
Temporally Adaptive Monitoring
Procedures with Applications in

Enterprise Cyber-Security

A thesis presented for the degree of
Doctor of Philosophy of Imperial College London

and the
Diploma of Imperial College

by

Elizabeth Riddle-Workman

Department of Mathematics
Imperial College

180 Queens Gate, London SW7 2AZ

March 2022

I certify that this thesis, and the research to which it refers, are the product
of my own work, and that any ideas or quotations from the work of other people,
published or otherwise, are fully acknowledged in accordance with the standard
referencing practices of the discipline.

Elizabeth Riddle-Workman
March 2022

ii

Copyright

The copyright of this thesis rests with the author and is made available under
a Creative Commons Attribution Non-Commercial 4.0 International Licence (CC
BY-NC). Researchers are free to copy, distribute or transmit the thesis on the con-
dition that they attribute it, that they do not use it for commercial purposes and
that they do not alter, transform or build upon it. For any reuse or redistribution,
researchers must make clear to others the licence terms of this work. Where a
work has been adapted, you should indicate that the work has been changed and
describe those changes.

iii

Acknowledgements

I would like to thank my supervisors Professor Niall Adams and Dr Marina
Evangelou for guiding me throughout the PhD. It has been a great experience
working with you both over the past 5 years which I will forever look back on
fondly.

I am also grateful for the studentship from The Engineering and Physical Sci-
ences Research Council (EPSRC) Centres for Doctoral Training (CDT) in Finan-
cial Computing & Analytics, for allowing me to carry out my research.

Finally I thank my friends and family for their support and encouragement
especially during the challenging periods to keep me going throughout the PhD.

iv

Abstract

Due to the perpetual threat of cyber-attacks, enterprises must employ and develop
new methods of detection as attack vectors evolve and advance. Enterprise com-
puter networks produce a large volume and variety of data including univariate
data streams, time series and network graph streams. Motivated by cyber-security,
this thesis develops adaptive monitoring tools for univariate and network graph
data streams, however, they are not limited to this domain.

In all domains, real data streams present several challenges for monitoring in-
cluding trend, periodicity and change points. Streams often also have high volume
and frequency. To deal with the non-stationarity in the data, the methods ap-
plied must be adaptive. Adaptability in the proposed procedures throughout the
thesis is introduced using forgetting factors, weighting the data accordingly to re-
cency. Secondly, methods applied must be computationally fast with a small or
fixed computation burden and fixed storage requirements for timely processing.
Throughout this thesis, sequential or sliding window approaches are employed to
achieve this.

The first part of the thesis is centred around univariate monitoring procedures.
A sequential adaptive parameter estimator is proposed using a Bayesian frame-
work. This procedure is then extended for multiple change point detection, where,
unlike existing change point procedures, the proposed method is capable of de-
tecting abrupt changes in the presence of trend. We additionally present a time
series model which combines short-term and long-term behaviours of a series for
improved anomaly detection. Unlike existing methods which primarily focus on
point anomalies detection (extreme outliers), our method is capable of also detect-
ing contextual anomalies, when the data deviates from persistent patterns of the
series such as seasonality.

Finally, a novel multi-type relational clustering methodology is proposed. As
multiple relations exist between the di↵erent entities within a network (computers,
users and ports), multiple network graphs can be generated. We propose simul-
taneously clustering over all graphs to produce a single clustering for each entity
using Non-Negative Matrix Tri-Factorisation. Through simplifications, the pro-
posed procedure is fast and scalable for large network graphs. Additionally, this
methodology is extended for graph streams.

This thesis provides an assortment of tools for enterprise network monitoring
with a focus on adaptability and scalability making them suitable for intrusion
detection and situational awareness.

v

Contents

Copyright iii

Acknowledgements iv

Abstract v

1 Introduction 1
1.1 Thesis Contributions . 4
1.2 List of Publications Based on this Work 6

2 Background 7
2.1 Adaptive Estimation . 7

2.1.1 Forgetting Factors . 8
2.1.2 Sequential Bayesian Updating 8

2.2 Time Series Analysis . 9
2.2.1 Autoregressive Integrated Moving Average (ARIMA) 9
2.2.2 Seasonal Trend Decomposition 10

2.3 P -Values . 10
2.4 Performance Measures . 10

2.4.1 Adaptive Estimation Performance Measures 11
2.4.2 Forecasting Performance Measures 11
2.4.3 Classification Performance Measures 12

2.5 Graph Definitions . 13

3 Adaptive Bayesian Filtering 15
3.1 Maximum Likelihood Approach . 15

3.1.1 Adaptive Estimation . 16
3.1.2 Tuning Forgetting Factors 17
3.1.3 Criticism of Learning Rate 18

3.2 Bayesian Adaptive Filtering . 18
3.2.1 Gaussian Adaptive Bayesian Forgetting Factor 18
3.2.2 Sequential Bayesian Updates 22
3.2.3 � Prior Specification . 23
3.2.4 Behaviour of � for Fixed Prior 25

vi

CONTENTS vii

3.2.5 Relationship between � and �
2 26

3.2.6 Adaptive Parameter Priors for µ and �
2 26

3.2.7 General Form for Exponential Family 28
3.3 Synthetic Examples . 30

3.3.1 Adaptive Estimation Performance Measures 30
3.3.2 Comparison Parameter Estimation Methods 31
3.3.3 Gaussian Parameter Estimation Illustrative Example 32
3.3.4 Gaussian Performance Comparison - No Change 33
3.3.5 Gaussian Performance Comparison - Multiple Change with

Trend . 34
3.3.6 Poisson Parameter Estimation 36

3.4 Discussion . 36

4 Change Point Detection 38
4.1 Background and Literature Review 39
4.2 Change Point Detection Methodology 42

4.2.1 Predictive P -Values . 42
4.2.2 Posterior P -Values . 44
4.2.3 Calibration . 45
4.2.4 Grace Period . 46
4.2.5 Ability to Detect Changes in Presence of Trend 47

4.3 Simulation Study . 49
4.3.1 Performance on Change Point Only Data 51
4.3.2 Illustrative Example . 52
4.3.3 Large Scale Simulation with Change Points and Trend . . . 54

4.4 Real Data Example . 56
4.5 Discussion . 60

5 Combined Forecasts for Improved Anomaly Detection 61
5.1 Background and Relevant Literature 63
5.2 Short and Long Term Models . 64

5.2.1 Short-Term Model . 65
5.2.2 Long-Term Model . 65
5.2.3 Long-Term Adaptive Forgetting Approach 67
5.2.4 Applying the Long-Term Model 69

5.3 Combining Short and Long Forecasts 70
5.3.1 Short-Long Decomposition (SL Decomposition) 71
5.3.2 Regression Combination . 72

5.4 Combined Anomaly Detection Procedures 73
5.4.1 Conformal Prediction p-values 73
5.4.2 SLD Anomaly Detection . 75
5.4.3 FDARIMA Anomaly Detection 76
5.4.4 Scalability for Online Settings 77

CONTENTS viii

5.5 Simulated Data Results . 77
5.5.1 Data Generation Procedure 77
5.5.2 Model Specification . 78
5.5.3 Forecast Performance . 79
5.5.4 Comparison Anomaly Detection Methods 80
5.5.5 Anomaly Detection Performance 81

5.6 Real Data Example . 83
5.7 Discussion . 85

6 Multi-Type Relational Clustering 86
6.1 Background and Relevant Literature 87

6.1.1 Competitive Approaches . 89
6.2 Simple NMTF . 91

6.2.1 Objective Function . 91
6.2.2 Optimisation Strategy . 92
6.2.3 Weighted Extension . 93
6.2.4 Convergence and Complexity 96

6.3 Stochastic Block Model Generation 97
6.4 Cluster Validation Measures . 98

6.4.1 External Measures . 98
6.4.2 Internal . 99
6.4.3 Proposed Node Cluster Similarity (NCS) Measure 100

6.5 Cluster Initialisation Strategy . 101
6.5.1 Multi-Relational Extension 102
6.5.2 Performance Improvement 103

6.6 Experiments and Results . 104
6.6.1 Simulated Data . 104
6.6.2 Comparison Methods . 106
6.6.3 Results . 109
6.6.4 20-Newsgroup Data . 109

6.7 Cluster Visualisation . 110
6.8 Discussion . 112

7 Dynamic Multi-Relational Clustering 114
7.1 Adaptive Graph Monitoring . 115

7.1.1 Cluster Updates . 115
7.1.2 Addition and Removal of Nodes 116
7.1.3 Relation Between Clustering 116

7.2 Simulation Study . 118
7.2.1 Data Generation . 118
7.2.2 Performance Measures . 119
7.2.3 Results . 119

7.3 Discussion . 122

CONTENTS ix

8 Enterprise Cyber-Security Applications 123
8.1 LANL Data Description . 123

8.1.1 Netflow . 124
8.1.2 Windows Host Log Data . 124

8.2 Research Problem . 125
8.2.1 Data Processing . 126
8.2.2 Univariate Data Processing 126
8.2.3 Graph Data Processing . 127

8.3 Change Point Detection . 127
8.4 Time Series Anomaly Detection . 129

8.4.1 Forecast Performance . 130
8.4.2 Anomaly Detection Performance 132

8.5 Static Graph Clustering . 135
8.5.1 Day 22 Results . 136
8.5.2 Day 33 Results . 137

8.6 Dynamic Graph Clustering . 138
8.7 Discussion . 142

9 Conclusion 143

Bibliography 146

A Adaptive Estimation Appendix 164
A.1 Poisson Formulation . 164
A.2 Gaussian Synthetic Simulations . 166

A.2.1 Gaussian Performance Comparison Single Change 166
A.2.2 Gaussian Performance Comparison Trend 168

A.3 Poisson Synthetic Simulations . 169
A.3.1 Poisson Performance Comparison No Change 169
A.3.2 Poisson Performance Comparison Single Change 171
A.3.3 Poisson Performance Comparison Trend 172
A.3.4 Poisson Performance Comparison Multiple Change with Trend173

B Change Point Appendix 174
B.1 Recalibration Window Size Timings 174

B.1.1 Change Point Comparison Methods 174
B.2 Change Point Model Parameter Specification 176

B.2.1 PELT . 176
B.2.2 DeCAFS . 176
B.2.3 CUSUM . 176
B.2.4 EWMA . 176
B.2.5 AFF . 176
B.2.6 BOCPD . 177
B.2.7 BFF . 177

B.3 Additional Simulation Study . 177
B.3.1 Performance on Stationary Data 177
B.3.2 Performance on Trend Only Data 178
B.3.3 Poisson Data Streams . 179

C Forecast Appendix 181
C.1 ARIMA Sliding Window Experiment 181
C.2 Regression Combination Coe�cient Investigation 181
C.3 P -Value Investigation . 182

C.3.1 SLD P -Values . 182
C.3.2 FDARIMA P -Values . 182

C.4 Forecast Improvement Remove Anomalies 183
C.5 Comparison Method Description . 184
C.6 BFF as Short-Term Model Results 185
C.7 Additional Figures for Anomalize, tsoutliers and TSSD-EWMA . . 186

D Multi-Type Clustering Appendix 189
D.1 Simple NMTF Derivations . 189
D.2 Weighted Simple NMTF Derivations 191
D.3 Weighted Simple NMTF Regularisation Parameter 193
D.4 Bipartite Modularity . 196
D.5 Additional t-SNE Representations 196

E Dynamic Clustering Appendix 200
E.1 No Cluster Change . 200
E.2 Single Node Cluster Change . 202
E.3 Anomalous Node . 204

F Cyber Application Appendix 208

x

Chapter 1

Introduction

The number of cyber attacks has steadily increased in the past decade [Morgan
et al., 2016, Brooks, 2021] leading to a demand for new methods of intrusion
detection. These cyber attacks come with large costs to companies and enterprises,
where the cost of cyber-crime has increased to $13 million per organisation in
2018 [Bissell et al., 2019]. Since the start of the pandemic, the FBI reported a
300% increase in cyber-crime [Walter, 2020]. These statistics show the demand for
improved intrusion detection methodologies which is the aim of this thesis.

Enterprise computer networks generate large numbers of data streams detailing
the activities of computers and users on the network. By monitoring these data
streams, unusual behaviour and abnormalities corresponding to adversaries may
be detected. Existing intrusion detection approaches primarily rely on signature-
based detection [Turcotte et al., 2019], identifying known signatures or patterns of
analysed attacks. These methods are however incapable of detecting new attack
vectors. As adversaries are becoming increasingly sophisticated and are continu-
ously adapting their attack methods, it is insu�cient to employ signature-based
methods alone and complementary statistical based approaches should addition-
ally be applied. Statistical approaches instead work by modelling the “normal”
behaviour of the network where deviations away from the expected pattern are
classified as anomalous allowing for the detection of previously unseen attack vec-
tors. This thesis provides a variety of statistical monitoring tools for enterprise
cyber-security data to assist analysts in identifying intruders through both situa-
tional awareness and detection of abnormalities in the data.

Although cyber-security is the key motivator for the procedures proposed in
this thesis, they are not limited to this domain. In each chapter the methods are
formulated for general application and are applied to non-cyber applications. In
particular, the proposed approaches in this thesis focus on applicability to high
frequency and volume data streams (unending sequences of ordered observations
[Henzinger et al., 1999]) which are present in many areas of research due to the
rapid advancements in data acquisition technology [Aggarwal, 2007, Gama, 2010].
The additional model challenges that are paired with high volume and frequency

1

Chapter 1. Introduction

data streams are the same across all domains and the methods proposed in this
thesis aim to address these challenges. Due to the large volume of this data, it is
impractical for the full history of a stream to be stored, and instead, it is desir-
able for each instance of the sequence to be processed once or passed over a small
number of times using sequential or online approaches due to computational and
storage limitations. In the landscape of streaming data, swift processing is imper-
ative to support timely action. These requirements drastically reduce the number
of methods suitable for data streams. In many of the research areas explored in
this thesis, well established batch approaches exist however they are impractical
for infinite data streams as they either process the full available data sequence or
large batches. Thus in this thesis, there is a focus on online or sequential methods
to allow for real-time analysis.

Another key focus of this work is adaptability. As real world data streams are
never ending with unknown future behaviour, methods applied must be capable
of adapting to changes in the underlying generating process of the data where the
current model may not be suitable in the future. To introduce adaptability in the
proposed methods, forgetting factors are employed throughout the thesis. These
factors smoothly down-weight historical observations exponentially such that the
data is weighted according to recency with the most recent data point having
a weight of 1. Forgetting factors are a popular approach in adaptive filtering
[Haykin, 2002] and have successfully been applied in literature for adaptability (e.g.
Anagnostopoulos et al. [2012], Bodenham and Adams [2017], Pavlidis et al. [2011],
Plasse and Adams [2019]). They can additionally be considered a continuous
analogue of a sliding window approach, another popular mechanism for introducing
a temporal aspect in a model. Due to the unlabelled nature of real world data
streams, it is not possible to tune hyper-parameters on the fly, thus methods with
few influential hyper-parameters are also preferable.

The thesis begins by investigating monitoring procedures for univariate data
streams. For such data, various possible research problems exist. Streaming Pa-
rameter Estimation, Forecasting, Change Point Detection and Anomaly Detection
are the problems investigated in this thesis. Parameter estimation and time se-
ries forecasting model the “normal” behaviour of the data whereas change point
detection and anomaly detection allow for unusual behaviours in the data to be
identified, possibly relating to intrusions. Here motivation and high-level descrip-
tions of the proposed procedures are provided. Relevant literature and in-depth
descriptions are provided in the corresponding chapters.

To capture the evolution of a data stream, adaptive parameter estimation is
employed to estimate the current distributional parameters of the underlying data
generating process. Due to the dynamic nature of the data, a novel adaptive
sequential updating approach is used. It is important to note that sequential
parameter estimation on data streams is a challenging problem as the methods
must adapt to unknown future behaviour where only a single pass over the data
is possible. Adaptability is introduced in the proposed approach using forgetting

2

Chapter 1. Introduction

factors within a Bayesian estimation procedure to allow the parameter estimates
to adapt autonomously with minimal human input over the stream. This approach
is scalable for large data streams due to the fast sequential updates, which is often
a concern for Bayesian techniques.

For the detection of abnormalities in these univariate data streams, a change
point procedure based on the proposed parameter estimation method is developed
where change points correspond to timestamps when distributional changes occur
in the generating process. Commonly data streams naturally contain periods of
trend which many existing change point procedures flag as perpetual changes. In
this thesis, attention is restricted to detecting abrupt change points in data streams
exhibiting trend to prevent large numbers of false positives throughout these trend
periods.

An alternative approach to analysing data streams is through using time series
analysis as the data is naturally ordered by time. Many time series in practice often
exhibit daily patterns or seasonality which is persistent throughout the series and
is a non-anomalous characteristic of the data. In this thesis, a forecast procedure
is proposed which incorporates this persistent daily behaviour by combining short-
term forecasts (looking at the local behaviours) and long-term forecasts (focusing
on the seasonal behaviour of the data) for improved forecast performance. This
forecast procedure is then utilised for anomaly detection.

Anomaly detection is a highly popular intrusion detection approach in litera-
ture. A point is classified as anomalous if it deviates significantly from the “nor-
mal” behaviour of the model. In the context of forecasting, anomalies occur when
the forecast and corresponding observed value di↵er greatly. The most analysed
type of anomaly is point anomalies when a single data instance deviates globally
from the series. These can also be regarded as outliers in the data. Alternatively,
the data may deviate from the expected seasonal behaviour of the data. These
types of anomalies are classified as contextual anomalies as, given the context, the
data exhibits unusual values. In literature, time series anomaly detection methods
focus primarily on point anomalies. As the proposed forecast procedure fuses infor-
mation about the local (short-term) and global (long-term) behaviours, contextual
anomalies can also be detected and is a benefit of the procedure.

Cyber-security data also lends itself naturally to be represented as network
graphs. These graphs detail the connections made between nodes of di↵erent
entity types (e.g. computers, users and ports in the case of cyber-security) where
multiple relational graphs for each entity type may exist. As interactions between
the nodes occur over time, graph streams can be generated capturing di↵erent
snapshots of these interactions. To benefit from having multiple relations for a
single entity type, information between these graphs is fused using Multi-Type
Relational clustering. In literature, it is however more common to cluster over
each graph separately, without leveraging the shared latent behaviour between the
graphs. The clustering approach proposed in this thesis aims to group nodes with
similar network activity. This is distinct from community detection which instead

3

Chapter 1. Introduction

groups highly connected nodes with few connections to nodes outside of their
community. Community detection in computer networks has been more commonly
explored (e.g. [Moradi et al., 2014, Sanna Passino and Heard, 2020]). The proposed
clustering is instead based on the connection activity of the nodes. Due to the large
network sizes in cyber-security, existing clustering procedures are slow to compute
which may result in delays in the detection of abnormalities in the network. The
proposed procedure is instead fast to compute on large graph networks, allowing
for timely analysis. An extension of the proposed clustering procedure to allow for
dynamic clustering is provided, which has rarely been applied in the cyber domain.

1.1 Thesis Contributions

A novel Bayesian adaptive forgetting factor parameter estimation procedure is pro-
posed in Chapter 3. This model utilises power priors to include forgetting factor
weights within the Bayesian model and is suitable for all members of the expo-
nential family of distributions. Sequential updating forms are calculated reducing
storage requirements with fast computation making it highly suitable for applica-
tion to data streams. Through the inclusion of the forgetting factor within the
parameter inference, this factor is automatically estimated within the model and is
adaptive. The proposed formulation only requires setting a fixed prior for the for-
getting factor which can be tuned to the desired level of forgetting in the model. In
comparison, competitive approaches often have hard to set hyper-parameters with-
out intuitive meanings. The proposed parameter estimation procedure is tested
and compared against the frequentist version proposed by Anagnostopoulos et al.
[2012] on simulated Gaussian and Poisson data. This model forms the basis of the
change point procedure proposed in the next chapter.

The parameter estimation procedure from Chapter 3 is extended in Chapter
4 for multiple change point detection. The change point procedure, BFF, cal-
culates p-values for each new observation using the estimated distribution from
the previous time. Before applying a threshold approach to detect changes using
the p-values, a sliding calibration window is applied to the p-values such that at
the ↵% level, approximately ↵% of points are identified as change points. This
calibration approach allows for setting the threshold based on the desired false pos-
itive rate. The performance of the procedure is compared to competitive change
point approaches on both simulated and real financial data. The proposed ap-
proach benefits from being capable of detecting abrupt changes in the presence
of trend, where trend is seldom addressed by existing procedures. Additionally,
the proposed approach has comparable performance to high performing batch and
sequential methods whilst maintaining low false positive rates across all data ex-
amples.

Two anomaly detection procedures, FDARIMA and SL Decomposition are pro-
posed in Chapter 5 which instead monitor the data using time series approaches.
These approaches combine short-term and long-term forecasts for improved de-

4

Chapter 1. Introduction

tection of both point and contextual anomalies. A forgetting factor approach is
utilised within the long-term model giving greater weight to more recent data,
making it adaptive. Detection of contextual anomalies in literature is rare with
the majority of work focusing on point anomalies. The proposed anomaly detector
is compared to competitive anomaly detection approaches on simulated data and
a real social media data set where the proposed procedure shows promising results
in detecting both types of anomalies.

Chapter 6 introduces a novel multi-type relational clustering procedure, Sim-
ple NMTF, for clustering over multiple entity types and relational graphs simul-
taneously to produce a shared representation. Existing multi-relational clustering
approaches e.g. [Wang et al., 2011b] and [Wang et al., 2019] are slow to compute,
making them infeasible for application to large scale data sets. By utilising indica-
tor matrices for the factor matrices within Non-Negative Matrix Tri-Factorisation,
the computation time is significantly reduced whilst improving clustering perfor-
mance. A novel extension of a popular uni-partite cluster initialisation procedure
is proposed for multi-type relational clustering for improved stability. As the ma-
jority of real data sets are unlabelled, external cluster performance measures are
necessary to measure the e↵ectiveness of the clustering. The Node Cluster Similar-
ity measure is proposed which is suitable for assessing the cluster performance at
node, graph and network levels. The proposed procedure shows promising results
on both simulated and real data sets with significant improvements in computation
speed in comparison to existing procedures. This procedure has been published
and is applied to both cyber and non-cyber applications in [Riddle-Workman et al.,
2021].

The clustering procedure from Chapter 6 is extended for application to graph
streams in Chapter 7. At each update, the previously calculated clustering is
utilised to initialise the clustering procedure. Consistent performance and smooth
clustering results are observed from application to simulated graph streams which
are desired properties for dynamic clustering procedures.

In Chapter 8 the proposed methods are applied to the comprehensive Uni-
fied Host and Network Data set from Los Alamos National Laboratory [Turcotte
et al., 2019]. The procedures developed in this thesis provide an extensive toolkit
for monitoring computer networks including monitoring both univariate and graph
data streams. Performance measurement for each procedure presented in compari-
son to competitive approaches is provided. This chapter showcases the robustness
of the proposed procedures to real network data, highlighting its suitability in
practice for enterprise network monitoring, the motivator for the methods pro-
posed.

5

Chapter 1. Introduction

1.2 List of Publications Based on this Work

The following paper has been accepted for publication:

Elizabeth Riddle-Workman, Marina Evangelou, and Niall M. Adams. Multi-
Type Relational Clustering for Enterprise Cyber-Security Networks. Pattern Recog-
nition Letters, 149:172-178, 2021. doi:10.1016/j.patrec.2021.05.021

The multi-type relational clustering work from Chapter 6 is based on the above
paper and is extended further for dynamic clustering in Chapter 7. The following
papers are due to be submitted for publication:

Riddle-Workman, E., Evangelou, M., & Adams, N. M. (2022). Combining
Forecasts For Enhanced Anomaly Detection in Time Series Data. Journal of Com-
putational and Graphical Statistics.

Riddle-Workman, E., Evangelou, M., & Adams, N. M. (2022). Adaptive Se-
quential Bayesian Filtering for Trend Resistant Change Point Detection. Sequen-
tial Analysis.

Additionally, all methodologies presented in this thesis have associated public
Github repositories:

• elizabethriddle/BFF for Chapters 3 and 4

• elizabethriddle/tsanom for Chapter 5

• elizabethriddle/Simple-NMTF for Chapters 6 and 7.

6

Chapter 2

Background

This chapter details standard definitions and procedures utilised throughout the
thesis. To begin, notation used in all chapters is defined. Forgetting factors, an
approach central to this thesis, is described in Section 2.1 where Bayesian filtering
is additionally described. Basic prerequisites for time series analysis, p-values,
performance measures and network graph representation are detailed in Sections
2.2, 2.3, 2.4 and 2.5 respectively.

Throughout the subsequent chapters, let uppercase values X1, . . . , Xt represent
random variables with corresponding observations x1, . . . , xt. Let a time series be
represented using uppercase, X1, . . . , Xt which is common in literature. Vectors
are represented with bold symbols x where xi refers to the ith entry of the vector.
Matrices are represented by bold uppercase letters A which is indexed as Aij,
referring to the (i, j)th position. Additionally let Ai· refer to the i

th row of A
and A·j be the corresponding j

th column. Throughout the thesis it is noted if the
notation deviates to instead follow popular notation from literature.

2.1 Adaptive Estimation

Adaptability is a key characteristic of the methods presented in this thesis as they
are applied to unending sequences of data, also known as data streams. Static
models are not suitable for such data as the generating process of the data often
changes. Thus adaptive procedures are beneficial for improving the accuracy of
the models. A temporal aspect can be introduced in a model by applying a sliding
window during estimation [Plasse and Adams, 2019]. A sliding window utilises the
latest s observations for estimation where s corresponds to the size of the sliding
window. Setting the size of this window can however lead to further challenges
where a fixed window might not be appropriate for all situations in streaming data.
For example, during stationary periods, larger windows are appropriate however
during trends or other non-stationary periods, smaller windows are preferred as
historic data is less relevant to the current model. Throughout the thesis forgetting
factors are instead employed to control the e↵ective “memory” of our models and is

7

Chapter 2. Background

a popular approach in adaptive filtering [Haykin, 2002]. We now describe forgetting
factors in more detail.

2.1.1 Forgetting Factors

Forgetting factors are commonly represented by �, taking on values in [0, 1]. Here
an exponential weighting framework is employed where historic data is discounted
by � at each time. This approach weights the data according to recency where
younger samples have greater influence. Under this scheme, for a fixed forgetting
factor, �, which stays constant over the stream, after observing a total of t data
points, the i

th data point has weight given by �
t�i. Thus the most recent data

point has weight 1 whereas older samples have progressively less weight.
Alternatively, an adaptive forgetting factor approach can be employed where

at time t, historic data is discounted by �t�1 whose value changes over the stream.
After observing a total of t data points, the i

th data point has weight given byQt�1

j=i �j. Again data point t, the most recent observation has weight 1. This
adaptive forgetting approach is more favourable in practice to better adapt to
the data. For example, during periods of change, smaller values are appropriate
whereas, during stationary periods, values close to 1 are preferable. For both the
fixed and adaptive cases, when �t = 1 8t, the estimates are equivalent to the
unweighted case. Forgetting factors are used to improve the adaptability of the
methods in Chapters 3 and 5.

2.1.2 Sequential Bayesian Updating

When dealing with data streams models need to update sequentially to prevent
large computation overheads. Sequential updating forms for various models are
available making it possible for models to be updated without full re-computation
of the model. The simple Bayesian sequential updating filtering procedure is an
example that e�ciently updates a Bayesian model without requiring the full stream
of data to be stored. In Chapter 3, we propose introducing forgetting factors into
this sequential Bayesian updating method to allow the influence of historic data
to reduce over the stream as the data changes.

Consider a data stream x1, . . . , xt, . . . generated from random variablesX1, . . . , Xt, . . .

where the aim is to estimate the distribution parameter ✓. Let the prior be repre-
sented by ⇡(✓). The likelihood for the data at time t can be expressed as,

P (x1, . . . , xt|✓) = P (x1|✓)P (x2|x1, ✓) . . . P (xt|x1, . . . , xt�1, ✓).

Let the posterior at time t be given by,

⇡t(✓) / ⇡(✓)P (x1, . . . , xt|✓)

8

Chapter 2. Background

which can be expressed in recursive terms as follows,

⇡t(✓) / ⇡(✓)P (x1, . . . , xt|✓)

/ ⇡(✓)P (x1, . . . , xt�1|✓)P (xt|x1, . . . , xt�1, ✓)

/ ⇡t�1(✓)P (xt|x1, . . . , xt�1, ✓)

where P (xt|x1, . . . , xt�1, ✓) is the new likelihood for the most recent data point.
Commonly P (xt|x1, . . . , xt�1, ✓) = P (xt|✓) through assuming independence be-
tween observations. Thus sequential forms for Bayesian inference can be formu-
lated to allow for online implementation which we extend to include forgetting
factors in Chapter 3.

2.2 Time Series Analysis

The order of the data points in cyber-security holds great importance, particularly
for intrusion detection such that times of attacks can be identified. These data
streams can be represented as time series and are often high frequency. A time
series is a collection of data points indexed by their order. In all chapters but
Chapter 6, time series data is investigated. Chapter 5 in particular applies uni-
variate time series methods directly to the data including ARIMA and time series
decomposition methods.

2.2.1 Autoregressive Integrated Moving Average (ARIMA)

An ARIMA process is a mixed model which combines Autoregressive (AR) and
Moving Average (MA) processes into a single expression with the addition of di↵er-
encing in the time series [Metcalfe and Cowpertwait, 2009] where this di↵erencing
allows for non-stationary time series. For a time series of data, Xt with integer
index, an ARIMA(p,d,q) process can be expressed mathematically by,

⇥p(B)(1�B)dXt = �q(B)✏t, (2.1)

where B is the backwards shift operator, ✏t is a zero mean white noise process
with variance �✏. ⇥p and �q are polynomials of orders p and q respectively, more
specifically:

⇥p(B) = 1� ✓1B� ✓2B
2
� . . .� ✓pB

p

�q(B) = 1� �1B� �2B
2
� . . .� �pB

q
.

These coe�cients are estimated using maximum likelihood estimation. For further
details on calculating these coe�cients see Gardner et al. [1980]. From these
models, forecasts can be made using the estimated coe�cients, the past time series
values and residuals. An ARIMA model is applied to model short-term aspects of

9

Chapter 2. Background

the data in Chapter 5.

2.2.2 Seasonal Trend Decomposition

Time series data is often subject to seasonality, trend and other patterns. Data
of this kind is the focus of Chapter 5. For such series, time series decomposition
approaches that separate these underlying patterns are often employed. The most
widely used decomposition is into trend, seasonal and remainder components as
follows,

xt = Tt + St +Rt

where xt is the observed value of the time series, Tt is the trend component,
St is the seasonal component and Rt is the remainder at time t. Traditionally
the trend component is first computed before the seasonal component [Hyndman
and Athanasopoulos, 2018] using methods such as a moving average. The seasonal
component is then computed on the detrended series xt�T̂t where T̂t is the forecast
of the trend at time t. The seasonal component can then be calculated by averaging
over the detrended values for each value within the seasonal cycle.

2.3 P-Values

Intrusion detection in cyber-security data is a key motivator for the methods de-
veloped in this thesis where p-values are used to characterise the anomalousness of
the data at each time point. Traditionally p-values are used for statistical hypoth-
esis testing and express the probability of observing something at least as extreme
as the observed result under the null hypothesis. These values are then used to
accept or reject this hypothesis. Throughout the thesis, p-values are used less
traditionally, as indicators of anomalies or abnormalities within the data. p-values
are used here to quantify whether the newly observed data point is consistent with
the current model of the data and take on values in [0, 1] where values closer to 0
are more anomalous.

Suppose realisation xobs is an observation of random variable X. Under the null
it is assumed data from X has density f(x; ✓). Given some test statistic T = t(X)
with observed value given by tobs = t(xobs) then the p-value to assess this null is
calculated as,

p = P (t(X) > tobs).

p-values are used as indicators of change points or anomalies in Chapter 4 and 5.

2.4 Performance Measures

The performance of the methods proposed in this thesis is assessed using several
existing measures. Section 2.4.1 outlines estimation performance measures which
are used for the adaptive parameter estimator in Chapter 3. The forecasts from

10

Chapter 2. Background

Chapter 5 are assessed using the forecast measures in Section 2.4.2. Finally, to
assess the performance of the change point and anomaly detection procedures of
Chapters 4 and 5, classification measures are applied and are described in Section
2.4.3. These measures are now described.

2.4.1 Adaptive Estimation Performance Measures

The most popular estimation error measures are Mean Square Error (MSE), Mean
Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE). These mea-
sures look to evaluate the average estimation error over the observed data.

The MSE for true values yi and estimates ŷi over i = 1, . . . , n is calculated as,

MSE =
1

n

nX

i=1

(yi � ŷi)
2
.

The MAE is calculated in a similar manner where the square is replaced by the
absolute value,

MAE =
1

n

nX

i=1

|yi � ŷi|.

Finally, the MAPE is similar to the MAE but scales the error by the true value as
follows,

MAPE =
1

n

nX

i=1

����
yi � ŷi

yi

���� .

All of these measures are positive where smaller values are desirable. The MSE
is advantageous in situations where large errors are undesirable as it gives greater
weight to these. The MAE however has the benefit of being more interpretable as
it is on the same scale as the data. The MAPE scales the error by the value that is
being estimated. This measure is then robust to changes in the scale of the data.

2.4.2 Forecasting Performance Measures

Time series models are commonly utilised to forecast the values of future values
in the series. Hyndman [2006] discusses various measures appropriate for forecast
performance in detail which include the Mean Absolute Error (MAE) and Mean
Absolute Scaled Error (MASE). Their notation is adopted for this section. The
MAE is calculated using the following where Ft is the forecast for observation Yt,
the observed value of the process at time t where t = 1, . . . , n,

MAE =
1

n

nX

t=1

|Yt � Ft|.

11

Chapter 2. Background

A disadvantage of this measure is that it is scale dependent and cannot be easily
compared across di↵erent series. To overcome this, the MASE was introduced by
Hyndman and Koehler [2006] which scales the errors using the in-sample MAE of
a naive one-step ahead forecaster. The scaled error for a forecast at time t is,

qt =
|Yt � Ft|

1

n�1

Pn
i=2

|Yi � Yi�1|
.

The mean absolute scaled error is calculated as,

MASE =
1

n� 1

nX

t=2

(qt),

where a value less than 1 signifies a forecast that performs better than the in-
sample naive forecaster and similarly if the value is greater than 1, it performs
worse than this naive forecaster. Both measures are utilised as they can indicate
di↵erent performances for the models. The MASE can in particular allow for
better comparison between methods that utilise di↵erent window sizes of data for
building the model.

2.4.3 Classification Performance Measures

When determining the performance of anomaly detectors, classification perfor-
mance measures are commonly employed. These measures assess how well a model
correctly distinguishes between two classes which in this case is anomalous and
non-anomalous. Below basic definitions for distinguishing between the proportion
of anomalies correctly and incorrectly classified are detailed:
True Positive (TP) corresponds to the number of true anomalies correctly iden-
tified by the procedure
False Positive (FP) corresponds to the number of points that are incorrectly
identified as anomalous by the procedure
True Negative (TN) corresponds to the number of points that are correctly
identified as non-anomalous by the procedure
False Negative (FN) corresponds to the number of anomalies incorrectly clas-
sified as non-anomalous by the procedure

Precision and recall are two popular classification measures that evaluate dif-
ferent aspects of performance. Precision is the proportion of identified positives
that are true positives. The recall instead looks at the proportion of true positives

12

Chapter 2. Background

that are correctly identified as such. More specifically,

precision =
TP

TP + FP

recall =
TP

TP + FN

Both of these measures take on values in [0, 1] where values closer to 1 are optimal.
If low false positives for a model are desirable, high precision is required. However,
if detecting all positives has higher importance, higher recall is desirable. Often
there is a trade o↵ between these two measures where higher numbers of true
positives often result in larger numbers of false positives. The F1 score instead
combines these measures into a single score. The F1 measure takes the harmonic
mean of the precision and recall and is calculated as,

F1 = 2 ·
precision · recall

precision + recall
.

The F1 takes on values in [0, 1] where again higher values are desirable where a
value of 1 corresponds to perfect classification of the data with no false positives.

2.5 Graph Definitions

In Chapters 6 and 7, rather than investigating univariate data, network graphs are
explored. Cyber-security data captures the relationships between entities within
the network where these can naturally be represented as network graphs. Basic
graph definitions used throughout the thesis are now briefly outlined. For more in
depth descriptions see Gross and Yellen [2003] and Newman [2010].

A graph G = (V,E) is a collection of vertices, V , also known as nodes that
are connected by edges, E. An edge denoted by (i, j), connects nodes i and j

where these connections can be directed or undirected. For directed graphs, the
ordering of the pairs of vertices holds importance whereas in undirected graphs, it
does not.

Graphs can be expressed mathematically using an adjacency matrix, A, of size
|V |⇥ |V | given by,

Aij =

(
1 (i, j) 2 E

0 otherwise
.

In the case of undirected graphs, adjacency matrices are symmetric. Although
weights can be given to the edges, in our work there is focus on the unweighted
case where adjacency matrices are binary and primarily sparse.

Due to the complex nature of computer networks, relationships between two
independent sets of vertices may exist, known as a bi-partite graph. Conversely,

13

Chapter 2. Background

when graphs contain a single vertex set, they are called uni-partite. Bi-partite
graphs are denoted by G = (V, U,E) where V and U are the distinct vertex sets
and the edges, E, define the links between these sets. Adjacency matrices for bi-
partite graphs have size |V |⇥ |U |. In bi-partite adjacency matrices, the direction
of the connection cannot be recorded and thus is undirected. Finally, the degree
of a vertex is defined as the number of edges attached to it.

14

Chapter 3

Adaptive Bayesian Filtering

Distribution parameter estimation for streaming data is a challenging problem as
the underlying generating process of the data often changes over time. Thus adap-
tive parameter estimation procedures are preferable in this context. In this chapter
a Bayesian adaptive parameter estimation procedure is presented, a novel exten-
sion of the frequentist filtering method proposed by Anagnostopoulos et al. [2012].
Within the proposed method, exponential weighting is employed through forget-
ting factors to smoothly down-weight historic data, allowing estimates to adapt
at abrupt change points and during trends. Rather than estimating the parame-
ters using maximum likelihood estimation, a Bayesian framework with sequential
updating mechanisms is implemented for improved adaptability and scalability.

Besides the benefits of situational awareness and understanding of the data,
adaptive filtering can be used as a basis for additional procedures such as change
point detection or anomaly detection. The proposed adaptive filter is utilised for
the change point procedure outlined in Chapter 4 and also within the forecast
method in Chapter 5.

This chapter is structured as follows: Section 3.1 first describes the frequentist
approach the proposed procedure is based on. Challenges faced by this frequen-
tist model are outlined, motivating a Bayesian reformulation. The proposed novel
Bayesian procedure is detailed in Section 3.2 including prior specification methods
which help to alleviate prior parameter specification over the stream. Finally, Sec-
tion 3.3 looks at the parameter estimation performance of the proposed procedure
on simulated examples that include trend.

3.1 Maximum Likelihood Approach

Anagnostopoulos et al. [2012] propose an adaptive frequentist parameter estima-
tion procedure that utilises adaptive filtering to temporally monitor the distribu-
tion parameters. Forgetting factors, a popular approach from adaptive filtering
is used to weight the likelihood making it temporally aware. The distribution
parameters are estimated using maximum likelihood estimation where sequen-

15

Chapter 3. Adaptive Bayesian Filtering

tial updating forms are described. This frequentist adaptive estimation approach
shows great strength in filtering and is highly suitable for data streams due to
its adaptive sequential nature however requires setting the forgetting factor. This
procedure is now described before outlining the proposed reformulation in Section
3.2.

3.1.1 Adaptive Estimation

The procedure by Anagnostopoulos et al. [2012] adaptively estimates the param-
eters of a distribution by smoothly down-weighting past data points in the likeli-
hood. As done in their paper, the case for multivariate Gaussian data is presented
however Anagnostopoulos et al. [2012] additionally present the results more gener-
ally for exponential family of distributions. For multivariate Gaussian data xi 2 Rp

at time i with mean µ 2 Rp and covariance matrix ⌃ 2 Rp⇥p, at time t the expo-
nentially weighted sum of log likelihood terms is given by,

LFF (x1:t|µ,⌃)

= �t�1LFF (x1:t�1|µ,⌃) + L(xt|µ,⌃)

= �t�1

t�1X

i=1

t�2Y

j=i

�jL(xi|µ,⌃) + L(xt|µ,⌃)

=
t�1X

i=1

w
t
iL(xi|µ,⌃) + L(xt|µ,⌃) (3.1)

where L(·|·) is the Gaussian log likelihood, x1:t refers to data from time 1 to time
t, �j 2 [0, 1] are the forgetting factors and

w
t
i = �t�1

t�2Y

j=i

�j = �t�1w
t�1

i

is the unnormalised weight for observation i = 1, . . . , t� 1 at time t where obser-
vation t has weight wt

t = 1.
This forgetting factor likelihood from Equation (3.1) has the following Maxi-

mum Likelihood Estimates (MLE),

µ̃t =
tX

i=1

w
t
i

nt
xi (3.2)

⇧̃t =
tX

i=1

w
t
i

nt
xix

T
i (3.3)

⌃̃t = ⇧̃t � µ̃tµ̃
T
t (3.4)

16

Chapter 3. Adaptive Bayesian Filtering

where nt =
Pt

i=1
w

t
i is the e↵ective sample size [Wang et al., 2004]. These equations

have the benefit of sequential updating forms given by,

µ̃t =

✓
1�

1

nt

◆
µ̃t�1

+
1

nt
xt

⇧̃t =

✓
1�

1

nt

◆
⇧̃t�1 +

1

nt
xtx

T
t

⌃̃t = ⇧̃t � µ̃tµ̃
T
t

nt = �t�1nt�1 + 1

allowing for reduced storage requirements and fast computation. The only param-
eter that requires attention in this model is the forgetting factor �t that is crucial
because it controls how fast historic data is forgotten.

Two cases are considered for these forgetting factors: fixed where �i = � 8i

and adaptive where this factor is updated at each iteration. In the fixed case,
the data is down-weighted by a constant factor regardless of how the data has
changed. Alternatively in the adaptive framework, the forgetting factor changes
at each time point.

3.1.2 Tuning Forgetting Factors

The forgetting factor is responsible for determining the level of forgetting in the
model. Larger values result in greater weight assigned to older samples and smaller
values lead to less weight. When the data exhibits periods of change, the forget-
ting factor should be small to allow the estimates to adapt quickly to the new
distribution, discarding irrelevant historic data. Whereas for periods when the
data is stationary, a forgetting factor equal to one is optimal as all historic data
has equal importance. To avoid manual specification, an online tuning procedure
for the forgetting factor is necessary.

A stochastic gradient descent was used by Anagnostopoulos et al. [2012] for
tuning the forgetting factor as follows,

�t = �t�1 � ⌘
@

@�
Jt (3.5)

where ⌘ is the learning rate or step size of the gradient descent. Various cost
functions, Jt, may be used. Anagnostopoulos et al. [2012] use the one-step ahead
fit for the cost function characterised by the negative log likelihood given by,

Jt = �L(xt+1|µ̂t, ⌃̂t)

whereas Bodenham and Adams [2017] use the squared di↵erence between the mean
estimate and the true data as it is more appropriate for adaptive mean estimation

17

Chapter 3. Adaptive Bayesian Filtering

(without estimation of the variance) and is given by

Jt = ||xt+1 � µ̂t||
2
.

Bodenham [2014] notes that under the assumption the stream is generated from a
normal distribution, these two cost functions result in similar updates.

3.1.3 Criticism of Learning Rate

Although this procedure is suitable for streaming applications it has replaced the
problem of choosing the forgetting factor with the learning rate. When choosing
this learning rate, there is a trade-o↵ between fast adaptability and noise control.
Although a larger learning rate allows the forgetting factor to adapt quickly, this
causes the estimates to be noisier, particularly if the data contains outliers. There
is very little guidance in literature on setting the learning rate however values in
[0.001, 0.1] [Bodenham and Adams, 2017] or [10�8

, 10�6] [Anagnostopoulos et al.,
2012] are suggested. These di↵erences in appropriate ranges are attributed to
di↵erent cost functions used within the stochastic gradient descent by the authors.

Tuning this learning rate for stochastic gradient descent is a well known chal-
lenge in literature and additional methods have been formulated to mitigate this
issue (e.g. Zeiler [2012]). Additionally, it was found by Bodenham [2014] that
suitable learning rates were dependent on the scale of the data. To manage this
problem, Bodenham [2014] developed a heuristic approach that re-scales the learn-
ing rate by the variance of the data which they assume to be known or estimated.

Due to the challenges in setting the learning rate, we instead propose refor-
mulating this model into a Bayesian framework. The adaptive Bayesian filtering
approach does however require a prior for the forgetting factor to be supplied.
The forgetting factor is optimised at each iteration within the inference rather
than requiring additional adaptive models.

3.2 Bayesian Adaptive Filtering

The Bayesian approach to the adaptive filtering problem named the Bayesian
Forgetting Factor (BFF) is now described. In the proposed approach the forgetting
factor is estimated within the model, rather than being set manually or through
additional procedures such as stochastic gradient descent.

3.2.1 Gaussian Adaptive Bayesian Forgetting Factor

The proposed novel Bayesian adaptive filtering approach is detailed for the uni-
variate Gaussian case. Suppose a stream of data, x1, x2, . . . is observed which
are realisations of Gaussian random variables X1, X2, . . . with unknown mean and
variance. As before, there are two ways to include forgetting factors in the model.

18

Chapter 3. Adaptive Bayesian Filtering

A fixed forgetting factor represented by a single fixed value, �, can be used to
equally down-weight older samples as the model updates. Alternatively, an adap-
tive forgetting factor can be applied where historic data is down-weighted by an
adapting factor �t�1 at time t. Utilising an adaptive approach allows for more
rapid adjustment at change points in the data.

In the following an adaptive forgetting factor is implemented. Let the weight
for data point xi at time t be expressed as,

wi(t) =
t�1Y

j=i

�j

= �t�1

t�2Y

j=i

�j (3.6)

where xt has weight 1 at time t. When �j = 1 8j, this is equivalent to the un-
weighted model. Similar to weighting the log likelihood in the frequentist case, the
forgetting factors are incorporated within the prior using power priors as proposed
by Ibrahim and Chen [2000]. Using the notation of Ibrahim and Chen [2000], the
power prior for K0 historical data sets, D0k, k = 1 . . . , K0, where the k

th data set
has weight a0k (0  a0k  1), is given by,

⇡(✓|D0, a0) / ⇡0(✓)
K0Y

k=1

L(✓|D0k)
a0k ,

where a0 = (a01, . . . , a0K0), D0 = (D01, . . . , D0K0), ⇡0(✓) is the initial prior for
✓ and L(·|·) is the likelihood. As the likelihood is simply raised to a power,
all asymptotic results from likelihood theory carry over when using power priors
[Ibrahim et al., 2015].

The aim of this work is to estimate the current mean µ and variance �
2 of

univariate Gaussian data at time t. Historic data before time t is down-weighted
by a factor �, where this factor is to be estimated. For simplicity, the weights are
rewritten in Equation 3.6 as wi = �ci where ci is a known constant of the form
ci =

Qt�2

j=i �j for i = 1, . . . , t�2 and ct�1 = 1. The factors �j for j = 1, . . . , t�2 are
the previously calculated exponential weights thus are known. For the frequentist
case, Anagnostopoulos et al. [2012] perform Maximum Likelihood Estimation using
the log likelihood in Equation 3.1. Bayesian Inference is instead performed using
the following joint power prior for the parameters µ, �2 and � at time t,

P (µ, �2
,�|x1, . . . , xt�1)

/ P (µ|�2)P (�2)P (�)
t�1Y

i=1

P (xi|µ, �
2)�ci (3.7)

19

Chapter 3. Adaptive Bayesian Filtering

where

Xi|µ, �
2
⇠ N

�
µ, �

2
�
for i = 1, . . . , t� 1

µ|�
2
⇠ N(µ0, �

2

0
�
2)

�
2
⇠ Inv-Gamma(↵0, �0)

� ⇠ P (�).

Here the prior for � is left in general terms and leave specification of this prior is
left for Section 3.2.3. Suppose the data at time t follows, Xt ⇠ N(µ, �2), the joint
posterior takes the form,

P (µ,�, �2
|x1, . . . , xt)

/ P (xt|µ, �
2)P (µ, �2

,�|x1, . . . , xt�1)

/
1

p
2⇡�2

exp

✓
�

1

2�2
(xt � µ)2

◆
·

✓
1

�2

◆↵0+1

exp

✓
�
�0

�2

◆

⇥

t�1Y

i=1

"✓
1

2⇡�2

◆�ci
2

exp

✓
�

�

2�2
ci(xi � µ)2

◆#

⇥

✓
1

�2

◆ 1
2

exp

✓
�

1

2�2

0
�2

(µ� µ0)
2

◆
· P (�)

/
1

p
2⇡�2

exp

0

@� 1

2�2

1 +

t�1X

i=1

�ci +
1

�
2

0

!0

@µ�

Pt�1

i=1
�cixi + xt +

µ0

�2
0⇣Pt�1

i=1
�ci + 1 + 1

�2
0

⌘

1

A
21

A

⇥ exp

0

B@�
1

2�2

0

B@
µ
2

0

�
2

0

+ �

t�1X

i=1

cix
2

i + x
2

t �

⇣Pt�1

i=1
�cixi + xt +

µ0

�2
0

⌘2

Pt�1

i=1
�ci + 1 + 1

�2
0

1

CA

1

CA

⇥

✓
1

�2

◆↵0+�
Pt�1

i=1
ci
2 +

1
2+1

exp

✓
�
�0

�2

◆
⇥

✓
1

2⇡

◆�
Pt�1

i=1
ci
2

P (�).

Hence the conditional marginal posterior for µ is,

µ|�
2
,�, x1, . . . , xt ⇠

N

 Pt�1

i=1
�cixi + xt +

µ0

�2
0Pt�1

i=1
�ci + 1 + 1

�2
0

,
�
2

Pt�1

i=1
�ci + 1 + 1

�2
0

!
. (3.8)

When �j = 1 for all j, this is equivalent to standard Bayesian inference with
no forgetting. After integrating with respect to µ, the following joint posterior
expression for �2 and � is obtained,

20

Chapter 3. Adaptive Bayesian Filtering

P (�2
,�|x1, . . . , xt)

/

✓
1

�2

◆↵0+�
Pt�1

i=1
ci
2 +

1
2+1

⇥ exp

0

B@�
1

�2

2

64�0 +
1

2

0

B@
µ
2

0

�
2

0

+ �

t�1X

i=1

cix
2

i + x
2

t �

⇣Pt�1

i=1
�cixi + xt +

µ0

�2
0

⌘2

Pt�1

i=1
�ci + 1 + 1

�2
0

1

CA

3

75

1

CA

⇥

t�1X

i=1

�ci + 1 +
1

�
2

0

!� 1
2

⇥

✓
1

2⇡

◆�
Pt�1

i=1
ci
2

P (�)

hence the conditional marginal posterior for the variance follows,

�
2
|�, x1, . . . , xt

⇠ Inv-Gamma

0

B@�

t�1X

i=1

ci

2
+

1

2
+ ↵0, �0 +

1

2

0

B@
µ
2

0

�
2

0

+ �

t�1X

i=1

cix
2

i + x
2

t �

⇣Pt�1

i=1
�cixi + xt +

µ0

�2
0

⌘2

Pt�1

i=1
�ci + 1 + 1

�2
0

1

CA

1

CA .

When �j = 1 for all j, this is equivalent to the unweighted case with no for-
getting. The marginal posterior for the forgetting factor has the form,

P (�|x1, . . . , xt) /

t�1X

i=1

�ci + 1 +
1

�
2

0

!� 1
2

⇥ �

�

t�1X

i=1

ci

2
+

1

2
+ ↵0

!✓
1

2⇡

◆�
Pt�1

i=1
ci
2

P (�)

⇥

0

B@�0 +
1

2

0

B@
µ
2

0

�
2

0

+ �

t�1X

i=1

cix
2

i + x
2

t �

⇣Pt�1

i=1
�cixi + xt +

µ0

�2
0

⌘2

Pt�1

i=1
�ci + 1 + 1

�2
0

1

CA

1

CA

�(�
Pt�1

i=1
ci
2 +

1
2+↵0)

.

This does not follow a well known distribution nor can the normalising factor be
found analytically. The forgetting factor estimate depends on the data and the
parameters of the priors but is independent of the unknown µ and �

2 parameters.
The Maximum a Posteriori (MAP) estimates at time t are used to estimate �,

µ and �
2. The MAP estimates are used due to their analogue to the MLE in the

frequentist formulation when uniform priors are used. First the MAP estimate for
�, denoted �̂

MAP
t�1

, is found by maximising the unnormalised posterior numerically.
MAP estimates for the mean and variance at time t take the following analytic
form,

µ̂
MAP
t =

�̂
MAP
t�1

⇣Pt�2

i=1
(
Qt�2

j=i �j)xi + xt�1

⌘
+ xt +

µ0

�2
0

�̂
MAP
t�1

⇣Pt�2

i=1
(
Qt�2

j=i �j) + 1
⌘
+ 1 + 1

�2
0

, (3.9)

21

Chapter 3. Adaptive Bayesian Filtering

�̂
2
MAP

t =
�0 +

1

2

⇣
µ2
0

�2
0
+ �̂

MAP
t�1

⇣Pt�2

i=1
(
Qt�2

j=i �j)x2

i + x
2

t�1

⌘
+ x

2

t

⌘

1

2
�̂
MAP
t�1

⇣Pt�2

i=1

Qt�2

j=i �j + 1
⌘
+ 1

2
+ ↵0 + 1

�

1

2

0

@
✓
�̂MAP
t�1 (

Pt�2
i=1(

Qt�2
j=i �j)xi+xt�1)+xt+

µ0
�2
0

◆2

�̂MAP
t�1 (

Pt�2
i=1(

Qt�2
j=i �j)+1)+1+

1
�2
0

1

A

1

2
�̂
MAP
t�1

⇣Pt�2

i=1

Qt�2

j=i �j + 1
⌘
+ 1

2
+ ↵0 + 1

. (3.10)

3.2.2 Sequential Bayesian Updates

As new data becomes available, recalculation of the MAP estimates in Equations
3.9 and 3.10 is ine�cient and requires the full stream of data to be stored. These
equations can easily be simplified to allow sequential updating parameter estimates
through defining additional parameters. At time t let,

N(t) = �̂
MAP
t�1

t�2X

i=1

t�2Y

j=i

�j

!
xi + xt�1

!
+ xt

= �̂
MAP
t�1

N(t� 1) + xt,

D(t) = �̂
MAP
t�1

t�2X

i=1

t�2Y

j=i

�j + 1

!
+ 1

= �̂
MAP
t�1

D(t� 1) + 1

and

M(t) = �̂
MAP
t�1

t�2X

i=1

t�2Y

j=i

�j

!
x
2

i + x
2

t�1

!
+ x

2

t

= �̂
MAP
t�1

M(t� 1) + x
2

t .

Then the MAP estimates have the following sequential updates,

µ̂
MAP
t =

N(t) + µ0

�2
0

D(t) + 1

�2
0

22

Chapter 3. Adaptive Bayesian Filtering

�̂
2
MAP

t =

�0 +
1

2

0

@µ2
0

�2
0
+M(t)�

✓
N(t)+

µ0
�2
0

◆2

D(t)+ 1
�2
0

1

A

1

2
D(t) + ↵0 + 1

.

The parameters N(t � 1), D(t � 1) and M(t � 1) are also used to produce a se-
quential updating form for the unnormalised marginal posterior density function
for �,

ft(�) /

✓
�D(t� 1) + 1 +

1

�
2

0

◆� 1
2

⇥ �

✓
�

2
D(t� 1) +

1

2
+ ↵0

◆
⇥

✓
1

2⇡

◆�
2D(t�1)

P (�)

⇥

0

B@�0 +
1

2

0

B@
µ
2

0

�
2

0

+ �M(t� 1) + x
2

t �

⇣
�N(t� 1) + xt +

µ0

�2
0

⌘2

�D(t� 1) + 1 + 1

�2
0

1

CA

1

CA

�(�
2D(t�1)+

1
2+↵0)

.

To update the MAP estimates at time t only N(t� 1), D(t� 1) and M(t� 1) are
required from the historic data.

3.2.3 � Prior Specification

Anagnostopoulos et al. [2012] state that sensible values for � lie within [0.5, 1]
due to its interpretation as an exponential forgetting factor . While the stream
is stationary, values of � close to 1 are appropriate and correspond to classic
Bayesian inference without forgetting. When a change point occurs, a small value
for � allows rapid forgetting of historic data points. During trend periods moderate
forgetting allows more gentle forgetting of historic data as it becomes less relevant.
It is also important to impose a lower bound on �, as values below 0.5 may lead
to numeric instability [Anagnostopoulos et al., 2012].

As observed in Figure 3.1, for smaller forgetting values the mean estimates
adapt more rapidly to the new value. For � with values 1 and 0.99, the proce-
dures do not reach the new mean estimates within the investigated period. It can
however be seen that for smaller forgetting factors, although they adapt faster,
their estimates are more noisy. Finally, it is noted that for the estimate of �2

for � = 1, a large value is maintained after the variance change point unlike the
other forgetting factors. This example illustrates the importance of an adaptive
forgetting factor which can automatically choose appropriate levels of forgetting.

A large range of distributions are appropriate for the prior of the forgetting
factor � such as a Uniform prior over [0.5, 1] or a slab and spike prior (a mix-
ture density of two distributions where one distribution has a high mass at 1).
Alternatively, a Beta distribution with a concentration around 1 is used and ex-
perimentally was most suitable.

