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Non-parametric machine learning for biological sequence data

by Jonathan ISH-HOROWICZ

In the past decade there has been a massive increase in the volume of biologi-
cal sequence data, driven by massively parallel sequencing technologies. This has
enabled data-driven statistical analyses using non-parametric predictive models (in-
cluding those from machine learning) to complement more traditional, hypothesis-
driven approaches. This thesis addresses several challenges that arise when apply-
ing non-parametric predictive models to biological sequence data.

Some of these challenges arise due to the nature of the biological system of inter-
est. For example, in the study of the human microbiome the phylogenetic relation-
ships between microorganisms are often ignored in statistical analyses. This thesis
outlines a novel approach to modelling phylogenetic similarity using string kernels
and demonstrates its utility in the two-sample test and host-trait prediction.

Other challenges arise from limitations in our understanding of the models them-
selves. For example, calculating variable importance (a key task in biomedical ap-
plications) is not possible for many models. This thesis describes a novel extension
of an existing approach to compute importance scores for grouped variables in a
Bayesian neural network. It also explores the behaviour of random forest classifiers
when applied to microbial datasets, with a focus on the robustness of the biological
findings under different modelling assumptions.
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Chapter 1

Introduction

1 The importance of sequence data in biological research

Sequences are ubiquitous in biological research. The most notable example is de-
oxyribonucleic acid (DNA), which contains the hereditary genetic material of almost
all life on Earth. A second nucleic acid is ribonucleic acid (RNA), which is synthe-
sised by cells according to the DNA sequence in a process called transcription. RNA
carries out a number of roles, the most important of which is translation - the trans-
fer of genetic information during protein synthesis. Proteins, which are themselves
formed of amino acid sequences, perform most of the tasks essential for life. This
transfer of genetic information to functional products is the central dogma of molec-
ular biology (see Figure 1.1).

The analysis of sequence data is therefore a rich source of information with which
to study biological systems via the so-called omics disciplines. Some common omics
disciplines include genomics (the study of DNA), transcriptomics (RNA) and pro-
teomics (proteins), epigenomics (chemical modifications to DNA) and microbiomics
(microorganisms living inside our bodies). Sequence data provide measurements at
a previously impossible resolution that have led to many breakthroughs in our un-
derstanding of human health. In genomic studies sequence data have revealed the
genetic factors driving complex diseases such as Type 2 diabetes and schizophre-
nia, which in turn has led to the development of novel treatments (Visscher et al.,
2017). Transcriptomics has revolutionised the understanding of cancer (Supplitt et
al., 2021), while the study of the human microbiome has revealed its role in an ever-
growing list of human diseases (Young, 2017).

Biology is currently experiencing a massive increase in the volume of collected se-
quencing data driven by the decreasing cost of nucleotide sequencing, which since
2007 has been falling with a halving time of less than two years. This has been
achieved by utilising massively parallel processing (so-called next generation se-
quencing, Muir et al., 2016) and has enabled the collection of “big” datasets that
have been at the heart of the vast majority of the biological breakthroughs in this
period. This increase in the volume and complexity of data and accompanying sta-
tistical developments have together enabled data-driven analyses to complement
more traditional, hypothesis-driven approaches (Ratti, 2015; Leonelli, 2016). One
area in which such data-driven analyses are increasingly employed is in the study
of the human microbiome (Moreno-Indias et al., 2021).
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The prevailing dogma at the launch of the Human Microbiome Project was that the
lungs and airways were a sterile environment. They were therefore excluded from
the list of the 18 sites sampled. This has since been shown to be incorrect and that
this erroneous belief was due to difficulties in obtaining microbial samples from the
lung. Hilty et al. (2010) took the first culture-independent samples from the airways
of healthy patients and demonstrated that the airways contain a rich community of
microbes.

Since then, a growing number of studies have investigated the complex relationships
between respiratory infection, host immune response, environmental factors and the
lung microbiome (O’Dwyer et al., 2016). It has now been shown that both healthy
and diseased lungs host large and diverse microbial communities, making the lung
microbiome a promising area of research into respiratory diseases and their treat-
ments (Dickson et al., 2016). Several studies have reported systematic differences
(including a loss of diversity) between sufferers of respiratory disease and healthy
controls, with the nature of the difference being specific to the disease (Faner et al.,
2017; Ding et al., 2021). There are also reported links between the lung microbial
community and immune response (Paudel et al., 2020; Clark, 2020). However, it is
currently unknown whether the observed dysbiosis (microbial imbalance) is a cause
or consequence of disease.

1.3 Collection of microbial datasets

Taxonomic ranks

In order to quantify the composition of a microbial community it is necessary to
identify the microorganisms that comprise it. This identification is performed by
placing them in the taxonomic hierarchy, which describes the evolutionary relation-
ships between all the known organisms on Earth. At the highest level (not part of the
taxonomic hierarchy), all living cells are either Eukaryotes and Prokaryotes, where
Eukaryotes have a membrane-bound nucleus in their cell while Prokaryotes do not.
The highest level of the taxonomic hierarchy (Domain) then divides life into Archaea
and Bacteria (both Prokaryotes) and Eukaryotes, which includes all animals, plants
and fungi.

Table 1.1 lists the taxonomic ranks as described by the International Code of Zoo-
logical Nomenclature. The most relevant ranks for this work are genus and species.
The term taxon (plural taxa) is used to refer to a taxonomic group of any rank.

Microbial identification and quantification via 16S rRNA and ITS2 sequencing

While the cost of sequencing has decreased in the last decade, whole genome se-
quencing of the thousands of microbes present at a given site is still extremely chal-
lenging and in many cases impossible. Next-generation sequencing relies on pro-
cessing a large number of sequence fragments in parallel, which requires a high
level of sequencing depth in order to re-assemble these fragments after sequenc-
ing. Re-assembly of multiple bacterial genomes therefore requires sampling suffi-
cient biomass of each organism, which is often impractical or even impossible. This
means that, despite the many advantages of whole genome sequencing (primarily
better taxa identification, Ranjan et al., 2016), it is standard practice to target a small
region of the microbial genome for identification and quantification. The resulting
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TABLE 1.1: The main taxonomic ranks in the International Code of
Zoological Nomenclature. Examples are taken from the animal king-

dom in order to be more familiar to the reader.

Rank Common examples

Domain Archaea, Bacteria, and Eukaryotes

Kingdom Animals, Plants, Fungi, Monera (prokaryotes), . . .

Phylum Nematoda (roundworms), Arthropods, . . .

Class Mammalia, Aves (birds), Reptiles . . .

Order Primates, Rodentia, . . .

Family Hominidae (great apes), Felidae (cats), Canidae (dogs), . . .

Genus Homo, Canis (includes wolves and dogs), . . .

Species Homo sapiens, Canis familiaris, . . .

modalities are named after the targeted genomic region: 16S rRNA (ribosomal ri-
bonucleic acid) gene sequencing for bacteria and ITS2 (internal transcriber spacer
2) sequencing for fungi. In both modalities fewer than 1,000 base pairs (genomic
positions) are sequenced from every organism in a sample, meaning that the vast
majority of the microbial genome is not recorded.

What follows is a simplified description of how microbial datasets are collected.
It describes the 16S rRNA gene sequencing modality but the steps are largely the
same as those used in ITS2 sequencing. The first steps of this process are performed
in the laboratory, starting with a patient sample (Figure 1.2(A)). The first labora-
tory step extracts any bacterial DNA from a patient sample. From each bacterial
genome the 16S rRNA gene is isolated and amplified via polymerase chain reaction
(PCR). The 16S rRNA gene is used as a target because it consists of conserved and
hyper-variable regions (Clarridge III, 2004). This enables the development of tar-
geted primers that attach to the conserved region during PCR amplification. The
hyper-variable regions are sufficiently specific that they can be used for taxa identi-
fication. The primers also contain a barcode sequence that records which sample a
sequence came from. Following PCR amplification the 16S rRNA gene fragments are
sequenced, which produces a set of sequenced reads representing the hyper-variable
regions, tagged with sample information (the barcode).

A series of computational steps then produces the final dataset by identifying the
microorganisms represented by each sequenced read (Figure 1.2(B)). The sequenced
reads from all samples are pooled and clustered to 97% sequence similarity using
the open-source bioinformatics software QIIME (Bolyen et al., 2019). A cluster of
sequences defines an operational taxonomic unit (OTU), which is assigned its most
central member as its representative sequence. OTUs are the variables in a 16S rRNA
or ITS2 dataset. The representative sequences are then used to (i) assign a taxonomic
identification to the OTU using a reference database and (ii) infer a phylogenetic
tree describing the evolutionary relationships between the OTUs (M. N. Price et al.,
2010). An OTU table is also computed by counting the observed abundance of each
OTU in each sample. The OTU table, phylogenetic tree and the OTU identities form
the final dataset used for subsequent statistical analysis. In addition, host metadata
(such as clinical measurements and demographic data) are also typically included.
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2 Non-parametric predictive modelling

In the last decade powerful predictive models have become ubiquitous in data-
rich fields such as digital advertising, fraud detection and engineering. Increas-
ingly powerful computation and statistical advances have enabled the deployment
of these models to solve previously impossible predictive tasks. These successes
have led to similar approaches being applied in biological research, although the
nature of biological problems and data collection mean that a naive out-of-the-box
application of these models is rarely appropriate (Lopatkin and Collins, 2020).

In many cases these predictive models are non-parametric in nature, meaning that
they contain fewer assumptions than their parametric alternatives and are able to
increase their complexity as the volume of data increase. As parametric modelling
typically requires specifying a priori the types of dependencies that exist within the
data it can be difficult to apply them when there is a lack of prior knowledge (or
any prior knowledge is difficult to express in a mathematical form). This scenario
is becoming increasingly prevalent as biological datasets increase in complexity, in
which case non-parametric modelling can be an attractive and flexible alternative.

A good example of the potential utility of non-parametric methods is regression.
While parametric linear regression enforces a linear relationship between the param-
eters and response, a non-parametric regression model (such as kernel regression
or regression trees) is able to capture more complex dependencies within the data
without explicitly specifying them in advance. This makes them well-suited to the
types of data-driven analysis that are becoming feasible with the increasing size of
biological datasets (for example, public health databases such as UK Biobank (Sud-
low et al., 2015)) and increased computational capabilities. The superior predictive
performance of non-parametric predictive models is often cited as proof that their
additional capacity is a closer representation of the underlying biological process,
which is often achieved by leveraging interactions between variables. However, it
should be noted that choosing a non-parametric model over a parametric one does
not necessarily lead to superior predictive performance and is much more likely to
result in severe over-fitting due to their additional capacity. Furthermore, the lack of
interpretability of many non-parametric models means it is usually more difficult to
use them for inference than an equivalent parametric model.

2.1 Machine learning in biology

One area of statistics that has particularly benefited from the increase in computa-
tional power and volume of data is supervised machine learning, which contains a
variety of non-parametric predictive models that have become ubiquitous in data-
rich fields over the past decade. Two high-profile examples of such fields are com-
puter vision and natural language processing, where the vast amounts of available
data have aided the explosive growth of deep learning. Deep learning models that
were originally developed for non-biomedical applications are now able to surpass
human expert level performance in medical image analysis (X. Liu et al., 2021), as
well as solving the previously intractable problem of predicting protein structure
from sequence (Jumper et al., 2021). These achievements are possible due to the
ability of deep learning algorithms to automatically identify complex predictive pat-
terns in large datasets, as opposed to the hand-crafted feature engineering that was
pervasive in the era before “big” data. Other popular supervised machine learning
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models include decision tree ensembles, support vector machines and kernel meth-
ods, which lack the fame of deep learning but are often favoured in fields where the
dataset sizes are too small to train a deep learning model (Greener et al., 2022).

The relative lack of human involvement in feature engineering presents challenges
when attempting to use these models for biological research as the patterns they
detect may not be available to the user (the model is a black box) or too difficult
for a human to understand. This focus on prediction over inference is often used
as the dividing line between classical statistics and machine learning (Bzdok et al.,
2018). However, this boundary is blurred and current research activity is serving to
blur it further. For example, the intense research focus on explainable/interpretable
machine learning is a reflection of the need for further improvements to many ma-
chine learning models before they can fulfil their potential utility in biology (Mur-
doch et al., 2019; Roscher et al., 2020). This requirement for interpretability means
that linear models are still the standard tool in most biological applications, such as
univariate linear regression or univariate linear mixed models in genome-wide asso-
ciation studies (Purcell et al., 2007; Lippert et al., 2011) or generalised linear models
in differential expression analysis (Love et al., 2014; Ritchie et al., 2015).

3 Data

The collection of biological datasets consists of many stages of patient recruitment,
laboratory work and pre-processing. The computational pre-processing steps are
often placed in the discipline of bioinformatics, which is usually considered to be
separate from the subsequent statistical analysis. This thesis focuses on these sub-
sequent analyses and so the extensive and specialised pre-processing is outside of
its scope, as is the collection of the data themselves. The real datasets used in this
thesis are listed in Table 1.2. The collection, quality control and pre-processing of the
FAME and Busselton datasets was performed by a skilled set of collaborators and
so are not part of the contributions of this thesis. The remaining three datasets are
publicly available.

Three of the six datasets concern the lung microbial community and one is human
genetic sequence data. These processed datasets take the form of an n × p matrix
of counts representing the abundance of a p sequences in n samples. The sequence
themselves are not modelled directly in the majority of the chapters. The exception
is Chapter 5, which models the similarity between microbial taxa via the similarity
in their underlying DNA sequence.

4 Thesis contributions

Non-parametric statistical methods for analysing biological data are particularly
useful when there are complex, non-linear relationships between the variables, which
is a common feature of biological datasets. This has driven the increasing popular-
ity of non-parametric predictive modelling (including supervised machine learning)
in biomedical studies. However, the additional complexity of these models com-
pared to parametric alternatives means that a naive application of these approaches
to biological data is rarely appropriate. The work in this thesis addresses a range of
challenges that arise when applying non-parametric methods to biological sequence
data.
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TABLE 1.2: The real datasets used in this thesis, their number of sam-
ples n and number of variables p. The number of variables refers to

the number included in the analysis after any pre-precessing.

Chapter Dataset name n p Modality Citation

3
FAME
(fungal) 107 2,770 OTUs

ITS2
sequencing Cuthbertson, Fel-

ton, et al. (2021)

3, 5
FAME
(bacterial) 107 1,189 OTUs

16S rRNA gene
sequencing Ish-Horowicz,

Cuthbertson, et al.
(2022)

4 MNIST 60,000 324 pixels
Grayscale
imaging LeCun (1998)

4
Chest X-Ray
Images 5,863 40,000 pixels

X-ray
imaging Kermany et al.

(2018)

4 WTCCC 10,000
7,405 SNPs

(1,255 genes)
Human genome
sequencing WTCCC et al.

(2007)

5 Busselton 578 1,689 OTUs
16S rRNA gene
sequencing McBrien (2020)

4.1 Chapter contributions

The two-sample test is one of the most common statistical tasks in biomedical stud-
ies as it can be used to establish whether two disease groups are distinct or whether
a treatment has had a detectable effect. The two-sample test is especially impor-
tant in studies of the human microbiome as researchers seek to establish whether
different disease groups have characteristic microbial communities. However, mi-
crobial datasets present specific challenges for the two-sample test as a multivariate
test is required to detect community-level differences. The complexity of microbial
datasets has led to random forests emerging as a popular tool for classifier-based
two-sample testing.

Chapter 3 presents an investigation of the bacterial and fungal communities of two
lung diseases, cystic fibrosis and non-cystic fibrosis bronchiectasis. It is based on
the pre-print by Ish-Horowicz, Cuthbertson, et al. (2022) and utilises random forest
modelling for classifier based-two sample testing and differential abundance anal-
ysis. While the pre-print focuses on the biological results this chapter includes a
novel study of the effect of modelling decisions (the choice of data transformation
and variable importance measure) on the biological conclusions. It also examines the
behaviour of popular hypothesis tests and confidence interval that are commonly
applied with this type of data. Its statistical contributions are:

• a study on the impact of data transformations on the results of random forest
analyses of a 16S rRNA and ITS2 dataset;
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• an empirical study of the Type I error behaviour of random forest-based two-
sample testing; and

• a study of the behaviour of the four most popular variable importance meth-
ods for random forest-based differential abundance.

