential AC Stark shift becomes null; we set the waveplate to one of those
angles to minimise the power-dependent AC Stark shift. However, those angles that
lead to zero differential shift might be different if the environment around the trap
changes. So, we must routinely perform the scan to ensure the waveplate angle is
appropriately set.
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Chapter 4

Laser Cooling

When an ion is loaded into the trap, its initial velocity distribution roughly follows
the Maxwell–Boltzmann distribution at room temperature, where the classical ef-
fect dominates over quantum behaviour. In addition, the ion cannot be localised.
Therefore, most ion trap experiments start with the preparation of the ion in its
motional ground state, and the ground state cooling is achieved by laser cooling
techniques in our experiment. Laser cooling is the most commonly used cooling
technique in atomic physics experiments. This was firstly proposed for trapped ions
by Dehemlt and Wineland in the late 1900s [71], and experimentally demonstrated
shortly afterwards [61]. In our experiments, the ground state cooling is achieved
via two cooling steps – the ion is first cooled to Doppler temperature, in which a
significant fraction of the motional population still lies outside the motional ground
state, using Doppler cooling. Subsequently, resolved sideband cooling is applied to
achieve a sub-Doppler temperature and ultimately prepare the ion in its motional
ground state, which is a pure state and a critical requirement for coherent logic
operations with high fidelity. In this chapter, the general description of Doppler
cooling and resolved sideband cooling will be discussed, as will the frequency spectra
and Rabi oscillations with a single ion properly cooled through the two cooling
methods. The spectra enable us to estimate the average photon number n̄ of the ion,
which is related to the temperature of the ion.

4.1 Doppler Cooling

When an ion is illuminated by a resonant laser, the ion absorbs a photon from the
laser and experiences a net change in its momentum by the momentum of the photon
h̄kL in the direction of the beam:

P ′ = P + h̄kL (4.1)
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a)

b)

c)

Figure 4.1: Doppler cooling process. a) a particle moves to the right at velocity v while
a photon moves toward the particle with momentum h̄k. b) The particle
absorbs the photon and loses its momentum by h̄k/m, which is the amount of
momentum the photon carries . c) The particle emits the photon in a random
direction via spontaneous emission, leading to no net change in its momentum
on average. The particle repeatably goes through the processes a), b), and c),
and its average change in momentum is attributed to momentum change due
to the absorption, which corresponds to the reduction of its kinetic energy.
The diagram is adapted from William[72].

The ion that absorbs the photon becomes excited. Once the ion is excited, the
excited ion decays back to the initial ground state via spontaneous decay, and the
absorption and emission occur repeatedly. This transition is referred to a cyclic
transition, and S1/2 ↔ P1/2 in 40Ca+, which is cyclic, is used for the Doppler cooling
in our experiment.

Doppler cooling is performed in a weak-binding limit where the linewidth of the
involved transition is much greater than the harmonic frequencies of the trap. Many
absorptions and emissions occur while the ion completes one cycle of periodic motion.
In this limit, the ion can be considered as a free particle, the momentum change due
to photon scattering can be considered to be instantaneous, and the dynamics of ions
under the influence of the interacting laser can be described semi-classically [73] –
the dynamics of the internal state are described by quantum mechanics, whereas the
dynamics of the motional state follow classical mechanics as we formulate a radiative
force, which is a classical force, due to photon scattering in the following form:

F =
momentum transfer

time
= h̄kR (4.2)

where R is the scattering rate. Assuming the internal state of the ion is in the steady
state, the scattering rate is derived from the steady-state solution of Einstein’s rate
equations [60]:
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R = Γρee =
ΓΩ2

Γ2 + Ω2 + 4(δ − k · v)2

=
ΓΩ2

Γ2
B + 4(δ − k⃗ · v⃗)2

(4.3)

where ΓB = Γ2 +Ω2 is a power-broadened linewidth, and the k · v term indicates the
frequency shift seen by the moving ion due to the Doppler effect. The Doppler effect
makes the radiative force velocity dependent. In the low-velocity limit, Eqn. 4.3 can
be approximated to the first order of v by the Taylor expansion around v = 0:

R ≈ ΓΩ2

Γ2 + 4δ
+

8kδΓΩ2

(Γ2 + 4δ2)2
vz (4.4)

where, for simplicity, k ·v is replaced with vz assuming the Doppler beam propagates
along the ẑ direction. The linearisation around vz = 0 makes the radiative force be in
the form of F = F0+βvz – the radiative force consists of constant light pressure1 and
a force linearly dependent on the ion’s velocity. As the Doppler laser is red-detuned,
which means δ is negative, the shifted frequency becomes closer to the resonance
for the ion counter-propagating with the laser – the ion scatters more photons when
the ion is moving toward the laser than when the ion is moving away from it and
makes the coefficient of the v term β negative. The velocity-dependent force acts as
a drag force that gradually decelerates the ion. We can obtain the cooling rate as an
average rate of energy change in a unit of time:

(
dE

dt

)
cool

= ⟨Fvz⟩ =
ΓΩ2

Γ2 + 4δ
⟨vz⟩+

8kδΓΩ2

(Γ2 + 4δ2)2
⟨v2z⟩

= − 8h̄k2ΓδΩ2

(Γ2
B + 4δ2)2

(
kBT

m

) (4.5)

The excited ion decays to the atomic ground state via spontaneous emission, emitting
the photon in a random direction. The randomness of the emitted photon makes
the average momentum change due to spontaneous emission ⟨∆P ⟩ = 0, but the
discrete nature of the process causes Brownian-like motion, leading to diffusion in
the momentum space. The diffusion results in heating, and the heating rate is given
as

1The constant light pressure displaces the equilibrium position of the ion, and the ion is moved
back to the original position when the Doppler beam is switched off. This leads to relaxation
heating. The detailed analysis of this heating mechanism can be found in Ref. [60].
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(
dE

dt

)
heat

=
1

2m

d

dt
⟨p2⟩ = (h̄k)2

2m
Γρee =

(h̄k)2ΓΩ2

2m(Γ2
B + 4δ2)

(4.6)

The ion reaches an equilibrium where the cooling and heating rate become balanced,
and the Doppler temperature is given as

TD =
h̄(Γ2

B + 4δ2)

8δkB
. (4.7)

The Doppler temperature TD can be minimised by choosing δ = ΓB/2 and if the
intensity of the Doppler beam is set to be well below the saturation intensity, so that
ΓB ≈ Γ. Thus, the Doppler limit can be reduced to

TD,min =
h̄ΓB

2kB
≈ h̄Γ

2kB
(4.8)

4.2 Resolved Sideband Cooling

729nm

854nm

866nm

397nm

+1/2

−1/2

Figure 4.2: Simplified energy level diagram of 40Ca+ that indicates all lasers used in
resolved sideband cooling. The 854 and 866 nm lasers are used to empty
D5/2 and D3/2 respectively. The 397 nm laser drives σ− transition to prepare
the ion in S1/2,1/2, which can be driven by the 729 nm laser, reducing ion’s
motional quanta

Even when the temperature of the ion reaches thermal equilibrium at the Doppler
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limit, a significant fraction of the motional population still lies outside the motional
ground state. Those populations outside the motional ground state result in rapid
dephasing of different motional states as the coupling strengths of transitions vary
depending on the associated phonon number n and consequently hinder coherent
logic operations on the ion. That is why a subsequent cooling step is required. In our
experiments, resolved sideband cooling (SBC), which is the widely used sub-Doppler
cooling technique, is adopted to cool the ion to its motional ground state. Resolved
SBC is performed in the strong-binding limit where the linewidth of the transition is
much smaller than the harmonic frequency of the ion, so each sideband transition
can be resolved, and we can selectively drive each sideband transition.

Fortunately, with typical trap frequencies used in our experiment, the Doppler
temperature is cold enough to bring the ion into the LD regime, where the excited
ion spontaneously decays to the internal ground state predominately on the carrier
transition. Bringing the ion into the LD regime is a crucial prerequisite for resolved
SBC because spontaneous decay on the sideband leads to motional heating and
increases the final temperature of the ion. Fig. 4.2 summarises all lasers used in
resolved sideband cooling. There are two distinct ways to implement resolved SBC
in the experiments – pulsed and continuous SBC. We examined both schemes and
found that both allow for cooling the ion to about the same temperature. However,
the pulsed SBC takes a somewhat shorter time and is much less complicated. A
more detailed description of the methods will be given below.

4.2.1 Pulsed Sideband Cooling

Figure 4.3: Principles of the resolved SBC. The ion is driven on the red sideband, exciting
an ion from |g⟩ to |e⟩ while its associated motional quantum number is reduced
from n to n− 1. The curly arrow represents a spontaneous emission, and the
decay occurs predominately on the carrier transition, leaving the motional
quantum number n unchanged. The iterative absorption and emission cool
the ion to the motional ground state.
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As the name ‘pulsed’ may suggest, this protocol involves a series of pulses that
include the first-order red sideband, re-pumping and state preparation pulses. A
cooling sequence can be summarised as follows:

1. first-order red sideband pulse

2. re-pumping laser at 854 nm to empty D5/2 state

3. state preparation to S1/2,1/2 using σ+ polarised beam

4. repeat steps (1) to (3)

Each cycle starts with an application of the first-order red sideband pulse that induces
population transfer from

∣∣S1/2,mj=1/2, n
〉

to
∣∣D5/2,mj=1/2, n− 1

〉
for n ̸= 0, which is

indicated by the red arrow in Fig. 4.3, reducing the phonon number n by one unit
of motional quanta. We must bring the population of D5/2,1/2 state back to S1/2,1/2

to be able to repeatedly drive the red sideband transition. However, the lifetime of
the D5/2 state is approximately 1.2 s, so this long lifetime prolongs the whole cooling
process.

Figure 4.4: Diagram of flow of motional population during a single cycle of the cooling
sequence. an indicates the portion of population that stays in the same
motional state |n⟩ (non-cooling), and bn represents the population whose
motional quanta is reduced by one unit (cooling). The diagram is adapted
from Rasmusson et al.[74].

To accelerate the process, we use a re-pumping laser at 854 nm that empties the
population of D5/2 by driving a dipole transition D5/2 ↔ P3/2 – the population of
D5/2 is optically pumped to the S1/2 state via the P3/2 state. However, the P3/2 state
can decay to either sublevel of S1/2, but the S1/2,−1/2 state is undesirable because
this state is not addressed by the red sideband pulse that is precisely tuned close
to the resonance of S1/2,1/2 ↔ D5/2,1/2. Hence, we apply a σ+-polarised 397 nm
beam to transfer the population of S1/2,−1/2 to the desired S1/2,1/2 state. Assuming
the ion is in the LD regime, the deshelving of the D5/2,1/2 state, which involves
854 nm re-pumping and 397 nm state-preparation pulses, occurs predominantly on
the carrier transition: we can assume that the associated motional quantum number
is unchanged during the re-pumping process and effectively brings

∣∣D5/2,1/2, n− 1
〉

to
∣∣S1/2,1/2, n− 1

〉
, leading to the cooling of the ion. Each cooling sequence aims to

reduce the average phonon number n̄ by at most one unit of motional quanta.
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Fig. 4.4 illustrates the flow of the motional population during one SBC cycle.
Using Eqn. 3.17, the cooling probability an(t) and non-cooling probability bn(t) for
each n, which are shown in Fig. 4.4, are computed as

an(tp) = cos2(
Ωn,n−1tp

2
)

bn(tp) = 1− an(tp) = sin2(
Ωn,n−1tp

2
)

(4.9)

where tp is the length of the RSB pulse. We construct a column vector whose elements
correspond to the motional population pn for each n:

p =


p0

p1

p2
...

 (4.10)

The dynamics of the motional population by the single cooling cycle can be represented
by the following matrix:

A(t) =


1 b1(t) 0 · · ·
0 a1(t) b2t · · ·
0 0 a2(t) · · ·
...

...
... . . .

 (4.11)

where the diagonal elements indicate the probability that the motional state stays in
the same state, and the off-diagonal elements represent the cooling

p′ =


p′0

p′1

p′2
...

 =


1 b1(t) 0 · · ·
0 a1(t) b2t · · ·
0 0 a2(t) · · ·
...

...
... . . .



p0

p1

p2
...

 . (4.12)

The final motional population at the end of a series of cooling cycles can be obtained
by the following matrix equation:

Pfinal = AmAm−1 · · ·A1Pinitial (4.13)

where An is a matrix in Eqn. 4.11 with a pulse time t = tn for each n.

The final achievable motional ground state population p0 is strongly dependent
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on the pulse sequence: the pulse time for each RSB pulse and the number of cooling
cycles applied. This fact requires us to optimise our sequence such that we achieve p0
close to the unity taking a sufficiently short time for the whole series of cycles. The
main obstacle we face in terms of pulse optimisation is that the coupling strength of
the red sideband transitions varies with n, so there is no such single probe time that
leads to complete population inversion between

∣∣S1/2,1/2, n
〉

and
∣∣D5/2,1/2, n− 1

〉
for

all n (i.e. bn cannot be 1 for all n).

a)

b)

Figure 4.5: Pulsed sideband cooling with a constant pulse time with the initial n̄ = 30 a)
Rabi oscillation on the red sideband with the ion Doppler cooled. The dotted
line indicates the interaction time at which the excitation probability in the
Rabi oscillation becomes maximum. b) Motional ground state population p0
after 200 sideband cooling pulses with the different values of constant pulse
time.

Fig. 4.5(b) shows the p0 with different values of constant pulse time. The value
of the constant pulse time is selected by the Rabi oscillation on the red sideband
with an initially Doppler-cooled ion. We choose the pulse time such that the Rabi
oscillation on the red sideband reaches the first maximum, which indicates the change
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in n̄ by the transition becomes maximised. The maximum occurs at roughly the
same probe time even after some cooling cycles are performed. Fig. 4.5(b) shows
our choice of t is not optimal but brings p0 to close to the minimum possible value,
and the corresponding constant time tp can be easily determined by measuring the
Rabi oscillation on the red sideband.
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Figure 4.6: The motional ground state population p0 while the SBC pulses are applied,
following the two different pulse schemes: constant time (blue) and variable
time (orange). Initially, p0 increases more rapidly with the constant time
method, but the cooling rate significantly decreases afterwards.

The next approach is to vary the pulse time for each pulse. We first decide the
number of cycle applied nmax, and we choose the probe time for the first pulse as
t1 = π/Ωnmax,nmax−1, which is π time for motional state |n = nmax⟩. Then, we choose
π time for |nmax − 1⟩ for the pulse time of the subsequent RSB pulse. Finally, the
last pulse time is tnmax = π/Ω1,0. This pulse sequence ideally transfers the population
of |n⟩ for n ≤ nmax to the motional ground state |0⟩. If we achieve n̄ ≈ 30 after
Doppler cooling, more than 99% of total population lies in the motional state |n⟩
with n ≤ 200, so 200 RSB pulses should be sufficient to prepare the ion in the
motional ground state with fidelity greater than 99%.

Fig.4.6 compares the two schemes. The constant pulse time shows the motional
ground state population p0 initially increases much faster but also rapidly saturates
below 0.99. In contrast, the variable time method takes a shorter time to achieve p0
above 0.99.
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4.2.2 Continuous Sideband Cooling

In contrast to pulsed SBC, in continuous SBC, the red sideband transition is continu-
ously driven together with the re-pumping lasers at 854 nm. The lifetime of the D5/2

state is 1.2 s, which prolongs the cooling process, but the laser at 854 nm continuously
re-pumps any population of D5/2 to the P3/2 state, and the ions are adiabatically
transferred to S1/2. This re-pumping laser effectively broadens the linewidth of the
transition S1/2 ↔ D5/2, and a mathematical description of the dynamics is more
complicated than the case of the pulsed SBC2.

One caveat regarding the implementation of the continuous SBC is that the mea-
sured trap frequency through frequency spectra is different from the trap frequency
required for the continuous SBC because the re-pumping laser, which is continuously
switched on during the cooling, produces an AC Stark shift to D5/2. The re-pumping
laser, however, must be turned off while we measure frequency spectra of the ion
to avoid deshelving of the D5/2 state, and the measured trap frequency does not
account for the AC Stark shift by the re-pumping laser. In other word, we have to
measure the amount of AC Stark shift by the 729 nm laser.

The cooling rate and cooling limits are strongly dependent on the power of the
729 nm laser and the detuning. This requires us to optimise the laser parameters.

4.3 Temperature Diagnostic

After all cooling processes (Doppler cooling, SBC) are completed, we must ensure the
ion is properly initialised to its motional ground state by measuring its temperature.
To measure the temperature of the ion, we measure either the frequency spectra of
the ion, including the carrier and the first order of the red and blue sidebands or the
Rabi oscillation, because their features change depending on the ion’s temperature.
If the ion reaches its Doppler cooling limit (i.e. thermal equilibrium), a so-called
thermal state of the ion’s motion is given by

ρth =
∞∑
n=0

pn |n⟩ ⟨n| , pn =
n̄n

(n̄+ 1)n+1
(4.14)

where n̄ is the average phonon number. Using the generalised Rabi oscillation in
Eqn. 3.17, the Rabi oscillation of the ion in thermal state with n̄ can be written as
follows:

Pe(t) =
∞∑
n=0

pn
Ω2

n,m

Ω2
n,m +∆2

sin2

(
Ωn,mt

2

)
(4.15)

2The more rigorous mathematical description of the cooling process can be found in Ref. [75, 76]
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Figure 4.7: Numerical simulation of Rabi oscillation on the carrier with different n̄. The
contrast of the oscillation decays faster as n̄ increases.

where pn is defined in Eqn. 4.14. Eqn. 4.15 suggests that the frequency spectrum
and Rabi oscillation have different features, depending on average phonon number
n̄. For instance, Fig. 4.7 suggests that the visibility of the Rabi oscillation decays
due to dephasing of the different motional states and decays faster as n̄ increases.
Hence, the frequency spectrum and the Rabi oscillation can be used to estimate the
temperature of the ion. Fig. 4.8 shows experimental results of Rabi oscillation on the
carrier to support that argument: the visibility of Rabi oscillation on the carrier is
not rapidly washed out if the ion is sideband cooled, and the fit suggests its n̄ is 0.3.