From investigating the estimation performance for Beta priors of di↵erent

23

Chapter 3. Adaptive Bayesian Filtering

0

5

10

0 100 200 300 400 500 600
Observation

Va
lu
e

(a)

0

1

2

3

4

5

6

0 100 200 300 400 500 600
Observation

µ

Fixed λ

0.9
0.95
0.99
1

(b)

1

2

3

4

5

6

7

0 100 200 300 400 500 600
Observation

σ
2

Fixed λ

0.9
0.95
0.99
1

(c)
Figure 3.1: (a) Noisy Gaussian data stream of length 600 such that
X1, . . . , X200 ⇠ N(0, 1),X201, . . . , X400 ⇠ N(5, 1) and X401, . . . , X600 ⇠ N(5, 3).
(b) Corresponding mean estimate from the Bayesian adaptive estimation proce-
dure for varying fixed forgetting factors. (c) Corresponding variance estimate from
the Bayesian adaptive estimation procedure for varying fixed forgetting factors.

Table 3.1: Parameter estimation performance of the fixed Beta prior for the
forgetting factor � for various modes and variances for Gaussian data containing
change points and trends as described in Section 3.3.5 running on 100 simulated
data sets of length 10000. The performance is measured by the mean square error
(MSE) where 20 points after a change is excluded with a burn-in of 200 points.
Best prior choice presented in bold.

Mode Var MSE µ MSE �
2

0.999 1e-2 5.056(2.689) 373.724(298.603)
0.999 1e-3 1.691(0.891) 125.046(100.921)
0.999 1e-4 4.270(1.743) 824.791(667.660)
0.980 1e-2 4.981(2.644) 369.032(294.587)
0.980 1e-3 1.622(0.836) 122.312 (97.709)
0.980 1e-4 4.751(2.273) 972.854(828.663)
0.950 1e-2 4.902(2.592) 364.005(290.090)
0.950 1e-3 1.687(0.860) 127.801(101.525)
0.950 1e-4 1.941(0.955) 320.215(270.976)
0.900 1e-2 4.897(2.567) 363.492(288.705)
0.900 1e-3 2.109(1.071) 156.537(123.425)
0.900 1e-4 1.733(0.858) 134.567(106.246)

modes and variances (Table 3.1), a mode of 0.98 and variance of 0.001 is opti-
mal. This mode and variance is selected for future applications which correspond
to a Beta(39, 1.8) distribution. As data streams are primarily stationary, this prior
suitably favours values of � close to 1 however it still enables the parameter esti-

24

Chapter 3. Adaptive Bayesian Filtering

mates for � to reduce during trends or change points. This � prior is fixed over the
stream to prevent dependence between these estimated values. This independence
allows for rapid adaptation at change points and trends.

3.2.4 Behaviour of � for Fixed Prior

The adaptive ability of the procedure is now investigated where the prior for �

is fixed as Beta(39.1.8). A small simulation case with a single change point and
trend is used where the stream is sampled from:

X1, . . . , X200 ⇠ N(0, 1)

X201, . . . , X300 ⇠ N(5, 1)

Xi ⇠ N(5� 0.2(i� 300), 1) for i 2 [301, 350]

X351, . . . , X500 ⇠ N(�5, 1). (3.11)

A realisation of this generation process is given in Figure 3.2(a).

−5

0

5

100 200 300 400 500
Observation

Va
lu
e

(a)

0.875

0.900

0.925

0.950

100 200 300 400 500
Observation

λ
Es
tim

at
e

(b)
Figure 3.2: (a) Single stream generated as described in Equation 3.11. (b)
Illustration of corresponding estimated � by BFF for the simulation in (a) with
a change point at 201 illustrated with a cross and a trend period between points
301-350 with start point marked with a circle. The simulated data has a variance
of 1.

For the BFF � estimate in Figure 3.2(b), at the change point there is a sig-
nificant drop in the forgetting factor before returning to the original level. For
the trend region, the forgetting factor lowers. After this trend period, the for-
getting factor again returns to the original value. Thus the proposed procedure
appropriately adjusts the forgetting factor as expected at change points and during
trends.

25

Chapter 3. Adaptive Bayesian Filtering

0

25

50

75

100

0.90 0.92 0.94
λ Estimate

Va
r

(a)

0

1

2

3

4

0.90 0.91 0.92 0.93 0.94
λ Estimate

lo
g(
Va
r)

(b)
Figure 3.3: (a) Mean � estimate for stationary Gaussian data streams of varying
variance. One standard deviation of the mean estimate is shown with error bars.
(b) Mean � estimate for stationary Gaussian data streams against the log variance
of the data.

3.2.5 Relationship between � and �
2

The relationship between the forgetting factor and the variance is now explored
for Gaussian data. In Figure 3.3(a) it can be see that as the variance increases, the
forgetting factor decreases. The optimal forgetting factor for stationary streams
is however a constant value of 1. In Figure 3.3(b) a linear relationship between
log(�2) and the average estimated � is observed. This is surprising as this relation-
ship has not been noted in the literature, and provides insight into the workings
of the forgetting factor. Intuitively this relationship is sensible where if there is
more variance in the data, it may suggest that the data is not stable and should
be forgotten more rapidly. For very small variances, the forgetting value is close
to 1.

3.2.6 Adaptive Parameter Priors for µ and �
2

At each time point, prior parameters for µ and �
2, namely µ0, �2

0
, ↵0 and �0 must be

specified, however over time knowledge of these parameters change. It was found
empirically that fixed priors over the stream can cause poor estimates particularly
if they are not well specified. Additionally for time-varying data, a fixed prior is
not appropriate. In Bayesian filtering it is common for the previous posterior to
be used as the prior for future inference [Sarkka, 2013]. During long periods of no
distribution changes in the data, the variance of the posterior distribution is small.
As the variance of the prior influences its contribution to the posterior, where
smaller variances lead to larger influence, this traditional updating mechanism
causes the influence of the prior to be large during periods of non-stationarity
leading to slow adaptation during periods of change in the data generating process.

We instead propose keeping the influence or contribution of the prior fixed. We

26

Chapter 3. Adaptive Bayesian Filtering

motivate our approach further with an example. Figure 3.4 shows the posterior
variance estimate for µ after a mean change occurs in the generating process. This
posterior variance is calculated using Equation 3.8. After a change, this poste-
rior variance increases due to the increase in variance in the data and increased
uncertainty in the current estimate for µ. This is followed by a decrease in the
variance until it reaches a constant small value as the process becomes stationary.
If a stream is stationary before a change point, the posterior will have a small
variance. If this posterior is used as the prior it will have a large bias on the
parameter estimates, making them slow to adapt.

0.2

0.4

0.6

0 50 100 150 200
Time Since Change Point

µ
 P

os
te

rio
r V

ar
ia

nc
e

Figure 3.4: Illustration of posterior variance estimate for µ given in Equation
3.8 after a change point for a single Gaussian data stream with variance 1.

For the proposed fixed influence approach the previous parameter estimates
are used to update the priors rather than keeping them fixed as done for �. As
the distribution parameters, µ and �

2 adapt depending on the forgetting factor
value, dependence on previous values is preferable to allow for smooth estimates.
Constant influence of the prior ensures the estimates can adapt to the data in the
presence of change points rather than assuming the data is stationary. We propose
an approach that fixes the weight of the prior towards the parameter estimates
where the priors take the following form,

µ|�
2
⇠ N(µ0, �

2

0
�
2)

�
2
⇠ Inv-Gamma(↵0, �0).

At time t the mode of the priors for µ and �
2 is updated using the MAP

solutions from time t� 1 given in Equation 3.9 and Equation 3.10 respectively. In
Equation 3.9 it is clear that 1

�2
0
acts as a weight for the prior mean, µ0, towards

27

Chapter 3. Adaptive Bayesian Filtering

the estimate for µ. �2

0
is set to 1 resulting in the prior mean having equal weight

to the most recent data point xt. By setting ↵0 = 1

2
for the MAP estimate of

�
2 in Equation 3.10 the prior has equal weight to the most recent data xt. For

this approach �0 =
2

3
�̂
2
MAP

t�1
, so that the prior mode is equal to the previous MAP

estimate. The prior updates under this scheme are,

µ|�
2
⇠ N(µ̂MAP

t�1
, �

2)

�
2
⇠ Inv-Gamma

✓
1

2
,
2

3
�̂
2
MAP

t�1

◆
. (3.12)

This prior specification allows the priors to update autonomously with constant
influence towards the estimates over the stream. Table 3.2 shows the proposed
approach has superior performance to the traditional approach for data simulated
as described in Section 3.3.5.

Table 3.2: Comparison in parameter estimation performance measured by the
mean square error (MSE) for the BFF method with the proposed prior updates
and with traditional posterior prior updates. The MSE for the mean and variance
is given where results are averaged over 100 simulated Gaussian data streams of
10000 points containing change points and trend as described in Section 3.3.5. The
MSE excludes the 20 points after a change point with the best performer in bold.

MSE µ MSE �
2

Proposed 0.134(1.168) 0.663(0.830)
Posterior 43.435(56.808) 1371.623(865.958)

3.2.7 General Form for Exponential Family

The algorithm for the Gaussian case has been described, however, this framework
can be extended more generally to the exponential family of distributions with the
use of conjugate priors to produce closed form update equations.

The likelihood for members of the exponential family has the form,

P (x|⌘) = h(x) exp
�
⌘TT(x)� A(⌘)

�
(3.13)

where ⌘ is the canonical parameter with,

⌘ = (⌘1(✓), . . . , ⌘p(✓))
T

✓ = (✓1, . . . , ✓p)
T
,

T is the su�cient statistic and A is the log of the normalising factor also known
as the cumulant generating function. The conjugate prior of this likelihood has

28

Chapter 3. Adaptive Bayesian Filtering

the form,

P⇡(⌘|�, �) = f(�, �) exp
�
⌘T�� �A(⌘)

�
� 2 Rs

where � and � are hyper-parameters and f(�, �) is the normalising constant
[Wasserman, 2004].

Again the power prior is used to down-weight older observations. Using the
same weighting mechanism as before, let xi have weight given by,

wi = �

t�2Y

j=i

�j = �ci for i = 1, . . . , t� 2

at time t where �j are known for j = 1, . . . , t� 2. For i = t� 1, wt�1 = � = �ct�1

with ct�1 = 1. Using the following joint power prior,

P (⌘,�|�, �) / P⇡(⌘|�, �)P (�)
t�1Y

i=1

P (xi|⌘)
wi ,

the joint posterior is calculated as,

P (⌘,�|x1, . . . , xn,�, �)

/ h(xt) exp
�
⌘TT(xt)� A(⌘)

�

⇥

t�1Y

i=1

�
h(xi) exp

�
⌘TT(xi)� A(⌘)

��wi

⇥ f(�, �) exp
�
⌘T�� �A(⌘)

�
⇥ P (�)

/ exp

⌘T

T(xt) +

t�1X

i=1

wiT(xi) + �

!!

⇥ exp

�A(⌘)

"
1 +

t�1X

i=1

wi + �

#!

⇥ P (�)

"
h(xt)

t�1Y

i=1

h(xi)
wi

#

/ P⇡

⌘

������+T(xt) +
t�1X

i=1

wiT(xi), � + 1 +
t�1X

i=1

wi

!

⇥
P (�)

⇥Qt
i=1

h(xi)wi
⇤

f
�
�+T(xt) +

Pt�1

i=1
wiT(xi), � + 1 +

Pt�1

i=1
wi

� .

The MAP solution for � can be estimated by maximising the unnormalised marginal

29

Chapter 3. Adaptive Bayesian Filtering

posterior for �,
P (�)

⇥Qt
i=1

h(xi)�ci
⇤

f
�
�+

Pt
i=1

wiT(xi), � +
Pt

i=1
wi

� (3.14)

which is independent of the canonical parameter ⌘. Once � is estimated, ⌘ can be
calculated from its marginal posterior distribution,

P⇡

⌘

������+T(xt) + �

t�1X

i=1

ciT(xi), � + 1 + �

t�1X

i=1

ci

!
. (3.15)

The sums and products within this marginal posterior can easily be updated se-
quentially, making it practical for application to data streams, reducing storage
requirements. Again at each time step, the prior can be updated to include more
information about the current behaviour of the stream. The same approach where
the mode of the prior distribution is set to the current MAP estimate whilst main-
taining a fixed weight towards the estimates is used.

3.3 Synthetic Examples

3.3.1 Adaptive Estimation Performance Measures

To evaluate the parameter estimation performance of each method, several perfor-
mance measures are used including MSE, MAE and MPE as described in Section
2.4.1. As no perfect measure exists, each of these is implemented to give a com-
prehensive view of performance.

After a change in the generating process of the data, an estimation method
may require a transition period to adapt to the new distribution. The performance
within this transition period is not of great interest. Therefore, after a change in
the generating process of the data, a grace period of 100 points is given to allow
the procedures to adapt and return to their stationary state.

Although estimation performance is important, fast adaptation is crucial. To
evaluate this, the adaptation time is measured. This quantity is calculated as the
number of steps after a change before the squared error is less than 1.2 times the
MSE of the stationary period after the change point (but before another change
occurs). The compared MSE excludes the grace period as defined above. This is
further solidified mathematically below.

Consider changes in the generating process at times ⌧1, ⌧2, . . . and a grace period
of length G. The time to change after the l

th change is calculated as,

min
i

s.t. SE⌧l+i < 1.2⇥
1

⌧l+1 � ⌧l �G

⌧l+1�1X

j=⌧l+G

SEj

where SEj is the squared error in the parameter estimates at time j. This change

30

Chapter 3. Adaptive Bayesian Filtering

time signifies that the error in the estimates reduces to the stationary model state.
It is important to note that this measure assumes the series returns to a stationary
state after a change which may not be realistic in practice however the simulated
series explored follow this assumption.

3.3.2 Comparison Parameter Estimation Methods

To assess the performance of the proposed BFF procedure, it is compared to other
parameter estimation methods. Naturally, the procedure is compared to the fre-
quentist version as detailed in Section 3.1 from which the proposed model builds.
Throughout the following experiments, we name this the Adaptive Forgetting Fac-
tor (AFF) approach. Additionally, the fixed forgetting case is compared where
the forgetting factor is kept constant whilst using the updates for the parameters
in Section 3.1.1. This is termed the Fixed Forgetting Factor (FFF). Additionally,
the proposed method is compared to the classic Maximum Likelihood Estimates
(MLE) for the distribution which correspond to when the forgetting factor equals
1.

Another popular filter is the Exponentially Weighted Moving Average (EWMA)
process where similar to the proposed approach, the weights for older data de-
creases exponentially. At time t � 1 the estimated mean of the data x1, . . . , xt

using this approach is,

St =

(
x1 t = 1

↵xt + (1� ↵)St�1 t > 1

where ↵ is the exponential weight that is specified by the analyst. Similarly,
exponential weighted estimates for the variance can be calculated as,

Vt =

(
0 t = 1

↵(xt � St)(xt � St�1) + (1� ↵)Vt�1 t > 1.

Finally, the proposed method is compared to the adaptive estimation proce-
dure of Adams and MacKay [2007] which performs Bayesian filtering whilst taking
change points into account which is described further in Appendix B.1.1. Central
to this procedure is the estimated run length which corresponds to the time since
the last change point. This procedure additionally estimates the distribution pa-
rameters where similar to our approach, it is suitable for members of the expo-
nential family. This procedure is named Bayesian Online Change Point Detection
(BOCPD) and is described in more detail in Appendix B.1.1.

31

Chapter 3. Adaptive Bayesian Filtering

3.3.3 Gaussian Parameter Estimation Illustrative Example

On the simulated example in Figure 3.5 BFF and AFF have similar estimates for
µ and �

2 however the behaviour of � di↵ers greatly. For the mean estimates in
Figures 3.5 (a) and (d), BFF and AFF are capable of adapting quickly to the mean
changes and mean trend periods. AFF however experiences periods of large noise
in the estimates for µ as a result of small forgetting factors as the forgetting factor
is slow to return to values close to 1.

0

2

4

6

0 250 500 750 1000 1250 1500 1750
Observation

µ

(a) BFF µ estimate

0

2

4

6

0 250 500 750 1000 1250 1500 1750
Observation

σ
2

(b) BFF �2
estimate

0.90

0.93

0.96

0 250 500 750 1000 1250 1500 1750
Observation

λ

(c) BFF � estimate

0

2

4

6

0 250 500 750 1000 1250 1500 1750
Observation

μ

(d) AFF µ estimate

0

2

4

6

0 250 500 750 1000 1250 1500 1750
Observation

σ
2

(e) AFF �2
estimate

0.7

0.8

0.9

1.0

0 250 500 750 1000 1250 1500 1750
Observation

λ

(f) AFF � estimate

Figure 3.5: Illustration of Gaussian BFF and AFF adaptive estimation proce-
dures for a single Gaussian simulation containing mean change points at 251, 501
and 751, a variance change point at 1501 and a linear trend region between 1001
and 1250. Change points are marked by crosses and the start of a trend marked
by a circle. True values plotted with a dashed line for µ and �

2.

In Figures 3.5 (b) and (e), BFF and AFF are capable of adapting to variance
changes which is seen at point 1501. This variance change point increases the
variance of the estimates for µ and �

2 for both methods as the data is now noisier.
For both methods, in Figures 3.5 (c) and (f), at change points the forgetting factor
drops rapidly to a small value before returning to the original forgetting level as
required. This is expected as after a change the model should forget the historic
data whilst keeping the data from the new distribution.

32

Chapter 3. Adaptive Bayesian Filtering

3.3.4 Gaussian Performance Comparison - No Change

First the estimation performance is evaluated to comparator methods on simulated
data without change points. This acts as a baseline performance for each method
where it is preferable if this performance does not vary greatly between stationary
and non-stationary data. For the results in Tables 3.3 and 3.4, the stream is
sampled from,

X1, . . . , X10000 ⇠ N(µ, �2)

µ ⇠ U(�20, 20)

�
2
⇠ U(0.5, 5).

As expected, the MLE approach has optimal performance for this stationary data
as it assumes the data is i.i.d. whereas the other approaches do not make this
assumption (Tables 3.3 and 3.4). For methods that require setting parameters,
the results vary greatly between the parameter choices chosen. This illustrates
that the hyper-parameters of AFF, FFF and EWMA have a large influence on
estimation performance. In practice, setting such parameters is a challenging
problem, particularly in streaming cases where the behaviour of the data changes
over time.

When the estimation methods are applied to data streams containing a single
change point, the MLE approach has very poor performance. Additionally, for
methods with hyper-parameters, the performance di↵ers greatly depending on the
parameter choice (see Appendix A.2.1). When the methods are applied to data
streams containing trend, the methods that performed well on stationary data are
now the worst performers (see Appendix A.2.2). The proposed method instead
has consistent performance across the examples.

Table 3.3: Average parameter estimation performance for µ over 100 station-
ary data streams of length 10, 000. Streams generated from N(µ, �2) where
µ ⇠ U(�20, 20) and �

2
⇠ U(0.5, 5). Best performer in bold.

MSE SE SD MAE AE SD MAPE APE SD

BFF 0.093 0.132 0.231 0.174 0.048 0.036
AFF 1e-7 0.001 0.002 0.029 0.021 0.006 0.004
AFF 1e-4 0.006 0.011 0.057 0.048 0.011 0.009
FFF 0.9 0.139 0.196 0.286 0.216 0.058 0.044
FFF 0.98 0.027 0.038 0.125 0.094 0.026 0.020

EWMA 0.05 0.068 0.096 0.199 0.151 0.041 0.031
EWMA 0.75 1.585 2.240 0.964 0.729 0.198 0.149

MLE 0.001 0.001 0.019 0.011 0.004 0.003
BOCPD 0.001 0.022 0.019 0.017 0.004 0.005

33

Chapter 3. Adaptive Bayesian Filtering

Table 3.4: Average parameter estimation performance for �
2 over 100 sta-

tionary data streams of length 10, 000. Streams generated from N(µ, �2) where
µ ⇠ U(�20, 20) and �

2
⇠ U(0.5, 5). Best performer in bold.

MSE SE SD MAE AE SD MAPE APE SD

BFF 0.648 0.757 0.590 0.383 0.216 0.142
AFF 1e-7 0.011 0.013 0.072 0.052 0.027 0.020
AFF 1e-4 0.044 0.081 0.141 0.117 0.053 0.044
FFF 0.9 0.876 1.435 0.664 0.497 0.252 0.189
FFF 0.98 0.177 0.255 0.297 0.224 0.112 0.085

EWMA 0.05 0.440 0.675 0.469 0.354 0.178 0.134
EWMA 0.75 5.010 4.413 1.834 0.757 0.696 0.287

MLE 0.004 0.005 0.045 0.027 0.018 0.011

3.3.5 Gaussian Performance Comparison - Multiple Change with
Trend

The estimation methods are now compared on data streams containing multiple
change points and trend periods. Ten mean changes and two trend periods are
simulated uniformly over (200, 10000) such that change points and trend start-
ing points are at least 200 points apart. These simulations have the following
properties:

• Constant variance across the stream where the variance is sampled as follows,
�
2
⇠ U(0.5, 5)

• Change point magnitudes sampled from U(2�, 5�)

• Periods of trend have a minimum length of 50 points with gradient magnitude
uniformly sampled from {0.005, 0.006, . . . , 0.02}. Proceeding trend regions
there is a constant mean of length > 30.

The estimation performance for BFF in Tables 3.5 and 3.6 is similar to that seen
for the stationary data in Section 3.3.4. This highlights the robust performance of
the proposed procedure on data that exhibits trends and change points, making
it suitable for application to real data sets that exhibit such behaviour. The
best performer on this data is the BOCPD however this method has a higher SD
suggesting it does not have stable results. The MLE which was the best performer
on stationary data now has the worst performance. For the estimates of the
variance in Table 3.6, BFF outperforms all sequential methods but EWMA 0.05
in terms of MSE. Thus BFF has good performance for estimating both µ and �

2.
In Table 3.5 the BFF model displays a clear improvement on AFF which our

model extends. Although a fixed prior for the forgetting factor � is required
for BFF, the prior specification detailed in Section 3.2.3 has robust performance,

34

Chapter 3. Adaptive Bayesian Filtering

thus BFF is essentially hyper-parameter free. It is clear from Table 3.5 that the
parameters for AFF, FFF and EWMA have a large influence on the performance.
When applied to data streams, tuning these parameters is a di�cult problem hence
BFF o↵ers a robust solution without requiring parameter specification.

Table 3.5: Average parameter estimation performance of µ over 100 data streams
of length 10,000 with 10 mean change points and two mean trends positioned
randomly throughout. Each of the change points and trends are at least 200
points apart where trends have a stationary period proceeding it. The change point
magnitudes are sampled from U(2�, 5�) where �

2
⇠ U(0.5, 5). Best performer in

bold, second best in grey bold.

MSE SE SD MAE AE SD MAPE APE SD Time to Change Time to Change SD

BFF 0.130 1.121 0.243 0.248 0.072 0.552 34.792 10.059
AFF 1e-7 0.480 2.486 0.301 0.599 0.091 0.902 175.573 56.706
AFF 1e-4 0.157 1.134 0.257 0.285 0.080 0.784 30.613 12.933
FFF 0.9 0.173 1.052 0.296 0.272 0.088 0.722 24.137 7.270
FFF 0.98 0.102 1.231 0.182 0.253 0.057 0.724 145.318 28.519

EWMA 0.05 0.107 1.153 0.213 0.235 0.064 0.540 55.246 13.720
EWMA 0.75 1.610 2.285 0.978 0.740 0.291 1.884 1.292 2.233

MLE 66.055 73.259 5.984 4.222 1.410 6.924 424.306 284.800
BOCPD 0.084 1.284 0.110 0.258 0.035 0.724 29.508 40.795

Table 3.6: Average parameter estimation performance of �2 over 100 data streams
of length 10,000 with 10 mean change points and mean trends positioned randomly
throughout. Each of the change points and trends are at least 200 points apart
where trends have a stationary period proceeding it. The change point magnitudes
are sampled from U(2�, 5�) where �

2
⇠ U(0.5, 5). Best performer in bold, second

best in grey bold.

MSE SE SD MAE AE SD MAPE APE SD

BFF 0.655 0.826 0.602 0.394 0.218 0.144
AFF 1e-7 5.558 23.241 0.899 1.835 0.342 0.701
AFF 1e-4 0.746 1.906 0.575 0.524 0.216 0.196
FFF 0.9 0.899 1.750 0.679 0.518 0.253 0.193
FFF 0.98 0.853 3.586 0.479 0.682 0.183 0.258

EWMA 0.05 0.446 0.734 0.478 0.365 0.178 0.136
EWMA 0.75 5.090 6.197 1.870 0.797 0.697 0.297

MLE 2811.510 2876.389 31.960 21.039 12.085 7.656

The time to change in Table 3.5 is an important measure for determining
the adaptability of the methods. For BFF it takes approximately 35 time steps
to adapt to the new distribution which is smaller than many other procedures.
It is important to note that small MSE does not necessarily correspond to fast
adaptability. As the MSE calculated in these examples excludes 100 points after a

35

Chapter 3. Adaptive Bayesian Filtering

change point, it does not account for the poor estimation results during this grace
period. For example, although FFF 0.98 has a small MSE, the time to change is
found to be higher.

3.3.6 Poisson Parameter Estimation

BFF is now demonstrated on Poisson data to show it is suitable for other data
distributions. Details of the Poisson formulation and sequential updates are given
in Appendix A.1. The Poisson rate estimates of BFF and AFF in Figures 3.6 (a)
and (c) respectively closely follow the true rate however the estimates from BFF
are less noisy. Additionally BFF adapts to the new distribution faster than AFF
and better follows the true rate during the trend period.

For detailed experiments similar to that done for the Gaussian case, see Ap-
pendix A.3 where comparison to the competitive approaches is performed on sta-
tionary, single change point, trend and multiple change point with trend simula-
tions. On the Poisson data, BFF shows consistent performance across the simu-
lated cases where AFF had a poorer performance for the non-stationary examples.
BOCPD was again the best performer across the simulated examples in terms of
parameter estimation however the time to adapt for this method is larger than the
proposed BFF approach.

Comparing the forgetting factor estimates of the two methods in Figures 3.6 (b)
and (d), the BFF forgetting factor is more similar to the behaviour expected where
at change points, the forgetting factor lowers temporarily before returning to the
original level. AFF instead goes between large extremes and does not return to high
values of � during stationary periods. This results in noisy estimates. A learning
rate of 0.01 is used for AFF in this illustration to allow for fast adaptation of the
rate estimate. Smaller learning rates kept the forgetting factor more stable however
the adaptation was slower. This highlights the challenge involved in setting the
learning rate for AFF which is avoided in BFF.

3.4 Discussion

In this chapter, a Bayesian adaptive estimation procedure is introduced that is ca-
pable of running autonomously on data streams with fixed storage requirements.
By optimising the forgetting factor within the Bayesian inference framework, this
procedure does not require setting highly influential hyper-parameters whilst au-
tomatically choosing appropriate levels of forgetting in the model. Additionally,
mechanisms to update the priors are provided such that the priors are relevant to
the current behaviour of the data whilst having constant influence over the stream
to prevent slow adaptation during non-stationarity in the data generating process.

BFF is demonstrated on both Gaussian and Poisson data on several simulated
cases with and without change points and trend. Across all simulated situations,
BFF has consistent performance which highlights that it is robust for use in prac-

36

Chapter 3. Adaptive Bayesian Filtering

0

5

10

15

20

0 250 500 750 1000 1250 1500 1750
Observation

R
at
e

(a) BFF Poisson rate estimate

0.7

0.8

0.9

1.0

0 250 500 750 1000 1250 1500 1750
Observation

λ

(b) BFF forgetting factor estimate

0

5

10

15

20

0 250 500 750 1000 1250 1500 1750
Observation

R
at
e

(c) AFF Poisson rate estimate

0.7

0.8

0.9

1.0

0 250 500 750 1000 1250 1500 1750
Observation

λ

(d) AFF forgetting factor estimate

Figure 3.6: Illustration of Poisson BFF and AFF (learning rate 1e-2) adaptive
estimation procedures for a single Poisson simulation containing changes in the
rate at time points 251, 501, 751, and 1501 and a trend between 1001 and 1250.
Change points are marked by crosses and the start of a trend is marked by a circle.
True values plotted with dashed line for the Poisson rate.

tice. In comparison to competitive methods, the time for BFF to adapt after a
change is very fast whilst maintaining high estimation performance.

In the next chapter, this estimation procedure is utilised to detect abrupt
changes in the generating process of the stream.

37

Chapter 4

Detecting Abrupt Changes in the
Presence of Trend for Data
Streams

In the context of cyber-security, detection of adversaries is a key challenge. Attack-
ers with a foothold on the network may cause abrupt changes to the underlying
data generating process through their anomalous activities. Although adaptive
estimation is capable of adjusting to distributional changes, the problem of change
point detection aims to identify the time these changes occur and is the primary
focus of this chapter. As the aim is to detect adversaries in real time, online change
point detection methods for high frequency data streams are required.

In practice, data often exhibit periods of trend or local fluctuations. These
behaviours could be treated as perpetual change points as the distribution of the
data is continuously changing. However, only abrupt changes in the distribution
are of interest rather than detecting trend. Many popular change point proce-
dures assume the data is piecewise constant with a constant mean between change
points, flagging large numbers of false positives during trend regions. These meth-
ods are generally not formulated with trend in mind. To visualise this, consider
the popular well log data [Ó Ruanaidh and Fitzgerald, 1996] in Figure 4.1 in-
vestigated by many change point procedures e.g. Fearnhead [2006], Adams and
MacKay [2007] and Romano et al. [2021]. This data measures the nuclear magnetic
response of underground rocks from a probe lowered into a bore-hole. The abrupt
changes are marked by vertical lines corresponding to when the probe moves from
one rock strata to another and these are the changes of interest. Between these
changes, local fluctuations are present, thus the assumption of constant mean be-
tween changes is not held. It is thus advantageous for a change point model to be
robust in the presence of trend and local fluctuations as it is a common feature of
real data, to prevent large numbers of false positives.

The adaptive estimation procedure presented in Chapter 3 forms the basis of
the two change point methods proposed in this chapter. Both of the proposed

38

Chapter 4. Change Point Detection

80000

100000

120000

140000

0 1000 2000 3000 4000
Observation

N
uc

le
ar

 R
es

po
ns

e

Figure 4.1: Well logs data demonstrated with black line and abrupt changes in
the data identified by vertical lines.

change point approaches utilise p-values to sequentially characterise whether the
new datum is consistent with the current distribution estimates. A calibration
procedure with fixed storage requirements is also employed to allow the threshold
to be set to control for the false positive rate.

This chapter is structured as follows; Section 4.1 outlines our change point
definition which ensures trends and outliers are not falsely classified. We addi-
tionally describe relevant change point approaches and discuss existing methods
that are suitable for data with trend. In Section 4.2 the change point procedure is
detailed. Section 4.3 demonstrates the performance of the proposed change point
approaches to competitive methods on a variety of data cases with and without
change points and trends. The procedures are then applied to a real financial data
set in Section 4.4 to evaluate the applicability of the procedure to real data.

4.1 Background and Literature Review

In this work the problem of multiple change point detection on indefinite data
streams is the main focus where change points correspond to times in the data
where its statistical properties change [Killick et al., 2012]. As highlighted earlier,
it is important to distinguish between change points, which are instantaneous
changes in the distribution and trends which correspond to gradual changes. In
mathematical terms, consider a stream of observations x1, x2, . . . sampled i.i.d.
from random variables X1, X2, . . . where change points occur at times ⌧1, ⌧2, . . .

such that,

X1, . . . , X⌧1 ⇠ F1

X⌧1+1, . . . , X⌧2 ⇠ F2

X⌧2+1, . . . , X⌧3 ⇠ F3 etc.

39

Chapter 4. Change Point Detection

where F1, F2, . . . are distinct distributions i.e. Fi 6= Fi+1 8i and ⌧i+1 � ⌧i > 1.
The final condition is added to ensure both trends and outliers are not classed
as change points however traditionally this criteria is omitted (e.g. Adams and
MacKay [2007] and Aminikhanghahi and Cook [2017]). To highlight this, a trend
in Gaussian data can be expressed as,

⌧ = 1, 2, . . . ,

F1 ⇠ N(µ, �2)

F2 ⇠ N(µ+ , �
2)

F3 ⇠ N(µ+ 2, �2) etc.

where  is the fixed trend gradient, �
2 is the constant variance and µ is the

initial mean of the series. Alternatively an outlier at time t can be expressed
mathematically as,

X1, . . . , Xt�1 ⇠ F1

Xt ⇠ F2

Xt+1, Xt+2, . . . ⇠ F1.

Without the requirement of ⌧i+1�⌧i > 1, both trend and outliers could be classified
as change points. For clarity, in the remainder of this chapter change points refer
to the true times of change in the data and detections refer to the times that
are identified as change points by a change point method (both true and false
positives).

Change point detection procedures can be split into two approaches, batch
and sequential. Batch approaches utilise the full view of the data to determine
optimal partitions often through minimising a cost function. Popular approaches
include Binary Segmentation [Scott and Knott, 1974], Wild Binary Segmentation
[Fryzlewicz, 2014] and Pruned Exact Linear Time (PELT) [Killick et al., 2012].
Batch methods are not suitable for application to data streams as it is infeasible to
store the full stream. These procedures often require tuning of hyper-parameters
and thresholds however change point labels are often not available for streaming
data where Romano et al. [2021] note that default parameters often do not account
for the local fluctuations in the data.

Sequential change point detection is the alternate approach where the data
stream is processed as it becomes available, assessing at each iteration whether
to flag a change. Sequential methods have no delay in detection whereas batch
approaches have a fixed delay [Tartakovsky et al., 2006]. Sequential detection pro-
cedures are more suitable for timely detection of change points which is important
in many applications in medicine [Cli↵ord et al., 2015], finance [Plasse and Adams,
2019], earthquake tremor detection [Xie et al., 2019] and many other domains. Ad-
ditionally, data streams are often high frequency thus it is ideal for procedures to

40

Chapter 4. Change Point Detection

have constant memory and process observations at least as quickly as they arrive.
Much of the literature for sequential change point detection falls under statisti-

cal quality control such as the Cumulative Sum (CUSUM) [Page, 1954] and Expo-
nentially Weighted Moving Average (EWMA) [Roberts, 1959] methods. Lai [1995]
provides an in depth overview of classical approaches. Other methods include mon-
itoring the likelihood ratio using both parametric (e.g. Willsky and Jones [1976],
Gustafsson [2001]) and non-parametric approaches (e.g. Kawahara and Sugiyama
[2012]). Most sequential approaches su↵er from di�culties in threshold setting
and large computational burdens [Gustafsson, 1996]. Kernel approaches have also
been applied (e.g. [Desobry et al., 2005, Harchaoui et al., 2009]) however these
rely heavily on the choice of kernel function and parameters [Aminikhanghahi and
Cook, 2017].

There have been several developments in Bayesian sequential change point de-
tection due to the method proposed simultaneously by Adams and MacKay [2007]
and Fearnhead [2006] called Bayesian Online Change Point Detection (BOCPD).
Central to this method is the inference of the run length, corresponding to the
time since the last change point. This method shows promising results, lead-
ing to its popularity and use. There have additionally been various extensions
of this approach such as combining with a Gaussian process to remove the need
for hyper-parameters (e.g. Garnett et al. [2010], Saatçi et al. [2010]) or direct
hyper-parameter optimisation (e.g. Turner et al. [2009]). Although the estimation
procedure for this approach is sequential, change point detection is retrospective
causing delays in detection. This issue is further discussed in Appendix B.1.1.

Adaptive filtering is another approach that can be used for change point de-
tection. Bodenham and Adams [2017] utilises an adaptive filtering approach that
employs forgetting factors, where change points are detected using control lim-
its. Alternatively, Plasse and Adams [2019] focus on change point detection in
categorical data using a similar adaptive framework but apply divergence to de-
tect changes. Due to their success, and the success of Bayesian approaches, the
Bayesian filtering approach presented in Chapter 3 is extended for change point
detection.

Real data commonly contains periods of gradual trend or local fluctuations
which under the traditional definition of a change point, would lead to a continual
detection of changes in these regions, as the distribution is continually changing.
Procedures that are built with this traditional definition raise large numbers of
alerts during these periods. Change point literature that deals with trend is lim-
ited. Gallagher et al. [2013] develop a method that considers trend, performing a
similar analysis to CUSUM, however, they assume the data maintains a constant
trend before and after a change point which is unrealistic in practice. Addition-
ally, their method is applied to a single change point. Militino et al. [2020] give an
overview of methods used for trend and change points separately, but do so using
batch approaches. It is also common for trend to be removed from the data before
performing change point analysis (e.g. Rebecca Killick and Idris Eckley and Philip

41

Chapter 4. Change Point Detection

Jonathan [2013]), however, this is more di�cult in the sequential setting.
There have also been several works that focus on detecting both change points

and changes in trend. Fearnhead et al. [2019] use continuous piecewise linear
functions to model the data between change points rather than traditional piece-
wise constant functions. Their method, CPOP, allows for linear trends within the
data. Baranowski et al. [2019] instead go further proposing the narrowest-over-
threshold framework (NOT) which allows for higher order polynomial curves. Both
approaches are however batch methods requiring the full series to be observed.

Although trend is present in most real data sets, very few change point proce-
dures have been demonstrated on such data. Romano et al. [2021] have recently
proposed DeCAFS, an approach for detecting abrupt changes in the presence of
local fluctuations and autocorrelation. DeCAFS is again a batch procedure how-
ever the authors demonstrate its computational e�ciency. In this chapter, there
is a focus on sequential procedures suitable for detecting abrupt changes in the
presence of trend with low false positive rates for application to streaming data.
Additionally, only linear trends are investigated.

4.2 Change Point Detection Methodology

The Bayesian adaptive estimation procedure detailed in Chapter 3 allows accu-
rate estimates for the model parameters to be evaluated over the stream. This
framework has been extended for change point detection and is discussed further.
To detect a change sequentially in the data stream, p-values are used to quantify
whether the newly observed data point is consistent with the current estimated
distribution. As outlined by Robins et al. [2000], various reference densities can
be used for calculating Bayesian p-values such as the likelihood, prior predictive,
posterior predictive and the partial posterior predictive distributions. Under this
traditional framework predictive p-values are used as these are the most popular
in literature. Additionally, an alternative approach is explored which utilises the
posterior distribution directly.

4.2.1 Predictive P -Values

First the posterior predictive p-value is investigated. The posterior predictive
distribution takes the form,

PPP (x) =

Z
f(x|⌘,�)⇡post(⌘,�|X1, . . . , Xt)d⌘d� (4.1)

where f(x|⌘) is the likelihood for the data and ⇡post(⌘,�|X1, . . . , Xt) is the pos-
terior derived in Section 3.2.7 given by Equation 3.13. As a closed form solution
for the posterior of � is intractable, the MAP estimate of � is instead plugging
in directly rather than marginalising with respect to this parameter. This sim-
plification significantly improves computation speed and improves change point

42

Chapter 4. Change Point Detection

performance as seen in Table 4.1. The proposed approximated posterior predic-
tive distribution is calculated as,

PAPP (x) =

Z
f(x|⌘, �̂MAP)⇡post(⌘|X1, . . . , Xt, �̂

MAP)d⌘ (4.2)

where ⇡post(⌘|X1, . . . , Xt,�) is the marginal posterior distribution for ⌘ given by
Equation 3.15 with � plugged in to calculate the weights wi. In the case when
the data follows a Gaussian distribution as described in Section 3.2.1, the approx-
imated predictive posterior follows a student t-distribution with:

• Centre µ̂
MAP from Equation 3.9

• Precision ⇤ = ↵̂K̂
�̂(K̂+1)

• Degrees of freedom 2↵̂

where

↵̂ = �̂
MAP

t�1X

i=1

Ci

2
+

1

2
+ ↵0

�̂ = �0 +
1

2

µ
2

0

�
2

0

+ �̂
MAP

t�1X

i=1

CiX
2

i +X
2

t

�

⇣
�̂
MAP

Pt�1

i=1
CiXi +Xt +

µ0

�2
0

⌘2

�̂MAP
Pt�1

i=1
Ci + 1 + 1

�2
0

1

CA

are the parameters of the Inverse-Gamma marginal posterior for �2. Finally,

K̂ = �̂
MAP

t�1X

i=1

Ci + 1 +
1

�
2

0

which is equivalent to the e↵ective sample size [Wang et al., 2004] and is the divisor
in the µ posterior in Equation 3.8.

Table 4.1: Change point performance comparison of exact and approximate pos-
terior predictive p-value methods at 0.005 level with standard deviation given in
brackets. Data simulated as described in Section 4.3.3 where n = 5000 with 20
repetitions and ↵ = 0.005.

F1 ARL0 ARL1 Recall Precision FP Positives Time

BFF Pred Exact 0.728(0.118) 641.694 0.128 0.769(0.127) 0.700(0.140) 4.100 13.550 6036.798(476.040)
BFF Pred Approx 0.840(0.065) 1005.965 0.157 0.879(0.079) 0.810(0.080) 2.803 14.813 1.891(0.130)

43

Chapter 4. Change Point Detection

The p-value is calculated from the reference density as the probability of ob-
serving something at least as extreme as the new observation x

⇤. This is expressed
mathematically as,

p =

Z

x|PAPP (x)PAPP (x⇤)

PAPP (x)dx

Depending on the distribution, and the meaning of the data, these can be either
one or two sided. For the Gaussian case, two-sided p-values are used. This method
is referred to as BFF-Pred.

4.2.2 Posterior P -Values

Alternatively at each time step, estimates for the distribution parameters are cal-
culated which themselves adapt over time. The p-values for newly calculated esti-
mates of ⌘t and �t�1 are computed by comparing to their corresponding posterior
distribution at time t � 1, ⇡post(⌘,�|X1, . . . , Xt�1). These p-values correspond to
the probability of observing parameters at least as extreme as the MAP estimate
⌘t under the posterior at time t � 1 given in Equation 4.3. This describes how
surprised we are by the new estimates given the knowledge at the previous time
step.

Unlike the posterior predictive approach, p-values for each distribution param-
eter are calculated instead of a single value. Using the notation from Section 3.2.7,
the conditional marginal posterior for parameter ⌘i at time t� 1 is

⇡
i
t�1

(⌘) = ⇡post(⌘|⌘i+1, . . . , ⌘s,�, X1, . . . , Xt�1) (4.3)

where the joint posterior is given in Equation 3.15. Posterior p-values are cal-
culated as either one or two sided quantities. The p-value for newly estimated
parameter ⌘̂i using the posterior at time t� 1 is expressed mathematically as,

p
⌘i =

Z

⌘|⇡i
t�1(⌘)⇡i

t�1(⌘̂i)

⇡
i
t�1

(⌘)d⌘.

Similarly, a one sided p-value can be calculated for the newly estimated forgetting
factor �̂ using the marginal posterior for � at time t� 1 as,

p
� =

Z �̂

0

⇡post(�|X1, . . . , Xt�1).

One sided p-values are used for the forgetting factor as only when this value reduces
is of concern as it signifies a change in the distribution. This p-value method is
named BFF-Post where the parameter used is detailed but we focus only on p

� as
it has superior performance.

44

Chapter 4. Change Point Detection

4.2.3 Calibration

It is widely known that Bayesian p-values do not typically conform to the Uniform
property of frequentist p-values as discussed by Meng [1994], Robins et al. [2000]
and Gelman [2013]. Calibration of p-values using their empirical cumulative dis-
tribution function is commonly used in practice e.g. Davison and Hinkley [1997]
Robins et al. [2000] and Gelman [2013]. This empirical calibration of p-values
using a sliding window approach is implemented to maintained fixed storage re-
quirements. For a specified sliding window length s and the current stream of
p-values p1, . . . , pt�1 at time t � 1, the calibrated p-value of pt at time t is calcu-
lated as:

p
cal
t =

1

s

t�1X

i=t�s

I(pi  pt). (4.4)

The sliding window size s should be large enough to allow this approximation to
accurately calibrate the p-values but not so large that it causes a computational
burden. To calibrate the p-values for a sliding window of size s, the data length
must be at least s with p-values calculated for these time points. A change point
is detected when,

p
cal
t < c

for some threshold value c 2 [0, 1]. Due to the uniform nature of the calibrated
p-values, for threshold value c, approximately 100c% of points are identified as
change points. The threshold for change point detection under this scheme can be
set to control for the false positive rate and a manageable number of alerts for an
analyst.

Table 4.2: Change point performance comparison measured by F1 as described
in Section 2.4.3 for di↵erent sliding windows (SW) for the proposed p-value cal-
ibration method. Data simulated as described in Section 4.3.3 where n = 20000
with 100 repetitions and ↵ = 0.005. The performance is evaluated over the final
10000 data points.

BFF-Pred BFF-Post-�

Uncalibrated 0.717(0.056) 0.000(0.000)
SW 200 0.562(0.058) 0.603(0.054)
SW 500 0.670(0.057) 0.763(0.052)
SW 1000 0.720(0.056) 0.805(0.042)
SW 2000 0.746(0.055) 0.835(0.044)
SW 5000 0.761(0.062) 0.856(0.043)
SW 7000 0.764(0.059) 0.859(0.044)
SW 10000 0.764(0.062) 0.862(0.046)

45

Chapter 4. Change Point Detection

Both the raw posterior predictive and posterior p-values are not uniformly
distributed hence meaningful thresholds cannot be set without calibration. The
performance of the proposed change point procedures with and without calibration
is explored for several calibration window sizes. In Table 4.2, BFF-Post in particu-
lar has very poor calibration where without the proposed recalibration, it does not
successfully identify any change points. Alternatively, BFF-Pred p-values are bet-
ter calibrated where the performance for small calibration windows performs worse
than uncalibrated p-values. For all methods, as the sliding window increases, the
performance improves however there is little di↵erence in performance in sliding
windows greater than 2000. The computation time for di↵erent sliding window
sizes is investigated in Table B.1 where it is clear, larger windows result in much
longer computation times. In all future results, calibration of p-values is performed
with a sliding window of 2000 to keep storage requirements small with minimal
reduction of performance.

4.2.4 Grace Period

Following a detection by the change point procedure, the adaptive filter does not
initially produce accurate estimates for the new data distribution as seen in Fig-
ure 3.5. This may cause additional false detections as the newly observed data
does not follow the distribution of the model. As done by Bodenham and Adams
[2017], to prevent such inconsequential detections, a grace period is implemented
after a detection. Given grace period length G, if there is a detection at time ⌧ ,
parameter estimation continues in the period (⌧, ⌧ + G] but change point detec-
tion is disabled. This grace period is illustrated in Figure 4.2. After a detection,
Bodenham and Adams [2017] restart the mean estimation procedure. Under the
proposed Bayesian framework, estimation of all distribution parameters is per-
formed, hence if there is a change point in a single parameter, it is not beneficial
to restart the estimation procedure. Due to this reasoning, the adaptive filter is
not restarted after a detection.

⌧ ⌧ + G t

Monitoring

Grace

Period Monitoring

Figure 4.2: Illustration of the grace period of length G which begins after a
change point is detected at time ⌧ . Detections are not made in this grace period.

In principle, G should correspond to the length of time required for the filter
to adapt to the new distribution where longer distributional shifts may require
larger grace periods. The grace period can also be regarded as a mechanism for
controlling the minimum false positive rate as it acts as a lower bound on the
required number of observations to be seen before a false positive is flagged [Plasse

46

Chapter 4. Change Point Detection

and Adams, 2019]. Given the context of the data and the desired false positive
rates, an appropriate grace period for the data can be set. The grace period
assumes the data returns to a stationary state after an abrupt change point and is
suitable for such cases. Otherwise, detections made after this grace period cannot
be trusted.

The e↵ect of the grace period on the change point performance measured by the
F1 score is now explored. The results of these experiments are displayed in Table
4.3 where the data is simulated as described in Section 4.3.3 where n = 10000 with
100 repetitions. As the grace period increases, the F1 score decreases in value for
all change point procedures. However, this di↵erence in performance is marginal.
Although the performance has not improved, it is important to still implement a
grace period to prevent false positives in practice.

Table 4.3: Comparison of change point performance measured by the F1 for
grace periods of di↵erent lengths. Data simulated as described in Section 4.3.3
where n = 10000 with 100 repetitions and ↵ = 0.005. Performance assessed on
the final 5000 points.

Grace Period BFF-Pred BFF-Post-�
1 0.744(0.051) 0.834(0.042)
5 0.742(0.052) 0.833(0.042)
10 0.741(0.052) 0.833(0.042)
20 0.735(0.056) 0.832(0.043)
50 0.712(0.060) 0.813(0.047)

Algorithm 1 outlines the general BFF change point procedure for the exponen-
tial family of distributions.

4.2.5 Ability to Detect Changes in Presence of Trend

Data streams in practice may exhibit periods of trend or gradual shifts in the
data. Commonly, these changes do not signify a change point but most detection
procedures regard them as such. The proposed change point procedure aims to
only identify true distinct changes in the distribution of the data to prevent large
numbers of false positives from being raised.

This property for the proposed approach for the posterior p-value case is now
demonstrated. Suppose the data is univariate Gaussian with unknown mean and
variance, N(µ, �2). Up to time t� 1 the following data is observed,

X1, . . . , Xt�1

iid
⇠ N(µ1, �

2

1
),

where at time t, a change point occurs in the mean with magnitude change ,

Xt ⇠ N(µ1 + , �
2

2
) where  > 0.

47

Chapter 4. Change Point Detection

Algorithm 1 Bayesian Forgetting Factor Change Point Algorithm
Input: Threshold level c 2 [0, 1], grace period length G and p-value calibration
sliding window length s, the fixed � prior P (�)

1: Initialise hyper-parameters:
�

1
= �initial

�1 = �initial

2: Observe new data Xt.
3: Calculate pt using either BFF-pred or BFF-post p-value methods.
4: Calibrate using Equation 4.4 to give p

cal
t .

5: if pcalt < c where c is the threshold value and last change point not in [t�G, t�1]
then

6: Xt is a change point and add t to change point set.
7: end if
8: Update parameter estimates for �t�1 and ⌘t using sequential update formulas

for the MAP estimates of Equation 3.14 and Equation 3.15 respectively.
9: Update Prior Parameters

�t = f�(⌘t,�t�1, �0)
�t = f�(⌘t,�t�1, �0)
where f�(·) and f�(·) are functions to calculate the hyper-parameters such
that the modes of the priors are equal to the current MAP estimates with
prior contribution weight equal to 1 as described in Section 3.2.6.

10: Return to 2.

For simplicity it is assumed that the MAP estimates of µ is equal to the true value,
µ1, before the trend. Let the MAP estimate of �2

1
be �̂

2. Using Equation 3.8, the
posterior at time t� 1 for µ is:

µ|�̂
2
⇠ N

µ1,

�̂
2

Pt�1

i=1
wi +

1

�2
0

!
(4.5)

where �
2

0
is the prior variance for µ. The two sided posterior p-value at time t for

µ2 = µ1 +  is calculated as:

p = 2�

0

@
(µ1 � (µ1 + ))

⇣Pt�1

i=1
wi +

1

�2
0

⌘

�̂2

1

A

= 2�

0

@
�

⇣Pt�1

i=1
wi +

1

�2
0

⌘

�̂2

1

A .

48

Chapter 4. Change Point Detection

To be detected at the ↵ level, the gradient, , of the trend must satisfy,

 �
�̂
2

Pt�1

i=1
wi +

1

�2
0

��1(1� ↵/2). (4.6)

Using Equation 4.6, the noisier the data (larger �̂2), the larger the jump must be
for a change to be detected. Alternatively for stationary data, as the length of the
stationary period increases,

Pt�1

i=1
wi increases causing the jump size to decrease.

Hence, as the time since the last change point increases, the magnitude of change
in the data required to detect a change point decreases.

Trend periods can be characterised by continual gradual changes in the data.
During trends, the forgetting factor reduces as historic data is less relevant which
was observed in Figure 3.2 (b). Thus

Pt�1

i=1
wi decreases. The estimate of the

variance during trend periods increases as the data itself is noisier (although the
true variance of the data is fixed). Using Equation 4.6, with larger variance and
smaller weights, much larger  values are required for a change to be detected.
This helps to explain how the procedure is capable of detecting abrupt changes in
the presence of trend as seen in Sections 4.3.3 and 4.4 where the proposed method
does not erroneously detect large numbers of false positives during trend periods.

4.3 Simulation Study

We designed a simulation study to evaluate the performance of the proposed meth-
ods. In our study we focused on comparison to sequential methods. Comparison
to the Pruned Exact Linear Time (PELT) method [Killick et al., 2012], a well
regarded batch approach is implemented to act as a benchmark to the sequential
approaches. We additionally compare to DeCAFS [Romano et al., 2021], a batch
procedure that is capable of detecting abrupt changes in the presence of trend and
autocorrelation. Classic sequential change point procedures are also compared to
including the Cumulative Sum (CUSUM) algorithm [Page, 1954] and Exponential
Weighted Moving Average (EWMA) [Roberts, 1959]. The frequentist sequential
adaptive estimation procedure by Anagnostopoulos et al. [2012] which BFF is an
extension of, has been used for change point detection by Bodenham and Adams
[2017] using control limits and is called AFF.

Both the proposed procedure, BFF, and the frequentist version, AFF, require
a threshold for detection. For both procedures, this threshold can be set based on
the desired false positive rate where for threshold c approximately 100c% of points
are detected as change points. In the following examples a range of thresholds
around the true theoretical threshold value are employed.

We also compare to the popular Bayesian sequential change point procedure
called Bayesian Online Change Point Detection (BOCPD) proposed simultane-
ously by Adams and MacKay [2007] and Fearnhead [2006]. This procedure jointly
and sequentially infers the distribution parameters of the data alongside the run

49

Chapter 4. Change Point Detection

length, representing the time since the last change point, and is used to deter-
mine whether a change has occurred. This method is detailed further in Appendix
B.1.1. Although the BOCPD estimation procedure is sequential, the change point
identification procedure performs change point detection retrospectively. Through
investigation of this method empirically, it was seen that although the procedure
correctly identifies the time of change, it often did so with a lag. Table 4.4 displays
the delay in detection for simulated data as described in Section 4.3.3 for streams
of length 10000. The BOCPD method has a significant delay in detection when no
threshold is used (the Colmaxes approach) however this reduces as larger thresh-
olds for this probability are implemented. As this method requires probabilities
for each possible run length to be stored to identify change points, the storage
requirements for this method are higher than the other sequential procedures de-
tailed. Both the lag of detection and storage requirements of the BOCPD method
should be considered when compared to the other sequential methods.

Table 4.4: Mean, median and standard deviation of the change point detection
lag for the BOCPD method for data simulated as described in Section 4.3.3 of
length 10000.

Mean Median Standard Deviation

BOCPD-Colmaxes 12.009 12.300 5.838
BOCPD-Threshold 0.5 5.916 5.286 5.311
BOCPD-Threshold 0.75 2.786 1.500 3.113
BOCPD-Threshold 0.9 3.570 2.000 4.815

A summary of the properties of the comparison methods is provided in Table
4.5 where the default parameters for each model are detailed in Appendix B for
reference. For the AFF and BFF approaches a variety of thresholds are explored
which are specifically detailed for each experiment.

In single change point literature, the average run lengths ; ARL0 and ARL1,
are widely applied. The ARL0 is the average number of observations until a
false positive is observed whereas the ARL1 is the average time between a change
point and detection. Sequential change point methods should have large ARL0
and small ARL1. A similar extension of these measures done by Bodenham and
Adams [2017] is used to adapt these measures for multiple change points on data
streams. The ARL0 is calculated as the average time between false detections and
the ARL1 as the average time between a change point and detection.

For the multiple change situation, the average run lengths do not give a full
picture of performance in terms of the number of change points correctly and
incorrectly identified, hence additional performance measures are needed. The
recall (proportion of change points correctly identified) and precision (proportion
of detections that are not false) are used as defined in Section 2.4.3. Both recall
and precision take on values in [0, 1] where it is desirable for both to be close to

50

Chapter 4. Change Point Detection

Table 4.5: Summary of the main characteristics of each method in terms of if
the method is appropriate for data streams, the hyper-parameters required and
whether it is a Bayesian or frequentist approach.

Sequential Hyper-Parameters Bayesian

PELT 7 function, penalty 7
DeCAFS 7 � 7
CUSUM 3 h, k 7
EWMA 3 !, L 7
AFF 3 ⌘, c, G 7
BOCPD 3 µ, , �, 3

↵, � & threshold
BFF 3 c, G, s, 3

data distribution

1. As there is a trade o↵ between recall and precision, the F1 measure is used
to combine these aspects. The F1 measure takes on values in [0, 1] where values
closer to 1 are desirable and correspond to all changes being detected with no false
detections. Finally, as the methodology is to be applied to large data streams, the
methods need to be scalable, hence the run times of each algorithm is reported.

In the above measures, the definition of a true detection must be established.
It is standard in change point literature to allow a window for detection. In
batch approaches this window can be either side of a change however in sequential
methods, this period only occurs after the change. The detection window size is
set to 20 time points. The number of false positives (FP) and total detections
made by each procedure are additionally displayed.

4.3.1 Performance on Change Point Only Data

Although the focus of this work is on methods appropriate for trend, it is important
to measure the baseline performance of the change point procedures without this
behaviour. Here 100 Gaussian data streams of length n = 50, 000 are simulated
where m =

⌃
n
200

⌥
= 250 change points are generated uniformly across (30, n � 1)

such that change points are at least 30 time steps apart where jump sizes are
sampled from U(3, 6). The simulated Gaussian data has a fixed variance of 1 with
a mean as specified by the change points.

As seen in Table 4.6, the best performers for the change point only data are
PELT, DeCAFS and BOCPD followed by the BFF methods. Both batch methods,
PELT and DeCAFS perform well on this data as there are clear distinct change
points. In comparison to sequential methods, BFF has high-performance. In par-
ticular, the precision is very high for BFF with a small ARL1. Thus in practice
BFF has very few false positives making it favourable. These results provide a

51

Chapter 4. Change Point Detection

Table 4.6: Change point performance over 100 simulated Gaussian data streams
of length 50,000 containing only change points and no trend as described in Section
4.3.1. Standard deviation given in brackets. Best performer in bold, second best
in grey bold.