One of the benefits of a random forest-based two-sample test is the ability to calcu-
late variable importance scores, which can be used to identify specific taxa that drive
any differences between groups. The ability to compute variable importance is a key
element of many biomedical statistical analyses, which precludes the use of many of
the most powerful predictive models in a number of applications as they are not
interpretable. One such model is a Bayesian neural network, which is a Bayesian
extension of the popular deep learning models that have transformed many non-
biomedical fields.

Chapter 4 presents an extension of RATE (RelAtive cEntrality, Crawford et al., 2019),
a variable importance method for Gaussian process regression to Bayesian neural
networks. An additional extension considers importance scores for grouped vari-
ables, which are common in biological datasets in general and sequencing datasets
in particular. This chapter is largely based on the pre-print by Ish-Horowicz, Ud-
win, et al. (2019) but includes additional simulation results and computer vision
examples. Its contributions are

• extending the RATE methodology to a last layer only Bayesian neural network
architecture;

• investigating the utility of two alternative projection operators for RATE;

• extending the original RATE criterion to grouped variables (GroupRATE);

• demonstrating the ability of GroupRATE to prioritise causal groups on two
simulated sequencing datasets; and

• demonstrating how GroupRATE can be applied to a Bayesian neural network
classifier trained on a medical imaging dataset.

Phylogeny is an important feature of microbial datasets but it is commonly ignored
when performing the two-sample test with 16S rRNA data. This is a potentially se-
vere limitation as there is typically a large degree of degeneracy in OTU definitions
(many OTUs corresponding to microorganisms that may be functionally or biolog-
ically equivalent). A standard approach to the two-sample test may therefore reject
the null hypothesis on the basis of differences with no biological relevance. Chapter
5 contains a simulation study on modelling phylogeny in bacterial microbial datasets
in a kernel two-sample testing procedure, where phylogeny is encoded using string
kernels. The performance of string kernels is also explored in the context of host-trait
prediction using Gaussian process regression. Its contributions are:

• showing that kernel-based two-sample tests with popular kernels reject the
null hypothesis in the case of biologically irrelevant differences between groups;

• developing phylogeny-aware kernels based on string sequence similarity mea-
sures that do not exhibit this behaviour; and
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• showing via simulation studies that a Gaussian process regression model with
a string kernel can identify how microbial effects are related to 16S rRNA gene
sequence similarity.

Chapter 2 contains a detailed mathematical description of the various predictive
models and associated statistical methods that are utilised in Chapters 3-5, while
Chapter 6 summarises the overall findings and discusses avenues for future work.

4.2 Other work

I have also contributed to other research projects during my PhD that is not included
in this thesis:

• I am part of the Imperial College Covid Response Team and have been in-
volved in two papers on Bayesian modelling of the Covid-19 pandemic in Eu-
rope and the USA (Unwin et al., 2020; Monod et al., 2021). My contributions
focused on implementing the model checking and evaluation elements of the
analysis pipeline. I am also a contributor and paper author for the accompa-
nying R package epidemia (Scott et al., 2021).

• I am a developer of GpABC, a Julia package for emulating differential equation
models from systems biology using Gaussian process regression. GpABC also
provides model selection and parameter estimation methods using approxi-
mate Bayesian computation (Ish-Horowicz, Tankhilevich, et al., 2020).

• I am involved in the first study to culture and sequence airway microbiota. My
contributions have focused on correlation network analysis and developing a
framework to assign functional annotations to clusters of OTUs (Cuthbertson,
Forslund, et al., 2022, Manuscript in prepration).
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Chapter 2

Mathematical Background

This chapter describes the predictive models that are used in the subsequent chap-
ters, which are Gaussian process regression (and its sparse approximation), Bayesian
neural networks and random forests. After describing each model and its training
procedure the focus moves on to the calculation of variable importance scores for
each model.

1 Supervised learning

Each of the studies in this thesis heavily involve predictive modelling, which puts
them in the supervised learning framework. Given a dataset D of n input-output
pairs,

D = {(xi, yi)}n
i=1 , (2.1)

xi ∈X , yi ∈ Y , i = 1, . . . , n , (2.2)

supervised learning seeks to find a function f : X 7→ Y for input and response
domains X , Y . Note that this dataset can be equivalently expressed as the n × p

design matrix X and n-dimensional vector y, where xi = (x
(1)
i , . . . , x

(p)
i ) is the ith row

of X and yi is the ith element of y. Throughout this thesis subscripts index samples
and superscripts index variables. For the problems considered here the variables
that define X are p-dimensional counts (X = Z

p
≥0) or reals (X = Rp). The

The function f is selected from a pre-specified family of functions F by solving

f = arg min
f∈F

Ex∼X ,y∼Y [L(y, f (x))] , (2.3)

where L : Y × Y 7→ R is a loss function such as the mean squared error or binary
cross entropy. In practice (2.3) can only be solved for the observed values, meaning
that training the model requires solving

f = arg min
f∈F

1
n

n

∑
i=1

[L(yi, f (xi))] , (2.4)

which is known as empirical risk minimisation (Vapnik, 1991). Before proceeding
further with model training the space of candidate models F must be defined. The
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following sections describe the different types of non-parametric models utilised in
this thesis:

• Gaussian process regression and its sparse approximation;

• Bayesian neural networks; and

• Random forests.

1.1 Gaussian process regression

Gaussian process (GP) regression is a Bayesian, non-parametric regression model
first proposed in the machine learning literature by Williams and Rasmussen (1995).
Its flexibility has made it a popular choice where the response variable has a complex
and hard to define dependencies on the covariates. Common non-biological applica-
tions of GP regression include predicting the outputs of computer simulation codes
(such as climate forecasting models (Andrianakis and Challenor, 2012)) or predicting
the generalisation error of machine learning models in automated hyperparameter
searches (Snoek, Larochelle, et al., 2012). Analogous biological applications include
using predicting the output of mechanistic systems biology models from parameter
values (Ish-Horowicz, Tankhilevich, et al., 2020).

This remainder of this section outlines GP regression using the “function-space view,”
as described in Williams and Rasmussen (2006), in which a Gaussian process is de-
fined as follows:

Definition 2.1. A Gaussian process is a collection of random variables, any finite number
of which have a joint Gaussian distribution.

For this reason, GPs are often characterised as a distribution over functions.

The Mean Function and Kernel

A GP regression model for the dataset D = {(xi, yi)}n
i=1 is

y = f + ε (2.5)

f (x) ∼ GP
(
m(x), k(x, x′)

)
(2.6)

ε ∼ N (0, τ2) , (2.7)

where m(x) is the mean function, k(x, x′) is the symmetric, positive semi-definite
kernel function and τ2 is the noise variance. Together, the mean function and kernel
fully determine a GP.

Expressing the dataset as D = (X, y), a zero-mean GP prior over f = ( f (x1), . . . , f (xn))
is given by

p( f |X) = N (µ, KXX) , (2.8)

where KXX is the positive semi-definite matrix with elements (KXX)ij = k(xi, xj), i, j =
1, . . . , n. The choice of kernel function controls the types of functions which can be
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sampled from the GP and so its selection is the most important aspect of GP mod-
elling. The most popular kernel is the squared-exponential/radial basis function
(RBF) kernel,

k(x, x′) = σ2
f exp

(−‖x − x′‖2

2l2

)
, (2.9)

where σ2
f , l > 0 are the signal variance and lengthscale hyperparameters. The effect

of l on the functions sampled from (2.8) is illustrated in Figure 2.1(A) - given a pair of
inputs, shorter lengthscales reduce the covariance between the corresponding func-
tion values. This results in more “wiggly” functions being sampled from the GP. It
is also possible to use one lengthscale per dimension, in which case l ∈ R

p
>0. Such

kernels are named automatic relevance determination (ARD) and the RBF version is
given by

k(x, x′) = σ2
f exp




p

∑
j=1

−
(

x(j) − x′(j)
)2

2l(j)2


 , (2.10)

where l = (l(1), . . . , l(p)) is the vector containing per-dimension lengthscales. ARD
kernels have built-in variable importance as those with the shortest lengthscales are
more strongly associated with the response (assuming all input variables are trans-
formed to be on the same scale). However, in the n ≪ p regime the additional model
capacity from using an ARD kernel is likely to lead to over-fitting. All the GP models
in this thesis are used in the n ≪ p regime and so use non-ARD kernels.

Gaussian process posterior and predictive posterior

The posterior over f is given by Bayes rule,

p( f | X, y) =
p(y | f ) p( f | X)∫

p(y | f ′) p( f ′ | X)d f ′
, (2.11)

with Gaussian likelihood p(y | f ) = N (y | f , τ2 I) and GP prior (2.8), where I is
the identity matrix. All the densities in (2.11) can be solved in closed-form using the
Schur complement, which results in a Gaussian posterior with parameters

E[ f | X, y] = KXX(KXX + τ2 I)−1y (2.12)

V[ f | X, y] = KXX − KXX(KXX + τ2 I)−1KXX . (2.13)

The effect of observed data is therefore to reduce the variance relative to the prior,
while the mean function approximately interpolates the data (see Figure 2.1(B-C)).
Far from the observed data, both the mean and variance revert to the prior. For a set
of unseen inputs X∗, the predictive posterior is also a Gaussian with parameters
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E[ f | X, y] = KXX∗(KXX + τ2 I)−1y (2.14)

V[ f | X, y] = KX∗X∗ − KXX∗(KXX + τ2 I)−1KT
XX∗ , (2.15)

where KXX∗ and KX∗X∗ are formed by pairwise evaluations of k(·, ·) between the
samples in their respective subscripts.

Model selection in Gaussian process regression

In the context of GP regression, model selection consists of selecting a kernel and
learning its hyperparameters. The most common approach is known as ML-II and
involves optimising the log of the denominator of (2.11) (the log-marginal likeli-
hood) using gradient-based methods. In the GP regression case the log-marginal
likelihood is given by

log p(y | X) = −1
2

yT(KXX + τ2 I)−1y − 1
2

log |(KXX + τ2 I)| − n

2
log 2π , (2.16)

while its gradients with respect to the kernel hyperparameters are

∂

∂θj
log p(y | X) =

1
2

yTK−1
XX

∂KXX

∂θj
K−1

XX y − 1
2

trace
(

K−1
XX

∂KXX

∂θj

)
, (2.17)

where KXX is a function of the hyperparameters θ (Williams and Rasmussen, 2006).
The terms of (2.16) can be interpreted as a data fit term yT(KXX + τ2 I)−1y and a reg-
ularisation term log |(KXX + τ2 I)| that penalises the complexity of the model. This
makes it an appropriate optimisation objective for model selection in GP regression.
Markov chain Monte Carlo (MCMC) methods can also be used to draw samples
from the posterior of the kernel hyperparameters.

The Kernel Trick

A symmetric, positive semi-definite kernel function k(·, ·) satisfies

k(x, x′) = 〈φ(x), φ(x′)〉H , (2.18)

for feature map φ : X → H which induces the reproducing kernel Hilbert space
(RKHS) H. Kernels therefore compute inner products in a feature space defined
by φ(·). The utility of such a mapping is often utilised in classification problems,
a simple example of which (the XOR problem) is shown in Figure 2.2. In the XOR
problem the two classes become linearly separable after applying the feature map-
ping φ(x(1), x(2)) = (x(1)

2
, x(2)

2
, x(1)x(2)), enabling the use of a linear model (usually

a support vector machine, Ben-Hur et al., 2008).

The real power of kernels comes from the fact that (5.14) holds even when φ(·) is
unknown or cannot be expressed mathematically. This is known as the kernel trick,
and enables the use of infinite-dimensional feature maps via the appropriate choice
of kernel. Kernels are also powerful when used with structured data such as strings,





1. Supervised learning 17

the variational GP model to allow stochastic optimisation, largely motivated by the
desire to train scalable GPs with non-conjugate likelihoods (such as those for classi-
fication). This approximation is often called the sparse variational Gaussian process
(SVGP). SVGP models have been fitted on datasets of over 5 × 106 samples (Hens-
man et al., 2015).

SGPR model description

This thesis utilises the sparse GP regression model of Titsias (SGPR), which is de-
scribed here. Let u ∈ Rm be the function values evaluated at the m inducing points
Z ∈ Rm×p. Fitting a sparse GP model means finding the posterior over both f and
u, which is given by Bayes theorem:

p( f , u | y) =
p(y | f , u) p( f , u)∫ ∫

p(y | f ′, u′) p( f ′, u′)d f ′ du′ , (2.20)

where the likelihood simplifies to p(y | f , u) = p(y | f ) = N (y | f , τ2 I) as it
depends only on the training data. Using this likelihood (2.20) can be solved in
closed form using the joint prior p(y, f , u),

p(y, f , u) = N

0,




KXX + τ2 I KT
XX KT

XZ

KXX KXX KT
XZ

KXZ KXZ KZZ




 . (2.21)

However, this would result in an identical model to exact GP regression if the effect
of u is marginalised in the denominator and so would still require O(n3) time to
solve. The solution to this scalability problem is to use variational inference (also
known as variational Bayes) to train the SGPR model. Variational inference approx-
imates a posterior density with a parametric family qφ, where the parameters of the
chosen family (φ, the variational parameters) are learned via an optimisation proce-
dure. Variational inference is a popular method for approximate inference when the
exact posterior density is intractable. The specifics of variational inference are de-
scribed in the next section during the derivation of the SGPR optimisation objective.

In the SGPR model p( f , u | y) is replaced with a variational approximation qφ( f , u)
that factorises as

qφ( f , u) = p( f | u) qφ(u) , (2.22)

where p( f | u) is found by conditioning the joint prior (2.21). The variational poste-
rior qφ(u) is chosen to be the multivariate Gaussian

qφ(u) = N (µu, LuLT
u ) , (2.23)

where the variational parameters φ = {µu, Lu} are its mean µu and Cholesky factor
of its covariance Lu. The motivation for selecting the factorisation (2.22) is allows
conditioning (2.21) as

p( f | u) = N ( f | KXZ K−1
ZZ u, KXX − KXZ K−1

ZZ KT
XZ ) , (2.24)
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which only requires inverting KZZ, an m × m matrix, as opposed to the n × n matrix
inversion needed for the full GP. This is then combined with the variational posterior
qφ(u) rather than marginalising the effect of u.