If the average phonon number n̄ approaches zero, most of the motional populations
are in the motional ground state, and n̄ can be more straightforwardly estimated by
measuring the ratio of the heights of the first-order red and blue sideband spectral
peaks. From Eqn. 4.15, we can obtain an expression for the excitation probability of
the ion when the ion is driven by the first-order red sideband, and the expression can
be rewritten in terms of the excitation probability of the first-order blue sideband
Pe,rsb(t):

Pe,rsb(t) =
∞∑
n=1

pn sin
2

(
Ωn,n−1t

2

)
=
∞∑
n=0

pn+1 sin
2

(
Ωn,n+1t

2

)
=

n̄

n̄+ 1

∞∑
n=0

pn+1 sin
2

(
Ωn,n+1t

2

)
=

n̄

n̄+ 1
Pe,rsb(t)

(4.16)

By re-arranging Eqn. 4.16, we can write n̄ in terms of the ratio of red and blue
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Figure 4.8: Rabi oscillation on the carrier with the ion Doppler (upper) and sideband
(lower) cooled. The fits suggests the Doppler temperature and the sideband
temperature are n̄ = 18 and n̄ = 0.3, respectively.

sideband spectral amplitudes R = Pe,rsb(t)/Pe,bsb(t):

n̄ =
R

1−R
. (4.17)

We can simply estimate the temperature of the ion by looking at the ratio of heights
of red and blue sideband spectral peaks. For instance, if n̄ = 0, the ratio is zero as
the red sideband does not induce any population transfer if the ion is in the motional
ground state. Fig. 4.9 and 4.10 show frequency spectra including the carrier and
the first-order red and blue sidebands with the ion Doppler cooled and sideband
cooled, respectively. It is important to note that the excitation probability of the
red sideband frequency is nearly zero while the blue sideband and the carrier still
excite the ion if the ion is sideband cooled. This is because if the ion is in the
motional ground state, the ion is excited when it is driven on the resonance of the
blue-sideband transition, while it is decoupled from the laser when the laser is on
the resonance of the red sideband.

4.4 Heating Rate

The trapped ion experiences motional heating due to many different sources, including
the electrical noise of the trap electrodes. Unfortunately, the exact mechanism of
the heating is still unknown. It is important to measure the heating rate to make
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Figure 4.9: Motional spectra of the Doppler-cooled ion taken on S1/2,1/2 ↔ D5/2,1/2,
including the carrier and the red and blue sidebands. The trap frequency is
1.064MHz and the Rabi frequency is 80 kHz. The fits suggests n̄ ≈ 17(9),
which is consistent with n̄ given by the Doppler limit ≈ 17.2.

sure the temperature of the ions is kept sufficiently low while a single- or two-qubit
gate is driven. We use Eqn. 4.17 to measure the temperature. Thus, we measure
the red and blue sideband peaks in our measurement of heating rate, but in this
case, we insert a delay with a variable amount of time between the cooling and a
spectroscopic pulse. Fig. 4.11 illustrates that the average phonon number n̄ increases
as the length of the delay increases. Assuming the ion is heated at the constant rate
˙̄n, the fit estimates ˙̄n = 36.7(1) phonon/s. This magnitude of the heating rate is
somewhat higher than the typical value found in the linear Paul trap in the similar
size. This suggests there must be some heating sources, but unfortunately we could
not identity them. Reducing the heating rate has to be be a priority to implement
quantum gates with high fidelity.
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Figure 4.10: Motional spectral of sideband cooled ion. The trap frequency is 1.064 MHz,
and the Rabi frequency is 81.6 kHz. The fit suggests n̄ is 0.3(2).

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Delay time [ s]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

n

Figure 4.11: Averaged phonon number n̄ as a function of the length of delay time inserted
between the cooling and spectroscopic probes.
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Chapter 5

Experimental Setup

This chapter will present the experimental apparatus, which comprises a vacuum
system, lasers, associated optical setups, electronics that generate the required electric
and magnetic fields and an experimental control system. As we recently built a
macroscopic linear Paul trap, in the early stage of this PhD, we characterised the new
trap before we proceeded to the main experiment: we measured the atomic resonance
frequency and harmonic frequency of the trap and assembled and characterised optical
setups and the associated electronics to ensure they worked as expected. Preparing
the experimental apparatus for the main experiment required extensive collaboration
with my colleagues; I will cite their works to acknowledge their contributions.

5.1 Vacuum System

It is imperative to achieve an appropriate vacuum level inside a chamber that
accommodates trap electrodes because trapped ions can be ejected from the trap
by colliding with any other particles left in the vacuum chamber (background gas).
Storing ions as long as we desire (i.e. a few hours or even a few days) requires
an ultra-high vacuum (UHV) inside the chamber. The vacuum system includes a
vacuum chamber, associated vacuum pumps and an atomic oven. The vacuum system
was designed, assembled and initially characterised primarily by Oliver Corfield and
Johannes Heinrich. Typical design choices include the structure of the chamber, the
vacuum components and the materials used. In addition, achieving a UHV inside the
chamber involves several processes [43]: (i) bakeout of the system to eliminate gas
molecules adsorbed on the trap electrodes and the surface of the chamber, which degas
as the pressure inside the chamber decreases, (ii) initial pumping to ≈ 10−7 mbar
with a scroll pump and a turbo pump (iii) pumping further to UHV using an ion
pump. The details of chamber design, all vacuum parts and the procedures involved
in pumping the chamber to UHV with the relevant experimental results from the
initial characterisation are available in the PhD thesis of Oliver Corfield [56].
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Figure 5.1: Diagram of vacuum chamber with attached components and the lasers shooting
at the trap. The 729 nm laser is directed along the trap axis. The quenching
lasers (854 and 866 nm) and the Doppler cooling and state preparation lasers
(two 397 nm lasers) are co-propagating along the quantisation axis, which
is defined by an external magnetic field B. There are two sets of 397 nm
lasers: one counter-propagating to the quenching lasers, and the other is
directed perpendicular to the quantisation axis. These two lasers are used for
Raman interaction. Lastly, the photoionisation (PI) beam is also propagating
perpendicular to the quantisation axis.

The chamber is an octagon; it has one viewport on each side. One viewport has
the rf electrical feedthrough, which is connected to a helical resonator that produces
the required time-varying trapping field, and another is connected to an ion pump
that keeps the pressure inside the chamber below 10−11 mbar. The other viewports
are equipped with anti-reflective coated windows, and the lasers are delivered to
trapped ions through those windows. There is another window on the top of the
chamber. The window is connected to a tube that houses lenses that focus light
scattered from the ion to either a photomultiplier tube (PMT) or electron-multiplying
CCD camera (EMCCD) to better collect the fluorescence from the ion (see Fig. 5.7
for more details of the detection optics). The DC feedthrough that is positioned
on the bottom of the chamber is connected to a pair of end-cap electrodes and
compensation electrodes.

5.2 Lasers

In our experiments, cooling and all coherent logic operations on trapped ions are
performed via lasers; lasers at many different wavelengths are used in our experiment:
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375, 397, 423, 729, 854, 866 nm. The lasers can be mainly categorised into four
purposes: Doppler cooling, re-pumping, photoionisation and spectroscopy. The first
three categories will be discussed in this section. The details of the optical setup and
maintenance procedure concerning the primary spectroscopy laser at 729 nm will be
given in the next chapter (Chapter 6).

Raman Perpendicualr

397 A

397 B

Trap

Raman Parallel

AOM
50/50 

Beam Splitter Glass Plate Mirror
Dichroic 
Mirrorr

Wavemeter PM Fibre

854 nm

866 nm

397 nm

397 nm

Figure 5.2: Layout of optics in the first stage, including mirrors and beam splitters. Some
mirrors are omitted in the diagram to simplify the diagram.

The laser system is divided into two stages. In the first stage, the light beams
emitted from the commercial EDCLs are directed to the corresponding AOMs by
a set of mirrors, and the first-order diffracted beams from the AOMs are coupled
to the optical fibres and sent to the next stage. The second stage consists of the
mirrors and lenses that direct the beams to the trap at an appropriate angle with
respect to the trap axis (see Fig. 5.1).

All lasers, except the 866 and 854 nm lasers1, are fibre coupled before they are
delivered to the trap. The alignment of the beams with respect to the trap and
quantisation axis is unchanged as long as the optics after the fibre couplers stay the
same. This makes it easy to modify the optics in the first stage without the need

1We plan to make these two lasers fibre coupled as well.
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to re-align the beams to the trapped ion if we need to add optical components and
lasers: coupling the beam into the optical fibre is much more straightforward than
aligning the beam with respect to the ion.

5.2.1 Wavemeter Frequency Locking

The lasers other than the primary spectroscopic laser at 729 nm drive dipole tran-
sitions, whose linewidths typically are a few tens of MHz; hence, these lasers is
not required to have sub-kHz stability. All lasers involved in our experiment are
external cavity diode lasers (ECDL)2, and they are equipped with voltage modulators,
which control a piezo attached to the laser cavity so that the laser frequency can
be systematically manipulated by changing the voltage applied to the cavity piezo.
The frequencies of these lasers are stabilised via a PID feedback loop based on the
frequency measurement by a wavemeter3. The wavemeter, which is an optical inter-
ferometer, can measure the wavelength of a laser with an accuracy of approximately
2MHz, and the measurements are sent to the experimental computer. We used
a computer program to construct the PID controller, which digitally computes a
control signal based on the received measurements rather than an electric circuit
(analog controller). The dedicated program4 takes the frequency measurement from
the wavemeter, calculates the error signal ∆ = νtarget − νL and generates the control
signal. Then, the control signal is sent to the corresponding laser controllers via Eth-
ernet network, manipulating the frequency of the laser accordingly and suppressing
frequency jitter. The frequency locking with the wavemeter stabilises a laser within
a level of roughly 1MHz, which is much narrower than the linewidth of the dipole
transitions the lasers are targeting.

5.2.2 Acousto-optic Modulator (AOM)

A laser-induced coherent logic operation on a trapped ion requires precise timing
(≈ 1µs) and frequency manipulation of the laser pulse. We use an acousto-optic
modulator (AOM) that diffracts the light incident on a crystal in the AOM using
the acousto-optic effect to generate the pulse that satisfies those strict requirements.

2All commercial lasers from Toptica. The specific models of each laser: DLC pro 729 for the
729 nm laser, DLC pro 850s for the 854 and 866 nm lasers and DLC pro HP 397s for two 329 nm
lasers.

3HighFinesse WS8-10
4The laser locking program is written in Python. Johannes Heinrich initially wrote the program

to replace the commercial software provided by HighFinesse, a manufacturer of the wavemeter,
to be able to customise the program such that it supports features for the specific needs of our
experiment. Simon Webster subsequently modified the program for a better user interface and
compatibility with the new control system, ARTIQ.
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Figure 5.3: Schematic diagram of acousto-optic modulator (AOM), showing the beam
geometry of incoming and outgoing beams ({-1,0,1 }th-order diffracted beams)

A piezoelectric transducer is attached to the AOM crystal (see. Fig. 5.3), and
the diffraction efficiency varies with the rf power applied to the piezo [77]:

η =
I1
I0

= sin2

(
π

2

√
Pin

Psat

)
(5.1)

Pin and Psat are the power of the applied rf field to the piezo and the saturation
power at which the maximum diffraction efficiency is achieved, respectively. The
AOM also shifts the frequency of the light. The frequency of the mth-order diffraction
is shifted by the frequency of the applied acoustic wave fRF , which can be controlled
by controlling the frequency of the rf signal applied to the piezo: f → f +mFRF .
The AOM allows for fast power and frequency manipulation, and the AOM also
effectively serves as a switch for the laser – it turns the beam on and off with a short
latency (100s ns).

We routinely measure the optical power of the 729 nm laser, which is related to
the Rabi frequency, with different rf powers applied to the AOM (see Fig. 5.4) to
calibrate the AOM. We can measure the conversion factor between the optical power
and Rabi frequency by measuring the Rabi oscillation with the given optical power.
Consequently, we can relate the AOM rf power to the Rabi frequency, and this
calibration allows for a calculation of the rf power required to achieve a particular
Rabi frequency. This is convenient in performing many scan routines (i.e. frequency
spectrum to measure resonance frequency and Rabi-type time scan to measure the
Rabi frequency). We can easily set the frequency and time span range for the
frequency and time scan.

The AOM can be used to generate a polychromatic laser, which is required for
AC Stark shift compensation and implementation of a Mølmer–Sørensen gate [78].
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Figure 5.4: Normalised power of the first-order diffraction of the AOM as a function of
the rf power applied to the AOM. The rf power to the AOM is controlled by
ARTIQ. Its absolute power is not important, but the rf power in the ARTIQ
unit, which is the numerical value used in the ARTIQ script only matters.

If the rf signal applied to an AOM consists of multiple frequency components, each
tone of the signal causes frequency shifts individually to the diffracted beam by the
frequency of respective components; for example, if the rf signal has two frequency
components, f1 and f2, then the frequency of the first-order diffracted beam includes
f ′ = f + f1 + f2.

5.2.3 Doppler Cooling and State Preparation

Both Doppler cooling and state preparation are performed via a dipole transition
S1/2 ↔ P1/2 that is driven by a 397 nm laser. As shown in Fig. 5.1, both 397 nm
lasers are directed along the magnetic field, which makes an angle of 45 degrees with
reference to the trap axis. The wavevector of the Doppler beam is projected onto all
principal axes of the trap, and this geometry allows the single Doppler beam to cool
the ion’s motion in all three directions.

The beams are transmitted through respective polarising beam splitters (PBS).
The beams are horizontally polarised; both σ± transitions are used for Doppler cooling.
However, the beam for state preparation has to induce only a σ+ transition, which
optically pumps the population of S1/2,−1/2 into S1/2,−1/2. Hence, we additionally
place a λ/4 waveplate 5 in this beam to make the beam left-circularly polarised.
There are λ/2 waveplates before the PBSs, and those waveplates allow for systematic
control of the optical power of the beams sent to the ion by rotating the principal

5We can selectively prepare the ion in either state of the S1/2 sublevels with appropriate settings
of the λ/4 waveplate.
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axis of the waveplates.

5.2.4 Re-pumping

Dark Resonance

a)

b)

Figure 5.5: 866 and 854 nm frequency spectra. a) collected fluorescence during the time
bin of 200ms as we scan the frequency offset of the 866 nm laser. There
are several dips, indicating dark resonances. b) Population of the D5/2,1/2

state after the de-shelving the D5/2,1/2 state using a 854 nm laser for 6µs. As
the frequency approaches resonance, more of the population of D5/2,1/2 is
re-pumped to S1/2. This allows us to estimate the resonance frequency.

Two quenching lasers at 866 and 854 nm allow for optical pumping of the popula-
tion of D3/2 and D5/2 states, respectively. The 866 nm laser does not pass through an
AOM because the beam is always switched on, continuously pumping the population
of the D3/2 state out. In contrast, the 854 nm laser must be turned off while we
manipulate the qubit via the S1/2 ↔ D5/2 transition; the 854 nm laser is coupled to
an AOM, which acts as a switch.

We set the frequency of the 866 nm laser slightly blue detuned to avoid dark
resonances. The Doppler beam at 397 nm is red detuned. If the 866 nm laser is also
red detuned such that the detuning is comparable to the detuning of the Doppler
beam, these two lasers result in population trapping, stopping the ion from scattering
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397 nm photons and significantly reducing the Doppler cooling rate [79, 80]. As
shown in Fig. 5.5, the dark resonance modifies the spectral shape of the Doppler
transition and results in a narrow dip in fluorescence.

The 854 nm laser’s frequency must be tuned close to the resonance to efficiently
quench the D5/2 state, and we need to measure the resonance of the transition. We
prepare the ion in D5/2 using a resonant π pulse of the 729 nm laser, turn off the
729 nm laser and apply a 6µs pulse of the 854 nm laser. Then, we measure the
excitation probability and repeat this with different frequencies of the 854 nm laser.
As the frequency approaches resonance, the laser more quickly re-pumps the D5/2

state, reducing the excitation probability to zero, which is indicated by a dip in Fig.
5.5(b).

5.2.5 Photoionisation

As explained in Sec. 2.5, the loading of 40Ca+ into the trap is achieved by isotope-
selective photoionisation that involves two lasers at 375 and 423 nm. The first
excitation driven by the 423 nm laser is a resonant process, while the second excitation
driven by the 375 nm laser is not. The frequency of the 423 nm laser is locked using
the wavemeter, but the 375 nm laser runs freely without frequency stabilisation as
the linewidth of the laser is not crucial.

375nm

423nm

Wavemeter

PBS

Trap 

Figure 5.6: Optical setup for two photoionisation beam. Only the frequency of the 423 nm
laser is monitored. The two beams are combined on the PBS and launched
into the single optical fibre.

To increase the efficiency of photoionisation, the two beams must be maximally
spatially overlapped so that the two transitions involved in the loading process occur
simultaneously. Hence, we combine the beams on PBS and couple the combined
beams into a single optical fibre (see Fig. 5.6); the other end of the fibre coupler
outputs the beams where these two lasers are co-propagating. In addition, we use a
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telescope, which consists of two concave lenses, to collimate the beams with a smaller
beam size of 60µm.