F1 ARL0 ARL1 Recall Precision FP Detections Time (sec)
PELT 0.980(0.009) 7970.875 0.025 0.980(0.009) 0.979(0.009) 4.940 240.430 0.158(0.020)

DeCAFS 0.973(0.010) 9064.632 0.023 0.967(0.012) 0.979(0.009) 5.050 237.380 4.494(0.341)
CUSUM 0.647(0.027) 283.093 2.546 0.830(0.026) 0.530(0.027) 177.330 376.820 0.002(0.001)
EWMA 0.738(0.023) 420.905 1.734 0.875(0.022) 0.638(0.026) 119.460 329.890 0.002(0.001)

AFF 0.008 0.682(0.025) 293.232 2.996 0.870(0.025) 0.561(0.026) 163.930 373.100 0.003(0.002)
AFF 0.005 0.731(0.025) 370.537 2.837 0.887(0.023) 0.622(0.028) 129.750 343.000 0.002(0.001)
AFF 0.003 0.783(0.022) 485.998 2.780 0.909(0.018) 0.688(0.026) 99.180 317.550 0.003(0.002)

BOCPD-Colmaxes 0.965(0.011) 3514.038 0.014 0.984(0.009) 0.946(0.016) 13.550 250.050 530.833(33.812)
BOCPD-Threshold 0.970(0.011) 5083.008 0.017 0.976(0.014) 0.964(0.013) 8.790 243.350 530.833(33.812)

BFF-Pred 0.008 0.729(0.020) 493.474 0.141 0.805(0.023) 0.666(0.021) 96.930 290.420 26.137(2.529)
BFF-Pred 0.005 0.764(0.020) 1420.588 0.122 0.703(0.022) 0.836(0.023) 33.250 202.280 26.137(2.529)
BFF-Pred 0.003 0.668(0.019) 5603.144 0.086 0.519(0.019) 0.938(0.023) 8.340 133.070 26.137(2.529)

BFF-Post-� 0.008 0.872(0.016) 2728.559 0.986 0.828(0.019) 0.920(0.020) 17.290 216.270 127.714(12.986)
BFF-Post-� 0.005 0.796(0.015) 9335.263 1.016 0.672(0.019) 0.977(0.014) 3.820 165.310 127.714(12.986)
BFF-Post-� 0.003 0.653(0.018) 11795.341 1.010 0.487(0.020) 0.994(0.009) 0.750 117.690 127.714(12.986)

benchmark for the performance results in Section 4.3.3 where if similar perfor-
mance is observed, the methods demonstrate robustness when subject to trend.
When applied to data with trend alone it is clear that for DeCAFS, BOCPD and
BFF, the number of detections is not a↵ected by the presence of trend in the data
(see Appendix B.3).

4.3.2 Illustrative Example

To begin the change point performance of the comparison methods is showcased
on a simulated example of length n = 10, 000, however, only the final 5000 points
are displayed to clearly visualise the results and allow for a burn-in period. The
data is generated as described in Section 4.3.3 where change points and trends are
added throughout. For this example, the parameters of each of the methods are
optimised to display their best e↵orts on the problem. It is noted however that
this is not feasible in application as locations of the change points are unknown.
A grid search is performed for each model where the parameters that optimise the
F1 score are chosen. The list of parameters for which this search is performed can
be found in Appendix B where the optimal parameters are detailed.

Figure 4.3 displays the best e↵orts for each method. DeCAFS perfectly iden-
tifies the change points and is a benchmark for sequential methods as it is unfair
to compare to batch methods. Many of the sequential procedures do not perform
well during trend periods with large numbers of false positives identified during
these regions. BOCPD does however show strong performance where there is a
single false detection and all change points are identified in this period. It is
important to note that for this method, the F1 value is heavily reliant on the
choice of prior parameters and threshold. In addition, it is significantly slower
than all other methods. Both the competitive sequential methods (AFF, CUSUM

52

Chapter 4. Change Point Detection

−20

−10

0

10

20

5000 6000 7000 8000 9000 10000

Va
lu

e

PELT

−20

−10

0

10

20

5000 6000 7000 8000 9000 10000

Va
lu

e

DeCAFS

−20

−10

0

10

20

5000 6000 7000 8000 9000 10000

Va
lu

e

CUSUM

−20

−10

0

10

20

5000 6000 7000 8000 9000 10000

Va
lu

e

EWMA

−20

−10

0

10

20

5000 6000 7000 8000 9000 10000

Va
lu

e

AFF

−20

−10

0

10

20

5000 6000 7000 8000 9000 10000

Va
lu

e

BOCPD

−20

−10

0

10

20

5000 6000 7000 8000 9000 10000

Va
lu

e

BFF Pred

−20

−10

0

10

20

5000 6000 7000 8000 9000 10000

Va
lu

e

BFF Post λ

Figure 4.3: Single simulation illustration as described in Section 4.3.2 containing
both change points and trend. For each change point procedure, solid and dotted
vertical lines represent correct and incorrect change point detections respectively.
A cross at the bottom of the figure indicates the location of true change points
and a circle defines the start of a trend period.

and EWMA) and PELT are not robust to trend, unlike the proposed procedures.
These competitive methods do however detect a large proportion of the change
points.

As seen in Figure 4.3, the proposed change point procedures, BFF-Pred and
BFF-Post-�, both have many false detections throughout the region. Due to its for-
mulation, our method is susceptible to detecting both change points and anomalies
or outliers within the data. Alternatively, it does not have false detections during
trend periods. BFF-Post-� detects a higher number of the changes compared to
BFF-Pred with fewer false positives making it more favourable.

Figure 4.4 demonstrates the parameter estimation of BFF for � for the simu-
lated data as described in Section 4.3.2. This estimate reflects the desired prop-

53

Chapter 4. Change Point Detection

erties given in Section 3.2.3. When a change point occurs, marked by a cross in
the figure, there is an abrupt drop in the � value before returning to the baseline
value. This behaviour is not seen for trends where instead, the forgetting factor
reduces slightly.

-20

-10

0

10

20

5000 6000 7000 8000 9000 10000

Va
lu

e

BFF Pred

0.87

0.90

0.93

0.96

5000 6000 7000 8000 9000 10000

Va
lu

e

BFF Estimated λ

Figure 4.4: Single simulation illustration. First plot shows the change points
detected by BFF-Pred on the raw signal where the second plot shows the estimated
� value for the BFF model with corresponding change points and trend positions
detailed by crosses and circles respectively.

As these results are demonstrated on a single data set, they do not give a
representative view of the performance of these methods. Performance comparison
of these procedures is now performed using Monte Carlo replication on larger data
sets.

4.3.3 Large Scale Simulation with Change Points and Trend

The robustness of the proposed procedure is now evaluated for large scale change
point detection on data with trend. Data is simulated from a Gaussian distribution
using a similar approach to that found in the literature (e.g. Killick et al. [2012],
Bodenham and Adams [2017]). As data streams often include periods of trend,
periods of such behaviour are included which is seldom addressed in change point
literature. For a data stream of length n, m =

⌃
n
250

⌥
change points and p =⌃

n
1000

⌥
trend regions are generated uniformly across (30, n � 1) such that both

change points and trend periods are at least 30 time steps apart with the following
properties,

• Change points have mean jump magnitude sampled from U(3, 6)

• Periods of trend have a minimum length of 50 points with gradient magnitude
uniformly sampled from {0.05, 0.06, 0.07, 0.08}

and the simulated Gaussian data has fixed variance 1 with a mean as specified by
the change point and trend periods. As the methodology is intended to be applied

54

Chapter 4. Change Point Detection

to data streams indefinitely, the simulated data are sizeable to test this, hence
n = 250, 000. For the results in Table 4.7, the experiments are replicated 100
times using the defaults of each of the change point procedures which are specified
in Appendix B. For both AFF and BFF methods in Table 4.7, the threshold values
are varied where by construction, 0.4% of the data points are change points. Thus
a threshold close to this value is sensible.

Table 4.7: Simulated change point performance results over 100 streams of length
250,000 containing both change points and trend as described in Section 4.3.3.
Standard deviation given in brackets. Best performer in bold, second best in grey
bold.

F1 ARL0 ARL1 Recall Precision FP Detections Time (sec)

PELT 0.757(0.007) 408.268 0.025 0.980(0.005) 0.617(0.008) 604.546 1576.814 0.852(0.101)
DeCAFS 0.965(0.005) 13285.22 0.022 0.951(0.007) 0.980(0.005) 18.990 962.470 99.724(6.642)
CUSUM 0.507(0.011) 188.985 2.837 0.792(0.014) 0.373(0.009) 1322.557 2108.155 0.013(0.005)
EWMA 0.584(0.009) 239.769 2.039 0.846(0.012) 0.446(0.008) 1042.010 1880.948 0.012(0.006)

AFF 0.008 0.529(0.009) 184.981 3.301 0.845(0.012) 0.385(0.007) 1339.526 2177.711 0.013(0.008)
AFF 0.005 0.569(0.009) 211.621 3.167 0.866(0.011) 0.423(0.008) 1170.804 2030.268 0.014(0.009)
AFF 0.003 0.606(0.010) 241.469 3.057 0.884(0.011) 0.461(0.008) 1025.814 1902.918 0.014(0.010)

BOCPD-Colmaxes 0.609(0.022) 213.112 0.018 0.957(0.054) 0.448(0.025) 1177.617 2127.287 4213.459(404.630)
BOCPD-Threshold 0.871(0.034) 1496.274 0.017 0.925(0.081) 0.831(0.047) 192.936 1110.170 4213.459(404.630)

BFF-Pred 0.008 0.676(0.010) 403.567 0.162 0.826(0.012) 0.572(0.010) 613.872 1433.723 150.098(18.974)
BFF-Pred 0.005 0.749(0.011) 1038.357 0.151 0.743(0.012) 0.756(0.012) 238.468 975.245 150.098(18.974)
BFF-Pred 0.003 0.703(0.010) 3502.145 0.125 0.580(0.010) 0.891(0.012) 70.415 646.064 150.098(18.974)

BFF-Post-� 0.008 0.839(0.009) 1172.669 1.038 0.875(0.009) 0.805(0.010) 210.713 1079.213 769.904(101.217)
BFF-Post-� 0.005 0.833(0.008) 4263.764 1.083 0.755(0.010) 0.928(0.009) 57.777 806.574 769.904(101.217)
BFF-Post-� 0.003 0.722(0.009) 20919.567 1.084 0.572(0.010) 0.980(0.007) 11.415 578.745 769.904(101.217)

As the F1 score combines both recall and precision, this measure is capable
of summarising both aspects of performance. DeCAFS is used as a gold standard
for sequential approaches which exhibits a very high F1 score. From Table 4.7,
BOCPD-Threshold is the best sequential performer with BFF-Post-� following
closely. In comparison to purely sequential methods, BFF has superior perfor-
mance with much higher precision. Many of the methods have large numbers of
false positives due to the trend periods within the data. As trend is a natural
feature of many real data sets, these methods may not have accurate results in
practice.

It is important to compare the performance of this experiment to that without
trend in Table 4.6. The performance of PELT and BOCPD reduce significantly
when trend is introduced. In particular, the precision of these methods is much
lower. Sequential methods (CUSUM, EWMA and AFF) also have a reduction in
performance which is attributed to both recall and precision reductions. The BFF
procedures, particularly the BFF-Post-� approach still exhibit high precision with
similar recall. This suggests the BFF methods are robust to trend.

For a threshold of 0.004, a procedure should detect approximately 0.4% of
points in the stream (equivalent to 1000 for length 250,000) if it is well calibrated.
AFF however detects many more suggesting it is not well calibrated. The BFF
methods do approximately make this number of detections suggesting it is well
calibrated. AFF alternatively detects many more changes at the same levels.

55

Chapter 4. Change Point Detection

50

100

150

200

250

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
Year

O
pe

n
Pr

ice

Figure 4.5: IBM open stock price between January 2, 1998 to January 21 2021.

Calibration issues can cause the threshold to be hard to set in practice when
labels are unavailable. However, at each threshold, the BFF procedures detect
approximately the correct number of changes thus can be set to control for the
false positive rate.

In Table 4.7, between the two proposed p-value methods, the BFF-Post ap-
proach has better results, particularly for �. BFF-Post-� however su↵ers from
longer computation times and larger ARL1 in comparison to BFF-Pred. The
ARL1 of the BFF-Post-� approach is still smaller than that of the other sequential
approaches. Thus depending on the requirements of the application (faster com-
putation or higher performance), either of the predictive or posterior approaches
could be chosen as both have favourable performance.

Although the change point performance of BOCPD is very high, this is coupled
with a large computational load and slow implementation. This procedure updates
sequentially however it requires a long stream of run length probabilities to be
stored where change points are determined retrospectively, potentially with a lag
as it uses extra information to determine whether a change point has occurred.
The BFF procedures are significantly faster with similar performance without large
storage requirements.

4.4 Real Data Example

To demonstrate the robust performance of the proposed change point procedure, it
is compared to competitive approaches on financial data, for which such monitoring
is heavily required. In this context, the aim is to identify when the price of a stock
has an abrupt change to trigger trading actions. This financial data is collected
continuously during trading hours and can exhibit various changes to its structure
such as trend, thus change point procedures must be suitable to prevent unwanted
trading actions from being performed.

As the majority of real financial data is notoriously non-stationary, this section
looks to gauge the suitability of the proposed methods for such data. It is common

56

Chapter 4. Change Point Detection

in the literature to perform change point analysis on the log returns for financial
data to deal with the non-stationarity. The robust performance of BFF is instead
showcased on raw data. Here one minute intraday stock prices for IBM collected
between January 2, 1998 and January 21, 20211 are used. Unlike the majority of
experiments performed in literature, to test the suitability of BFF all methods are
run over this full large scale data stream consisting of approximately 2.4 million
points rather than on a smaller subset. The full data set is plotted in Figure 4.5
where at this scale, it is hard to visualise and locate the change points however
there are clear trends in the data. Several real world events cause abrupt changes
in the data that can provide explanations for the predicted change points.

Table 4.8: Number of detections for each change point method over the full IBM
Open Stock price data for default implementations.

PELT 6411
DeCAFS 35820
AFF 27915

BOCPD-Colmaxes 19314
BOCPD-Threshold 737

BFF-Pred 4557
BFF-Post-� 3084

Similar to the simulated case, default parameters are used for each model as
it is unrealistic to tune these parameters when labels are not available. Addition-
ally, EWMA and CUSUM are omitted from the results as these have the poorest
performance on simulated data. Table 4.8 outlines the number of detections made
by each of the procedures. There is a large discrepancy between the number of
detections BOCPD makes for the Colmaxes and Threshold procedures. In the
simulated example in Section 4.3.3, the threshold method was more favourable
however it is very conservative on this data with very few detections made over
a 20 year period. In the remaining discussion, the BOCPD-Colmaxes approach is
used.

For illustration purposes the methods have been applied to the data points of
October 2014, the results of which are presented in Figure 4.6. This period contains
approximately 10,000 data points. In the figure, common change points between
all comparison methods except AFF (due to its less favourable performance) are
recorded with solid lines while the non-common changes are illustrated with dashed
lines. During this period it is clear that AFF does not handle trend periods well
where there are a large number of changes alerted throughout the first 18 days of
the month and the final few days where a slight trend can be seen in the data.

There are two highly apparent change points in this period, one at the start
of the 20th and another on the 21st. The change point on the 20th of October

1http://www.kibot.com/free_historical_data.aspx

57

Chapter 4. Change Point Detection

160

170

180

190

01/10 02/10 03/10 06/10 07/10 08/10 09/10 10/10 13/10 14/10 15/10 16/10 17/10 20/10 21/10 22/10 23/10 24/10 27/10 28/10 29/10 30/10 31/10
Date

O
pe

n
Pr

ic
e

PELT

160

170

180

190

01/10 02/10 03/10 06/10 07/10 08/10 09/10 10/10 13/10 14/10 15/10 16/10 17/10 20/10 21/10 22/10 23/10 24/10 27/10 28/10 29/10 30/10 31/10
Date

O
pe

n
Pr

ic
e

DeCAFS

160

170

180

190

01/10 02/10 03/10 06/10 07/10 08/10 09/10 10/10 13/10 14/10 15/10 16/10 17/10 20/10 21/10 22/10 23/10 24/10 27/10 28/10 29/10 30/10 31/10
Date

O
pe

n
Pr

ic
e

AFF

160

170

180

190

01/10 02/10 03/10 06/10 07/10 08/10 09/10 10/10 13/10 14/10 15/10 16/10 17/10 20/10 21/10 22/10 23/10 24/10 27/10 28/10 29/10 30/10 31/10
Date

O
pe

n
Pr

ic
e

BOCPD

160

170

180

190

01/10 02/10 03/10 06/10 07/10 08/10 09/10 10/10 13/10 14/10 15/10 16/10 17/10 20/10 21/10 22/10 23/10 24/10 27/10 28/10 29/10 30/10 31/10
Date

O
pe

n
Pr

ic
e

BFF Pred

160

170

180

190

01/10 02/10 03/10 06/10 07/10 08/10 09/10 10/10 13/10 14/10 15/10 16/10 17/10 20/10 21/10 22/10 23/10 24/10 27/10 28/10 29/10 30/10 31/10
Date

O
pe

n
Pr

ic
e

BFF Post λ

Figure 4.6: IBM open stock price throughout October 2014. Change points for
each method are indicated as vertical lines where common change points between
PELT, DeCAFS, BOCPD, BFF-Pred and BFF-Post are indicated with a solid
vertical line (while dashed lines corresponds to change points that are not shared
among all methods).

58

Chapter 4. Change Point Detection

180

182

184

14/10 15/10 16/10 17/10 20/10
Date

O
pe

n
Pr

ic
e

Figure 4.7: IBM open stock price between October 14 2014 to October 17 2014
where BFF-Post-� change points are identified with vertical lines for detections
in common between all methods and dashed lines for change points that are not
shared among all methods.

corresponds to IBM dumping their chip unit and posting disappointing earnings2

resulting in a drop in the price. All methods except AFF detect both of these
changes. It can be seen that PELT, DeCAFS and BOCPD may additionally be
detecting trend rather than only change points such as the point in the middle of
October 15th which does not correspond to an apparent change in the data.

In Figure 4.6 both BFF methods perform well where once again they are de-
tecting change points and extreme points within the data. Interestingly these
methods detect di↵erent points where these di↵erences primarily correspond to a
di↵erence in anomalies detected. BFF-Post-� has more detections in the first half
of the data whilst BFF-Pred detects a larger proportion during the second half.
Figure 4.7 zooms in on the period between October 14th and October 17th 2014 to
better visualise the change points detected by BFF-Post-� during this period. At
this scale, it is evident the detected change points correspond to abrupt changes
in the data and highlight the importance of scale when investigating these change
points as these are undetectable in Figure 4.6.

Another important detail when running these methods over large data streams
is the computational speed. For this data the computation of BOCPD ran over
2 days and DeCAFS had a run time of 196 minutes. The BFF models ran for 25
(Pred) and 135 (Post) minutes with comparable performance. Additionally, these
computation times are suitably small such that when run over a stream, updates
can be computed at least as fast as the arrival of the data (0.003 seconds per
update on average). Thus the proposed models show robust performance on real
data in addition to the simulated data presented. Finally, it is noted that the BFF
methods have similar detections to PELT and DeCAFS which are both strictly
not sequential.

2
https://money.cnn.com/2014/10/20/investing/ibm-sale-earnings/

59

Chapter 4. Change Point Detection

4.5 Discussion

Sequential change point detection in the presence of trend is a challenging problem
and in this chapter, it is demonstrated that existing methods are unable to operate
in such cases. In streaming data, as the future structure is unknown, change point
procedures must be capable of adapting. This work shows the capabilities of the
proposed BFF change point procedure in the presence of trend in comparison to
existing procedures where BFF particularly benefits from low numbers of false
positives. The proposed default parameters are robust to a wide variety of cases
where the detection threshold can be set based on the desired false positive rate.

In this chapter criticism of the popular BOCPD procedure has been provided.
Although the parameter inference of this method is sequential, the change point
aspect is retrospective. Change point locations are correctly identified but with a
lag. Thus a direct comparison to this model is unfair for truly sequential models
which do not flag changes in the past. Additionally, BOCPD requires a large
number of values to be stored, increasing its computational burden and requires
setting many influential prior parameters. When applied to the IBM data set, the
computation time of BOCPD was excessive making it less suitable in practice.

Both of the proposed change point procedures based on the BFF method de-
tailed in Chapter 3, have superior performance to other sequential approaches
however the posterior approach has more favourable F1 values. The predictive
posterior change point procedure boasts a faster computation time than the pos-
terior approach, whilst both are faster than BOCPD. From the simulated and real
data examples explored, it is evident that the BFF change point procedure is ca-
pable of detecting abrupt mean changes in the presence of trend. The suitability of
BFF for change point detection on cyber-security data is investigated in Chapter
8.

60

Chapter 5

Combined Forecasts for Improved
Anomaly Detection

Anomaly detection in time series data is a challenging problem in many domains
including medical, financial and computer networks. Anomaly detection aims to
identify when the series deviates away from its “normal” behaviour, where this
normal behaviour can itself be a challenge to model. Time series data streams
in practice often exhibit trend, seasonality and irregularities, making the problem
of anomaly detection more di�cult. For enterprise cyber-security data, a daily
pattern of activity is often observed as a result of habitual human interaction on
the network during working hours.

Chandola et al. [2009] describe three types of anomalies: point, contextual and
collective anomalies. Point anomalies are the most analysed type for time series
data e.g. Kato and Klyuev [2014] and Ding et al. [2018] and refer to instances
when single data points deviate globally from the data. Point anomaly detection
in cyber-security can alert to extreme outliers in the data and may correspond to
attacks such as Distributed Denial of Service (DDoS) or zero-day attacks which
are characterised by high volumes of activity. Data instances that are unusual
given their context (e.g. time of day) are classified as contextual anomalies and
can be single points or collections of points. There are very few procedures that
detect contextual anomalies. Monitoring of cyber-security time series for contex-
tual anomalies can be used for detecting intruders with a foothold on the network
as they often create many novel connections [Metelli and Heard, 2019] and do
not conform to the usual patterns of the data. Finally, a collection of related data
points are classified as a collective anomaly if individually these points may weakly
be classified as point or contextual anomalies but their occurrence together makes
them strongly anomalous.

This chapter is focused on the detection of point and contextual anomalies
which are demonstrated in Figure 5.1. As most existing anomaly detectors focus
on global outliers such as the highlighted point anomaly, non-extreme deviations
from the usual periodic behaviour in the data such as the highlighted contextual

61

Chapter 5. Combined Forecasts for Improved Anomaly Detection

Point Anomaly

Contextual Anomaly

0

100

200

1 2 3 4
Day

N
um

be
r N

ew
 E

dg
es

Figure 5.1: Simulated data with example of a point and contextual anomaly
within the data where these anomalies are indicated in red.

anomaly would not be identified by most existing anomaly detection procedures.
In this chapter methods capable of detecting both types of anomalies are proposed.

Although the proposed methods are motivated by cyber-security, they are not
limited to this domain and can be applied to other settings such as monitoring
social network data. The proposed models focus on identifying anomalies within
univariate time series with regular temporal patterns. To achieve this two aspects
of the data are modelled, the long-term structure and the short-term structure.
The long-term model describes periodic behaviours and is well suited to detecting
contextual anomalies. Functional Data Analysis (FDA) is implemented for this
component. The short-term model instead captures the local behaviour of the
data and is more appropriate for detecting point anomalies. A simple ARIMA
model is applied for this.

We propose two anomaly detection approaches, both of which are capable of de-
tecting point and contextual anomalies based on their forecasts. The first approach
uses a novel time-series decomposition and the second combines short-term and
long-term forecasts using weighted linear regression. The proposed methods are
intended to be applied to time series data streams which are often non-stationary
and never ending. The procedures presented in this chapter are thus adaptive
with fixed computation requirements. The majority of existing popular time se-
ries anomaly detection procedures are however batch approaches, which are not
suitable for application to streaming data due to their high computational storage
and time requirements and their lack of adaptability.

This chapter is structured as follows. Section 5.1 provides a review of relevant
literature for the described problem. To begin the adaptive short and long-term
models are outlined in Section 5.2. These models are combined in Section 5.3
to produce a single forecast capturing both short and long-term structures where

62

Chapter 5. Combined Forecasts for Improved Anomaly Detection

details of the decomposition approach are described. The proposed anomaly de-
tection methods based on the forecast models proposed are given in Section 5.4.
The performance of the procedures is compared against competitive approaches
on simulated data in Section 5.5 and on real labelled non-cyber data in Section
5.6.

5.1 Background and Relevant Literature

A number of methods have been applied for anomaly detection within network
tra�c data however these primarily focus on point anomaly detection. Bernacki
and Ko laczek [2015] propose an anomaly detection procedure for computer network
time series using a modified Exponential Moving Average with subjective logic
opinions which is well suited to periodic data. They however only demonstrate
the detection performance on extreme outliers.

An Autoregressive Integrated Moving Average (ARIMA) process is a popular
time series model that has been applied for network intrusion detection. Some
examples of such work include Zhang et al. [2009] who apply a fixed ARIMA(1,1,1)
model to available service rates of a server to predict DDoS attacks and Yaacob
et al. [2010] who use an ARIMA model to predict future tra�c rates to detect
anomalies. For both papers, good point anomaly detection results are presented
for application to small time series without seasonality suggesting ARIMA is a
suitable model for capturing short-term aspects of the data for detecting point
anomalies and is the method applied.

To handle the seasonality within cyber-security time series it is common to
decompose the series into seasonal, trend and noise components as described in
Section 2.2.2. The Seasonal Trend Loess (STL) [Cleveland et al., 1990] decom-
position is a very popular method used for seasonal adjustments of time series.
STL uses a Loess smoothing technique [Cleveland and Devlin, 1988] to iteratively
solve for the seasonal and trend components. STL has been widely applied for
anomaly detection. Verbesselt et al. [2010] utilise STL to decompose satellite
image time series to find abrupt and gradual anomalies within the trend and sea-
sonal components respectively. Although this approach is successful in detecting
abrupt changes in the trend component, demonstration of detecting changes in the
seasonal component was not presented. Additionally, this approach looks to find
change points rather than anomalies.

Whilst seasonal trend decompositions are a popular approach, a wide range of
other decompositions are available. Marcjasz et al. [2019] decompose electricity
prices into long-term and short-term seasonal components using a Seasonal Com-
ponent Autoregressive (SCAR) model. Taylor and Letham [2018] decompose their
series into trend, seasonality and holiday components, however, unlike STL they
utilise regressions models to allow for interpretable parameters. Their method in
particular focuses on scalability. Alternatively, it is common in vehicle tra�c pre-
diction to decompose the series into historic (long-term) and short-term activity

63

Chapter 5. Combined Forecasts for Improved Anomaly Detection

e.g. Chrobok et al. [2004] and Li et al. [2015], and is the approach taken. Both
Chrobok et al. [2004] and Li et al. [2015] utilise a simple average over previous
days to model the historic patterns or long-term structure in the data. This av-
erage approach for the long-term model is applied due to its simplicity and wide
application for this problem.

There is a limited number of methods available for contextual anomaly detec-
tion. The method proposed by Munir et al. [2018] named deep learning-based
anomaly detection approach (DeepAnT) is one of the few methods suitable for
detecting both point and contextual anomalies in time series data. DeepAnT
consists of two modules, a time series predictor which uses deep convolutional
neural networks and an anomaly detector module that detects anomalies via the
euclidean distance between the forecast and true value. This approach however
requires a threshold to be set to identify anomalous euclidean distances, with no
clear guidance for setting this value. Despite the promising results presented by
this work, comparison to this approach is not explored as code is not publicly
available. Twitter Inc. have also released a robust anomaly detection procedure
appropriate for detecting both local (contextual) and global (point) anomalies in
time series data [Kejariwal, 2015, Hochenbaum et al., 2017] combining a modified
STL decomposition and ESD with robust statistics to detect both point and con-
textual anomalies. A downfall of this method however is that it does not perform
well when the time series trend is changing [Munir et al., 2018] and is an o✏ine
approach.

5.2 Short and Long Term Models

The short and long-term aspects of the data are modelled to build anomaly detec-
tion procedures capable of detecting both point and contextual anomalies. In the
literature described in Section 5.1, the majority of time series anomaly detection
procedures focus on point anomalies, more specifically global outliers. Contextual
anomalies are equally important, especially in cyber-security where to detect these
types of anomalies, the regular patterns of the data must be modelled. Time series
data is often not stationary thus the methods we present are adaptive and capable
of running autonomously on data streams. We now outline the methods used to
model the short and long-term aspects of the data separately. These methods are
then combined in Section 5.3 for improved forecasting and Section 5.4 for anomaly
detection.

Throughout this chapter, a time series random variable is denoted using upper
case Xi with corresponding observed values given by lower case xi and forecast
value given by x̂i. Here the subscript i denotes the time of the observation. For
example, xi is the observation of the series at time i.

64

Chapter 5. Combined Forecasts for Improved Anomaly Detection

5.2.1 Short-Term Model

The short-term model describes the local trends and deviations of the time series
rather than regular behaviours of the data such as periodicity or seasonality. Due
to its popularity and success for detecting point anomalies in the literature detailed,
an ARIMA process is implemented to model the short-term structure. See Section
2.2.1 for a detailed description of this approach. The ARIMA model is fit over
a short time window of data consisting of the latest s points to only model the
local behaviour of the series. To best represent the local behaviour, the model
updates at each time point where the optimal orders (p and q) and di↵erencing
(d) for the ARIMA model to minimise the Akaike information criterion (AIC)
are selected. Appropriate ranges for the parameters of the ARIMA model are
discussed in Section 5.5.2. Due to its simplicity and fast computational time (for
models built using relatively small amounts of data) this method is favourable for
implementation in a streaming context.

5.2.2 Long-Term Model

The long-term structure describes the regular persistent patterns of the data such
as seasonality and periodicity. In the cyber-security setting, long-term behaviours
correspond to the habitual network activity pattern of the working day. Hochen-
baum et al. [2017] also note the presence of seasonal patterns in social network
data. In the literature, seasonal components are regularly approximated using
smoothing such as Loess in STL [Cleveland et al., 1990] or by simply averaging
over sub-cycles [Hyndman and Athanasopoulos, 2018]. These ideas are combined
where a smooth adaptive curve is fit to describe the long-term structure using
Functional Data Analysis (FDA). FDA is chosen over Loess smoothing as regres-
sion functions can be calculated and the data can easily be weighted for improved
adaptability. Additionally, FDA is less computationally intensive than Loess which
is important for real time monitoring.

FDA has scarcely been applied in cyber-security despite the periodic nature of
the data. FDA additionally benefits from not enforcing parametric assumptions
about time e↵ects [Ullah and Finch, 2013]. Similar to the proposed procedure,
Millán-Roures et al. [2018] use FDA to detect anomalous urban water flows in
water networks, particularly for contextual anomalies with promising results. This
suggests FDA is a suitable model candidate for the long-term structure.

Functional Data Analysis is used to find a smooth curve x(⌧) to describe dis-
crete observations xt, t = 1, . . . , n at discrete integer times using the following
model,

xt = x(t) + ✏t

where ✏t models the noise. We focus on functions defined using a basis system
where the curve describing the data, x(⌧), is a linear combination of basis functions

65

Chapter 5. Combined Forecasts for Improved Anomaly Detection

expressed mathematically as:

x(⌧) =
KX

k=1

ak�k(⌧) = aT�(⌧), (5.1)

where �k(⌧) are the K basis functions, ak are their corresponding coe�cients and
⌧ is real values in [0, n]. Multiple types of basis functions could be used such as
polynomial, Fourier or splines. B-splines, short for basis splines, are used as it
allows for greater flexibility in the curve [Ramsay et al., 2009]. The R package fda
[Ramsay et al., 2020] is applied to calculate the coe�cients in Equation 5.1 and
to produce a smooth curve.

These B-splines are defined by their range, knots and order [Ramsay et al.,
2009] and are piecewise polynomials. The range defines the set of values for which
the basis should be defined, the knots detail the positions for the breaks at which
the polynomial curves connect and the order is one larger than the degree of
the polynomials used. If there are r knots at a single point, the first order � r

derivatives of the spline at that knot must be continuous. The number of splines
for the given knots and order is order + number interior knots where interior knots
refers to the knots that are not at the beginning or end of the range.

To calculate the coe�cients for the basis functions, Ordinary Least Squares
minimisation is performed where the following is minimised:

nX

t=1

[xt �

KX

k=1

ak�k(t)]
2
,

with optimal coe�cients calculated as,

â = (�T�)�1�x,

where �tk = �k(t) and x = (x1, . . . , xn)T . Hence a function for the data is defined
by Eq. 5.1 with â.

The long-term model fits a spline over the periodic signal of the data to produce
a smooth curve to represent this pattern and is used as a forecast. Consider the
real valued series x1, x2, . . . , xi, . . . with integer indices. This data is assumed to
have seasonal frequency of length n and the series is rewritten as,

y
1

1
, y

1

2
, . . . , y

j
t , . . .

where t = 1, . . . , n is the time within a single seasonal cycle and j = 1, 2, . . . is the
seasonal cycle number (the number of cycles observed). This splits the series into
the respective seasonal cycles. More concretely,

xi = y
d

i
ne

(i�1)(mod n)+1

66

Chapter 5. Combined Forecasts for Improved Anomaly Detection

To forecast the long-term pattern of the data, a smooth curve is fit over the
weighted sum of historical data. The weighted average using all previously ob-
served cycles up until the c� 1th cycle is:

ŷ
c
t =

Pc�1

j=1
wjy

j
tPc�1

j=1
wj

, (5.2)

where wj is the weight for the j
th cycle and t = 1, . . . , n. A cubic B-spline is fit

over the values {ŷ
c
t}t=1...n to produce the smooth function xc(⌧) using Equation

5.1. This function is used to forecast the series for cycle c given the data up to
cycle c� 1. This formulation can be shown to be equivalent to fitting a spline to
each cycle {y

j
t}t=1...n for j = 1, . . . , c � 1 separately before computing a weighted

average of these FDA curves.
As more recent cycles describe the current behaviour of the data better than

older cycles it is sensible to weight the data accordingly. To achieve this exponen-
tial weighting is employed to the data where older samples are down-weighted by
a factor � (termed a forgetting factor) at each update of the model. The proposed
approach for applying exponential weights to calculate the weighted average over
the series is now detailed.

5.2.3 Long-Term Adaptive Forgetting Approach

An adaptive forgetting factor method is applied as done in Chapter 3 to implement
forgetting factors. To calculate the weighted average for data up to cycle c � 1,
data for cycles c�2 and older are down-weighted by factor �c. Using this weighting
scheme, the weight for data from cycle j with a total of c � 1 cycles observed is
expressed as

w
c�1

j = �cw
c�2

j =
cY

l=j+2

�l j = 1, . . . , c� 2 (5.3)

where w
j
j = 18j. These �i are estimated at the end of cycle i � 1. Thus at cycle

c � 1, all �1, . . . ,�c are known. The weighted average using data from cycles up
to cycle c� 1 is,

67

Chapter 5. Combined Forecasts for Improved Anomaly Detection

ŷ
c
t =

Pc�1

j=1
w

c�1

j y
j
tPc�1

j=1
w

c�1

j

(5.4)

=
�c

⇣Pc�2

j=1
w

c�2

j y
j
t

⌘
+ y

c�1

t

�c

⇣Pc�2

j=1
w

c�2

j

⌘
+ 1

=
�cŷ

c�1

t

⇣Pc�2

j=1
w

c�2

j

⌘
+ y

c�1

t

�c

⇣Pc�2

j=1
w

c�2

j

⌘
+ 1

=
�cŷ

c�1

t w(c� 2) + y
c�1

t

�cw(c� 2) + 1
(5.5)

where w(c � 2) =
Pc�2

j=1
w

c�2

j , the sum of the cycle weights at cycle c � 2. The

simplification to calculate Equation 5.5 utilises
Pc�2

j=1
w

c�2

j y
j
t = ŷ

c�1

t

⇣Pc�2

j=1
w

c�2

j

⌘
,

the weighted average for observations up to cycle c� 2. It is clear from Equation
5.3 that w(c�1) = �cw(c�2)+1. Thus the weighted average using this forgetting
factor mechanism can be updated sequentially, only requiring the previous sum of
the weights w(c � 2), the weighted average of historical data up to cycle c � 2,
ŷ
c�1

t , the forgetting factor �c, and the observed value from cycle c� 1, yc�1

t .
To automatically update the forgetting factor � we use the same approach as

Bodenham and Adams [2017] and use stochastic gradient descent [Haykin, 2002]
as follows,

�c+1 = �c � ↵
@Cc(�)

@�

����
�=�c

(5.6)

where c refers to the cycle number and ↵ is the learning rate that controls how
quickly the forgetting factor adjusts. Implementation of stochastic gradient de-
scent removes the need for human input in the model after initialisation, where
the data itself determines the level of forgetting performed.

Within the literature there is a lack of guidance on setting the learning rate
and instead, this parameter is generally set empirically [Bodenham and Adams,
2017] on training data and is the approach chosen. The cost function, Cc(�), is to
be minimised with respect to � where the following function is used,

Cc(�) =
1

n

nX

t=1

|y
c
t � ŷ

c
t | (5.7)

corresponding to the mean absolute error between the true value of the series for
the c

th cycle and the weighted average over historical cycles up to cycle c � 1.
For the FDA model a spline is fit over this weighted average and is utilised as

68

Chapter 5. Combined Forecasts for Improved Anomaly Detection

a forecast for cycle c, however, in Equation 5.7, rather than utilising this spline
forecast we utilise the weighted average as it results in simple sequential formula
updates. Here the mean absolute error is utilised for the cost function instead of
the popular MSE as it is less sensitive to outliers and is on the same scale as the
data [Hyndman and Koehler, 2006]. The derivative of the cost function Cc(�) with
respect to � is,

@Cc

@�
= �

1

n

nX

t=1

sgn(yct � ŷ
c
t)
@ŷ

c
t

@�
,

where the derivative of ŷct is given by,

@ŷ
c
t

@�
=

⇣Pc�2

j=1
w

c�2

j y
j
t

⌘

�

⇣Pc�2

j=1
w

c�2

j

⌘
+ 1
�

�

⇣Pc�2

j=1
w

c�2

j y
j
t

⌘
+ y

c�1

t

⇣
�

⇣Pc�2

j=1
w

c�2

j

⌘
+ 1
⌘2 ⇥

c�2X

j=1

w
c�2

j

!

=

Pc�2

j=1
w

c�2

j y
j
t � y

c�1

t

Pc�2

j=1
w

c�2

j⇣
�

⇣Pc�2

j=1
w

c�2

j

⌘
+ 1
⌘2 .

Thus the update rule for the adaptive forgetting factor is,

�c+1 = �c +
↵

n

nX

t=1

sgn(yct � ŷ
c
t)

Pc�2

j=1
w

c�2

j y
j
t � y

c�1

t

Pc�2

j=1
w

c�2

j⇣
�c

⇣Pc�2

j=1
w

c�2

j

⌘
+ 1
⌘2

= �c +
↵

n

nX

t=1

sgn(yct � ŷ
c
t)
ŷ
c�1

t w(c� 2)� y
c�1

t w(c� 2)

(�cw(c� 2) + 1)2
. (5.8)

An expanding window can be used for this method as sequential updating
forms can be computed resulting in fixed storage requirements and computation
time when run over data streams indefinitely. To update the forgetting factor only
a fixed amount of information is required, namely the previous forgetting factor
value, the sum of the weights w(c� 2) up to cycle c� 2, and the true value of the
series for cycles c� 1 and c.

5.2.4 Applying the Long-Term Model

We now summarise how this long-term model can be implemented in practice.
As we require full seasonal periods to be observed to calculate the weighted average
in Equation 5.2, when applied to data streams, it is calculated at the end of each
fully observed seasonal period rather than at each time resolution. Algorithm 2
summarises the update scheme of the FDA algorithm. To begin, initial forgetting
factors are required for the exponential weights. In practice, we suggest setting

69

Chapter 5. Combined Forecasts for Improved Anomaly Detection

Algorithm 2 Long-Term Model
Input: Time series x1, . . . , xi, . . . with initial length i, length of seasonal period
n, learning rate ↵ for updating the forgetting factor, initial forgetting factors
�3, . . . ,�b

i
nc

Output: Forecast of long-term structure in data

1: Calculate the weighted average over the data up to cycle
⌅
i
n

⇧
�1 using Equation

5.2, namely

⇢
ŷ
b

i
nc

t , t = 1, . . . , n

�

2: Calculate the updated forgetting factor �
b

i
nc+1

using learning rate ↵ and Equa-

tion 5.8.
3: for j = i+ 1, i+ 2, . . . do
4: if A full cycle of the series has been observed corresponding to j mod n ⌘ 0

then
5: Calculate the weighted average over the data up to cycle j

n using Equa-

tion 5.2, namely
n
ŷ

j
n+1

t , t = 1, . . . , n
o

using the sequential update from

Equation 5.5.

6: Fit a spline to the weighted average values,
n
ŷ

j
n+1

t , t = 1, . . . , n
o
, to pro-

duce smooth curve x j
n
(⌧). The values

n
x j

n
(k), k = 1, . . . , n

o
are the FDA

forecast values for {xj+k, k = 1, . . . , n}.
7: Update the forgetting factor � j

n+2
using learning rate ↵ with Equation

5.8.
8: end if
9: end for

these values close to 1 (equivalent to unweighted). For all future applications
these are set initially to 0.99 however this initial value is not of great concern as
the estimate for � adapts over the series.

To allow for sequential updates, initially the weighted average over the penul-
timate fully observed cycle is calculated using Equation 5.4 with weights calcu-
lated using Equation 5.3. After this initial calculation, sequential formulas can be
utilised to update the weighted average over previous cycles using Equation 5.5
and update the forgetting factor using Equation 5.8. To produce FDA forecasts,
a spline is fit to this average to produce smooth estimates over the cycle.

5.3 Combining Short and Long Forecasts

The short-term and long-term models have now been detailed. These two mod-
els capture di↵erent aspects of the data where the short-term model focuses on
local behaviours whereas the long-term model captures the global features of the
data such as seasonality within the data. These forecasts are combined as it is

70

Chapter 5. Combined Forecasts for Improved Anomaly Detection

known to reduce misspecification bias while increasing forecast accuracy [De Gooi-
jer and Hyndman, 2006, Theodosiou, 2011]. Two approaches are proposed: the
first approach is a decomposition method which decomposes the series into short
and long-term components whereas the other approach does a simple regression
combination.

5.3.1 Short-Long Decomposition (SL Decomposition)

We first propose a novel time series decomposition method suitable for data that
exhibits a periodic structure. Similar to conventional time series decompositions,
the series is split into two components, one representing the periodic long-term
structure or historic structure, while the other represents the behaviour on a local
scale called the short-term structure. This short-term behaviour also contains the
local trends of the series and the deviations away from the long-term pattern. Let
the time series random variables be represented by Xi for discrete time i with
corresponding observed value xi, which is decomposed into the following terms,

xi = Li + Si + vi,

where Li is the long-term structure, Si is the short-term structure and vi is the
random noise.

This long-term structure, Li is modelled using the FDA model described in
Section 5.2.2 and is applied to the raw series xi to produce the forecasts of the
long-term structure L̂i utilising data up to the last full cycle observed and forecasts
a full cycle ahead.

Once this historic view of the data has been calculated, the short-term structure
is recovered through modelling the residual,

S̃i = xi � L̂i.

The short-term component, S̃i, is modelled using an ARIMA process as detailed
in Section 5.2.1 to forecast one-step ahead and is updated at every timestamp, i.
This procedure is similar to forecasts made using the popular STL decomposition
(discussed in Section 2.2.2) where forecasts are made on the seasonally adjusted
time series using methods such as ARIMA.

The final combined forecast of the model at time i given the data up to time
i� 1 is,

x̂i = L̂i + Ŝi, (5.9)

where Ŝi is the ARIMA forecast for S̃i. An advantage of this model over the stan-
dard seasonal decomposition methods is that the long-term structure component
is still directly comparable to the original time series and can be used for iden-
tifying anomalies directly from the data. Both contextual and point anomalies

71

Chapter 5. Combined Forecasts for Improved Anomaly Detection

can be found by identifying when the data deviates from the long-term pattern Li

whereas deviations from the short-term component Si only refer to global outliers.
The order the short and long-term models are applied is important. If the short-
term model is applied first, the long-term component is not directly comparable
to the original series hence the detection of contextual anomalies is not possible.
This proposed decomposition model is termed the Short-Long Decomposition (SL
Decomposition).

5.3.2 Regression Combination

We additionally propose a simple forecast combination approach. To produce more
accurate forecasts the short-term (modelled by the ARIMA process) and long-term
(modelled by FDA curve) forecasts are combined using linear regression which is
a popular forecast combination approach [De Gooijer and Hyndman, 2006]. For
this model, both FDA and ARIMA are applied directly to the raw series xi. Let
the FDA forecast for time i be x̂

FDA
i and the ARIMA forecast be x̂

ARIMA
i for xi.

The fused forecast of the FDA and ARIMA forecasts for time i is,

xi = ↵x̂
ARIMA
i + �x̂

FDA
i + vi

where vi is the Gaussian error and ↵ & � are the coe�cients. As this method is
applied in an online manner, it is desirable for the model to update over time. As
recent data better exhibits the current behaviour of the data, exponential weighting
is again applied. The following weighted least squares problem is solved:

✓
y�X

✓
↵

�

◆◆T

W

✓
y�X

✓
↵

�

◆◆

where the current length of the series ism, y =

0

B@
x1

...
xm

1

CA, X =

0

B@
x̂
ARIMA
1

x̂
FDA
1

...
x̂
ARIMA
m x̂

FDA
m

1

CA

and

W =

0

BBBBB@

�
n�1

�
n�2

. . .
�

1

1

CCCCCA
, (5.10)

for a given fixed forgetting factor, � 2 (0, 1]. This forgetting factor can be set to
to maximise the forecast performance during a tuning period in the data. Values
within [0.8, 0.99] are suggested. Sequential regression formulas for this weighted
regression have been derived by Riddle-Workman et al. [2018] and are applied

72

Chapter 5. Combined Forecasts for Improved Anomaly Detection

here to maintain fixed computational requirements. Forecasts from this model are
termed regression combination. The estimated coe�cients of the regression are
investigated further in Appendix C.2.

5.4 Combined Anomaly Detection Procedures

The primary aim of this chapter is to develop procedures for identifying both
point and contextual anomalies. Non-extreme shifts in behaviour from what is
“normal” such as the highlighted contextual anomaly in Figure 5.1, would not
be identified by point anomaly procedures, which is the focus of most existing
approaches. Point anomaly procedures can only detect extreme global outliers
such as the point anomaly highlighted in Figure 5.1. Both types of anomalies
are important hence we propose anomaly detection procedures to reflect this. To
achieve this aim, results are combined from the short-term and long-term models
to ensure both types of anomalies are detected. For clarity, the general proposed
model framework is illustrated in Figure 5.2.

Receive
new data

Check anomalousness
of new point where
if anomalous exclude
from model updates

Update short-term
model (ARIMA) using
non anomalous data

Update long-term
model (FDA) using
non anomalous data

if end of period

Produce
short-term
forecast

Produce
long-term
forecast

Combine
short-

term and
long-term
forecasts

Figure 5.2: Schematic diagram illustrating the model framework for both SL
Decomposition and FDARIMA.

In this section two anomaly detection procedures are detailed. The first ap-
proach, SLD Anomaly Detection, utilises the long-term and full series forecasts
from SL Decomposition to identify anomalies in the series. FDARIMA Anomaly
Detection is additionally proposed which detects anomalies from both the FDA
model and the ARIMA model applied to the raw series. Both procedures utilise
conformal prediction to detect anomalies.

5.4.1 Conformal Prediction p-values

Rather than using crude measures for anomaly detection as often done in the
literature, prediction intervals are used instead. Prediction intervals are a popu-
lar approach for anomaly detection e.g. Oliveira and Meira [2006] and Hill and
Minsker [2010] to measure how anomalous a newly observed value is compared to
its model forecast. Prediction intervals are commonly calculated using normality
assumptions which are often violated in network connections data [Ullah et al.,
2021] and other domains. Due to these unrealistic assumptions, the Gaussian
prediction intervals produced are often very large making them non informative

73

Chapter 5. Combined Forecasts for Improved Anomaly Detection

for anomaly detection. A non-parametric approach can instead be implemented
to avoid making untenable distributional assumptions using Conformal Predic-
tion (CP). Implementation of CP for anomaly detection is not a new concept e.g.
Laxhammar and Falkman [2011] and Ishimtsev et al. [2017], where similarly Da-
shevskiy and Luo [2008] apply CP to time series data for network tra�c demand
prediction.

Conformal Prediction (CP) prediction intervals are implemented to characterise
the uncertainty of the forecast. This approach does not make unrealistic distri-
butional assumptions about the data and can be applied to both the short and
long-term forecasts due to its flexibility. From these prediction intervals, p-values
can be calculated to characterise the anomaly scores of newly observed points and
anomalies are detected at the ✏ level if these p-values fall below this value.

Following the notation of Vovk et al. [2005], let a sequence of examples be repre-
sented as z1, z2, . . . , zn�1 and a new example by zn where each example zi is formed
of an object-label pair (xi, yi). CP produces a p-value detailing the probability of
observing something at least as extreme as zn using a nonconformity measure A, a
real valued function that describes the dissimilarity between the examples [Shafer
and Vovk, 2007]. The results for CP are valid for any nonconformity measure
however the size of the prediction interval depends on this nonconformity measure
[Vovk et al., 2005]. A small p-value ( ✏) suggests example zn is statistically dif-
ferent from the bag or multi-set of examples *z1, . . . , zn�1+ (a mathematical object
which uses the same concepts as a set but allows for repetition of the elements).

The p-value of a new example zn given a bag of observations *z1, . . . , zn�1+ is
computed using the empirical distribution of the nonconformity measures in the
following way,

p(zn) =
1

n

nX

i=1

↵i�↵n , (5.11)

where ↵i = A(*z1, . . . , zn + \ * zi+, zi). As the produced p-values are within [1n , 1],
to identify anomalies at an ✏ significance level, at least 1

✏ points are needed for
comparison.

For the prescribed problem, let each example be represented as,

zi = (x̂i, xi)

where xi is the observed value of the time series and x̂i is its corresponding forecast.
The absolute forecast error is used as the nonconformity measure given by,

↵i = |xi � x̂i|. (5.12)

As the procedure is intended to operate indefinitely, it is necessary to use a
sliding window to maintain fixed storage requirements. An initial burn-in period is
required for a sliding window which for application to data streams does not present

74

Chapter 5. Combined Forecasts for Improved Anomaly Detection

a problem, however as the real data examples are of a fixed size, an expanding
window is implemented.

5.4.2 SLD Anomaly Detection

Algorithm 3 SL Decomposition Anomaly Detection Algorithm
Input: Initial series X1, . . . , Xi, number of data points in each cycle n, ARIMA
window size s, learning rate ↵, significance level ✏, initial forgetting factors
�3, . . . ,�b

i
nc

Output: Sequence of anomalous time points A

1: Initialise FDA weighted average and forgetting factors using data up to time
l = i� (i mod n) and produce forecasts for times l+1, l+2, . . . , l+n namely
L̂l+1, . . . , L̂l+n as described in Algorithm 2.

2: for j = i+ 1, i+ 2, . . . do
3: Fit ARIMA model to long-term forecast errors xj�1�s � L̂j�1�s, . . . , xj�1 �

L̂j�1 to produce forecast for time j, Ŝj where anomalous times A are ex-
cluded.

4: Combine predictions to get reconstructed series x̂j = L̂j + Ŝj.
5: Calculate p-values using CP on absolute residuals of L̂j and x̂j from xj to

give p
Long
j and p

Reconstruct
j respectively.

6: Combine p-values using Fisher Product Test Statistic
SF = �2(log(pLongj) + log(pReconstruct

j)).
7: if SF > � where � is the (1� ✏)th quantile of �2

4
then

8: Xj is anomalous and add j to A.
9: end if

10: if j mod n ⌘ 0 then
11: Calculate the weighted average over previous cycles using data up to and

including time j excluding anomalous times A (these points get given
weight of 0).

12: Fit a smooth spline over the weighted average values to produce the long-
term forecast for the future cycle L̂j+1, . . . , L̂j+n.

13: Update FDA forgetting factor � using learning rate ↵ and Equation 5.8.
14: end if
15: end for

To detect anomalies using the SL Decomposition method two instances of the
proposed conformal prediction framework are implemented to detect both point
and contextual anomalies. CP is applied to the long-term structure L̂i forecast and
additionally on the combined forecast x̂i detailed in Equation 5.9. By calculating
p-values for the long-term structure, Li, contextual anomalies can be identified as
departures from the historical pattern. To create a shared anomaly signal, these
p-values are combined. A range of p-value combination techniques are available

75

Chapter 5. Combined Forecasts for Improved Anomaly Detection

as explored by Heard and Rubin-Delanchy [2018] where here the Fisher’s Product
Test Statistic [Fisher, 1925], a popular p-value combination technique, is used. As
noted by Heard and Rubin-Delanchy [2018], the Fisher’s statistic is appropriate
here as it is well suited to positive-valued data where the data is larger under the
alternative hypothesis. Given k p-values, p1, . . . , pk, this method produces a score,

SF = �2
kX

i=1

log(pi). (5.13)

Under the assumption the p-values are independent, this follows a chi-squared
distribution with 2k degrees of freedom. When applied to the data, empirically
the p-values produced from CP are approximately uniform and additionally, the
Fisher product test statistic follows this chi-squared distribution with 4 degrees of
freedom which is demonstrated in Appendix C.3.1. Anomalies are detected at the
✏ level when the p-value falls below this value.

As anomalous points are not representative of the true underlying patterns,
when included within the model, empirically they lead to poorer forecasts and
anomaly detection performance. To combat this, if a point is anomalous with
respect to the combined anomaly score at a certain significance level, ✏, this point is
not included in the short and long-term models when updating. The improvement
in forecast performance is explored when anomalies are removed in Appendix C.4.
This anomaly detection algorithm is termed SL Decomposition or SLD and is
detailed in Algorithm 3.

5.4.3 FDARIMA Anomaly Detection

We additionally propose a more simple approach for detecting anomalies. CP
is applied to the forecasts from FDA and ARIMA calculated directly on the raw
series xi to produce two p-values. Let the FDA forecast for time i be x̂FDA

i and the
ARIMA forecast be x̂ARIMA

i using data up to time i�1. To calculate the p-values,
the same nonconformity measure given in Equation 5.12 is used and is applied to
x̂
FDA
i and x̂

ARIMA
i to give p

FDA
i and p

ARIMA
i respectively. The uniformity of the

p-values is explored in Appendix C.3.2 and it is again seen that they are uniform.
These p-values are combined using the Fishers Product test statistic in Equation
5.13 to give a single anomaly score as follows,

SF = �2(log(pARIMA
i) + log(pFDA

i)).

If this combined anomaly score is anomalous at a certain significance level, ✏, this
point is not included in the model when it is updated as it is not representative
of the usual expected behaviour. This anomaly detection procedure is termed
FDARIMA.

The key di↵erence between the FDARIMA and SLD anomaly detectors is how
the short-term p-values are detected. For FDARIMA, conformal prediction is

76

Chapter 5. Combined Forecasts for Improved Anomaly Detection

applied to the ARIMA forecast for the original series xi, whereas for the SLD
approach, p-values are calculated using the reconstructed series. The FDARIMA
approach is implemented in the same way as SLD in Algorithm 3 however the
ARIMA model is applied to the input series directly with conformal p-values cal-
culated for these forecasts.

5.4.4 Scalability for Online Settings

The methods proposed here can suitably run over data streams with fixed storage
requirements and computation time through the usage of sliding windows and
sequential updates. A sliding window for the conformal predictor can be applied
where the size of this window can be set based on computational restrictions. A
small window for the ARIMA model can allow for updates in real time and is
more suitable for modelling short-term behaviours of the series. From empirical
experiments, small windows for the ARIMA model led to better forecasts as shown
in Appendix C.1. Thus the methods proposed are robust to high frequency data
where each update can be computed rapidly for real time analysis.

5.5 Simulated Data Results

5.5.1 Data Generation Procedure

Real data sets are often unlabelled or are small, making it challenging to assess
anomaly detection performance in practice, particularly in cyber-security. A time
series that exhibits a periodic structure with point and contextual anomalies added
throughout is simulated. The series is split into a short-term and a long-term
process with the addition of a noise component and is illustrated using the equation
below:

Xi = Li + Si + ✏i, for i = 1, . . . , N, (5.14)

where Li is the long-term process, Si is the short-term process and ✏i is the noise.
Here ✏i ⇠ N(0, 5) and the long-term structure is generated using the following
equation,

Li = 100

✓
sin

✓
2⇡

i� 1

1440
�

⇡

2

◆
+ 1

◆

corresponding to a series with a period of 1440 points (analogous to minute data
with a daily seasonal period). The short-term process is simulated using an
ARMA(1,1) process with both coe�cients set to 0.05. An ARMA process is used
here instead of ARIMA to prevent large trends in the data.

Point anomalies are generated at random throughout the time period and the
magnitude of the anomalies are randomly sampled from a N(200, 20) distribution.
This value is then added or subtracted from Xi at the anomalous time point.

77

Chapter 5. Combined Forecasts for Improved Anomaly Detection

Contextual anomalies are inserted throughout the time period and are gener-
ated again using a sine curve. For a contextual anomaly with a period of p points
starting at time b with amplitude a, the process between this period is:

X(anomalous)
i = Xi ± a

✓
sin

✓
2⇡

i� b

p
�

⇡

2

◆
+ 1

◆
+ ri, i 2 [b, b+ p� 1]

where ri ⇠ N(0, 5). To ensure Xi is positive (as the data corresponds to counts), if
the generated process Xi in Equation 5.14 is not positive for all i it is transformed
by,

X̃i = Xi � min
i=1,...,N

(Xi).