SGPR training via variational inference

The SGPR model approximates p( f , u | y) using a variational posterior qφ( f , u),
which can be formulated as solving

arg min
φ

KL
(
qφ( f , u) || p( f , u | y)

)
, (2.25)

where KL(q(x) || p(x)) is the Kullback-Leibler (KL) divergence between two contin-
uous densities,

KL(q(x) || p(x)) =
∫

q(x) log
q(x)

p(x)
dx . (2.26)

Using this definition of the KL-divergence the objective in (2.25) can be written

KL
(
qφ( f , u) || p( f , u | y)

)
=
∫ ∫

qφ( f , u) log
qφ( f , u)

p( f , u | y)
d f du (2.27)

=
∫ ∫

qφ( f , u) log
qφ( f , u) p(y)

p(y | f ) p( f , u)
d f du (2.28)

= KL
(
qφ( f , u) || p( f , u)

)
− Eqφ( f ,u) [log p(y | f )]

︸ ︷︷ ︸
−LSGPR(φ)

+ log p(y) ,

(2.29)

where (2.20) is used substituted for p( f , u | y) to obtain the second line and LSGPR(φ)
is the evidence lower bound (ELBO, Blei et al., 2017). As the KL-divergence is a dis-
tance (it is non-negative) and log p(y) does not depend on φ, maximising LSGPR(φ)
with respect φ to is equivalent to solving (2.25). The SGPR training objective is there-
fore

arg max
φ

Eqφ( f ,u) [log p(y | f )]− KL(qφ( f , u) || p( f , u)) , (2.30)

which balances a data fitting term and a regularisation term that penalises diver-
gence of the variational posterior qφ( f , u) from the prior p( f , u). As every density
in LSGPR(φ) is multivariate Gaussian (2.30) can be solved efficiently in O(mn2) time
(Titsias, 2009). The training procedure jointly optimises the kernel hyperparameters,
noise variance τ2 and variational parameters µu and Lu. The number of inducing
points, m, must be specified in advance, where larger values improve the quality
of the approximation at the cost of added computational expense. An example of a
SGPR fit to a univariate regression problem is shown in Figure 2.3.
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1.3 Deterministic neural networks

Chapter 4 proposes a variable importance measure for a Bayesian neural network.
Before describing Bayesian neural networks it is necessary to outline deterministic
neural networks in order to understand the motivation for using its Bayesian equiv-
alent. An L-layer feed-forward neural network for regression can be formulated as

yi ∼ N ( f (xi; θ), σ2) , f (xi; θ) = tL(gL−1(tL−1 . . . (t1(xi))) , i = 1, . . . , n , (2.31)

where tl , l = 1, . . . , L are element-wise affine transformations of the form tl(z) =
wT

l z + bl with weights wl and bias bl and gl(·) , l = 1, . . . , L are non-linear activa-
tion functions. The parameters of the network are θ = {wl , bl}L

l=1, wile the set
{dim(wl)}L

l=1 define the widths of the layers, with dim(w1) = p (the number of
input dimensions) and dim(wL) = 1 for a single-output network. The equivalent
classification network is given by

yi ∼ Bernoulli
(

1
1 + exp(− f (xi))

)
, f (xi) = tL(gL−1(tL−1 . . . (t1(xi))) , i = 1, . . . , n ,

(2.32)

where the un-normalised prediction f (x) is known as a logit. According to the uni-
versal approximation theorem an exponentially wide neural network or a width-
bounded deep network can approximate any continuous function to arbitrary pre-
cision (Cybenko, 1989; Z. Lu et al., 2017).

The network defined by (2.31) only contains fully-connected/dense layers, which
do not account for structure inherent in the variables of x. In the case of structured
data (such as images or text), specialised layers exist that retain this information.
They are typically used in the early layers of a network as feature extractors with
their output being passed to fully-connected layers later in the network for the final
prediction. Convolutional layers achieve state of the art performance on computer
vision tasks (Krizhevsky et al., 2012; Ronneberger et al., 2015) while recurrent layers
do the same for sequential data such as text or time series (Graves et al., 2013). These
architectures often have hundreds of layers and so are referred to as deep neural
networks. The reader is directed to Goodfellow et al. (2016) for further details.

Training the network

The parameters of a neural network (θ, the weights and biases of the layers) are es-
timated via Maximum Likelihood using mini-batch stochastic gradient descent of a
loss function (mean squared error in regression, binary cross-entropy in binary clas-
sification). The optimisation is non-convex and the existence of many local minima
has led to significant research focus being placed on the optimisation procedure of
neural network training. The results are a wide range of specialist gradient-based
stochastic optimisation algorithms (Zeiler, 2012; G. Hinton, Nitsh Srivastava, et al.,
2012; Ziegler and König, 2014; Diederik P Kingma and Ba, 2014). This is a concep-
tually simple calculation as the network is a composition of differentiable functions,
meaning the derivates of the loss function with respect to θ can easily be computed
using the chain rule. Deterministic regularisation is commonly applied by adding L1
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or L2 penalties, while stochastic regularisation (in the form of dropout, which ran-
domly sets weights to zero during training) is also used to encourage the network to
learn redundant features (Nitish Srivastava et al., 2014).

1.4 Bayesian neural networks

Benefits of prediction uncertainty

While deep neural networks have revolutionised many data-rich fields, they suffer
a critical limitation that hinders their adoption for critical decision making. A neural
network with pointwise parameter estimates does not compute uncertainties, which
are essential for high-stakes decision such as patient diagnosis. The deployment
of neural networks for critical decision-making requires well-calibrated uncertainty,
which cannot be obtained using pointwise parameter estimates (Leibig et al., 2017).
Furthermore, the predicted probabilities of modern neural network classifiers have
been shown to be highly mis-calibrated (C. Guo et al., 2017). For a well-calibrated
classifier a predicted probability of 0.5 will be correct 50% of the time, but modern
neural network architectures produce classifiers that are highly over-confident and
unable to identify unseen samples that are far away from the training data. This
has led to a recent increase in the popularity of Bayesian neural networks, where
pointwise parameter estimates are replaced with posterior densities (Jospin et al.,
2022).

Bayesian neural network model description

A Bayesian neural network model for regression (analogous to (2.31)) is

y ∼ N ( f (x; θ), σ2) , f (x; θ) = tL(gL−1(tL−1 . . . (t1(x))) , θ ∼ π(θ) , (2.33)

where π(θ) is the prior distribution over the network parameters. Training the net-
work using Bayesian inference requires evaluating the posterior using Bayes Theo-
rem,

p(θ | D) =
p(D | θ) p(θ)∫

p(D | θ′) p(θ′)dθ′
. (2.34)

The gold-standard for performing Bayesian inference in non-conjugate models is to
use MCMC sampling, which is not feasible in the deep learning setting for a num-
ber of reasons. Firstly, existing MCMC sampling algorithms are not scalable to the
dataset sizes required to train an effective deep learning model as they require the
whole dataset to be processed at each sampling iteration. In addition, the integral
in (2.34) is over the network parameters, which number comfortably over 106 in
modern architectures (Ronneberger et al., 2015). Neural networks are also invariant
under a number of transformations (weight permutations and sign flips, for exam-
ple), meaning that the posterior contains a large number of equally likely modes.
This presents an additional challenge for MCMC samplers, leading to low accep-
tance rates and slow convergence (Papamarkou et al., 2019).
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Approximate inference for Bayesian neural networks

These obstacles have led researchers and practitioners to focus almost entirely on
variational inference to train Bayesian neural networks by approximating the in-
tractable true posterior (G. E. Hinton and Van Camp, 1993; Barber and Bishop, 1998;
Graves, 2011). This more scalable approach replaces the high-dimensional sampling
required to compute (2.34) with an optimisation problem. Similarly to the SGPR
model, the posterior p(θ|D) is approximated using qφ(θ). The network is trained by
solving

φ̂ = arg min
φ

KL(qφ(θ) || p(θ|D)) , (2.35)

which selects the member of the family that is closest to the true posterior. The
objective in (2.35) contains the unknown true posterior but is equivalent to the ELBO,

LBNN(φ) = Eqφ(θ) log p(y | θ)− KL(qφ(θ) ‖π(θ)) , (2.36)

where π(θ) is the prior of the network parameters. The equivalence between (2.35)
and (2.36) is shown in the next subsection and follows a similar logic as is used for
the SGPR ELBO derivation.

Once again, the ELBO is made up of a reconstruction error term and a term that
provides regularisation by keeping qφ(θ) close to the prior. The Bayesian neural
network ELBO can be optimised using the same stochastic mini-batch algorithms
that are used to solve (2.35) using Monte Carlo estimates of the reconstruction term
(Diederik P Kingma and Welling, 2013; Rezende et al., 2014; Durk P Kingma et al.,
2015; Blundell et al., 2015).

Despite the popularity of variational inference for Bayesian neural networks rela-
tively few works consider the accuracy of the variational approximation (Yao et al.,
2018; Huggins et al., 2020), instead focusing on empirical evaluation of uncertainty
calibration (Filos et al., 2019; Ovadia et al., 2019). In the majority of cases practition-
ers use Gaussian mean-field variational inference, where the variational posterior
q(θ) is a Gaussian that factorises fully over the parameters. This is a major limita-
tion, although it has been shown that it is less restrictive in deep networks than in
shallow ones (Farquhar et al., 2020). More importantly, maximising (2.36) favours
a solution that underestimates posterior variances, meaning that they are often un-
suitable for critical decision-making as such networks produce over-confident pre-
dictions. Significant research effort has been placed on finding richer variational
families for neural networks, including Gaussians with rank-one-plus-diagonal co-
variance (Rezende et al., 2014; Mishkin et al., 2018), mixture distributions (Graves,
2016), “boosted” mixtures (F. Guo et al., 2016; A. C. Miller et al., 2017), matrix-variate
Gaussian posteriors (Louizos and Welling, 2016) and normalising flows (Louizos
and Welling, 2017). It is standard practice in Bayesian deep learning to use a stan-
dard normal prior, but recent work has achieved sparsity in the network weights
using horseshoe priors (Ghosh et al., 2019).

It has been claimed that the stochastic regularisation technique dropout is equiva-
lent to variational Bayesian inference in a deep Gaussian process model (Gal and
Ghahramani, 2016), although this has been contested by the observation that the
posterior induced by dropout does not concentrate as the number of data increase
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(Osband, 2016). More recent work has shown that the quality of the approximation
is very poor even in extremely simple cases, and worse than the mean-field approx-
imation (Folgoc et al., 2021).

An alternative line of research seeks to develop MCMC samplers that can operate
on mini-batches, named stochastic gradient Markov chain Monte Carlo (after the
stochastic optimisers that have helped fuel the rise of deep learning, Nemeth and
Fearnhead, 2021). Other approaches to estimate neural network uncertainty utilise
an ensemble of networks, with each member trained using a different parameter
initialisation (so-called deep ensembles, Lakshminarayanan et al., 2017). While the
original deep ensembles have no Bayesian interpretation, subsequent work modified
the training procedure such that the resulting ensemble is equivalent to samples
from a Gaussian process posterior (B. He et al., 2020).

Bayesian neural network training via variational inference

Fitting a Bayesian neural network using variational Bayes requires solving

φ̂ = arg min
φ

KL(qφ(θ) || p(θ | y)) , (2.37)

to find the member of the parametric family qφ(θ) that is closest to the true posterior.
This is the same procedure as was used to derive the SGPR ELBO in the previous
section, but here the variational posterior is over the network parameters. Following
the same steps as in the SGPR ELBO derivation,

KL(qφ(θ) || p(θ | y)) =
∫

qφ(θ) log
qφ(θ)

p(θ | y)
dθ (2.38)

=
∫

qφ(θ) log
qφ(θ) p(y)

p(y | θ) p(θ)
dθ (2.39)

=KL(qφ(θ) || p(θ))− Eqφ(θ) [log p(y | θ)] + log p(y) , (2.40)

where the ELBO here is given by

LBNN(φ) = −KL(qφ(θ) || p(θ)) + Eqφ(θ) [log p(y | θ)] . (2.41)

Once again, the KL-divergence term in (2.40) is non-negative and log p(y) is inde-
pendent of φ, meaning that (2.35) is equivalent to

arg max
φ

Eqφ(θ) [log p(y | θ)]− KL(qφ(θ) || p(θ)) . (2.42)

When training Bayesian neural networks using variational inference it is common to
introduce an additional hyperparameter and solve

arg max
φ

Eqφ(θ) [log p(y | θ)]− β KL(qφ(θ) || p(θ)) , (2.43)
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where β > 0 weights the relative importance of the negative log-likelihood (data
fitting) and the prior (Higgins et al., 2016)

Last layer Bayesian neural networks

A Bayesian neural network trained using mean-field variational inference has twice
as many parameters as the equivalent deterministic neural network as each param-
eter is replaced by its mean and variance. There are computational difficulties in
learning a posterior distribution with such a high dimensionality, which has led to
the application of last layer Bayesian neural networks in areas such as large-scale re-
gression (Lázaro-Gredilla and Figueiras-Vidal, 2010; Watson et al., 2021), the multi-
armed bandit problem (Riquelme et al., 2018; Weber et al., 2018) and Bayesian opti-
misation (Snoek, Rippel, et al., 2015).

Treating only the final layer as Bayesian fits into the general understanding of neu-
ral networks where inner layers are feature extractors and the final layers compute
predictions based on those features (Notley and Magdon-Ismail, 2018). Restrict-
ing Bayesian treatment to the parameters of the final layers (those which compute
predictions) therefore decouples the task of representation learning and uncertainty
quantification. Recent studies have shown that last layer Bayesian networks are
sufficient to capture relevant uncertainty, detect out-of-distribution samples and ad-
dress overconfidence problems (Zeng et al., 2018; Brosse et al., 2020; Kristiadi et al.,
2020). This suggests that uncertainty in the learned representations is often less use-
ful than uncertainty for the prediction layers and therefore not worth the additional
computational and statistical challenges that accompany a Bayesian treatment of the
entire network.

Last layer Bayesian regression model

The last layer Bayesian model that is used in Chapter 4 assumes

yi ∼ N (µ(x), σ2(xi)) , i = 1, . . . , n , (2.44)

where µ(·) and σ2(·) are the two outputs of a single neural network, given by

(
µ(·)
σ2(·)

)
= w hθ(·) + b ,

(
w
b

)
∼ p(θ̃) , (2.45)

where the predicted mean and variance that parametrise (2.44) are linear combina-
tion of the penultimate layer activations hθ(·) and the weights and biases of the final
layer {w, b} = θ̃. The final layer parameters θ̃ are random variables while the inner
layer parameters, denoted by θ, are point estimates. The model defined by (2.44)-
(2.45) is essentially Bayesian linear regression with neural network features hθ(·).
An simple example architecture is shown in Figure 2.4.

The loss function is the ELBO (2.36), but is written here with the inner and final layer
parameters separated:
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FIGURE 2.4: An example of a last layer Bayesian network. The first
layer weights/biases and the final layer bias θ are point estimates,
while the final layer weights w are assumed to be distributed under
the prior π(·). The input variables are fed through the hidden layer
to compute the hidden layer activations (h1, h2, h3)

T . Samples of the
predictions f are obtained from a linear combination of these activa-
tions with samples from the posterior of w = (w1, w2, w3), which is

qφ(w). This figure does not include the bias terms.

arg max
φ

Eqφ(θ̃)

[
log p(y | x, θ̃, θ)

]
− β KL

[
qφ(θ̃) || p(θ̃)

]
. (2.46)

Note that the regularisation term only depends on θ̃ and not on any pointwise pa-
rameters from the inner layers.

Samples from the predictive posterior are drawn as follows:

(
ŵ

b̂

)
∼ qφ(θ̃) sample final layer parameters

(
µ(x)
σ(x)

)
= ŵ hθ(x) + b̂ mean/variance from neural network

ŷ ∼N (µ(x), σ2(x)) sample prediction from normal distribution

A similar last layer Bayesian neural network for classification is described in Chapter
4 (Section 7).

1.5 Decision tree ensembles

Decision trees are a popular supervised learning method that learn simple splitting
rules from training data. These splits define a recursive partitioning of the input
space, where each region is assigned a single response value. Decision trees therefore
compute piecewise constant approximations. An example of a classification tree
is shown in Figure 2.5(A), with the corresponding partitioning of the input space
shown in Figure 2.5(B).

A single decision tree is easily interpretable but is also severely prone to over-fitting,
especially as their depth increases. This can be addressed by pruning a fully grown
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tree, but a more popular option is to use an ensemble of decision trees (each of which
are weak learners), whose average prediction may be extremely accurate (a strong
learner). The two most popular decision tree ensembles models are random forest
(Breiman et al., 1984) and gradient boosting machines (Friedman, 2001). In a random
forest each tree is trained on a bootstrap sample (bootstrap aggregating, or bagging),
while in a gradient boosting machine the trees are trained sequentially, with each
subsequent tree correcting the mistakes of its predecessor (boosting). Chapter 3 fo-
cuses on random forests.