5.2.6 Raman Beams

Fig. 5.2 illustrates the optics layout for the Raman beams. The Raman interaction
requires two beams at 397 nm whose frequencies are separated by the energy difference
between the two states we wish to couple. We adopt a single laser to realise the
required two beams: we split the single beam into two with the use of a PBS, and
each beam goes through independent AOMs. The two beams are derived from the
single laser source, so they have the same base frequency. We can make a controllable
frequency difference between the two beams by independently controlling the rf
frequencies applied to the respective AOMs. Similarly to the other lasers, the two
Raman beams are also fibre coupled. The coupling efficiency may drop when we
change the frequency of the rf to the AOM; to minimise optical power variation with
frequency, we fix the frequency of the rf to the AOM for the parallel beam, while the
driving frequency of the other AOM is varied when we want to tune the interaction
to different transitions (carrier and sidebands).

To make the Raman coupling, each beam must address a different type of
transition (π and σ±). For the given geometry of each beam to the quantisation axis,
if we linearly polarise both beams, then the parallel beam addresses only the σ±
transition, while the perpendicular beam drives the π transitions.

5.2.7 Imaging System

As explained in Sec. 2.3.2, we measure the qubit state of the ion by counting the
photons scattered from the ion while it is illuminated by the Doppler beam at 397 nm.
We must collect enough photons to discriminate two different photon distributions
resulting from two qubit states (S1/2, D5/2). Therefore, the state detection requires
an imaging system that sufficiently focuses the beam emitted from the ion down to
either a photomultiplier tube (PMT) or an electron-multiplying CCD (EMCCD6).
Jacopo Mosca Toba primarily designed and built the optical system for the state
detection. The detailed optical design and relevant simulation results are available
in his master’s thesis [81].

As can be seen in Fig. 5.7, the EMCCD cannot only discriminate the bright and
dark state of the ion, but also can tell which one is in the bright state when we have
multiple ions. However, as the PMT has a better quantum efficiency and allows for
much faster measurements, the PMT is more suited for the state detection unless

6Andor IXon Ultra 897
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Figure 5.7: Schematic diagram of optical elements involved in collection of fluorescence
from the ion, including lenses, mirrors, PMT, and camera. A pair of the
lenses focuses the beam scattered from the ion to the PMT and the other pair
of the lenses images the ion onto the EMCCD. This diagram was prepared by
Jacopo Mosca Toba and is reproduced with permission.

spatial information of ions are required. The detection device can be easily swapped
between the PMT and the EMCCD with the use of the customised flip mirror.

5.3 Power Supplies

We use both static and time-varying electric fields in the Paul trap. The static field is
generated by a high-precision voltage supply7. For the time-dependent electric field,
the rf signal is initially generated by the DDS on the ARTIQ board, which is our
main control framework, and the signal is subsequently amplified by a high-voltage rf
amplifier and a homemade helical resonator with a quality factor Q of approximately
600. The helical resonator resonates at a frequency of 12.38 MHz, which determines
the driving frequency of the trap field.

We have found the resonance frequency of the resonator slowly drifts day to day.
The drift may be attributed to ohmic heating from the resonator itself while we

7BK Precision BK9185B
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Figure 5.8: Image of a single (Left) and two ion (Right) trapped in our Paul trap using
the EMCCD. Each pixel is separated by 16µm. The diagram shows our
imaging system can spatially resolve each ion.

drive it. We monitor the reflected and transmitted signals from the resonator to
ensure our driving frequency is close to the resonance – the reflection is strongly
suppressed when the resonator is driven on the resonance. If the driving frequency
is somewhat detuned from the resonance, the amount of reflected signal from the
resonator increases, and the reflected power might damage the electronics connected
to the resonator. Also, if the resonator is not driven on resonance, we need more
input power to maintain the same output power – more heat is dissipated, making
the ground state cooling more difficult. Thus, before trapping an ion, we routinely
measure the resonance frequency of the resonator.

5.4 Magnetic Field Coils

We apply an external magnetic field to define the definite quantisation axis, which
determines the coupling strength of each transition (π, σ, δ) with the given geometry
of the lasers. There are three orthogonal sets of coils around the vacuum chamber.
The main coils generate the primary magnetic field. The vertical and horizontal
trim coils are used to precisely align the magnetic field along the desired direction
by generating a relatively small amount of the field along the respective directions.
As shown in Fig.5.10, the main coils are placed at an angle of 45 degrees to the trap
axis. The amount of magnetic field generated by the coils increases as the current
to the coils increases; we calibrate the coils as we measure the Zeeman splitting of
S1/2,1/2 and S1/2,−1/2 for different current in the coils. At the current status, we use
a current of 1.28A to the main coils to produce a magnetic field of approximately
0.32mT, which corresponds to Zeeman splitting of 8.96MHz between S1/2,1/2 and
S1/2,−1/2.
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Figure 5.9: Schematic diagram of a helical resonator indicating relevant physical dimension
of the resonator. The diagram is adapted from Deng et al.[82]

The magnetic field must be aligned to the direction of the 397 nm laser for state
preparation because this laser has to be circularly polarised to address only σ+. A
misalignment makes the laser address the σ− transition as well, reducing the fidelity
of state preparation. For the alignment, we turn on only the state preparation
laser and finely tune the direction of the magnetic field with trim coils until the
fluorescence level from the ion reaches a minimum. If the laser address only the σ+
transition, then initially, the ion scatters the photons from the laser because both
sublevels of S1/2 are populated, but the interaction optically pumps the population
of S1/2,−1/2 to S1/2,1/2. The ion stops scattering the photons, and the fluorescence
level becomes as low as background counts.

5.5 Micromotion Compensation

As discussed in Sec 2.1.2, an excess micromotion leads to heating, limiting the final
temperature after the resolved sideband cooling. Hence, we need to minimise the
amplitude of the excess micromotion. We first need to measure the strength of the
excess micromotion, and we use the rf-photon correlation method [83, 84]. The
micromotion is oscillatory at the driving frequency Ω of the trap field. As the ion
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Figure 5.10: The primary coils make a 45-degree angle to the trap axis. There are two
pairs of coils. One is on the x-y plane and perpendicular to the orientation
of the primary coil, and the other is oriented vertically. The direction of the
field is finely tuned by applying a current to each pair of coils.

a)

b)

Figure 5.11: rf-correlation signal whose amplitude corresponds to the amplitude of micro-
motion when micromotion is compensated (a) poorly and (b) correctly.
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Figure 5.12: Vertical compensation voltage at which the amplitude of micromotion be-
comes the minimum for each different axial compensation voltage for two
interrogation directions. We select a set of compensation voltages at which
the two lines (blue and red) intersect. This set corresponds to the case
where micromotion in the two interrogation directions becomes minimised
simultaneously.

moves back and forth, the oscillatory motion induces a Doppler shift, leading to
oscillation of the fluorescence at Ω synchronised with the phase of the driving field,
as can be seen in Fig. 5.11.

Therefore, as we measure the fluorescence synchronised with the driving field, the
amplitude of the oscillation is proportional to the amplitude of the micromotion. We
need to minimise the amplitude of the micromotion. The micromotion is derived from
the mismatch between the null of the static and time-varying fields. As illustrated in
Fig. 2.7, a set of additional electrodes ( Cx and Cy) near the trap electrodes allow
us to systematically move the null of the static field by applying static voltages to
corresponding compensation electrodes. Next, we need to find the appropriate set
of voltages that make the null of the static field coincide with the minimum of the
time-varying field. We measure the amplitude of the micromotion with a different
set of compensation voltages and find the set of compensation voltages that leads to
minimum of micromotion amplitude along the two direction simultaneously, which
corresponds to the intersection of two lines in Fig. 5.12
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5.6 Experimental Control

5.6.1 ARTIQ

We previously used a lab-built control system coded in visual C (details of the previous
control system can be found in Ref. [60, 76]). However, as that control system
limited the extension of pulse sequences to more complex ones, in the transition to
the new trap, we adopted Advanced Real-Time Infrastructure for Quantum physics
(ARTIQ) that is developed by M-Labs and the Ion Storage Group at NIST as a new
control system.

ARTIQ runs on Python, a high-level programming language that makes it easy to
describe complex experiments in a more intuitive way. The Python code is compiled
and executed on dedicated hardware, including customised field-programmable gate
arrays (FPGAs) and DDSs, with nanosecond timing resolution and sub-microsecond
latency. ARTIQ also features a graphical user interface (GUI) that allows users to
parametrise and schedule experiments. As ARTIQ is an open-source project, there
is a large user community where we can easily get support8.

5.6.2 Arbitrary Waveform Generator (AWG)

The realisation of quantum computation involves a sequence of laser pulses. A
laser pulse with controllable pulse length and frequency is generated by sending a
corresponding rf signal to an AOM that manipulates the power and frequency of
the laser. The simplest form of the pulse used in our experiment is a square pulse
with fixed frequency and amplitude. The square pulse can be generated by the DDS.
However, as more complicated operations are required to give greater degrees of
freedom in control of the qubit (i.e. pulse-shaping and multi-tone rf signal), it is
necessary to generate a pulse with a more complicated pulse profile, which the DDS
cannot generate. Hence, we adopt an AWG that, in principle, can be programmed
by a user to generate such complicated pulse shapes and sequences.

5.6.3 Line Trigger

The ambient magnetic field fluctuates as much electrical equipment around the
building, including air conditioners, experimental apparatus and lifts, produces a
magnetic field uncontrollably. The main power lines dominate the other sources.
To quantify the magnetic field variation due to the mains, we measure the carrier
frequency of S1/2,1/2 ↔ D1/2,1/2 in the standard Ramsey-type scan, but we put a
delay with a variable length between the state-preparation and the spectroscopic

8ARTIQ user community in github
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Figure 5.14: Carrier resonance frequency shift with the different line trigger delays. The
fit (solid line), modelled as a sum of sinusoidal functions at 50, 100, and
150 kHz, suggests the amplitude of each frequency: 0.99, 0.14 and 0.6µG

pulses. The carrier frequency is estimated by Bayesian inference because Bayesian
inference allows for a much faster estimation of the carrier frequency (see Chapter 8
for a more detailed methodology of Bayesian inference). Fig. 5.14 illustrates how
the carrier frequency varies with the length of the delay. We fit the measurements
to a sum of oscillations at 50, 100, and 150Hz. The fitting suggests the dominant
components are 50 and 150 Hz, which are odd harmonics of 50 Hz. This variation is
small enough that it is not strictly necessary to compensate for it, but it would be
nice to be able to.

Magnetic field fluctuation leads to fluctuation of the resonance frequency of
the qubit, resulting in faster dephasing between the qubit states. Therefore, we
synchronise each shot of the experiment to the mains cycle at 50Hz to ensure each
shot starts at the same position of the mains cycle and minimise the magnetic
field variation between shots. We use a line trigger that9, produces a TTL signal
synchronised to the main line: the line trigger generates a high TTL signal when the
mains voltage is above zero and a low TTL signal otherwise. At the end of each shot
of the experiment, the subsequent shot does not immediately begin but waits until
the TTL signal is in the rising phase.

The line trigger limits the rate at which each experiment shot can be repeated
to the maximum of 50Hz; ideally the experiment should not need the line trigger.
We added an additional pair of coils10 that is aligned along the axis of the primary

9Ollie Corfield constructed an electrical circuit for the line trigger. The circuit diagram, available
in his thesis[56]

10Two BSc students, Zeling Xiong and Zanxu Wang, built the compensation coils
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coils to generate a magnetic field that counteracts magnetic field variation due to the
mains. We use an Arduino microcontroller to generate the sinusoidal signal that is
out of phase with the reference to the measured phase of the magnetic field variation
at 50, 100, and 150Hz in Fig. 5.14 so that the additional field can compensate for
the laboratory magnetic field. We have observed the effect of the additional coils,
but this magnetic field compensation does not entirely cancel the field. Lack of time
prevented proper calibration of the compensation coils and testing of the Arduino,
which generates compensating signal, as we implemented the coils and the system
one month before I left the laboratory.
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Chapter 6

729 nm Laser

Our experiment employs several lasers at different wavelengths for different purposes.
Among the lasers used in our experiment, a laser at 729 nm has the most stringent
frequency and power stability requirements because this laser drives a narrow-
linewidth quadrupole transition S1/2 ↔ D5/2 for a coherent operation on the ion.

In preparing the experimental apparatus for the new trap, I was primarily
responsible for the initialisation of a new 729 nm diode laser that replaced the
original lab-made one. During the first year of my PhD, I upgraded the 729 nm laser
system, including the diode laser, the electronics-associated proportional-integral-
derivative (PID) controller for frequency stabilisation, and a tapered amplifier (TA):
I replaced the original lab-made 729 nm diode laser, PID electronics and TA with
commercial devices. Those upgrades provided a much more stable 729 nm laser beam
with more optical power available at the trap.

6.1 Pound—Drever—Hall (PDH) Locking

The lasers (at 397, 423, 854 and 866 nm) that drive dipole transitions for photoioni-
sation, Doppler cooling and re-pumping are locked to a wavemeter, and this method
results in roughly 1MHz laser frequency stability. This 1MHz frequency stability
is sufficiently low to controllably drive those dipole transitions, whose linewidth is
typically tens of MHz. However, the main spectroscopic laser at 729 nm requires a
sub-kHz linewidth as the atomic state and associated motional states of the ion are
coherently manipulated via the narrow-linewidth quadrupole transition. Hence, we
adopt Pound—Drever—Hall (PDH) techniques to stabilise the frequency of the laser
with the use of a high finesse cavity with F ≈ 600001 to the sub-kHz level[86, 87].

1The finesse of the cavity was measured almost ten years ago. The raw data are available in
Ref.[85]
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Figure 6.1: Overview of a 729 nm laser system, including the PDH locking comprising
optical and electrical elements and TA, which amplifies the power of the laser.
The red solid line represents the beam path of the 729 nm laser, whereas the
black line shows flow of the electrical signal.

6.1.1 Theory

L

Figure 6.2: Schematic diagram of the Fabry–Perot cavity. The total reflected beam is the
coherent sum of two beams: the beam promptly reflected by the first mirror
and the other beam leaking from the cavity after bouncing back and forth
within the cavity.

We start with the properties of a Fabry–Perot cavity, which is simply formed by a
pair of symmetric mirrors with high reflectivity r. We here consider monochromatic
light, whose electric field can be expressed as

Einc(t) = E0e
iωt. (6.1)

As illustrated in Fig. 6.2, when the light is launched into the Fabry–Perot cavity, a
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fraction of the light is reflected from the mirror the light is first incident on, but some
of the light is transmitted through the first mirror, reflected back and forth between
the two mirrors and eventually leaks through the first and second mirrors (i.e. out
of the cavity). The beam promptly reflected by the first mirror has a phase shift
of π, and the leakage beams acquire an integer multiple of the phase accumulation
of the light in one round trip inside the cavity 2ωL/c. The total reflected light is a
sum of all reflected beams from the mirrors and the cavity:

Eref = E0

[
rei(ωt+π) + trtei(ωt−2ωL/c) + tr3tei(ωt−4ωL/c) + · · ·

]
= E0

[
rei(ωt+π) +

∞∑
n=1

t2r2n−1e
i(ωt− ω

∆FSR
)

]
(6.2)

where t =
√
1− r2 is the transmissivity of the mirrors, and ∆FSR = c/2L is the free

spectral range of the cavity, which is the frequency spacing between the resonances.
The terms in the summation in Eqn. 6.2 represent a geometric series, so the infinite
sum can be simplified. We can obtain a reflection coefficient F , which is the ratio
of the amplitude of the reflected light to that of the incident light, in the following
form:

F (ω) =
Eref

Einc

=
r(eiω/∆FSR − 1)

1− r2eiω/∆FSR
. (6.3)

Fig. 6.3 shows a resonant dip, indicating no light is reflected on resonance, and
F (ω) varies depending on the frequency of the beam. The spectral shape of F (ω) is
symmetric around the resonance, so the reflected light from the cavity cannot be
used as an error signal for the feedback loop because F (ω) cannot tell which side the
of the resonance the frequency of the light currently lies on.

We modulate the phase of the light described in Eqn. 6.1 by β sin(ωt) where β
and ωm are modulation depth and frequency, respectively2:

Einc(t) = Eince
i(ωt+β sinΩt). (6.4)

Eqn. 6.4 is re-written using a Bessel function of the first kind Jn(β):

Einc(t) = Eince
iωt

∞∑
n=−∞

Jn(β)e
inωt (6.5)

where the resulting electric field contains multiple frequency components (the carrier
and the sidebands), and the strength of each component is given by Jn(β). If β < 2,

2In our experiment, phase modulation is achieved by an electro-optic modulator (EOM). An
EOM has a crystal that rapidly changes its refractive index in response to the electrical signal
applied to it, and it works much like a variable waveplate.
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Figure 6.3: Left: Reflectivity coefficient F (ω) of the Fabry–Perot cavity. Right: the PDH
error signal

then the carrier and the first-order sideband dominate:

Einc(r, t) ≈ Einc(r)[J0(β)e
iωt + J1βe

i(ω+Ω)t − J1(β)ei(ω−Ω)t] (6.6)

Plugging Eqn. 6.6 into Eqn. 6.3 yields

Eref (t) ≈ Einc(r)[F (ω)J0e
iωt + F (ω + Ω)J1e

i(ω+Ω)t − F (ω − Ω)J1e
i(ω−Ω)t]. (6.7)

A photodiode cannot directly measure the amplitude of electric field, but the intensity
of the light Pref = |Eref |2; the generated photo-current is proportional to the intensity.
After doing some algebra using Euler’s formula, the photo-current of the reflected
light is obtained:

Pref =Pc|F (ω)|2 + Ps{|F (ω + Ω)|2 + |F (ω − Ω)|2}

+ 2
√
PcPs{Re[F (ω)F ∗(ω + Ω)− F ∗(ω)F (ω − Ω)] cosΩt

+ Im[F (ω)F ∗(ω + Ω)− F ∗(ω)F (ω − Ω)] sinΩt}

+ 2Ω terms

(6.8)

where Pc and Ps are the power of the carrier and the first-order sidebands, respectively.
The reflected power includes several oscillating terms at three different frequencies:
a DC power from the carrier, two components at the modulation frequency Ω, and
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lastly, higher-order components derived from the inference between the sidebands.
We pull out the term in front of sin(Ωt), which contains the phase information, by
mixing the Pref with the modulation signal followed by the low pass filter, which
filters out any oscillatory signal. The error signal is given as

ϵ = 2
√
PcPs Im[F (ω)F ∗(ω + Ω)− F ∗(ω)F (ω − Ω)] (6.9)

The right panel of Fig. 6.3 shows an example of the error signal. In contrast to
the spectral shape F (Ω) of the Fabry–Perot cavity (see left panel of Fig. 6.3),
the error signal is asymmetric near the resonance. If the modulation frequency is
sufficiently big, then the sideband is far from the resonance. The sidebands will be
totally reflected (i.e. F (ω ± Ω) = −1), and the error signal become proportional to
Im[F (ω)]. If the laser is close to the resonance, the reflection coefficient F (ω) can be
approximated to [88]

Im[F (ω)] ≈ 1

π

δω

δµ
, (6.10)

where δω is detuning from the resonance, and δµ is the cavity linewidth. The error
signal ϵ in Eqn. 6.9 can be re-written as

ϵ ≈ 4

π

√
PcPs

δω

δµ
= Dδf (6.11)

where D = 8
√
PcPs

δµ
is proportionality. The error signal near resonance becomes a

linear function, and the proportionality D can be maximised when Pc = Ps.