For future experiments, 100 data sets have been generated each over a 20 cycle
period with a seasonal frequency of 1440 points where the first 10 cycles are used as
an initialisation period for the models. This frequency is selected as it corresponds
to minute data with a periodic frequency of 1 day. Anomalies have been added
to the final 10 cycles of the data. More specifically, 80 point anomalies have been
included at random. Additionally, 4 contextual anomalies have been included with
di↵erent durations.

5.5.2 Model Specification

There are several parameters and formulation choices in the methods proposed
in Section 5.2 that must be specified. To begin the short-term model which is
modelled by an ARIMA process is investigated. The autoARIMA function in R
[Hyndman and Khandakar, 2008] is implemented which automatically chooses the
optimal parameters to model the data, however ranges for the orders (p and q)
and di↵erencing (d) parameters must be selected. In all applications, a maximum
order of 10 for both p and q are applied. For the di↵erencing parameter, d, a
maximum value of 5 is applied. A small di↵erencing value is used as the short-
term model does not need to capture long-term seasonal patterns. Increasing the
orders and di↵erencing parameters causes longer computation times, where the
values utilised give good forecasting performance which is explored further in Sec-
tion 5.5.3. Finally, we proposed implementing ARIMA using a sliding window for
a fixed computational burden at each update. The size of this sliding window
has been investigated further in Appendix C.1 on the simulated data described in
Section 5.5.1 where the optimal window size is 30 points however the di↵erence in
performance between sliding window sizes is marginal. In all future implementa-
tions a window of 60 points is used.

For the long-term model, cubic b-splines are fit to the weighted average over
the past cycles. To fit these splines the number of basis functions, K used must be
selected. Alternatively, break points can be set throughout the cycle period t =
1, . . . , n. Here the number of basis functions is specified where these break points
are evenly spread throughout the period. Smaller K results in less computation

78

Chapter 5. Combined Forecasts for Improved Anomaly Detection

time, however, less flexibility in the model. Alternatively larger K may result in
overfitting. In all future implementations K = 102 is utilised corresponding to 100
break points (nbreak = K � order + 2 where for cubic splines the order is 4).

6.6

6.7

6.8

6.9

0.80 0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.90 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99
Fixed Forgetting Factor

M
AE

Figure 5.3: MAE of regression combination forecast for varying fixed forgetting
factors over 100 simulations.

The regression combination forecast approach in Section 5.3.2 requires a fixed
forgetting factor to be set which can be set empirically to maximise the forecast
performance ideally on an initial tuning period in the data. For the simulated
data described in Section 5.5.1, Figure 5.3 displays the MAE for the regression
combination forecast for varying forgetting factors over 100 simulations with 20
cycles. It can be seen that there is a minimum at 0.96 and is the value implemented
in future experiments.

5.5.3 Forecast Performance

Before assessing the anomaly detection performance, the forecast ability of the
proposed approaches is investigated using the measures described in Section 2.4.2.
Table 5.1 summarises the forecast performance where the ARIMA and FDA fore-
casts correspond to the results from application to the raw time series individually.

In Table 5.1 the naive one-step ahead forecast approach has the smallest MAE
and MASE followed by the ARIMA and combination approaches. It is important
to note that the FDA procedure forecasts a full cycle ahead rather than a single
step, hence it is expected to have poorer forecast performance. Although the
forecast combination approaches have poorer performance than ARIMA alone,

79

Chapter 5. Combined Forecasts for Improved Anomaly Detection

these additionally model the long-term behaviours which is useful for contextual
anomaly detection.

Table 5.1: Forecast performance comparison of proposed methods over 100 sim-
ulated data sets generated as described in Section 5.5.1.

MAE AE SD MASE ASE SD

ARIMA 6.512 14.933 1.179 2.695
FDA 14.821 21.974 2.769 3.980

Regression Combination 6.633 14.283 1.243 2.613
SL Decomposition 7.315 17.978 1.334 3.298

Naive 5.949 15.033 1.000 0.000

5.5.4 Comparison Anomaly Detection Methods

Only methods that have existing R packages or Python libraries are implemented.
In addition comparison to well established approaches is performed. To that end,
we compare the proposed method to ARIMA alone using the tsoutlier R Package
[López-de Lacalle, 2019]. We also compare the proposed procedures to the classic
STL decomposition using the anomalize R package [Dancho and Vaughan, 2020].
Other comparison methods include the Twitter anomaly detector [Kejariwal, 2015,
Hochenbaum et al., 2017], SmartSifter [Yamanishi et al., 2004] and TSSD-EWMA
[Raza et al., 2015]. For each method, default parameters are used. Table 5.2
provides a summary of the key features of the comparison methods to the pro-
posed anomaly detection approaches FDARIMA and SL Decomposition. For a
full description of these methods see Appendix C.5.

Table 5.2: Summary of the main characteristics of each anomaly detection
method in terms of being online and their ability to detect point and contextual
anomalies.

Online Point Contextual

Twitter 7 3 3
Anomalize 7 3 7
tsoutliers 7 3 7
TSSD-EWMA 3 3 7
Smart Sifter 3 3 7
FDARIMA 3 3 3
SL Decomposition 3 3 3

80

Chapter 5. Combined Forecasts for Improved Anomaly Detection

5.5.5 Anomaly Detection Performance

To evaluate the anomaly detection performance of the proposed approaches, SLD
and FDARIMA, the simulated data sets described in Section 5.5.1 are utilised.
The performance of the anomaly detection procedures is evaluated using the F1
measure, recall and precision where these measures are additionally split into the
two types of anomalies. Only the performance over the last 10 cycles is assessed
which contains both point and contextual anomalies. A significance level of ✏ =
0.005 is used, corresponding to approximately 7.2 alerts per cycle. As the p-values
are well calibrated, this value is set by the analyst based on appropriate numbers
of anomalies per cycle. The results of these experiments are displayed in Table
5.3.

Table 5.3: Anomaly detection performance comparison with competitive proce-
dures on 100 simulated data sets with 20 cycles generated as described in Section
5.5.1. Best performer bold, second best bold dark grey and third in bold light
grey. As well as having the overall performance, it additionally measures the
performance of detecting point and contextual anomalies separately.

Batch Online

Measure Twitter Anomalize tsoutliers TSSD-EWMA Smart Sifter FDARIMA SLD

Overall
F1 0.730 0.262 0.166 0.024 0.153 0.589 0.609

Recall 0.576 0.156 0.092 0.012 0.089 0.435 0.462
Precision 1.000 0.990 0.838 0.571 0.555 0.937 0.909

Point
F1 1.000 0.992 0.905 0.222 0.714 0.863 0.803

Recall 1.000 1.000 0.995 0.139 0.999 1.000 1.000
Precision 0.999 0.985 0.833 0.568 0.555 0.767 0.682

Context
F1 0.696 0.129 0.008 0.000 0.000 0.533 0.557

Recall 0.534 0.074 0.004 0.000 0.000 0.380 0.410
Precision 1.000 0.807 0.146 0.013 0.000 0.922 0.890

It is clear the Twitter algorithm has the best performance overall, particularly
for precision, and performs well for both point and contextual anomalies. The
Twitter algorithm is however a batch method and is not suitable for online anal-
ysis, requiring all data to be stored. It is important to note that batch methods
are expected to have superior performance to online approaches as they can have
multiple passes over the data, hence it is not a fair or direct comparison to online
methods and is instead used as a benchmark.

The proposed approaches are superior to the comparable online methods (TSSD-
EWMA and Smart Sifter) in all aspects, particularly contextual anomaly detec-
tion. Very few of the competitive approaches have good performance detecting
contextual anomalies.

The two proposed detection procedures have very similar detection perfor-
mance, however, SLD has higher recall whereas FDARIMA has higher precision.
Poorer recall for contextual anomalies is attributed to the set of true anomalies
including the build-up and build-down of the contextual periods. These build-up

81

Chapter 5. Combined Forecasts for Improved Anomaly Detection

and down periods may not significantly di↵er from the usual pattern, hence are
undetected.

0

200

400

600

14401 15841 17281 18721 20161 21601 23041 24481 25921 27361 28801

FD
AR

IM
A

0

200

400

600

14401 15841 17281 18721 20161 21601 23041 24481 25921 27361 28801

SL
 D

ec
om

po
si

tio
n

0

200

400

600

14401 15841 17281 18721 20161 21601 23041 24481 25921 27361 28801

Tw
itt

er

0

200

400

600

14401 15841 17281 18721 20161 21601 23041 24481 25921 27361 28801
Observation Number

Sm
ar

t S
ift

er

Figure 5.4: A single simulated anomalous time series as described in 5.5.1. De-
tected anomalies by FDARIMA, SL Decomposition, Twitter and Smart Sifter
models identified with vertical grey lines and are compared to the positions of the
true anomalous points marked by crosses for point anomalies and solid rectangles
for contextual anomaly periods. The series shows the final 10 cycles of the simu-
lated series.

Figure 5.4 compares the detection of FDARIMA and SL Decomposition, to
the best batch and online methods Twitter and Smart Sifter. Similar figures for
Anomalize, tsoutliers and TSSD-EWMA are displayed in Figure C.4 in Appendix
C. From Figure 5.4 it is clear that only SL Decomposition, FDARIMA and the
Twitter algorithms can detect contextual anomalies whereas Smart Sifter is better
suited to only finding point anomalies.

From Table 5.3 and Figure 5.4 it is clear the proposed procedures are capable
of detecting both point and contextual anomalies with similar performance to the
Twitter method, a batch approach that is used as a benchmark for the online
approaches. We now investigate the robustness of the proposed methods on real

82

Chapter 5. Combined Forecasts for Improved Anomaly Detection

data.
The Bayesian adaptive estimation procedure in Chapter 3 is another suitable

method for monitoring the local behaviours of a time series. As this approach
aims to estimate the current distribution parameters of the data, forecasts can
be calculated using the predictive posterior distribution for data from exponential
families of distributions. In Appendix C.6 the forecast and anomaly detection
performance when BFF is used instead of ARIMA for the short-term model is
performed, however, ARIMA showed more favourable performance.

5.6 Real Data Example

The Numenta Anomaly Benchmark (NAB) 1 [Lavin and Ahmad, 2015] contains 58
data streams of varying length with human identified anomalies. The data comes
from a variety of domains including Amazon Web Services, advertising, road tra�c
data and Twitter mentions.

0

100

200

300

400

20
15
−0

2−
27

20
15
−0

2−
28

20
15
−0

3−
01

20
15
−0

3−
02

20
15
−0

3−
03

20
15
−0

3−
04

20
15
−0

3−
05

20
15
−0

3−
06

20
15
−0

3−
07

20
15
−0

3−
08

20
15
−0

3−
09

20
15
−0

3−
10

20
15
−0

3−
11

20
15
−0

3−
12

20
15
−0

3−
13

20
15
−0

3−
14

20
15
−0

3−
15

20
15
−0

3−
16

20
15
−0

3−
17

20
15
−0

3−
18

20
15
−0

3−
19

20
15
−0

3−
20

20
15
−0

3−
21

20
15
−0

3−
22

20
15
−0

3−
23

20
15
−0

3−
24

20
15
−0

3−
25

20
15
−0

3−
26

20
15
−0

3−
27

20
15
−0

3−
28

20
15
−0

3−
29

20
15
−0

3−
30

20
15
−0

3−
31

20
15
−0

4−
01

20
15
−0

4−
02

20
15
−0

4−
03

20
15
−0

4−
04

20
15
−0

4−
05

20
15
−0

4−
06

20
15
−0

4−
07

20
15
−0

4−
08

20
15
−0

4−
09

20
15
−0

4−
10

20
15
−0

4−
11

20
15
−0

4−
12

20
15
−0

4−
13

20
15
−0

4−
14

20
15
−0

4−
15

20
15
−0

4−
16

20
15
−0

4−
17

20
15
−0

4−
18

20
15
−0

4−
19

20
15
−0

4−
20

20
15
−0

4−
21

20
15
−0

4−
22

Date

Tw
ee

t M
en

tio
n

C
ou

nt

Figure 5.5: Full Twitter mention count for Google between 27th February 2015
and 22 April 2015 at 5 minute intervals. The anomaly label locations are displayed
with crosses.

Here attention is restricted to the Twitter mention volume for Google. This
data is collected at 5 minute intervals over 55 days and counts the number of tweets
that mention Google. Figure 5.5 displays the full data set. From this figure, it
is clear there exists a daily periodic nature with a peak towards the end of the
day. Thus this data is suitable for the proposed approach as a persistent periodic
pattern exists. Unfortunately only point anomaly labels are identified in the data
hence contextual anomaly detection performance cannot be evaluated on this data
set.

1https://github.com/numenta/NAB

83

Chapter 5. Combined Forecasts for Improved Anomaly Detection

Table 5.4: Anomaly detection performance comparison to competitive ap-
proaches on tweet mention data for Google. Best performer in bold, second best
bold dark grey and third in bold light grey.

Batch Online

Measure Twitter Anomalize tsoutliers TSSD-EWMA Smart Sifter FDARIMA SL Decomposition

F1 0.014 0.015 0.016 0.000 0.222 0.020 0.018
Recall 0.500 0.750 0.750 0.000 0.500 0.750 0.750

Precision 0.007 0.008 0.008 0.000 0.143 0.010 0.009

0

100

200

300

400

2015−03−12 2015−03−13 2015−03−14 2015−03−15 2015−03−16 2015−03−17

FD
AR

IM
A

0

100

200

300

400

2015−03−12 2015−03−13 2015−03−14 2015−03−15 2015−03−16 2015−03−17

SL
 D

ec
om

po
si

tio
n

0

100

200

300

400

2015−03−12 2015−03−13 2015−03−14 2015−03−15 2015−03−16 2015−03−17

Tw
itt

er

0

100

200

300

400

2015−03−12 2015−03−13 2015−03−14 2015−03−15 2015−03−16 2015−03−17
Day

Sm
ar

t S
ift

er

Figure 5.6: Comparison of detected anomaly locations for FDARIMA, SL De-
composition, Twitter and Smart Sifter methods where true anomalous locations
are marked with a cross for the Google Twitter mention data between 12th March
2015-16th March 2015. Anomalies detected by the algorithms are identified with
grey vertical lines.

There exist four true anomalies in the data which is a small number given the
length of the series. This results in low precision for many of the procedures as
they flag many more anomalies than this (Table 5.4). The majority of methods
have a recall of 0.75 with varying precision. Surprisingly for this data, Smart Sifter

84

Chapter 5. Combined Forecasts for Improved Anomaly Detection

has the best performance according to F1 followed by the proposed procedures.
Smart Sifter did not have as favourable performance on simulated data as by
formulation, it is only capable of detecting point anomalies. As the proposed
procedure outperforms the batch approaches, this example showcases the robust
performance of our methods on numerous data sets.

Figure 5.6 displays the anomalies identified by FDARIMA, SL Decomposition,
Twitter and Smart Sifter algorithms between 12th March 2015 to 16th March
2015. Similar plots for Anomalize, tsoutliers and TSSD-EWMA are displayed in
Figure C.5 in Appendix C for reference however from Table 5.4 it is clear these
methods do not have favourable performance. All algorithms in Figure 5.6 identify
the unusual activity on the 13th and 14th. As Smart Sifter is a point anomaly
detector, it is unable to detect the contextual anomaly on the 15th which is not
extreme globally. Although only two anomalous labels are given in this period,
it is clear that numerous unusual activities exist which are not labelled. Visualis-
ing the results is highly important for assessing the performance, particularly for
unlabelled cases as the anomalies identified by the procedures seem sensible.

5.7 Discussion

In this chapter two anomaly detection algorithms are proposed, namely FDARIMA
and SLD, for identifying both point and contextual anomalies in time series data
that exhibit a regular pattern. These algorithms combine information about the
long-term structure, modelling the periodic nature of the data and the short-term
structure describing the local behaviour. For the long-term structure, an adap-
tive Functional Data Analysis model is proposed which utilises adaptive weights.
The short-term structure is modelled using an ARIMA process. The models im-
plemented in this chapter use an adaptive framework and can run autonomously
after initialisation.

From both simulated and real data results, it is evident that the two proposed
detection procedures, FDARIMA and SLD, can identify both point and contextual
anomalies and both outperform the competitive online algorithms with compara-
ble performance to the best batch methods. On simulated data, FDARIMA boasts
higher precision whereas SLD has improved recall. Due to the similarity in anoma-
lies produced by these methods, both are equally suitable for application, however,
the choice of algorithm should be based on the aim of the application (higher re-
call or precision). Additionally, the suitability of these methods for real data has
been shown. Further application of the proposed anomaly detection procedure to
cyber-security data is explored in Chapter 8.

85

Chapter 6

Multi-Type Relational Clustering

Cyber-security data collects information about the connections of nodes in the net-
work (e.g. computers and users). These connections can be represented by binary
adjacency matrices describing the relations between these entities. Additionally,
each entity may have several relations relating to it. The focus in this chapter is
on clustering network data to group entities with similar behaviour for situational
awareness and understanding of the relationships within the network rather than
finding intruders or abnormalities in the data. This work gives further details of
the work published in Riddle-Workman et al. [2021].

Clustering, a type of unsupervised learning, aims to partition data from a
single data type into groups. Many data sets such as document-word matrices
benefit from clustering both the rows and columns of a matrix, known as bi-
clustering. In the case where there are multiple views of these matrices, multi-
view clustering aims to find a single clustering over these matrices (all matrices
have the same dimensions referring to the same entities). Multi-type relational
clustering goes a step further clustering over multiple data matrices that either
have common rows or columns, additionally incorporating the interrelationships
between the rows and the columns of di↵erent matrices and is an extension of
multi-view clustering. This clustering problem is the focus of this chapter. We are
concerned with relational type data where inter-type relationships correspond to
the relations between data objects of di↵erent types and intra-type relationships
refer to relations between data objects of the same type. By jointly clustering
over multiple relational matrices, the clustering accuracy can be improved over
clustering a single data matrix [Kumar et al., 2011].

Cyber-security data lends itself naturally to be represented using relational
matrices to describe the interactions between users, computers and network ports
within an enterprise computer network. Clustering these di↵erent node types into
groups of nodes performing similar activities is useful for improved situational
awareness for network administrators and could be used for the detection of in-
truders within the network. A challenge often associated with cyber-security data
is the size of the networks and the high volume of events, requiring the methods

86

Chapter 6. Multi-Type Relational Clustering

to be scalable. Additionally, as the network is continuously changing, methods
applied must be computationally fast to allow for cluster updates. A large ma-
jority of network graph clustering falls under community detection where nodes
are grouped such that there is a high density of edges within each cluster with
few between clusters. Alternatively, in this chapter the aim is to cluster nodes
based on similar activity within the graph, where a high density of edges between
clusters may exist. This distinction is particularly important when considering
appropriate comparison methods and performance measures.

Matrix factorisation is a popular approach for dealing with multi-relational
clustering where data matrices are decomposed into a number of components.
This method aims to minimise the di↵erence between the input matrix and the
lower rank decomposition of the data. The proposed clustering method, Simple
NMTF, is based on this approach.

This chapter is structured as follows. Section 6.1 provides a review of rele-
vant literature for the described problem. In Section 6.2 the proposed multi-type
clustering approach, Simple NMTF, is outlined including a weighted extension for
improved interpretability. As multi-type relational clustering has not been exten-
sively studied, methods for data generation, initialisation and cluster validation
are lacking in this area. We propose methods to fill these gaps. A method for
generating multi-relational graph simulations is described in Section 6.3, the novel
cluster validation measure in Section 6.4 and the cluster initialisation procedure
in Section 6.5. The performance of the proposed clustering methods are compared
against competitive approaches on simulated and a real data set in Section 6.6.

6.1 Background and Relevant Literature

Non-Negative Matrix Factorisation (NMF) is used extensively for decomposing
non-negative matrices into two lower rank non-negative matrices where under or-
thogonality constraints, it is equivalent to k-means clustering [Ding et al., 2005]
with the following interpretation; the first matrix represents the cluster centroids
and the second acts as a cluster indicator matrix. NMF has been applied to a
variety of areas such as text mining [Pauca et al., 2004] and recommender systems
[Xin Luo et al., 2014] and was popularised by [Lee and Seung, 2001] who developed
a multiplicative update rule.

NMF was extended by Long et al. [2005] to Non-Negative Matrix Tri-Factorisation
(NMTF) for bi-clustering. They utilise the duality of the rows and columns, clus-
tering both simultaneously. In the following chapter, ||.||2F refers to the squared
Frobenius norm and ||.||

2 refers to the squared L
2 norm. NMTF factorises input

non-negative matrix X 2 Rn⇥m into three non-negative matrices by minimising
the objective,

J = ||X� FSGT
||
2

F s.t. F � 0, S � 0 & G � 0 (6.1)

87

Chapter 6. Multi-Type Relational Clustering

where F 2 Rn⇥k, S 2 Rk⇥l and G 2 Rm⇥l. Generally k ⌧ n and l ⌧ m.
The matrices F and G contain the row and column association to their clusters
respectively and S is a compact representation of X [Long et al., 2005]. This S
matrix is needed to absorb the di↵erent scales of X, F and G [Ding et al., 2006].
These matrices are found through performing either: multiplicative, alternating
least squares, projected gradients or coordinate descent updates, the details of
which are given in [Čopar et al., 2019]. The following multiplicative updates are
the most popular in literature,

Fij = Fij

" �
XGST

�ij
�
FSGTGST

�ij

#

Gij = Gij

" �
XTFS

�ij
�
GSTFTFS

�ij

#

Sij = Sij

" �
FTXG

�ij
�
FTFSGTG

�ij

#
.

The majority of updating mechanisms for NMTF are often slow due to these large
matrix multiplication updates, rendering them infeasible for application to large
data matrices. This procedure also requires an additional post-processing step to
obtain the cluster assignment of the rows and columns that may lead to non-unique
solutions [Wang et al., 2011c].

As suggested by Wang et al. [2011c], to avoid the slow computation of NMTF
using multiplicative updates and their lack of interpretability, the matrices F and
G are instead indicator matrices. By enforcing this constraint, they are orthogonal
allowing for clustering interpretations where G and F contain the cluster assign-
ments of the rows and columns of X respectively. Wang et al. [2011c] propose Fast
NMTF which minimises the following objective function:

J = ||X� FSGT
||
2

F s.t. F 2 n⇥k
, S 2 Rk⇥l & G 2 m⇥l

, (6.2)

where is the set of all cluster indicator matrices. The solution is found by
alternating between solving for each matrix. First keeping both F and G fixed
and minimise J w.r.t. S (by taking derivative and setting to 0) giving,

S = (FTF)�1FTXG(GTG)�1
. (6.3)

Keeping F and S fixed, J is minimised by G, an indicator matrix where G is such
that,

Gij =

(
1 if j = argmink||X

.i
� (FS).k||2

0 otherwise
. (6.4)

A similar expression can be calculated for F. As the updates do not require large

88

Chapter 6. Multi-Type Relational Clustering

matrix multiplications, the clustering is fast to compute. Additionally, the algo-
rithm converges to a local minimum due to the nature of alternating optimisation.
An additional benefit of this method is its interpretability. SGT and FS contain
the row and column clusters centres respectively (represented by their mean).

Recently there has been an influx of research performed on Multi-View Clus-
tering where clustering is performed over multiple “views” of the data (all with
the same dimensions referring to the same entities). Liu et al. [2013] applied Non-
Negative Matrix Factorisation to address this problem where the clustering for
each view is regularised towards a consensus clustering. Alternatively Yan et al.
[2020] apply an adaptive k-means approach for multi-view clustering. Common
methods applied for multi-view clustering include k-means, spectral clustering,
matrix factorisation, tensor decomposition and deep learning [Ye et al., 2018].

In contrast, this chapter focuses on the problem of multi-type relational clus-
tering. Multi-view clustering is a subset of multi-type clustering where the latter
clusters over matrices that either have common rows and/or columns (i.e. the
entities that the rows and columns correspond to do not need to be the same in all
matrices unlike the case for multi-view clustering). Banerjee et al. [2007] propose
using a relational graph model to jointly cluster over multiple entity classes. A
probabilistic approach has also been implemented that allows for both hard and
soft clustering of the data by [Long et al., 2007]. Non-Negative Matrix Factori-
sation (NMF) is also a popular approach for multi-type clustering e.g. Liu and
Wang [2018], Ni et al. [2015], Pei et al. [2015] and is the method used. Žitnik
and Zupan [2015] propose Data Fusion Matrix Factorisation (DFMF) for gene
prediction which uses a penalised matrix tri-factorisation to cluster both intra and
inter-type relations. Despite the success of these NMF methods, performing such
decompositions is slow due to large matrix computations. In many applications,
particularly cyber-security, fast computation of clustering for situational awareness
of the network is desirable for timely decision making.

6.1.1 Competitive Approaches

Three competitive multi-type clustering approaches are now introduced. Pei et al.
[2015] simultaneously cluster over multiple networks using a method called R-
NMTF for clustering in social media networks imposing orthogonality constraints
on the cluster matrices and manifold regularisation on intra-type relations. The
objective function for R-NMTF is given by,

J =||Auu �UH1U
T
||
2

F + ||Atf �VH2W
T
||
2

F + ||Auf �UH3W
T
||
2

F

+ ↵ · tr(UTLuU) + � · tr(VTLtV) + �tr(UTLrU) s.t. UUT = I, VVT = I

which clusters over user-user relations (Auu), message-word (Atf) and user-word
(Auf) matrices. The matrices Lu, Lt and Lr correspond to the Laplacian matrices
for users, messages and interactions respectively. R-NMTF however su↵ers from

89

Chapter 6. Multi-Type Relational Clustering

long computation times due to slow multiplicative updates.
Wang et al. [2011b] propose Fast Non-Negative Matrix Tri-Factorisation (F-

NMTF), where both inter-type and intra-type relationship matrices are clustered
simultaneously using NMTF. Similar to our work, they perform hard clustering
via cluster indicator restrictions to improve computational speed and use manifold
regularisation on the intra-type relationships. The authors propose the following
objective function,

J = ||R�GSGT
||
2

F + �tr(GTLG) s.t. G 2

whereR is a block matrix that concatenates the inter relationships, G is a diagonal
block matrix made up of the individual cluster indicator matrices for each entity
type, S is a block matrix and L is the normalised graph Laplacian of W which is
a block diagonal matrix concatenating the intra relationship matrices. The first
term performs Fast NMTF on the inter relationship matrix while the second term
is a manifold regularisation ofW. To improve computational speed and scalability,
the authors propose an algorithm based on low rank eigendecompositions however
these are applied to the extremely large block matrices, R, obtained by combining
intra and inter matrices. Although their algorithm does present marginal improve-
ments in computational speed, it is still slow.

Finally, Wang et al. [2019] presents Selective Matrix Factorisation for Multi-
Relational Data Fusion (SelDFMF) which uses NMTF to cluster over multi-type
relational data where each relational matrix is weighted and is an extension of
DFMF. Weighting each relational matrix prevents sparse matrices from having
large e↵ects on the clustering [Wang et al., 2019]. Similar to the proposed ap-
proach, SelDFMF does not use a manifold regularisation for the inclusion of intra
relations and instead includes these matrices using the standard NMTF approach.
SelDFMF has the following objective function,

J =
X

Rij2R

Wr
ij||Rij �GiSijG

T
j ||

2

F +
mX

i=1

⌧X

t=1

Wh
it||R

(t)
ii �GiSiiG

T
i ||

2

F

+ ↵||vec(Wr)||2F + �||vec(Wh)||2F

s.t. Wr
� 0, Wh

� 0,
X

vec(Wr) = 1 &
X

vec(Wh) = 1

where R contains the set of inter relational matrices, Rij is the inter relational

matrix between node types i and j, R(t)
ii is the t

th intra relational matrix for
entity type i and matrices Wr and Wh contain the weights for the inter and intra
relational matrices respectively. The function vec(·) performs row concatenation
and parameters ↵ and � control the regularisation performed. The weights are
regularised to improve parameter selection where irrelevant relational matrices are
removed. The weights are calculated automatically however these calculations
involve further hyper-parameters. This procedure is very slow in comparison to

90

Chapter 6. Multi-Type Relational Clustering

the preceding competitive approaches detailed and is not scalable.
All three competitive approaches require hyper-parameters to be set empirically

using a known clustering which in practice is not feasible as labelled data often does
not exist. Additionally, these methods are not scalable and have long computation
times. In the following section, the proposed approach is outlined which improves
computational speed and clustering performance.

6.2 Simple Non-Negative Matrix Tri-Factorisation (Simple
NMTF) for Multi-Type Bi-clustering

In this section, the novel multi-type clustering procedure is detailed in a general
framework that simultaneously clusters over multiple entities whose behaviour is
described using a number of adjacency matrices.

6.2.1 Objective Function

In many settings, particularly enterprise networks, high dimensional data sets are
generated hence clustering procedures must be computationally fast and scalable.
Interpretability is highly important in many fields including cyber-security. Similar
to F-NMTF, the factor matrices within NMTF are restricted to be cluster indicator
matrices to produce hard clustering results for faster computational speeds and
better interpretability.

The aim is to cluster simultaneously over multiple relation matrices consisting
of both intra and inter-type relations for multiple entity types where we let:

• A
(i)
k(i)k(i) be the i

th intra-type relational adjacency matrix involving entity type
k(i),

• A
(i)
l(i)m(i) be the i

th inter-type relational adjacency matrix between entity types
l(i) and m(i),

• Z be the set of entity types.

From these matrices, we seek a single clustering for each of the entity types that
incorporates information from the di↵erent relations. By incorporating multiple
matrices, the latent representation of the entities shared between the data sets can
be better realised and can help reduce the noise present in each. To find this shared
clustering structure, multiple objective functions are minimised simultaneously in
the following manner:

J =
qX

i=1

||A(i)
k(i)k(i) �Gk(i)S

(i)
k(i)k(i)||

2

F +
rX

i=1

||A(i)
l(i)m(i) �Gl(i)S

(i)
l(i)m(i)G

T
m(i)||

2

F

s.t. Gz 2
nz⇥cz , Szw 2 Rcz⇥cw & z, w 2 Z (6.5)

91

Chapter 6. Multi-Type Relational Clustering

where nz and cz are the numbers of nodes and clusters respectively for entity
type z. Here the intra relationship matrices A(i)

k(i)k(i) are not bi-clustered as it is

a uni-partite matrix. Additionally when the objective for A(i)
k(i)k(i) is minimised in

isolation, this is equivalent to k-means clustering. Unlike both F-NMTF and R-
NMTF, we do not use manifold regularisation for the inclusion of intra relationships
as empirically doing so gave less weight to intra relationships when these are equally
as important. Our proposed procedure is simpler and faster. The inter relationship
matrices are however bi-clustered so that information about both node types are
incorporated during the clustering. This function is minimised with respect to Gz

and Szw for z, w 2 Z. This formulation also allows for multiple views of the same
relation.

6.2.2 Optimisation Strategy

As the optimisation function is not convex over all matrices, the solution is instead
found by iteratively solving for each matrix separately until convergence. First, by
fixing all matrices but S(i)

k(i)k(i) and setting the derivative with respect to S(i)
k(i)k(i)

of the full objective to zero gives,

S(i)
k(i)k(i) = (GT

k(i)Gk(i))
�1GT

k(i)A
(i)
k(i)k(i). (6.6)

Similarly consider when all matrices but the inter S(i)
l(i)m(i) matrix are held fixed.

By setting the derivative of the objective function with respect to S(i)
l(i)m(i) to zero

gives,

S(i)
l(i)m(i) = (GT

l(i)Gl(i))
�1GT

l(i)A
(i)
l(i)m(i)Gm(i)(G

T
m(i)Gm(i))

�1
. (6.7)

Suppose Gz for z 2 Z is associated with multiple norms, when optimising for this
matrix, all related terms are considered. Keeping all other matrices but Gz fixed,
the problem is decoupled to the following problem for each node i (1  i  nz),

min
Gz2

X

j2{t2{1,...,q}|k(t)=z}

||A(j)i.

k(j)k(j) �Gi.
zS

(j)
k(j)k(j)||

2

F

+
X

j2{t2{1,...,r}|l(t)=z}

||A(j)i.

l(j)m(j) �Gi.
zS

(j)
l(j)m(j)G

T
m(j)||

2

F

+
X

j2{t2{1,...,r}|m(t)=z}

||A(j).i

l(j)m(j) �Gl(j)S
(j)
l(j)m(j)(G

T
z)

.i
||
2

F . (6.8)

92

Chapter 6. Multi-Type Relational Clustering

Algorithm 4 Simple NMTF

Input: Intra-type relational matrices A(i)
k(i)k(i), inter-type relational matrices

A(i)
l(i)m(i) and cluster sizes cz for each entity type z 2 Z.

Initialisation: Initialise Gz for z 2 Z using the NNDSVD initialisation
procedure detailed in Section 6.5
repeat

Update intra S matrices using Equation 6.6.
Update inter S matrices using Equation 6.7.
Update Gz for z 2 Z using Equation 6.9.

until Converges
Output: Gz for z 2 Z indicating cluster membership for each entity type.

As Gz is a cluster indicator matrix, the optimal matrix is given by,

Gij
z =

8
>>>>><

>>>>>:

1 j = argmins

P
p2{t2{1,...,q}|k(t)=z} ||A

(p)i.

k(p)k(p) � S(p)s.

k(p)k(p)||
2

+
P

p2{t2{1,...,r}|l(t)=z} ||A
(p)i.

l(p)m(p) �

⇣
S(p)
l(p)m(p)G

T
m(p)

⌘s.
||
2

+
P

p2{t2{1,...,r}|m(t)=z} ||A
(p).i

l(p)m(p) �

⇣
Gl(p)S

(p)
l(p)m(p)

⌘.s
||
2

0 otherwise

.

(6.9)

In the simulated examples in Section 6.6.3 Simple NMTF is applied over a sin-
gle intra matrix ACC and two inter-type relation matrices ACU and ACP . Unlike
the three multi-type clustering procedures detailed in Section 6.1.1, the proposed
clustering algorithm does not require any hyper-parameters to be set. The pro-
posed optimisation strategy for Simple NMTF is summarised in Algorithm 4. For
full derivations see Appendix D.1.

6.2.3 Weighted Extension

To better understand how each relational matrix contributes towards the cluster-
ing, weighted multi-type relational clustering can be performed where the weights
of each matrix in the objective are optimised and correspond to their contribution
to the clustering. This is useful to better understand which relational matrices
are more important to the final clustering. Similar to SelDFMF [Wang et al.,
2019] described in Section 6.1.1, the inclusion of weights within the optimisation
is investigated but we do so using a multi-view approach as there are very few
weighted multi-type relational clustering procedures.

Within the multi-relational problem, for entity types with multiple relational
matrices, these di↵erent views can contribute di↵erently to the final clustering to

93

Chapter 6. Multi-Type Relational Clustering

give greater weight to the representation with a clearer clustering structure. Al-
ternatively, greater weight may be given to relational matrices that have poorer
clustering results to allow the clustering to incorporate the structure of these ma-
trices more, such as that done in boosting algorithms. Additionally, it is preferable
for the proposed method to autonomously decide these weights.

Many of the weighted multi-view approaches e.g. Tzortzis and Likas [2012] and
Liu et al. [2013] utilise a weighted sum of the individual cluster factor matrices as
the consensus however as the cluster factor matrices in Simple NMTF are indicator
matrices, this will not lead to an appropriate clustering. For example if the idea
presented in the Kernel approach of Tzortzis and Likas [2012] is used, the consensus
clustering for node type z where i references each of the individual input cluster
matrices matrices G(i)

z and Iz is the index set for all data matrices related to z, is
given by,

G⇤
z =

P
i2Iz

⇣
�
(i)
z

⌘�
G(i)

z

P
i

⇣
�
(i)
z

⌘�

where the weights �(i)
z are updated at each iteration using,

�
(i)
z =

1
X

v2Iz

✓
||G(i)

z �G⇤
z ||2F

||G(v)
z �G⇤

z ||2F

◆ 1
��1

.

This approach gives the greatest weight to the individual clustering matrix G(i)
z

that is most similar to the consensus, thus the consensus has a greater preference
to this clustering. Although the clusterings for each graph could be identical
with di↵erent permutations, the consensus clustering will favour the most similar
clustering even though they all display the same clustering. If no shared cluster
assignments exist between the di↵erent views, the consensus will be the same as
the most similar clustering, thus will not incorporate the di↵erent graphs.

Greene and Cunningham [2009] instead cluster each view separately before
combining using NMF where the two components represent the contributions and
combined clustering respectively. Their approach aims to deal with several multi-
view clustering challenges: incomplete views, missing patterns and disagreement
between views and is the approach we choose such that all clusterings can be
incorporated appropriately.

Weighted Simple NMTF

Weighted Simple NMTF is now proposed using a similar framework as the weighted
multi-view clustering of Greene and Cunningham [2009]. Rather than calculating
a single clustering for each entity type Gz as done in Simple NMTF, each rela-

94

Chapter 6. Multi-Type Relational Clustering

tional matrix has a separate clustering which is combined using NMF to give a
simple clustering for each entity type. Greene and Cunningham [2009] apply their
method retrospectively to pre-calculated clusterings however we instead propose
incorporating the combination of the clusterings into the objective as done by
other multi-view approaches as follows,

J =
qX

i=1

||A(i)
k(i)k(i) �G(i)

k(i)S
(i)
k(i)k(i)||

2

F +
q+rX

i=q+1

||A(i)
l(i)m(i) �G(i)

l(i)S
(i)
l(i)m(i)G

(i)T

m(i)||
2

F

+
X

z2Z

�z ||G
⇤
z �PzMz||

2

F s.t. �z � 0, G(i)
z 2

nz⇥cz , S(i)
zw 2 Rcz⇥cw ,

G⇤
z 2 R|Iz |cz⇥nz , Pz 2 R|Iz |cz⇥cz , Mz 2 Rcz⇥nz for z, w 2 Z (6.10)

where the matrixG⇤
z row concatenates allG(i)T

z 8i 2 Iz where Iz contains the index
set of matrices related to z. Using this approach the contributions or weights of
each individual clustering of each graph are contained in Pz whereas the combined
clustering is contained in Mz. More formally the contribution matrix of each view
h to the clustering is denoted by Tz and is calculated as,

Thf
z =

P
j2Ch

z
Pjf

z
P|Iz |cz

g=1
Pgf

z

(6.11)

where C
h
z is the index set of clusterings from the h

th view towards the combined
cluster matrix G⇤

z.
This objective function is solved using a combination of alternating optimi-

sation where each matrix is iteratively solved separately until convergence and
multiplicative updates. The optimal solution for the matrices S(i)

k(i)k(i) and S(i)
l(i)m(i)

remain unchanged and are solved using Equation 6.6 & Equation 6.7. The intra
cluster indicator matrices are updated using,

G(i)jt

k(i) =

(
1 t = argmins ||A

(i)j·

k(i)k(i) � S(i)s·

k(i)k(i)||
2
� 2�k(i)

�
Pk(i)Mk(i)

�I(i)k(i)(s)j

0 otherwise

and similarly for the inter-type relational matrices,

G(i)jt

l(i) =

8
<

:
1 t = argmins ||A

(i)j·

l(i)m(i) �

⇣
S(i)
l(i)m(i)G

(i)T

m(i)

⌘s·
||
2
� 2�l(i)

�
Pl(i)Ml(i)

�I(i)l(i)(s)j

0 otherwise

95

Chapter 6. Multi-Type Relational Clustering

G(i)jt

m(i) =

8
<

:
1 t = argmins ||A

(i)·j

l(i)m(i) �

⇣
G(i)

l(i)S
(i)
l(i)m(i)

⌘·s
||
2
� 2�m(i)

�
Pm(i)Mm(i)

�I(i)m(i)(s)j

0 otherwise

where I
(i)
z (s) is the index of cluster s for entity type z from input matrix i in the

combined concatenated matrix G⇤
z. For full derivation of these indicator matrices

see Appendix D.2. For Pz and Mz, as they are dependent on the final term of
the objective function in Equation 6.10, the problem can be decoupled to solve
standard NMF. Hence standard multiplicative updates are used for these,

Pij
z Pij

z
(G⇤

zM
T
z)

ij

(PzMzMT
z)

ij Mij
z Mij

z
(PT

z G⇤
z)

ij

(PT
z PzMz)

ij

Here for each entity type z a single regularisation parameter must be set to
control the influence of the combined clustering on each individual clustering. As
a default � = 0.1 to allow a suitable contribution to be realised by the algorithm.
Unlike Simple NMTF where each graph contributes equally, noisy or irrelevant
matrices can be down-weighted to prevent poor clusterings overall. In Appendix
D.3 the a↵ect of this regularisation parameter on the cluster performance is inves-
tigated where suitable values range in (0, 0.5]. Additionally, a comparison between
this weighted method and the unweighted Simple NMTF approach are provided
in Appendix D.3 where the weighted version has similar performance for entities
that have a single view, and improved performance on entities with multiple views
or representations for the simulation case investigated. This method is termed the
Weighted Simple NMTF (WSNMTF).

6.2.4 Convergence and Complexity

Alternating optimisation is used in Simple NMTF where convergence to a local
minimum is guaranteed [Wang et al., 2011c]. By replacing the non-negative ma-
trices G and F with cluster indicator matrices, the complexity is reduced as these
matrices are sparse. For dense matrices A (m ⇥ n) and B (n ⇥ p), their multi-
plication has complexity O(mnp). Consider the case where matrix A is sparse
with d non-zero elements. The complexity of the multiplication is reduced to
O(dp) [Yuster and Zwick, 2005]. This is a considerable reduction in complex-
ity. For the proposed algorithm with a total of t iterations for convergence, the
complexity is O(t(

Pq
i=1

n
2

k(i) +
Pr

i=1
nl(i)nm(i))). In comparison, if indicator ma-

trices are replaced by standard non-negative matrices and a standard multiplica-
tive update rule was implemented such as that in R-NMTF, the complexity is
O(t(

Pq
i=1

ck(i)n
2

k(i) +
Pr

i=1
(cl(i) + cm(i))nl(i)nm(i))).

On simulated graph networks it was found that as the graph size increases,

96

Chapter 6. Multi-Type Relational Clustering

the number of iterations increases approximately linearly are seen in Figure 6.1.
The computation time instead increases exponentially with WSNMTF being much
slower at larger graph sizes (Figure 6.1). In Section 6.6.3, the time complexity is
compared using computation time for each algorithm.

50

100

150

200

5000 10000 15000 20000
Graph Size

Ite
ra

tio
ns

 fo
r C

on
ve

rg
en

ce

Model
Simple NMTF

WSNMTF

(a)

0

2000

4000

6000

5000 10000 15000 20000
Graph Size

Ti
m

e
fo

r C
on

ve
rg

en
ce

Model
Simple NMTF

WSNMTF

(b)
Figure 6.1: The number of iterations and time (in seconds) for convergence of
Simple NMTF and WSNMTF are illustrated for di↵erent graph sizes. Three entity
types are simulated with a single intra relational matrix and two inter relational
matrices where the number of clusters found is a proportion of the graph size.
Results are averaged over multiple runs on 20 graphs for each size.

6.3 Stochastic Block Model Generation

To generate the adjacency matrices, a stochastic block model [Holland et al., 1983]
is employed where connections between clusters occur with a certain probability
and each cluster connects to a specified number of clusters. Stochastic block
models lend themselves well to the type of clustering performed where nodes in
each cluster connect to similar nodes or clusters.

More specifically, for the simple uni-partite graph case let N nodes be divided
into K clusters, {C1, C2, . . . , CK}. Let C 2 RN⇥N contain the probability of an
edge between the clusters where Cij is the probability of a connection between
nodes in clusters i and j. The connections within the graph are sampled at random
where for any two nodes x 2 Ci and y 2 Cj a connection occurs with probability
Cij where i, j 2 {1, . . . , K}.

Bi-partite graphs are simulated in a similar manner where instead let there be
N1 nodes of type 1 and N2 nodes of type 2 where these nodes are split into K1

97

Chapter 6. Multi-Type Relational Clustering

and K2 clusters respectively with the following cluster sets: {C1

1
, C

1

2
, . . . , C

1

K1
} and

{C
2

1
, C

2

2
, . . . , C

2

K2
}.

Let matrix C 2 RN1⇥N2 contain the probability of a connection between the
clusters of the two node types. To generate these cluster connection probability
matrices, C, the number of connections for each cluster is restricted to a finite
number of clusters, where their probability of connection is sampled over a restric-
tive range of probabilities to give a stronger or weaker clustering structure for each
graph. The following experiments have omitted random noise in the graphs (in
the form of random edges) to simplify the problem.

6.4 Cluster Validation Measures

Clustering performance techniques are divided into two categories: external and
internal performance measures [Jain and Dubes, 1988]. External performance
measures evaluate how similar the clustering is to a known true clustering of the
data. These measures are useful for simulated examples where the true clustering
is known. Internal measures alternatively utilise the data to assess the clustering
performance where a desired property of the clustering is measured such as having
compact clusters. To evaluate the performance of the proposed methods and other
competitive methods both external and internal measures are used.

6.4.1 External Measures

External cluster validation measures utilise a priori knowledge about the data such
as the true intrinsic clustering structure to assess the validity of the calculated
clustering. Normalised Mutual Information and the Adjusted Rand Index, two
popular measures, are used to assess the external performance. However there is
a wealth of such measures, see Liu et al. [2019] for further choices.

Adjusted Rand Index

The Adjusted Rand Index (ARI) [Hubert and Arabie, 1985] measures the similarity
between clusterings, accounting for chance. Let nij represent the number of objects
in common between cluster i of the algorithm’s clustering and true cluster j, then
the ARI is given by,

ARI =

P
i,j

�
nij

2

�
�
P

i

�
ni.

2

�P
j

�
n.j

2

�
/
�
n
2

�

1

2

hP
i

�
ni.

2

�
+
P

j

�
n.j

2

�i
�
P

i

�
ni.

2

�P
j

�
n.j

2

�
/
�
n
2

� , (6.12)

where n =
P

i,j nij. The ARI has values between -1 and 1 where 0 corresponds to
random labelling independent of the numbers of clusters and 1 signifies that the
clusterings are identical (up to permutation). The ARI is negative when there is

98

Chapter 6. Multi-Type Relational Clustering

less agreement between the clusterings than expected for a random labelling. The
ARI however favours large clusters [Liu et al., 2019].

Normalised Mutual Information

The Normalised Mutual Information (NMI) [Strehl and Ghosh, 2003] is a nor-
malised version of the mutual information between two clusterings. The NMI
takes on values between 0 and 1 where 1 corresponds to perfect correlation be-
tween clusterings and 0 to no mutual information. Suppose clustering X contains
K clusters, X = {x1, . . . , xK}, where xi is the set of nodes in cluster i. The NMI
between clusterings X and Y is calculated from the mutual information by,

NMI(X, Y) =
2I(X, Y)

H(X) +H(Y)

where H(X) = �
P

x2X P (x) logP (x) is the entropy and the mutual information
is calculated as,

I(X, Y) =
X

x2X,y2Y

P (x, y) log
P (x, y)

P (x)P (y)

with P (x, y) = |x\y|
N , P (x) = |x|

N and N is the total number of nodes that have
been clustered. The NMI is one of the most popular cluster evaluation metrics
used in literature. Unlike ARI, the NMI does give importance to smaller clusters
however favours larger numbers of partitions [Liu et al., 2019].

It is common to assess the performance of multi-relational clustering using
external measures however generally the true clustering is often only known for
one entity type e.g. [Del Buono and Pio, 2015] and [Wang and Huang, 2017],
hence the performance over all vertices is not truly known. Although one can
assess the performance by concatenating the clusterings of the di↵erent vertex
types, it is important to note that this overall performance will be biased towards
larger vertex groups.

Both measures described here are normalised, hence can be used for perfor-
mance comparison between di↵erent clusterings however as these are external
measures, they require true cluster labels.

6.4.2 Internal

As labels are often not available in practice, measures that assess the clustering
internally should be used. The majority of existing internal measures seek to op-
timise two criteria: compactness within clusters and separation between clusters
[Tan et al., 2018]. Popular measures such as Davies-Bouldin (DB) Index [Davies
and Bouldin, 1979], Dunn’s Index [Dunn, 1974], Modularity [Newman and Girvan,
2004] and Silhouette Index [Rousseeuw, 1987] focus on these criteria but are de-
vised for the evaluation of community detection which is a di↵erent problem. The

99

Chapter 6. Multi-Type Relational Clustering

clustering method in this work aims to instead group nodes within the network
that exhibit similar behaviours, thus the performance measure shouldn’t discount
clusterings where there are large numbers of edges between clusters. Thus the
majority of existing measures are not appropriate.

Bipartite Measures

There are a number of measures that extend existing uni-partite measures to bi-
clustering. In particular, there are several extensions of Modularity for bipartite
clustering devised by Barber [2007], Guimerà et al. [2007] and Murata [2009],
however, many of these extensions are very restrictive. Barber [2007] assume equal
numbers of clusters in both node sets with a one-to-one correspondence between
the clusters. These conditions are unrealistic in practice. Guimerà et al. [2007]
only calculated their measure over a single entity type hence can not give an overall
measure of performance of the biclustering. The bipartite Modularity proposed by
Murata [2009] is however much more flexible and is described further in Appendix
D.4. To our knowledge, multi-type relational clustering performance measures do
not exist that internally assess the clustering performance over all matrices and
vertex types. To address this we now propose our novel similarity based clustering
measure for assessing the performance of the generated clustering for multi-type
relational data.

6.4.3 Proposed Node Cluster Similarity (NCS) Measure

As the majority of internal measures are formulated for community detection, they
are not suitable to assess the calculated clusterings. The proposed performance
measure seeks to evaluate the similarity between nodes in the same cluster in terms
of similarity in node connections and similarity in the clusters it has connections
to, where higher similarity is desirable. Unlike community detection, edges be-
tween clusters are not penalised. The measure however does not take dissimilarity
between clusters into consideration where having multiple similar clusters is not
penalised hence it may be prone to favouring larger numbers of clusters.

More formally let ai be a binary vector detailing the vertices node i connects
to and ci details the number of edges node i has to each cluster. The Node Cluster
Similarity (NCS) is proposed to measure the similarity between nodes i and j

given by the average of their edge and cluster similarities:

sij =
sim(ai, aj) + sim(ci, cj)

2
(6.13)

which under a similarity measure that has values in [0, 1], takes values between 0
and 1 where 1 signifies both nodes have identical connections. The cosine similarity

100

Chapter 6. Multi-Type Relational Clustering

is used which is defined as,

cosine(x,y) =
x · y

|x||y|
.

For a single node set of size N divided into K clusters Ck, the performance over
all nodes is calculated as:

NSCsingle entity =
2

N

KX

k=1

1

2
1|Ck|=1 +

X

i,j2Ck,i<j

sij

|Ck|� 1
1|Ck| 6=1. (6.14)

Equation 6.14 can be extended for bipartite graphs. If {Ck, k = 1, .., K1} and
{Ck, k = K1+1, ..., K1+K2} are the sets of clusters for node set 1 and 2 respectively
and N1 and N2 are the number of nodes in these sets respectively, then the NCS
for bi-clustering is:

NCSbi-clustering =
2

N1 +N2

K1+K2X

k=1

1

2
1|Ck|=1+

X

i,j2Ck,i<j

sij

|Ck|� 1
1|Ck| 6=1 (6.15)

For multi-type data, the clustering performance can be evaluated using either
Equation 6.14 or 6.15 on a matrix with the relevant matrices concatenated along
the shared axis. If the bipartite formulation is used on this matrix, a single score de-
tailing the performance of the clustering algorithm over both the rows and columns
is produced.

6.5 Cluster Initialisation Strategy

In the majority of papers that utilise NMTF, a random initialisation procedure
is used however the clustering solutions for these algorithms are not consistent
between runs. Additionally, certain initialisations may prevent a global minima
from being reached with slow convergence. Žitnik and Zupan [2015] show for single
matrix approaches that initialisation results in smaller final objective function
values over random initialisation.

A single clustering is desirable for the interpretability of the data and to ensure
the global minima is reached. Non-Negative Double Singular Value Decomposition
(NNDSVD) proposed by Boutsidis and Gallopoulos [2008] is widely used for ini-
tialising the two components within standard NMF. This popular method utilises
the positive section of the k leading singular triplets of the matrix. Alternate SVD
based initialisation procedures for NMF have also been proposed e.g. [Atif et al.,
2019] and [Qiao, 2015], however, due to its popularity and e↵ectiveness, NNDSVD
is extended for multi-type clustering.

101

Chapter 6. Multi-Type Relational Clustering

Algorithm 5 NNDSVD intialisation procedure.

Input: Matrix A 2 Rm⇥n
+ , integer k < min(m,n).

1: Compute largest k singular triplets (U,S,V) for A

2: Initialise W⇤·1 =
p

S11U·1 and H⇤·1 =
p

S11V1·

3: for j = 1 : k do
4: x = U·j and y = Vj·

5: Let x+, x�, y
+
, y� be the positive and negative parts of x and y

6: Let x̂+ = ||x+|| be the normalised value of x+ where x̂�, ŷ+ and ŷ� are the
normalised values for x�, y

+
and y� respectively

7: mp = x̂+ŷ+ and mn = x̂�ŷ�
8: if mp > mn then
9: u = x+

x̂+
, v =

y+

ŷ+
, � = mp

10: else
11: u = x�

x̂�
, v =

y�
ŷ�

, � = mn

12: end if
13: W⇤·j =

p

Sjj
�u and H⇤j· =

p

Sjj
�vT

14: end for

Output: Rank-k non-negative initialisation factors W⇤ and H⇤ for A.

For matrix A 2 Rm⇥n of rank r  min(m,n), the optimal rank-k approxima-
tion, A(k) (k  r), with respect to the Frobenius norm is given by the SVD rank-k
approximation [Eckart and Young, 1936],

A(k) =
kX

j=1

�jujv
T
j =

kX

j=1

�jC
(j)
, (6.16)

where �j are the non-negative singular values in decreasing order and uj and vj are
the corresponding left and right singular vectors respectively where C(j) = ujvT

j .

The best non-negative approximation ofC(j) with regards to the Frobenius norm is
given by its non-negative partC(j)

+ [Boutsidis and Gallopoulos, 2008]. For standard
NMF, NNDSVD initialises the two factors using the left and right singular vectors
of C(j)

+ respectively multiplied by the square root of the singular value to give W⇤

and H⇤, the initialised values for standard NMF from NNDSVD. See Algorithm 5
for further details for calculating the initial values using NNDSVD.

6.5.1 Multi-Relational Extension

NNDSVD is designed for single entity clustering. This methodology is now ex-
tended to initialise hard bi-clustering. The NNDSVD initialisation procedure is
first applied to the bipartite adjacency matrices to produce initial cluster indicator

102

Chapter 6. Multi-Type Relational Clustering

matrices as follows:

Fij
initial

=

(
1 j = argmaxW⇤ij

0 otherwise
Gij

initial
=

(
1 j = argmaxH⇤ijT

0 otherwise
. (6.17)

This is equivalent to the initial clustering being chosen as the singular vector with
the largest value for each node and initially setting S as the identity matrix.

If the rows and columns are to be clustered into cr and cc clusters respectively,
NNDSVD is first performed using max(cr, cc) as the rank for the decomposition.
When calculating W⇤ and H⇤, only the leading cr and cc singular value/vector
pairs are kept respectively before using Equation 6.17 to obtain the initial cluster
indicator matrices. For initialisation of multi-type clustering in Simple NMTF,
averaging the relevant W⇤ and H⇤ referring to each entity type before applying
Equation 6.17 is performed. For Weighted Simple NMTF, the cluster indicator
matrices for each graph are initialised separately by applying NNDSVD to each
matrix directly.

6.5.2 Performance Improvement

Žitnik and Zupan [2015] have explored the e↵ect of initialisation on their method
however they simply apply single matrix approaches without extending these fur-
ther for multi-relational cases. Using an approach similar to the authors, the error
of the objective function is compared at initialisation and after 20 iterations. To
assist in comparison between graphs of di↵erent sizes, the standardised error is
used given by,

Err(v) =
Pq

i=1 ||A
(i)
k(i)k(i)�G

(v)
k(i)S

(i)(v)

k(i)k(i)||
2
F+

Pr
i=1 ||A

(i)
l(i)m(i)�G

(v)
l(i)S

(i)(v)

l(i)m(i)G
(v)T

m(i) ||
2
F

Pq
i=1 ||A

(i)
k(i)k(i)||

2
F+

Pr
i=1 ||A

(i)
l(i)m(i)||

2
F

whereG(v)
z and S(i)(v)

zw are the cluster indicator matrices and compact representation
matrices after v iterations for Simple NMTF. A similar expression for the error
of the weighted formulation can be calculated. From this error, we can assess
whether the initialisation assists the algorithm in reaching the global minima.
Additionally the improvement in performance in terms of the number of iterations
for convergence, NMI and ARI is assessed on simulated data of varying sizes. In
terms of stability, the standard deviation of the results over 20 runs on each graph
is presented where a total of 50 graphs are generated.

The initial error of both Simple NMTF and Weighted Simple NMTF is smaller
when the methods are initialised using the proposed NNDSVD procedure however
for Simple NMTF, the error after 20 iterations and after convergence is larger
(Table 6.1). In terms of clustering performance, the results are very similar how-
ever initialising WSNMTF significantly improves the computer clustering which
utilises multiple representations of the data. The standard deviation in brackets

103

Chapter 6. Multi-Type Relational Clustering

corresponds to the variation of the algorithm over multiple runs of the same graph.
For both algorithms, initialisation dramatically reduces the standard deviation be-
tween clustering results on the same graph, which is important in cyber-security
and other domains, to produce stable and meaningful clusters. This is a key benefit
of initialisation.