A random forest consisting of T decision trees makes predictions according to

ŷ =
1
T

T

∑
t=1

ft(X̃t; θt) , (2.47)

where each X̃t ∈ Rn×p , t = 1, . . . , T is a design matrix constructed by bootstrapping
the rows of X and ft(·, θt) is a decision tree defining a piecewise-constant partition
of the input space with split points θt. This partitioning corresponds to a tree struc-
ture where the root node of the tth tree contains all the samples in X̃t and the leaf
nodes are the average label (mean in regression and mode in classification) of their
samples (see the example in Figure 2.5). For each tree in the ensemble, the samples
not included in X̃t are called the out-of-bag (OOB) samples.

There are a number of greedy algorithms that construct decision trees, the most pop-
ular of which is Classification and Regression Trees (CART, Breiman et al., 1984).
CART performs a greedy search of variable splits to partition the input space in
increasingly “pure” regions (or more commonly, decreasingly impure regions). In
CART impurity is measured for a split point using the variance of the labels (for
regression) or the Gini impurity (classification). CART performs a greedy search
for variable splits that have the largest impurity decrease. This can be seen from
Figure 2.5(B) - the selected split points maximise the impurity gain as they define a
partitioning of the input space where each region contains only a single class.

Tree construction algorithms contain a number of hyperparameters that are selected
using cross-validation, such as the maximum tree depth and the number of can-
didate variables tested for each split (often called mtry). Increasing the number of
trees will always increase the performance of a random forest, but the computational
cost increases linearly with T while the performance benefit tends to plateau once
it increases above a dataset dependent-value. Increasing the number of trees also
increases the stability of variable importance scores (Huazhen Wang et al., 2016).

Random forests are one of the most popular models in bioinformatics as they are
non-linear, non-parametric, are well-suited to the n << p regime and are able to
model complex correlation structures between variables (Ishwaran, Kogalur, Gorodeski,
et al., 2010; Qi, 2012). This flexibility means they often exhibit superior predictive
performance relative to linear models for biological datasets (Fernández-Delgado et
al., 2014; Couronné et al., 2018). Furthermore, they offer a degree of interpretability
as it is possible to evaluate variable importance, although the interpretation of these
importance scores is more difficult than for linear models. The primary biomedical
applications of random forest have been in genomics (X. Chen and Ishwaran, 2012)
and survival analysis (Ishwaran, Kogalur, X. Chen, et al., 2011; Hong Wang and G.
Li, 2017). Other example applications of random forests include the identification of
microbial species associated with Crohn’s disease (Tedjo et al., 2016), viral sequences
associated with Type 1 diabetes (G. Zhao et al., 2017) and important transcription
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coefficients and their asymptotic properties, which enables null hypothesis signif-
icance testing and robust confidence intervals. At the other end of the spectrum,
kernels and neural networks operate as black boxes.

2.1 Interpretability via variable importance

As neural networks have become increasingly popular the fact that they operate
as black boxes has become an important focus of machine learning research. This
lack of interpretability has been the major challenge as researchers seek to apply
these hugely successful models to high-stakes applications in healthcare and the life
sciences. This work has coalesced into a formal sub-field of artificial intelligence
known as “interpretable AI”. There exist multiple definitions for what interpretable
models are/should be, with some definitions focusing on how well a human can
understand a model’s prediction(s) (T. Miller, 2019), while others prioritise how well
a human can anticipate them (Been Kim et al., 2016). However, there is a general
consensus around the goal of interpretability as extracting human-understandable
information on relationships from a trained model despite the ongoing lack of a
formal framework (Doshi-Velez and Kim, 2017; Gilpin et al., 2018; Lipton, 2018).

One possible avenue to interpretability is variable importance (Murdoch et al., 2019).
This route is particularly relevant in the life sciences for the reasons outlined in the
previous section. The desire to utilise more complex machine learning models has
spawned a significant volume of work on computing post-hoc interpretations of deep
neural networks by inspecting their gradients or activations (Alqaraawi et al., 2020).
Variable importance for decision tree ensembles have also been the subject of on-
going research for a number of years, largely motivated by biological applications
(Strobl, Boulesteix, Zeileis, et al., 2007; Strobl, Boulesteix, Kneib, et al., 2008; Altmann
et al., 2010; Nembrini et al., 2018; Ishwaran and M. Lu, 2019; Degenhardt et al., 2019).

Global and local variable importance

One common distinction in the interpretable machine learning literature is between
global and local importance scores. Local importance scores explain a single in-
stance/example while global scores aim to explain on the level of an entire dataset.
The most famous local method is LIME (local interpretable model-agnostic explana-
tions, Ribeiro et al., 2016), which assumes that the prediction function of a black box
model is linear in the vicinity of a given example. Examples of global importance
scores include effect sizes in linear models or mean decrease accuracy and mean
decrease Gini scores for tree ensembles (described in Section 2.6).

The choice of global vs local importance is determined by the application and aims
of an analysis. Local importance is more useful in situations where the variables al-
ready have an established and well-understood meaning, such as pixels in an image.
However, when the variables themselves are relatively poorly understood - which
is often the case in biological studies - a global importance score is usually more
appropriate. The variable importance analyses in this thesis are global methods for
this reason.

For an example of the different utilities of global and local scores consider a case-
control genome-wide association study. The study aim is not to explain why spe-
cific individuals have the disease of interest, but rather to identify which variables
(positions on the genome) are associated with an increased disease risk across all
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study participants. A global importance score is therefore required, which is pro-
vided by the regression coefficient of a linear model. Now consider a model de-
ployed in a clinical setting to predict the risk of a well-understood disease. If such
a model is trained on a set of genetic markers, biomarkers and environmental fea-
tures known to be relevant to the disease in question, then the problem of explain-
ing a predicted risk for a given patient is the more relevant (local interpretability).
Given a model prediction for a specific patient it would be of high clinical relevance
to explain which variables were driving the prediction in order to tailor treatment
options to the patient in question. This scenario is the long-term goal of precision
medicine, where treatments are tailored to individual genetics, environment and
lifestyle (Ginsburg and Phillips, 2018). These two examples demonstrate the differ-
ent contexts in which global and local interpretability can be applied in a biomedical
context. It is also worth noting that the genetic features included in the model of the
well-understood disease would most likely have been established by global impor-
tance analyses in previous genome-wide association studies.

In some settings global importance scores can be computed from a set of local scores
using a simple aggregation method. For example, permute-and-predict scores are
the mean score over the set of permuted examples. However, not all local scores can
be combined in this way - the authors of LIME, for example, explicitly warn against
combining LIME’s local importances as each linear model used to assign importance
to an example is only valid locally.

2.2 Variable importance vs variable selection

Variable selection is a closely-related statistical procedure to variable importance,
which is also commonly referred to as feature selection in the literature (Saeys et al.,
2007; Jović et al., 2015; Remeseiro and Bolon-Canedo, 2019). Variable selection meth-
ods are generally model-agnostic and produce a final model trained on a subset of
the available predictors, with that subset assumed to be the most associated with
the response. This is typically done in an iterative fashion, where the initial model
is trained on all available variables with variables iteratively eliminated (backward
elimination), or where the initial model contains no variables (forward selection,
Heinze et al., 2018). The stopping criterion for these iterations can be based on sig-
nificance testing, Akaike/Bayesian information criterion or predictive performance
on held-out data, while the criterion for selecting which variable to add/remove
can also be formulated in a similar way, or by using variable importance scores.
The popular recursive feature elimination algorithm combines backward elimina-
tion with an elimination criterion based on variable importance scores (Guyon et al.,
2002; Svetnik et al., 2004; Gregorutti et al., 2017).

The studies in this thesis do not explicitly investigate variable selection but there
are significant connections between the two tasks, as any set of variable importance
scores can be used for variable selection given a threshold score below which vari-
ables are excluded. This threshold is often chosen heuristically in random forest
modelling (Genuer et al., 2010). Variable selection can also be included in some
models via an L1 penalty, as is the case in Lasso and ElasticNet (Tibshirani, 1996;
Zou and Hastie, 2005).
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2.3 Types of variable importance methods

The rest of this section described the mathematical basis for the variable importance
methods used in this thesis. The majority of these methods are post-hoc, meaning that
they operate on the trained model. The only exception is the impurity importance
for random forest models which only depends on the structure of the trees. Given a
trained model each method computes a set of per-variable scores s = (s(1), . . . , s(p)),
where a larger value of s(j) implies a higher level of association between variable j
and the response.

2.4 Model-agnostic variable importance measures

Permutation importance

The most conceptually simple variable importance scoring method is the permuta-
tion importance, which was first described by (Breiman et al., 1984) in the context
of random forests. Given the prediction function of a trained model f (X), dataset
D = (X, y) and scoring function L(y, f (X)) it assigns scores using

sj = L(y, f (X̃j))− L(y, f (X)) , (2.48)

where X̃j is formed by permuting the jth column of X. Permutation importance
therefore scores each variable according to the decrease in the performance metric
defined by L when that variable is permuted.

A recent review strongly advised against using permutation importance to interpret
black box models when there are dependencies between variables (as is almost al-
ways the case), finding that they give highly misleading results (Hooker et al., 2021).
This stems from the fact that permuting a variable will only reduce predictive per-
formance by an amount proportional to its true importance if there are no other
variables in the dataset that also contain redundant predictive signal. Furthermore,
permutation importance is also biased by the fact that permuting features is liable to
produce unrealistic (or even impossible) data instances (Molnar, 2020). For example,
permuting a feature is likely to generate examples that are far away from any of the
training or test data (especially in high dimensions), while impossible instances can
occur when features are highly correlated. The issue of highly correlated features is
part of the motivation for the grouped variable importance approach presented in
Chapter 4.

Shapley values

Shapley values are a game-theoretic concept that are becoming increasingly popular
in the interpretability literature. In the game theory setting a set of players (vari-
ables) generate a payout (model prediction) and Shapley values calculate the opti-
mal share of the payout that should go to each player by considering their relative
contributions. Shapley values therefore provide a natural way of explaining black
box predictions. Shapley values compute global importance scores.

The Shapley value for the j-th variable is,
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sj = ∑
S⊆{1, ..., p}\ j

|S|!(p − |S| − 1)!
p!

(v(S ∪ {j})− v(S)) , (2.49)

where S is a subset of the features in the model and v(·) is the value function given
by

v(S) =
∫

f (x(1), . . . , x(p))dP{x(k) : k/∈S} − EX[ f (X)] , (2.50)

where EX[ f (X)] is the model prediction on the observed samples and x(j) = (x
(j)
1 , . . . , x

(j)
n )

is the jth column of X. If no variables are excluded then S = ∅, in which case the
Shapley value of the j-th variable is fully determined by v({j}), which is

v({j}) =
∫

f (x(1), . . . , x(p))dP{x(k) : k 6=j} − EX[ f (X)] . (2.51)

This illustrates that Shapley values are the contribution of variable j to the observed
prediction, as only variable j is not marginalised in the first term. This is pro-
hibitively expensive to estimate for any medium-sized model so a Monte Carlo esti-
mator is used in practice (Štrumbelj and Kononenko, 2014)

2.5 Variable importance methods for neural networks

As discussed in previous sections, neural networks have become ubiquitous in many
fields due to their impressive predictive performance, which they achieve by lever-
aging interactions between variables to construct complex predictive features. How-
ever, they operate as black boxes, meaning that it is difficult or impossible to evaluate
variable importance. This lack of interpretability has hindered the adoption of deep
learning even as these models match the diagnostic performance of human experts
in areas such as medial imaging-based diagnoses (Esteva et al., 2017; Ting et al.,
2017).

Saliency maps

Saliency maps are one of the most popular methods for interpreting neural networks
and are most commonly applied in computer vision. Saliency maps are an active
area of interpretability research and so are included in Chapter 4. In computer vision
applications saliency maps are used to explain a network’s mis-classified examples
in order to shed light on a model’s behaviour. All saliency methods assign impor-
tance using the gradient of the network’s prediction function with respect to a single
input and so are local importance methods. However, they can be agglomerated
over a set of examples to produce a global score.

Despite their popularity, several major criticisms of saliency maps have been high-
lighted, such as invariance under randomisation of network parameters or permuta-
tions of class labels (Adebayo et al., 2018) and high levels of instability under adver-
sarial attack (Ghorbani et al., 2019). Saliency maps provide very limited insight on
how a model will behave for unseen samples, instead only providing information
on where the network is looking for a given image (Rudin, 2019; Alqaraawi et al.,
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2020). It has also been reported that saliency maps computed for deep neural net-
works trained on medical images do not correspond to relevant regions according
to human experts, calling into question the safety and efficacy of other results that
report human-level prediction (Saporta et al., 2021; Arun et al., 2021). Despite this,
a plethora of new saliency methods are proposed each year with a relatively small
emphasis placed on systematic evaluation of existing methods (Kummerer et al.,
2018).

Description of saliency-based methods used in this thesis

Given an input x ∈ Rp, the first and most simple saliency-based method for deep
neural networks attributes a vector of scores s ∈ Rp equal to the absolute value of
gradient of the model output f (x) with respect to the input,

svanilla-grad =

∣∣∣∣
∂ f (x)

∂x

∣∣∣∣ , (2.52)

where f are usually logits (un-normalised pre-activation final layer outputs) in clas-
sification problems (Simonyan et al., 2014). However, f can be chosen to be (e.g.)
the pre-activations of a hidden layer in order to inspect the features learned by the
network. Assigning importance using (2.52) is often termed the Vanilla gradients
method. A simple extension of (2.52) is the so-called gradient×input method, where
the gradients are weighted by the values of inputs,

sgrad-input =

∣∣∣∣
∂ f (x)

∂x

∣∣∣∣⊙ x , (2.53)

where ⊙ denotes the Hadamard (element-wise) product. This is designed to avoid
an unfortunate feature of (2.52), where it attributes artificially high importance to
variables with very small values. This gradient×input method is equivalent to an-
other popular attribution method called Layerwise Relevance Propagation (Bach et
al., 2015) for networks with ReLU (rectified linear unit) activations for their hid-
den layers (Kindermans et al., 2016; Shrikumar et al., 2017). A second undesirable
property of the importance scores computed using (2.52) is that they are prone to
saturation. For ReLU activations (where g(x) = max(0, x)), if an input decreases be-
low zero its gradient is zero. Such an input will be assigned zero importance using
both (2.52) and (2.53). Integrated gradients seeks to address this issue by integrating
gradients along a path from a baseline input x̄ to the input itself,

sint-grad = (x − x̄)
∫ 1

0

∂ f (x + α(x − x̄))

∂x
dα , (2.54)

where α ∈ [0, 1] is a scalar that linearly interpolates the path from x to the baseline
input, which is usually set to be all zeros (Sundararajan et al., 2017). Another unde-
sirable property of scoring variables using (2.52) is the sensitivity to noise, resulting
in saliency maps that appear visually noisy to humans. The Smoothed gradients
method (Smilkov et al., 2017) addresses this by adding Gaussian noise to the gradi-
ents and taking the mean over S Monte Carlo samples,
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ssmooth-grad =
1
S

S

∑
k=1

∣∣∣∣
∂ f (x + εk)

∂x

∣∣∣∣ , εk ∼ N (0, σ2) , k = 1, . . . , S . (2.55)

Guided back-propagation (Springenberg et al., 2015) was developed for convolu-
tional neural networks with ReLU activations and uses a modified form of the back-
propagation algorithm used for network training to attribute importance. In Guided
back-propagation only positive activations are back-propagated through the net-
work,

sguided-bp =
1

∏
l=L

∣∣∣∣
∂ fl(x)

∂ fl−1(x)

∣∣∣∣ 1 ( fl(x) > 0) , (2.56)

where l ∈ {L, . . . , 1} indexes the layers in reverse order, fl(x) is the output of the
l-th layer and 1(·) is the indicator function.