6.1.2 High-finesse Cavity

The optical cavity serves as a frequency standard and is used to produce the error
signal for the PID feedback loop; the achievable minimum laser linewidth through
the PDH technique is strongly dependent on the finesse of the cavity. Our cavity was
constructed almost ten years ago, and thermal and optical properties were measured
previously. The relevant measurement results can be found in Ref. [60]. It is essential
to characterise our cavity. The high finesse cavity was constructed before I joined the
group, and the characterisation had been done, and the detailed experimental results
can be found in Ref. [60]. I replaced the old lab-made diode laser with a commercial
diode laser and modified the layout of optical elements for mode-matching. Thus,
here I will give a summary of what I have done.

Mode-matching

As we replaced the original lab-made 729 nm diode with the new commercial one,
we modified the optical layout to more efficiently use the space of the optical table.
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Figure 6.4: Gaussian beam in an optical cavity. If the mode-matching condition is met,
the beam traces itself while it is reflected back and forth by the mirrors.

We also reoptimised the coupling of the laser to the cavity such that the spatial
distribution of the input Gaussian beam matches the spatial mode of the cavity,
which is known as mode-matching. Mode-matching is important as a poorly matched
beam causes a loss of the beam power in the cavity, and the reflected beam contains
many different modes, which results in instability of the PDH locking.

The physical dimensions of the cavity and properties of the mirrors (curvature
of mirrors R and cavity length L) are available in Ref. [60]; we can calculate the
required beam waist of the incident beam onto the cavity. Our cavity is symmetric
(i.e. R1 = R2 = R), so the waist should be positioned at the midway of the cavity.
The waist of the fundamental mode of the cavity w0 is given as

w2
0 =

Lλ

π

√
g2

g1(1− g1g2)
, (6.12)

where

g1 = 1− L/R1 and g2 = 1− L/R2. (6.13)

A goal of optical system design is to make the collimated beam from the optical fibre
focus at the midway of the cavity with the beam waist equal to w0 of the cavity,
which is calculated above.

Mode Consideration

The fundamental mode of the cavity TEM00 (see Fig. 6.5) is preferable because
higher-order modes actually contain two or more modes with approximately the same
frequency, and this degeneracy is not shown in the fundamental mode. Therefore,
coupling to the fundamental mode results in the strongest locking signal, and the
locking is stable because there are no other modes nearby. However, we previously
used the TEM03 mode of the cavity when we operated the Penning trap. TEM03 is
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a) b)

Figure 6.5: Images of different spatial modes of Gaussian beam taken by a camera behind
the cavity. a) TEM00. b) TEM03.

the only mode whose frequency was close enough to the atomic resonance frequency
of the S1/2 ↔ D5/2 transition of 40Ca+ within an adjustable frequency range of the
AOM (200 MHz). The atomic resonance frequency is significantly reduced in the new
trap because a Paul trap does not require as strong a magnetic field as a Penning trap.
There exists a fundamental mode whose frequency is only roughly 193 MHz different
from the atomic resonance, which is within the range of the AOM bandwidth; thus,
we use the fundamental mode.

Thermal Properties

Eqn. 6.3 suggests the cavity resonance frequency to which the laser is locked is
determined by the spacing between the two mirrors in the cavity. The cavity spacing
drifts over time due to the thermal expansion of the mirrors, leading to the drift
of the cavity resonance frequency. Hence, the mirrors of our cavity are made of
low-expansion material to minimise the thermal effect on the resonance [60]. However,
we have still observed that the resonance frequency drifts in the short term (see Fig.
6.6 for the drift during the day) and in the long term (see Fig. 6.7 for day-to-day
drift).

The short-term drift is more problematic because some experiments last a few 10s
of minutes, and the time scale of the drift can be comparable to that of the experiment;
the frequency of the laser may significantly drift during a single experiment. This
drift during the day is due to residual thermal expansion of the cavity because the
cavity temperature is not close enough to the point at which the expansion coefficient
is zero. We remeasured the zero-crossing temperature Tzc of the cavity, and the fit in
Fig. 6.6 gives Tzc = 12.6 ◦C, which is inconsistent with the previous measurement of
17.4 ◦C from Ref.[60]. As we set the temperature of the cavity to the newly measured
Tzc, the rate of short-term drift is significantly reduced. The long-term drift, however,
is considered to be a result of the ageing of the cavity [60]. This long-term drift
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Figure 6.6: Left: the measured carrier frequency as a function of the temperature of
the cavity. The temperature of the cavity is estimated by a set voltage to
a thermistor to which the temperature stabiliser is locked. The conversion
factor between the set voltage and the temperature was measured previously
[60]. The fit suggests the zero-crossing temperature Tzc = 12.6 ◦C, at which
the thermal expansion of the cavity becomes zero. Right: the drift of the
carrier frequency with the cavity temperature is locked to different target
temperatures shown in the figure on the left.
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Figure 6.7: Daily drift of the carrier frequency. The carrier frequency drifts at the rate of
1.2(2) kHz/day. This rate is comparable to the rate previously measured in
the Penning trap (1.45 kHz/day) [75].
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also has been observed since the first use of the cavity, and the day-to-day drift rate
measured in Fig. 6.7 agrees with the value previously measured.

Leakage in the cavity

Leakage

Transmitted through 
cavity mirror

Figure 6.8: Images of the beam behind the cavity. Left: the bright dot in the middle
shows the beam going through the mirrors. Right: Image taken by moving
the camera to the left and focusing on the leakage beam. The leakage beam
looks much brighter than the beam through the mirrors.

We have observed power leakage from the cavity (see Fig. 6.8). The cause of
the leakage is still unknown. This may account for the relatively low power of the
reflected beam compared with the power of the incident beam: in principle, all of the
beam’s power should be reflected on the resonance. Fortunately, we do not see any
distortion of the error signal generated by the reflected beam or evidence that the
leakage affects the performance of the PDH locking. However, the leakage increases
the minimum required amount of light sent to the cavity. This might be problematic
if we do not have enough power sent to the TA. We split the beam using the PBS:
one of the beams is sent to the cavity, and the other goes to the TA. If you have
to send much more power to the cavity, then the power of the beam to the TA has
to be reduced. However, the power of input to the TA has to be at least 10mw, as
low power may cause permanent damage to the TA due to amplified spontaneous
emission.

6.1.3 Servo Bump

Although the control system is meant to suppress the noise injected into the system, if
the phase delay of the feedback signal is greater than π, then the control system acts
as a source of positive feedback (i.e. the control system amplifies the noise instead of
suppressing it). There are two ways to measure the servo bump: (i) measure the error
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Figure 6.9: Measurement of the servo bump. Top: power spectrum of the error signal,
Bottom: carrier and sideband spectrum with the sideband cooled ion. The
spectrum shows two peaks in addition to the strong carrier and blue sideband
resonance peaks, and these additional peaks are results of the servo bump.
The servo bump peaks indicated in the two figures are aligned because both
are attributed to the servo bump.
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Figure 6.10: Time evolution of the ion initially prepared in |g, 0⟩ while the ion is inter-
rogated by the laser tuned near to the frequency of the servo bump. The
population is rapidly equalised, indicating the laser incoherently interacts
with the ion and causes rapid decoherence.
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Figure 6.11: Schematic diagram of the optical setups and the associated electronics for
the noise eater. A photodetector measures the power of the 729 nm laser
transmitted through the AOM (0th order) and sends the resulting signal to
the Arduino. Then, the Arduino reads the measurement and calculates the
control signal that modulates the rf amplitude to the AOM to control the
power of the transmitted beam by the AOM (0th order).

signal and (ii) measure the atomic spectrum. The top of Fig. 6.9 shows the power
spectrum of the error signal with servo peaks at ≈ ± 675 kHz from the modulation
frequency (25 MHz). The position and the height of the servo bump, which quantify
the strength of the servo bump, vary depending on the PID feedback parameters,
which are set by the FALC, a loop filter from Toptica; the aim of optimising the
control system is to minimise the strength of the servo bump and move its frequency
as far from the spectral frequencies of 40Ca+ (carrier and sideband) as possible so
that the servo bump frequency does not overlap with the frequency of any sidebands
or carrier transitions. The servo bump causes phase modulation of the laser field,
leading to a sideband at the servo bump frequency. However, the sideband of the
laser due to the servo bump does not have a definite frequency but is an incoherent
mixture of many different frequencies around the servo bump frequency. As shown
in Fig. 6.10, the excitation probability quickly converges to one half because the
sideband of the laser at the servo bump frequency drives the ion incoherently. Thus,
if the servo bump frequency is close to the motional frequency, then it can drive
the sideband transitions incoherently, causing decoherence. Fig. 6.10 illustrates the
sideband by the servo bump driving the transition incoherently: the figure shows no
oscillatory signal but quickly converges to 0.5.

6.2 Noise Eater

If the laser is freely running, its power drifts over time due to the thermal drift of the
laser diode and the polarisation fluctuation of the laser, which affects the coupling
efficiency of the laser to the optical fibre. The drift makes the Rabi frequency time-
dependent and hinders coherent operations on a trapped ion. Therefore, we devise a
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Figure 6.12: Power drift of a 729 nm laser beam over 10 minutes with and without the
noise eater. The noise eater helps the power of the laser fluctuate less.

noise eater that stabilises the power of the laser using a PID feedback control. Fig.
6.11 illustrates the schematic of the optical setup for the noise eater. The laser first
goes through the AOM crystal, a fraction of the transmitted beam goes through the
leakage mirror, and most of the beam is reflected. A photodiode behind that mirror
measures the power of the transmitted beam whose fluctuation is correlated to the
power of the reflected beam, which is sent to the trap. An electric signal produced
by the photodiode, which is proportional to the power of the transmitted beam,
is an indirect measure of laser power to the trap. The signal from the photodiode
is sent to the Arduino microcontroller, and the Arduino calculates an error signal
Verr = Vmeasured − Vtarget. The Arduino is programmed to generate a feedback signal
following a standard PID algorithm, and the feedback signal is sent to a voltage
modulator for the AOM. The PID controller modulates the power of the beam going
into the zeroth order of the diffraction. This transmitted beam is directed onto the
secondary AOM, which manipulates the frequency of the beam, and sent to the trap.

One advantage of using the Arduino is that PID parameters are easily tuned
by reprogramming the controller. Different PID parameters have been tested and
optimised such that the controller’s response time is as short as 1 ms, and the averaged
deviation of the power during 20 min is less than 1% of the total input power.

To see the effect of the noise eater, we track the power of the beam after the last
fibre coupler, which is immediately before the trap, for 10 minutes. Fig. 6.12 shows
the comparison of the power drift with and without the noise eater, and the figure
suggests the noise eater can reduce the power fluctuation from 1.9 % to 0.5 %. This
is not a significant improvement tough.
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6.3 Tapered Amplifier

The primary spectroscopic laser at 729 nm is located next to the room where all the
other lasers and the vacuum chamber are located because the 729 nm laser is placed
on a separate optical table for better acoustic isolation. There was no room for the
cavity and PDH electronics on the main optical table, on which the trap is located,
when I set up the new 729 nm laser3. Therefore, the 729 nm laser is delivered to
the trap through the 5m of room-to-room optical fibre. The optical power of the
laser is significantly reduced because the laser is coupled to and transmitted through
the long room-to-room optical fibre and the many optical elements on the beam
path. To keep the power of the beam at the trap centre as high as is required for
the experiment, we must amplify the power of the beam and use a TA for power
amplification.

We previously used a lab-made TA4. However, the amplification of the TA has
gradually reduced as the TA ages, and the output power of the TA significantly
drifts during the day due to the thermal effect, making the Rabi frequency of the
laser time-dependent. We decided to buy a new commercial TA and replaced the old
TA with the commercial one5.

3As we no longer operate the Penning trap, we can remove some optical elements for the Penning
trap. Because there is now space for the 729 nm laser, we plan to transport the 729 nm laser onto
the main optical table. This move would eliminate the need for 5 m of optical fibre, through which
noise can be injected.

4The original TA was designed and constructed by Joseph Goodwin, a previous PhD student.
The physical dimension and details of associated electronics, such as a temperature stabiliser and
safety circuit, can be found in his PhD thesis [60]

5MOGlabs MOAL-002
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Chapter 7

Coherent Control of a Single Ion

Suppose we wish to use a trapped ion as a qubit and utilize this qubit for quantum
computation and quantum simulation. We must first be able to control the quantum
state of the ion coherently. The quantum system realised by a trapped ion comprises
an atomic state defined by the atomic structure of the ion and a motional state
driven by the trapping potentials. Complete control of the trapped ion involves the
coherent manipulation of the motional states and the atomic state of the ion, and
those two degrees of freedom can be coupled and coherently manipulated through
the carrier and sideband transitions [89, 90].

Deterministically engineering an arbitrary quantum state is a long-lasting goal
in quantum information science [91]. In theory, we can prepare any states we want
from any well-defined initial state, which is typically |g, n = 0⟩ in our experiment,
using a combination of the carrier and sideband transitions [92, 93, 94]. However,
there are many aspects where the dynamics we can drive in practice differ from the
theoretically available interactions. For example, if we consider the perfect two-level
system, then we can ignore off-resonant interactions. However, the atomic energy
structure of the ion involves many other levels, and the motional states of the ion
consist of an infinite set of discrete levels. In many cases, we ignore those interactions
with the use of approximations (e.g. rotating wave approximation). However, the
off-resonant coupling of the light field to those additional levels, which we wish to
ignore, results in unwanted effects, hampering the coherent control of the trapped-ion
qubit [95, 30]. We must consider those off-resonant effects when realising single and
two-qubit gates with high fidelity.

This chapter aims to address off-resonant effects: off-resonant excitation and AC
Stark shift. We numerically study the effect of off-resonant excitation and discuss
how this excitation can be significantly suppressed by shaping the driving pulse.
We measure the AC Stark shift due to off-resonant coupling to the carrier when we
drive the first-order sideband and attempt to compensate for the frequency shift by
applying a compensation pulse, which is simply an additional pulse that produces

76



another AC Stark shift to balance the shift by the off-resonant carrier. We prepare
the superposition of multiple motional Fock state |n⟩ using only the carrier and the
first-order sideband transitions with AC Stark shift compensation applied. With
the prepared motional superposition state, we perform Ramsey interferometry to
infer the quantum coherence stored in the motional states by observing the inference
pattern the state exhibits.

7.1 Off-resonant Coupling

When we drive the carrier or sideband transitions, it is impossible to address exclu-
sively carrier or sideband transitions; for instance, when we address the first-order
red sideband, we simultaneously drive the carrier and blue sideband transitions
off-resonantly. There are two possible effects due to the off-resonant coupling: off-
resonant excitation and AC Stark shift. In this section, we attempt to evaluate the
errors caused by the undesirable off-resonant effects and present the methods used
to counteract them.

We expect the magnitude of the off-resonant effect to scale as Ω2/δ2, where δ is
the detuning with respect to the resonance of the transition under consideration,
and Ω is the Rabi frequency of the driving field. Assuming that the ion is in the
Lamb-Dicke regime, the Rabi frequency of the sideband is much weaker than that of
the carrier. Thus, when we drive the carrier transition, the off-resonant coupling to
each sideband does not significantly affect the dynamics induced by the carrier; the
off-resonant coupling is ignored. However, when we drive the sideband transition, the
off-resonant carrier is relatively strong, and we cannot ignore it – we mainly focus on
the adverse effects of the off-resonant carrier when driving the sideband transition .