Table 6.1: E↵ectiveness of initialisation procedure in comparison to random
initialisation (Rand) in terms of scaled error, ARI, NMI, number of iterations for
convergence and computation time. The standard deviation between runs on the
same data set are in brackets. Results are averaged over 50 randomly generated
stochastic block models.

Simple NMTF Rand Simple NMTF Initial WSNMTF Rand WSNMTF Initial

Err(0) 777919.357(137.259) 590994.131(28.635) 777963.843(166.398) 466178.104(4760.995)
Err(20) 359935.951(10094.146) 425467.867(1239.284) 677292.252(3489.669) 394128.522(4275.028)
Err Opt 358989.909(10042.100) 423826.898(1422.850) 651803.669(5263.182) 390921.974(4497.168)

ARI Comp 0.899(0.026) 0.778(0.004) 0.003(0.001) 0.800(0.014)
ARI User 0.766(0.027) 0.773(0.006) 0.770(0.022) 0.763(0.009)
ARI Port 0.858(0.048) 0.831(0.001) 0.840(0.050) 0.818(0.003)

NMI Comp 0.973(0.004) 0.953(0.001) 0.446(0.008) 0.949(0.003)
NMI User 0.938(0.005) 0.938(0.001) 0.939(0.004) 0.937(0.002)
NMI Port 0.958(0.010) 0.955(0.000) 0.955(0.010) 0.951(0.001)

Iterations 48.874(7.088) 44.660(4.102) 54.840(6.867) 45.805(5.116)
Time (seconds) 44.980(11.739) 87.044(11.253) 806.638(95.259) 697.808(66.998)

In terms of e�ciency, initialisation for matrix A 2 Rm⇥n using the NNDSVD
procedure has complexity O(mnk) for a rank k decomposition. The initialisation
procedure does increase the complexity of the algorithm however it generally re-
sults in fewer iterations for convergence to a minima and is only performed once on
each relational matrix. In the case of WSNMTF, the initialisation improves com-
putational speed due to the significant improvement in iterations for convergence.
Finally, producing a unique cluster solution is highly beneficial in practice for in-
terpretability. In the following experiments, the proposed NNDSVD initialisation
procedure is applied before clustering.

6.6 Experiments and Results

The comparison in performance of the proposed clustering procedures to com-
petitive and traditional approaches on both simulated and real data sets is now
presented. Where labels are available, both internal and external measures are
utilised otherwise only internal measures are used.

6.6.1 Simulated Data

In the context of cyber-security, the focus is on monitoring the actions of di↵erent
node types, specifically computers, users and ports and their interactions. Ports

104

Chapter 6. Multi-Type Relational Clustering

Table 6.2: Description of parameters used for the graph simulations.

Number Computers / Clusters 5000 / 200
Number Users / Clusters 5000 / 200
Number Ports / Clusters 1000 / 50

CC Number Cluster Connections {1,2,3}
CU Number Cluster Connections {1,2}
CP Number Cluster Connections {1,2,. . . ,7}
Probability of Connection CC {0.1,0.15,0.2}
Probability of Connection CU {0.01,0.05,0.1}
Probability of Connection CP {0.3,0.4,0.5,0.6}

are communication endpoints that can help to identify the type of network con-
nection (e.g. port 80 is used for HTTP tra�c). Within network data, various
interactions between and within these node types exist where in particular the
computer-computer, computer-user and computer-port relations are of interest.

Let ACC be the adjacency matrix detailing the connections between the com-
puters which is constructed as an undirected graph (ACC = AT

CC). ACU details
the relationship between computers and users. Finally ACP details the relation-
ship between computers and ports. The aim is to produce a single computer,
user and port clustering that incorporates information from these three graphs
simultaneously.

For each simulation, a single computer, user and port clustering is generated
by random assignment for the desired cluster numbers. This clustering is used for
the generation of all three relational graphs. The following restrictions are im-
plemented to aid in generating graphs that exhibit similar properties to observed
network data. For each cluster, the number of connecting clusters is restricted
where this number is chosen at random from a finite set of possible values. The
probability of connections between clusters is also chosen at random from a re-
stricted set of probabilities. Table 6.2 summarises the parameters used to generate
the data. Both the CC and CU graphs are very sparse where for these graphs the
model parameters reflect this. The CP graph is much denser where the probability
of connection between clusters is higher. Due to these di↵erent parameters, the
clustering structure in the CC and CU graphs may be less evident than that in
the CP graph hence the scale of the performance will di↵er between these graphs
in the results. As initialisation a↵ects the performance for a number of the com-
petitor’s methods, each method was run 20 times on 20 simulated networks with
results averaged over the runs and networks. All experiments are performed on a
four 16-core AMD Opteron CPU at 3.0GHz and 512G bytes memory.

105

Chapter 6. Multi-Type Relational Clustering

6.6.2 Comparison Methods

Simple NMTF is compared to several competitive methods on real and simulated
data sets for the specified problem. The competitive clustering methods applied
are divided into the following three classes:

Single Entity Clustering Methods:

Uni-partite clustering is applied to each entity type separately. For the computer
clustering, all three data matrices are concatenated to produce a single computer
clustering. The methods applied are the standard NMF algorithm [Lee and Seung,
2001] and SVD+K-Means [Zha et al., 2001].

Bi-Clustering Methods:

Orthogonal Non-Negative Matrix Tri-Factorisation (ONMTF) [Ding et al., 2006] is
applied to each adjacency matrix separately. Similar to the single entity methods,
for the computer entities, clustering is performed over the concatenated matrix
to produce a single clustering for this entity type. Utilising ONMTF instead of
standard NMTF allows for clustering interpretations as discussed earlier.

Multi-Type Clustering Methods:

F-NMTF [Wang et al., 2011b] and SelDFMF [Wang et al., 2019] detailed in Section
6.1 are used. Additionally R-NMTF proposed by Pei et al. [2015] is implemented
where their method is translated to fit the problem. Each of the methods require
hyper-parameter setting where author recommendations are used. For the hyper-
parameter � in F-NMTF, � = 0.01. For SelDFMF, the regularisation parameters
are set as ↵ = 107 and � = 104. For R-NMTF ↵, �, � = 0.5.

For all competitive approaches except F-NMTF, R-NMTF and SelDFMF, an
initialisation procedure has either been proposed by the cited author or if it is a
common approach such as NMF, a standard initialisation procedure is employed.
Table 6.3 describes the initialisation procedure used by each competitive method.
For further details see original publications for these methods.

Table 6.3: Initialisation procedure for each competitive approach.

Method Initialisation Procedure

NMF NNDSVD[Boutsidis and Gallopoulos, 2008]
KMeans K-Means++[Arthur and Vassilvitskii, 2007]
ONMTF K-Mean clustering on rows and columns separately
F-NMTF Random
R-NMTF Random
SelDFMF Random

106

T
a
b
le

6
.4
:

A
ve
ra
ge

A
R
I,

N
M
I,

N
C
S
an

d
ti
m
e
(i
n
m
in
u
te
s)

co
m
p
ar
is
on

fo
r
th
e
d
i↵
er
en
t
m
et
h
od

s
fo
r
th
e
20

si
m
u
la
te
d

n
et
w
or
ks
.
B
es
t
p
er
fo
rm

er
fo
r
ea
ch

m
ea
su
re

in
re
d
,
se
co
n
d
b
es
t
in

b
lu
e
w
it
h
st
an

d
ar
d
d
ev
ia
ti
on

gi
ve
n
in

b
ra
ck
et
s.

E
nt
it
y

T
ru
e

N
M
F

K
M
ea
n
s

O
N
M
T
F

F
-N

M
T
F

R
-N

M
T
F

S
el
D
F
M
F

S
im

p
le

N
M
T
F

W
S
N
M
T
F

A
R
I

C
om

p
u
te
r

0.
28
0(
0.
03
0)

0.
36
7(
0.
06
1)

0.
15
7(
0.
06
0)

0.
49
6(
0.
02
9)

0.
49
6(
0.
03
0)

0.
26
1(
0.
01
8)

0
.7
0
5
(0
.0
53
)

0
.5
2
3
(0
.0
33
)

U
se
r

0.
28
4(
0.
05
3)

0.
00
8(
0.
00
2)

0.
32
2(
0.
17
3)

0.
11
9(
0.
01
8)

0
.3
4
0
(0
.0
81
)

0.
33
2(
0.
03
1)

0
.3
9
3
(0
.0
42
)

0.
25
4(
0.
05
3)

P
or
t

0
.9
2
8
(0
.0
31
)

0.
40
2(
0.
07
1)

0.
64
3(
0.
13
4)

0.
80
3(
0.
01
9)

0.
69
2(
0.
09
8)

0.
44
9(
0.
04
9)

0
.8
7
0
(0
.0
59
)

0.
86
1(
0.
06
0)

A
ll

0.
29
9(
0.
03
1)

0.
05
2(
0.
00
5)

0.
16
9(
0.
08
8)

0.
23
2(
0.
02
1)

0
.3
8
3
(0
.0
79
)

0.
28
0(
0.
01
3)

0
.5
1
5
(0
.0
37
)

0.
37
3(
0.
03
6)

N
M
I

C
om

p
u
te
r

0.
70
7(
0.
01
4)

0.
80
1(
0.
01
5)

0.
63
2(
0.
09
2)

0
.8
2
0
(0
.0
13
)

0.
81
0(
0.
04
4)

0.
67
1(
0.
01
1)

0
.9
2
5
(0
.0
11
)

0.
81
8(
0.
01
2)

U
se
r

0
.7
6
7
(0
.0
22
)

0.
50
7(
0.
03
2)

0.
66
9(
0.
21
2)

0.
69
9(
0.
01
4)

0.
75
8(
0.
05
2)

0.
70
3(
0.
01
5)

0
.8
2
6
(0
.0
12
)

0.
69
8(
0.
02
5)

P
or
t

0
.9
7
5
(0
.0
06
)

0.
79
3(
0.
02
9)

0.
84
8(
0.
05
4)

0.
89
5(
0.
01
6)

0.
88
5(
0.
04
1)

0.
73
7(
0.
02
0)

0
.9
6
2
(0
.0
12
)

0.
96
1(
0.
01
1)

A
ll

0.
77
4(
0.
01
1)

0.
71
7(
0.
01
2)

0.
72
0(
0.
05
8)

0.
78
8(
0.
00
9)

0
.8
0
7
(0
.0
32
)

0.
71
8(
0.
00
8)

0
.8
8
2
(0
.0
08
)

0.
79
0(
0.
01
2)

N
C
S

C
C
-C

0.
53
4(
0.
00
5)

0.
16
5(
0.
01
4)

0.
29
1(
0.
01
7)

0.
16
5(
0.
06
9)

0.
26
6(
0.
01
5)

0.
26
7(
0.
04
2)

0.
17
7(
0.
00
7)

0
.4
0
5
(0
.0
15
)

0
.3
2
1
(0
.0
16
)

C
U
-C

0.
54
7(
0.
01
2)

0.
10
9(
0.
01
0)

0.
30
8(
0.
01
4)

0.
12
5(
0.
13
4)

0.
23
4(
0.
01
8)

0.
29
2(
0.
03
7)

0.
12
6(
0.
00
8)

0
.4
1
3
(0
.0
18
)

0
.3
2
9
(0
.0
19
)

C
U
-U

0.
54
7(
0.
01
4)

0.
33
7(
0.
03
1)

0.
30
2(
0.
02
8)

0.
34
8(
0.
12
9)

0.
33
6(
0.
02
2)

0.
31
8(
0.
06
0)

0.
21
1(
0.
02
0)

0
.4
6
0
(0
.0
14
)

0
.3
4
3
(0
.0
29
)

C
P
-C

0.
72
2(
0.
00
4)

0.
46
1(
0.
02
1)

0.
51
9(
0.
02
2)

0.
38
6(
0.
05
3)

0
.5
9
3
(0
.0
10
)

0.
54
7(
0.
04
0)

0.
31
2(
0.
00
9)

0
.6
6
4
(0
.0
11
)

0.
45
5(
0.
01
2)

C
P
-P

0.
72
7(
0.
00
4)

0
.7
0
6
(0
.0
06
)

0.
49
2(
0.
03
0)

0.
58
1(
0.
04
1)

0.
59
3(
0.
02
1)

0.
62
5(
0.
03
4)

0.
42
9(
0.
01
6)

0
.6
4
1
(0
.0
30
)

0.
63
1(
0.
03
1)

C
om

p
u
te
r

0.
65
3(
0.
00
5)

0.
38
3(
0.
01
7)

0.
46
0(
0.
01
5)

0.
33
7(
0.
03
3)

0
.4
9
7
(0
.0
15
)

0.
46
9(
0.
03
8)

0.
28
7(
0.
00
8)

0
.5
8
6
(0
.0
11
)

0.
41
0(
0.
01
1)

O
ve
ra
ll

0.
61
1(
0.
00
6)

0.
39
1(
0.
01
9)

0.
39
1(
0.
01
5)

0.
36
4(
0.
04
8)

0
.4
3
3
(0
.0
15
)

0.
41
4(
0.
03
3)

0.
26
5(
0.
00
9)

0
.5
3
3
(0
.0
08
)

0.
39
9(
0.
01
5)

T
im

e
12
.9
40
(5
.7
82
)

2
.4
5
8
(1
.3
11
)

33
.2
18
(2
2.
57
5)

25
.0
24
(1
7.
14
9)

11
8.
82
2(
53
.8
98
)

27
2.
68
5(
12
0.
39
9)

0
.8
7
7
(0
.6
31
)

8.
15
0(
1.
20
0)

T
a
b
le

6
.5
:
A
ve
ra
ge

A
R
I,
N
M
I,
N
C
S
an

d
ti
m
e
(i
n
m
in
u
te
s)

co
m
p
ar
is
on

of
th
e
d
i↵
er
en
t
m
et
h
od

s
fo
r
th
e
n
ew

sg
ro
u
p
d
at
a.

B
es
t
p
er
fo
rm

er
fo
r
ea
ch

m
ea
su
re

in
re
d
,
se
co
n
d
b
es
t
in

b
lu
e
w
it
h
st
an

d
ar
d
d
ev
ia
ti
on

gi
ve
n
in

b
ra
ck
et
s.

E
nt
it
y

T
ru
e

N
M
F

K
M
ea
n
s

F
-N

M
T
F

R
-N

M
T
F

S
el
D
F
M
F

S
im

p
le

N
M
T
F

W
S
N
M
T
F

A
R
I

A
rt
ic
le

0.
10
2(
0.
00
3)

0.
10
2(
0.
00
3)

0
.2
4
1
(0
.0
58
)

0.
17
(0
.0
4)

0.
04
5(
0.
00
2)

0
.2
6
7
(0
.0
13
)

0.
00
6(
0.
00
5)

N
ew

sg
ro
u
p

0.
03
9(
0.
01
4)

0.
03
0(
0.
00
0)

0.
02
40
(0
.0
60
)

0
.4
2
3
(0
.1
65
)

0
.0
9
7
(0
.0
40
)

0.
03
1(
0.
07
3)

0.
00
3(
0.
06
2)

A
ll

0.
10
2(
0.
00
3)

0.
10
2(
0.
00
3)

0
.2
4
1
(0
.0
58
)

0.
17
1(
0.
04
0)

0.
04
6(
0.
00
2)

0
.2
6
7
(0
.0
13
)

0.
00
6(
0.
00
5)

N
M
I

A
rt
ic
le

0.
25
3(
0.
00
3)

0.
25
3(
0.
00
3)

0
.5
5
0
(0
.0
61
)

0.
35
1(
0.
03
2)

0.
10
4(
0.
00
1)

0
.5
6
4
(0
.0
14
)

0.
01
9(
0.
01
2)

N
ew

sg
ro
u
p

0.
43
5(
0.
00
8)

0.
35
9(
0.
00
0)

0.
41
3(
0.
03
5)

0
.7
0
7
(0
.0
75
)

0
.4
7
1
(0
.0
54
)

0.
39
1(
0.
06
1)

0.
37
9(
0.
08
1)

A
ll

0.
25
5(
0.
00
3)

0.
25
5(
0.
00
3)

0
.5
5
1
(0
.0
61
)

0.
35
3(
0.
03
2)

0.
10
7(
0.
00
1)

0
.5
6
5
(0
.0
14
)

0.
02
2(
0.
01
2)

N
C
S

A
W

-A
-

0
.3
0
3
(0
.0
07
)

0
.2
8
3
(0
.0
16
)

0.
18
8(
0.
00
6)

0.
25
3(
0.
00
9)

0.
19
0(
0.
01
3)

0.
18
4(
0.
00
2)

0.
17
8(
0.
00
8)

A
W

-W
-

0.
31
5(
0.
00
3)

0.
20
9(
0.
00
6)

0
.3
4
0
(0
.0
07
)

0.
30
4(
0.
00
3)

0.
20
7(
0.
00
2)

0
.3
4
3
(0
.0
05
)

0.
23
1(
0.
01
1)

A
N
-A

1.
00
0(
0.
00
0)

0.
25
7(
0.
00
9)

0.
43
8(
0.
00
1)

0
.5
3
4
(0
.0
66
)

0.
39
4(
0.
02
4)

0.
16
4(
0.
01
4)

0
.6
2
2
(0
.0
08
)

0.
17
4(
0.
04
6)

A
N
-N

0.
05
0(
0.
00
0)

0.
27
0(
0.
03
1)

0.
44
9(
0.
00
4)

0.
30
9(
0.
08
1)

0.
46
9(
0.
05
0)

0.
32
0(
0.
00
5)

0
.4
9
5
(0
.0
12
)

0
.5
1
2
(0
.0
21
)

A
rt
ic
le

-
0
.3
0
7
(0
.0
07
)

0
.2
9
6
(0
.0
15
)

0.
20
3(
0.
00
6)

0.
26
7(
0.
00
8)

0.
19
7(
0.
01
4)

0.
20
4(
0.
00
4)

0.
18
1(
0.
00
8)

O
ve
ra
ll

-
0
.3
1
2
(0
.0
02
)

0.
23
6(
0.
00
4)

0.
29
9(
0.
00
6)

0.
29
3(
0.
00
4)

0.
20
4(
0.
00
6)

0
.3
0
1
(0
.0
03
)

0.
21
6(
0.
00
7)

T
im

e
42
.8
59
(8
.4
56
)

8
.9
5
7
(1
.6
43
)

26
.5
14
(5
.1
15
)

56
8.
63
9(
26
.6
53
)

73
3.
53
8(
7.
43
5)

9.
06
7(
3.
07
4)

8
.0
6
2
(0
.2
48
)

Chapter 6. Multi-Type Relational Clustering

6.6.3 Results

Simple NMTF achieves the highest ARI and NMI for computer, user and overall
whereas NMF performs well for identifying the port clustering only (Table 6.4).
Similar results are observed for NCS over all matrices and node types, highlighting
its consistent clustering performance. It is interesting to note that the NCS of
Simple NMTF is close to the NCS value for the true clustering, suggesting a
meaningful clustering has been found by the algorithm. From Table 6.4 it is clear
that Simple NMTF has either the best or second best performance in comparison
to the other methods where the other multi-type clustering approaches F-NMTF
and R-NMTF, have competitive performance. This highlights the improvement
in clustering using multi-type clustering approaches over single entity methods for
this problem. Surprisingly SelDFMF, the most recent competitive advancement
in multi-relational clustering, has poor performance with long computation times
hence it is less suitable for this clustering problem.

Although on simulated data Weighted Simple NMTF showed promising results,
outperforming Simple NMTF (Appendix D.3), under the graph simulation in this
example, Simple NMTF has higher performance. WSNMTF however has the
benefit of understanding the contribution of each relational matrix to the joint
clustering to improve situational awareness.

The poor user clustering performance for all algorithms is due to the weak clus-
tering structure present for this node type by construction. Additionally, although
the clustering structure within the CC and CU graphs is much less prominent
than that of CP, the clustering algorithm can utilise information from all matrices
to uncover the true computer clustering with high similarity to the truth. Sim-
ple NMTF is over 4 times faster than the second fastest approach, KMeans, with
significantly better performance than all other algorithms.

6.6.4 20-Newsgroup Data

Table 6.6: 20-Newsgroup newsgroup clustering by topic.

comp.graphics rec.autos sci.crypt
comp.os.ms-windows.misc rec.motorcycles sci.electronics
comp.sys.ibm.pc.hardware rec.sport.baseball sci.med
comp.sys.mac.hardware rec.sport.hockey sci.space

comp.windows.x

talk.politics.misc talk.religion.misc
misc.forsale talk.politics.guns alt.atheism

talk.politics.mideast soc.religion.christian

Although this clustering mechanism has cyber motivations, it is not limited to
this domain. Additionally, the previous experiments simply illustrate the potential

109

Chapter 6. Multi-Type Relational Clustering

of this method where the data is not particularly large scale. To demonstrate the
scalability and robustness of Simple NMTF its performance is compared to com-
petitors on a well known labelled data set. As we are concerned with the problem
of multi-type relational clustering, the data set used must include multiple matri-
ces relating to the di↵erent entities. The 20-Newsgroup data set [Lang, 1995] is
a collection of 18,846 articles from 20 newsgroups and is a labelled data set. To
process these articles we remove stop words, headers, footers and quotes and re-
quire a word to have a minimum frequency of 2. This reduces the number of words
from 134,410 to 42,837. Binary article-word (AW), and article-newsgroup (AN)
relational matrices are constructed. The articles are clustered by their newsgroup
where the 20 newsgroups are clustered further into 6 groups described in Table
6.6. The words do not have a known clustering hence only NCS can be used to
evaluate the clustering performance on this entity.

The performance score for each algorithm is averaged over 20 runs in Table
6.5. Due to the high computational burden for RNMTF and SelDFMF, these al-
gorithms are only repeated 4 times. Additionally, when running ONMTF on this
data, memory requirements are exceeded hence it is omitted from the following
results. The computation time of Simple NMTF and Weighted Simple NMTF out-
performs other multi-type clustering procedures showing its scalability. Weighted
Simple NMTF shows very poor performance on this data hence this method may
not be robust in a wide range of applications. Simple NMTF shows high similarity
to the true clustering for the articles in particular, which is the harder clustering
problem of this data due to a large number of articles. Again consistently high
NCS is demonstrated for Simple NMTF over the di↵erent entities. Interestingly
Simple NMTF also has the highest NCS for the words which do not have a known
clustering. These results highlight the robustness and scalability of Simple NMTF.

6.7 Cluster Visualisation

To visualise the e↵ectiveness of the clustering procedure, t-distributed Stochas-
tic Neighbour Embedding (t-SNE) [Van Der Maaten and Hinton, 2008, Van Der
Maaten, 2014] a popular approach for visualising high dimensional data is applied.
Visualising the cluster performance allows the process underlying the data to be
uncovered [Keim et al., 2010]. Additionally in the case of real unlabelled data,
visualising the results may help determine how well the data has been clustered.
t-SNE maps high dimensional data to two or three dimensions where the divergence
between the distribution of the pairwise similarity of the input and the pairwise
similarity of the low dimensional embedding is minimised. It is recommended by
Van Der Maaten [2014] to perform a dimensionality reduction technique such as
PCA before applying t-SNE to reduce the e↵ect of noise and to speed up calcu-
lations. Here PCA with 600 components is applied. The perplexity parameter in
t-SNE controls the number of nearest neighbours used in manifold learning and is a
significant parameter within the model [Cao and Wang, 2017]. For large data sets,

110

Chapter 6. Multi-Type Relational Clustering

this parameter value should be large, where throughout the following examples,
this value is set to 100.

To visualise the performance for each of the computer, user and port cluster-
ings on the simulated data, the t-SNE representation on the relevant data matrices
is shown where for the computers, ACC , ACU and ACP are concatenated. In the
following scatter plots of this section, each point represents a node (of a specific
type) where they are coloured according to their assigned cluster. The di↵erent
clusters should be well separated whilst each cluster has a compact representation.
A single simulated graph is used for Figures 6.2, 6.3 and 6.4 where the true clus-
tering and the clustering produced from Simple NMTF, is compared. Comparison
for Weighted Simple NMTF, F-NMTF and R-NMTF are found in Appendix D.5.

The computer clustering in Figure 6.2 is very similar between the true and
Simple NMTF clusterings suggesting the proposed procedure is e↵ective in clus-
tering such data. Well separated groups of points are generally identified as a
single cluster however Simple NMTF sometimes struggles if these clusters are not
well separate or are noisy. Interestingly in comparison to the computer and port
representations, the user relation representation in Figure 6.3 visually does not
have a clear structure which was constructed by design. Additionally, this may
suggest t-SNE is not suitable for this data to e↵ectively visualise the clustering
results. The port representation very clearly identifies the clusters in Figure 6.4.
The clusterings discovered by Simple NMTF are visually very similar to the truth
where each distinct grouping of nodes is coloured accordingly. These visualisations
suggest Simple NMTF does correctly cluster the data.

(a) True Clustering (b) Simple NMTF Clustering

Figure 6.2: Computer t-SNE representation for true and Simple NMTF cluster-
ing respectively. Each colour represents a di↵erent cluster.

111

Chapter 6. Multi-Type Relational Clustering

(a) True Clustering (b) Simple NMTF Clustering

Figure 6.3: User t-SNE representation for true and Simple NMTF clustering
respectively. Each colour represents a di↵erent cluster.

(a) True Clustering (b) Simple NMTF Clustering

Figure 6.4: Port t-SNE representation for true and Simple NMTF clustering
respectively. Each colour represents a di↵erent cluster.

6.8 Discussion

This chapter proposes a multi-type clustering procedure, Simple NMTF, that sig-
nificantly improves the computational speed and clustering performance on exist-
ing approaches making it suitable for large scale data sets. Many of the existing

112

Chapter 6. Multi-Type Relational Clustering

procedures in this field su↵er from slow multiplicative updates where by replacing
the non-negative cluster factor matrices with binary cluster indicator matrices,
fast updates are achieved. This procedure allows for greater situational awareness
of the network in identifying nodes with similar behaviour within each entity type
based on their behaviour over the entire network. The ability of this method to
be applied to alternate applications is demonstrated.

A weighted version of the clustering procedure is also proposed which allows
each graph to contribute with di↵erent weights towards the combined clustering.
These weights are useful for understanding the signal presented in each graph.
Finally, the performance of Simple NMTF outperforms competitive methods on
both simulated and real data. This clustering procedure is applied further to a
real cyber-security network in Chapter 8.

A number of novel contributions have additionally been made in the field of
multi-type clustering which has not yet been extensively studied. Our contribu-
tions include extending a univariate cluster initialisation procedure to both the
bi-partite and multi-type clustering problems. This initialisation procedure im-
proves the stability of the clustering in comparison to random initialisation with
good performance. The second contribution of this chapter is the proposed internal
clustering performance measure which is suitable for multi-type clustering. This
measure shows consistent results to well established external cluster performance
measures.

In the next chapter, the clustering procedure is extended to a streaming imple-
mentation such that the clustering adapts over the network stream. This adaptive
clustering procedure can then be monitored to detect intruders.

113

Chapter 7

Dynamic Multi-Relational
Clustering

In the previous chapter Simple NMTF was proposed that groups nodes with similar
activities over the network to better understand the structure of the data. This
method showed capabilities of clustering with high accuracy on static networks.
However in practice, the network structure changes thus clustering procedures need
to be adaptive. In this chapter we extend Simple NMTF to the more challenging
dynamic case where the clustering updates as edges within the relational graphs
are added and removed. Additionally, the procedure allows nodes to be added and
removed from the graph.

Whilst static network analysis has been heavily studied, the dynamic case is
comparably less investigated [Matias and Miele, 2017]. Commonly in dynamic
clustering literature (e.g. Matias and Miele [2017] and Ma and Dong [2017]) there
is an emphasis on balancing the smoothness between consecutive clusterings of
the data and clustering performance. This balance is necessary as most nodes
seldom change their cluster assignment between time points. In the context of
cyber-security, this is especially relevant as it is expected that each user performs
actions related to their job where these actions should not vary greatly over time.
Alternatively, the adaptation between clusterings may be more gradual as their
job role shifts.

Much of the existing literature focuses on univariate dynamic clustering and
in particular for community detection which as discussed in Chapter 6 is a dif-
ferent problem to the proposed approach. The literature can be split into non-
evolutionary and evolutionary models. Non-evolutionary models such as that pre-
sented by Kumar et al. [2006], Asur et al. [2009] and Sallaberry et al. [2013], apply
static clustering approaches to each instance of the graph separately and find re-
lations between these consecutive clusterings, mapping clusterings between time
stamps based on their similarity. However, these approaches do not leverage the
clustering from the previous time. Evolutionary clustering approaches instead ap-
ply temporal smoothness such that consecutive clusterings are related. There are a

114

Chapter 7. Dynamic Multi-Relational Clustering

wide variety of approaches that have been applied such as stochastic block models
[Matias and Miele, 2017, Ludkin et al., 2018], modularity based clustering [Görke
et al., 2013] and matrix factorisation [Cao et al., 2007, Ma and Dong, 2017, Xiong
et al., 2010, Wang et al., 2011a] including NMF. Cao et al. [2007] extend NMF to
allow for additional data instances to be added. This approach does not however
allow for the activity of previous data instances to change. Ma and Dong [2017]
instead extend NMF to minimise a convex combination of the snapshot cost (i.e.
how well the current graph is clustered) and the temporal smoothness to ensure
cluster membership is maintained. Wang et al. [2011a] instead utilise projected
gradients to incrementally update the NMF factor matrices using the change in
the graph between time points to prevent a full recalculation of the clustering.

The clustering procedures described however primarily focus on fixed graph
sizes and univariate graphs. In the case of cyber-security, multi-type relationships
exist where capitalising on this joint information allows for improved clustering. To
our knowledge, dynamic multi-type relational clustering approaches do not exist.
A similar approach to Câmpan and Åerban [2006] is adopted where the calculated
clustering from the previous time step is used to initialise the clustering procedure
at the current time. Additionally, the graph size is allowed to expand and retract
over time as nodes become active and inactive respectively.

This brief chapter is structured as follows, Section 7.1 presents the dynamic
clustering extension of Simple NMTF proposed in Chapter 6. Section 7.2 contains
the experimental results. First, a novel dynamic multi-type relational graph gen-
eration model is detailed in Section 7.2.1 using a stochastic block model which
allows for changes in cluster membership. Experimental performance results are
presented in Section 7.2.3 to assess the robust performance of the procedure in
comparison to the static version in the presence of cluster changes.

7.1 Adaptive Graph Monitoring

Consider the sequence of graphs, G1, G2, . . . , Gt, . . . whereGt is the network at time
t with clustering ct. The aim is to cluster the graph at time t+1, Gt+1, leveraging
the clustering of time t. Hard clustering procedures such as Simple NMTF and k-
means clustering lend themselves well for adaptive clustering as initial clusterings
are required for each algorithm where these initial clusterings influence the local
minima of the optimisation. An approach similar to Câmpan and Åerban [2006]
is employed where we initialise the algorithm with the clustering calculated at
the previous time to maintain smoothness between consecutive clusterings whilst
additionally improving computational e�ciency.

7.1.1 Cluster Updates

Between consecutive time steps, it is assumed the graph structure is similar, with
very few nodes changing their cluster assignment. As only the cluster indicator

115

Chapter 7. Dynamic Multi-Relational Clustering

matrices Gz are required to initialise the Simple NMTF algorithm presented in
Chapter 6, the previous clustering is utilised as a starting point. For time t = 1
the proposed multi-type NNDSVD initialisation procedure is used instead. This
initialisation approach ensures the clustering between consecutive times is main-
tained if no change in assignment occurs. However, if a change has occurred,
the algorithm is not restricted to maintain this clustering and a new minima will
instead be found.

7.1.2 Addition and Removal of Nodes

In many domains including cyber-security, the size of the graph may adapt over
time as nodes become active or inactive. For example, for Netflix movie recommen-
dations, the movies o↵ered on the service may increase as new films are released
however these may also be removed by Netflix as they discontinue showing the
film. Thus it is important to allow the graph size to vary.

For a new node i⇤ at time t, it’s graph clustering is initialised using the results
from time t � 1. Using the notation from Chapter 6, let the cluster indicator
matrices from time t�1 be Gz for z 2 Z and the compact representation matrices
be S(i)

k(i)k(i) and S(i)
l(i)m(i). The initial cluster assignment for new node i

⇤ using the
results from time t� 1 is,

j = argmin
s

X

p2{t2{1,...,q}|k(t)=z}

||a(p)
k(p)k(p) � S(p)s.

k(p)k(p)||
2

+
X

p2{t2{1,...,r}|l(t)=z}

||a(p)
l(p)m(p) �

⇣
S(p)
l(p)m(p)G

T
m(p)

⌘s.
||
2

+
X

p2{t2{1,...,r}|m(t)=z}

||a(p)
l(p)m(p) �

⇣
Gl(p)S

(p)
l(p)m(p)

⌘.s
||
2 (7.1)

where a(p)
k(p)k(p), a

(p)
l(p)m(p) and a(p)

l(p)m(p) are the connection vectors for node i⇤ at time
t for each of the intra and inter relational matrices and the G and S matrices are
that calculated from time t � 1. Thus the initial clustering for this node is the
optimal clustering at time t� 1.

Alternatively, if a node is removed, its corresponding rows in the cluster indi-
cator matrices are removed. If this node is in its own cluster, the empty cluster
should additionally be removed from the cluster indicator matrix. This procedure
is named Dynamic SNMTF and is summarised by Algorithm 6.

7.1.3 Relation Between Clustering

Between each consecutive iteration, clusters may remain, split, merge, emerge or
vanish. To determine whether a node stays in the same cluster over time, the

116

Chapter 7. Dynamic Multi-Relational Clustering

Algorithm 6 Dynamic SNMTF

Input: Initial intra-type relational matrices A(i)
k(i)k(i), inter-type relational matri-

ces A(i)
l(i)m(i) and cluster sizes cz for each entity type z 2 Z.

Initialisation: Apply Simple NMTF to initial network to calculate starting
clustering at time t = 1.
Output: Sequence of clusterings.

1: for t = 2, 3, . . . do
2: For nodes active in previous period, initialise clustering with previously cal-

culated clusters.
3: For new nodes, assign clustering using Equation 7.1.
4: Remove empty clusters.
5: Apply Simple NMTF with new initialisation.
6: end for

transition of the clusters is monitored. To measure the smoothness between clus-
terings, a similar cluster tracking mechanism as Landauer et al. [2018] is employed
whereby the overlap between clusters from time t � 1 and t is calculated. If the
overlap between these clusters is greater than some threshold then these cluster-
ings can be mapped between times t � 1 and t. More formally, let the nodes in
cluster i at time t�1 be represented by the set ci and nodes in cluster j from time
t be represented by c

0
j. The overlap between clusters i and j is defined as,

overlap(ci, c
0
j) =

|ci \ c
0
j|

|(ci [c
0
j) \ n \ n0|

(7.2)

where n is the set of active nodes at time t� 1 and n
0 is the set of active nodes at

time t. This quantity has a value of 1 if the nodes that are active within both time
intervals within clusters ci and c

0
j are the same. The overlap measure is based on

the Jaccard coe�cient where the similarity between sets C and C
0 is calculated

as,
|C \ C

0
|

|C [C 0|

and is used by Greene et al. [2010] for tracking the overlap between clusters. In
the proposed formulation in Equation 7.2, the additional restriction of nodes on
the denominator to those within both time intervals allows the overlap to be equal
to 1 in cases where nodes become active/inactive between the two times.

A cluster c0j at time t originates from cluster ci at time t�1 if overlap(ci, c0j) > ✓

for ✓ 2 [0, 1]. This quantity is used to determine whether the cluster assignment
of a node has changed. For each new cluster c0, the clusters from time t� 1 such
that the overlap is greater than some threshold are detailed. This approach allows
for both merging and splits provided the threshold is small enough. Here ✓ = 0.5.
For each node, if the previous cluster assignment matches the mapped clustering,

117

Chapter 7. Dynamic Multi-Relational Clustering

then the cluster assignment has not changed.
The primary focus of this chapter is on the cluster performance of the proposed

dynamic clustering procedure rather than monitoring the cluster changes. For
further details on cluster transition characteristics see Spiliopoulou et al. [2006].

7.2 Simulation Study

The performance of the proposed dynamic clustering procedure is investigated
to assess whether consistent clustering performance is achieved with smoothness
between consecutive clusterings.

7.2.1 Data Generation

The graph generation procedure from Section 6.3 is extended to allow for cluster
changes and dynamic node activity. First, the cluster allocation process is de-
scribed. Similar to Ludkin et al. [2018] the cluster membership of each node is
modelled using a continuous time Markov chain [Norris, 1998]. Let Ci(t) be the
cluster assignment of node i at time t. It is assumed that the distribution for
the time node i spends in each cluster is Exp(�i), independently of the current
cluster assignment. This new cluster assignment is chosen uniformly over the clus-
ter choices. Thus the number of cluster changes, Mi, for node i is generated by,
Mi ⇠ Po(�) with times of change, ⌧ i = (⌧ 1i , . . . , ⌧

Mi
i), which are sampled uniformly

over the time interval [2, T � 1] where T is the maximum length of the series.
At each time step, the current cluster assignment for each node is established

by the above procedure. Cluster assignments are simulated for each node type.
Using these cluster assignments, graphs can be simulated using the stochastic block
model as described in Section 6.3 at each time t. To allow for a dynamic graph,
a sliding window approach is employed where s consecutive simulated graphs are
combined. This sliding window allows the graphs to change smoothly. As multiple
graphs are combined, the probability of connection between clusters is reduced
approximately by a factor of the number of bins in the sliding window to achieve
a similar number of edges to the full graphs in the static case in Chapter 6. This
sliding window approach is used in practice in cyber-security to produce graph
streams where at each time step new connections are added to the graph while old
expired edges are removed.

The generated graphs in the proceeding experiments are simulated with the pa-
rameters detailed in Table 7.1. In comparison to the parameters for the static graph
in Table 6.2, the probability of connection is reduced and additionally smaller
graph sizes are investigated. A sliding window of size 144 is employed where it is
assumed each graph represents 5 minutes of data resulting in each window con-
taining 12 hours of data. A total of 1440 graphs are simulated, equivalent to five
days. Specification of �i, the expected number of cluster changes for each node, is
described in each simulation example.

118

Chapter 7. Dynamic Multi-Relational Clustering

Table 7.1: Description of simulated data parameters for the dynamic graph gen-
eration.

Number Computers / Clusters 1000 / 20
Number Users / Clusters 1000 / 20
Number Ports / Clusters 500 / 10

CC Number Cluster Connections {1,2,3,4}
CU Number Cluster Connections {1,2,3,4}
CP Number Cluster Connections {1,2}
Probability of Connection CC {0.001,0.002,. . . ,0.008,0.009}
Probability of Connection CU {0.001,0.002,. . . ,0.008,0.009}
Probability of Connection CP {0.001,0.002,. . . ,0.008,0.009}

7.2.2 Performance Measures

As mentioned previously, two key aims when performing dynamic clustering are
balancing the current cluster performance and the smoothness between clusters.
To achieve this both the cluster performance and the similarity between cluster-
ings is measured. For the cluster performance, the same measures as in Chapter
6 are employed, more specifically ARI, NMI and the proposed measure NCS. For
full details of these measures see Section 6.4. As ARI and NMI show very similar
behaviour, NMI is omitted from the proceeding analysis. In the following exper-
iments, it is desirable for NCS, the proposed internal measure, to show similar
patterns to ARI so that this measure can be used in practice when labels are not
available.

To determine the smoothness between consecutive clusterings the similarity be-
tween clusterings is measured using the ARI. For graphs with no cluster changes,
high values are desired. However, for graphs with many cluster changes, this may
be lower. Finally, for each node type, the number of cluster changes is reported,
where a cluster change is determined by the overlap between consecutive cluster-
ings as described in Section 7.1.3.

To our knowledge, there does not exist any competitive dynamic multi-type
clustering methods that can be used for comparison. In literature, dynamic clus-
tering procedures are primarily univariate or bivariate. Instead, we choose to
compare to Simple NMTF where at each update, the full clustering procedure is
implemented with NNDSVD initialisation. By comparing to the restart model,
the degree of performance degradation caused by enforcing cluster smoothness in
Dynamic SNMTF is assessed. Additionally, each clustering approach is timed to
determine the speedup provided by initialising with the previous clustering.

7.2.3 Results

First, the dynamic clustering is applied to static graph streams in Appendix E. For
the static clustering example (Appendix E.1), Dynamic SNMTF provides a good

119

Chapter 7. Dynamic Multi-Relational Clustering

balance between the smoothness of the clustering and the performance. For the
single node cluster change example (Appendix E.2) it is clear Dynamic SNMTF is
robust to cluster changes within the data.

To mimic real cyber-security networks all nodes from each node type are al-
lowed to change cluster assignment. We set �i = 2 8i, for all node types as in
practice, nodes rarely change cluster. For this rate value some nodes do not have
any cluster changes, reflecting what is observed in practice. This simulation ex-
ample should help to determine whether the proposed Dynamic SNMTF is robust
to graph streams which exhibit many cluster changes.

0.6

0.7

0.8

0.9

1.0

144 288 432 576 720 864 1008 1152 1296 1440
Bin

AR
I

(a) Computer

0.7

0.8

0.9

1.0

144 288 432 576 720 864 1008 1152 1296 1440
Bin

AR
I

(b) User

0.6

0.7

0.8

0.9

1.0

144 288 432 576 720 864 1008 1152 1296 1440
Bin

AR
I

(c) Port

0.8

0.9

1.0

144 288 432 576 720 864 1008 1152 1296 1440
Bin

AR
I

Algorithm
Dynamic SNMTF

Simple NMTF

Figure 7.1: ARI of consecutive clusterings over a graph stream as described in
Section 7.2.1 where � = 2 in the cluster membership generation process resulting
in many cluster changes over the stream.

0.3

0.4

0.5

0.6

0.7

144 288 432 576 720 864 1008 1152 1296 1440
Bin

AR
I

(a) Computer

0.6

0.7

0.8

144 288 432 576 720 864 1008 1152 1296 1440
Bin

AR
I

(b) User

0.6

0.7

0.8

144 288 432 576 720 864 1008 1152 1296 1440
Bin

AR
I

(c) Port

0.8

0.9

1.0

144 288 432 576 720 864 1008 1152 1296 1440
Bin

AR
I

Algorithm
Dynamic SNMTF

Simple NMTF

Figure 7.2: ARI to true clusterings over a graph stream as described in Section
7.2.1 where � = 2 in the cluster membership generation process resulting in many
cluster changes over the stream.

Figure 7.1 displays the similarity between consecutive clusterings. The ARI for
Dynamic SNMTF seen in Figure 7.1 is more noisy in comparison to the more static
examples in Appendix E but is still very high. Additionally, over the investigated
period, the ARI does not reduce in value suggesting the process does not degrade
over time. For Simple NMTF, there is less similarity between consecutive clusters.
Thus the proposed procedures drastically improve smoothness.

120

Chapter 7. Dynamic Multi-Relational Clustering

For the ARI to the true clustering in Figure 7.2, the ARI improves initially for
the Dynamic SNMTF model before reaching a constant level. Dynamic SNMTF
has more noisy results for this simulation in comparison to the static cases, but
the values are still relatively smooth. It is important to note that the ARI for the
port clustering is lower than seen for the static cases as the problem is now much
harder. As the graph contains a sliding window of edges, edges from two distinct
clusterings may be present making the clustering harder to identify.

0.50

0.55

0.60

144 288 432 576 720 864 1008 1152 1296 1440
Bin

N
C

S
C

C
−C

(a) CC-C

0.45

0.50

0.55

0.60

144 288 432 576 720 864 1008 1152 1296 1440
Bin

N
C

S
C

U
−C

(b) CU-C

0.63

0.65

0.67

144 288 432 576 720 864 1008 1152 1296 1440
Bin

N
C

S
C

U
−U

(c) CU-U

0.8

0.9

1.0

144 288 432 576 720 864 1008 1152 1296 1440
Bin

AR
I

Algorithm
Dynamic SNMTF

Simple NMTF

0.50

0.55

0.60

0.65

144 288 432 576 720 864 1008 1152 1296 1440
Bin

N
C

S
C

P−
C

(d) CP-C

0.60

0.65

144 288 432 576 720 864 1008 1152 1296 1440
Bin

N
C

S
C

P−
P

(e) CP-P

0.600

0.625

0.650

144 288 432 576 720 864 1008 1152 1296 1440
Bin

N
C

S
O

ve
ra

ll

(f) Overall

0.8

0.9

1.0

144 288 432 576 720 864 1008 1152 1296 1440
Bin

AR
I

Algorithm
Dynamic SNMTF

Simple NMTF

Figure 7.3: NCS for calculated clusterings for a simulated graph stream as de-
scribed in Section 7.2.1 where � = 2 in the cluster membership generation process
resulting in many cluster changes over the stream.

Similar to the ARI, the NCS for Dynamic SNMTF is higher than Simple NMTF
in Figure 7.3. Additionally, overall, the internal cluster performance is higher.
These results suggest Dynamic SNMTF is robust to cluster changes, with superior
performance to restarting the clustering at each update as done by Simple NMTF.
Dynamic SNMTF is also 5 times faster than Simple NMTF.

Finally for the number of cluster changes for each node type in Figure 7.4, in
comparison to the static simulations, there are larger numbers of cluster changes
however Dynamic SNMTF only has spikes of change rather than continuous large
change as seen by Simple NMTF. Thus from this experiment, it is clear that
Dynamic SNMTF has a good balance between smoothness between clusterings and
high cluster performance making it suitable for application to real graph streams.

121

Chapter 7. Dynamic Multi-Relational Clustering

0

250

500

750

1000

144 288 432 576 720 864 1008 1152 1296 1440
Bin

C
lu

st
er

 C
ha

ng
es

(a) Computer

0

250

500

750

1000

144 288 432 576 720 864 1008 1152 1296 1440
Bin

C
lu

st
er

 C
ha

ng
es

(b) User

0

100

200

300

400

144 288 432 576 720 864 1008 1152 1296 1440
Bin

C
lu

st
er

 C
ha

ng
es

(c) Port

0.8

0.9

1.0

144 288 432 576 720 864 1008 1152 1296 1440
Bin

AR
I

Algorithm
Dynamic SNMTF

Simple NMTF

Figure 7.4: Number of cluster changes for each node type for a graph stream
as described in Section 7.2.1 where � = 2 in the cluster membership generation
process resulting in many cluster changes over the stream.

7.3 Discussion

This chapter has presented an extension to the proposed static multi-type clus-
tering procedure from Chapter 6 to allow for dynamic clustering. By utilising the
clustering calculated at the previous time as an initialisation for the procedure,
smooth clusterings can be calculated without compromising cluster performance.
The dynamic method has been demonstrated on several simulated cases with and
without cluster changes.

A dynamic multi-type graph generation procedure is also presented to help
compare the performance of the proposed dynamic and original static version of
Simple NMTF. The dynamic graph generator allows for varying rates of clus-
ter change for each node and a sliding window approach is employed. To our
knowledge, no competitive dynamic multi-type relational clustering procedures
have been proposed in the literature. The dynamic clustering procedure is demon-
strated on a real cyber data set in the next chapter.

122

Chapter 8

Cyber-Security
Applications

In the previous chapters, the proposed procedures are detailed for general appli-
cation where non-cyber applications are used to showcase their wide applicability.
However, the key motivator for this thesis is constructing monitoring procedures
for enterprise cyber-security data. Attention is now restricted to the Unified Host
and Network Data Set [Turcotte et al., 2019] from Los Alamos National Labora-
tory (LANL) 1 which provides a wealth of information about LANL’s enterprise
network. This data set is unusual in that it contains both Netflow data, detailing
the connections between computers and Windows Logging Service Data, record-
ing authentication and process events for each host, making it comprehensive in
comparison to competitive data sets.

This chapter first describes the LANL data generally in Section 8.1 before ap-
plying each of the proposed methods in the proceeding sections. For each separate
method, further details about the extracted data used from the LANL data logs
are given. Each of the proposed methods monitors a di↵erent aspect of the data
allowing for di↵erent activities to be tracked.

8.1 LANL Data Description

The LANL data set consists of 90 consecutive days for theWindows Logging Service
(WLS) data and 89 days for the Netflow data (due to missing data on the first day).
Similar to LANL’s previously released data set [Kent, 2015], the data does not
include any records of external connections and has been anonymised for security
purposes. In comparison to other publicly available data sets, the LANL data
set benefits from containing events from a real enterprise network rather than a
simulated network.

1
The data is publicly available online upon request at https://csr.lanl.gov/data/2017/

(last accessed on 8th March 2022)

123

Chapter 8. Enterprise Cyber-Security Applications

UNIX epoch time is used, with a start epoch of 1 and a 1 second time reso-
lution. From analysing the activity levels, it is evident that the data starts on a
Monday (day 1) and is assumed throughout the subsequent analysis. The computer
names match across both Netflow and WLS data sets and have been de-identified
however, the Netflow data also contains many non-Windows computers and other
devices that do not exist in the WLS data. Well-known network ports, system-level
usernames, processes and core enterprise hosts are not de-identified.

8.1.1 Netflow

The Netflow data contains logs of connections between computers within the net-
work collected by the core network routers. As raw Netflow data is uni-flowed (no
relationship between the direction of the record and the initiator of the connec-
tion) and contains duplicates, the data has been transformed into a Biflow which
aggregates duplicates and combines opposing uniflows of connections into a single
directed Biflow record. More details of the data transformation can be found in
Turcotte et al. [2019].

Over the 90 days, approximately 58,000 computers are tracked across the data.
There are around 200 million events per day, hence the data sets used here are
extremely large. As a result, the methods and models applied must be scalable to
meet the requirements of such sizeable data.

Time, Duration, SrcDevice, DstDevice, Protocol, SrcPort, DstPort, SrcPackets, DstPackets, SrcBytes, DstBytes

Figure 8.1: Example of Netflow data structure.

The Netflow records detail the time of connection, the duration, the source
(src) and destination (dst) devices that the connection is initiated and terminated
at respectively, the protocol (limited to Protocols 1, Internet Control Message Pro-
tocol (ICMP), 6, Transmission Control Protocol (TCP), and 17, User Datagram
Protocol (UDP)), source and destination ports, source and destination packets and
source and destination bytes with an example of the field names in Figure 8.1.

8.1.2 Windows Host Log Data

The Windows Logging Service events detail the authentication and process activity
on computers running the Microsoft Windows operating system. Each record
contains an EventID (which uniquely identifies an event type) as well as a LogHost
(computer identifier where the event is recorded) and Time.

Depending on the type of event, each record may have 18 other possible at-
tributes. Other important attributes include the UserName, which details the
user initiating the event and will be termed the source user and the SubjectUser-
Name which refers to the destination user for mapped authentication events but

124

Chapter 8. Enterprise Cyber-Security Applications

this field is often the same as the UserName. Both of these usernames are spe-
cific to the domain which is detailed in DomainName and SubjectDomainName
for UserName and SubjectUserName respectively. For the subsequent work, these
will be appended together with an “@” to ensure unique users are identified in the
network.

“UserName”: “Comp505809$”, “EventID”: 4624, “LogHost”: “Comp505809”, “LogonID”: “0x1b9dba9f”,

“DomainName”: “Domain001”, “LogonTypeDescription”: “Network”, “AuthenticationPackage”: “Kerberos”,

“Time”: 1296000, “LogonType”: 3

{“UserName”: “User959346”, “EventID”: 4688, “LogHost”: “Comp031357”, “LogonID”: “0x12535e2”, “Do-

mainName”: “Domain001”, “ParentProcessName”: “Proc143120”, “ParentProcessID”: “0xf8c”, “ProcessName”:

“Proc027182.exe”, “Time”: 1296000, “ProcessID”: “0xe00”}

Figure 8.2: Two examples of Windows Host Logs.

Two accounts with di↵erent event types from the raw log data are displayed in
Figure 8.2. The first example details a local network logon authentication event
on Comp505809. Logons of this kind are the most common event type for EventID
4624 and represent the user accessing a Windows resource (e.g. shared folders or
printers) but could also be logons to Internet Information Services (IIS). The sec-
ond example details a process event on Comp031357 by user User959346@Domain001
and gives details of the parent process and the process ID. These logs record each
program that has been executed and the process that initiated it.

As the events for the WLS data are restricted to Windows computers only, the
number of computers in this data set is much smaller than the Netflow data. For
the WLS data set, there are approximately 56 million events, 9000 users and 9000
host computers per day. Similar to Netflow, this data set is substantially large.

8.2 Research Problem

The key motivator for this thesis is to develop monitoring procedures suitable
for cyber-security data streams. Through monitoring the data, network analysts
have the potential to identify network intrusions or other unusual network activity.
There are a large number of attack vectors taken by adversaries such as distributed
denial-of-service (DDoS), probe and user to root [Ahmed et al., 2016] each leaving
a di↵erent trace on the network data. Thus multiple statistical methods should
be applied for a comprehensive tool set for intrusion detection. For most attack
vectors, the attack data di↵ers from the normal behaviour of the network, allowing
for detection. However, these di↵erences are often slight, making them hard to
detect. Intrusion detection approaches can be split into three approaches: node-
based ([Passino and Heard, 2019]), edge-based ([Noble and Adams, 2016], [Metelli
and Heard, 2019]) and global models ([Akoglu et al., 2015], [Heard and Rubin-
Delanchy, 2016]) where the applications in this chapter focus on the latter two.

125

Chapter 8. Enterprise Cyber-Security Applications

Our change point and anomaly detectors from Chapters 4 and 5 respectively
are appropriate for detecting abnormalities in univariate monitoring statistics from
the network. Ideally these statistics contain possible indicators of attacks in the
data. Alternatively, the data can naturally be represented by multiple network
graphs describing the multi-type relations between the computers, users and ports.
Through clustering this data, better situational awareness about how the nodes
interact can be formed. The data processing performed to produce the univariate
and graph data streams used in the subsequent analysis are now described.

8.2.1 Data Processing

The primary concern is with computer to computer (CC), computer to port (CP)
and computer to user (CU) connections or edges within the network where graphs
and data streams are produced from these. To ensure the nodes investigated do
not correspond to automated processes or activities which may dilute the signal
of unusual activities in the data, the following restrictions are implemented:

• Only the 58,000 computers whose activity has successfully been tracked
across the full period of the data is investigated;

• Computers must be active in both Netflow and WLS data;

• Computers and users must be contained in the de-identified characteristic
data set provided by LANL.

Although the data has second resolution, it is common practice in cyber-
security to bin the data. A variety of bin sizes are used in literature including
minute [Nezhad et al., 2016], 5 minute [Whitehouse et al., 2016] and 15 minute
[Riddle-Workman et al., 2018] bins. Minute and 15 minute intervals are utilised
in this chapter. For further details on optimal bin sizes see Neil et al. [2013] who
suggest 30 minute bins to adequately capture the behaviour of the network with-
out being buried in non-intrusion data. In general, the optimal bin size depends
on the problem at hand where there is an additional computational trade-o↵ for
the window size selected.

In the following, only the weekdays are investigated as there is less activity
on weekends, where the activity patterns of these periods are distinct. As true
anomalous times are unknown in the LANL data set, the following results are
exploratory and showcase the applicability of the proposed methods to real cyber
data.

8.2.2 Univariate Data Processing

During an attack, novel connections or edges may be made between entities within
the network (computers, users and ports) and can be used as an indicator of
intrusion [Metelli and Heard, 2019]. Thus investigation of such quantities is of

126

Chapter 8. Enterprise Cyber-Security Applications

interest. To classify an edge as new, a sliding window approach is utilised over the
bins where if an edge has not been seen in the past s time bins, it is classified as
new. The number of new edges is investigated for both the change point procedure
in Section 8.3 and the forecast procedure in Section 8.4. In the proceeding analysis
a sliding window of 12 hours is utilised. This window of data helps to ensure only
novel events are collected rather than regularly occurring automated processes.

8.2.3 Graph Data Processing

To produce graphs for the clustering procedure in Sections 8.5 and 8.6, a 24 hour
and 12 hour window are utilised respectively. In the case of the dynamic graph
clustering, this window shifts in 15 minute bin increments resulting in 96 cluster
updates per day.

8.3 Change Point Detection

During cyber attacks such as DDoS attacks, there is an abrupt influx of network
tra�c. These attacks attempt to disrupt the normal tra�c by overwhelming the
network. Provided the network data seen prior to an attack is stationary, change
point detection methods could be appropriate for identifying DDoS attacks re-
sulting in abrupt high volume changes in network activity. The suitability of the
change point procedure, BFF, presented in Chapter 4 for such data is now inves-
tigated. BFF is applied to the number of new computer port edges in the Netflow
data using a 12 hour sliding window with updates every 15 minutes. By monitor-
ing such data, abrupt changes in these counts can be detected, possibly referring
to anomalous network activity. The change point procedures are applied to two
weeks of the data (weekdays only), but only the results for the final week of the
data from day 22 (Monday) to day 26 (Friday) are displayed. As stated previ-
ously, the weekends are excluded as the behaviour on these days di↵ers greatly
from weekdays. As there are only 96 time points per day, the threshold for AFF
and BFF is increased to 0.05, equivalent to approximately 5 detections per day for
a well calibrated model.

Table 8.1: Number of detections for each change point method over the investi-
gate week for the number of new computer port edges.

PELT 13
DeCAFS 5
AFF 7
BOCPD-Colmaxes 23
BOCPD-Threshold 11
BFF-Pred 13
BFF-Post-� 14

127

Chapter 8. Enterprise Cyber-Security Applications

0

2500

5000

7500

10000

22 23 24 25 26 29
Day

N
ew

 E
dg

es
 C

P

PELT

0

2500

5000

7500

10000

22 23 24 25 26 29
Day

N
ew

 E
dg

es
 C

P

DeCAFS

0

2500

5000

7500

10000

22 23 24 25 26 29
Day

N
ew

 E
dg

es
 C

P

AFF

0

2500

5000

7500

10000

22 23 24 25 26 29
Day

N
ew

 E
dg

es
 C

P

B0CPD

0

2500

5000

7500

10000

22 23 24 25 26 29
Day

N
ew

 E
dg

es
 C

P

BFF−Pred

0

2500

5000

7500

10000

22 23 24 25 26 29
Day

N
ew

 E
dg

es
 C

P

BFF −Post − λ

Figure 8.3: Number of new edges in CP graph over the weekday starting on
day 22 of the data until day 26. Change points for each method are indicated
as vertical lines where common change points (within 5 steps) between PELT,
DeCAFS, BOCPD, BFF-Pred and BFF-Post-� are indicated with a solid vertical
line (while dashed lines correspond to change points that are not shared among
all methods).