Mimic models

An alternative approach to achieving global model interpretability is to train an in-
terpretable model (typically a decision tree ensemble) on the predicted class proba-
bilities of the neural network, then use the variable importance scores of this mimic
model as a surrogate for those of the neural network. These ideas originated in the
field of model distillation, where the predictive power of a trained deep network
is transferred to a much smaller network for computational reasons (e.g. to run on
handheld devices, (Ba and Caruana, 2014; G. Hinton, Vinyals, et al., 2015)). The
smaller model is unable to achieve sufficiently strong predictive performance when
trained directly on the data but is able to effectively mimic the larger network, which
has been trained directly on the data. Decision tree ensembles are popular choices
for mimic modelling as they are non-parametric and non-linear, which are useful
properties when the response is the decision function of a neural network (Che et
al., 2016; Q. Zhang et al., 2019). Decision trees and decision rule lists are also popu-
lar choice for the interpretable mimic but suffer from a lack of capacity to model the
full complexity of neural network predictions (Davoodi and Moradi, 2018).

Given a dataset D = (X, y) and a trained model with prediction function f (x), a
mimic model is a regression model trained on a new dataset D̃ = (X, f ), where f is
the vector of predictions that correspond to X.

2.6 Variable importance for random forests

Individual decision trees are rarely applied to complex biological datasets as they
are weak learners and random forests are a much more popular choice for the rea-
sons discussed in Section 1.5. However, this increase in model capacity is offset by
an equivalent loss in interpretability as the ensemble usually contains over 100 trees.
While less interpretable than decision trees, interpretability is still available for ran-
dom forests via variable importance methods, which is one of the major reasons for
their enduring popularity in bioinformatics.
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Mean decrease Gini and Mean decrease accuracy

The two most common global variable importance methods for random forest are
mean decrease Gini (MDG) and mean decrease accuracy (MDA), both of which were
proposed in the original CART book (Breiman et al., 1984). MDA is simply the model
agnostic permute-and-predict method described in Section 2.4 applied with the out-
of-bag samples for each tree in the forest. Recall that the CART algorithm greedily
selects the split point that maximises the impurity gain, where the impurity at a
given split point is quantified in the CART algorithm using one of

I =





1 − ∑
k
i=1 p2

k Gini impurity (classification)
1

n − 1
∑

n
i=1(yi − ȳ)2 variance (regression)

(2.57)

where n is the number of samples, pk is the frequency of class k, yi is the predicted
(continuous) value for the ith sample and ȳ = 1

n ∑
n
i=1 yi is the mean prediction. All

the quantities in (2.57) are defined for a single node in the tree. MDG gets it name
from the CART algorithm, which uses Gini impurity to evaluate splitting rules in
classification trees. While the Gini impurity is not defined for continuous labels the
name MDG has been adopted as a general term for impurity-based importance mea-
sures even when the impurity measure is not necessarily measured using Gini (for
example, in regression or in classification trees using alternative impurity measures).

The idea behind MDG is that important variables are those which are responsible
for large decreases in impurity in the tree. The importance of variable j is calculated
using

s(j)
imp =

1
|Vj| ∑

v∈Vj

∆Iv , (2.58)

where Vj is the set of nodes in the forest at which variable j is used to split and ∆Iv

is the corresponding impurity decrease from node v to its two children. However,
variable importance scores calculated using (2.58) are well-known to be biased to-
wards discrete variables with a larger number of categories or continuous variables
on a larger scale (Strobl, Boulesteix, Zeileis, et al., 2007). MDA has therefore become
the more popular option for calculating random forest variable importance scores
in biomedical applications (Archer and Kimes, 2008; Nicodemus et al., 2010; Szym-
czak et al., 2016; Gregorutti et al., 2017; Ishwaran and M. Lu, 2019). This is despite
its much larger computational cost, especially for high-dimensional data. MDG im-
portance scores can be more stable under data perturbations (removal of 10% of the
samples) than MDA scores in differential expression simulations (Calle and Urrea,
2011). However, the opposite result can be observed when there is high levels of
correlation between variables (Nicodemus, 2011). The desirable properties of MDG
scores motivated the development a series of works to de-bias MDG scores by de-
composing the impurity decrease in (2.58) as

∆Iv = ∆I (s)
v + ∆I (b)

v , (2.59)

where ∆I (s)
v is the impurity decrease due to the true importance of a variable and
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∆I (b)
v is the impurity decrease due to its structure (e.g. its scale or number of cat-

egories, Sandri and Zuccolotto, 2008). The most computationally efficient method
is that of Nembrini et al. (2018), which trains the random forest on an augmented
dataset of 2p variables, where the set of variables O = {1, . . . , p} are those observed
in the datasets and the remainder P = {p+ 1, . . . , 2p} are permuted versions of each
member of O. The reasoning behind this approach is each variable in O will have
the same ∆I (b)

v as its counterpart in P, but the variables in P will have ∆I (s)
v = 0.

Trees are constructed by sampling variables from O ∪ P with variable importance
scores calculated using

s(j)
db-imp =

1
|Vj| ∑

v∈Vj

∆Iv − ∑
v∈Vj′

∆Iv , (2.60)

where j′ is the member of P that corresponds to j (j′ = j + p). Therefore the im-
portance of the perturbed variables, for which ∆I (s)

v = 0, is subtracted from the
importance score, leaving an estimate of ∆I (s)

v .

Assessing statistical significance for random forest scores

While useful for ranking variables, raw variable importance scores from a random
forest lack a clear interpretation. For example, given a set of scores it is not always
clear which scores correspond to a real association as there is no scale by which to
judge association strength. In addition, these scores are rarely exactly zero for unin-
formative variables due to the stochastic nature of tree construction. Motivated by
association testing, Altmann et al. (2010) developed a permutation-based approach
for computing the statistical significance of MDA scores. The method computes
“null importances” by permuting the response vector and uses these to approxi-
mate the null distribution. The p-value of the MDA score is then computed using
the positively biased estimator 1/(1+ a), where a is the number of null importances
that are smaller than the observed MDA score. This permutation scheme does not
scale well to datasets with large numbers of variables.

A second approach by Janitza et al. (2018) is specifically designed for high-dimensional
data and uses any negative or zero importances to approximate the null distribution,
removing the need for expensive permutation computations. As negative impor-
tances values result from unbiased estimation of a random variable with zero ex-
pectation (the importance of a non-associated variable) they are mirrored and com-
bined with the observed negative importances to approximate the null importance
distribution. However, this procedure requires a large number of negative scores
for a reasonable approximation and so the method of Altmann et al. is preferred for
datasets with few variables (the smallest dataset included in the original paper by
Janitza et al. contains 2,000 variables).

Both these methods were originally developed for MDA scores as the de-biased
MDG scores of Nembrini et al. (2018) had not been published, but the authors showed
that both methods are appropriate for assessing the statistical significance of de-
biased MDG scores.
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3 RATE (RelATive cEntrality)

As outlined in Chapter 1 (Section 4), Chapter 4 contains extensions to the vari-
able prioritisation method called RATE (RelATive cEntrality, Crawford et al., 2019).
RATE was developed for GP regression modelling of biomedical datasets, particu-
larly genome-wide association studies. Given a trained GP regression model, RATE
calculates post-hoc variable importance scores which can be used to rank variables
while accounting for their interactions. This section outlines the required mathe-
matical background for the extensions described in Chapter 4.

3.1 Calculating RATE scores

Consider a regression dataset D = {(xi, yi)
n
i=1}, where xi = (x

(1)
i , . . . , x

(p)
i ) ∈

Rp and yi ∈ R. In some equations the notation X = (x1, . . . , xn) ∈ Rn×p, y =
(y1, . . . , yn) ∈ Rn is also used. Using these data the GP regression model

y = f + ε, f ∼ GP(m(x), k(x, x′)), ε ∼ N (0, τ2 I) , (2.61)

is fitted, where f ∈ Rn is a vector of latent function values and τ2 is the noise vari-
ance. As this is a Bayesian model the fitting procedure computes the posterior dis-
tribution p( f | X, y), as described in Section 1.1.

Given p( f | X, y), RATE values are calculated using a two-step process:

1. Compute the posterior p(β̃ | X, y) over effect sizes analogues β̃ ∈ Rp using
p( f | X, y) and a projection β̃ = Proj(X, f ).

2. Calculate KL-divergences using

KLDj := KL
(

p(β̃−j) || p(β̃−j | β̃ j = 0)
)

j = 1, . . . , p ,

where the subscript −j denotes indexing β̃ with {1, . . . , p} \ j, such that β̃ can
be partitioned as (β̃ j, β̃−j).

The final RATE scores are given by

γj =
KLDj

∑k KLDk
, (2.62)

which restricts them to [0,1] (as each KLDj > 0) for ease of interpretation.

3.2 Effect size analogues

The first step of RATE is to calculate p(β̃ | X, y) using p( f | X, y) and β̃ = Proj(X, f ).
Effect size analogues summarise the marginal effect of each variable and are moti-
vated by ordinary least squares (OLS) regression, where the regression coefficients
(effect sizes) β are projections of the response vector y onto the column space of X
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C(X)

x(1)

x(2)

y

f = Xβ

ε

FIGURE 2.6: Regression coefficients β are a projection of y = f + ε
onto C(X), the column space of X (a plane in this 2-variable illustra-
tion). The component of the data explained by the model, f = Xβ,
lies in this plane while the residuals ε (in red) are perpendicular to it.

(see Figure 2.6). Effect size analogues provide an analogous summary of the vari-
ables in a non-linear model (in this case a GP) by projecting f onto X. In OLS regres-
sion the closed-form solution for β is

β = Proj(X, y) = (XTX)−1XTy , (2.63)

which motivates the projection used in the original RATE paper:

β̃ = Proj(X, f ) = (XTX)−1XT f , (2.64)

which is referred to from hereon in as the Pseudoinverse projection due to the fact
that (XTX)−1XT = X† is the Moore-Penrose pseudoinverse of X. As (2.64) is a lin-
ear operation and p( f | X, y) is multivariate Gaussian for the GP model this ensures
p(β̃ | X, y) is also multivariate Gaussian. In other cases (such as a non-linear projec-
tion operator or a non-Gaussian posterior over f ) it is possible to transform samples
from p( f | X, y) to obtain samples from p(β̃ | X, y), although this is more compu-
tationally expensive. Both the original RATE paper and the extensions in this thesis
only consider models with multivariate Gaussian p( f | X, y) and linear projections.

3.3 Variable importance using relative centrality measures

Having computed p(β̃ | X, y), the next step of the RATE calculation requires solving

KLDj := KL
(

p(β̃−j) || p(β̃−j | β̃ j = 0)
)

, j = 1, . . . , p , (2.65)

to compute the importance for each variable. When p(β̃ | X, y) = N (µ, Ω) is multi-
variate Gaussian this can be solved in closed-form using an appropriate partitioning
of the posterior mean µ, covariance Ω and precision Λ = Ω−1,

µ =

(
µj

µ−j

)
, Ω =

(
ωj ωT

−j

ω−j Ω−j

)
, Λ =

(
λj λT

−j

λ−j Λ−j

)
, (2.66)

where µj, ωj, λj ∈ R, µ−j, ω−j, λ−j ∈ Rp−1 and Ω−j, Λ−j ∈ R(p−1)×(p−1). The
Kullback-Leibler divergence from the multivariate Gaussian density N0(µ0, Σ0) to
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N1(µ1, Σ1) is

KL(N0 || N1) =
1
2

[
trace(Σ−1

1 Σ0) + (µ1 − µ0)
TΣ−1

1 (µ1 − µ0)− k + log
|Σ1|
|Σ0|

]
,

(2.67)

where k is the number of dimensions in the distribution. For the calculation of KLDj

the two densities of interest are

N0 := p(β̃−j) = N (µ−j, Ω−j) (2.68)

N1 := p(β̃−j | β̃ j = 0) = N (µ−j − ω−jω
−1
j µj, Λ−1

−j ) , (2.69)

where the covariance of p(β̃−j | β̃ j = 0) is equal to Λ−1
−j . Crawford et al. (2019) note

that the trace and log-determinant terms in (2.67) do not vary much across different
values of j when N0 and N1 are given by (2.68)-(2.69), meaning that the order of
the variables is determined entirely by the quadratic term (µ1 − µ0)TΣ−1

1 (µ1 − µ0).
Substituting the appropriate quantities from (2.68)-(2.69) into (2.67) and ignoring
terms that are constant for different values of j gives

KLDj ≈
1
2
(ω−jω

−1
j µj)

TΛ−j(ω−jω
−1
j µj) , j = 1, . . . , p , (2.70)

which is used to calculate the KL-divergences in the RATE calculation.
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Chapter 3

Differential abundance and
two-sampling testing of microbial
airway communities using random
forest

As researchers seek to characterise the microbial communities of different disease
groups the two-sample test is an important statistical procedure. A multivariate,
non-parametric test is especially useful for such applications as a microbial commu-
nity is inherently multivariate and may not meet parametric assumptions. Perform-
ing such a test with a random forest classifier is increasingly popular as it consis-
tently exhibits strong predictive performance predicting host traits from microbial
community composition. An additional benefit of this approach is that it allows a
subsequent variable importance analysis to identify taxa that drive a difference be-
tween the two groups (differential abundance). However, many of the properties
of the random forest model are currently unexplored even as its use becomes stan-
dard in microbiome modelling pipelines. This chapter presents an empirical study
of the behaviour of random forest classifiers for the two-sample test and differential
abundance analysis in the context of lung disease.

1 The role of the microbiome in respiratory disease

Chronic suppurative lung diseases (CSLD) are a group of respiratory diseases whose
symptoms include chronic coughing, excess sputum build-up and recurrent pul-
monary infections (McCallum and Binks, 2017). These recurrent infections are the
primary cause of patient mortality. The two CSLDs investigated in this study are:

• cystic fibrosis (CF): an inherited genetic disorder in which both copies of the
cystic fibrosis transmembrane conductance regulator gene contain mutations;
and

• non-cystic fibrosis bronchiectasis (BX): a permanent dilation of the airways due
to recurrent (and often severe) infection.

Despite the genetic differences between CF and BX both conditions are characterised
by the typical set of CSLD symptoms, which includes a decreased ability to clear
the airways of mucus. As airways are constantly exposed to bacteria and fungi in
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the environment this places patients at increased risk of infection. For this reason,
bacterial and fungal infections have been identified as a key factor in both CF and
BX disease progression, with many of of the same organisms being associated with
poor clinical outcomes in both groups (Amin et al., 2010; Chotirmall et al., 2010;
Zemanick and Hoffman, 2016; Maselli et al., 2017; Máiz et al., 2018). It is unknown
if, despite these similarities, microbial communities can successfully differentiate
between these two diseases.

A previous study by Cuthbertson, Felton, et al. (2021) compared the fungal com-
munities of CF and BX patients, identifying differences in fungal diversity between
the two groups. These samples have since been subjected to 16S rRNA sequenc-
ing to quantify their bacterial community composition, enabling an investigation
of the role of cross-kingdom interactions in these two diseases. There is growing
evidence of important bacteria-fungi interactions that affect health (Deveau et al.,
2018; Santus et al., 2021). In the context of CF, a study by Soret et al. (2020) explored
the cross-kingdom relationship between the bacterial and fungal communities in the
context of CF pulmonary exacerbations (CFPE), reporting the presence of clinically
relevant cross-kingdom interactions. Characteristic cross-kingdom interactions have
also been highlighted in patients experiencing BX exacerbations (Mac Aogáin et al.,
2021).

2 Study aims

This Chapter is based on a pre-print by Ish-Horowicz, Cuthbertson, et al. (2022) on
the analysis of the bacterial and fungal communities in the lungs of patients with CF
or BX. The original article is a collaborative work exploring interactions between the
bacterial and fungal communities in the FAME dataset (Fungal Airway MicrobiomE,
Cuthbertson, Felton, et al., 2021), and so its focus is on the biological findings.

The primary biological aims of the original paper are:

1. to establish if either the biological or fungal communities are distinct between:

• the CF and BX groups;

• patients with and without fungal infections (within the CF group); and

• patients currently experiencing symptom exacerbations (within the CF
group).

2. to identify differentially abundant taxa between any distinct groups; and

3. to investigate the role of cross-kingdom interactions in any differences detected
in Aim 1.