7.1.1 Off-resonant Excitation

If the detuning δ of the off-resonant interaction is sufficiently large compared to
the Rabi frequency, δ ≫ Ω, then the off-resonant coupling does not induce any
significant population transfer between the states, but in certain circumstances, the
dynamics due to unwanted off-resonant coupling cannot be completely neglected.
Fig. 7.1 shows a numerical simulation of Rabi oscillation on the blue sideband with
the off-resonant coupling excluded and included in solving the relevant optical Bloch
equations. If we completely neglect the off-resonant interaction, the pulse induces a
complete π rotation, transferring |g⟩ to |e⟩. However, if the off-resonant interaction is
present, the fast oscillation at approximately the trap frequency ωz occurs in addition
to the smooth transition from |g⟩ to |e⟩. If the pulse time is an integer multiple of
the off-resonant carrier period ≈ 2π

ωz
, then the off-resonant excitation results in no
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Figure 7.1: Time evolution of initially prepared |g, 0⟩ state while the blue sideband is
driven. Corresponding carrier Rabi frequency ΩC is 80 kHz, and the trap
frequency is 1 MHz. Laser parameters are the same for both cases. Top: the
off-resonant carrier is not included. The pulse leads to π rotation. Bottom:
the off-resonant carrier is included with the inset showing the zoom-in of the
boxed area in the main figure. The pulse does not cause π rotation because
the pulse is no longer resonant to the transition due to the AC Stark shift.
The fast oscillation shown in the inset figure is attributed to the off-resonant
carrier.
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perturbation. However, in general, satisfying this condition is not always possible.
If the process involves several pulses, then even the small modification propagates
throughout the entire process, leading to a substantial decrease in the fidelity of
operation induced by the sequence of the pulses.

The off-resonant excitation can be suppressed by shaping the driving pulse such
that the pulse is smoothly turned on and off [96, 97]. Fig. 7.3 visualises the dynamics
of the two-level system using the Bloch sphere representation. The ion is initially in
|g⟩, which is represented by a state vector R⃗ = (0, 0, 1), and the state vector rotates
around the axis on the Bloch sphere corresponding to the dressed-state eigenvectors,
which are given as

|d⟩ = cos (θ/2) |g⟩+ eiϕ sin (θ/2) |e⟩

|u⟩ = sin (θ/2) |g⟩ − eiϕ cos (θ/2) |e⟩
(7.1)

where θ and ϕ are polar and azimuthal angles in the Bloch sphere. If the Rabi
frequency is zero, the dressed-state eigenvectors are equal to the bare states, |g⟩ and
|e⟩, leading to θ = ϕ = 0. If the off-resonant field is applied instantaneously (i.e.
square pulse), the state vector rotates the axis on the Bloch sphere at angles θ and
ϕ, which is indicated by W⃗ in Fig. 7.3(a). On the other hand, if the Rabi frequency
is ramped up sufficiently slowly, satisfying the adiabatic condition τ ≫ π/δ where τ
is a pulse shaping time and δ is a detuning frequency, then the rotation axis slowly
moves from W⃗ 1, which corresponds to θ = ϕ = 0, to W⃗ 2 in Fig. 7.3(b), and the
state vector adiabatically follows it. If the Rabi frequency is ramped down back to
zero, the process returns all populations back to |g⟩ (see Fig. 7.2(b)). If the driving
field is on resonance, the adiabatic condition indicates that the shaping time τ has
to be infinitely long, and consequently, a shaped pulse induces the same dynamics as
a square pulse (see Fig. 7.2(c)). The pulse shaping can significantly reduce an error
due to off-resonant excitation.

The precise shape of the pulse is not crucial as long as the adiabatic condition
is satisfied; in our experiment, the amplitude of our pulse follows a squared-sine
envelope:

Ω(t) =


Ωpeak sin

2( πt
2τ
) 0 ≤ t < τ

Ωpeak τ ≤ t < tpulse

Ωpeak sin
2(

π(t+τ−tpulse)
2τ

) tpulse ≤ t < tpulse + τ

(7.2)

where the area under the curve, which corresponds to the amount of rotation by the
driving field, is preserved (i.e. ttotal = tpulse where tpulse is the pulse length of the
square pulse) whether we use the square-pulse or amplitude-modulated one.
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c) off-resonance

a) Pulse shape

b) on resonance

Figure 7.2: Effect of amplitude modulation of the driving pulse (a): amplitude of the
driving pulse. We select τ such that it meets the adiabatic condition. Time
evolution of initially prepared |g, 0⟩ while the carrier is driven (b) on resonance
and (c) off-resonantly with δ = 500 kHz(b). The carrier Rabi frequency is
80 kHz and pulse shaping time τ is 3µs. The interaction time is set to be the
π time (6.25µs). The interaction completely inverts the initially prepared
|g⟩ to |e⟩, and the complete inversion is achieved whether the pulse is square
or shaped when the carrier is driven on resonance. However, if the carrier
is driven off-resonantly, the square pulse leads to the oscillation, whereas
the shaped pulse initially excites |g⟩ but brings it back to |g⟩, leaving no
population in |e⟩.
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Figure 7.3: Dynamics of state vector driven by off-resonant field (laser parameters are
the same as in Fig. 7.2(c). Ω0 = 80kHz and δ = 500 kHz). Left: square
pulse. The state vector rotates around a vector W⃗ , which is represented by
the dressed-state eigenvector when the system is driven by a square-shaped
off-resonant field. Right: shaped pulse following Eqn. 7.2 with τ = 3µ s. The
dressed-state eigenvector is initially aligned along W⃗ 1, which is (0,0,1) in
the sphere, and slowly moves to W⃗ 2 as the Rabi frequency Ω is ramped up,
and the eigenvector moves back to W⃗ 1 as Ω slowly decreases to zero. The
state vector follows the trajectory of the eigenvector; the population of |g⟩ is
partially excited and returned to |g⟩.
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Figure 7.4: Frequency shift of the first-order blue sideband transition with reference to
the first-order blue sideband resonance frequency measured at low power
(Ωcarrier/2π = 5 kHz ). The fit curve is modelled by Eqn. 7.3, showing that
the measurements are consistent with the theory.

7.1.2 AC Stark Shift Compensation

Apart from off-resonant excitation, the off-resonant coupling produces an AC Stark
shift. The shift introduces unwanted phase evolution while the interaction is driven,
and consequently, the dynamics diverge from the one we desire. Typically, the trap
frequency is much higher than the Rabi frequency (δ ≫ Ω), and in this limit, the
amount of AC Stark shift is approximated to the following:

∆SS =
h̄Ω2

2δ
(7.3)

where Ω and δ are Rabi frequency and detuning, respectively.

We can compensate for the shift by applying an additional pulse that produces
the same amount of the shift in the opposite direction so that those two shifts
can cancel each other [30]. Fig. 7.5 illustrates the method for the case in which
we drive the first-order blue sideband. If the detuning of the additional pulse lies
midway between the second- and third-order red sidebands (i.e. δ = −2.5 · ωz), then
the detuning is sufficiently far away from the resonance of any transitions nearby;
therefore, the additional pulse does not strongly drive any transitions, and we can
ignore off-resonant excitation due to the additional pulse. If the Rabi frequency
of the additional pulse is set such that the pulse gives a carrier Rabi frequency of√
2.5 · Ω where Ω is the carrier Rabi frequency of the blue sideband, then the AC

Stark shift by the additional pulse can cancel the AC Stark shift due to the first-order
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Figure 7.5: Frequency and Rabi frequency (power) of the first-order blue sideband and
corresponding compensation pulse. Rabi frequency (

√
2.5ωz) and detuning

(−2.5Ωz) of the compensation pulse are set such that the AC Stark shifts
induced by the compensation pulse and the driving BSB pulse have the same
magnitude but in opposite directions.

blue sideband:

∆SS,tot =
h̄(
√
2.5Ω)2

−2.5 · 2ωz

+
h̄Ω2

2ωz

= 0 (7.4)

However, in practice, it is almost impossible to precisely set the Rabi frequency
for each pulse. Therefore, we measure the net AC Stark shift using the standard
Ramsey method where the two resonant π/2 pulses are applied, and the pulses are
separated by delay τ . The second π/2 pulse has a variable phase ϕ relative to the
phase of the first pulse. We measure the internal state of the ion at the end of the
sequence as we vary the phase ϕ, giving an oscillatory signal (see. Fig. 7.6(a)).

When driving the first-order sideband transition, the resonance frequency of
the transition is shifted by the off-resonant carrier, but when we turn off the laser
and allow the system to freely evolve for τ , the resonance frequency returns to the
unshifted frequency. This frequency difference due to the AC Stark shift gives the
states a phase e±ϕ where ϕ = ∆SS,netτ , giving a phase offset in Ramsey fringes
∆SS,netτ . To find an appropriate Rabi frequency of the compensation pulse with
the given detuning δ = ±2.5ωz, we perform the Ramsey experiment with a different
compensation pulse optical power by modulating the RF power to the corresponding
AOM. As shown in Fig. 7.6(b), the measured phase offset varies with the RF power
to the AOM, and we can obtain the right compensation amplitude by fitting the
measurement to a linear function. However, the phase offset also becomes zero if
this phase offset turns out to be an integer multiple of 2π. Therefore, we perform
another Ramsey with the compensation parameters we obtained from the previous
measurement, but with a different amount of delay to ensure that the phase offset is
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a) b)

Figure 7.6: Ramsey phase scan for AC Stark shift compensation. Left: Ramsey phase
scan. The phase offset in the oscillation corresponds to the phase shift due to
the net AC Stark shift, ∆SS,drive +∆SS,comp. Right: Measurement of phase
offset as we vary the Rabi frequency of the compensation pulse, which is
quantified in ARTIQ units because we cannot directly measure the optical
power of the compensation pulse. We select the ARTIQ amplitude such that
the phase offset becomes zero.

zero, not an integer multiple of 2π.

7.2 Motional Ramsey Interferometry

The motional degree of freedom of the ion is another source of quantum coherence
in addition to its atomic states, which typically define a qubit, and here, we want to
study multilevel coherence associated with the ion’s motional state. The motional
superposition state that consists of more than two basis states manifests multilevel
coherence; the level of coherence is determined by the choice of basis states. The
straightforward choice of basis states in the harmonic oscillator, which occurs in the
case of a trapped ion, are the Fock states of motion |n⟩. A state |ψ⟩ =

∑
n an |n⟩

where an is a state amplitude associated to each Fock state |n⟩ can be defined as a
k-coherence state if it has k non-zero state amplitudes an [98, 99].

However, it is not straightforward to infer the quantum coherence associated with
the motional state because this state is not directly measurable. To circumvent this
issue, we use a mapping operation that maps our state into the measurement basis.
These creation and mapping operations require coherent control of the ion, and we
use the techniques explained in the previous section to realise those operations with
high fidelity.
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a) b) c) d)

Figure 7.7: Synthesis of pulse sequence that creates (|0⟩+ |1⟩+ |2⟩)/
√
3. (a): Synthesis

procedure begins with the desired state, and the highest motional state |2⟩ is
transferred to |1⟩ by the red sideband transition (b): all of the population
of the highest motional state, now |1⟩, is moved to |g⟩ by the drive on the
carrier. (c) and (d): The same procedure is repeated until the state arrives in
the motional ground state.

7.2.1 Creation of Motional Superposition States

To study the quantum coherence associated with the motional degree of freedom, we
first have to create a superposition of motional Fock states. An arbitrary motional
superposition state can be created using a combination of the carrier and sideband
transitions [92, 94]. Fig. 7.7 illustrates the procedure by which we can construct
the pulse sequence to prepare the (|0⟩+ |1⟩+ |2⟩)/

√
3 state from |g, 0⟩, which is the

typical initial state after the ground state cooling in our experiment. The procedure
shown in Fig. 7.7 begins with the target state and transfers all of the population of
the highest occupied motional state |2⟩ to |1⟩ by applying a resonant π pulse on the
red sideband. In the new highest occupied motional state |1⟩, the associated qubit
state is a superposition of |e⟩ and |g⟩, and we bring it all to |g⟩ with the carrier. We
iterate the same process until the state finally arrives in |g, 0⟩. We take the adjoint
of the sequence that generates forward operation to create the required superposition
from |g, 0⟩.

After creating the motional superposition state, we measure the motional distri-
bution of the state by driving the state on the resonant blue sideband. Using Eqn.
3.17, the excitation probability can be computed as follows:

Pe =
∑
n=0

pn sin
2 (

Ωn,n+1

2
t) (7.5)

Fig. 7.8 gives the measured Rabi oscillations on the blue sideband after different
superposition states are created and the theoretical predictions, showing the created
states by the creation operations are consistent with the desired superposition states.

7.2.2 Projective Mapping Operation

To infer the quantum coherence associated with the motional state of the ion, we must
be able to measure the full motional state of the ion, not just the state amplitudes.
In the ion trap, however, only the internal state of the ion is accessible via state-
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Figure 7.8: Time evolution of each state indicated while the blue sideband transition is
driven. The expected oscillation for each state (solid) is highly consistent
with the measurement results, suggesting that the state creation operation
performs with high fidelity.
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Figure 7.9: Time evolution of the |g, 0⟩ state during the creation of (|0⟩+ |1⟩+ |2⟩)/
√
3

and measurement mapping that bring the state to the excited state. There is
a fast oscillation while the sideband transitions are driven, resulting from the
off-resonant carrier.

dependent fluorescence, and the motional state is not directly measurable. Therefore,
we map the target state and any states orthogonal to the target states to the different
internal states, and this mapping operation enables measurement on the target state
by measurement on internal state of the ion:

Pe = ⟨e| Um ρU †m |e⟩

= ⟨ψtarget| ρ |ψtarget⟩ = |⟨ψtarget|ψ⟩|2
(7.6)

where Um is the unitary operator associated with the mapping operation, and ρ is
the density matrix of the state.

If the target state consists of two motional Fock states, the required mapping
protocol can be achieved by simply reversing the pulse sequence for the creation of
the target state – this mapping protocol is exemplified by the second π/2 pulse in
two-level standard Ramsey interferometry. However, in general, this argument is
invalid as the adjoint of the creation sequence does not necessarily result in mapping
any states orthogonal to the target state to the other atomic state. For instance, the
measurement mapping protocol for (|0⟩+ |1⟩+ |2⟩)/

√
3 can be be given as

Um(|g, 0⟩+ |g, 1⟩+ |g, 2⟩) ∝ |e, λ1⟩

Um(|g, 0⟩ − 2 |g, 1⟩+ |g, 2⟩) ∝ |g, λ2⟩

Um(|g, 0⟩ − |g, 2⟩) ∝ |g, λ3⟩

(7.7)

where |g, 0⟩ − 2 |g, 1⟩ + |g, 2⟩ and |g, 0⟩ − |g, 2⟩ are one of examples of basis states
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Figure 7.10: Interference patterns of the motional superposition states indicated on the
figure. With the use of the certifier defined in Eqn. 7.9, the oscillatory
interference patterns can suggest the order of coherence associated with the
states to be tested.

orthogonal to the each other and the target state, and λi can be an arbitrary state
since the state detection on atomic states will effectively trace out the motional degree
of freedom. There must be an infinite set of sequences that generate the required
mapping operation. When we select our protocol among the many candidates, our
criterion is that the sequence involves the least number of pulses, and the entire
sequence takes the shortest pulse time for each pulse to minimise errors due to
non-zero detuning and power drift [100] (the actual values for the creation and
mapping sequence are available in Ref. [56])

7.2.3 Interference Pattern

Using a qubit, which is a two-level system, we can observe an interference pattern
by performing the simple two-level Ramsey experiment, which is analogous to a
double-slit experiment in optics. Here, we wish to extend the Ramsey method to a
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multilevel system (e.g. harmonic motion of a trapped ion), allowing for certifying
higher-order coherence.

We now have all of the ingredients for measuring interference patterns with which
the motional coherence can be inferred. For the state consisting of two motional Fock
states (e.g. (|0⟩+ |1⟩)/

√
2), the interference pattern can be obtained using standard

two-level Ramsey interferometry where the measurement mapping operation can be
achieved simply by reversing the creation sequence. Here, we wish to extend the
method to higher-order level coherence.

Once the target state is created, the state ρ freely evolves under the system
Hamiltonian with a single controllable parameter Uf(ϕ) where ϕ is phase acquired
during the free-evolution and is determined by the free-evolution time, and the
mapping operation followed by the projective measurement on the qubit state, which
effectively performs a measurement on the target state, giving an interference pattern
as a result of interference between the motional states:

Pϕ = ⟨e| Um Uf (ϕ) ρU †f (ϕ)U
†
m |e⟩ (7.8)

In our experiment, instead of inserting a delay between creation and mapping
operations, which allows for free-evolution, we add a phase offset to the applied laser
field that drives the interaction as the phase acquired during the free-evolution can
be interpreted as a phase offset with respect to the phase of the laser field – the
phase offset is controlled by shifting the phase of the laser by −ϕ, +ϕ, 0 for the red,
blue and carrier pulses of the mapping protocol.

Fig. 7.10 illustrates the interference patterns of different motional superposition
states. Then, the oscillatory feature of the patterns resulting from interference
between the motional state can be used to determine the order of the input state,
using the certifier in the following from [101]:

C =
M3

M2
1

, whereMn =
1

2π

∫ 2π

0

P (ϕ)ndϕ (7.9)

where Mn is an nth order statistical moment.

There is a threshold for each order of coherence, and the C value of the pattern
of k-coherence must exceed the threshold value associated with the k-coherent state.
Thus, we can certify the order of the superposition state by measuring the value of
C associated with the interference pattern derived from the state and compare the
value of C with the threshold for the order we want to certify. We measure the C
value for each pattern we obtained, and the value of C for each state agrees with this
argument. For example, the 3-coherent state ((|0⟩+ |1⟩+ |2⟩)/

√
3) gives C of 1.54,
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which is well above the threshold of 3-coherence (1.25) but well below 4-coherence
(1.86). When we applied the certifier to 4-coherent state, the value of C for the state
was measured to be 1.35. This is even below the threshold for 3-coherence. Hence,
in this case, the certifier fails to verify the order of the state, but this result proves
the certifier does not overestimate the order of coherence. That is, the certifier does
not produce false positives.
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Chapter 8

Bayesian Estimator

The coherent manipulation of trapped ions requires the accurate calibration of
experimental parameters such as the frequency and power of a driving laser. Most
logic operations assume that those parameters are stationary. In practice, however, it
is inevitable for the parameters to drift over time; therefore, it is critical to frequently
and accurately calibrate them to ensure that the dynamics we are driving are the
ones we desire. In our experiment, the resonance frequency of the reference cavity,
which is used for frequency stabilisation of the spectroscopic laser at 729 nm, drifts
at a rate of 1 kHz/hour due to thermal fluctuations during the day. Furthermore, its
power noticeably drifts in the long term, leading to different Rabi frequencies after a
few hours, although the power of the 729 nm laser does not significantly drift during
the single experiment, which takes several minutes. Hence, we must calibrate the
laser from time to time during the day.