All methods but DeCAFS, AFF and BOCPD-Colmaxes have similar numbers
of detections in Table 8.1. In agreement with the findings of the simulation study
of Section 4.3, BOCPD-Colmaxes detects higher numbers of points than other
procedures. AFF however detects fewer than expected. The BFF approaches have
similar numbers of detections to PELT and BOCPD-Threshold which had optimal
performance in previous experiments in Chapter 4.

On this data, the BOCPD-Threshold approach is utilised as it has a more
favourable performance. This is in disagreement with what we have seen in the
IBM analysis. Thus selection between colmaxes and threshold approaches for

128

Chapter 8. Enterprise Cyber-Security Applications

BOCPD presents an additional challenge in practice.
In Figure 8.3 there are a number of clear change points in the data. In particu-

lar, the change points on days 22, 24 and 25 have been detected by the procedures
(with a solid line). The detections made by the two BFF procedures are very
similar however from comparing to the results of PELT, DeCAFS and BOCPD,
BFF-Post-� has more similar detections, making it more favourable. BFF-Post-�
also showed more optimal performance in previous experiments. AFF makes very
few detections at the same threshold as BFF where several extreme change points
in the data are not identified.

As mentioned previously in Chapter 4, the BFF methods detect anomalies
in addition to change points, hence a number of the detections made di↵er from
that of PELT, DeCAFS and BOCPD. However, BFF-Post-� has a high similarity
to PELT, a batch approach. The robust performance of the BFF procedures is
demonstrated on cyber data, showcasing its suitability in this domain with similar
performance to batch approaches.

8.4 Time Series Anomaly Detection

Adversaries with a foothold on the network often go unnoticed as their activity
may not be extreme globally e.g. attack methodology used by APT1 [Mcwhorter,
2013]. However, their activity may still be unusual given the context. Examples
of such behaviour include unusual behaviour for the given user they are exploit-
ing or attacks generating moderate volumes of tra�c at unusual times of the day
such as that seen from user to root attacks. During these attacks, attackers aim
to gain super user access starting from normal user accounts by traversing the
network by exploiting network vulnerabilities. These attacks may not result in
abrupt changes in the data or have extreme volumes, thus may be undetected
by change point procedures or point anomaly detectors. Detection of these non-
extreme and potentially non-abrupt attacks is the aim of this section. For such
attacks, contextual anomaly detection can be applied to identify when the data
deviates from the usual patterns of the data. However, contextual anomaly de-
tection assumes the network data investigated exhibits seasonal behaviour where
the attacker behaviour causes deviations in the expected data patterns. Here our
anomaly detection procedures proposed in Chapter 5 are applied.

The WLS data is utilised, particularly for the number of novel edges between
the computers and users. Such data is expected to have a daily pattern as the
behaviour of the users should follow the natural habitual working pattern of the
employees and be highly similar from day to day. A 12 hour sliding window is used
with minute updates, where edges not previously observed in the past 12 hours
are recorded. Additionally, attention is again restricted to the weekdays. Due to
incomplete data and an initialisation period for the LANL data collection process,
the first and last days of the data set are excluded, leaving 64 workdays.

A persistent daily curve due to human interaction in the network is often seen

129

Chapter 8. Enterprise Cyber-Security Applications

0

50

100

150

200

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time (Hrs)

N
um

be
r N

ew
 E

dg
es

Figure 8.4: The mean number of new edges in the LANL WLS computer-user
12 hour graph that updates every minute over weekdays.

in cyber-security data such as that seen in Figure 8.4 for the mean number of
new edges. As expected, this data has a daily pattern with an increase in the
number of new edges when the workday begins. There is a peak in the data at
around 7.15am before a slow decrease to its baseline value. Another interesting
feature is the unusually high number of new edges between 11pm and 1am which
is presumably due to automated system updates and processes that are carried
out at the night. There is also an unexplained small peak in the number of new
edges between 3-4pm and 4-5pm. The combined forecast anomaly detector is well
suited to this data as a daily seasonal behaviour exists and the data itself is not
particularly noisy.

The two anomaly detection procedures, SL Decomposition and FDARIMA
described in Section 5.4 are applied to this LANL data and the various implemen-
tations described in 5.5.4 are compared and contrasted. Similar to the simulation
from Chapter 5, only the previous s = 60 data points in the series are used for
the ARIMA model in both algorithms which corresponds to an hour of data. This
value has been chosen to ensure the computation of the ARIMA model at each
minute update can be computed in real time and to allow for only the local be-
haviours to be modelled. The diagram in Figure 8.5 demonstrates the data split
for initialising, tuning and testing the proposed anomaly detection models.

8.4.1 Forecast Performance

It can be seen in Figure 8.6 that all model forecasts except the FDA model fit
the data very well. As the FDA model only uses data from the previous days to

130

Chapter 8. Enterprise Cyber-Security Applications

1 6 7 11 65 days

FDA/ARIMA

Initialisation

Combined

Forecast

Initialisation
Parameter

Tuning

Testing PeriodTraining Period

Figure 8.5: Training and testing periods for the anomaly detection procedures.

forecast the next day’s values, this causes poorer forecasts than the other models
which only perform one-step ahead forecasts. As noted previously, the FDA model
is useful for identifying when the data deviates away from its usual behaviour. Day
23 is an example of such a day where this day experiences much less activity than
any other day and is thought to correspond to a public holiday. Additionally, day
22 has an unusual peak in the afternoon between 3-6pm which is not seen in the
other days however the FDA forecast can model what should be seen for that day.

0

100

200

300

Day
22

12 Day
23

12 Day
24

12 Day
25

12 Day
26

12 Day
29

Day

N
um

be
r N

ew
 E

dg
es

Model
ARIMA Alone
FDA Alone
Regression Combination
SL Decomposition
True

Figure 8.6: Comparison of each model to the data for days 22-29.

Over the test period, the ARIMA model is the best performer among the
models and has the smallest standard deviation for both the absolute error and
absolute scaled error (Table 8.2). Combining the ARIMA and FDA predictions
using the proposed approaches does not improve the performance over the ARIMA
alone model however they are comparable. As expected, the FDA model has
poor forecast performance in comparison to the other approaches as it forecasts a
full day ahead. As anomaly detection is the main goal, the FDA model has the
advantage of being able to identify contextual anomalies, unlike the ARIMAmodel.
This highlights the discrepancy between forecast ability and anomaly detection
performance.

131

Chapter 8. Enterprise Cyber-Security Applications

Table 8.2: Forecast performance of each model on LANL new edge count data
with the standard deviation of these forecast errors over days 11-64.

MAE AE SD MASE ASE SD
ARIMA 9.42 34.04 0.86 1.74

FDA 17.65 43.33 1.61 3.94
Regression Combination 9.93 35.46 0.90 3.20

SL Decomposition 10.73 37.52 0.98 3.40
Naive One-Step Ahead Forecaster 11.44 38.33 1.00 0.00

8.4.2 Anomaly Detection Performance

Anomalous numbers of new edges have been detected using the two anomaly de-
tection procedures, SL Decomposition and FDARIMA, after the initial 10 week-
day training period. The significance level for both procedures has been set to
✏ = 0.005. This significance level can be tuned by network administrators to con-
trol the number of alerts where at the chosen level 7 alerts are expected per day. In
addition, the proposed procedures are compared to the Twitter algorithm which
was the best performer amongst the competitive methods on the simulated data
in Section 5.5, and the only other method able to detect contextual anomalies.
Between FDARIMA and SL Decomposition 1652 anomalies over the full period
are shared, which is more than 85% of detected anomalies by each method.

Unlike the simulated data, this real data is not labelled hence to verify the
validity of the anomalies, identified anomalies will be further explored. In practice,
labels often do not exist therefore procedures that can help administrators identify
the source of the alert are beneficial. To better understand the anomalies detected,
the computers and users related to these new edges are investigated. Here day 39
is explored as this is a highly anomalous day for the procedures and additionally
day 85, a less anomalous day, is investigated. The Twitter algorithm appears to
be much more sensitive than the proposed approaches with double the number of
detections as seen in Table 8.3.

132

Chapter 8. Enterprise Cyber-Security Applications

Table 8.3: Number of detections made by FDARIMA, SL Decomposition and
Twitter anomaly detectors on the LANL new edges count for days 39 and 85. All
represents the detections over the full test period (day 11-65).

Day Method Anomaly Count
FDARIMA 148

39 SL Decomposition 142
Twitter 268

FDARIMA 38
85 SL Decomposition 36

Twitter 96
FDARIMA 1935

All SL Decomposition 1789
Twitter 7530

0

1000

2000

0

1000

2000

0

1000

2000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Time (Hours)

Time (Hours)

Time (Hours)

N
um

be
r N

ew
 E

dg
es

N
um

be
r N

ew
 E

dg
es

N
um

be
r N

ew
 E

dg
es

(a) FDARIMA

(b) SL Decomposition

(c) Twitter

Models
ARIMA
FDA
SL Decomposition

Figure 8.7: The LANL new edge count values for day 39 plotted with the forecasts
of the ARIMA, FDA and SL Decomposition models where anomalous positions
have been highlighted with vertical lines for the FDARIMA, SL Decomposition
and Twitter algorithms separately.

The three algorithms share 126 points on day 39. An unusual secondary peak
in activity can be seen in Figure 8.7 where the data normally follows the pattern
of that in Figure 8.4, hence the models are correctly identifying this contextual

133

Chapter 8. Enterprise Cyber-Security Applications

0

100

200

300

0

100

200

300

0

100

200

300

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Time (Hours)

Time (Hours)

Time (Hours)

N
um

be
r N

ew
 E

dg
es

N
um

be
r N

ew
 E

dg
es

N
um

be
r N

ew
 E

dg
es

(a) FDARIMA

(b) SL Decomposition

(c) Twitter

Models
ARIMA
FDA
SL Decomposition

Figure 8.8: The data plotted with the predictions of the ARIMA, FDA and SL
Decomposition forecasts that are used for identifying anomalies where anomalous
positions have been highlighted with vertical lines for day 85 for the FDARIMA,
SL Decomposition and Twitter algorithms.

anomaly. Both FDARIMA and SL Decomposition detect a number of anomalies
from 6.30am onward. From further exploration of the data, the secondary peak in
new edges was primarily a result of a large number of network logons made by a
few select computers. The extreme point that is seen at 9.30am is caused by large
numbers of network logons made by a single computer. Both instances are highly
unusual therefore the anomalies detected here are of interest. It is interesting to
note that the Twitter procedure detects a large number of points during the first
usual peak which is not anomalous in terms of the patterns previously seen in the
data. From the investigation of less anomalous days, it was seen that the Twitter
method often incorrectly flags this usual daily peak as anomalous, potentially
raising many false positives in practice as the data exhibits large variation in
the seasonal component between the days. This highlights that although one
method may perform well on simulated data, it will not necessarily have the same
performance on real data which exhibits unusual patterns.

There are several anomalous points and periods throughout day 85 in Figure
8.8. Firstly the daily peak starts an hour earlier and has a larger magnitude
than that of the FDA curve which represents the historic pattern of the data.
All models have successfully identified this contextual anomaly. There are also a

134

Chapter 8. Enterprise Cyber-Security Applications

number of point anomalies that occur such as that at 1am, 6.45am and 10.30am.
All three algorithms detect the anomaly at 10.30am caused by a single computer
having many network logo↵s. The anomaly at 1am which is only identified by
the proposed procedures, resulted from a large number of process start events
in the data. As both of these activities are anomalous, the method successfully
identifies point anomalies within the data with comparable performance to the
Twitter algorithm, a batch approach.

8.5 Static Graph Clustering

Our attention now moves from univariate data to network graphs. As cyber-
security data sets contain information about the connections of computers, ports
and users, the data can naturally be expressed as network graphs. Additionally,
as each entity can have multiple connections to multiple di↵erent entities, a multi-
type network consisting of many graphs is formed. This section aims to investigate
these network graphs to gain information about the network and its structure. To
achieve this, we apply the clustering procedure developed in Chapter 6 to group
nodes with similar activity together across the network.

From the LANL data three network graphs are constructed: ACC detailing the
undirected connections between the source and destination computers from the
Netflow data,ACU containing the edges between source computers (host computer)
and source user (UserName field) in the Windows Logging Service data and ACP

details the connections between the source computers and destination ports from
the Netflow data. Here the destination ports are used as they provide information
about the type of interaction such as HTTP (port 80) or SSH (port 22) activity.
As there are 65,535 ports, many of which are not informative of the activity, only
the top 2000 ports (with the highest degrees) within the window of data explored
are investigated.

Table 8.4: Summarising 24 hour window graph features of LANL data for day
22.

Number Computers 9321
Number Users 9413
Number Ports 2000

Number CC Edges 109019
Number CU Edges 44487
Number CP Edges 435684

Number Computer Clusters 300
Number User Clusters 300
Number Port Clusters 100

135

Chapter 8. Enterprise Cyber-Security Applications

Table 8.5: Summarising 24 hour window graph features of LANL data for day
33.

Number Computers 7702
Number Users 7316
Number Ports 2000

Number CC Edges 63037
Number CU Edges 26633
Number CP Edges 242329

Number Computer Clusters 300
Number User Clusters 300
Number Port Clusters 100

The static multi-type clustering procedure from Chapter 6 is illustrated on a
24 hour window of data from day 22 (Monday) and day 33 (Friday). The size of
the generated network graphs are described in Table 8.4 and Table 8.5 for days 22
and 33 respectively along with the input cluster sizes utilised for all algorithms.
There are approximately equal numbers of computers and users within the graphs
for both days however the number of edges in the CU graph is much smaller than
the other graphs. The CP graphs in particular have many edges as each computer
has many types of Netflow activity during the period resulting in a higher degree.
It is important to note that due to the di↵erence in the number of edges in each
graph, CP may have a large influence on the clustering.

8.5.1 Day 22 Results

As the LANL data set is unlabelled, unlike the simulated example in Chapter 6,
external performance measures (e.g. ARI and NMI) cannot be used. In terms
of NCS, Simple NMTF outperforms the other algorithms when clustering on the
CC matrix for the computers on day 22 (Table 8.6). Additionally, it consistently
performs well and is generally either the second or third best method across the

Table 8.6: NCS and time (in minutes) comparison for the di↵erent methods for
day 22 of the LANL data with results averaged over 50 repetitions. Best performer
in red, second best in blue with standard deviation given in brackets.

Entity NMF KMeans ONMTF F-NMTF R-NMTF SelDFMF Simple NMTF

NCS

CC 0.452(0.009) 0.513(0.008) 0.613(0.000) 0.542(0.014) 0.587(0.028) 0.534(0.017) 0.746(0.002)
CU-C 0.043(0.003) 0.190(0.046) 0.131(0.000) 0.042(0.003) 0.054(0.009) 0.009(0.001) 0.176(0.006)
CU-U 0.579(0.011) 0.482(0.032) 0.642(0.000) 0.634(0.011) 0.529(0.016) 0.469(0.013) 0.631(0.004)
CP-C 0.655(0.016) 0.660(0.011) 0.696(0.000) 0.762(0.012) 0.716(0.017) 0.618(0.025) 0.761(0.001)
CP-P 0.507(0.020) 0.462(0.011) 0.550(0.000) 0.287(0.015) 0.548(0.005) 0.479(0.017) 0.399(0.002)
Comp 0.592(0.014) 0.603(0.010) 0.654(0.000) 0.696(0.014) 0.668(0.015) 0.576(0.021) 0.730(0.001)
Overall 0.578(0.004) 0.534(0.015) 0.639(0.000) 0.628(0.008) 0.593(0.009) 0.518(0.009) 0.653(0.002)

Time 46.349(4.741) 5.627(1.176) 186.042(44.595) 47.907(8.193) 101.778(0.916) 998.882(85.282) 2.562(0.665)

136

Chapter 8. Enterprise Cyber-Security Applications

entities. In contrast, none of the other algorithm’s performance have consistent
behaviour between the matrices and nodes. For example, the computer clustering
for F-NMTF performs very well on the CP matrix with poorer performance for
the computers on the CC and CU matrices.

The cluster performance for the computers in the CU graph is poorer than the
other graphs due to the nature of the data (Table 8.6). For each computer, there
is a computer specific user as well as a small number of other users. Hence the
similarity in this graph may be smaller than other graphs as there is less signal
present in the CU graph for the computers. Additionally, the clustering patterns
for the computers in this graph may di↵er from that in ACC and ACP . The user
clustering performance across the methods is higher suggesting there exists a signal
for the user’s activity in the ACU graph.

The clear advantage of Simple NMTF is the computational speed which is
significantly faster than any other algorithm, irrespective of the large magnitude
of the data. For example, Simple NMTF is over 72 times faster than ONMTF,
the overall second best algorithm. The computational speed and overall consistent
performance of Simple NMTF on all matrices makes it more suitable for real time
monitoring compared to the other methods.

8.5.2 Day 33 Results

The proposed Simple NMTF is often the best or second best performer amongst
the methods for day 33 in Table 8.7. In comparison to all other methods, the
procedure again has consistently high performance over all graphs. ONMTF here
also has very high performance however the computation time of this approach is
25 times longer, making it less feasible in practice.

In comparison to the other multi-type clustering procedures (F-NMTF, R-
NMTF and SelDFMF), Simple NMTF has superior performance and is signifi-
cantly faster. Thus the proposed procedure outperforms existing multi-type meth-
ods. The results between day 33 (Table 8.7) and day 22 (Table 8.6) for Simple
NMTF are very similar which suggests this procedure is robust on the LANL
graphs.

Table 8.7: NCS and time (in minutes) comparison for the di↵erent methods for
day 33 of the LANL data with results averaged over 20 simulations. Best performer
in red, second best in blue with standard deviation given in brackets.

Entity NMF KMeans ONMTF F-NMTF R-NMTF SelDFMF Simple NMTF

NCS

CC 0.509(0.007) 0.588(0.012) 0.646(0.000) 0.568(0.010) 0.636(0.016) 0.605(0.032) 0.797(0.002)
CU-C 0.066(0.002) 0.202(0.033) 0.159(0.001) 0.082(0.005) 0.090(0.016) 0.010(0.001) 0.194(0.005)
CU-U 0.532(0.007) 0.416(0.019) 0.563(0.001) 0.538(0.006) 0.469(0.012) 0.381(0.018) 0.558(0.004)
CP-C 0.792(0.011) 0.730(0.009) 0.781(0.000) 0.833(0.007) 0.748(0.009) 0.676(0.014) 0.795(0.004)
CP-P 0.452(0.024) 0.403(0.017) 0.553(0.000) 0.228(0.016) 0.529(0.011) 0.415(0.022) 0.400(0.008)
Comp 0.723(0.011) 0.662(0.008) 0.729(0.000) 0.760(0.011) 0.689(0.009) 0.622(0.013) 0.764(0.003)
Overall 0.609(0.006) 0.526(0.008) 0.637(0.000) 0.602(0.004) 0.576(0.006) 0.494(0.012) 0.632(0.003)

Time 30.799(2.053) 2.147(0.221) 25.022(1.481) 14.868(2.611) 174.366(4.820) 648.494(13.378) 0.973(0.144)

137

Chapter 8. Enterprise Cyber-Security Applications

This section has demonstrated the high performance of the proposed proce-
dure, Simple NMTF, on a real cyber-security data set showing its applicability in
practice. As this method is fast to compute, it is scalable for larger networks than
demonstrated here.

8.6 Dynamic Graph Clustering

The static clustering in the previous section can be applied to multiple snapshots
of the network over time however there is no smoothness between the generated
clusterings. This section aims to monitor how this clustering adapts over time,
where a more dynamic approach is required as computer networks are constantly
changing. The proposed dynamic clustering approach from Chapter 7 is a suitable
method for this. From the dynamic clustering produced, nodes whose cluster as-
signments have changed can be identified, potentially corresponding to anomalous
behaviour.

From the LANL data, graph streams can be generated that capture the chang-
ing behaviour of the network using a sliding window approach, similar to the
simulated example in Chapter 7. A 12 hour window is utilised to represent the
current activity of the network which updates every 15 minutes. More specifically,
if the data is binned into 15 minute increments, each 12 hour graph contains the
most recent 48 consecutive 15 minute bins. At each update, the edges from the
oldest bin are removed whilst the new edges in the most recent bin are added. In
the following, only the weekdays are investigated as previously discussed.

As in the static clustering case, attention is restricted to the most popular
2000 ports (those with the highest degrees) hence the number of ports within the
CP graph is constant at 2000. However, it should be noted that this list of top
ports may change over time. In the following, two weeks of the data is investigated
from day 17 to day 30 where a 12 hour burn-in period for the dynamic clustering is
used. A daily pattern can be seen in Figure 8.9 for the number of active computers
and users within the 12 hour windows used to build the graphs, where there is a
peak in the number of nodes around 6pm. The peak at this time is expected as
it contains all activity from the working hours when the network is most busy. In
both plots, day 23, a Tuesday has unusual activity. The reason for this is unknown
but suggests fewer employees are using the network on this day and is possibly
a public holiday (see the previous remark about the public holiday). Thus the
performance on this day may di↵er from the others. Additionally, on Fridays (day
19 and 26) there is less activity. This is as the employees at LANL often take
every other Friday o↵.

Although the number of clusters in the algorithms is set to 200 for the com-
puters and users and 100 for the ports, fewer clusters are often detected by Simple
NMTF and Dynamic SNMTF as seen in Figure 8.10. For the computer clustering,
both methods detect similar numbers of clusters, at the allowed upper limit. This
may suggest that there are more clusters than allowed. Alternatively, the number

138

Chapter 8. Enterprise Cyber-Security Applications

5000

6000

7000

8000

9000

17 18 19 22 23 24 25 26 29 30
Day

N
um

be
r C

om
pu

te
rs

(a) Computer

5000

6000

7000

8000

9000

17 18 19 22 23 24 25 26 29 30
Day

N
um

be
r U

se
rs

(b) User

Figure 8.9: Number active computers and users common across the LANL data
sets over the graph stream using a 12 hour sliding window over the data.

185

190

195

200

17 18 19 22 23 24 25 26 29 30
Day

N
um

be
r C

om
pu

te
r C

lu
st

er
s

(a) Computer

100

125

150

175

200

17 18 19 22 23 24 25 26 29 30
Day

N
um

be
r U

se
r C

lu
st

er
s

(b) User

40

60

80

100

17 18 19 22 23 24 25 26 29 30
Day

N
um

be
r P

or
t C

lu
st

er
s

(c) Port

0.8

0.9

1.0

144 288 432 576 720 864 1008 1152 1296 1440
Bin

AR
I

Algorithm
Dynamic SNMTF

Simple NMTF

Figure 8.10: Number of clusters identified by the dynamic and static clustering
approaches for the LANL network stream.

of clusters for the users di↵ers greatly between the algorithms. The dynamic clus-
tering finds approximately 200 clusters across the whole period whereas Simple
NMTF which restarts at each update has on average 115 clusters. For the ports,
both procedures have similar numbers of clusters however the number of clusters
for Simple NMTF is much more noisy. This is additionally seen across all node
types where the number of clusters for Dynamic SNMTF is smoother.

It can be seen in Figure 8.11 that Dynamic SNMTF has a higher similarity
between consecutive clusterings in terms of ARI than the static version. This is
ideal in practice to enable monitoring of the clustering. In particular, the similarity
in consecutive port clusterings for Simple NMTF is very low, suggesting there is
no smoothness between clusterings.

To assess the performance of the procedures, the proposed internal measure, the
Node Cluster Similarity (NCS) is used as defined in Section 6.4.3. In general, the
performance between the static and dynamic clustering methods is similar, with

139

Chapter 8. Enterprise Cyber-Security Applications

0.4

0.6

0.8

1.0

17 18 19 22 23 24 25 26 29 30
Day

AR
I

(a) Computer

0.4

0.6

0.8

1.0

17 18 19 22 23 24 25 26 29 30
Day

AR
I

(b) User

0.00

0.25

0.50

0.75

1.00

17 18 19 22 23 24 25 26 29 30
Day

AR
I

(c) Port

0.8

0.9

1.0

144 288 432 576 720 864 1008 1152 1296 1440
Bin

AR
I

Algorithm
Dynamic SNMTF

Simple NMTF

Figure 8.11: ARI of consecutive clusterings for the dynamic and static clustering
approaches over the LANL network stream.

0.7

0.8

0.9

17 18 19 22 23 24 25 26 29 30
Day

N
C

S
C

C
−C

(a) CC-C

0.15

0.20

0.25

0.30

0.35

17 18 19 22 23 24 25 26 29 30
Day

N
C

S
C

U
−C

(b) CU-C

0.50

0.55

0.60

0.65

0.70

17 18 19 22 23 24 25 26 29 30
Day

N
C

S
C

U
−U

(c) CU-U

0.8

0.9

1.0

144 288 432 576 720 864 1008 1152 1296 1440
Bin

AR
I

Algorithm
Dynamic SNMTF

Simple NMTF

0.750

0.775

0.800

0.825

0.850

0.875

17 18 19 22 23 24 25 26 29 30
Day

N
C

S
C

P−
C

(d) CP-C

0.40

0.45

0.50

0.55

17 18 19 22 23 24 25 26 29 30
Day

N
C

S
C

P−
P

(e) CP-P

0.63

0.66

0.69

0.72

17 18 19 22 23 24 25 26 29 30
Day

N
C

S
O

ve
ra

ll

(f) Overall

0.8

0.9

1.0

144 288 432 576 720 864 1008 1152 1296 1440
Bin

AR
I

Algorithm
Dynamic SNMTF

Simple NMTF

Figure 8.12: NCS for the calculated clusterings for the dynamic and static clus-
tering approaches over the LANL network stream.

similar patterns (Figure 8.12). The performance for CC-C and CU-C has daily
peaks just after midnight. This suggests there is a greater signal in the graphs
at this time which the proposed procedure can detect. For these graphs, Simple
NMTF has better performance, but the di↵erence is marginal. For the users,
Dynamic SNMTF has superior performance to Simple NMTF. This di↵erence in
performance may however be attributed to the di↵erence in the number of clusters
found, where having more clusters may result in more similarity between the nodes
in each cluster.

140

Chapter 8. Enterprise Cyber-Security Applications

0

25

50

75

100

17 18 19 22 23 24 25 26 29 30
Day

Ti
m

e
(s

ec
) Algorithm

Dynamic SNMTF

Simple NMTF

Figure 8.13: Computation time at each update for the dynamic and static clus-
tering approaches on the LANL network stream.

The performance for the computers in the CP graph (CP-C) does not follow
the daily pattern seen for CC-C and CU-C in Figure 8.12. This may suggest that
this graph is less a↵ected by the human interactions on the network. As noted
previously, day 23 has an unusual activity that has influenced the results in Figure
8.12. Generally, over all nodes and graphs, the NCS performance is higher on
this day. This may suggest the clustering signal is clearer when there are fewer
user related events on the network. For the overall NCS performance in Figure
8.12 (f), Dynamic SNMTF has higher performance. This suggests utilising the
previous clustering improves the clustering performance. In addition, the results
for Dynamic SNMTF are much smoother than Simple NMTF for all entity types
which is desirable in practice.

Finally, the computation time of the two approaches is compared. In practice,
more regular updates (e.g. every minute) could be utilised provided the clustering
algorithm can appropriately update in that time frame. In Figure 8.13 it is clear
that Dynamic SNMTF is very fast with less variability throughout the investigated
period. This makes it more suitable than Simple NMTF, the static clustering
procedure.

Overall, this section has demonstrated that the proposed Dynamic SNMTF can
be applied to real cyber graph data streams to find the clustering of the network
in close to real time. To update the clustering, only the cluster assignment from
the previous time is required with a small computation storage overhead. It has
additionally been shown that utilising Dynamic SNMTF over Simple NMTF does
not cause a reduction in performance, where overall, the performance is improved

141

Chapter 8. Enterprise Cyber-Security Applications

in terms of smoothness between clusters, computation time and NCS.

8.7 Discussion

This chapter has demonstrated the applicability of the proposed monitoring pro-
cedures on a real enterprise data set. Although labels of anomalous activity are
not available, the performance of the procedures using alternate measures are
performed which primarily investigate the model fit. In many applications, the
primary focus is on monitoring the number of new edges, however other indicators
of intrusion could be utilised such as monitoring the volume of activity for each
entity (computer, user or port) individually.

From applying the proposed change point procedure to the LANL data it is
evident BFF has similar performance to batch approaches. Additionally, for this
data, the threshold approach for BOCPD had more favourable results over col-
maxes which contrasts with the results from the IBM analysis in Chapter 4. In the
case of anomaly detection, both the proposed FDARIMA and SL Decomposition
methods detect similar points to the Twitter method, a batch approach, showing
their suitability in practice. The Twitter method however flags large numbers of
alerts in the data due to the variation in the seasonal component between the days.

On static graphs, Simple NMTF showed high clustering performance in terms
of the proposed NCS measure where for day 22, Simple NMTF had the best
clustering performance overall. In addition, the computation time for the proposed
procedure is significantly faster than any competitive approach. The dynamic
version of this procedure produced smooth clustering on the LANL network with
minimal reduction in clustering performance in comparison to the static method.
Additionally, Dynamic SNMTF provides an improvement in the computational
speed over the static version. Further investigation into the cluster evolution of
the clustering could be performed to assist in identifying intruders in the network
but is beyond the scope of the thesis.

In summary, it has been shown that all of the proposed procedures presented
are fast and scalable, making them suitable for application to large scale enterprise
cyber-security networks with high performance. Additionally, all approaches are
adaptable, making them suitable for data streams. The methods presented pro-
vide a wide range of tools that can be used to monitor the network for improved
situational awareness and detection of intruders.

142

Chapter 9

Conclusion

Computer networks produce vast numbers of high frequency data streams that can
be monitored for the detection of intruders. As the number and sophistication of
attacks increases, new methods of detection are required to complement existing
signature-based procedures. In this thesis, statistical monitoring and intrusion
detection procedures are proposed to assist analysts to identify abnormal activities
in the network. Due to the high volume, frequency and ever changing nature of
cyber data, the procedures proposed are adaptive, autonomous, sequential/online
and computationally fast for real time analysis.

A comprehensive set of monitoring tools are provided for both situational
awareness and intrusion detection in enterprise computer networks. The first set
of tools are for the analysis of univariate ordered data streams. A clustering tool
is additionally provided to group nodes based on their activity across all network
data sets. Each of the methods have been validated on real enterprise data and
the contributions for each piece of work are now described in more detail.

To monitor the changing behaviour of a data stream, the novel Bayesian Forget-
ting Factor (BFF) adaptive estimator with sequential updating forms is proposed
in Chapter 3 which is suitable for applications to high frequency data streams.
Forgetting factors are incorporated in the model to introduce a temporal aspect
where, unlike the frequentist counterpart, estimation of this forgetting factor does
not require hard to set hyper-parameters. A prior updating mechanism is addition-
ally proposed such that prior estimates have a constant influence over the stream
to improve the adaptability of the method. From the experiments performed,
the proposed BFF procedure has consistent performance, unlike competitive ap-
proaches which are highly sensitive to the choice of hyper-parameter. Additionally,
the estimates of the procedure adapt swiftly when changes in the data generating
process occur.

Abrupt changes may exist in the data stream, potentially corresponding to
adversaries, where detection of such abnormalities is the focus of Chapter 4. The
proposed novel change point method utilises the estimated posterior distribution
from the adaptive estimator in Chapter 3 to calculate p-values for newly observed

143

Chapter 9. Conclusion

data points. Through calibration of these p-values, setting the change point thresh-
old becomes intuitive unlike competitive approaches such as AFF and BOCPD.
An unequivocal contribution of this method is its ability to detect abrupt changes
in the presence of trend with a low false positive rate. These qualities are de-
sirable to prevent an unproductive and costly investigation by human analysts
on falsely identified change points. BFF shows comparable performance to well
regarded benchmark procedures in the field on simulated and real data. When
applied to real IBM stock open prices, BFF shows high similarity in the detec-
tions to DeCAFS, a batch procedure, with small computation times in comparison
to BOCPD, the highest performing sequential procedure on simulated examples.
Criticisms of BOCPD are also provided to highlight its practical flaws, namely
long computation times, detection lags and hard to set hyper-parameters that
BFF does not face.

Data streams are often subject to regular patterns or seasonality. The pro-
posed combined forecast methods and associated anomaly detection procedures
in Chapter 5 are well suited for such data. Unlike the majority of existing ap-
proaches, the proposed methods, FDARIMA and SLD are capable of detecting
both point and contextual anomalies through fusing the short-term and long-term
behaviours of the series using an adaptive framework. Additionally, the proposed
methods can update sequentially with fixed storage requirements. From applica-
tion to simulated data, the proposed procedures, FDARIMA and SLD, outperform
existing approaches with high similarity to the best batch approach, the Twitter
procedure. However, during application to enterprise network data in Chapter 8,
it was evident the Twitter method was not suitable as it was unable to capture
the daily pattern of the data, labelling it as anomalous. The proposed procedures
show promising results for the online detection of anomalies with low false positive
rates.

Computer networks can also naturally be expressed as multiple network graphs
where the work in Chapter 6 looks to find the underlying relationships between
the network entities using clustering. Simple NMTF, a Non-Negative Matrix Tri-
Factorisation is proposed fusing information from multiple network graphs to pro-
duce a single clustering for each node type. Non-negative factor matrices within
the factorisation are replaced with binary cluster indicator matrices to improve
both computational speed and interpretability, the key benefit of this method.
This simplification significantly reduces the computational load, making it scal-
able for large computer networks. A novel weighted version of the procedure is
additionally explored which allows for a deeper understanding of the contribution
of each graph towards the final clustering. As multi-type clustering is a relatively
unexplored approach, initialisation and cluster validation methods are not well es-
tablished in this field. We propose an extension of the popular uni-partite cluster-
ing initialisation procedure, NNDSVD, for multi-type relational clustering. From
simulations, it is shown to improve the stability of the clustering in comparison
to random initialisation without compromising cluster performance. As internal

144

Chapter 9. Conclusion

clustering performance measures for multi-type relational clustering do not cur-
rently exist, NCS is proposed which can assess the clustering at the node, graph
and network levels showing similar performance rankings to established external
performance measures. The clustering procedure is applied to both simulated
and real data. The proposed procedure shows consistently high performance and
notably fast computation times, outperforming the existing multi-type relational
clustering procedures.

To our knowledge, dynamic multi-type relational clustering methods have not
yet been developed for clustering on graph streams. The proposed clustering,
Simple NMTF, is extended for application to graph streams in Chapter 7 to fill
this research gap. The proposed dynamic clustering procedure, Dynamic SNMTF,
utilises the calculated clustering from the previous time to initialise Simple NMTF
rather than using the proposed NNDSVD initialisation procedure at each update.
From application to simulated graph streams using a stochastic block model, the
proposed dynamic clustering method improves computation speed and smoothness
between consecutive clusterings without significantly compromising the clustering
performance in comparison to the static version of the procedure.

Finally, in Chapter 8 all proposed approaches are applied to a real enterprise
network data set to test the suitability of the methods for such application. Al-
though the data does not contain labels for intrusions or the underlying clustering,
the performance is assessed via comparison to highly regarded methods or through
the use of internal measures. This chapter shows the proposed procedures are
suitable for enterprise network monitoring with high similarity to batch and well
regarded methods. In addition, the procedures are quick to compute with fixed
storage requirements, making them practical.

The proposed statistical network monitoring and intrusion detection procedures
presented in this thesis are important in practice for identifying intruders with a
foothold on the network. The tools provided give analysts a comprehensive tool set
for identifying a number of attack vectors such as large volume attacks which can be
identified using the proposed change point procedure, contextual anomalies within
the data can be detected using the proposed anomaly detection procedure and
finally understanding about the underlying grouping of the nodes based on their
activity is given by the Simple NMTF procedure. As adversaries are constantly
changing their attack vectors it is important to monitor the data using such a wide
range of approaches to prevent adversaries from avoiding detection in the future.

Future Work

To conclude, possible extensions and future work directions are now presented
for the methods proposed in this thesis. Within the Bayesian adaptive estimation
procedure in Chapter 3, a clear relationship between the estimated forgetting factor
and the variance of the data is observed. This relationship gives insight into
the workings of the forgetting factor within the model. Further exploration of

145

Chapter 9. Conclusion

this relationship to better understand this adaptive forgetting factor could be
investigated. From the analysis performed, this relationship suggests that for the
given variance of the data, an appropriate forgetting factor can be assigned, which
is a novel view of this factor.

The change point method in Chapter 4 is presented for univariate data streams
however this can readily be extended to the multivariate Gaussian case. Change
point detection on multivariate data streams is an exceptionally challenging re-
search problem where exploration of this issue is beyond the scope of this thesis.
Whilst initial experiments for this problem have been conducted, several challenges
were presented which include identifying change points when only small subsets of
the dimensions observe a change and determining whether a universal forgetting
factor over all dimensions or an individual factor for each is more appropriate.

Finally, although Simple NMTF provides a tool for improved awareness of node
activities and groupings of these nodes, this work can be extended for anomaly
detection. In practice, further understanding of the calculated clusterings may be
available from obtaining additional features for the computers and users (such as
job descriptions/computer functionality) and can be used to categorise the clusters
found and potentially validate them. There is a wide range of possible avenues
for identifying anomalies from the clustering results at the node, edge, graph and
network level. Firstly cluster changes can be monitored. For example, investigation
of nodes that move between low degree to high degree clusters or clusters with
very little similarity can be identified. The anomalousness of new edges can also be
monitored. From the clustering, the probability of the edge between the respective
clusters (that the nodes are assigned to) can be calculated where unusual edges
are flagged. Cluster evolution analysis as done by Landauer et al. [2018] can
additionally be performed to identify anomalies in the data. Thus there is a large
potential for intrusion detection from the network clustering performed.

146

Bibliography

Ryan Prescott Adams and David J. C. MacKay. Bayesian Online Changepoint
Detection. 2007. URL https://arxiv.org/abs/0710.3742. arXiv: 0710.3742.

Charu C. Aggarwal. Data Streams, volume 31 of Advances in Database Systems.
Springer US, Boston, MA, 2007. doi:10.1007/978-0-387-47534-9.

Mohiuddin Ahmed, Abdun Naser Mahmood, and Jiankun Hu. A survey of network
anomaly detection techniques. Journal of Network and Computer Applications,
60:19–31, 2016. doi:10.1016/j.jnca.2015.11.016.

Leman Akoglu, Hanghang Tong, and Danai Koutra. Graph Based Anomaly De-
tection and Description: A Survey. Data Mining and Knowledge Discovery, 29
(3):626–688, 2015. doi:10.1007/s10618-014-0365-y.

Samaneh Aminikhanghahi and Diane J. Cook. A Survey of Methods for Time
Series Change Point Detection. Knowledge and Information Systems, 51(2):
339–367, 2017. doi:10.1007/s10115-016-0987-z.

Christoforos Anagnostopoulos, Dimitris K. Tasoulis, Niall M. Adams, Nicos G.
Pavlidis, and David J. Hand. Online Linear and Quadratic Discriminant Anal-
ysis with Adaptive Forgetting for Streaming Classification. Statistical Analysis
and Data Mining, 5(2):139–166, 2012. doi:10.1002/sam.10151.

David Arthur and Sergei Vassilvitskii. K-means++: The Advantages of Care-
ful Seeding. In Proceedings of the Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 1027–1035, 2007. ISBN 9780898716245.

Sitaram Asur, Srinivasan Parthasarathy, and Duygu Ucar. An Event-Based
Framework for Characterizing the Evolutionary Behavior of Interaction Graphs.
ACM Transactions on Knowledge Discovery from Data, 3(4):1–36, 2009.
doi:10.1145/1631162.1631164.

Syed Muhammad Atif, Sameer Qazi, and Nicolas Gillis. Improved SVD-based
Initialization for Nonnegative Matrix Factorization using Low-Rank Correction.
Pattern Recognition Letters, 122:53–59, 2019. doi:10.1016/j.patrec.2019.02.018.

147

Bibliography

Arindam Banerjee, Sugato Basu, and Srujana Merugu. Multi-Way Clustering on
Relation Graphs. In Proceedings of the 2007 SIAM International Conference on
Data Mining, pages 145–156. Society for Industrial and Applied Mathematics,
2007. doi:10.1137/1.9781611972771.14.

Rafal Baranowski, Yining Chen, and Piotr Fryzlewicz. Narrowest-Over-Threshold
Detection of Multiple Change Points and Change-Point-Like Features. Journal
of the Royal Statistical Society: Series B (Statistical Methodology), 81(3):649–
672, 2019. doi:10.1111/rssb.12322.

Michael J. Barber. Modularity and Community Detection in Bipartite Networks.
Physical Review E, 76(6):066102, 2007. doi:10.1103/PhysRevE.76.066102.

Jaros law Bernacki and Grzegorz Ko laczek. Anomaly Detection in Network
Tra�c Using Selected Methods of Time Series Analysis. International
Journal of Computer Network and Information Security, 7(9):10–18, 2015.
doi:10.5815/ijcnis.2015.09.02.

Kelly Bissell, Ryan M. Lasalle, and Paolo Dal Cin. The Cost of Cybercrime. Tech-
nical report, Accenture Security and Ponemon Institue LLC, 2019. URL https:
//www.accenture.com/us-en/insights/security/cost-cybercrime-study.

Dean Bodenham. ↵stream: Forgetting Factor Methods for Change Detection
in Streaming Data, 2018. URL https://CRAN.R-project.org/package=
ffstream. R package version 0.1.6.

Dean A. Bodenham. Adaptive Estimation with Change Detection for Streaming
Data. PhD thesis, Imperial College London, Department of Mathematics, 2014.

Dean A. Bodenham and Niall M. Adams. Continuous Monitoring for Changepoints
in Data Streams using Adaptive Estimation. Statistics and Computing, 27(5):
1257–1270, 2017. doi:10.1007/s11222-016-9684-8.

Christos Boutsidis and Efstratios Gallopoulos. SVD Based Initialization: A Head
Start for Nonnegative Matrix Factorization. Pattern Recognition, 41(4):1350–
1362, 2008. doi:10.1016/j.patcog.2007.09.010.

Chuck Brooks. Alarming Cybersecurity Stats: What You Need To Know For 2021,
2021. URL https://www.forbes.com/sites/chuckbrooks/2021/03/02/
alarming-cybersecurity-stats-------what-you-need-to-know-for-2021/
?sh=132a7e8658d3.

Alina Câmpan and Gabriela Åerban. Adaptive Clustering Algorithms. In Lec-
ture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), volume 4013 LNAI, pages
407–418. Springer Verlag, 2006. doi:10.1007/11766247 35.

148

Bibliography

Bin Cao, Dou Shen, Jian Tao Sun, Xuanhui Wang, Qiang Yang, and Zheng Chen.
Detect and Track Latent Factors with Online Nonnegative Matrix Factorization.
In IJCAI International Joint Conference on Artificial Intelligence, pages 2689–
2694, 2007. doi:10.5555/1625275.1625708.

Yanshuai Cao and Luyu Wang. Automatic Selection of t-SNE Perplexity. 2017.
URL https://arxiv.org/abs/1708.03229. arXiv: 1708.03229.

Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly Detection:
A Survey. In ACM Computing Surveys, volume 41, pages 1–58. 2009.
doi:10.1145/1541880.1541882.

Chung Chen and Lon-Mu Liu. Joint Estimation of Model Parameters and Outlier
E↵ects in Time Series. Journal of the American Statistical Association, 88(421):
284, 1993. doi:10.2307/2290724.

Roland Chrobok, Oliver Kaumann, Joachim Wahle, and Michael Schreckenberg.
Di↵erent Methods of Tra�c Forecast Based on Real Data. In European Jour-
nal of Operational Research, volume 155, pages 558–568. North-Holland, 2004.
doi:10.1016/j.ejor.2003.08.005.

Robert B. Cleveland, William S. Cleveland, Jean E. McRae, and Irma Terpenning.
STL: A Seasonal-Trend Decomposition Procedure Based on Loess. Journal of
O�cial Statistics, 6:3–73, 1990.

William S Cleveland and Susan J Devlin. Locally-Weighted Fitting: An Approach
to Fitting Analysis by Local Fitting. Journal of the American Statistical Asso-
ciation, 83(403):596–610, 1988.

Gari D. Cli↵ord, Ikaro Silva, Benjamin Moody, Qiao Li, Danesh Kella, Abdul-
lah Shahin, Tristan Kooistra, Diane Perry, and Roger G. Mark. The Phys-
ioNet/Computing in Cardiology Challenge 2015: Reducing False Arrhythmia
Alarms in the ICU. In 2015 Computing in Cardiology Conference (CinC), pages
273–276. IEEE, 2015. doi:10.1109/CIC.2015.7408639.

Andrej Čopar, Blaž Zupan, and Marinka Zitnik. Fast Optimization
of Non-Negative Matrix Tri-Factorization. PLOS ONE, 14(6), 2019.
doi:10.1371/journal.pone.0217994.

Matt Dancho and Davis Vaughan. anomalize: Tidy Anomaly Detection, 2020.
URL https://cran.r-project.org/package=anomalize. R package version
0.2.2.

Mikhail Dashevskiy and Zhiyuan Luo. Network Tra�c Demand Prediction with
Confidence. In 2008 IEEE Global Telecommunications Conference, pages 1–5.
IEEE, 2008. doi:10.1109/GLOCOM.2008.ECP.284.

149

Bibliography

David L. Davies and Donald W. Bouldin. A Cluster Separation Measure. IEEE
Transactions on Pattern Analysis and Machine Intelligence, PAMI-1(2):224–
227, 1979. doi:10.1109/TPAMI.1979.4766909.

Anthony C. Davison and David V. Hinkley. Bootstrap Methods and their Applica-
tion. Cambridge University Press, 1997. doi:10.1017/CBO9780511802843.

Jan G. De Gooijer and Rob J. Hyndman. 25 Years of Time Series
Forecasting. International Journal of Forecasting, 22(3):443–473, 2006.
doi:10.1016/j.ijforecast.2006.01.001.

Nicoletta Del Buono and Gianvito Pio. Non-Negative Matrix Tri-Factorization for
Co-Clustering: An Analysis of the Block Matrix. Information Sciences, 301:
13–26, 2015. doi:10.1016/j.ins.2014.12.058.

Frédéric Desobry, Manuel Davy, and Christian Doncarli. An Online Kernel Change
Detection Algorithm. IEEE Transactions on Signal Processing, 53(8):2961–2974,
2005. doi:10.1109/TSP.2005.851098.

Chris Ding, Xiaofeng He, and Horst D. Simon. On the Equivalence of Nonnegative
Matrix Factorization and Spectral Clustering. In Proceedings of the 2005 SIAM
International Conference on Data Mining, pages 606–610. Society forIndustrial
and Applied Mathematics, 2005. doi:10.1137/1.9781611972757.70.

Chris Ding, Tao Li, Wei Peng, and Haesun Park. Orthogonal Nonnegative Matrix
Tri-Factorizations for Clustering. In Proceedings of the 12th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining - KDD ’06,
page 126, 2006. doi:10.1145/1150402.1150420.

Nan Ding, Huanbo Gao, Hongyu Bu, Haoxuan Ma, and Huaiwei Si. Multivariate-
Time-Series-Driven Real-time Anomaly Detection Based on Bayesian Network.
Sensors, 18(10):3367, 2018. doi:10.3390/s18103367.

J. C. Dunn. Well-Separated Clusters and Optimal Fuzzy Partitions. Journal of
Cybernetics, 4(1):95–104, 1974. doi:10.1080/01969727408546059.

Carl Eckart and Gale Young. The Approximation of One Matrix by Another of
Lower Rank. Psychometrika, 1(3):211–218, 1936. doi:10.1007/BF02288367.

Paul Fearnhead. Exact and E�cient Bayesian Inference for Multiple Changepoint
Problems. Statistics and Computing, 16(2):203–213, 2006. doi:10.1007/s11222-
006-8450-8.

Paul Fearnhead, Robert Maidstone, and Adam Letchford. Detecting Changes in
Slope With an L0 Penalty. Journal of Computational and Graphical Statistics,
28(2):265–275, 2019. doi:10.1080/10618600.2018.1512868.

150

Bibliography

Ronald A. Fisher. Statistical Methods for Research Workers. Number V. 1925.
doi:10.1056/NEJMc061160.

Piotr Fryzlewicz. Wild Binary Segmentation for Multiple Change-Point Detection.
The Annals of Statistics, 42(6):2243–2281, 2014. doi:10.1214/14-AOS1245.

Colin Gallagher, Robert Lund, and Michael Robbins. Changepoint Detection in
Climate Time Series with Long-Term Trends. Journal of Climate, 26(14):4994–
5006, 2013. doi:10.1175/JCLI-D-12-00704.1.

João Gama. Knowledge Discovery from Data Streams. Chapman and Hall, Boca
Raton, 2010. ISBN 978-1-4398-2611-9.

G Gardner, Andrew C. Harvey, and Garry D. Phillips. Algorithm AS 154: An
Algorithm for Exact Maximum Likelihood Estimation of Autoregressive-Moving
Average Models by Means of Kalman Filtering. Applied Statistics, 29(3):311–
322, 1980.

Ryan Garnett, Michael A. Osborne, Steven Reece, Alex Rogers, and
Stephen J. Roberts. Sequential Bayesian Prediction in the Presence of
Changepoints and Faults. The Computer Journal, 53(9):1430–1446, 2010.
doi:10.1093/comjnl/bxq003.

Andrew Gelman. Two Simple Examples for Understanding Posterior P-Values
whose Distributions are Far from Uniform. Electronic Journal of Statistics, 7
(1):2595–2602, 2013. doi:10.1214/13-EJS854.

Robert Görke, Pascal Maillard, Andrea Schumm, Christian Staudt, and
Dorothea Wagner. Dynamic Graph Clustering Combining Modularity and
Smoothness. ACM Journal of Experimental Algorithmics, 18(1), 2013.
doi:10.1145/2444016.2444021.

Derek Greene and Pádraig Cunningham. A Matrix Factorization Approach for
Integrating Multiple Data Views. In Joint European Conference on Machine
Learning and Knowledge Discovery in Databases, pages 423–438. Springer,
Berlin, Heidelberg, 2009. doi:10.1007/978-3-642-04180-8 45.

Derek Greene, Dónal Doyle, and Pádraig Cunningham. Tracking the Evolution of
Communities in Dynamic Social Networks. In 2010 International Conference on
Advances in Social Networks Analysis and Mining, pages 176–183. IEEE, 2010.
doi:10.1109/ASONAM.2010.17.

Jonathan L. Gross and Jay Yellen. Handbook of Graph Theory. CRC Press, 2003.
ISBN 978-1439880180.

Roger Guimerà, Marta Sales-Pardo, and Lúıs A. Nunes Amaral. Module Identi-
fication in Bipartite and Directed Networks. Physical Review E, 76(3):036102,
2007. doi:10.1103/PhysRevE.76.036102.

151

Bibliography

Fredrik Gustafsson. The Marginalized Likelihood Ratio Test for Detecting
Abrupt Changes. IEEE Transactions on Automatic Control, 41(1):66–78, 1996.
doi:10.1109/9.481608.

Fredrik Gustafsson. Adaptive Filtering and Change Detection. John Wiley & Sons,
Ltd, Chichester, UK, 2001. ISBN 9780470841617. doi:10.1002/0470841613.

Zäıd Harchaoui, Eric Moulines, and Francis Bach. Kernel Change-point Analysis.
In D Koller, D Schuurmans, Y Bengio, and L Bottou, editors, Advances in Neural
Information Processing Systems, volume 21, pages 609–616. Curran Associates,
Inc., 2009.

Douglas M. Hawkins. Cumulative Sum Control Charting: An Underutilised SPC
Tool. Quality Engineering, 5(3):463–477, 1993. doi:10.1080/08982119308918986.

Simon S. Haykin. Adaptive Filter Theory. Prentice Hall, 2002. ISBN
9780273764106.

Nicholas A. Heard and Patrick Rubin-Delanchy. Network-wide anomaly detection
via the dirichlet process. In 2016 IEEE Conference on Intelligence and Security
Informatics (ISI), pages 220–224, 2016. doi:10.1109/ISI.2016.7745478.

Nicholas A. Heard and Patrick Rubin-Delanchy. Choosing between
methods of combining p-values. Biometrika, 105(1):239–246, 2018.
doi:10.1093/BIOMET/ASX076.

Monika R. Henzinger, Prabhakar Raghavan, and Sridhar Rajagopalan. Computing
on Data Streams, pages 107–118. American Mathematical Society, USA, 1999.
ISBN 0821811843.

David J. Hill and Barbara S. Minsker. Anomaly Detection in Streaming En-
vironmental Sensor Data: A Data-Driven Modeling Approach. Environmental
Modelling & Software, 25(9):1014–1022, 2010. doi:10.1016/j.envsoft.2009.08.010.

Jordan Hochenbaum, Owen S. Vallis, and Arun Kejariwal. Automatic Anomaly
Detection in the Cloud Via Statistical Learning. 2017. URL https://arxiv.
org/abs/1704.07706. arXiv: 1704.07706.

Paul W. Holland, Kathryn Blackmond Laskey, and Samuel Leinhardt. Stochas-
tic Blockmodels: First Steps. Social Networks, 5(2):109–137, 1983.
doi:10.1016/0378-8733(83)90021-7.

Lawrence Hubert and Phipps Arabie. Comparing partitions. Journal of Classifi-
cation, 2:193–218, 1985. doi:10.1007/BF01908075.

Rob J. Hyndman. Another Look At Forecast-Accuracy Metrics for Intermittent
Demand. Foresight: The International Journal of Applied Forecasting, (4):43–
46, 2006. doi:10.1.1.218.7816.

152

Bibliography

Rob J. Hyndman and George Athanasopoulos. Forecasting: Principles and Prac-
tice. OTexts, Melbourne, Australia, 2nd edition, 2018. ISBN 9780987507112.

Rob J. Hyndman and Yeasmin Khandakar. Automatic Time Series Forecast-
ing: The forecast Package for R. Journal of Statistical Software, 26(3), 2008.
doi:10.18637/jss.v027.i03.

Rob J. Hyndman and Anne B. Koehler. Another Look at Measures of Fore-
cast Accuracy. International Journal of Forecasting, 22(4):679–688, 2006.
doi:10.1016/j.ijforecast.2006.03.001.

Joseph G. Ibrahim and Ming-Hui Chen. Power Prior Distributions for Regression
Models. Statistical Science, 15(1):46–60, 2000. doi:10.1214/ss/1009212673.

Joseph G. Ibrahim, Ming-Hui Chen, Yeongjin Gwon, and Fang Chen. The Power
Prior: Theory and Applications. Statistics in Medicine, 34(28):3724–3749, 2015.
doi:10.1002/sim.6728.

Vladislav Ishimtsev, Ivan Nazarov, Alexander Bernstein, and Evgeny Burnaev.
Conformal k-NN Anomaly Detector for Univariate Data Streams. Proceedings
of Machine Learning Research, 60:1–15, 2017.

Alaiñe Iturria, Jacinto Carrasco, Santi Charramendieta, Angel Conde, and Fran-
cisco Herrera. otsad: A package for Online Time-Series Anomaly Detectors.
Neurocomputing, 374:49–53, 2020. doi:10.1016/j.neucom.2019.09.032.

Anil K. Jain and Richard C. Dubes. Algorithms for Clustering Data. Prentice
Hall, Englewood Cli↵s, 1988. ISBN 978-0-13-022278-7.

Keisuke Kato and Vitaly Klyuev. Large-scale Network Packet Analysis for Intelli-
gent DDoS Attack Detection Development. In The 9th International Conference
for Internet Technology and Secured Transactions (ICITST-2014), pages 360–
365. IEEE, 2014. doi:10.1109/ICITST.2014.7038838.

Yoshinobu Kawahara and Masashi Sugiyama. Sequential Change-Point Detection
based on Direct Density-Ratio Estimation. Statistical Analysis and Data Mining,
5(2):114–127, 2012. doi:10.1002/sam.10124.

Daniel Keim, Jörn Kohlhammer, Geo↵rey Ellis, and Florian Mansmann. Mas-
tering the Information Age: Solving Problems with Visual Analytics. Goslar:
Eurographics Association, Germany, 2010. doi:10.2312/14803.

Arun Kejariwal. Introducing Practical and Robust Anomaly Detection in a Time
Series, 2015. URL https://blog.twitter.com/engineering/en_us/a/2015/
introducing-practical-and-robust-anomaly-detection-in-a-time-series.
html.

153

Bibliography

Alexander D. Kent. Comprehensive, Multi-Source Cyber-Security Events. Los
Alamos National Laboratory, 2015. URL http://dx.doi.org/10.17021/
1179829.

Rebecca Killick, Paul Fearnhead, and Idris A. Eckley. Optimal De-
tection of Changepoints With a Linear Computational Cost. Jour-
nal of the American Statistical Association, 107(500):1590–1598, 2012.
doi:10.1080/01621459.2012.737745.

Rebecca Killick, Kaylea Haynes, and Idris A. Eckley. changepoint: An R package
for changepoint analysis, 2016. URL https://CRAN.R-project.org/package=
changepoint. R package version 2.2.2.

Abhishek Kumar, Piyush Rai, and Hal Daumé III. Co-regularized Multi-view
Spectral Clustering. In NIPS’11 Proceedings of the 24th International Confer-
ence on Neural Information Processing Systems, pages 1413–1421, 2011.

Ravi Kumar, Jasmine Novak, and Andrew Tomkins. Structure and Evolution of
Online Social Networks. In Proceedings of the 12th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining - KDD ’06, page 611.
ACM Press, 2006. doi:10.1145/1150402.1150476.