In the original pre-print Aims 1 and 2 are achieved using a random forest classifier-
based two-sample test (described in Section 3). A subsequent variable importance
analysis achieves Aim 3. When using random forests there are several modelling
choices that can affect the resulting conclusions. These include the type of trans-
formation applied to the taxa count tables and the choice of variable importance
method. The contribution of this chapter is a series of empirical studies on the sen-
sitivity of the biological conclusions to these choices.
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There is a lack of studies on the empirical behaviour of random forests when ap-
plied to microbial datasets, despite their increasing popularity in this setting. Ex-
isting studies are either limited in scope or do not include microbial datasets (Ran-
ganathan and Borges, 2011; Degenhardt et al., 2019; M. Zhang and W. Shi, 2019;
Tolosana-Delgado et al., 2019). The results presented in this chapter address this gap
in the literature by exploring the behaviour of several important stages of the ran-
dom forest analysis pipeline (data transformation, model evaluation and variable
importance analysis) in the context of microbial datasets.

These studies find that, for the FAME dataset:

• a two-sample test using the popular LeDell confidence intervals (E. LeDell, Pe-
tersen, and Laan, 2015) for cross-validated AUCs lead to the same conclusions
as a more computationally expensive permutation test;

• however, such a test using these confidence intervals has an inflated Type I
error rate;

• DeLong’s test (DeLong et al., 1988) for comparing paired receiver operating
characteristic (ROC) curves also has an inflated Type I error rate; and

• the biological conclusions from two-sample tests and differential abundance
analyses are largely robust to the choice of data transformation when using
random forests.

Overall, the results of these studies illustrate the danger of over-interpreting the re-
sults of a single analysis strategy. Robust random forest-based analyses of microbial
datasets requires assessing the stability of findings as well as their consistency across
different modelling choices.

3 Two-sample testing with binary classifiers

An important problem in biology is to determine whether two groups of samples are
drawn from distinct distributions (the two-sample test). Given two sets of samples
X = {x1i

}n1
i=1 and X2 = {x2i

}n2
i=1, where each set contains p-dimensional vectors and

X1 ∼ P , X2 ∼ Q , (3.1)

the two-sample (hypothesis) test is

H0 : P = Q , H1 : P 6= Q , (3.2)

where H0 and H1 are the null and alternative hypotheses. The nature of microbiome
data motivates a non-parametric test as the appropriate parametric distribution of
microbiome counts is often difficult to specify. A multivariate test is also desirable
given that the variables in X1 and X2 represent a complex ecological community of
interacting organisms.

Such a non-parametric, multivariate test can be performed by reformulating the two-
sample test in terms of supervised learning. This has been a particularly popular
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approach in genomics and neuroscience, which share many statistical difficulties
with microbial datasets (Rosenblatt et al., 2021). In the re-formulated problem a
classifier is trained on the dataset D = (X, y), where

X = (X1, X2)
T , y = (yi)

n1+n2
i=1 . (3.3)

The design matrix X is the row-wise concatenation of X1 and X2 and y = (yi)
n1+n2
i=1 ,

yi = 1(i > n1) indicates the group membership of the ith sample.

Given some scoring rule (e.g. accuracy or area under curve, AUC) the two-sample
test is performed by establishing whether a classifier has better-than-random perfor-
mance on unseen data. The intuition is that if P 6= Q then a classifier will be able to
identify which distribution unseen sample are drawn from. Furthermore, the larger
the difference between P and Q, the easier the classification task. The predictive per-
formance of the model is therefore a summary statistic for the difference between P
and Q.

This approach is popular in the biostatistics literature but is usually applied outside
of an explicit hypothesis testing framework (Komiyama et al., 2016; Rossi et al., 2019;
Xicota et al., 2019). That is to say, the generalisation performance of a trained classi-
fier is evaluated using a scoring metric (most commonly the AUC) and if this value
is judged to be larger than 0.5 (equivalent to random performance) then the model
is considered to have better-than-random performance, with larger AUCs indicat-
ing better models (Mandrekar, 2010). These results are usually interpreted in terms
of “good” and “bad” models, where the quality of a model refers to its predictive
performance. However, if the predictive performance of a model is considered as
a function of the difficulty of separating the two classes then a binary classification
problem can equivalently be interpreted in terms of the size of difference between
the groups (with a larger difference corresponding to an easier problem).

The decision on whether the AUC is larger than 0.5 is usually made using confidence
intervals on the AUC rather than by explicitly computing a p-value. If p-value is re-
quired it can be obtained using a permutation test on the group labels y. However,
this is a computationally expensive procedure for large datasets as it requires re-
training the model with each set of permuted labels.

One of the benefits of the classifier-based approach is that the test inherits the vari-
able importance measures of the classifier. In the microbiome setting this means that
it is possible to perform a post-hoc differential abundance analysis to identify the mi-
crobial drivers of any detected difference between the two groups. Two-sample tests
with random forests are therefore an attractive option for microbiome studies, al-
though their behaviour has not been studied in detail despite the rapidly increasing
prevalence of such analyses.

4 Relevant work

4.1 Random forests for microbiome

As outlined in Chapter 2 (Section 1.5), random forests are popular models for bio-
logical data analysis. Included in this statement is their increasing popularity for the
data-driven analysis of microbiome data (Ssekagiri et al., 2017; Roguet et al., 2018;
Corrigan et al., 2018; Thompson et al., 2019; Nagpal et al., 2020; Das et al., 2021). This
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popularity arises from the fact that they often exhibit the strongest predictive per-
formance on host-trait prediction tasks in microbial studies due to their ability for
non-parametric, non-linear modelling (Statnikov et al., 2013; Zhou and Gallins, 2019;
Topçuoğlu et al., 2020). These properties are especially useful in microbiome stud-
ies, in which the covariates represent a dynamic and interacting ecological system
of microbes. Random forests are therefore often preferred over more interpretable
linear models, with a systematic review finding that random forest was the most
popular machine learning model for differential abundance testing in microbiome
studies and the third most popular for microbiome analysis overall (Bardenhorst et
al., 2021).

4.2 Classifier-based two-sample testing

Due to the prevalence of “informal” classifier-based two-sample testing (using a pre-
dictive model to assess the degree of difference between two groups) in the biomed-
ical literature there have been recent efforts to provide theoretical guarantees for
such tests with general classifiers (Gagnon-Bartsch and Shem-Tov, 2016; H. Cai et
al., 2020; Rosenblatt et al., 2021; I. Kim et al., 2021). These works investigate the
asymptotic behaviour of a two sample-test using an unspecified classifier with ac-
curacy as its test statistic. Another paper by Hediger et al. (2022) considers two-
sample tests using random forest classifiers specifically (Hediger et al., 2022). It in-
cludes comparisons to an alternative non-parametric two-sample test using kernels
(such as those investigated in Chapter 5), reporting that random forest-based tests
have higher power when the difference between two populations is driven by their
marginal distributions (Hediger et al., 2022).

5 Data

5.1 Quantifying community composition

The sputum samples from the 107 individuals included in Cuthbertson, Felton, et
al. (2021) were subjected to 16S rRNA (ribosomal ribonucleic acid) gene sequencing
to quantify their bacterial community composition, as described in Chapter 1 (Sec-
tion 1.3). The fungal taxa were previously quantified using ITS2 (internal transcriber
spacer 2) sequencing in the original study. A detailed description of the data collec-
tion and pre-processing can be found in Ish-Horowicz, Cuthbertson, et al. (2022).
This data collection is not part of the contributions of this work as it was performed
by collaborators.

For all analyses the 1,189 bacterial OTUs are agglomerated to the genus level, as
has been done in similar studies (L. Chen et al., 2020; Qian et al., 2020; Cekikj et al.,
2022). This is motivated by recent findings that indicate that 16S rRNA sequencing
does not has sufficient resolution to identify beyond genus-level (Jeong et al., 2021).
Agglomeration to genus level is also used in a number of previous studies applying
random forests to microbial datasets, where agglomeration aids in the interpretation
of differential abundance results and improves predictive performance by combin-
ing a large number of rare but indistinguishable taxa (Jasner et al., 2021).

The fungal community is quantified sequenced using ITS2, the analogous sequenc-
ing modality for the fungal community. This resulted in 2,770 OTUs. There has been
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FIGURE 3.1: Whittaker/rank-abundance plots (A) and the abundance
(relative to the total dataset reads) and prevalence (B) for the agglom-
erated taxa in each kingdom of the FAME dataset. These types of
plots are commonly used in ecology to visualise the rarity of organ-
isms. The inclusion thresholds for the random forest modelling are

denoted by dashed lines in plot B.

less work on the resolution to which it can accurately identify fungi as it is a less ma-
ture modality than 16S rRNA. However, in this dataset the Whittaker plot in Figure
3.1(A) suggests that the species level is an appropriate rank at which to agglomer-
ate the fungal taxa. This is not a rigorous method and further studies are required
to establish the resolution of ITS2 sequencing (Nilsson et al., 2019). The fungal and
bacterial agglomerated taxa are the two sets of covariates for this study (see Table
3.1).

Figure 3.1(B) shows that the two kingdoms have distinct relative-abundance and
prevalence distributions, with the fungal community containing a larger number of
very rare (low-prevalence) taxa. It has been reported that the removal of rare taxa
can mitigate problems due to technical variability between labs without affecting
the predictive power and variable selection properties of random forest (Cao et al.,
2021). Taxa that account for fewer than 0.01% of reads for their respective kingdom
or are present in fewer than 20% of samples are therefore excluded. The final datasets
contain over 97% of the total reads for each kingdom.

TABLE 3.1: Covariate sets in the FAME dataset are the agglomerated
OTUs of each kingdom. Only taxa accounting for more than 0.01%
of reads or are present in at least 20% of samples are included in the

random forest modelling. RF: random forest.

Sequencing
modality

Number of taxa
(total)

Number of taxa
(inc. in RF modelling)

Bacterial genus 16S rRNA 98 44

Fungal species ITS2 239 19
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5.2 Transforming taxa abundances

The raw covariates in this dataset take the form of n × p count matrices, for n sam-
ples and p taxa. However, it is common practice to transform count data prior to
fitting predictive models, but such transformations of 16S rRNA counts have been
reported to have a large effect on the results of other statistical analyses. The choice
of normalisation has been found to critically affect correlation estimates calculated
from 16S rRNA counts (Badri et al., 2018), while other evaluations in the context of
differential abundance analysis have reported that the best choice of normalisation
strategy varies between datasets and analysis methods (Weiss et al., 2017; H. Lin and
S. D. Peddada, 2020). The transformation strategies included in these experiments
are described in Table 3.2.

Count data are ubiquitous in biology, particularly in ecology, and log-transformations
(log(x + 1) due to the presence of zeros) are widely used when the counts are the re-
sponse. The transformed quantity is considered to be closer to normally distributed
than to the raw counts, which are positive by definition and often positively skewed
with few large values. Transformation using a log(x + 1) improves the held-out
AUC of classification models for a number of 16S rRNA datasets (Jasner et al., 2021).

Another common transformation in microbiome studies is to use relative abundances,
where each sample is normalised using the sum of its reads. The relative abundance
is a popular method as it corrects for variation in number of reads in each sample,
which can be substantial due to technical factors in the measurement process. The
term relative abundance has also been used to refer to a division by all the reads
in the dataset (H. Lin and S. D. Peddada, 2020), but here relative abundance refers to
normalising each sample by the sum of its reads, while sum normalisation refers to
normalising counts by the total number of reads in the dataset.

The idea that microbial count data contain only relative information is the key fea-
ture of compositional data analysis. The principles of compositional data and its
impact on statistical analysis are discussed in more detail in Chapter 5. The introduc-
tion of compositional data principles to biological sequence data analysis has been
relatively recent (Gloor et al., 2017; Quinn, Erb, et al., 2018), meaning that studies
on the effects of applying random forests to compositional data come mainly from
the geosciences literature, where compositional data are ubiquitous (Ranganathan
and Borges, 2011; Tolosana-Delgado et al., 2019; M. Zhang and W. Shi, 2019). The ef-
fect of the most commonly-applied compositional transform, centred log-ratio (CLR,
Aitchison, 1982), is explored here.

Random forests are theoretically invariant under monotonic transformations (Breiman
et al., 1984). However, the type of transformation often impacts the predictive per-
formance in practice due to numerical reasons (Kimmel and Oliver, 2006; Galili and
Meilijson, 2016). Furthermore, the CLR and Relative abundance transformations are
not monotonic. It is therefore important to establish how the results of random-forest
based analyses depend on the choice of transformation as it is common practice to
present results using only a single transformation.

5.3 Sample groups

In addition to the primary group definitions (CF and BX), two additional sub-groupings
were investigated from amongst the CF samples (Table 3.3). The first of these groups
denotes the fungal disease status of the CF patients as either fungal bronchitis (FB,
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TABLE 3.2: The different count transformation used in this chapter.
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clinical diagnosis of fungal lung disease), or having no active fungal disease (NAFD).
The second set of groups denotes whether a patient was experiencing a CF pul-
monary exacerbation (CFPE, defined as a clear deterioration in CF symptoms) at the
time the of sampling.

TABLE 3.3: The binary classification tasks for the random forest.

Group name Description Classes Sample size

Disease If a patient has CF or BX CF, BX
83 CF, 24 BX
(107 total)

Fungal
disease

If patient has fungal bronchitis (FB) or
no active fungal disease (NAFD) FB, NAFD

20 FB, 39 NAFD
(59 total)

CFPE
If CF patient is experiencing CFPE
when sampled collected Yes, No

36 Yes, 47 No
(83 total)

6 Two-sample testing using random forests

6.1 Nested cross-validation estimates of generalisation performance

Classifier-based two-sample tests require an estimate of the generalisation perfor-
mance of a classifier. The datasets in this chapter have insufficient samples to reserve
some for estimating the generalisation error as all samples are required to train the
model. A nested cross-validation scheme is therefore used to estimate the out-of-
sample error. The outer loop performs 5-fold cross-validation, with the inner loop
also performing 5-fold cross-validation to select hyperparameters. The hyperpa-
rameters search considers ten random different combinations of mtry (the number
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of variables sampled at each split point), the splitting rule and minimum samples
per leaf. Each model contains 1,000 trees.

The out-of-sample error is estimated using the mean AUC on the held-out (valida-
tion) samples in each iteration of K-fold nested cross-validation,

ÂUCheldout =
1
k

K

∑
k=1

ÂUCk , (3.4)

where ÂUCk is the AUC estimate on the held-out samples in outer fold k. Signifi-
cance is assessed using a confidence interval on the mean validation AUC calculated
using the method of E. LeDell, Petersen, and Laan (2015). If a confidence interval
with width 1 − α excludes 0.5 then H0 is rejected at a significance threshold α. The
one-sided test is used in practice as worse-than-random performance (an AUC less
than 0.5) should be treated the same as random performance - both indicate no de-
tectable difference between the groups.

6.2 Results of the two-sample test

As there are three sets of group definitions (see Table 3.3) and three sets of possi-
ble covariates (bacterial genus, fungal species and both bacterial genus and fungal
species) there are nine random forest models in total. Their mean held-out AUCs are
shown in Figure 3.2 with two-sided 95% confidence intervals calculated using the
method of E. LeDell, Petersen, and Laan (2015). The intervals are corrected for mul-
tiple comparisons using the Bonferroni method (Bonferroni, 1936), so their width is
1 − α/9. The correction is not applied across the different transformations as the
aim is to compare the results that would be obtained if a single transformation were
used.

Using these 95% two-sided intervals corresponds to a test with a 10% significance
threshold. The first conclusion from these results is that random forest models find
statistically significant differences between the CF and BX groups using all three sets
of covariates (Figure 3.2, left panel). This conclusion would be reached using any of
the four data transformations. For fungal disease (centre panel), H0 is only rejected
when the fungal species abundances are used as covariates (using any transforma-
tion other than sum normalisation), with no difference detected based on bacterial
genus abundance (under any transformation). When both kingdoms are included
in the model to predict fungal disease status the test result depends on the choice of
transformation, which calls into question the robustness of the result. Finally, no set
of covariates under any transformation result in H0 being rejected for CFPE (right
panel).