The typical method used to measure the frequency and power of the laser,
which is related to the Rabi frequency, is to measure the excitation probability
and fit it to a model that relates this probability to the parameters that must be
estimated and control parameters that we can precisely vary in the experiment, such
as interaction time. This is known as the frequentist approach because the method
requires the preparation of identical copies to statistically estimate the excitation
probability with a sufficient number of samples due to the probabilistic nature of
quantum measurement. To estimate an experimental parameter, we vary the control
parameters to measure how the excitation probability changes by taking multiple
points, and each point is repeated to reduce statistical uncertainty. Consequently,
this method is too slow to perform calibration before every experiment, and we
might argue that it is inefficient because we obtain a piece of information, which is
an excitation probability at a point, by repeating the same procedure more than a
hundred times.

The alternative is the Bayesian approach, where the statistical properties of a
quantum system are directly used rather than estimating the excitation probability
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for each control parameter. In the Bayesian approach, we treat the model parameters
as random variables and produce a hypothesis that the model parameters that
we wish to estimate are a set of particular values X , and the Bayesian inference
tests whether the hypothesis is correct, providing a probability distribution of the
model parameters that specifies the likelihood of these parameters being correct.
This approach, therefore, makes it unnecessary to repeat the same experiment and
consequently requires substantially fewer measurements to achieve the same accuracy
and can be performed much faster. Quantum theory is inherently based on statistical
theory: we cannot deterministically know the state of the quantum system, but
we only know the probability of finding the system in a certain state through the
projective measurement. Therefore, it is plausible that we can characterise our
quantum system more efficiently using Bayesian inference, which is derived from
statistical theory.

In this chapter, the general principle of Bayesian inference is presented, as well
as how such inference can be applied to the estimation of the resonance and Rabi
frequencies of the driving field, which parameterise the quantum dynamics of a
trapped ion. Bayesian inference also allows for the simultaneous estimation of those
two parameters by performing a single experiment, which will significantly shorten
the time taken for the calibration routines.

8.1 Bayesian Inference

Suppose we have a system that is characterised by a set of unknown parameters
X = {x1, x2, . . . , xi}, so-called model parameters. We perform an experiment that is
parameterised by a set of control parameters C = {c1, c2, . . . , cj}, which are known
and controllable. As we perform the experiment with k different sets of control
parameters, we obtain a series of measurements D = {d1, d2, . . . , dk} where each
datum is given for each set of control parameters. The goal of Bayesian inference is
to infer the probability distribution of those unknown parameters X based on the
measurements D we have obtained.

8.1.1 Bayes’ Theorem

We begin with a prior distribution P (X ) that encodes any prior knowledge of the
system. If we receive a new datum d and have a physical model or a likelihood function
P (d|X ; C) that specifies the probability of measurement outcome d conditional to
the given model parameters X and control parameters C, then we can update the
probability distribution of unknown model parameters, taking the new measurement
d into account using Bayes’ theorem [102] :
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P (X|D; C) = P (D|X ; C)P (X )
P (D|C)

(8.1)

P (D|C) is the marginal probability distribution. This distribution is independent of
the model parameters X and can, therefore, be simply considered as a normalisation
factor for the posterior distribution, P (X|D; C), and can be computed as follows:

P (D|C) =
∫
P (D|X ; C)dX . (8.2)

The posterior distribution we have obtained can be used as the prior distribution
for the following update procedure, and we update the probability distribution of
the unknown model parameter by applying Bayes’ theorem again. In other words,
we can iteratively update the probability distribution of unknown parameters as new
measurements arrive by repeatedly applying Eqn. 8.1. The probability distribution
of X with the given series of measurements D up to a normalisation factor is given as

P (X|{d1, . . . , dk}) ∝
j∏

n=0

P (X|dn). (8.3)

8.1.2 Parameter Estimation

At the end of the inference, we can estimate the unknown parameters by taking a
mean value of the posterior distribution:

⟨X ⟩ ≈
∫
XP (X|D; C)dX . (8.4)

Bayesian inference also allows us to compute the uncertainty of the estimator, and
this uncertainty is given as the covariance of the posterior distribution:

Var(X ) =
〈
(X − X̄ )2

〉
=

∫
(X − X̄ )2P (X|D; C)dX

(8.5)

where ⟨· · · ⟩ indicates the mean value of a quantity in the bracket.

8.1.3 Sequential Monte Carlo (SMC)

Updating the probability distribution through Bayes’ rule requires evaluation of
high-dimensional integration over the parameter space in Eqn 8.1. This process
is, in general, analytically intractable or computationally expensive if we use the
deterministic numerical integration method. To remedy these issues, we adopt the
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sequential Monte Carlo (SMC) method, one of the Monte Carlo variants1. In SMC,
the probability density function is approximated to a weighted sum of delta functions
[104, 105, 106]

∑
k

ωkδ(x− xk) (8.6)

where each delta function is centred at xk, and wk is its associated weight. Each
delta function is also referred to as a particle; therefore, SMC is also known as a
particle filter. The distribution of particles is not meant to directly approximate the
probability distribution itself due to the fact that the particles support only finite
discrete values in parameter space, but we can approximate the mean of the true
distribution by taking the weighted averaged sum of all particles:

∫
f(x)Pr(x)dx ≈

∑
k

wkf(xk) (8.7)

In SMC, the Bayes rule can be applied to update the particles’ weights, and we
consequently obtain the updated posterior distribution up to a normalisation factor
when new observations become available:

w′k ∝ wkP (D|xk) (8.8)

The normalisation factor N can explicitly be computed by the sum of all updated
weights of the particles

N =
∑
j

wjP (D|xj) (8.9)

Algorithm 1 shows the explicit algorithm of Bayes’ Update to update the probability
distribution of unknown parameters by applying Bayes’ theorem.

1In the implementation of the SMC method, we adopt a Python package called Qinfer [103]. This
package provides many pre-written functions, such as Bayes’ update and the Lie-West re-sampler,
which are necessary for performing Bayesian inference.
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Algorithm 1: Bayes’ update
Result: Posterior distribution P (X|D)
Input: Particle weights ωi, i ∈ {1, 2, ..., n}
Input: Particle locations xi, i ∈ {1, 2, ..., n}
Input: Control parameters C
Input: New measurements D
for i = 1 to n do

ω̃i = P (X|D; C)× ωi ; // update weights for each particle using

Bayes rule

end for
ω̃j ← ω̃j

∑n
i=1 /ω̃i ; // normalise posterior distribution

return {ω̃j}

Re-sampling

As we proceed with the update of particle weights in SMC, the weights of most
particles converge to zero because the true posterior should be a narrow distribution
centred at the actual parameter values. Hence, most of the particles barely contribute
to the estimates, and we are wasting the majority of the computational resources
to track those particles with low weights. Furthermore, under-sampling of the
distribution at high probabilities limits the precision of the estimator. Thus, we have
to periodically re-sample the particles’locations. To decide when to re-sample the
particles, we define the effective sample size [107]:

ness = 1/
∑
i

ω2
i , (8.10)

and use it as diagnostic criteria. When the effective sample size is below the pre-set
threshold, which is typically 10 in our implementation, we call the re-sampler. The
re-sampling process is performed, following the Liu-West algorithm [108]. Algorithm
2 provides the complete algorithm of the Liu-West re-sampler.
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Algorithm 2: SMC re-sampling algorithm
Result: Re-located particles with uniform weights
Input: Particle weights ωi, i ∈ {1, 2, ..., n}
Input: Particle locations xi, i ∈ {1, 2, ..., n}
Input: Re-sampling parameters a ∈ [0, 1]

h←
√
1− a2

µ←
∑n

i=1 ωixi ; // mean of distribution

σ ← h2
∑n

i ωixix
T
i − µµT

for i = 1 to n do
µ′j ← axj + (1− a)µ ; // new mean for new particle location

draw x′j from N(µ′j, σ) distribution
ω′i ← 1/n ; // reset the weights to uniform

end for

8.2 Implementation

We now wish to use Bayesian inference to estimate the unknown parameters of a
quantum system in practice. We first have to derive an appropriate likelihood, or
model function, that describes the probability of measurements that is available to
us and is dependent on the parameters of interest as well as the control parameters.
According to the Born rule in quantum mechanics, quantum measurements are
inherently probabilistic, and the likelihood of finding a quantum system in a particular
state |d⟩ through the measurement is determined by the wavefunction overlap
⟨d|M |ψ⟩ where M is a measurement operator. Therefore, this wavefunction overlap
⟨d|M |ψ⟩ can be used as a likelihood function in the application of Bayesian inference
to the quantum system.

In an ion trap, an available projective measurement involves determining the
atomic state of the ion based on the state-dependent fluorescence. An outcome of
the measurement is mapped to either |g⟩ or |e⟩, and the probability of finding the
ion in |g⟩ (|e⟩) is given as |⟨g|ψ⟩|2 (|⟨e|ψ⟩|2) where |ψ⟩ is a quantum state of the
ion. When we use Bayesian inference to characterise the qubit represented by a
trapped ion, we utilise the interaction of the ion with the resonant field, and the
problem is equivalent to finding unknown parameters associated with the unitary
time evolution generated by the atom-light interaction (see Chapter 3 for a more
rigorous mathematical description of the interaction). Assuming the ion is a simple
two-level system, when the ion interacts with the coherent light field, the atom–light
interaction induces a unitary transformation in the form of

U(θ) = exp{− i
2
θ · σ} (8.11)
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where σ = {σx, σy, σz} is a vector of Pauli operators, and θ describe the transforma-
tion of the state associated with each Pauli operator. The interaction parameters θ

in the unitary transformation can be parameterised by laser parameters, such as the
Rabi frequency Ω and detuning frequency δ :

U(t) = U(Ω, δ, t). (8.12)

Using this unitary time evolution operator, a likelihood function associated with the
measurement |di⟩ where |di⟩ ∈ {|g⟩ , |e⟩} can be given as

P (di|Ω, δ; t) = ⟨di| U(Ω, δ; t) |i⟩ (8.13)

where |i⟩ is an initial state of the ion, which is typically |g⟩ in our experiment. The
likelihood function P(di|Ω, δ; t) can be used in Bayesian inference to estimate Ω and
δ.
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Figure 8.1: Prior (blue) and Posterior (orange) distribution represented by 3000 particles
in SMC. The inset figure shows the initial prior distribution. The particle
filter begins with uniform distribution, and the distribution is eventually
transformed into a narrow peak (in principle a delta function centred at the
true frequency) as the distribution is updated using the Bayes rule in SMC.
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Figure 8.2: Experimental procedure for Ramsey method. The sequence includes
cooling, state preparation and Ramsey interferometry with variable
pulse time tp and delay time τ .
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The experiment begins with preparing the ion in the ground state |g⟩. Then,
we apply a sequence of laser pulses, which are parameterised by Rabi frequency Ω

and detuning frequency δ, and we measure the state of the single trapped ion in σz
basis, which is {|g⟩ , |e⟩}. As we obtain a sequence of measurements D, we update
our prior distribution using Bayes’ theorem. At the end of Bayesian inference, we
estimate the parameters of interest and their statistical uncertainties by taking the
averaged sum and covariance of the final posterior distribution obtained through
SMC, respectively.

8.3 Ramsey Interferometry

The Rabi and detuning frequencies are the primary parameters that describe the
quantum dynamics of a trapped ion. If we wish to estimate those parameters using
Bayesian inference, we must design an experiment that involves a time evolution
unitary transformation that depends on those parameters and control parameters
that we can accurately know and precisely control. Ramsey interferometry is an
excellent choice because it satisfies these criteria.

In Ramsey interferometry, we apply two resonant pulses, which are separated
by a delay, and we simultaneously vary the length of the pulses and delay time.
For the sake of simplicity, we set the pulse time for the first and second pulses to
be the same, which is denoted as tp. We use the pulse time tp and delay time τ
as the control parameters and measure the ion’s internal state at the end of the
experimental sequence.

Next, we derive the unitary transformation generated by the sequence of pulses.
The typical initial state is the atomic ground state, and we must compute the
excitation probability as a function of unknown parameters (Ω and δ) and control
parameters (tp and τ). By solving the relevant optical Bloch equation, we obtain the
unitary time evolution propagator that describes the dynamics by a pulse with t, Ω
and δ:

Uint(t; Ω, δ) =

[
e−

itδ
2 (cos Ωt

2
+

iδ sin Ωt
2

Ω
) −Ω0

Ω
ie−i(

δt
2
+ϕ) sin tΩ

2

−Ω0

Ω
iei(

δt
2
+ϕ) sin Ωt

2
e

itδ
2 (cos Ωt

2
− iδ sin Ωt

2

Ω
)

]
(8.14)

where Ω0 is the Rabi frequency on the resonance, Ω =
√
Ω2 + δ2 is the generalised

Rabi frequency, and δ is the detuning frequency. Using Eqn. 8.14, the probability of
the ion being in |g⟩ and |e⟩ at the end of the Ramsey scan described in Fig. 8.2 can
be computed as [

Pg(t)

Pe(t)

]
= Uint(t; Ω, δ) Ufree(τ) Uint(t; Ω, δ)

[
1

0

]
(8.15)
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Typically, the Rabi frequency is much greater than the detuning frequency Ω≫ δ,
and in this limit, Ω ≈ Ω0 and the excitation probability with given Rabi and detuning
frequencies can be approximated to

P (g|Ω, δ; tp, τ) = 1− 2 sin2

(
Ωt

2

)
cos2

(
Ωt

2

)
(1 + cos (δτ))

P (e|Ω, δ; tp, τ) = 1− P (g|Ω, δ; t)
(8.16)

Eqn. 8.16 clearly shows the probability of finding the ion either in |g⟩ or |e⟩ is
dependent on the Rabi and detuning frequencies; therefore, we can use the Ramsey
scan to estimate those two parameters.

8.3.1 Rabi Frequency

The Rabi frequency Ω quantifies the coupling strength between the ion and applied
light field, and it is critical to determine the precise value of Ω to create a particular
superposition state; for instance, π time for complete population inversion and π/2
for equal superposition. In the Ramsey-like experiment described in 8.2, we vary
only the pulse time tp while delay τ is fixed to zero. This experiment is equivalent to
the standard Rabi-type time scan, in which the interaction time becomes t = 2tp.
Assuming the laser is on resonance δ = 0, by using Equ. 8.16, the excitation
probability is given as

P (g|Ω; t) = cos2
(
Ωt

2

)
P (e|Ω; t) = 1− P (g|Ω; t)

(8.17)

where t is interaction time, and Ω is the Rabi frequency, which is the parameter
to estimate. The excitation probability Pe oscillates at the Rabi frequency Ω. In
a Bayesian inference for estimation of the Rabi frequency Ω, we use Eqn 8.17 as a
likelihood function, and the interaction time t is the control parameter.

8.3.2 Detuning Frequency

One of the important values to determine for coherent operation on the ion is the
detuning frequency of the laser from the resonance of the atomic transition. We
can use the Ramsey experiment to estimate the detuning frequency. The Ramsey
experiment in 8.2 is modified: assuming we already know the Rabi frequency at
the power of the laser we are using, we set the pulse time tp to the π/2 time (i.e.
tp = π/(2Ω)), which creates the equal superposition state that is most sensitive to
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the phase accumulated due to the detuning ϕ = δτ during the free-evolution. We
vary the delay time τ and use it as a control parameter in Bayesian inference. The
likelihood functions are given by

P (g|δ; τ) = sin2

(
δτ

2

)
(8.18)

P (e|δ; τ) = 1− P (g|δ; τ) (8.19)

where δ is detuning with respect to the resonance frequency. The excitation probabil-
ity oscillates at the detuning frequency. Thus, essentially, the Bayesian estimator for
the detuning frequency is equivalent to the Rabi frequency estimation. We estimate
the oscillation frequency, which is now equal to the detuning frequency.

8.3.3 Rabi Frequency and Detuning Frequency

In the Ramsey experiment we have discussed above, the Rabi frequency Ω and detun-
ing frequency δ, which are parameters that must be estimated, are interconnected:
the individual estimation of one is based on the assumption that we correctly know
the other. For instance, if we obtain the Rabi frequency of the laser incorrectly,
we cannot then accurately estimate the detuning frequency. Hence, it is benefi-
cial to estimate the Rabi and detuning frequencies simultaneously without such an
assumption.

Now, we scan both pulse time tp and delay time τ , and Eqn. 8.16 guarantees
that we can simultaneously estimate both parameters. In this case, the likelihood
functions are given by Eqn. 8.16.