Tze Leung Lai. Sequential Changepoint Detection in Quality Control and Dynam-
ical Systems. Journal of the Royal Statistical Society: Series B (Methodological),
57(4):613–644, 1995. doi:10.1111/j.2517-6161.1995.tb02052.x.

Max Landauer, Markus Wurzenberger, Florian Skopik, Giuseppe Settanni, and
Peter Filzmoser. Dynamic Log File Analysis: An Unsupervised Cluster Evolu-
tion Approach for Anomaly Detection. Computers & Security, 79:94–116, 2018.
doi:10.1016/j.cose.2018.08.009.

Ken Lang. NewsWeeder: Learning to Filter Netnews. In Machine Learning Pro-
ceedings 1995, pages 331–339. 1995.

Alexander Lavin and Subutai Ahmad. Evaluating Real-Time Anomaly Detection
Algorithms - The Numenta Anomaly Benchmark. In 2015 IEEE 14th Inter-
national Conference on Machine Learning and Applications (ICMLA), pages
38–44, 2015. doi:10.1109/ICMLA.2015.141.

Rikard Laxhammar and Göran Falkman. Sequential Conformal Anomaly Detec-
tion in Trajectories based on Hausdor↵ Distance. In 14th International Confer-
ence on Information Fusion, pages 1–8, 2011.

Daniel D Lee and H Sebastian Seung. Algorithms for Non-Negative Matrix Factor-
ization. In Advances in Neural Information Processing Systems, pages 556–562,
2001. doi:10.1109/IJCNN.2008.4634046.

154

Bibliography

Li Li, Xiaonan Su, Yi Zhang, Yuetong Lin, and Zhiheng Li. Trend Mod-
eling for Tra�c Time Series Analysis: An Integrated Study. IEEE
Transactions on Intelligent Transportation Systems, 16(6):3430–3439, 2015.
doi:10.1109/TITS.2015.2457240.

Jialu Liu, Chi Wang, Jing Gao, and Jiawei Han. Multi-View Cluster-
ing via Joint Nonnegative Matrix Factorization. In Proceedings of the
2013 SIAM International Conference on Data Mining, pages 252–260. 2013.
doi:10.1137/1.9781611972832.28.

Kai Liu and Hua Wang. High-Order Co-Clustering via Strictly Orthogonal and
Symmetric L1-Norm Nonnegative Matrix Tri-Factorization. In Proceedings of
the Twenty-Seventh International Joint Conference on Artificial Intelligence,
pages 2454–2460, 2018. doi:10.24963/ijcai.2018/340.

Xin Liu, Hui-Min Cheng, and Zhong-Yuan Zhang. Evaluation of Community
Detection Methods. IEEE Transactions on Knowledge and Data Engineering,
pages 1736–1746, 2019. doi:10.1109/TKDE.2019.2911943.

Bo Long, Zhongfei (Mark) Zhang, and Philip S Yu. Co-Clustering by Block Value
Decomposition. In Proceeding of the Eleventh ACM SIGKDD International
Conference on Knowledge Discovery in Data Mining - KDD ’05, page 635. ACM
Press, 2005. doi:10.1145/1081870.1081949.

Bo Long, Zhongfei Mark Zhang, and Philip S. Yu. A Probabilistic Framework for
Relational Clustering. In Proceedings of the 13th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining - KDD ’07, page 470.
ACM Press, 2007. doi:10.1145/1281192.1281244.

Javier López-de Lacalle. tsoutliers: Detection of Outliers in Time Series, 2019.
URL https://cran.r-project.org/package=tsoutliers. R package version
0.6-8.

James M. Lucas and Michael S. Saccucci. Exponentially Weighted Moving Average
Control Schemes: Properties and Enhancements. Technometrics, 32(1):1–12,
1990. doi:10.1080/00401706.1990.10484583.

Matthew Ludkin, Idris Eckley, and Peter Neal. Dynamic Stochastic Block Mod-
els: Parameter Estimation and Detection of Changes in Community Structure.
Statistics and Computing, 28(6):1201–1213, 2018. doi:10.1007/s11222-017-9788-
9.

Xiaoke Ma and Di Dong. Evolutionary Nonnegative Matrix Factoriza-
tion Algorithms for Community Detection in Dynamic Networks. IEEE
Transactions on Knowledge and Data Engineering, 29(5):1045–1058, 2017.
doi:10.1109/TKDE.2017.2657752.

155

Bibliography

Grzegorz Marcjasz, Bartosz Uniejewski, and Rafa l Weron. On the Importance of
the Long-Term Seasonal Component in Day-Ahead Electricity Price Forecasting
with NARX Neural Networks. International Journal of Forecasting, 35(4):1520–
1532, 2019. doi:10.1016/j.ijforecast.2017.11.009.

Catherine Matias and Vincent Miele. Statistical Clustering of Temporal Net-
works Through a Dynamic Stochastic Block Model. Journal of the Royal
Statistical Society. Series B: Statistical Methodology, 79(4):1119–1141, 2017.
doi:10.1111/rssb.12200.

Dan Mcwhorter. APT1: Exposing One of China’s Cyber Espionage Units. Tech-
nical report, Mandiant, 2013. URL https://www.mandiant.com/resources/
apt1-exposing-one-of-chinas-cyber-espionage-units.

Xiao-Li Meng. Posterior Predictive p-Values. The Annals of Statistics, 22(3):
1142–1160, 1994. doi:10.1214/aos/1176325622.

Andrew V. Metcalfe and Paul S. P. Cowpertwait. Introductory Time Series with
R. Springer New York, New York, 2009. doi:10.1007/978-0-387-88698-5.

Silvia Metelli and Nicholas A. Heard. On Bayesian New Edge Prediction and
Anomaly Detection in Computer Networks. The Annals of Applied Statistics,
13(4):2586–2610, 2019. doi:10.1214/19-AOAS1286.

Ana Militino, Mehdi Moradi, and M. Ugarte. On the Performances of Trend and
Change-Point Detection Methods for Remote Sensing Data. Remote Sensing,
12(6):1008, 2020. doi:10.3390/rs12061008.

Laura Millán-Roures, Irene Epifanio, and Vicente Mart́ınez. Detection of Anoma-
lies in Water Networks by Functional Data Analysis. Mathematical Problems in
Engineering, 2018:1–13, 2018. doi:10.1155/2018/5129735.

Farnaz Moradi, Tomas Olovsson, and Philippas Tsigas. Overlapping Communities
for Identifying Misbehavior in Network Communications. In Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), volume 8443 LNAI, pages 398–409. 2014.
doi:10.1007/978-3-319-06608-0 33.

Matthew Morgan, Joseph Sexton, Joshua Neil, Aleta Ricciardi, and Joshua
Theimer. Network Attacks and the Data they A↵ect. In Dynamic Networks
and Cyber-Security, volume 1, pages 1–36. World Scientific (Europe), 2016.
doi:10.1142/9781786340757 0001.

Mohsin Munir, Shoaib Ahmed Siddiqui, Andreas Dengel, and Sheraz
Ahmed. DeepAnT: A Deep Learning Approach for Unsupervised
Anomaly Detection in Time Series. IEEE Access, 7:1991–2005, 2018.
doi:10.1109/ACCESS.2018.2886457.

156

Bibliography

Tsuyoshi Murata. Detecting Communities from Bipartite Networks Based on Bi-
partite Modularities. In 2009 International Conference on Computational Sci-
ence and Engineering, pages 50–57. IEEE, 2009. doi:10.1109/CSE.2009.81.

Joshua Neil, Curtis Hash, Alexander Brugh, Mike Fisk, and Curtis B. Storlie. Scan
Statistics for the Online Detection of Locally Anomalous Subgraphs. Techno-
metrics, 55(4):403–414, 2013. doi:10.1080/00401706.2013.822830.

Mark Newman. Networks: An Introduction. Oxford University Press, 2010.
doi:10.1093/acprof:oso/9780199206650.001.0001.

Mark E. J. Newman and Michelle Girvan. Finding and Evaluating
Community Structure in Networks. Physical Review E, 69(2), 2004.
doi:10.1103/PhysRevE.69.026113.

Seyyed M. T. Nezhad, Mahboubeh Nazari, and Ebrahim A. Gharavol. A Novel
DoS and DDoS Attacks Detection Algorithm Using ARIMA Time Series Model
and Chaotic System in Computer Networks. IEEE Communications Letters, 20
(4):700–703, 2016. doi:10.1109/LCOMM.2016.2517622.

Jingchao Ni, Hanghang Tong, Wei Fan, and Xiang Zhang. Flexible and Robust
Multi-Network Clustering. In Proceedings of the 21th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining - KDD ’15, vol-
ume 1, pages 835–844, 2015. doi:10.1145/2783258.2783262.

Jordan Noble and Niall M. Adams. Correlation-based streaming anomaly detection
in cyber-security. In 2016 IEEE 16th International Conference on Data Mining
Workshops (ICDMW), pages 311–318, 2016. doi:10.1109/ICDMW.2016.0051.

James R. Norris. Markov Chains. Cambridge University Press, 1998. ISBN
9780521633963.

Joseph J. K. Ó Ruanaidh and William J. Fitzgerald. Numerical Bayesian Methods
Applied to Signal Processing. Statistics and Computing. Springer New York,
1996. doi:10.1007/978-1-4612-0717-7.

Adriano L.I. Oliveira and Silvio R.L. Meira. Detecting Novelties in Time Series
Through Neural Networks Forecasting with Robust Confidence Intervals. Neu-
rocomputing, 70(1-3):79–92, 2006. doi:10.1016/j.neucom.2006.05.008.

E. S. Page. Continuous Inspection Schemes. Biometrika, 41(1/2):100, 1954.
doi:10.2307/2333009.

Andrea Pagotto. ocp: Bayesian Online Changepoint Detection, 2019. URL https:
//CRAN.R-project.org/package=ocp. R package version 0.1.1.

157

Bibliography

Francesco Sanna Passino and Nicholas A. Heard. Modelling dynamic network
evolution as a pitman-yor process. Foundations of Data Science, 1(3):293–306,
2019.

V. Paul Pauca, Farial Shahnaz, Michael W. Berry, and Robert J. Plemmons. Text
Mining using Non-Negative Matrix Factorizations. In Proceedings of the 2004
SIAM International Conference on Data Mining, pages 452–456. Society for
Industrial and Applied Mathematics, 2004. doi:10.1137/1.9781611972740.45.

Nicos G. Pavlidis, Dimitris K. Tasoulis, Niall M. Adams, and David J. Hand. �-
Perceptron: An Adaptive Classifier for Data Streams. Pattern Recognition, 44
(1):78–96, 2011. doi:10.1016/j.patcog.2010.07.026.

Yulong Pei, Nilanjan Chakraborty, and Katia Sycara. Nonnegative Matrix Tri-
Factorization with Graph Regularization for Community Detection in Social
Networks. Twenty-Fourth International Joint Conference on Artificial Intelli-
gence, pages 2083–2089, 2015.

Joshua Plasse and Niall M. Adams. Multiple Changepoint Detection in Cat-
egorical Data Streams. Statistics and Computing, 29(5):1109–1125, 2019.
doi:10.1007/s11222-019-09858-0.

Hanli Qiao. New SVD based Initialization Strategy for Non-Negative
Matrix Factorization. Pattern Recognition Letters, 63:71–77, 2015.
doi:10.1016/j.patrec.2015.05.019.

James Ramsay, Giles. Hooker, and Spencer. Graves. Functional Data Analysis
with R and MATLAB. Springer New York, New York, 2009. doi:10.1007/978-
0-387-98185-7.

James O. Ramsay, Spencer Graves, and Giles Hooker. fda: Functional Data Anal-
ysis, 2020. URL https://CRAN.R-project.org/package=fda. R package ver-
sion 5.1.5.1.

Haider Raza, Girijesh Prasad, and Yuhua Li. EWMA Model based Shift-Detection
Methods for Detecting Covariate Shifts in Non-Stationary Environments. Pat-
tern Recognition, 48(3):659–669, 2015. doi:10.1016/j.patcog.2014.07.028.

Rebecca Killick and Idris Eckley and Philip Jonathan. A Wavelet-Based Approach
for Detecting Changes in Second order Structure within Nonstationary Time Se-
ries. Electronic Journal of Statistics, 7:1167–1183, 2013. doi:10.1214/13-EJS799.

Elizabeth Riddle-Workman, Marina Evangelou, and Niall M. Adams. Adaptive
Anomaly Detection on Network Data Streams. In 2018 IEEE International
Conference on Intelligence and Security Informatics, ISI 2018, pages 19–24.
IEEE, 2018. doi:10.1109/ISI.2018.8587401.

158

Bibliography

Elizabeth Riddle-Workman, Marina Evangelou, and Niall M. Adams. Multi-Type
Relational Clustering for Enterprise Cyber-Security Networks. Pattern Recog-
nition Letters, 149:172–178, 2021. doi:10.1016/j.patrec.2021.05.021.

S. W. Roberts. Control Chart Tests Based on Geometric Moving Averages. Tech-
nometrics, 1(3):239–250, 1959. doi:10.1080/00401706.1959.10489860.

James M. Robins, Aad van der Vaart, and Valérie Ventura. Asymptotic Distribu-
tion of P Values in Composite Null Models. Journal of the American Statistical
Association, 95(452):1143–1156, 2000. doi:10.1080/01621459.2000.10474310.

Gaetano Romano, Guillem Rigaill, Vincent Runge, and Paul Fearnhead. De-
tecting Abrupt Changes in the Presence of Local Fluctuations and Autocor-
related Noise. Journal of the American Statistical Association, 0:1–16, 2021.
doi:10.1080/01621459.2021.1909598.

Gaetano Romano, Guillem Rigaill, Vincent Runge, and Paul Fearnhead. DeCAFS:
Detecting Changes in Autocorrelated and Fluctuating Signals, 2022. URL https:
//CRAN.R-project.org/package=DeCAFS. R package version 3.3.1.

Bernard Rosner. Percentage Points for a Generalized ESD Many-Outlier Proce-
dure. Technometrics, 25(2):165, 1983. doi:10.2307/1268549.

Peter J. Rousseeuw. Silhouettes: A Graphical Aid to The Interpretation and Vali-
dation of Cluster Analysis. Journal of Computational and Applied Mathematics,
20:53–65, 1987. doi:10.1016/0377-0427(87)90125-7.

Yunus Saatçi, Ryan Turner, and Carl Edward Rasmussen. Gaussian Process
Change Point Models. In ICML 2010 - Proceedings, 27th International Con-
ference on Machine Learning, pages 927–934, 2010. ISBN 9781605589077.

Arnaud Sallaberry, Chris Muelder, and Kwan-Liu Ma. Clustering, Visualizing,
and Navigating for Large Dynamic Graphs. In Lecture Notes in Computer Sci-
ence (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), volume 7704 LNCS, pages 487–498. Springer, Berlin,
Heidelberg, 2013. doi:10.1007/978-3-642-36763-2 43.

Francesco Sanna Passino and Nicholas A. Heard. Bayesian Estimation of the
Latent Dimension and Communities in Stochastic Blockmodels. Statistics and
Computing, 30(5):1291–1307, 2020. doi:10.1007/s11222-020-09946-6.

Simo Sarkka. Bayesian Filtering and Smoothing. Cambridge University Press,
Cambridge, 2013. doi:10.1017/CBO9781139344203.

A. J. Scott and M. Knott. A Cluster Analysis Method for Grouping Means in the
Analysis of Variance. Biometrics, 30(3):507, 1974. doi:10.2307/2529204.

159

Bibliography

Glenn Shafer and Vladimir Vovk. A Tutorial on Conformal Prediction. Journal
of Machine Learning Research, 9:371–421, 2007. doi:1390681.1390693.

Myra Spiliopoulou, Irene Ntoutsi, Yannis Theodoridis, and Rene Schult. MONIC:
Modeling and Monitoring Cluster Transitions. In Proceedings of the 12th
ACM SIGKDD international conference on Knowledge discovery and data min-
ing - KDD ’06, page 706, New York, New York, USA, 2006. ACM Press.
doi:10.1145/1150402.1150491.

Alexander Strehl and Joydeep Ghosh. Cluster Ensembles — a Knowledge Reuse
Framework for Combining Multiple Partitions. Journal of Machine Learning
Research, 3:583–617, 2003. doi:10.1162/153244303321897735.

Pang-Ning Tan, Michael Steinbach, Anuj Karpatne, and Vipin Kumar. In-
troduction to Data Mining. Pearson, 2nd edition, 2018. ISBN 0133128903,
9780133128901. doi:10.5555/3208440.

Alexander G. Tartakovsky, Boris L. Rozovskii, Rudolf B Blažek, and Hongjoong
Kim. A Novel Approach to Detection of Intrusions in Computer Net-
works via Adaptive Sequential and Batch-Sequential Change-Point Detection
Methods. IEEE Transactions on Signal Processing, 54(9):3372–3381, 2006.
doi:10.1109/TSP.2006.879308.

Sean J. Taylor and Benjamin Letham. Forecasting at Scale. The American Statis-
tician, 72(1):37–45, 2018. doi:10.1080/00031305.2017.1380080.

Marina Theodosiou. Forecasting Monthly and Quarterly Time Series using STL
Decomposition. International Journal of Forecasting, 27(4):1178–1195, 2011.
doi:10.1016/j.ijforecast.2010.11.002.

Melissa J.M. Turcotte, Alexander D. Kent, and Curtis Hash. Unified Host and
Network Data Set. In Data Science for Cyber-Security, pages 1–22. World Sci-
entific, 2019. doi:10.1142/9781786345646 001.

Ryan Turner, Yunus Saatci, and Carl Edward Rasmussen. Adaptive Sequen-
tial Bayesian Change Point Detection. In Temporal Segmentation Workshop
at NIPS, 2009.

Grigorios F. Tzortzis and Aristidis C. Likas. Kernel-Based Weighted Multi-view
Clustering. In 2012 IEEE 12th International Conference on Data Mining, pages
675–684. IEEE, 2012. doi:10.1109/ICDM.2012.43.

Insha Ullah, Kerrie Mengersen, Rob J. Hyndman, and James Mcgree. Detection
of Cybersecurity Attacks through Analysis of Web Browsing Activities using
Principal Component Analysis. 2021. URL https://arxiv.org/abs/2107.
12592. arXiv: 2107.12592.

160

Bibliography

Shahid Ullah and Caroline F. Finch. Applications of functional data analysis:
A systematic review. BMC Medical Research Methodology, 13(1):43, 2013.
doi:10.1186/1471-2288-13-43.

Laurens Van Der Maaten. Accelerating T-SNE Using Tree-Based Algo-
rithms. The Journal of Machine Learning Research, 15(1):3221–3245, 2014.
doi:10.5555/2627435.2697068.

Laurens Van Der Maaten and Geo↵rey Hinton. Visualizing Data using t-SNE.
Journal of Machine Learning Research, 9(11):2579–2605, 2008. URL http:
//jmlr.org/papers/v9/vandermaaten08a.html.

Jan Verbesselt, Rob Hyndman, Glenn Newnham, and Darius Culvenor. Detecting
Trend and Seasonal Changes in Satellite Image Time Series. Remote Sensing of
Environment, 114(1):106–115, 2010. doi:10.1016/j.rse.2009.08.014.

Vladimir Vovk, Alexander Gammerman, and Glenn Shafer. Conformal Prediction.
In Algorithmic Learning in a Random World, pages 17–51. Springer-Verlag, New
York, 2005. doi:10.1007/0-387-25061-1 2.

Jenna Walter. COVID-19 News: FBI Reports 300% Increase in
Reported Cybercrimes, 2020. URL https://www.imcgrupo.com/
covid-19-news-fbi-reports-300-increase-in-reported-cybercrimes/.

Fei Wang, Hanghang Tong, and Ching Yung Lin. Towards Evolutionary Non-
negative Matrix Factorization. In Proceedings of the National Conference on
Artificial Intelligence, pages 501–506, 2011a. ISBN 9781577355083.

Hua Wang, Feiping Nie, Heng Huang, and Chris Ding. Nonnegative Matrix Tri-
Factorization based High-Order Co-Clustering and its Fast Implementation. In
Proceedings - IEEE International Conference on Data Mining, ICDM, pages
774–783. IEEE, 2011b. doi:10.1109/ICDM.2011.109.

Hua Wang, Feiping Nie, Heng Huang, and Fillia Makedon. Fast Nonnegative
Matrix Tri-Factorization for Large-Scale Data Co-Clustering. In IJCAI Inter-
national Joint Conference on Artificial Intelligence, pages 1553–1558, 2011c.
doi:10.5591/978-1-57735-516-8/IJCAI11-261.

Shiping Wang and Aiping Huang. Penalized Nonnegative Matrix Tri-Factorization
for Co-Clustering. Expert Systems with Applications, 78:64–73, 2017.
doi:10.1016/j.eswa.2017.01.019.

Xiaogang Wang, Constance van Eeden, and James V. Zidek. Asymptotic Proper-
ties of Maximum Weighted Likelihood Estimators. Journal of Statistical Plan-
ning and Inference, 119(1):37–54, 2004. doi:10.1016/S0378-3758(02)00410-X.

161

Bibliography

Yuehui Wang, Guoxian Yu, Carlotta Domeniconi, Jun Wang, Xiangliang Zhang,
and Maozu Guo. Selective Matrix Factorization for Multi-relational Data Fu-
sion. In Database Systems for Advanced Applications, pages 313–329. Springer
International Publishing, 2019. doi:10.1007/978-3-030-18576-3 19.

Larry A. Wasserman. All of Statistics: a Concise Course in Statistical Inference.
Springer, 2nd edition, 2004. ISBN 9780387217369.

Mark Whitehouse, Marina Evangelou, and Niall M. Adams. Activity-based tem-
poral anomaly detection in enterprise-cyber security. In 2016 IEEE Confer-
ence on Intelligence and Security Informatics (ISI), pages 248–250. IEEE, 2016.
doi:10.1109/ISI.2016.7745483.

A. Willsky and H. Jones. A Generalized Likelihood Ratio Approach to the De-
tection and Estimation of Jumps in Linear Systems. IEEE Transactions on
Automatic Control, 21(1):108–112, 1976. doi:10.1109/TAC.1976.1101146.

Liyan Xie, Yao Xie, and George V. Moustakides. Asynchronous Multi-
Sensor Change-Point Detection for Seismic Tremors. In 2019 IEEE Interna-
tional Symposium on Information Theory (ISIT), pages 787–791. IEEE, 2019.
doi:10.1109/ISIT.2019.8849413.

Xin Luo, Mengchu Zhou, Yunni Xia, and Qingsheng Zhu. An E�cient Non-
Negative Matrix-Factorization-Based Approach to Collaborative Filtering for
Recommender Systems. IEEE Transactions on Industrial Informatics, 10(2):
1273–1284, 2014. doi:10.1109/TII.2014.2308433.

Liang Xiong, Xi Chen, Tzu-Kuo Huang, Je↵ Schneider, and Jaime G Carbonell.
Temporal Collaborative Filtering with Bayesian Probabilistic Tensor Factoriza-
tion. In Proceedings of the 2010 SIAM International Conference on Data Mining,
pages 211–222, 2010. doi:10.1137/1.9781611972801.19.

Asrul H. Yaacob, Ian K.T. Tan, Su Fong Chien, and Hon Khi Tan. ARIMA
Based Network Anomaly Detection. In 2nd International Conference on Com-
munication Software and Networks, ICCSN 2010, pages 205–209. IEEE, 2010.
doi:10.1109/ICCSN.2010.55.

Kenji Yamanishi, Jun-ichi Takeuchi, Graham Williams, and Peter Milne. On-
Line Unsupervised Outlier Detection Using Finite Mixtures with Discounting
Learning Algorithms. Data Mining and Knowledge Discovery, 8(3):275–300,
2004. doi:10.1023/B:DAMI.0000023676.72185.7c.

Fei Yan, Xiao-dong Wang, Zhi-qiang Zeng, and Chao-qun Hong. Adaptive Multi-
View Subspace Clustering for High-Dimensional Data. Pattern Recognition Let-
ters, 130:299–305, 2020. doi:10.1016/j.patrec.2019.01.016.

162

Bibliography

Fanghua Ye, Zitai Chen, Hui Qian, Rui Li, Chuan Chen, and Zibin Zheng. New
Approaches in Multi-View Clustering. In Recent Applications in Data Cluster-
ing. InTech, 2018. doi:10.5772/intechopen.75598.

Raphael Yuster and Uri Zwick. Fast Sparse Matrix Multiplication. ACM Trans-
actions on Algorithms, 1(1):2–13, 2005. doi:10.1145/1077464.1077466.

Matthew D. Zeiler. ADADELTA: An Adaptive Learning Rate Method, 2012. URL
https://arxiv.org/abs/1212.5701. arXiv: 1212.5701.

Hongyuan Zha, Xiaofeng He, Chris Ding, Horst Simon, and Ming Gu. Spectral
Relaxation for K-means Clustering. In Proceedings of the 14th International
Conference on Neural Information Processing Systems: Natural and Synthetic,
pages 1057–1064. MIT Press, 2001.

Guoxing Zhang, Shengming Jiang, Gang Wei, and Quansheng Guan. A Prediction-
Based Detection Algorithm Against Distributed Denial-of-Service Attacks. In
Proceedings of the 2009 International Conference on Wireless Communications
and Mobile Computing Connecting the World Wirelessly - IWCMC ’09, page
106, New York, 2009. ACM. doi:10.1145/1582379.1582403.

Marinka Žitnik and Blaž Zupan. Data Fusion by Matrix Factorization.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015.
doi:10.1109/TPAMI.2014.2343973.

163

Appendix A

Adaptive Estimation Appendix

A.1 Poisson Formulation

Suppose a stream of data, x1, x2, . . . is observed. We weight the data using adaptive
forgetting factors such that the weight for data point xi at time t is expressed as,

wi(t) =
t�1Y

j=i

�j

= �t�1

t�2Y

j=i

�j

where where xt has weight 1. Following the Exponential family formulation in
Section 3.2.7, these weights are included in the prior using a power prior.

Assuming the data follows a Poisson distribution, we aim to estimate the rate
� at time t where historic data before time t is down-weighted by factor �. Again
for simplicity we rewrite the weights as wi = �ci where ci is a known constant of
the form ci =

Qt�2

j=i �j for i = 1, . . . , t� 2 and ct�1 = 1 calculated at previous time
steps. At time t the joint power prior for the parameters � and � is,

P (�,�|x1, . . . , xt�1)

/ P (�)P (�)
t�1Y

i=1

P (xi|�)
�ci (A.1)

where

xi|� ⇠ Pois (�) for i = 1, . . . , t� 1

� ⇠ Gamma(↵0, �0)

� ⇠ P (�).

Again the � prior is left in general terms where the same Beta prior in the Gaus-

164

Appendix A. Adaptive Estimation Appendix

sian case given in Section 3.2.3 is used. The joint posterior takes the form,

P (�,�|x1, . . . , xt)

/ P (xt|�)P (�,�|x1, . . . , xt�1)

/

✓
�
xte

��

xt!

◆ t�1Y

i=1

✓
�
xie

��

xi!

◆�ci

⇥
�
↵0
0

�(↵0)
�
↵0�1 exp (���0)⇥ P (�)

/ �
↵0+xt+�

Pt�1
i=1 cixi�1

e
��(�0+1+�

Pt�1
i=1 ci) ⇥

t�1Y

i=1

✓
1

xi!

◆�ci

P (�)

Hence the conditional marginal posterior for � is,

�|�, x1, . . . , xt ⇠

Gamma

↵0 + xt + �

t�1X

i=1

cixi, �0 + 1 + �

t�1X

i=1

ci

!
. (A.2)

The marginal posterior for the forgetting factor has the form,

P (�|x1, . . . , xt) /

t�1Y

i=1

✓
1

xi!

◆�ci
!

�(↵0 + xt + �
Pt�1

i=1
cixi)

�
�0 + 1 + �

Pt�1

i=1
ci

�↵0+xt+�
Pt�1

i=1 cixi
P (�)

This does not follow a well known distribution nor can the normalising factor be
found analytically. The forgetting factor estimate then depends only on the data
and the prior parameters but is independent of the unknown � parameter.

Similar to the Gaussian case, the Maximum a Posteriori (MAP) estimates at
time t are used to estimate � and �. First the MAP estimate for � denoted �̂

MAP
t�1

, is
found by maximising the unnormalised posterior numerically. The MAP estimate
for the Poisson rate at time t takes the following analytic form,

�̂
MAP
t =

↵0 + �̂
MAP

Pt�1

i=1
cixi + xt

�0 + �̂MAP
Pt�1

i=1
ci + 1

(A.3)

=
↵0 + �̂

MAP
t�1

⇣Pt�2

i=1
(
Qt�2

j=i �j)xi + xt�1

⌘
+ xt

�0 + �̂
MAP
t�1

⇣Pt�2

i=1
(
Qt�2

j=i �j) + 1
⌘
+ 1

(A.4)

Similar to the Gaussian case, sequential updating forms can be calculated by
defining the following parameters at time t,

N(t) = �̂
MAP
t�1

t�2X

i=1

t�2Y

j=i

�j

!
xi + xt�1

!
+ xt

= �̂
MAP
t�1

N(t� 1) + xt,

165

Appendix A. Adaptive Estimation Appendix

D(t) = �̂
MAP
t�1

t�2X

i=1

t�2Y

j=i

�j + 1

!
+ 1

= �̂
MAP
t�1

D(t� 1) + 1

F (t) = �̂
MAP
t�1

t�2X

i=1

t�2Y

j=i

!
�j log(xi!) + log(xt�1!)

!
+ log(xt!)

= �̂
MAP
t�1

F (t� 1) + log(xt!)

The MAP estimate for the rate has the following sequential updates,

�̂
MAP
t =

↵0 +N(t)

�0 +D(t)

and again the parameters N(t � 1), D(t � 1) and F (t � 1) are used to produce
sequentially updating forms for the unnormalised marginal posterior density func-
tion for �,

P (�|x1, . . . , xt) / exp (�F (t� 1))
�(↵0 + xt + �N(t� 1))

(�0 + 1 + �D(t� 1))↵0+xt+�N(t�1)
P (�).

Thus to update the parameters of this Poisson model only N(t� 1), D(t� 1) and
F (t� 1) are required from the historic data.

To update the parameter priors when implementing this method sequentially,
the following prior for the update at time t is used,

� ⇠ Gamma(�̂t�1 + 1, 1)

which corresponds to this distribution having a mode equal to �̂t�1 with equal
influence on the estimates as xt (weight of 1).

A.2 Gaussian Synthetic Simulations

A.2.1 Gaussian Performance Comparison Single Change

We now evaluate the performance of the methods when the stream contains a
single mean change point. The series used in Tables A.1 and A.2 are sampled

166

Appendix A. Adaptive Estimation Appendix

from,

X1, . . . , X5000 ⇠ N(µ, �2)

X5001, . . . , X10000 ⇠ N(µ± , �
2)

µ ⇠ U(�20, 20)

�
2
⇠ U(0.5, 5)

 ⇠ U(2�, 5�).

In Tables A.1 and A.2 the BFF procedure has notably more comparable perfor-
mance to competitive approaches for both µ and �

2 in comparison to the stationary
results in Section 3.3.4. For BFF, no degradation in performance is observed which
suggests BFF is suitable for non-stationary data monitoring unlike many compet-
itive procedures whose performance worsens, particularly AFF 1e-7 and MLE. As
the MLE assumes the data is i.i.d. it has poor estimation performance as it is
unable to adapt quickly to the data.

Table A.1 additionally records the average time for the models to adapt to
the new data distribution. It can be seen that for models that are built to adapt
slowly i.e. AFF 1e-7, FFF 0.98, EWMA 0.05 and MLE, the time to change is high.
Alternatively, our approach has similar performance to procedures that can adapt
quickly such as AFF 1e-4, FFF 0.9 and EWMA 0.75. Finally, it can be seen that
although BOCPD has small errors, its’ time to change to the new distribution is
high.

Table A.1: Average parameter estimation performance of µ over 100 data streams
with a single change point of length 10, 000. The stream is generated such
that X1, . . . , X5000 ⇠ N(µ, �2) where µ ⇠ U(�20, 20) and �

2
⇠ U(0.5, 5) and

X5001, . . . , X10000 ⇠ N(µ ± , �
2) where  ⇠ U(2�, 5�). The change point sign is

chosen at random.

MSE SE SD MAE AE SD MAPE APE SD Time to Change

BFF 0.096 0.356 0.233 0.184 0.057 0.069 35.250
AFF 1e-7 0.268 2.154 0.154 0.475 0.045 0.146 316.040
AFF 1e-4 0.056 0.410 0.130 0.189 0.035 0.060 30.770
FFF 0.9 0.142 0.370 0.289 0.224 0.071 0.086 24.420
FFF 0.98 0.032 0.359 0.129 0.114 0.032 0.043 158.270

EWMA 0.05 0.071 0.352 0.202 0.161 0.050 0.061 58.600
EWMA 0.75 1.594 2.255 0.976 0.738 0.240 0.286 0.910

MLE 9.050 10.278 1.976 2.002 0.601 0.614 2140.800
BOCPD 0.006 0.373 0.031 0.066 0.007 0.021 83.790

167

Appendix A. Adaptive Estimation Appendix

Table A.2: Average parameter estimation performance of �
2 over 100 data

streams with a single change point of length 10, 000. The stream is generated
such that X1, . . . , X5000 ⇠ N(µ, �2) where µ ⇠ U(�20, 20) and �

2
⇠ U(0.5, 5) and

X5001, . . . , X10000 ⇠ N(µ ± , �
2) where  ⇠ U(2�, 5�). The change point sign is

chosen at random.

MSE SE SD MAE AE SD MAPE APE SD

BFF 0.625 0.726 0.590 0.384 0.217 0.142
AFF 1e-7 1.568 11.504 0.356 0.993 0.133 0.364
AFF 1e-4 0.310 1.116 0.300 0.401 0.113 0.151
FFF 0.9 0.848 1.382 0.666 0.498 0.252 0.188
FFF 0.98 0.239 1.033 0.313 0.302 0.118 0.112

EWMA 0.05 0.424 0.643 0.470 0.354 0.178 0.134
EWMA 0.75 4.876 4.308 1.843 0.758 0.695 0.286

MLE 44.141 52.364 3.678 3.904 1.336 1.418

A.2.2 Gaussian Performance Comparison Trend

We now investigate the performance of the comparison approaches on data that
exhibits trend, a common feature of real data sets. For the experiments in Tables
A.3 and A.4, the stream is generated from,

X1, . . . , X5000 ⇠ N(µ, �2)

Xi ⇠ N(µ± (5000� i), �2) for i 2 {5001, 5002, . . . , 7500}

X7501, . . . , X10000 ⇠ N(µ± (2500⇥ ), �2)

µ ⇠ U(�20, 20)

�
2
⇠ U(0.5, 5).

The gradient sign is chosen at random within the simulations. In Table A.3 BFF
has superior performance to many methods including BOCPD. BFF performs well
here as it can adapt to trend regions and stationary periods automatically. AFF
1e-4, which can adapt quickly, has superior performance to 1e-7. However, we note
that in comparison to the stationary example in Table 3.3, AFF 1e-7 has much
poorer performance. This highlights the di�culty in setting this learning rate
appropriately for the data. For trend data, BOCPD, which assumes the data has
stationary sections within the data rather than trends, has poorer performance
than previously seen. Finally, we note that the MLE approach has very poor
performance for this data, particularly for the estimation of �2.

168

Appendix A. Adaptive Estimation Appendix

Table A.3: Average parameter estimation performance of µ over 100 data streams
with a trend between 5001 and 7500. The initial stream is generated such that
X1, . . . , X5000 ⇠ N(µ, �2) where µ ⇠ U(�20, 20) and �

2
⇠ U(0.5, 5). The gra-

dient of the trend is sampled from  2 {0.005, 0.006, . . . , 0.019, 0.02}. Finally
X7501, . . . , X10000 ⇠ N(µ± (2500⇥), �2). Again the sign of the gradient is chosen
randomly.

MSE SE SD MAE AE SD MAPE APE SD

BFF 0.110 0.156 0.257 0.195 0.116 1.129
AFF 1e-7 0.499 1.987 0.307 0.613 0.146 3.872
AFF 1e-4 0.052 0.136 0.140 0.173 0.061 1.326
FFF 0.9 0.152 0.214 0.302 0.228 0.136 1.288
FFF 0.98 0.145 0.224 0.263 0.252 0.103 1.724

EWMA 0.05 0.090 0.127 0.233 0.178 0.103 1.083
EWMA 0.75 1.680 2.380 1.001 0.757 0.446 4.197

MLE 238.761 275.926 9.996 10.311 1.202 25.382
BOCPD 0.179 0.379 0.228 0.344 0.086 1.926

Table A.4: Average parameter estimation performance of �
2 over 100 data

streams with a trend between 5001 and 7500. The initial streams is generated
such that X1, . . . , X5000 ⇠ N(µ, �2) where µ ⇠ U(�20, 20) and �

2
⇠ U(0.5, 5).

The gradient of the trend is sampled from  2 {0.005, 0.006, . . . , 0.019, 0.02}. Fi-
nally X7501, . . . , X10000 ⇠ N(µ± (2500⇥ ), �2). Again the sign of the gradient is
chosen randomly.

MSE SE SD MAE AE SD MAPE APE SD

BFF 0.687 0.819 0.625 0.408 0.218 0.143
AFF 1e-7 1.140 6.524 0.386 0.879 0.151 0.369
AFF 1e-4 0.212 0.604 0.276 0.317 0.102 0.119
FFF 0.9 0.942 1.571 0.706 0.531 0.252 0.190
FFF 0.98 0.270 0.431 0.376 0.307 0.152 0.133

EWMA 0.05 0.479 0.754 0.501 0.382 0.180 0.138
EWMA 0.75 5.309 4.700 1.943 0.801 0.696 0.287

MLE 12646.882 21030.832 53.955 75.129 28.381 39.530

A.3 Poisson Synthetic Simulations

A.3.1 Poisson Performance Comparison No Change

We now evaluate the estimation performance to comparison methods on station-
ary Poisson data. Similar to the Gaussian case, these estimates can be used as
a baseline of performance for each procedure when compared to non-stationary

169

Appendix A. Adaptive Estimation Appendix

results. For the results in Table A.5, the stream is sampled from,

X1, . . . , X10000 ⇠ Pois(�)

� ⇠ U(0.5, 20).

Table A.5 measures the average estimation performance for the Poisson rate
over 100 simulations as explained above. Similar to the Gaussian case, for this
data, BFF does not have the best performance where AFF, MLE and BOCPD
are optimal. Once again the importance of hyper-parameter setting is noted.
For methods which forget slowly (AFF 1e-7, FFF 0.98 and EWMA 0.05), their
errors are very low however in non-stationary examples their performance is less
optimal. Once again the MLE has optimal performance for this example due to
its i.i.d assumption.

Table A.5: Average parameter estimation performance for Poisson rate over 100
stationary data streams of length 10, 000. The stream is generated from Pois(�)
where � ⇠ U(0.5, 20). Best performer in bold, second best in grey bold.

MSE SE SD MAE AE SD MAPE APE SD

BFF 0.419 0.594 0.480 0.362 0.063 0.048
AFF 1e-7 0.005 0.007 0.055 0.040 0.008 0.006
AFF 1e-4 0.038 0.063 0.136 0.112 0.019 0.016
FFF 0.9 0.512 0.725 0.538 0.406 0.077 0.058
FFF 0.98 0.100 0.140 0.237 0.179 0.034 0.025

EWMA 0.05 0.251 0.353 0.376 0.284 0.054 0.040
EWMA 0.75 5.854 8.439 1.819 1.374 0.258 0.194

MLE 0.002 0.002 0.035 0.020 0.005 0.003
BOCPD 0.008 0.204 0.037 0.064 0.006 0.016

170

Appendix A. Adaptive Estimation Appendix

A.3.2 Poisson Performance Comparison Single Change

The performance of the methods for Poisson streams with a single rate change
point is compared. The stream used in Table A.6 is sampled from:

X1, . . . , X5000 ⇠ Pois(�)

X5001, . . . , X10000 ⇠ Pois(� ± )

� ⇠ U(0.5, 20)

 ⇠ U(2
p
�, 5
p
�).

Table A.6 averages over 100 data streams of length 10,000 where there is a
single change point. In comparison to the results in Table A.5, the errors are
now larger than that in the stationary case, particularly for MLE and AFF. Here
BFF outperforms AFF in terms of MSE, MAPE and time to change. Although
FFF 0.98, EWMA 0.03 and BOCPD have low errors, the time to change is high for
these approaches. As the calculated errors exclude the grace period after a change,
they do not take this poor performance during these regions into account, hence
the time to change measure is highly important to fully assess the performance.
BFF has a good balance between the error and the time to change, making it
appropriate in practice.

Table A.6: Average parameter estimation performance of Poisson rate over 100
data streams of length 10, 000 with a single change point. The stream is generated
such that X1, . . . , X5000 ⇠ Pois(�) where � ⇠ U(0.5, 20) and X5001, . . . , X10000 ⇠

Pois(� ± ) where  ⇠ U(2
p
�, 5
p
�). The change point sign is chosen at random.

MSE SE SD MAE AE SD MAPE APE SD Time to Change

BFF 0.591 1.495 0.554 0.474 0.111 4.023 25.800
AFF 1e-7 5.345 15.811 1.002 1.904 43.647 86.636 1237.200
AFF 1e-4 1.201 5.073 0.405 0.838 8.254 24.257 781.130
FFF 0.9 0.689 1.559 0.610 0.510 0.121 3.936 22.450
FFF 0.98 0.147 1.266 0.271 0.247 0.382 5.364 152.670

EWMA 0.05 0.341 1.306 0.426 0.363 0.107 4.248 54.030
EWMA 0.75 7.778 12.551 2.064 1.699 0.257 1.170 0.960

MLE 31.676 35.974 3.681 3.726 165.991 170.539 2140.030
BOCPD 0.029 1.358 0.069 0.145 0.061 4.865 73.090

171

Appendix A. Adaptive Estimation Appendix

A.3.3 Poisson Performance Comparison Trend

The performance of the comparison approaches is now investigated on data that
exhibits trend, a common feature of real data sets. In Table A.7 the stream is
generated from,

X1, . . . , X5000 ⇠ Pois(�)

Xi ⇠ Pois(� ± (5000� i)) for i 2 {5001, 5002, . . . , 7500}

X7501, . . . , X10000 ⇠ Pois(� ± (2500⇥ ))

� ⇠ U(0.5, 20).

The gradient sign is chosen at random in the simulations and  is uniformly sam-
pled from {0.005, 0.006, . . . , 0.019, 0.02}. Table A.7 displays the average estimation
performance of the Poisson rate for the comparison methods when the data ex-
hibits a trend. Again MLE has poor performance on this non-stationary data due
to the violation of assumptions for this model. AFF also has poor performance on
this data. As the gradients are gradual, a large forgetting factor of 0.98 is suitable
for this example (see FFF 0.98), and has one of the smallest errors. BOCPD again
has favourable performance for this data. BFF also has good performance showing
it is robust to di↵erent situations.

Table A.7: Average parameter estimation performance of Poisson rate over 100
data streams with a trend between 5001 and 7500. The initial stream is generated
such that X1, . . . , X5000 ⇠ Pois(�) where � ⇠ U(0.5, 20). The gradient of the trend
is sampled from  2 {0.005, 0.006, . . . , 0.019, 0.02}. Finally X7501, . . . , X10000 ⇠

Pois(� ± (2500⇥ )). The sign of the gradient is chosen randomly.

MSE SE SD MAE AE SD MAPE APE SD

BFF 1.123 2.038 0.770 0.693 0.046 0.040
AFF 1e-7 31.416 47.206 3.397 3.997 0.119 0.138
AFF 1e-4 18.355 29.166 2.438 2.932 0.086 0.094
FFF 0.9 1.219 2.141 0.816 0.713 0.053 0.048
FFF 0.98 0.349 0.568 0.434 0.377 0.027 0.024

EWMA 0.05 0.607 1.053 0.576 0.502 0.037 0.034
EWMA 0.75 13.932 24.921 2.757 2.419 0.178 0.163

MLE 240.691 278.159 10.115 10.419 0.294 0.272
BOCPD 0.683 1.511 0.457 0.659 0.021 0.033

172

Appendix A. Adaptive Estimation Appendix

A.3.4 Poisson Performance Comparison Multiple Change with Trend

Similar to the Gaussian experiments, we now compare the estimation results on
Poisson data streams with both change points and trend periods. Ten rate change
points and two trend periods are generated uniformly over (200, 10000) such that
change points and trend starting points are at least 200 points apart. These
simulations have the following properties:

• The initial rate of the series is sampled from U(0.5, 20)

• Change point magnitudes are sampled from U(2
p
�, 5
p
�) where � is the

most recent Poisson rate of the series

• Periods of trend have a minimum length of 50 points with gradient magni-
tude uniformly sampled from {0.005, 0.006, . . . , 0.02}. Proceeding this trend,
there is a constant mean of length > 30.

The results in Table A.8 displays the average performance results over 100
Poisson simulations that contain both change points and trends. Again AFF has
poor performance for Poisson data due to the unusual behaviour of the forgetting
factor which was seen in Figure 3.6 (d) making it less suitable for Poisson data.
Again although FFF 0.98, EWMA 0.05 and BOCPD have small errors, the time
to change is higher than BFF for these models. Similarly, FFF 0.9 and EWMA
0.75 are fast to change however have higher errors than BFF. Thus BFF provides
a balance between low estimation errors and fast adaptation. In the context of
cyber-security, this fast adaptation is important however accuracy of the results is
also a priority.

Table A.8: Average parameter estimation performance of Poisson rate over 100
data streams of length 10,000 with 10 rate change points and two trends positioned
randomly throughout. Each of the change points and trends are at least 200
points apart where trends have a stationary period proceeding it. Initially the
rate is sampled from U(0.5, 20). The change point magnitudes are sampled from
U(2
p
�, 5
p
�) where � is the current rate. Trend gradients are sampled from

{0.005, 0.006, . . . , 0.019, 0.02}. Best performer in bold, second best in bold grey.

MSE SE SD MAE AE SD MAPE APE SD Time to Change Time to Change SD

BFF 1.257 9.669 0.715 0.800 0.061 0.343 25.685 11.063
AFF 1e-7 78.113 128.687 6.146 5.553 2.315 6.582 390.999 209.135
AFF 1e-4 68.525 116.139 5.676 5.264 2.160 6.243 382.340 199.591
FFF 0.9 1.338 9.467 0.762 0.813 0.075 0.344 23.883 9.354
FFF 0.98 0.635 10.878 0.420 0.643 0.065 0.420 142.641 31.986

EWMA 0.05 0.807 10.267 0.541 0.674 0.055 0.348 54.515 17.902
EWMA 0.75 12.399 23.124 2.514 2.279 0.228 0.338 1.453 2.658

MLE 230.100 356.861 10.274 8.926 4.123 10.318 440.396 291.396
BOCPD 0.473 11.228 0.254 0.614 0.026 0.367 26.754 37.210

173

Appendix B

Change Point Appendix

B.1 Recalibration Window Size Timings

Table B.1: Average timing in seconds for proposed p-value calibration for dif-
ferent sliding window sizes. Data simulated as described in Section 4.3.3 where
n = 20, 000 with 100 repetitions and ↵ = 0.005.

BFF-Pred BFF-Post
Uncalibrated 4.955(0.266) 36.718(2.077)

SW 200 4.955(0.266) 36.718(2.077)
SW 500 5.717(0.307) 38.174(2.64)
SW 1000 7.022(0.321) 40.729(3.087)
SW 2000 9.539(0.477) 45.25(2.649)
SW 5000 18.38(0.963) 61.149(3.78)
SW 7000 21.311(1.204) 67.549(4.692)
SW 10000 24.755(1.582) 74.26(4.268)

B.1.1 Change Point Comparison Methods

The Pruned Exact Linear Time (PELT) method [Killick et al., 2012] is a well
regarded batch approach and acts as a benchmark to the sequential approaches.
PELT builds upon optimal partitioning approaches, by pruning to make it more
optimal. We implement PELT using the changepoint R package [Killick et al.,
2016] with a SIC penalty as suggested in their paper.

We additionally compare to DeCAFS [Romano et al., 2021], a batch procedure
that is capable of detecting abrupt changes in the presence of trend and autocorre-
lation. DeCAFS models the local fluctuations (or trends) as a random walk process
and autocorrelated noise via an AR(1) process. The number and location of the
change points are found by minimising a penalised negative log likelihood based
on their proposed data model and is solved using dynamic programming. The only

174

Appendix B. Change Point Appendix

parameter required is the penalty which they suggest be � = 2 log n where n is the
length of the data. This method is implemented using the R package DeCAFS
[Romano et al., 2022].

The Cumulative Sum (CUSUM) algorithm was first proposed by Page [1954]
and is a popular method in statistical quality control for sequential change point
detection. Given the current Gaussian parameters of the stream, a change point
in the mean is detected if either of the two CUSUM statistics exceeds a specified
threshold. There are two control parameters, h and k required for this model.
Setting these parameters is not intuitive hence they present a problem in streaming
contexts where setting these values empirically cannot be done. Unless specified,
we use the recommendations of Hawkins [1993] and implement using the R package
↵stream [Bodenham, 2018].

Another popular sequential change point procedure is the Exponential Weighted
Moving Average (EWMA) method proposed by Roberts [1959] for statistical qual-
ity control. A statistic calculated as the convex combination of the newly observed
data value and the previous value of the statistic is monitored. This procedure
requires two parameters, one for the combination weight, ! whose value is in
[0, 1], and another for determining the control limit, L. A change is detected
when this statistic exceeds the control limits. Lucas and Saccucci [1990] suggests
! 2 [0.05, 1.0] and L 2 [2.4, 3]. Again we implement this method using the R
package ↵stream.

The frequentist sequential adaptive estimation procedure by Anagnostopoulos
et al. [2012] has been extended by Bodenham and Adams [2017] for change point
detection using control limits and is called AFF. Bodenham and Adams [2017]
assume the adaptive mean estimate follows a Gaussian distribution, producing
control limits for a specified significance level ↵. After each change point, the esti-
mation procedure is restarted, requiring a grace period to relearn the distribution
of the data. As described in Section 3.1.2, a step size, ⌘, for updating the forget-
ting factor is also required. Additionally, similar to our approach, this procedure
requires a threshold value c. We implemented this using ↵stream where unless
stated, we use the default parameter ⌘ = 0.001 for the step size, however, various
thresholds are implemented.

Finally a very popular and high performing sequential change point procedure
called Bayesian Online Change Point Detection (BOCPD) proposed simultane-
ously by Adams and MacKay [2007] and Fearnhead [2006] is implemented. This
procedure jointly and sequentially infers the distribution parameters of the data
alongside the run length and has been detailed for exponential family distributions.
The run length represents the time since the last change point and is used to de-
termine whether a change has occurred. Priors for the parameters are required
and after a change, the estimation procedure is restarted. Default parameters for
the priors are used with an exponential prior on the run length distribution. This
procedure is implemented using the R package ocp [Pagotto, 2019]. Although
neither Adams and MacKay [2007] or Fearnhead [2006] specifically details how to

175

Appendix B. Change Point Appendix

classify detections using this model, within the package, there are two approaches
implemented. The first is called colmaxes where at each point the run length,
r, with the highest probability is chosen which corresponds to a change r points
prior. The second method goes a step further called the threshold method and
uses the same methodology as colmaxes however only considers cases when this
probability exceeds a threshold whose default value is 0.5. Setting this threshold
value is an additional challenge with no guidance given.

B.2 Change Point Model Parameter Specification

Below we outline the parameters used within the grid search for each model for
Section 4.3.2 and their default parameters. The range of parameters used here is
based on author recommendations or suitable values in appropriate ranges. The
parameter combination that optimises the F1 score for the example in Section
4.3.2 has been documented in bold. Default parameters are boxed.

B.2.1 PELT

Function: cpt.mean* , cpt.var, cpt.meanvar

Penalty: None, SIC , BIC, MBIC, AIC, Hannan-Quinn

B.2.2 DeCAFS

L0 penalty, �: 2log(n)
For the optimisation in Section 4.3.2 we did a grid search over 0.5 to 100 with a
step size of 0.5. The optimal penalty was 10.5 whereas the default penalty value
for this example is 18.421 (data has length 10000).

B.2.3 CUSUM

h: 0.25 , 0.5, 1
k: 2.71, 5.14, 8.76

B.2.4 EWMA

! : 0.05, 0.25 , 0.5, 1
L : 2.4, 2.5, 2.8, 3

B.2.5 AFF

⌘: 0.001 , 0.01, 0.1
c: 0.001 , 0.005, 0.01, 0.05, 0.08, 0.1

176

Appendix B. Change Point Appendix

B.2.6 BOCPD

In this work we assume the data follows a Gaussian distribution where we use a
Normal prior for the mean with mean zero and variance , we use a Gamma prior
on the inverse variance with parameters ↵ and �, and an exponential prior with
parameter � for the gap distribution as done by the authors Adams and MacKay
[2007]. This setup is default within the ocp package in R.
�: 50, 100 , 200
↵: 0.01 , 1, 10
�: 1e-4 , 0.01, 1, 100
: 0.01 , 1, 100
Threshold: 0.5 , 0.75, 0.9

B.2.7 BFF

Threshold: 0.001, 0.003, 0.005 , 0.008, 0.01, 0.015, 0.02
Grace Period: 10, 20 , 30, 50

Parameter choice (for post method): µ, �
Fixed prior Beta(39, 1.8) prior for � which has a mode of 0.98 and variance 0.001.
This prior is robust for a wide variety of simulations.

B.3 Additional Simulation Study

B.3.1 Performance on Stationary Data

We first begin by exploring how each change point procedure handles stationary
data. For such data, no change points exist hence the number of detections should
be minimal. Alternatively, where thresholds are used, there exists an expected
number of detections regardless of the number of changes in the data. We simulate
stationary Gaussian data streams as follows,

X1, . . . , X50000 ⇠ N(0, �2)

�
2
⇠ U(0.5, 20)

where we record the total number of detections made by each of the algorithms
detailed in Section B.1.1. We repeat this experiment 100 times where the standard
deviation between each stream is given in brackets.

PELT, DeCAFS and BOCPD-Threshold have the fewest detections. As PELT
and DeCAFS are batch approaches, they benefit from viewing the full stream.
It is important to note the extreme di↵erence in BOCPD for the colmaxes and
threshold methods where colmaxes has labelled 1

5

th
of the series as a change point.

Additionally, this method has large computation times.

177

Appendix B. Change Point Appendix

Table B.2: Number of detections and computation time in seconds over 100
stationary data streams of length 50,000 generated as described in Appendix B.3.1.
Standard deviation between streams given in brackets.

Detections Time (sec)
PELT 0.000(0.000) 3.525(1.211)

DeCAFS 0.000(0.000) 3.249 (1.016)
CUSUM 143.770(15.504) 0.003(0.001)
EWMA 72.720(16.956) 0.004(0.001)

AFF 0.008 67.050(19.225) 0.003(0.001)
AFF 0.005 45.060(17.789) 0.003(0.000)
AFF 0.003 27.890(12.857) 0.003(0.000)

BOCPD Colmaxes 10146.510(1857.670) 416.437(21.106)
BOCPD Threshold 9.300(3.043) 416.437(21.106)

BFF-Pred 0.008 349.260(6.683) 25.387(1.431)
BFF-Pred 0.005 227.060(5.680) 25.387(1.431)
BFF-Pred 0.003 139.070(5.161) 25.387(1.431)

BFF-Post-� 0.008 342.690(7.689) 119.835(8.371)
BFF-Post-� 0.005 222.890(6.153) 119.835(8.371)
BFF-Post-� 0.003 137.530(4.980) 119.835(8.371)

While our method does have false detections, the number of detections is as
expected. At a threshold level of 0.005, a well calibrated procedure should detect
250 changes. Thus our procedures detect similar numbers of points to what is ex-
pected. Similarly at the 0.008 and 0.003 levels, our procedures make the expected
number of detections.

B.3.2 Performance on Trend Only Data

We now investigate the e↵ect trend has on change point performance in comparison
to the stationary case. Ideally there should be little di↵erence in performance to
the results in Section B.3.1 for methods that are resistant to trend. The results
in Table B.3 average over 100 Gaussian data streams of length n = 50, 000 which
contain p =

⌃
n
500

⌥
= 100 trend regions each with a minimum length of 50 points.

Additionally, after a trend region, there is a stationary period with a minimum
length of 30 points. The gradient magnitude of these trend regions is sampled
from {0.05, 0.06, 0.07, 0.08} where the data has a fixed variance of 1.

Table B.3 displays the number of detections made by each of the change point
approaches on the simulated trend data. In comparison to the stationary results in
Table B.2, all methods but DeCAFS, BOCPD and BFF have a significant increase
in the number of detections. PELT has gone from 0 detections in the station-
ary case to over 600 for the trend data suggesting it is highly a↵ected by trend.
DeCAFS still has zero detections, suggesting it is robust to trend. The BFF de-

178

Appendix B. Change Point Appendix

tections are however very similar to that of the stationary case, meaning it is not
a↵ected by trend, unlike the competitive approaches. Strangely BOCPD-Colmaxes
has fewer detections for data with trend than the stationary case. BOCPD thresh-
old has a smaller increase in the number of detections hence this method may be
a↵ected less by trend than the other competitive approaches.

Table B.3: Simulated change point performance results over 100 streams of Gaus-
sian data of length 50,000 containing only trend regions as described in Appendix
B.3.2. Standard deviation given in brackets.