These results show that both the bacterial and fungal communities are able to dis-
criminate between the CF and BX groups in this dataset. However, they do not es-
tablish which of the two communities has more discriminative power. In addition,
this confidence interval approach does not suggest that including both kingdoms
improves the ability of the model to discriminate between CF and BX. There is also
insufficient evidence to conclude that the bacterial community composition can dis-
criminate FB from NAFD. The opposite finding would be evidence of cross-kingdom
dependencies (possibly involving the fungal pathogens driving an FB diagnosis),
but these results suggest a degree of independence between the two communities.
Finally, none of the models can discriminate between patients with and without
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FIGURE 3.2: Mean held-out AUCs for random forest models. Two-
sided 95% CIs calculated using the method of E. LeDell, Petersen,
and Laan (2015) with a Bonferroni correction. Red dashed line is a

mean held-out AUC of 0.5. BG: bacterial genus, FS: fungal species.

CFPE. This is most likely because cross-sectional data is inappropriate for study-
ing the drivers of CFPE, which is by definition a temporary state defined relative to
the baseline symptoms of an individual. Longitudinal data are therefore required
in order to quantify both the intra- and inter-patient variation and effectively model
CFPE.

6.3 Coverage of LeDell’s confidence intervals

LeDell’s confidence intervals are routinely applied to a range of dataset types and
sizes in biomedical studies (B. Shi et al., 2018; Toivonen et al., 2019; Roimi et al., 2020;
Fu et al., 2020). Given a set of AUCs evaluated on the held-out samples at each fold
of K-fold cross validation, {ÂUCk}K

k=1, LeDell’s method calculates an asymptomat-
ically normal confidence interval on their mean using influence curves (E. LeDell,
Petersen, and Laan, 2015). Their popularity arises from their computational effi-
ciency (the time and memory required to calculate them is negligible relative to
model training) and the easy accessibility of the accompanying package, cvAUC, (E.
LeDell, Petersen, Laan, and M. E. LeDell, 2022). To the best of my knowledge there
are no empirical evaluations of these popular confidence intervals on real datasets
in the literature.

A confidence interval of width 1 − α on the mean validation AUC should exclude
0.5 with at a rate of α under the null hypothesis (no difference between the groups).
The empirical coverage under the null hypothesis can be established using a label
randomisation test with the following setup. A random forest model is trained using
nested cross-validation with dataset D1 = (X, ỹ), where X is a table of transformed
OTU counts and ỹ is a permuted version of the observed y. The LeDell confidence
intervals are recorded and the procedure is repeated for P distinct permutations of
y.

The empirical coverage of an interval with width 1 − α is

Cα =
1
P

P

∑
l=1

1(0.5 ∈ [al , bl ]) , (3.5)

where [al , bl ] is the interval calculated at permutation l. For a one-sided interval al =
−∞. The empirical coverage should be approximately equal to α if the interval is
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FIGURE 3.3: Empirical coverage of LeDell’s confidence intervals on
cross-validated AUC estimates under the null hypothesis (500 repli-
cates). The confidence intervals are too narrow as the coverage is
lower than the theoretical coverage (denoted by the red dotted line).

well-calibrated, however, Figure 3.3 shows that the empirical coverage is lower than
α for both the two-sided (plot A) and one-sided intervals (plot B). The confidence
intervals are therefore too narrow as the coverage is lower than the theoretical value
(the red dashed lines in Figure 3.3). This is observed for all four transformations.

These narrow confidence intervals imply an inflated Type I error in the correspond-
ing two-sample test. While the mis-calibration in the empirical coverage is a con-
cern, it is preferable that the coverage is too low than too large as this would suggest
a high likelihood of false positive results. In addition, the one-sided intervals (which
are more useful in practice) have empirical coverage closer to the desired theoretical
coverage. However, without a more detailed simulation study under the alternative
hypothesis (a difference between the two groups) it is not possible to make concrete
statements about the Type II error behaviour of LeDell confidence intervals for this
type of data.

6.4 Two-sample testing using LeDell confidence intervals agree with per-
mutation tests

Another way of evaluating LeDell intervals in this setting is to compare them to the
results of an equivalent permutation test. The result of such a test (with 500 permu-
tations) are displayed in Table 3.4. They are consistent with the confidence interval-
based test results in Figure 3.2 but are much more computationally expensive (the
entire nested cross-validation procedure must be repeated for each permutation).
This shows the utility of the confidence intervals proposed by E. LeDell, Petersen,



50
Chapter 3. Differential abundance and two-sampling testing of microbial airway

communities using random forest

and Laan (2015) despite the fact that they are slightly narrow in the case of the null
hypothesis.

TABLE 3.4: P-values from a permutation test on the mean valida-
tion AUC being greater than 0.5. P-values within each column are
adjusted for multiple comparisons using the false discovery rate. *:

P<0.1, **: P<0.05, ***: P<0.01.

Random forest model CLR log1p
Relative

abundance
Sum norm.

Predicting Disease group from BG 0.00*** 0.01*** 0.00*** 0.00***
Predicting Disease group from FS 0.00*** 0.01*** 0.00*** 0.00***
Predicting Disease group from BG and FS 0.00*** 0.01*** 0.00*** 0.00***

Predicting Fungal disease from BG 0.91 0.78 0.56 0.76
Predicting Fungal disease from FS 0.00*** 0.01*** 0.00*** 0.00***
Predicting Fungal disease from BG and FS 0.29 0.13 0.00*** 0.10**

Predicting CFPE from BG 0.91 0.78 0.46 0.91
Predicting CFPE from FS 0.91 0.78 0.37 0.63
Predicting CFPE from BG and FS 0.91 0.85 0.56 0.91

6.5 DeLong’s test

The question of whether the bacterial or fungal communities are more distinct be-
tween the CF and BX groups can also be answered by comparing the ROC curves
of the relevant models in a hypothesis testing framework. However, this is not
a two-sample test but rather DeLong’s test (DeLong et al., 1988). This is a non-
parametric test between two paired ROC curves, where “paired” refers to the fact
that the two models under comparison share the same labels. The test is derived us-
ing the insight that the AUC can be interpreted as the probability that the score of a
randomly-selected item from the positive class has a higher score than a randomly-
selected item from the negative class. This implies that the AUC is a Mann-Whitney
U/Wilcoxon rank sum test on the predicted probabilities of the positive and nega-
tive groups. DeLong et al. were the first to note this equivalence and use this result
to derive an asymptotically normal distribution for the AUC.

DeLong’s test is commonly used to compare the discriminative power of disjoint
sets of clinical variables as a proxy for comparing the strength of their associations
with the response (Y. Huang, 2016; Garg et al., 2021). The two-sided version of the
test is

H0 : AUC1 = AUC2 , H1 : AUC1 6= AUC2 , (3.6)

where AUC1 and AUC2 are the AUCs of the two models. However, the one-sided
test

H0 : AUC1 < AUC2 , H1 : AUC1 > AUC2 , (3.7)

is often more useful as it can be used to compare the discriminative power of two
sets of covariates. One drawback of DeLong’s test is that it has low power when
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the two models share covariates (Demler et al., 2012), which precludes comparisons
involving the models trained on both fungal and bacterial abundances. This com-
parison is made using a permutation test in the following subsection.

P-values from both directions of two-sided DeLong’s tests are shown in Table 3.5.
They indicate that there is not sufficient evidence to conclude that there a signifi-
cant difference in discriminative power between the two kingdoms for CF and BX.
They also show that the fungal abundances are significantly more discriminative of
fungal disease status than the bacterial community (which is expected from both
common sense and the confidence intervals on the mean validation AUCs in Figure
3.2). These results have the additional robustness of being independent of the choice
of transformation.

TABLE 3.5: P-values from one-sided DeLong’s test comparing the
discriminative power of the fungal and bacterial communities using
their respective AUCs (AUCFS and AUCBG). CFPE is excluded here as
neither the fungal nor bacterial communities are predictive of CFPE
in this dataset. P-values are corrected for multiple comparisons using
false discovery rate. ∆AUC = AUCFS − AUCBG. *: P<0.1, **: P<0.05,

***: P<0.01. FS: fungal species, BG: bacterial genus

Labels Transformation ∆AUC H1 : AUCFS < AUCBG H1 : AUCFS > AUCBG

Disease
group

CLR 0.06 0.96 0.6
log1p 0.11 1.00 0.21

Rel. abund. 0.03 0.85 0.86
Sum norm. 0.05 1.00 0.41

Fungal
disease

CLR 0.36 1.00 0.00***
log1p 0.30 1.00 0.01***

Rel. abund. 0.42 1.00 0.00***
Sum norm. 0.25 0.99 0.01***

Type I error rate of DeLong’s test

The empirical behaviour of DeLong’s test under the null hypothesis can be tested by
training random forest models on permuted labels using the same procedure as was
used to investigate the coverage of LeDell’s confidence intervals in the previous sec-
tion. For each group definition (Disease group, fungal disease and CFPE) a random
forest model is trained using nested cross-validation with the dataset D1 = (XFS, ỹ),
where XFS are the fungal species abundances and ỹ is a permuted version of the ob-
served y. A second model is then trained on D2 = (XBG, ỹ) containing the bacterial
genus abundances XBG. The mean validation AUCs are then compared using two-
and one-sided DeLong’s tests. As both models are trained on randomised labels
(and hence neither contain predictive signal) the test should be rejected at a rate of
α.

Figure 3.4 shows that the rejection rate of over 500 replicates is larger than the nom-
inal significance threshold α for α ∈ {0.10, 0.05}, indicating an inflated likelihood
of Type I error. This inflated Type I error rate is present for all the data transforma-
tions but varies across the different group definitions. Tests involving random forest
models trained to predict Disease group have a Type I error rate that is closest to α as
this is the group with the largest sample size (n = 107), while the tests with models
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(A) Two-sided test: H0 : AUC1 = AUC2 , H1 : AUC1 6= AUC2
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(B) One sided test: H0 : AUC1 < AUC2 , H1 : AUC1 > AUC2
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(C) One sided test: H0 : AUC2 < AUC1 , H1 : AUC2 > AUC1

FIGURE 3.4: Rejection rate of DeLong’s test comparing the AUCs two
random forest models trained on permuted labels. The solid red line
denotes the nominal significance level α and the dashed lines show

its 95% binomial proportion confidence interval.

predicting fungal disease status (n = 87) or CFPE (n = 59) have higher Type I error
rates. However, the difference in Type I error rate across the three group definitions
cannot be explained solely by differing sample sizes as H0 is rejected at the same rate
for Fungal disease (n = 59) and CFPE (n = 87).

While this is a concern, this is mitigated by the fact that the more useful one-sided
test (Figure 3.4(B-C)) rejects H0 at a rate that is closer to α than the two-sided test
(Figure 3.4(A)).

6.6 Effect of cross-kingdom interactions on discriminative power

When DeLong’s test is not appropriate - it loses power when the two models un-
der comparison share covariates - a permutation test is a preferable option, where
the null hypothesis is that adding the abundances of the second kingdom does not
increase discriminative power. Starting with a random forest model trained on the
abundance of a single kingdom (either bacterial genera or fungal species) such a test
can be used to assess the whether the community composition of both kingdoms
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is more discriminative than a single kingdom alone. Such an approach provides
information on the role of cross-kingdom interactions in the two groups.

The P-values from a 500-permutation one-sided test are shown in Table 3.6. These
show the change in mean held-out AUC when the second kingdom is added to the
random forest model as covariates where the null hypothesis is that adding the sec-
ond kingdom does not improve discriminative power for CF/BX. The P-values show
there is insufficient evidence to reject H0 at a significance level of 10%.

TABLE 3.6: P-values from one-sided permutation test (500 permu-
tations) comparing the discriminative power after adding the other
kingdom as covariates to a random forest model. CFPE is excluded
here as neither the fungal nor bacterial communities were predictive
of CFPE. P-values are corrected for multiple comparisons using false
discovery rate. ∆AUC is the change in mean held-out AUC when
the second kingdom abundances are added. FS: fungal species, BG:

bacterial genus

Labels
Model 1

abundances
Model 2

abundances
Transformation ∆AUC P-value

Disease
group

BG and FS

BG

CLR 0.07 1.0
log1p 0.07 0.9

Rel. abund. 0.07 1.0
Sum. norm -0.01 0.6

FS

CLR 0.03 1.0
log1p -0.01 0.9

Rel. abund. 0.08 1.0
Sum. norm -0.01 0.6

Fungal
disease

BG and FS

BG

CLR 0.26 1.0
log1p 0.18 0.9

Rel. abund. 0.32 1.0
Sum. norm 0.21 1.0

FS

CLR -0.18 0.4
log1p -0.12 0.8

Rel. abund. -0.03 1.0
Sum. norm -0.11 0.6

7 Random forest variable importance for differential abun-

dance

One of the benefits of random forests is their ability to compute variable impor-
tance scores, which in microbiome studies is typically framed in terms of differential
abundance if the model is a binary classifier. A recent review recognised that differ-
ent differential abundance tools produce varying results on a single dataset and that
a consensus analysis is required to ensure robust biological interpretations (Near-
ing et al., 2022). Such consensus analyses benefit from including tools with varying
assumptions and so including random forests to complement bespoke tools (which
generally focus on univariate or parametric approaches) is a useful and increasingly
popular approach (Bardenhorst et al., 2021).
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Using random forest models for differential abundance analysis requires additional
modelling choices by the practitioner in addition to those made when training the
model itself. The most important of these is the choice of variable importance meth-
ods. This study compares four possible variable importance scoring methods for
random forests:

• mean decrease accuracy (MDA or permutation importance);

• mean decrease Gini (MDG or impurity importance);

• de-biased MDG (Nembrini et al., 2018); and

• Shapley values.

These are described in detail in Chapter 2 (Section 2.6) but the most relevant points
are re-stated here. MDA scores are calculated by permuting the out-of-bag samples
and recording the corresponding decrease in accuracy. MDG scores are the mean
decrease in impurity across all the nodes in the forest where a given variable is used
as a splitting point. The naive MDG has been found to be biased in certain situa-
tions (it artificially inflates the importance of continuous variables on a large scale
or categorial variables with many categories), which motivates the bias-corrected
scores of Nembrini et al. (2018). These de-biased scores are the difference between
the observed MDG score and the MDG score of a permuted version of that vari-
able (thereby removing the contribution to the importance that is solely due to a
variable’s structure). Finally, Shapley values are a model-agnostic approach derived
from game theoretic principles that attributes each variable an importance score re-
lated to its contribution to a predicted value.

The following models from the previous section are carried forward for variable
importance analysis:

1. predicting CF/BX from bacterial genus;

2. predicting CF/BX from fungal species; and

3. predicting FB/NAFD from fungal species.

These three models are selected as they detected statistically significant differences
between their respective groups. For clarity they will be referred to by these num-
bers for the remainder of this section. The random forest model predicting CF/BX
using both bacterial and fungal abundances is not included despite the fact that its
confidence interval excluded 0.5 in Figure 3.2. This is because its variable impor-
tance results largely mirror those of the two individual models (Models 1 and 2) that
have been included.

7.1 Variable rankings under different variable importance methods and
transformations

Clearly the choice of variable importance method affects the results of a random
forest differential abundance analysis. However, variable importance scores for ran-
dom forests are usually used to rank methods due to the lack of a clear mathematical
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meaning of the scores, meaning that consistency between the rankings is more of in-
terest than consistency in the actual scores themselves (Behnamian et al., 2017).

As Shapley values produce signed scores (they have an effect direction) their ab-
solute value is used in these analyses for fair comparison with other (undirected)
scores. While these other scores can take negative values, a negative MDG or MDA
score indicates extremely low importance rather than importance in the direction of
the negative class.