8.4 Experimental Results

We experimentally run the Ramsey experiment described in 8.2, and we estimate the
Rabi and detuning frequencies using Bayesian inference. We evaluate the performance
of the Bayesian estimator by comparing the result of the estimator with that of the
fitting method. We perform the experiment first with the pre-determined sets of
control parameters, and Bayesian inference is performed off-line afterwards2.
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a)

b)

c)

Figure 8.3: Measurement of Rabi frequency (a) Rabi oscillation on the carrier
of S1/2 ↔ D5/2, each data point is obtained by repeating the
experiment at each interaction time 300 times. (b) the mean value
of posterior distribution as a function of the number of measurement
results taken to the estimator (c) variance of posterior distribution
as more measurement results are fed to the Bayesian estimator
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8.4.1 Rabi Frequency

Fig. 8.3 shows a typical Rabi oscillation where each data point is obtained by
repeating the measurement for each pulse time 200 times. Then, we compare the
estimated Rabi frequency from the fit and the estimation by Bayesian inference.
Those two scans are subsequently performed without significant delay, ensuring that
no significant drift in Rabi frequency between the scans occurs. Fig. 8.3 illustrates
that the estimated value of the Rabi frequency by the Bayesian estimator rapidly
converges to the value of the Rabi frequency obtained from the fit in Rabi oscillation
as more and more measurements are provided to the Bayesian estimator. After the
estimator receives approximately 25 measurements, the estimator already yields the
uncertain of below 1 kHz, indicating that the Bayesian estimator can estimate the
Rabi frequency more efficiently than the standard fitting method. The Bayesian
approach requires substantially fewer measurements to achieve the same precision
accomplished by the fitting method, in which more than a thousand measurements
are taken.

8.4.2 Resonance Frequency

Typically, the required resolution for detuning estimation is much smaller than the
Rabi estimation (≈ 100Hz). A frequency spectrum is commonly used to measure
the resonance frequency of transitions. This resolution of this method is limited
by the Rabi frequency used because of the power broadening on spectral shape:
measuring the resonance frequency with a small frequency resolution (e.g. 100Hz)
requires the Rabi frequency of the laser to be below the desired frequency resolution.
Therefore, rather than directly comparing the results from the Bayesian estimator
and the fitting method, we estimate the detuning frequency as we vary the frequency
of the driving field, which can be precisely controlled with the use of AOM. Fig.
8.4 shows the estimated detuning frequency as we scan the frequency offset from
-1 KHz to 1 kHz. The figure suggests that the estimated detuning frequency increases
with the frequency offset applied, and the linear fit indicates that the estimated
detuning frequency is strongly correlated with the applied frequency offset, giving a
root-mean-square devitaion (RMSD) of the measurement to the fit of 48Hz.
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Figure 8.4: Estimated detuning frequency as a result of Bayesian estimator with
different frequency offset is added. Root-mean-square deviation
(RMSD) of the measurements to the linear fit is 48 Hz.

8.4.3 Rabi and Resonance Frequency

We extend the estimator to the simultaneous estimation of the Rabi frequency and
detuning. We perform the same Ramsey experiment, but this time, we vary both
pulse tp and delay times τ . In principle, the pulse and delay times can be chosen
independently, but to simplify the scan procedure, we set the start and end value for
each parameter and linearly scan those control parameters between the start and
end value. To testify whether the estimator can give the same results with the same
precision when it attempts to estimate two parameters simultaneously compared to
the case where each parameter is estimated individually, we perform three scans:

2We do not carry out Bayesian inference parallel with taking measurements because, in our
control system framework ARTIQ, retrieving the measurement results before the scan is completed
takes a few seconds, and the process significantly prolongs the experiment if we perform them in
parallel.
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Figure 8.5: Simultaneous estimation of Rabi (Up) and detuning frequency
(Down). The dashed lines indicate the Rabi and detuning frequen-
cies that are independently measured from Rabi oscillation and
Ramsey interferometry.

Rabi, detuning and Rabi & detuning. We perform one scan immediately after another
to ensure that the laser parameters do not significantly drift between the scans. Fig.
8.5 compares the results of simultaneous estimation with individually estimated
values and suggests that we can simultaneously estimate the two laser parameters
without any significant loss of accuracy. However, the simultaneous estimation
seems to require a higher number of measurements to reduce the uncertainty of the
estimator to the same level.

8.4.4 Interleaved Scan

When we subsequently run the Bayesian estimator for the detuning frequency several
times with a short delay ≈ 6 s between scans, the result of the estimator varies from
scan to scan. We can consider two possible scenarios: i) the estimator itself gives
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Figure 8.6: Comparison of the estimated detuning frequency from three inter-
leaved scans. In each trial, three Ramsey experiments are inter-
leaved. The detuning frequency drifted from trial to trial. However,
three inter-leaved scans result in approximately the same detuning
frequency within the error of Bayesian estimator.

a false result; ii) the actual detuning frequency drifts. In the former case, it is a
matter of the estimator’s reliability. To determine which is the case, we interleave
three different scans: the sequence of detunings is {τ0, τ0, τ0, · · · , τN , τN , τN} where
τn is nth delay time. Fig. 8.6 shows that there is no significant discrepancy between
three estimated detuning frequencies obtained by the interleaved scan.

8.5 Sources of Error

8.5.1 Time-dependent Parameters

The likelihood function used in the Bayesian inference assumes that the parameters
to be estimated are static. However, in a realistic scenario, the parameters of interest,
such as the drive field’s Rabi and detuning frequencies, always drift. Hence, if the
parameters significantly drift during the experiment, our likelihood function cannot
accurately describe our quantum system’s dynamics, and consequently, the Bayesian
estimator cannot accurately characterise the system.

8.5.2 Imperfect State Detection

Bayesian inference assumes that the outcome of measurement is entirely based on
the probability that is determined by the model and control parameters. However, a
detection error breaks this assumption. As explained in Sec. 2.3.2, the state-detection
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based on state-dependent fluorescence may fail to detect the ion’s internal state.
The false detection can propagate false information throughout the process while
the prior distribution is sequentially updated, following Bayes’ theorem and results
in the posterior distribution providing the wrong answer. For example, if the state
detection gives the outcome of |g⟩ although the ion is meant to be in the excited state
with 100% probability with the given true model parameters (i.e. P (e|X ; C) = 1),
Bayes’ theorem (Eqn. 8.1) must then conclude that the probability of the parameters
being true values becomes zero because P (g|X ; C) = 0.

8.5.3 Decoherence

The quantum system experiences a loss of its quantumness. This is so-called decoher-
ence, which stops the Bayesian estimator from estimating the unknown parameters of
interest, which is typically related to quantum coherence. To use Bayesian inference
to estimate the unknown model parameter, the excitation probability, which is the
only measurable quantity in an ion trap, has to be dependent on the model parameters
and the control parameters. The parameters of interest are typically associated with
the quantum system’s quantum characteristics. As the system evolves toward the
classical system, it loses its quantum coherence: the probability of the measurement
is no longer dependent on the model parameters. Therefore, Bayesian inference
becomes invalid. For example, Rabi oscillation gradually decays due to decoherence,
and eventually, populations of |g⟩ and |g⟩ are equalised (i.e. the excitation probability
is no longer dependent on the interaction time, which is the control parameter).
Consequently, Bayesian inference is no longer available.

106



Chapter 9

Measurement-based Cooling

Cooling a quantum system down to its motional ground state is essential for many
applications of quantum systems [109, 110, 111, 112]. In particular, for an ion trap
in the context of quantum computation, cooling the ion to its motional ground state
is crucial to the realisation of a qubit gate with high fidelity. The coupling strength
of the ion to the light field varies depending on its populated motional state, and a
thermally excited ion can occupy many different motional states, collectively referred
to as a mixed state. If the ion is in such a thermal state, the Rabi oscillation, simply
a single qubit gate, becomes an incoherent sum of oscillations at many different
frequencies, leading to dephasing between the motional states and a rapid decrease
in the visibility of Rabi flops. Although the Mølmer-Sørensen (MS) gate, which is
a typical two-qubit gate scheme in an ion trap, is meant to be independent of the
temperature of the ions, it still requires them to be sufficiently cool to bring them
into the LD regime [78].

Over the last decades, several different means of achieving the motional ground
state in an ion trap have been proposed and developed [113, 114, 115]. Among these

Accept Discard

State
Discrimination

a) b)

Figure 9.1: Comparison between (a) deterministic and (b) probabilistic cooling methods.
The deterministic method aims to transfer the population of motional excited
states |n⟩ with n ̸= 0 to the motional ground state |0⟩, whereas the proba-
bilistic method attempts to distinguish the motional ground state from the
remaining motional states, selecting the occasions where the ion is in |n = 0⟩.
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methods, laser cooling techniques, including Doppler and resolved sideband cooling,
have proved successful and are now routinely used in many ion trap experiments
for ground-state cooling. In simple terms, these cooling methods aim to reduce the
kinetic energy of the ion and eventually freeze it to the zero-point motion. In a
quantum mechanical picture, an ion in thermal equilibrium at a non-zero temperature
exists in a thermal state, in which different motional states are statistically mixed.
For instance, if an ion is in a thermal state with an average photon number of
n̄ = 30, then the probability that the ion is in the motional ground state is only 3%,
indicating that it is more likely to exist in the motional excited state. In principle, the
cooling techniques attempt to transfer the entire population of statistical ensembles
of motional states |n⟩ to the single motional ground state, which is a pure state (see
Fig. 9.1(a)):

|n⟩ → |0⟩ for all n. (9.1)

Thus, by the conclusion of the cooling process, all populations are transferred down
to the motional ground state. This corresponds to the deterministic preparation of
the motional ground state.

In our experiment, we initially cool the ion to the Doppler temperature, typically
a few mK, and subsequently apply sideband cooling to transfer the ion into its
motional ground state. After the Doppler cooling is applied, the ion is initialised to
a thermal state, which is a statistical mixture of many different motional states. The
subsequent resolved sideband cooling aims to transfer all populations of statistically
mixed motional states to the pure motional ground state by coherently driving the
red sideband transition |n⟩ ↔ |n− 1⟩. Hence, this cooling method deterministically
prepares the ion in the motional ground state |0⟩; this cooling scheme is therefore
known as a deterministic cooling method.

Recently, an alternative cooling method that statistically selects the motional
ground state from the statistical ensemble of motional states has been proposed
[116, 117, 118, 119] and experimentally demonstrated in a mechanical resonator [120,
121]. Unlike deterministic cooling methods, such as resolved sideband cooling, this
approach does not aim to prepare the ion in the pure motional ground state |n = 0⟩,
but rather aims to extract the subset of the statistical ensemble of motional states
that is in the motional ground state (see Fig. 9.1(b)).
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Figure 9.2: Principles of measurement-based cooling. (a) Initial state of the ion. (b)
State-dependent mapping operation. It selectively excites the qubit state
of the system if and only if the motional state is in |n⟩ with n ̸= 0. (c)
Selection process. Only |g⟩ carries the motional ground state |n = 0⟩, so the
motional ground state can be selected from the ensemble of motional states
by accepting the state if and only if the outcome of projective measurement
is |g⟩.

9.1 General Principle of Measurement-based Cool-

ing

This section begins by discussing the general principles underpinning measurement-
based cooling, before shifting to a discussion of the implementation of this cooling
method in an ion trap. The underlying approach of measurement-based cooling is to
probabilistically select the motional ground state from an initial thermal distribution
in which the motional ground and excited states are statically mixed.

If the motional state were accessible, measurement of the motional basis would
enable discrimination of the motional ground state from the remainder of the motional
states, and we could thus select the motional ground state from statistical ensembles
of motional states via this measurement. However, motional states are typically not
directly measurable. Therefore, we here consider a composite system that consists of
an oscillator and an auxiliary state with discrete levels, which are measurable:

|ψ⟩ = |ψmotion⟩ ⊗ |ψaux⟩ . (9.2)

Without loss of generality, we restrict the auxiliary state to a two-level system,
referring to this state as a qubit. The coupling between the qubit and motional
states can be established via the Jaynes-Cummings interaction:

109



H(t) =
h̄Ω(t)

2

(
aσ+e

iδ(t)t + a†σ−e
−iδ(t)t) . (9.3)

In addition, the projective measurement in the qubit basis must be available, and at
least one of the qubit states must not be influenced by back-action of the measurement.

Fig. 9.2 illustrates the principle underpinning measurement-based cooling. First,
we prepare the qubit state of the system in |g⟩, with the motional degree of freedom
in the thermal state:

ρinitial = |g⟩ ⟨g| ⊗ ρth. (9.4)

We then apply a state-dependent mapping operation that selectively excites the qubit
state if and only if the ion is in the motional excited states |n⟩ for n ̸= 0; otherwise,
the qubit state remains in |g⟩:

|g⟩ |0⟩ → |g⟩ |0⟩

|g⟩ |n ̸= 0⟩ → |e⟩ |n− 1⟩ .
(9.5)

As can be seen in Fig. 9.2(b), this operation leaves the qubit ground state |g⟩
populated only by the motional ground state |0⟩, correlating the qubit state to the
populated motional states:

ρ = p0 |g⟩ ⟨g| ⊗ |0⟩ ⟨0|+
∑
n=1

pn |e⟩ ⟨e| ⊗ |n− 1⟩ ⟨n− 1| (9.6)

where pn = n̄n/(n̄+ 1)n̄+1 is the population of each motional state from the original
thermal distribution. The projective measurement is

M̂ = |g⟩ ⟨g| ⊗ 1. (9.7)

If the projective measurement on |g⟩ does not affect the oscillator’s motional states,
then the projective measurement operator effectively filters out any motional ex-
citation associated with |e⟩ from the ensemble of motional states, as it discards
any instances in which the ion is projected onto the state |e⟩; this is equivalent to
cooling. That is, a measurement of the ion in |g⟩ indicates that the ion’s motion lies
in the motional ground state; we henceforth say that this measurement ‘heralds’ the
motional ground state.

We now consider the case where the state-dependent logic operation in Eqn. 9.5
is not ideal, with a non-zero transfer failure probability ϵ quantifying the fraction
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of the population that is not inverted by the operation. This imperfect mapping
operation degrades the fidelity of preparation of the motional ground state via the
filtering operation, as incomplete population inversion for each n leaves the residual
motional excitation populated in the qubit ground state, in which only the motional
ground state should be populated. For the following quantitative analysis, we assume
the transfer failure probability ϵ is independent of the motional quantum number n
for simplicity. Subsequently, the state-dependent mapping operation in Eqn. 9.5 is
modified to account for the non-zero ϵ as follows:

|g⟩ |0⟩ → |g⟩ |0⟩

|g⟩ |n ̸= 0⟩ → ϵ |g⟩ |n⟩+ (1− ϵ) |e⟩ |n− 1⟩ .
(9.8)

where the first term in the summation indicates the residual motional excitation due
to incomplete population inversion. As expected, this equation recovers Eqn. 9.5
when ϵ = 0.

The probability of the motional ground state given that the ion is measured to
be in |g⟩, P (n = 0|g), is given as

P (n = 0|g) = 1

1 + ϵn̄
. (9.9)

If P (0|g), which quantifies the efficiency of the cooling method, is lower than required,
the state-dependent mapping and heralding measurement can be repeated. If this
block of operations is repeated m times, then P (0|g) is modified as follows:

P (n = 0| m× g) = 1

1 + ϵmn̄
. (9.10)

This equation implies that P (0|g) approaches unity as we repeat the cooling cycles,
comprised of the state-dependent mapping followed by the heralding measurement,
even if ϵ ̸= 0.

9.2 Implementation in 40Ca+

In our implementation of the measurement-based cooling scheme in 40Ca+, the
auxiliary state, or qubit state, is defined by S1/2,1/2 and D5/2,1/2, denoted as |g⟩ and
|e⟩, respectively. The coupling between the qubit and the motional states occurs via
sideband transitions. As discussed in Sec. 2.3.2, the qubit state can be measured via
state-dependent fluorescence: |g⟩ and |e⟩ can be distinguished by whether the ion
scatters the photons or not. An ion in the ground state experiences a force due to
its photon scattering, so the measurement itself affects the ion’s motion. Therefore,
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the heralding measurement must be performed on the basis of |e⟩, rather than that
of |g⟩. This requires the ion’s qubit state to be initialised to |e⟩ before performing
the state-dependent mapping operation. To meet this requirement, we apply rapid
adiabatic passage (RAP) to the carrier transition to excite the qubit state of the ion
without disturbing its motional state (a deeper discussion of RAP will be provided
in the next section).

The next task is to determine how we can realise the state-dependent logic
operation in our system. The logic operation cannot be realised by the standard
resonant π pulse because Rabi frequencies vary with the motional phonon number n;
consequently, there is no single interaction time that leads to a complete population
inversion (π rotation) for all n. Therefore, we instead perform the RAP operation
on the blue sideband transition as RAP can render complete population inversion
less sensitive to experimental parameters, such as pulse area. Furthermore, when
the ion is in |e⟩, the blue sideband transition transfers the population from |e, n⟩
to |g, n− 1⟩ for n ≠ 0, whereas it is decoupled from |e, 0⟩ since there is no lower
motional state than |0⟩. Hence, |e, 0⟩ is effectively invisible to the transition, and
the application of RAP to the blue sideband can therefore generate the required
state-dependent mapping operation for the implementation of measurement-based
cooling.

9.3 Rapid Adiabatic Passage

The RAP technique, a method of inverting a population from one state to another,
was first proposed and experimentally demonstrated in nuclear magnetic resonance
[122, 123]. Essentially, RAP is equivalent to the resonant π pulse in that both
techniques completely invert the population of one state to another. However, RAP
offers the advantage of inducing a complete population inversion that is more robust to
experimental parameters such as coupling strength and pulse area. This robustness
facilitates the population inversion in our case of interest, which involves many
different motional states, each with a different coupling strength; we therefore use
RAP to generate the state-dependent mapping operation required for measurement-
based cooling.

9.3.1 Theory

RAP involves a frequency-chirped pulse with amplitude modulation:
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Figure 9.3: Time-dependent Rabi frequency Ω(t) (top panel) and frequency chirping δ(t)
(bottom panel). The time derivative of Ω(t) at the start and end of the pulse
is zero to ensure the adiabatic condition is satisfied when we switch the beam
on (start) and off (end). In addition, the frequency of the laser is linearly
swept from −δ0/2 to δ0/2.