Detections Time (sec)
PELT 655.150(43.822) 0.207(0.073)

DeCAFS 0.000(0.000) 4.771(0.303)
CUSUM 557.620(23.697) 0.002(0.001)
EWMA 536.880(26.614) 0.002(0.001)

AFF 0.008 602.420(29.386) 0.002(0.001)
AFF 0.005 582.450(29.503) 0.002(0.001)
AFF 0.003 564.110(30.054) 0.002(0.001)

BOCPD Colmaxes 1435.930(116.079) 559.658(36.944)
BOCPD Threshold 126.370(62.076) 559.658(36.944)

BFF-Pred 0.008 340.420(7.696) 28.301(2.627)
BFF-Pred 0.005 223.170(6.739) 28.301(2.627)
BFF-Pred 0.003 138.020(5.207) 28.301(2.627)

BFF-Post-� 0.008 333.230(7.391) 140.564(12.084)
BFF-Post-� 0.005 218.830(5.754) 140.564(12.084)
BFF-Post-� 0.003 136.280(5.689) 140.564(12.084)

B.3.3 Poisson Data Streams

To showcase the robustness of our proposed procedure, we additionally perform
change point detection on Poisson data with rate �. As the variance of the data
changes for di↵erent rates, at change points, the rate has jumps of magnitude
within one to five standard deviations of the current rate. This ensures the change
points are detectable. PELT, BOCPD and BFF have di↵erent versions for the
Poisson case which we implement here. We note that DeCAFS assumes the errors
of the data are Gaussian, so is not suitable for this example. To assess the per-
formance, 100 streams of length n = 10, 000 are generated where at random 0.4%
of points are selected as change points. We also include trend periods within the
data where the trend is scaled depending on the current rate. Table B.4 displays
the performance of the algorithms on Poisson data.

In Table B.4, PELT has the best performance followed by BOCPD threshold
in terms of F1. For our proposed approaches, BFF-Pred with a threshold of 0.008
has the highest F1. The BFF procedures in general have large ARL0 and high

179

Appendix B. Change Point Appendix

Table B.4: Simulated change point performance results over 100 streams of Pois-
son data of length 10,000 as described in Appendix B.3.3. Standard deviation
given in brackets.

F1 ARL0 ARL1 Recall Precision FP Detections Time (sec)
PELT 0.872(0.076) 1568.633 0.124 0.934(0.068) 0.820(0.094) 3.098 16.629 0.064(0.039)

DeCAFS 0.339(0.233) 185.352 0.597 0.853(0.113) 0.245(0.213) 104.4 116.8 0.152(0.041)
CUSUM 0.388(0.058) 264.587 2.838 0.863(0.091) 0.252(0.045) 37.720 50.220 0.001(0.001)
EWMA 0.478(0.068) 373.534 1.986 0.891(0.094) 0.329(0.059) 26.932 39.833 0.001(0.001)

AFF 0.008 0.601(0.071) 476.146 3.980 0.918(0.078) 0.451(0.074) 16.742 30.045 0.001(0.001)
AFF 0.005 0.631(0.072) 537.788 4.019 0.917(0.076) 0.485(0.075) 14.553 27.833 0.001(0.000)
AFF 0.003 0.706(0.070) 719.190 4.066 0.941(0.062) 0.569(0.079) 10.606 24.250 0.001(0.000)

BOCPD Colmaxes 0.690(0.137) 704.540 0.099 0.958(0.058) 0.554(0.160) 13.235 27.106 136.688(5.850)
BOCPD Threshold 0.813(0.124) 1056.595 0.102 0.911(0.076) 0.747(0.167) 5.311 18.508 136.688(5.850)

BFF-Pred 0.008 0.678(0.119) 1149.037 0.861 0.651(0.139) 0.728(0.151) 2.386 8.376 5.746(0.424)
BFF-Pred 0.005 0.653(0.134) 1194.540 0.827 0.545(0.151) 0.857(0.148) 0.911 5.931 5.746(0.424)
BFF-Pred 0.003 0.499(0.155) 756.250 0.732 0.353(0.141) 0.963(0.095) 0.178 3.406 5.746(0.424)

BFF-Post-� 0.008 0.677(0.130) 1107.174 1.266 0.620(0.161) 0.795(0.165) 1.762 7.465 20.559(0.909)
BFF-Post-� 0.005 0.627(0.139) 1568.743 1.299 0.509(0.152) 0.883(0.149) 0.792 5.475 20.559(0.909)
BFF-Post-� 0.003 0.486(0.171) 972.500 1.184 0.345(0.148) 0.959(0.103) 0.188 3.366 20.559(0.909)
BFF-Post-� 0.008 0.655(0.125) 765.312 1.951 0.728(0.133) 0.618(0.164) 4.683 11.396 20.559(0.909)
BFF-Post-� 0.005 0.676(0.123) 1121.151 1.862 0.629(0.148) 0.765(0.164) 2.040 7.822 20.559(0.909)
BFF-Post-� 0.003 0.568(0.152) 490.600 1.724 0.429(0.151) 0.926(0.125) 0.386 4.347 20.559(0.909)

precision. Additionally in comparison to sequential methods; CUSUM, EWMA
and AFF, the ARL1 is lower, particularly for BFF-Pred. BOCPD has the longest
computation time but shows strong change point performance on Poisson data.
This example demonstrates that the proposed procedure is appropriate for other
distributions of data.

180

Appendix C

Forecast Appendix

C.1 ARIMA Sliding Window Experiment

To investigate appropriate sliding window sizes for the ARIMA model, we inves-
tigate the forecast performance for varying sizes. Table C.1 displays the ARIMA
forecast performance for varying sliding windows over 100 simulated series, as
specified in Section 5.5.1. It can be seen that the di↵erence in MASE is marginal
between the window sizes. Here it is important to look at MASE as each model
uses a di↵erent amount of data hence this scaling factor ensures fair comparison.
These results suggest using small windows does not cause poorer performance over
larger window sizes.

Table C.1: ARIMA forecast performance for varying sizes of sliding window over
100 simulated series generated as described in Section 5.5.1.

MAE AE SD MASE ASE SD

30 Minutes 6.783 14.879 1.174 2.531
1 Hour 7.352 16.735 1.187 2.579
2 Hours 7.458 16.841 1.191 2.612
6 Hours 7.268 14.466 1.154 2.242
12 Hours 7.216 13.736 1.141 2.063

C.2 Regression Combination Coe�cient Investigation

We now investigate the behaviour of the estimated coe�cients of the linear re-
gression model from Section 5.3.2 for a single simulation example. The single
simulation is generated as described in Section 5.5.1 with results shown for the fi-
nal 10 cycles of the data. Here the fixed forgetting factor has been set to � = 0.96.
The coe�cients of the regression determine the influence of the short and long-term

181

Appendix C. Forecast Appendix

0

200

400

600

14401 15841 17281 18721 20161 21601 23041 24481 25921 27361 28801
Observation

O
bs

er
ve

d
Va

lu
es

(a) Raw Data

−5

0

5

10

14401 15841 17281 18721 20161 21601 23041 24481 25921 27361 28801
Observation

AR
IM

A
C

oe
ffi

ci
en

t

(b) ARIMA Coe�cient

−5

0

5

10

14401 15841 17281 18721 20161 21601 23041 24481 25921 27361 28801
Observation

FD
A

C
oe

ffi
ci

en
t

(c) FDA Coe�cient

Figure C.1: Illustration of coe�cient estimates for a single simulated series as
described in Section 5.5.1. The simulation runs over 20 cycles where the final 10
cycles are shown. Point anomalies marked by crosses, contextual anomalies by
solid rectangles.

forecasts on the regression combination forecast. Figure C.1 displays the coe�-
cient values where the point and contextual anomalies are highlighted. Generally,
ARIMA has larger coe�cient values in comparison to FDA. Both have relatively
small coe�cient values with a number of outliers. For the contextual anomaly
around 25921, it can be seen that FDA has large coe�cients whilst ARIMA has
negative coe�cients, somewhat mirroring one another. This can be seen for other
contextual anomalies where FDA has larger coe�cient values during these peri-
ods. The other spikes in the values correspond to anomalies within the data where
otherwise the coe�cients are stable.

C.3 P-Value Investigation

C.3.1 SLD P -Values

Figure C.2 displays the distribution of the p-values and Fishers product test statis-
tic for a single simulation generated as described in Section 5.5.1. The density of
the reconstructed p-values and the long-term p-values are displayed in Figure C.2
(a) and (b) respectively. Both of these densities display a uniform distribution,
hence these p-values are approximately uniform. Additionally, the density of the
combined Fisher Test Statistic in Figure C.2 (c) approximately follows the pre-
scribed chi-squared distribution. Due to these empirical results, this chi-squared
distribution is used to calculate p-values for the Fisher combined score.

C.3.2 FDARIMA P -Values

Figure C.3 displays histograms of the p-values and Fisher Test Statistic for FDARIMA
for a single simulation generated as described in Section 5.5.1. The desired distri-

182

Appendix C. Forecast Appendix

0.0

0.5

1.0

0.00 0.25 0.50 0.75 1.00
P−Value

D
en
si
ty

(a) Reconstructed series p-
value

0.0

0.5

1.0

1.5

0.00 0.25 0.50 0.75 1.00
P−Value

D
en
si
ty

(b) Long-term component p-
value

0.00

0.05

0.10

0.15

0.20

0 10 20 30
Fisher Test Statistic

D
en

si
ty

(c) Fisher Test Statistic

Figure C.2: Histograms showing distribution of the p-values and Fisher’s Test
Statistic for a single simulation as described in Section 5.5.1 for the SL Decompo-
sition method.

butions for these quantities are plotted in blue. It can be seen that the p-values are
approximately uniform and that the Fisher Test Statistic does follow the desired
chi-squared distribution. Thus the p-values are well calibrated.

0.0

0.5

1.0

1.5

0.00 0.25 0.50 0.75 1.00
P−Value

D
en
si
ty

(a) ARIMA p-value

0.0

0.5

1.0

1.5

2.0

0.00 0.25 0.50 0.75 1.00
P−Value

D
en
si
ty

(b) FDA p-value

0.00

0.05

0.10

0.15

0 10 20 30
Fisher Test Statistic

D
en

si
ty

(c) Fisher Test Statistic

Figure C.3: Histograms showing distribution of the p-values and Fisher’s Test
Statistic for a single simulation as described in Section 5.5.1 for the FDARIMA
approach.

C.4 Forecast Improvement Remove Anomalies

As anomalies are not representative of the “normal” behaviour of the series, these
points should be removed. Table C.2 displays the comparison in forecast perfor-
mance with and without anomalies in the model fitting for 100 simulated series as
generated in Section 5.5.1. It can be seen that removing anomalies improves fore-
cast performance, particularly for ARIMA and the forecast combination results.

183

Appendix C. Forecast Appendix

Table C.2: Forecast performance with and without anomalous points within
model fitting over 100 simulated data sets generated as described in Section 5.5.1.

MAE AE SD MASE ASE SD

ARIMA Without Anom 6.513 14.926 1.179 2.694
ARIMA With Anom 7.343 16.720 1.186 2.569
FDA Without Anom 14.951 22.071 2.792 3.995

FDA With Anom 14.841 21.976 2.772 3.980
Regression Combination Without Anom 6.634 14.303 1.370 2.955

Regression Combination With Anom 7.634 28.152 1.577 5.815
SL Decomposition Without Anom 7.318 17.985 1.334 3.298

SL Decomposition With Anom 8.376 19.763 1.523 3.604
Naive 5.949 15.033 1.000 0.000

C.5 Comparison Method Description

We compare our method to ARIMA alone using the tsoutlier R Package [López-de
Lacalle, 2019]. In this package, anomalies are found using the popular time series
outlier procedure proposed by Chen and Liu [1993] through iterative outlier detec-
tion and adjustment to produce joint estimates of the ARIMA model parameters
and outlier e↵ects. This procedure can identify multiple types of anomalies includ-
ing additive outliers and temporary changes. However, this procedure is a batch
approach. This method however does not take long-term patterns into account
and is unsuitable for detecting contextual anomalies.

We also compare our procedures to the classic STL decomposition using the
anomalize R package [Dancho and Vaughan, 2020]. First, the series is decomposed
into trend and seasonal components using Loess before anomalies are detected
using the inter quantile range on the residuals. Again this implementation is done
in batch. This procedure di↵ers from ours in that the trend is extracted before the
seasonal behaviour, making the scale of the seasonal component di↵erent from the
raw data. Additionally, contextual anomalies are not detected by this procedure.

Twitter Inc. have released an open source robust anomaly detection procedure
appropriate for detecting both local (contextual) and global (point) anomalies in
time series data [Kejariwal, 2015, Hochenbaum et al., 2017]. Their method named
Seasonal Hybrid ESD (S-H-ESD) builds upon the Generalized ESD test [Rosner,
1983]. They combine a modified STL decomposition and ESD with robust statis-
tics to detect both point and contextual anomalies. A downfall of this method
however is that it does not perform well when the time series trend is changing
[Munir et al., 2018] and again is a batch approach. This method di↵ers from tra-
ditional STL by utilising the median of the series to model the trend component
before finding the seasonal component as done in STL using Loess. By replacing
the mean and standard deviation by the median and MAD within the ESD test

184

Appendix C. Forecast Appendix

to detect anomalies, their approach is more robust in the presence of large num-
bers of anomalies in the data. Unlike our method which additionally monitors
the residuals of the long-term component, the Twitter method only analyses the
decomposed residual.

SmartSifter [Yamanishi et al., 2004] is an online statistical learning outlier de-
tector that uses a finite mixture model to represent the underlying data generating
process. As new data arrives, the model is updated where past examples are grad-
ually discounted. A score representing the change in the model after updating is
used to assess the probability of the data being an outlier. We implement this
model using the smartsifter Python library 1. This model is however not specifi-
cally designed for contextual anomaly detection. Additionally, unlike our proposed
methodology, the long-term behaviours or periodicity are not directly modelled.

Finally, a new R package specifically targeted at providing a range of meth-
ods for online time series outlier detection called otsad [Iturria et al., 2020] has
been developed. A number of methods are implemented including TSSD-EWMA
[Raza et al., 2015]. TSSD-EWMA works by detecting covariate shifts using an ex-
ponentially weighted moving average (EWMA) based control chart. These shifts
are then validated using a Kolmogorov-Smirnov statistical hypothesis test. Sea-
sonal behaviours are again not considered by this model thus similar to tsoutliers,
anomalize and smartsifter, this method is not specifically designed for contextual
anomaly detection.

C.6 BFF as Short-Term Model Results

We now present the forecast and anomaly detection results when BFF, the adaptive
estimation procedure described in Chapter 3, is used instead of ARIMA as the
short-term model. As BFF is sequential and provides up to date estimates, this
method is very fast with very small computation requirements. Table C.3 displays
the forecast performance when BFF is used instead of ARIMA. In comparison
with the results in Table 5.1, BFF has much higher errors where the errors for all
combined forecasts are additionally higher. This suggests that the Poisson BFF
may not be suitable for the simulated data.

Table C.4 displays the anomaly detection performance for FDABFF (replacing
ARIMA with BFF in FDARIMA anomaly detection procedure) and SLD (again
replacing ARIMA with BFF in this procedure). The results are averaged over the
same 100 simulations used for Table 5.3 hence the results are comparable. The
overall F1 for SLD is higher using BFF however it is lower for FDABFF. This
increase in F1 is attributed to a higher recall value. The point anomaly perfor-
mance is lower when using BFF and the contextual performance is only higher for
SL Decomposition. These results suggest it is preferable to utilise ARIMA for the
short-term model.

1https://pypi.org/project/smartsifter/

185

Appendix C. Forecast Appendix

Table C.3: Forecast performance when BFF used as short-term model over 100
simulated data sets generated as described in Section 5.5.1.

MAE AE SD MASE ASE SD

BFF 66.042 36.230 12.118 7.631
FDA 14.952 22.081 2.792 3.997

Regression Combination 9.011 14.029 1.861 2.898
SLD 16.189 25.896 2.943 4.716

Naive 5.949 15.033 1.000 0.000

Table C.4: Anomaly detection performance when replacing ARIMA with BFF in
FDARIMA and SLD on 100 simulated data sets generated as described in Section
5.5.1. The performance is calculated overall (for both types of anomalies) and
additionally splits the performance for point and contextual anomalies individually.

FDABFF SLD

F1 0.531 0.717
Overall Recall 0.399 0.635

Precision 0.830 0.836
F1 0.692 0.608

Point Recall 0.938 1.000
Precision 0.561 0.457

F1 0.471 0.686
Context Recall 0.347 0.600

Precision 0.783 0.815

C.7 Additional Figures for Anomalize, tsoutliers and TSSD-
EWMA

186

Appendix C. Forecast Appendix

0

200

400

600

14401 15841 17281 18721 20161 21601 23041 24481 25921 27361 28801

An
om

al
ize

0

200

400

600

14401 15841 17281 18721 20161 21601 23041 24481 25921 27361 28801

ts
ou
tli
er
s

0

200

400

600

14401 15841 17281 18721 20161 21601 23041 24481 25921 27361 28801

TS
SD

−E
W
M
A

Figure C.4: Locations of identified anomalies for Anomalize, tsoutliers and
TSSD-EWMA models identified with vertical grey lines and are compared to the
positions of the true anomalous points marked by crosses for point anomalies and
solid rectangles for contextual anomaly periods. The series shows the final 10 days
of the series.

187

Appendix C. Forecast Appendix

0

100

200

300

400

2015−03−12 2015−03−13 2015−03−14 2015−03−15 2015−03−16 2015−03−17

An
om

al
ize

0

100

200

300

400

2015−03−12 2015−03−13 2015−03−14 2015−03−15 2015−03−16 2015−03−17

ts
ou
tli
er
s

0

100

200

300

400

2015−03−12 2015−03−13 2015−03−14 2015−03−15 2015−03−16 2015−03−17

TS
SD

−E
W
M
A

Figure C.5: Comparison of detected anomaly locations for Anomalize, tsoutliers
and TSSD-EWMA methods where true anomalous locations marked with a cross
for the Google Twitter mention data between 12th March 2015-16th March 2015.
Detected anomalies by the algorithms are identified by grey vertical lines.

188

Appendix D

Multi-Type Clustering Appendix

D.1 Simple NMTF Derivations

In the following the derivations for the updates of the alternating optimisation
approach used for Simple NMTF is detailed in full. Recall the objective function
for Simple NMTF

J =
qX

i=1

||A(i)
k(i)k(i) �Gk(i)S

(i)
k(i)k(i)||

2

F +
rX

i=1

||A(i)
l(i)m(i) �Gl(i)S

(i)
l(i)m(i)G

T
m(i)||

2

F

s.t. Gz 2
nz⇥cz , Szw 2 Rcz⇥cw & z, w 2 Z

As this function is not convex over all matrices, the solution is found by iteratively
solving for each matrix separately until convergence. First, by fixing all matrices
but S(i)

k(i)k(i) we take the derivative of the objective with respect to S(i)
k(i)k(i),

@J

@S(i)
k(i)k(i)

=
@

@S(i)
k(i)k(i)

���
���A(i)

k(i)k(i) �Gk(i)S
(i)
k(i)k(i)

���
���
2

F

=
@

@S(i)
k(i)k(i)

tr

⇣
A(i)

k(i)k(i) �Gk(i)S
(i)
k(i)k(i)

⌘T ⇣
A(i)

k(i)k(i) �Gk(i)S
(i)
k(i)k(i)

⌘�

=
@

@S(i)
k(i)k(i)

tr

h
A(i)T

k(i)k(i)A
(i)
k(i)k(i) � 2A(i)T

k(i)k(i)Gk(i)S
(i)
k(i)k(i) + S(i)T

k(i)k(i)G
T
k(i)Gk(i)S

(i)
k(i)k(i)

i

= tr

h
�2A(i)T

k(i)k(i)Gk(i) + 2S(i)T

k(i)k(i)G
T
k(i)Gk(i)

i

and setting the derivative this to zero gives,

S(i)
k(i)k(i) = (GT

k(i)Gk(i))
�1GT

k(i)A
(i)
k(i)k(i).

Similarly, consider when all matrices but the inter S(i)
l(i)m(i) matrix are held fixed,

189

Appendix D. Multi-Type Clustering Appendix

the derivative of the objective with respect to this matrix is,

@J

@S(i)
l(i)m(i)

=
@

@S(i)
l(i)m(i)

���
���A(i)

l(i)m(i) �Gl(i)S
(i)
l(i)m(i)G

T
m(i)

���
���
2

F

=
@

@S(i)
l(i)m(i)

tr

⇣
A(i)

l(i)m(i) �Gl(i)S
(i)
l(i)m(i)G

T
m(i)

⌘T ⇣
A(i)

l(i)m(i) �Gl(i)S
(i)
l(i)m(i)G

T
m(i)

⌘�

=
@

@S(i)
k(i)k(i)

tr

h
A(i)T

l(i)m(i)A
(i)
l(i)m(i) � 2GT

l(i)A
(i)
l(i)m(i)Gm(i)S

(i)
l(i)m(i)

+GT
m(i)Gm(i)S

(i)T

l(i)m(i)G
T
l(i)Gl(i)S

(i)
l(i)m(i)

i

= tr

h
�2GT

l(i)A
(i)
l(i)m(i)Gm(i) + 2GT

l(i)Gl(i)S
(i)
l(i)m(i)G

T
m(i)Gm(i)

i

and setting this to zero gives,

S(i)
l(i)m(i) = (GT

l(i)Gl(i))
�1GT

l(i)A
(i)
l(i)m(i)Gm(i)(G

T
m(i)Gm(i))

�1
.

To calculate the minima of the objective with respect to Gz for z 2 Z whilst
keeping all other matrices fixed, the problem is decoupled to the following for each
node i (1  i  nz),

min
Gz2

X

j2{t2{1,...,q}|k(t)=z}

||A(j)i.

k(j)k(j) �Gi.
zS

(j)
k(j)k(j)||

2

F

+
X

j2{t2{1,...,r}|l(t)=z}

||A(j)i.

l(j)m(j) �Gi.
zS

(j)
l(j)m(j)G

T
m(j)||

2

F

+
X

j2{t2{1,...,r}|m(t)=z}

||A(j).i

l(j)m(j) �Gl(j)S
(j)
l(j)m(j)(G

T
z)

.i
||
2

F

as Gz is a cluster indicator matrix. Thus the best cluster allocation j for node i

is such that it minimises this objective function hence,

Gij
z =

8
>>>>><

>>>>>:

1 j = argmins

P
p2{t2{1,...,q}|k(t)=z} ||A

(p)i.

k(p)k(p) � S(p)s.

k(p)k(p)||
2

+
P

p2{t2{1,...,r}|l(t)=z} ||A
(p)i.

l(p)m(p) �

⇣
S(p)
l(p)m(p)G

T
m(p)

⌘s.
||
2

+
P

p2{t2{1,...,r}|m(t)=z} ||A
(p).i

l(p)m(p) �

⇣
Gl(p)S

(p)
l(p)m(p)

⌘.s
||
2

0 otherwise

.

190

Appendix D. Multi-Type Clustering Appendix

D.2 Weighted Simple NMTF Derivations

Alternating optimisation is again used to find a solution for the Weighted Simple
NMTF non convex objective function,

J =
qX

i=1

||A(i)
k(i)k(i) �G(i)

k(i)S
(i)
k(i)k(i)||

2

F +
q+rX

i=q+1

||A(i)
l(i)m(i) �G(i)

l(i)S
(i)
l(i)m(i)G

(i)T

m(i)||
2

F

+
X

z2Z

�z ||G
⇤
z �PzMz||

2

F s.t. �z � 0, G(i)
z 2

nz⇥cz , S(i)
zw 2 Rcz⇥cw ,

G⇤
z 2 R|Iz |cz⇥nz , Pz 2 R|Iz |cz⇥cz , Mz 2 Rcz⇥nz for z, w 2 Z

where recall the matrix G⇤
z row concatenates all G(i)T

z 8i 2 Iz where Iz contains
the index set of matrices related to z.

Similarly to the Simple NMTF algorithm in Appendix D.1, the optimal solution
for the matrix S(i)

k(i)k(i) and Sl(im(i)(i) is calculated by taking the derivative of the
objective function and setting to zero. First we take the derivative of the objective
function with respect to S(i)

k(i)k(i) while keeping all other matrices fixed,

@J

@S(i)
k(i)k(i)

=
@

@S(i)
k(i)k(i)

���
���A(i)

k(i)k(i) �G(i)
k(i)S

(i)
k(i)k(i)

���
���
2

F

=
@

@S(i)
k(i)k(i)

tr

⇣
A(i)

k(i)k(i) �G(i)
k(i)S

(i)
k(i)k(i)

⌘T ⇣
A(i)

k(i)k(i) �G(i)
k(i)S

(i)
k(i)k(i)

⌘�

=
@

@S(i)
k(i)k(i)

tr

h
A(i)T

k(i)k(i)A
(i)
k(i)k(i) � 2A(i)T

k(i)k(i)G
(i)
k(i)S

(i)
k(i)k(i) + S(i)T

k(i)k(i)G
(i)T

k(i)G
(i)
k(i)S

(i)
k(i)k(i)

i

= tr

h
�2A(i)T

k(i)k(i)G
(i)
k(i) + 2S(i)T

k(i)k(i)G
(i)T

k(i)G
(i)
k(i)

i
.

Setting this to zero gives,

S(i)
k(i)k(i) = (G(i)T

k(i)G
(i)
k(i))

�1G(i)T

k(i)A
(i)
k(i)k(i).

which is similar to the solution for Simple NMTF however instead of a single
clustering for entity type k(i) the individual clustering for graph A(i)

k(i)k(i) is used.

191

Appendix D. Multi-Type Clustering Appendix

Similarly for S(i)
l(i)m(i) the derivative of the objective with respect to this matrix is,

@J

@S(i)
l(i)m(i)

=
@

@S(i)
l(i)m(i)

���
���A(i)

l(i)m(i) �G(i)
l(i)S

(i)
l(i)m(i)G

(i)T

m(i)

���
���
2

F

=
@

@S(i)
l(i)m(i)

tr

⇣
A(i)

l(i)m(i) �G(i)
l(i)S

(i)
l(i)m(i)G

(i)T

m(i)

⌘T ⇣
A(i)

l(i)m(i) �G(i)
l(i)S

(i)
l(i)m(i)G

(i)T

m(i)

⌘�

=
@

@S(i)
k(i)k(i)

tr

h
A(i)T

l(i)m(i)A
(i)
l(i)m(i) � 2G(i)T

l(i) A
(i)
l(i)m(i)G

(i)
m(i)S

(i)
l(i)m(i)

+G(i)T

m(i)G
(i)
m(i)S

(i)T

l(i)m(i)G
(i)T

l(i) G
(i)
l(i)S

(i)
l(i)m(i)

i

= tr

h
�2G(i)T

l(i) A
(i)
l(i)m(i)G

(i)
m(i) + 2G(i)T

l(i) G
(i)
l(i)S

(i)
l(i)m(i)G

(i)T

m(i)G
(i)
m(i)

i

and setting this to zero gives,

S(i)
l(i)m(i) = (G(i)T

l(i) G
(i)
l(i))

�1G(i)T

l(i) A
(i)
l(i)m(i)G

(i)
m(i)(G

(i)T

m(i)G
(i)
m(i))

�1
.

To solve for the optimal cluster indicator matrix for each graph, first consider
the intra relationships. The problem for G(i)

k(i) is decoupled to,

min
G2

||A(i)
k(i)k(i) �GS(i)

k(i)k(i)||
2

F + �k(i)

���
���GT
� (Pk(i)Mk(i))

I
(i)
k(i).
���
���
2

F

where I
(i)
z is the set of indices for graph i in the combined concatenated matrix

G⇤
z. Let g(k) be a cluster indicator vector of length n where where the k

th entry
is 1 and all other entries are zero. Let b be a real vector. Consider the following
minimisation problem,

min
k

||g(k)� b||2 = min
k

(1� bk)2 +
nX

j=1,j 6=k

bj2

= min
k

1� 2bk + bk2 +
nX

j=1,j 6=k

bj2

= min
k

1� 2bk + ||b||2

= �2bk
.

Thus as G is a cluster indicator matrix, for each node j, choose the cluster s that
minimises the objective function,

G(i)jt

k(i) =

(
1 t = argmins ||A

(i)j·

k(i)k(i) � S(i)s·

k(i)k(i)||
2
� 2�k(i)

�
Pk(i)Mk(i)

�I(i)k(i)(s)j

0 otherwise

192

Appendix D. Multi-Type Clustering Appendix

where I
(i)
z (s) is the index of cluster s for entity type z from input matrix i in

combined concatenated matrixG⇤
z. Similarly for the inter-type relational matrices,

the optimal cluster indicator matrix for G(i)
l(i) solves,

min
G2

||A(i)
l(i)m(i) �GS(i)

l(i)m(i)G
(i)T

m(i)||
2

F + �l(i)

���
���GT
� (Pl(i)Ml(i))

I
(i)
l(i).
���
���
2

F

thus similarly to the intra case, for the j
th node find cluster s to minimise this

which is given by,

G(i)jt

l(i) =

8
<

:
1 t = argmins ||A

(i)j·

l(i)m(i) �

⇣
S(i)
l(i)m(i)G

(i)T

m(i)

⌘s·
||
2
� 2�l(i)

�
Pl(i)Ml(i)

�I(i)l(i)(s)j

0 otherwise

Similarly for G(i)
m(i) the problem is decoupled to,

min
G2

||A(i)
l(i)m(i) �G(i)

l(i)S
(i)
l(i)m(i)G

T
||
2

F + �m(i)

���
���GT
� (Pm(i)Mm(i))

I
(i)
m(i).
���
���
2

F

which is solved by,

G(i)jt

m(i) =

8
<

:
1 t = argmins ||A

(i)·j

l(i)m(i) �

⇣
G(i)

l(i)S
(i)
l(i)m(i)

⌘·s
||
2
� 2�m(i)

�
Pm(i)Mm(i)

�I(i)m(i)(s)j

0 otherwise

where I
(i)
z (s) is the index of cluster s for entity type z from input matrix i in

combined concatenated matrix G⇤
z.

D.3 Weighted Simple NMTF Regularisation Parameter

To investigate the influence of the regularisation parameter on the performance of
the Weighted Simple NMTF clustering procedure, we calculate the performance
in terms of similarity to the true clustering via the ARI. The graphs used for this
method are generated using the stochastic block model procedure detailed in Sec-
tion 6.3 where we vary the sizes of the graphs and the probability of connection
between the nodes. As our methods are motivated by cyber-security, the graphs
reflect this. We generate computer-computer, computer-user and computer-port
graphs where there is a shared computer clustering between these relational ma-
trices. Table D.1 outlines the parameters sampled from to generate the random
graphs. For each regularisation parameter � the results average over 50 random
graphs where the methods utilise the initialisation procedure outlined in Section
6.5.

As the Weighted Simple NMTF calculates both individual computer clusterings
for each graph alongside the combined clustering, we can determine how well each

193

Appendix D. Multi-Type Clustering Appendix

Table D.1: Description simulation graph parameters for the Weighted Simple
NMTF parameter investigation.

Number Computers / Clusters {3000,5000,7000} / {100,200,300}
Number Users / Clusters {3000,5000,7000} / {100,200,300}
Number Ports / Clusters {1000,2000} / {50,100}

CC Number Cluster Connections {1,2,. . . ,5}
CU Number Cluster Connections {1,2,. . . ,5}
CP Number Cluster Connections {1,2,. . . ,10}

Probability of Connections Between Clusters {0.1,. . . ,0.9}

individual clustering compares to the combined. Additionally using Equation 6.11
the contribution of the individual clusterings from each graph can be calculated.
Table D.3 shows the ARI between the Weighted Simple NMTF clustering and
the true clustering for each individual graph for the computers (CC, CU and
CP) and the combined clustering, Comp, plus the performance for the users and
ports. Finally, it displays the weights each graph contributes to the final clustering.
For comparison Table D.3 contains the similarity of Simple NMTF to the true
clustering calculated over the same graphs split for each of the di↵erent � values
although Simple NMTF does not utilise this parameter.

Table D.2: ARI of clustering from Weighted Simple NMTF to true clustering
calculated over 50 random graphs for each parameter.

� CC CU CP Comp User Port CC Weight CU Weight CP Weight

0.0001 0.6116 0.4743 0.6566 0.6405 0.6825 0.7607 0.3799 0.3695 0.2506
0.0005 0.6268 0.5140 0.6680 0.6284 0.6711 0.7579 0.3779 0.3724 0.2496
0.001 0.6144 0.4931 0.6649 0.6520 0.7143 0.7520 0.3702 0.3738 0.2560
0.005 0.6230 0.5014 0.6653 0.6454 0.7085 0.7641 0.3711 0.3694 0.2595
0.01 0.6073 0.4910 0.6495 0.6461 0.7062 0.7597 0.3702 0.3729 0.2569
0.05 0.5941 0.4840 0.6283 0.6600 0.7314 0.7673 0.3587 0.3692 0.2721
0.1 0.6014 0.5069 0.5901 0.6579 0.6777 0.7717 0.3435 0.3764 0.2801
0.5 0.5886 0.6017 0.4012 0.6273 0.7315 0.7865 0.3344 0.3766 0.2890
1.0 0.5534 0.5993 0.3332 0.5881 0.7084 0.7763 0.3338 0.3659 0.3003
5.0 0.5189 0.5837 0.3219 0.5553 0.7269 0.7787 0.3360 0.3680 0.2961
10.0 0.5131 0.5783 0.3205 0.5755 0.6635 0.7819 0.3333 0.3638 0.3030

From Table D.2 it is clear that for all values of � below 0.5, the combined
computer clustering of WSNMTF generally outperforms Simple NMTF while the
user and port clusterings have very similar performance. This suggests appropri-
ate values for � lie in (0, 0.5). It is interesting to note that the CU clustering for
WSNMTF is poorer than that of CC and CP although this graph has been given
large weight for small parameter values. Surprisingly CP has the smallest weight
although it has the best performance for small parameter values. Thus similar
to boosting, greater weight is given to the representation that performs weakly.
Table D.4 displays the similarity between the clusterings from the weighted and

194

Appendix D. Multi-Type Clustering Appendix

unweighted Simple NMTF algorithms. It is clear from this table that the com-
puter clusterings di↵er greatly however the user and port clusterings are the same.
Interestingly, these two approaches have similar ARI values to the truth yet are
di↵erent from one another.

Table D.3: ARI of clustering from Simple NMTF to true clustering calculated
over 50 random graphs for each parameter for the Weighted NMTF for compara-
bility.

� Comp User Port

0.0001 0.5829 0.6961 0.7628
0.0005 0.6308 0.6849 0.7561
0.001 0.5981 0.7127 0.7532
0.005 0.6094 0.7106 0.7602
0.01 0.5851 0.715 0.7609
0.05 0.5283 0.7347 0.7641
0.1 0.5029 0.6804 0.7637
0.5 0.6323 0.7618 0.7629
1.0 0.5988 0.7324 0.7591
5.0 0.6123 0.7545 0.7624
10.0 0.6112 0.7102 0.7643

Table D.4: ARI between Simple NMTF and Weighted Simple NMTF calculated
over 50 random graphs for each parameter.

Gamma CC CU CP Comp User Port

0.0001 0.4575 0.4571 0.4558 0.4458 0.7945 0.9225
0.0005 0.4894 0.4784 0.4886 0.4690 0.7940 0.9266
0.001 0.4653 0.4713 0.4659 0.4597 0.8075 0.9159
0.005 0.4776 0.4738 0.4757 0.4651 0.8058 0.9174
0.01 0.4631 0.4730 0.4521 0.4611 0.7919 0.9220
0.05 0.4209 0.4591 0.4073 0.4312 0.7947 0.9025
0.1 0.3953 0.4471 0.3675 0.4180 0.7761 0.8955
0.5 0.4428 0.5090 0.3089 0.4642 0.7964 0.8860
1.0 0.4002 0.4722 0.2530 0.4262 0.7823 0.8804
5.0 0.3914 0.4672 0.2490 0.4093 0.7849 0.8802
10.0 0.3898 0.4670 0.2498 0.4191 0.7389 0.8851

195

Appendix D. Multi-Type Clustering Appendix

D.4 Bipartite Modularity

Consider a bipartite graph G = (V, U,E) with adjacency matrixA where |E| = M .
Let C

V and C
U be the clusterings for the two nodes sets V and U respectively.

Let elm be the fraction of edges that link nodes in the l
th cluster of CV (denoted

C
V
l) to nodes in the m

th cluster of CU (denoted C
U
m) calculated as,

elm =
1

2M

X

i2CV
l

X

j2CU
m

Aij
.

Let al be the row sums of e,

al =
X

m

elm =
1

2M

X

i2CV
l

X

j2U

Aij
.

The bipartite modularity is then given by,

QB =
X

l

QBl
=
X

l

(elm � alam), m = argmax
k

elk.

This bipartite modularity measures the proportions of edges in the network that
connect between communities minus the expected value of the same quantity in a
network with the same community division but random connections. However as
mentioned, as this measure is for community detection it is not a suitable internal
measure for our problem which focus on clustering based on similar edges rather
than dividing the network into communities.

D.5 Additional t-SNE Representations

This section displays the t-SNE comparison plots for the Weighted Simple NMTF,
F-NMTF and R-NMTF multi-type clustering models to the true clustering for
each node type. These visualisations use the same graph investigated in Section
6.7. Figure D.1 displays the computer clustering for the algorithms. It is clear
that the competitive approaches, particularly F-NMTF, do not cluster the data
as well as the proposed approaches where there is more mixing of colours. Again
for the users in Figure D.2, there is less similarity in colouring to the truth for
F-NMTF and R-NMTF which is validated by the poorer user performance of these
clustering approaches in Table 6.4. Again F-NMTF has poor port performance in
Figure D.3 with mixing of cluster assignments whereas the other algorithms better
distinguish these clusters.

196

Appendix D. Multi-Type Clustering Appendix

(a) True Clustering (b) Weighted Simple NMTF Clustering

(c) F-NMTF (d) R-NMTF

Figure D.1: Computer t-SNE representation for true, Weighted Simple NMTF,
F-NMTF and R-NMTF clustering procedures respectively. Each colour represents
a di↵erent cluster.

197

Appendix D. Multi-Type Clustering Appendix

(a) True Clustering (b) Weighted Simple NMTF Clustering

(c) F-NMTF (d) R-NMTF

Figure D.2: User t-SNE representation for true, Weighted Simple NMTF, F-
NMTF and R-NMTF clustering procedures respectively. Each colour represents a
di↵erent cluster.

198

Appendix D. Multi-Type Clustering Appendix

(a) True Clustering (b) Weighted Simple NMTF Clustering

(c) F-NMTF (d) R-NMTF

Figure D.3: Port t-SNE representation for true, Weighted Simple NMTF, F-
NMTF and R-NMTF clustering procedures respectively. Each colour represents a
di↵erent cluster.

199

Appendix E

Dynamic Clustering Appendix

E.1 No Cluster Change

We begin by assessing the clustering performance over a graph stream with no
cluster changes as a baseline. The cluster performance should be consistent over
the stream with high similarity between consecutive clusterings and very few clus-
ter changes. Figure E.1 shows the ARI between consecutive clusterings for each
node type for our two approaches. It can be seen that Dynamic SNMTF which
utilises the previous clustering when updating, has very high similarity. Simple
NMTF which performs NNDSVD initialisation at each update has less similarity
between consecutive clusterings. Thus our proposed approach produces smooth
clusterings.

0.6

0.7

0.8

0.9

1.0

144 288 432 576 720 864 1008 1152 1296 1440
Bin

AR
I

(a) Computer

0.7

0.8

0.9

1.0

144 288 432 576 720 864 1008 1152 1296 1440
Bin

AR
I

(b) User

0.8

0.9

1.0

144 288 432 576 720 864 1008 1152 1296 1440
Bin

AR
I

(c) Port

0.8

0.9

1.0

144 288 432 576 720 864 1008 1152 1296 1440
Bin

AR
I

Algorithm
Dynamic SNMTF

Simple NMTF

Figure E.1: ARI of consecutive clusterings over network stream as described in
Section 7.2.1 where there exist no cluster changes.

We now explore the performance of our approaches. Figure E.2 displays the
similarity (measured by ARI) to the true clustering. For the computer clustering,
the performance of Dynamic SNMTF averages between the extremes of Simple
NMTF. Additionally, the clustering performance for Dynamic SNMTF is much
more stable for all node types. Surprisingly the port clustering has an ARI very
close to 1 for Dynamic SNMTF, suggesting it has found the correct clustering.

200

Appendix E. Dynamic Clustering Appendix

Interestingly, both algorithms have lower ARI for the computer clusterings in
comparison to the user and port clusterings. Poorer computer clustering was also
seen in the simulations in Chapter 6. Thus Dynamic SNMTF provides a good
balance between the smoothness of clustering and performance.

0.4

0.5

0.6

0.7

144 288 432 576 720 864 1008 1152 1296 1440
Bin

AR
I

(a) Computer

0.7

0.8

0.9

144 288 432 576 720 864 1008 1152 1296 1440
Bin

AR
I

(b) User

0.7

0.8

0.9

1.0

144 288 432 576 720 864 1008 1152 1296 1440
Bin

AR
I

(c) Port

0.8

0.9

1.0

144 288 432 576 720 864 1008 1152 1296 1440
Bin

AR
I

Algorithm
Dynamic SNMTF

Simple NMTF

Figure E.2: ARI of consecutive clusterings over network stream as described in
Section 7.2.1 where there exist no cluster changes.

As labels are not available in practice it is also important to utilise internal
performance measures. Figure E.3 shows the NCS measure for each of the graphs
and node types as well as an overall score. The computer clusterings for each of
the graphs show similar NCS behaviour where there is an increase around 504
due to cluster changes in the computer clustering. After this change, the NCS for
Dynamic SNMTF improves for the computers. This change additionally results in
an improvement in the CU-U plot and overall performance. For the port clustering,
Dynamic SNMTF has superior performance. Additionally, Dynamic SNMTF has
much more stable results than Simple NMTF.

Figure E.4 shows the number of cluster changes for each entity type. It can be
seen for the computer and port clusterings that Dynamic SNMTF does not have
many changes whereas there are more changes for the users. Notably, Dynamic
SNMTF has a large number of changes (approximately 500) at 504, which re-
sulted in the improvement in clustering results for NCS in Figure E.3. This shows
that utilising the previous cluster to initialise Simple NMTF does not cause the
algorithm to be static, and still allows the cluster assignment to change.

201

Appendix E. Dynamic Clustering Appendix

0.50

0.55

0.60

0.65

144 288 432 576 720 864 1008 1152 1296 1440
Bin

N
C

S
C

C
−C

(a) CC-C

0.45

0.50

0.55

0.60

144 288 432 576 720 864 1008 1152 1296 1440
Bin

N
C

S
C

U
−C

(b) CU-C

0.64

0.66

0.68

0.70

0.72

144 288 432 576 720 864 1008 1152 1296 1440
Bin

N
C

S
C

U
−U

(c) CU-U

0.8

0.9

1.0

144 288 432 576 720 864 1008 1152 1296 1440
Bin

AR
I

Algorithm
Dynamic SNMTF

Simple NMTF

0.40

0.45

0.50

0.55

0.60

144 288 432 576 720 864 1008 1152 1296 1440
Bin

N
C

S
C

P−
C

(d) CP-C

0.64

0.68

0.72

0.76

144 288 432 576 720 864 1008 1152 1296 1440
Bin

N
C

S
C

P−
P

(e) CP-P

0.625

0.650

0.675

0.700

144 288 432 576 720 864 1008 1152 1296 1440
Bin

N
C

S
O

ve
ra

ll

(f) Overall

0.8

0.9

1.0

144 288 432 576 720 864 1008 1152 1296 1440
Bin

AR
I

Algorithm
Dynamic SNMTF

Simple NMTF

Figure E.3: NCS for calculated clusterings for simulated network as described in
Section 7.2.1 where there exist no cluster changes.

0

250

500

750

1000

144 288 432 576 720 864 1008 1152 1296 1440
Bin

C
lu

st
er

 C
ha

ng
es

(a) Computer

0

250

500

750

1000

144 288 432 576 720 864 1008 1152 1296 1440
Bin

C
lu

st
er

 C
ha

ng
es

(b) User

0

100

200

300

400

500

144 288 432 576 720 864 1008 1152 1296 1440
Bin

C
lu

st
er

 C
ha

ng
es

(c) Port

0.8

0.9

1.0

144 288 432 576 720 864 1008 1152 1296 1440
Bin

AR
I

Algorithm
Dynamic SNMTF

Simple NMTF

Figure E.4: Number of cluster changes for each node type for network stream as
described in Section 7.2.1 where there exist no cluster changes.

E.2 Single Node Cluster Change

We now allow a single node for each node type to change cluster assignment once
throughout the stream. This will help determine whether the algorithm is capable
of adapting to cluster changes. Similar behaviour to the no change case is seen
for the similarity between consecutive clusterings for this new simulation case in
Figure E.5. The similarity is again very high for Dynamic SNMTF suggesting
there are very few changes which is expected as only a single node has a cluster

202

Appendix E. Dynamic Clustering Appendix

0.6

0.7

0.8

0.9

1.0

144 288 432 576 720 864 1008 1152 1296 1440
Bin

AR
I

(a) Computer

0.80

0.85

0.90

0.95

1.00

144 288 432 576 720 864 1008 1152 1296 1440
Bin

AR
I

(b) User

0.85

0.90

0.95

1.00

144 288 432 576 720 864 1008 1152 1296 1440
Bin

AR
I

(c) Port

0.8

0.9

1.0

144 288 432 576 720 864 1008 1152 1296 1440
Bin

AR
I

Algorithm
Dynamic SNMTF

Simple NMTF

Figure E.5: ARI of consecutive clusterings over network stream as described in
Section 7.2.1 where for a single node from each node type there is a cluster change
at 1261, 847 and 502 for the computer, user and port node respectively.

assignment change. Again Simple NMTF has more variability in comparison.
Again for the similarity to the true clustering in Figure E.6, the port clustering

for Dynamic SNMTF is very high where the computer and user ports have stable
good performance in comparison to Simple NMTF. Similar to NCS in Figure E.7,
Dynamic SNMTF has a value in the middle of the extremes of Simple NMTF
for the computer and user clusterings and very high NCS for the port clustering.
Finally, when looking at the number of cluster changes in Figure E.8, there exist
more large scale changes for the computers, users and ports in comparison to
the no change example. This may be an artefact of the simulation or due to
the inclusion of cluster changes in the data. However as the performance is stable,
these cluster changes may correspond to merging or splittings of clusters which may
not dramatically a↵ect the performance. As the cluster performance of Dynamic
SNMTF does not decrease due to the cluster changes present, this suggests the
procedure is robust to cluster changes.

0.4

0.5

0.6

0.7

0.8

144 288 432 576 720 864 1008 1152 1296 1440
Bin

AR
I

(a) Computer

0.65

0.70

0.75

0.80

0.85

0.90

144 288 432 576 720 864 1008 1152 1296 1440
Bin

AR
I

(b) User

0.85

0.90

0.95

1.00

144 288 432 576 720 864 1008 1152 1296 1440
Bin

AR
I

(c) Port

0.8

0.9

1.0

144 288 432 576 720 864 1008 1152 1296 1440
Bin

AR
I

Algorithm
Dynamic SNMTF

Simple NMTF

Figure E.6: ARI to true clustering over network stream as described in Section
7.2.1 where for a single node from each node type there is a cluster change at 1261,
847 and 502 for the computer, user and port node respectively.

203

Appendix E. Dynamic Clustering Appendix

0.575

0.600

0.625

0.650

144 288 432 576 720 864 1008 1152 1296 1440
Bin

N
C

S
C

C
−C

(a) CC-C

0.50

0.55

0.60

0.65

144 288 432 576 720 864 1008 1152 1296 1440
Bin

N
C

S
C

U
−C

(b) CU-C

0.675

0.700

0.725

0.750

144 288 432 576 720 864 1008 1152 1296 1440
Bin

N
C

S
C

U
−U

(c) CU-U

0.8

0.9

1.0

144 288 432 576 720 864 1008 1152 1296 1440
Bin

AR
I

Algorithm
Dynamic SNMTF

Simple NMTF

0.50

0.55

0.60

0.65

144 288 432 576 720 864 1008 1152 1296 1440
Bin

N
C

S
C

P−
C

(d) CP-C

0.72

0.74

0.76

0.78

144 288 432 576 720 864 1008 1152 1296 1440
Bin

N
C

S
C

P−
P

(e) CP-P

0.65

0.67

0.69

0.71

144 288 432 576 720 864 1008 1152 1296 1440
Bin

N
C

S
O

ve
ra

ll

(f) Overall

0.8

0.9

1.0

144 288 432 576 720 864 1008 1152 1296 1440
Bin

AR
I

Algorithm
Dynamic SNMTF

Simple NMTF

Figure E.7: NCS for calculated clusterings for simulated network as described in
Section 7.2.1 where for a single node from each node type there is a cluster change
at 1261, 847 and 502 for the computer, user and port node respectively.

0

200

400

600

800

144 288 432 576 720 864 1008 1152 1296 1440
Bin

C
lu

st
er

 C
ha

ng
es

(a) Computer

0

200

400

600

800

144 288 432 576 720 864 1008 1152 1296 1440
Bin

C
lu

st
er

 C
ha

ng
es

(b) User

0

100

200

300

400

144 288 432 576 720 864 1008 1152 1296 1440
Bin

C
lu

st
er

 C
ha

ng
es

(c) Port

0.8

0.9

1.0

144 288 432 576 720 864 1008 1152 1296 1440
Bin

AR
I

Algorithm
Dynamic SNMTF

Simple NMTF

Figure E.8: Number of cluster changes for each node type for network stream
as described in Section 7.2.1 where for a single node from each node type there
is a cluster change at 1261, 847 and 502 for the computer, user and port node
respectively.

E.3 Anomalous Node

In addition to allowing many nodes to change clusters where we set �i = 3 8i, we
include an anomalous node for each node type which is in its own cluster and has
random connections throughout the network. This is considered anomalous as it

204

Appendix E. Dynamic Clustering Appendix

does not have a regular pattern of connection, unlike the other nodes. Additionally,
at each time point, these anomalous nodes have large numbers of edges where the
probability of a connection to any other node in the graph is 0.05.

Once again the similarity between clusterings for Dynamic SNMTF is still very
high in comparison to Simple NMTF and is seen in Figure E.9. This is however
lower than that seen in Section 7.2.3 due to more cluster changes in the stream. For
the similarity to the true clustering in Figure E.10, there is more similarity between
the performance of Dynamic NMTF and Simple NMTF. As more cluster changes
are introduced into the graph, it is reasonable that the restart method may become
more favourable as there is less dependence on the previous clustering. However,
the performance of Dynamic NMTF is more stable and is not worse than Simple
NMTF.

0.4

0.6

0.8

1.0

144 288 432 576 720 864 1008 1152 1296 1440
Bin

AR
I

(a) Computer

0.6

0.7

0.8

0.9

1.0

144 288 432 576 720 864 1008 1152 1296 1440
Bin

AR
I

(b) User

0.7

0.8

0.9

1.0

144 288 432 576 720 864 1008 1152 1296 1440
Bin

AR
I

(c) Port

0.8

0.9

1.0

144 288 432 576 720 864 1008 1152 1296 1440
Bin

AR
I

Algorithm
Dynamic SNMTF

Simple NMTF

Figure E.9: ARI of consecutive clusterings over network stream as described in
Section 7.2.1 where � = 3 in the cluster membership generation process and an
anomalous node for each node type is included.

0.2

0.3

0.4

0.5

0.6

144 288 432 576 720 864 1008 1152 1296 1440
Bin

AR
I

(a) Computer

0.40

0.45

0.50

0.55

0.60

0.65

144 288 432 576 720 864 1008 1152 1296 1440
Bin

AR
I

(b) User

0.60

0.65

0.70

0.75

0.80

144 288 432 576 720 864 1008 1152 1296 1440
Bin

AR
I

(c) Port

0.8

0.9

1.0

144 288 432 576 720 864 1008 1152 1296 1440
Bin

AR
I

Algorithm
Dynamic SNMTF

Simple NMTF

Figure E.10: ARI to the true clustering over network stream as described in
Section 7.2.1 where � = 3 in the cluster membership generation process and an
anomalous node for each node type is included.

It is clear from Figure E.11 that the computer NCS is poorer for Dynamic
SNMTF than Simple NMTF whilst being very similar for users and ports in Figures

205

Appendix E. Dynamic Clustering Appendix

E.11 (c) and (e) respectively. However, the di↵erence in performance is marginal.
Once again the number of cluster changes in Figure E.12 is larger than before
but for the computers and ports, there are only discrete spikes of change rather
than continuous change as seen by Simple NMTF. As Dynamic SNMTF still has
a similar performance to Simple NMTF but is much more stable with smooth
clusterings, it is favourable. It is important to note that the simulated case in this
section is more extreme than that observed in practice where nodes rarely change
clusterings or do so less often than simulated here.

0.48

0.52

0.56

0.60

0.64

144 288 432 576 720 864 1008 1152 1296 1440
Bin

N
C

S
C

C
−C

(a) CC-C

0.40

0.45

0.50

0.55

0.60

144 288 432 576 720 864 1008 1152 1296 1440
Bin

N
C

S
C

U
−C

(b) CU-C

0.60

0.62

0.64

0.66

0.68

144 288 432 576 720 864 1008 1152 1296 1440
Bin

N
C

S
C

U
−U

(c) CU-U

0.8

0.9

1.0

144 288 432 576 720 864 1008 1152 1296 1440
Bin

AR
I

Algorithm
Dynamic SNMTF

Simple NMTF

0.40

0.45

0.50

0.55

144 288 432 576 720 864 1008 1152 1296 1440
Bin

N
C

S
C

P−
C

(d) CP-C

0.62

0.64

0.66

0.68

0.70

144 288 432 576 720 864 1008 1152 1296 1440
Bin

N
C

S
C

P−
P

(e) CP-P

0.60

0.62

0.64

0.66

144 288 432 576 720 864 1008 1152 1296 1440
Bin

N
C

S
O

ve
ra

ll

(f) Overall

0.8

0.9

1.0

144 288 432 576 720 864 1008 1152 1296 1440
Bin

AR
I

Algorithm
Dynamic SNMTF

Simple NMTF

Figure E.11: NCS for calculated clusterings for simulated network as described
in Section 7.2.1 where � = 3 in the cluster membership generation process and an
anomalous node for each node type is included.

206

Appendix E. Dynamic Clustering Appendix

0

250

500

750

1000

144 288 432 576 720 864 1008 1152 1296 1440
Bin

C
lu

st
er

 C
ha

ng
es

(a) Computer

0

250

500

750

1000

144 288 432 576 720 864 1008 1152 1296 1440
Bin

C
lu

st
er

 C
ha

ng
es

(b) User

0

100

200

300

400

500

144 288 432 576 720 864 1008 1152 1296 1440
Bin

C
lu

st
er

 C
ha

ng
es

(c) Port

0.8

0.9

1.0

144 288 432 576 720 864 1008 1152 1296 1440
Bin

AR
I

Algorithm
Dynamic SNMTF

Simple NMTF

Figure E.12: Number of cluster changes for each node type for network stream
as described in Section 7.2.1 where � = 3 in the cluster membership generation
process and an anomalous node for each node type is included.

207

208

Appendix F. Cyber Application Appendix

Appendix F

Cyber Application Appendix

Table F.1: Descriptions of Authentication Event IDs in LANL WLS data.

Event ID Name Description
4768 Kerberos authentication

ticket requested (TGT)
Logged on domain controllers which logs both success
and failure instances. Event occurs for initial logon.

4769 Kerberos service ticket re-
quested (TGS)

Service tickets obtained whenever user or computer ac-
cesses a server on the network. Logged on domain con-
trollers.

4770 Kerberos service ticket re-
newed

Kerberos limits how long ticket valid for. If the ticket
expires when the user is still logged on, windows auto-
matically contacts the domain controller to renew the
ticket.

4774 An account was mapped
for logon

Logged on the domain controller.

4776 Domain controller (DC)
attempted to validate cre-
dentials

When domain controller successfully authenticates a
user via other authentication packages (instead of Ker-
beros), the DC logs this event.

4624 Account has successful
log on

Has specific logon type. If the entry has a source field,
the local event will be the same as LogHost.

4625 Account failed to Logon Has a specific logon type and sometimes has a source.
4634 Account was Logged o↵ Logo↵ resulting from idle network session with specific

logon type.
4647 User initiated logo↵ Logo↵ where user physically logs o↵ from console.
4648 Logon attempted using

explicit credentials
User connects to a server or runs a program locally us-
ing alternative credentials. Also when a process logs
on as a di↵erent account such as when the scheduled
task service starts a task as the specified user. Logging
on interactively to a member server with a domain ac-
count produces this event with 2 instances of 4624.

4672 Special privileges as-
signed to a new logon

When an account assigned any “administrator equiv-
alent” user rights logs on. Will see these events close
to logon events (4624) for administrators. This also
logged for any server or applications accounts logging
on as a batch job or system service.

4800 Workstation locked
4801 Workstation unlocked
4802 Screensaver invoked
4803 Screensaver dismissed

209

Appendix F. Cyber Application Appendix

Table F.2: Descriptions of Process Event IDs in LANL WLS data.

Event ID Name Description
4688 Process Start Documents each program that is executed and the pro-

cess that started this process.
4689 Process End When start program creating a process that stays open

until program exits.

Table F.3: Descriptions of System Event IDs in LANL WLS data.

Event ID Name
4608 Windows starting up
4609 Windows shutting down
1100 Event logging services has shut down

Table F.4: Descriptions of Logon Types in LANL WLS data.

Logon Type Description
0 Used only by the system account
2 Interactive (logon at keyboard and screen of system)
3 Network (connection to shared folder on this computer from elsewhere

in the network)
4 Batch (scheduled task)
5 Service (service startup)
7 Unlock(unattended workstation with password protected screen saver)
8 NetworkCleartext (logon with credentials sent in clear text. Indicates

logon to Internet Information Services with basic authentication.)
9 NewCredentials such as with RunAs or mapped network drive with al-

ternative credentials.
10 RemoteInterative (terminal services, remote desktop or remote assis-

tance)
11 cachedinteractive (logon with cached domain credentials such as when

logging onto a laptop when away from the network)

210