δ(t) =
δ0
T

(
t− T

2

)
,

Ω(t) = Ω0 sin
2

(
πt

T

)
, 0 ≤ t ≤ T

(9.11)

where δ0 is a frequency scan range, and Ω0 is a peak Rabi frequency. The time-
dependent pulse profile is illustrated in Fig. 9.3. RAP can be understood more
straightforwardly in a Bloch sphere representation. In a two-level system, the ground
state and excited state can be represented by a vector pointing to the north pole
(0, 0, 1) and the south pole (0, 0,−1) of the sphere, respectively. The time evolution
of the Bloch vector is governed by the optical Bloch equation, and the dynamics
can be visualised as the rotation of the Bloch vector R, which is a unit vector, by a
torque vector W :

dR

dt
= W ×R. (9.12)

The torque vector, W (t), is determined by the instantaneous laser parameter

W (t) = (Ω(t), 0,∆(t)). (9.13)
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a) b)

Figure 9.4: Bloch sphere representation describing rapid adiabatic passage. (a) Bloch
vector aligned along ẑ = (0, 0, 1) shows the system is initially prepared in the
|g⟩ state. (b) Time evolution of Bloch vector as we modulate the frequency
and power of the driving field, finishing with alignment along −ẑ = (0, 0,−1).

If the system is initially prepared in |g⟩, the Bloch vector is aligned along the
north pole of the sphere (see. Fig. 9.4(a)), and if the laser is sufficiently detuned
below the resonance, the torque vector W is almost aligned along the state vector
for |g⟩. As we slowly increase the frequency as well as the Rabi frequency of the
driving field, the torque vector slowly moves in response, passing the equator when
the driving field is on resonance and eventually ending aligned along the south pole,
which corresponds to the state |e⟩. If the torque vector changes sufficiently slowly,
satisfying the following adiabatic condition, [124]∣∣∣∣ 1W

∣∣∣∣∣∣∣∣dWdt
∣∣∣∣≪ |W |, (9.14)

then the state vector adiabatically follows the torque vector as the state is transferred
from |g⟩ to |e⟩. RAP can be extended to a multi-level system, such as a trapped ion.
When we apply RAP to the carrier or sideband transition of the trapped ion, these
transitions can be restricted to the Hilbert space spanned by |g, n⟩ and |g,m⟩, where
n and m are chosen depending on the order of transition, and the same argument
remains valid for the multi-level system [125].

9.4 Experimental Results

9.4.1 Rapid Adiabatic Passage

As can be seen in the bottom panel of Fig. 9.5, rapid adiabatic passage can smoothly
transfer the population from |g⟩ to |e⟩ even if the ion is only Doppler cooled. However,
the complete population inversion cannot be achieved by a resonant pulse.
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Figure 9.5: Excitation probability P (e) during driving of the resonant carrier transition
(Up) and driving of rapid adiabatic passage on the carrier with the amplitude-
and frequency-modulated pulse described in Eqn. 9.11.

9.4.2 Transfer Efficiency

The primary component determining the performance of measurement-based cooling
is the state-dependent mapping operation that separates the motional ground state
from the remaining motional states by associating them with different qubit states.
The success of this operation is quantified by a transfer efficiency of the RAP process,
denoted η. We must first find appropriate laser pulse parameters for RAP, such as
the total pulse length T and frequency chirping range δ0, to ensure the RAP results
in a transfer efficiency approaching unity when the ion is only Doppler cooled.

The ion is initially cooled using Doppler cooling and its qubit state is initialised
to |g⟩ via a state preparation pulse, which optically pumps the ion to the desired
sublevel of the S1/2 manifold. We then apply the frequency-chirped pulse described
by Eqn. 9.11 and measure the resultant population of D5/2,1/2. We measure the
excitation probability, which quantifies the transfer efficiency, as we vary the total
pulse length T for a given frequency chirping range δ0 and peak Rabi frequency Ω0.

Fig. 9.6 shows that the transfer efficiency η gradually improves and approaches
near-unity as the pulse length T increases, as the adiabatic condition in Eqn. 9.14)
is more likely to be satisfied by a longer pulse. For our cooling method, we select the
shortest T that produces a transfer efficiency greater than 0.98. Although RAP is
robust to changes in experimental parameters, we cannot reliably achieve a transfer
efficiency of unity, leading to an error in the cooling method.
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Figure 9.6: Transfer efficiency of RAP operation as a function of total length of the
RAP pulse T . The rightmost figure (RAP on BSB ) shows a dip in transfer
efficiency at T ≈ 50µs due to the breakdown of the adiabatic condition.

9.4.3 Cooling Efficiency

We experimentally implement measurement-based cooling using RAP, and measure
its cooling efficiency, which is quantified by the probability of the motional ground
state conditional upon the measurement outcome of |e⟩, P (0|e). The ion is initially
prepared in the internal ground state with a thermal state using Doppler cooling
followed by state preparation. We then apply RAP to the carrier transition to initialise
the qubit state into |e⟩ without disturbing its motional population. We subsequently
apply RAP to the blue sideband, which provides the state-dependent mapping
operation, and perform the heralding measurement. The conditional probability,
P (0|e), can be extracted from the dataset offline by discarding any results associated
with a heralding measurement outcome of |g⟩.

To quantify the cooling efficiency, P (0|e), we must measure the motional popula-
tion. Although we cannot directly measure the motional distribution, we can use the
state-dependent coupling strength: we measure the Rabi oscillation on the carrier or
blue sideband, given by

P (t) =
∑
n=0

P (n|e) sin2

(
Ωnt

2

)
(9.15)

where Ωn is the Rabi frequency for each motional state |n⟩ (ωn = Ωn,n for the carrier
transition, and ωn = Ωn,n+1 for the blue sideband transition), and P (n|e) is the
conditional probability for each n. When Eqn. 9.15 is applied to a ‘Doppler-cooled’
case in Fig. 9.7 to measure the motional distribution, P (n|e) becomes equal to the
motional population pn of a thermal state. Fig. 9.7 shows Rabi oscillation on the
carrier and blue sideband with and without the application of measurement-based
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Figure 9.7: Transition probability Pi←f as a function of interaction time while S1/2,1/2 ↔
D5/2,1/2 transition is driven on the carrier and 1st red sideband.

cooling and clearly demonstrates that the visibility of the oscillation is improved
when such cooling is applied. Further, by fitting the oscillation to the model provided
by Eqn. 9.15, we can measure the motional distribution, P (n|e) or pn. For the
Doppler-cooled case, this motional distribution is characterised by a single parameter
n̄ (the averaged phonon number), as follows:

pn =
n̄n

(n̄+ 1)n+1
. (9.16)

The fit shown in Fig. 9.15 suggests that n̄ is approximately 18 after Doppler cooling,
which corresponds to p0 ≈ 0.05.

Assuming the transfer failure probability ϵ is independent of the phonon number
n, as discussed in Sec. 9.1, the motional distribution after measurement-based cooling
with non-zero ϵ can be simplified to:

p(0|e) = 1

1 + ϵn̄

p(n|e) = ϵ

1 + ϵn̄

(
n̄

1 + n̄

)n

, for n ̸= 0
(9.17)

After one block of the state-dependent mapping and heralding measurement is
applied, P (0|e) is estimated to be approximately 0.49. This suggests the motional
ground state population is significantly increased by measurement-based cooling, but
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remains substantially below unity. This result agrees with Eqn. 9.9, which yields
0.53 under our experimental conditions, including a transfer efficiency of η = 0.98

and average phonon number of n̄ = 18 after Doppler cooling.
The motional ground state population p0 achieved by Doppler cooling is 0.05,

suggesting that the probability of heralded success, which is the fraction of the
heralding measurements that yield |e⟩, must also be 0.05; however, this quantity
is measured to be 0.08 after the application of one cooling cycle. This observation
implies the existence of residual motional excitation due to the imperfect RAP. If we
apply another stage of cooling, then P (0|e) is estimated to be 0.96, and the heralded
success probability is reduced to approximately 0.05. The high cooling efficiency is
also illustrated by the high contrast visible in the Rabi flops in Fig. 9.7.

9.4.4 Motional Heating
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Figure 9.8: Motional ground state population p0 as we repeat the block of mapping and
heralding measurement operations. While p0 gradually increases, it saturates
below unity; repeating the cycle more than three times does not lead to
further improvement.

As illustrated in Fig. 9.8, the motional ground state population is significantly
improved as we repeat the cooling cycle, comprised of the RAP technique and the
heralding measurement. However, further improvement is not achieved if we apply the
cooling cycle more than twice. In particular, the motional ground state population
P (0|e) appears to saturate at 0.95; this observation prompts us to consider other
sources of error.

As discussed in Sec.4.4, the trapped ion is heated by unknown sources, with the
heating rate measured to be 36 phonons/s. By comparison, the state detection takes
1.5 ms to ensure the resulting photon distribution is distinctly separated. Therefore,
given this heating rate, we expect n̄ to increase by 0.054 during the detection period.
This increase in n̄ can account for the saturation at p0 ≈ 0.95.

118



Repeating the cooling cycle cannot resolve this heating issue because the cooling
schemes always conclude with the state detection. Thus, the heating during the
final state-detection period cannot be eliminated, regardless of the number of cooling
cycles applied. Hence, the heating rate fundamentally limits the cooling efficiency of
the method and is responsible for the saturation of p0 in Fig. 9.8. We can alleviate
this issue by shortening the detection period. However, in our current system, 1.5 ms
is the shortest possible period that ensures the detection efficiency remains above
0.99, limiting the potential improvement to the cooling efficiency.

119



Chapter 10

Conclusion and Outlook

10.1 Initialisation of New Trap

At the very early stage of my Ph.D, I worked on the Penning trap, which was in use
in the group at the time for quantum control experiments on a single trapped ion.
I investigated the sudden drop in the optical coherence time of the ion in the trap
to less than 1ms, which the former Ph.D students had reported. However, I failed
to identify the cause of the relatively short coherence time, and my attention was
then more focused on the new Paul trap as the fabrication of electrodes for the new
RF blade trap was completed. During the first year of my PhD, the majority of my
work was then devoted to the initialisation of the new Paul trap.

In the initialisation of the new trap, I was mainly responsible for upgrading the
primary spectroscopic laser at 729 nm, which is used to address the weak quadrupole
transition S1/2 ↔ D5/2 for qubit manipulation and resolved sideband cooling. I
replaced the old homemade diode laser with the new commercial one, which already
provides narrower intrinsic laser linewidth and more stable power stability. I also
replaced the PID control electronics with FALC, which is a commercial loop filter
from Toptica. We were not able to directly measure the linewidth of the laser,
so we cannot directly compare the linewidth of the old and new lasers. However,
the wavemeter measurements have clearly indicated the substantial suppression of
frequency jitters and drift, and frequency locking seems to be more stable since the
locking is kept for a long time (e.g. more extended than a day). The power at the
trap is significantly lower than required for the experiment due to the power loss
while the light is transported to the trap. Therefore, we need a tapered amplifier
(TA) that amplifies the optical power of the laser at the trap. In addition, the newly
built noise eater was implemented for power stabilisation. It sufficiently suppresses
the long-term drift.
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10.2 Coherent Control

When we drive the ion on the sideband transitions, the off-resonant carrier significantly
affects the dynamics we expect in two distinct ways: off-resonant excitation and
AC Stark shift. In this study, we numerically investigate the effect of off-resonant
excitation and observe the off-resonant carrier induces fast oscillation at roughly the
trap frequency ωz if ωz ≫ Ω where Ω is the Rabi frequency of the driving field in
addition to the coherent population transfer by the targeted sideband transition.
The off-resonant excitation is also a coherent process, so the effect becomes nulled
if the interaction time is an exact integer of the oscillation period. However, this
condition is challenging to be met in practice. We numerically show the pulse shaping
by which the laser is slowly ramped up and down at each end of the pulse so that
the dynamics occur in an adiabatic regime, and the state adiabatically follows the
eigenstate of the dressed atom, suppressing off-resonant excitation.

In addition, we experimentally implement AC Stark shift compensation to coun-
teract adverse AC Stark shift when we attempt to prepare the motional superposition
state using the carrier and sideband pulses. We compensate for the shift by applying
an additional pulse, which produces the AC Stark shift of the same magnitude but
in the opposite direction to cancel the original AC Stark shift. We measure the net
AC Stark shift using the Ramsey method and calibrate laser parameters for the
compensation pulse so that the compensation results in zero net shift.

With the use of Stark shift compensation, we are able to prepare a motional super-
position state. AC Stark shift compensation improves the fidelity. We experimentally
demonstrate the coherence certifier proposed in Ref. [101]. The experimental im-
plementation of the certifier on the motional state basis requires creation and the
mapping operation, which maps the target state to one of the atomic states and any
states orthogonal to the target state to the other atomic state. We successfully pre-
pare motional states that consist of two or three motional Fock states and verify the
order of motoinal coherence from the resulting interference pattern as the coherence
certifier gives the C values higher than the threshold for respective orders. We apply
the method to the 4-coherent state, but the resulting C value is below the threshold
for 4-coherence. The observation illustrates the certifier does not overestimate the
value of C (i.e. no false positives), although we fail to verify 4-coherence. This work
has been published in [100].

10.3 Bayesian Estimator

Calibrating Rabi frequency and detuning frequency of each transition (carrier and
sidebands) are essential routines. The calibrations have to be performed before

121



performing main experiments to ensure our laser parameters are correctly set as we
wish. The calibration of those two parameters can be achieved by using the standard
fitting method, which requires us to measure the excitation probability by repeating
the experiment more than a hundred times for each data point. If we need ten data
points to be able to fit the data set, the fitting method already requires a thousand
measurements, and consequently the method is too slow. Those two parameters are
not calibrated frequently (e.g. every hour) as the fitting method takes a few minutes,
and we assume the parameters do not significantly drift.

We experimentally implement a Bayesian estimator that estimates the Rabi
frequency and detuning frequency. The critical advantage of the Bayesian estimator
over the standard fitting method is its speed. Contrary to the conventional fitting
method, the Bayesian estimator does not require repeating the experiments to
measure the excitation probability. Therefore, it gives an estimate of unknown
parameters with a relatively small number of measurements.

Our results illustrate that estimating the Rabi frequency by Bayesian estimator
needs only 25 measurements to give estimation with an uncertainty below 1 kHz,
whereas the standard fitting method requires more than a thousand measurements.
The Bayesian estimator also allows for rapid estimation of detuning, and the es-
timator reliably gives the error of estimation below 100Hz even with roughly 100
measurements. In addition, the Bayesian estimator can measure the two parameters
at the same time. We do not have to measure the parameters individually, and this
can save lots of time taken for the calibration routines. With the use of the Bayesian
estimator, we can calibrate Rabi frequency and detuning more often.

10.4 Measurement-based cooling

Cooling the trapped ion down to zero-point motion is crucial in quantum applica-
tions, such as coherent control of the trapped-ion qubit. In our experiment, the
ground state cooling is typically achieved by Doppler cooling and resolved sideband
cooling. We experimentally demonstrate measurement-based cooling proposed for a
mechanical resonator in Ref. [120] as an alternative cooling method. This cooling
scheme is fundamentally different from resolved sideband cooling in that it aims to
probabilistically extract the subset of a statistical ensemble of motional states, which
is results from Doppler cooling, rather than bring all populations of motional excited
states down to the motional ground state.

Contrary to the scheme described in [120], in our implementation of the method,
we generate the state-dependent mapping operation, which separately maps the
motional ground state and the rest of the motional states to different atomic states,
by applying rapid adiabatic passage (RAP) on the sideband. We achieve transfer
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efficiency of RAP on carrier and sideband reliably above 0.98, even if the ion is only
Doppler cooled, in which the thermal distribution of the ion has n̄ approximately 18.

By application of a single cooling cycle, which comprises RAP on the blue sideband
and the following heralding measurement, the motional ground state population is
improved to 0.49 from 0.05, which is achieved through Doppler cooling. However,
this method is limited by imperfect RAP operation. The residual motional excitation
populated in atomic excited state |e⟩ due to imperfect RAP can be further removed by
additional application of the cooling cycle, and the motional ground state population
is further increased to 0.95. However, any further improvement is not achieved despite
more cooling cycles applied. This is because of heating during the state detection,
which takes 1.5 ms, and this heating issue cannot be resolved by repeatedly applying
the cooling cycle. Although the measurement-based cooling does not outperform
the pre-available resolved sideband cooling, our study proves the viability of a new
cooling method, providing an option we can employ in case resolved sideband cooling
is unavailable.

10.5 Outlook

Our long-term goal is to realise single- and two-qubit gates more robustly to ex-
perimental parameters and the inevitable environmental noise (e.g. magnetic field
fluctuation). The techniques developed in this thesis can help us achieve this long-
term goal.

We have already observed that pulse shaping and Stark shift compensation can
tackle the adverse effect of off-resonant effects. Those off-resonant effects also hinder
the realisation of the quantum gate with high fidelity. We might wish to apply
those schemes developed and verified in this thesis to resolve the issue related to
off-resonant effects.

As we increase the number of trapped ions, the cooling is more challenging, and
resolved sideband cooling alone might take excessively long or be inefficient. In this
case, we might use the measurement-based cooling incorporated with the sideband
cooling. So far, we restrict the measurement-based cooling method to a single ion, in
which we consider a single motional mode along the trap axis. However, in principle,
the method can be extended to multiple ions, which generate more than one mode,
by sequentially applying the cooling cycle to each mode. Therefore, we can use
the measurement-based cooling technique to filter the remaining motional quanta
resulting from sideband cooling.

With the high transfer efficiency (η ≈ 98) of RAP we have achieved, we can
employ RAP to aid state detection of the Raman qubit, which is defined by two
sublevels of S1/2. As discussed in Sec. 2.3.2, standard state detection is not applicable
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to the Raman qubit. We have to transfer one of the S1/2 sublevels to the D5/2 state
before performing the standard state detection at 397 nm. This process can be
achieved by RAP more robustly against motional distribution of the ion, which
provides a significant advantage over a resonant π pulse.
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