For Model 1 (Figure 3.5(A)), the MDA and MDG scores show consistently high level
of agreement under all four transformations (Spearman’s ρ > 0.67). For the log1p,
and relative abundance transformations the MDA, MDG and Corrected MDG scores
agree more closely to one another (ρ > 0.53) than with Shapley values (ρ < 0.46),
but when the CLR transform is used there is more consistent agreement across the
four methods (0.46 ≤ ρ ≤ 0.64).

For Model 2 (Figure 3.5(B)) there is more overall agreement between the rankings
than is observed in Model 1, but there are still differences under the four transfor-
mations. The log1p and sum normalisation transformations give strong agreement
between all four methods (ρ > 0.72) but there is less overall agreement under the
CLR or relative abundance transformation (ρ > 0.51).

Model 3 (Figure 3.5(C)), on the other hand, shows the strongest overall agreement
between the models when the relative abundance is used (ρ > 0.54) and less agree-
ment for sum normalisation (ρ > 0.25). The degree of agreement between the vari-
able rankings therefore varies across the three models and four transformations,
which suggests that is difficult to know a priori which variable importance method
is the most appropriate for a given task as it is highly data-dependent.

While the overall agreement of the variable rankings between methods is of inter-
est, it is the top-ranked variables that are the focus of a random forest variable im-
portance analysis. These top-ranked variables are investigated further and possibly
considered for follow-up studies. Figure 3.6 compares the consistency of the top four
ranked taxa (i) using the different variable importance methods using and (ii) under
the different transformations.

For Model 1 (Figure 3.6(A)), the bacterial genus Pseudomonas is in the top-2 ranked
taxa according to Corrected MDG, MDG and MDA scores when using CLR, log1p or
the relative abundance transformations. However, it does not appear in the top four
taxa when using sum normalisation or Shapley values. A second genus, Neisseria is
also consistently observed in the top-four taxa for Corrected MDG, MDG and MDA
scores (under all four transformations) but is not in the top four for Shapley values.
These two taxa are therefore more likely to represent true associations than others
that are highly ranked by only a few of the variable importance methods under cer-
tain transformations (e.g. Lactobacillus, Tannerella and Treponema). The associations
for Pseudomonas and Neisseria are not a causal statements but these results suggest
that their association is not due modelling artefacts and so are more likely to be
present in the data.

For Model 2 (Figure 3.6(B)), Penicillium psychrosexualis, Malassezia restricta and Peni-
cillium thomii are the top-ranked taxa irrespective of the type of variable importance
method or transformation used. Candida parapsilosis also appears amongst the top-
ranked taxa for three of the four variable importance methods irrespective of the
choice of transformation.
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For Model 3 (Figure 3.6(C)) there is a clear consensus that Exophiala dermatitidis, As-
pergillus fumigatus, Scedosporium boydii and Candida albicans are the most important
taxa driving fungal disease in CF patients. The first three of these are those identi-
fied by Cuthbertson, Felton, et al. (2021) in their analysis (which did not use random
forest) while Candida albicans is another well-known opportunistic pathogen in im-
munocompromised patients (Pendleton et al., 2017).

There is varying stability in the rankings across these three models, which sug-
gests that the main factors in random forest variable importance stability are data-
dependent. This is consistent with previous findings, which suggest that it is diffi-
cult to know a priori which variable importance method will produce the best results
(Huazhen Wang et al., 2016). Even between these three models (which are trained
on different portions of the same dataset) there is substantial variations in stability
across the models, with models trained on fungal species abundance exhibiting the
most stability across variable importance methods and transformations. This is most
likely due to the fact that is has the fewest variables (p = 19, compared to p = 44
bacterial genera).

Statistical significance

Assessing statistical significance is a key part of a differential abundance analysis.
Recall that statistical significance for random forest variable importance scores is
computed using null importances (importance scores for models with permuted la-
bels). For a given variable, the corresponding p-value is given by

P =
1 + b

1 + M
, (3.8)

where M is the number of permutations and b is the number of permutations in
which the permuted score is larger than the observed score. There are two methods
for calculating the null importance scores (see Chapter 2, Section 2.6 for details):

• the approach of Altmann et al. (2010), which calculates the null importances
using these permutations; and

• the approach of Janitza et al. (2018), which approximates the null importances
using the observed negative importances.

The method of Janitza et al. (2018) relies on a large number of negative or zero im-
portances and so is specifically-designed for large-p datasets (p ' 103), in which
case the computational cost of Altmann et al. (2010) becomes prohibitively expen-
sive. The dataset sizes in this study are therefore suitable for the method of Altmann
et al. (2010), which can be calculated for MDA or Corrected (de-biased) MDG scores.
This enables a comparison between the p-values according to the two variable im-
portance methods as well as an investigation of how the data transformation affects
statistical significance.

Figure 3.7 shows the agreement between the statistical significance of MDA and
Corrected MDG scores according to the method of Altmann et al. (2010) using 1,000
permutations. For all three models there is good agreement between the two sets
of p-values. For Model 1 (Figure 3.7(A)) there are no statistically significant hits for
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FIGURE 3.6: The top four ranked variables for random forest models
using different importance measures and transformations.
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either variable importance method at 10% significance. This is true for all four trans-
formations. For Model 2 (Figure 3.7(B)) there is also general agreement between the
p-values but the statistically significant hits depend on both the variable importance
method and the choice of transformation. For example, Malassezia restricta is signif-
icantly associated with Disease group (P<0.05) when using either variable impor-
tance method and the log1p transformation. However, it only significant at α = 0.05
when using MDA importance with the Relative abundance transformation, and not
significant for either variable importance method when using the CLR transform.

This comparison illustrates one of the well-known pitfalls of p-values, which is their
reliance on arbitrary significances thresholds (Halsey, 2019).

7.2 Stability of variable importance scores

The stability of importance scores under data perturbations is an important prop-
erty in differential abundance analysis - if the scores (or their rankings for a ran-
dom forest-based analysis) are unstable under small changes to the dataset then this
calls into question the reliability of the results and robustness of the conclusions.
Such instability suggests that the rankings are driven by a small subset of samples,
which makes drawing global conclusions inappropriate. Variable ranking stability
has been identified as an important requirement for random forest variable impor-
tance methods (Calle and Urrea, 2011; Nicodemus, 2011; Huazhen Wang et al., 2016).
Previous studies have investigated this stability in the context of data perturbations
(removing 10% of the samples) and varying degrees of variable collinearity.

This section repeats the procedure of Calle and Urrea (2011) and Nicodemus (2011)
in which a random forest model is trained on a perturbed dataset of size 0.9n formed
by sampling examples without replacement from the full dataset. The variable rank-
ing in the perturbed dataset is then compared to the ranking in the original dataset
for each combination of variable importance method and data transformation (Fig-
ures 3.8-3.10). If the original variable ranking were replicated in every perturbed
dataset then these plots would show a red diagonal line. The less stable a ranking
method is, the more points are observed in the upper-left and lower-right quadrants
(this corresponds to variables that are highly-ranked in the full dataset having low
ranks in the perturbed dataset and vice versa).

For Model 1 (Figure 3.8) the Shapley rankings show the lowest stability (this is also
observed in the other two models). The other variable importance methods show
more stability, but the degree of stability depends on the transformation, with trans-
formations that involve sample-wise normalisation (CLR and Relative abundance)
having less stable rankings. The most stable rankings are from MDA or MDG when
the Sum normalisation is used, where the rankings of the top 3 variables is largely
preserved in the perturbed datasets.

For Model 2 (Figure 3.9) there is more ranking stability than Model 1 (not including
Shapley values, which again produce highly unstable rankings). For example, the
top-ranked variable according to MDG is almost always in the top 4 using any of the
three non-Shapley variable importance methods (for any transformation). This indi-
cates that the ranking for Model 2 are less likely to be driven by a small number of
samples than in Model 1. For this Model the ranking stability is more dependent on
the choice of variable importance method than data transformation and each vari-
able importance method has a “block” of top-ranked variables whose high ranks
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FIGURE 3.7: False discovery rate-adjusted p-values from Altmann’s
method using 1,000 permutations. Red dotted lines denote p = 0.10

and p = 0.05.
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FIGURE 3.8: Stability of each variable importance method under
dataset perturbations (removal of 10% of samples). Model: predicting

Disease group from bacterial genus.

(the most relevant part of the ranking) are largely preserved across the perturbed
datasets. Overall, MDG scores produce the most stable ranking, followed by MDA.

The rankings for Model 3 (Figure 3.10) are also stable. However, for Corrected MDG
the stability is only observed for the top-ranked variables, with a large amount on
instability amongst the remaining (presumably unassociated) variables. Similarly to
Model 2, MDG scores produce the most stable ranking, followed by MDA.

8 Discussion

This chapter presented an analysis of the bacterial and fungal communities of CF
and BX patients using a random forest-based two-sample test and differential abun-
dance analysis. As well as studying the differences between the CF and BX groups,
two additional binary classification tasks were also investigated within the CF group:
(i) predicting the presence of clinically diagnosed fungal disease or (ii) the pres-
ence of symptom exacerbations (CFPE). Differences between the fungal and bacterial
communities of the CF and BX groups were identified, while only the fungal com-
munity was discriminative of fungal disease status within the CF group. Neither the
bacterial nor fungal communities were discriminative of CFPE.

The findings that will be of most biological interest are that there was no evidence of
systematic difference in the bacterial community of patients with and without fungal
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communities using random forest
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lung infection. This is somewhat surprising as cross-kingdom interactions have been
reported as playing an important role in bronchiectasis exacerbations (Mac Aogáin
et al., 2021) and asthma (C. Huang et al., 2020). These studies utilise network anal-
ysis to examine the cross-kingdom interactions, suggesting that this should be the
next analysis step applied to these data. Other future analysis to complement these
random forest results should also include more sophisticated approaches to data in-
tegration, as more sophisticated methods than the column-wise concatenation used
here may be able to establish the role of cross-kingdom interactions.

In addition to the biological findings empirical studies also investigated the be-
haviour of LeDell’s confidence intervals on the mean cross-validated AUC (E. LeDell,
Petersen, and Laan, 2015), DeLong’s test for paired ROC curves (DeLong et al., 1988),
the effect of data transformations and choice of variable importance method. The
main statistical results are that hypothesis tests using DeLong’s method and LeDell’s
confidence intervals both have an inflated Type I error rate when used for these three
binary classification tasks. These two methods are widely applied in biomedical
studies in applications that are often far from the original setting in which methods
were developed. For example, the confidence intervals of LeDell et al. are validated
in simulations using a Lasso model with datasets of various sizes. The smallest n/p
ratio in their simulations is 2.5, in which case the 95% confidence interval has an
empirical coverage of 87.8% (E. LeDell, Petersen, and Laan, 2015). This n/p ratio
is large by the standard of biomedical datasets (many of which have n ≪ p) and
so it is important for researchers to perform such sanity checks to understand how
applicable a method is to their dataset.

That is not to say that these methods are not extremely useful (or that they should
not be used), but rather that a simple permutation test is able to establish whether
the empirical coverage of a confidence interval (or Type I error of a test) is unaccept-
ably wide for a given dataset and model. In this setting the effect is not so large
that it brings into question the validity of the conclusions and a permutation test
leads to the same conclusions as are obtained as LeDell’s confidence intervals (with
much greater computational cost). While running such checks may be prohibitively
expensive for some datasets, in the microbiome setting datasets are still sufficiently
small that running permutations is very feasible on a high-performance computing
cluster.

Overall, these results show that random-based two-sample tests and subsequent
variable importance analyses are largely robust to the choice of data transforma-
tion and variable importance method. However, Shapley values should be avoided
as they are very unstable under small perturbations to the dataset (removal of 10%
of samples). The remaining variable importance methods exhibited stable rankings,
especially amongst the top-ranked taxa.

The main conclusion that should be drawn from the differential abundance results
is that the stability robustness analyses described here is a very informative prac-
tice when performing random forest variable importance analysis. This has been
suggested previously but this advice is often not followed (Calle and Urrea, 2011;
Nicodemus, 2011). In the absence of asymptotic guarantees on the behaviour of ran-
dom forest variable importance scores (as are available for linear models) this type
of empirical study offers the best available option to guard against presenting asso-
ciations that are artefacts of modelling choices. While many studies seek to establish
the “best” random forest variable importance approach using simulation studies,
the complex and wide-ranging nature of biological datasets means that it is unlikely
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that a given simulation setup can successfully emulate all possible settings. The
variable importance methods tested here showed significant variation in behaviour
across the three classification tasks in this chapter, despite that fact that all three are
derived from the same dataset. For example, the agreement between taxa rankings
differs between tasks, while the transformation that results in the most stable rank-
ings is also different across the three tasks. This suggests that recommendations
about the “best” variable importance method are inappropriate as the factors that
affect the performance of a variable importance method are currently poorly under-
stood. Increasing our understanding of these factors is an area where simulation
studies are most useful, but applications of these models should include additional
analysis steps to avoid over-interpreting any results.

A simulation study to compare the power of the different variable importance meth-
ods is the logical extension of these results. However, such a study will need to be
designed carefully to realistically capture the characteristics of microbial datasets.
A similar stimulation study for the two-sample test is required to assess the power
of the classifier two-sample test in this setting. Such a study could also consider
different predictive models as well as alternative metrics for assessing the random
forest model. The AUC is only one of many metrics that is used to quantify predic-
tive performance in the machine learning literature. Accuracy, precision-recall curve
and Matthews correlation coefficient are the most popular alternatives in biomedical
applications of machine learning (Hicks et al., 2022). The choice of metric is likely
to have a significant effect on the behaviour of the two-sample test. For example,
the precision-recall curve is better suited than ROC curves to problems with extreme
class imbalances and there is existing work on calculating confidence intervals (Boyd
et al., 2013).
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Chapter 4

Grouped variable prioritisation for
Bayesian neural networks

As black box models in general (and neural networks in particular) have become
ubiquitous in data-rich fields there has been an increasing research focus on develop-
ing post-hoc variable importance methods as a route to interpreting their predictions.
Such methods aim to identify the source of the superior predictive performance ex-
hibited by neural networks on many complex problems, of which there are many in
biology. This chapter describes an extension to RelATive cEntrality (RATE, Crawford
et al., 2019), a variable prioritisation method for Bayesian non-parametric models, to
the Bayesian neural network setting. A second extension considers grouped vari-
ables, which are another common feature of biological datasets.

1 Chapter aims and contributions

This Chapter presents several related extensions to RelATive cEntrality (RATE, Craw-
ford et al., 2019), a post-hoc variable prioritisation method for Bayesian, non-parametric
supervised learning models described in Chapter 2 (Section 3). Some of the method-
ological extensions relating to Bayesian neural networks are also described in the
pre-print by Ish-Horowicz, Udwin, et al. (2019). These extensions are:

• extending the RATE methodology to a last layer Bayesian neural network ar-
chitecture;

• investigating the utility of two alternative projection operators for RATE;

• extending the original RATE criterion to grouped variables (GroupRATE);

• demonstrating the ability of GroupRATE to prioritise causal groups on two
simulated sequencing datasets; and

• demonstrating how GroupRATE can be applied to a Bayesian neural network
classifier trained on a medical imaging dataset.

Variable importance analysis is an essential feature of most biostatistical projects,
thereby motivating the original RATE paper by Crawford et al. (2019). The contribu-
tions of this chapter increase the utility of RATE by addressing other requirements
of such biological research projects. For example, the extension to neural networks
allows RATE to be used with structured datasets such as images and text (which
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neural networks are particularly well-suited to). In addition, grouped variable im-
portance has not yet been studied for neural networks, despite several analogous
works for other supervised models (Yuan and Y. Lin, 2006; Simon et al., 2013; Gre-
gorutti et al., 2015; Wehenkel et al., 2018).

The structure of this chapter is as follows. Section 2 re-states the salient points from
the description of the RATE methodology in Chapter 2 (Section 3) and provides use-
ful intuition on how it prioritises variables using a toy example.

The methodological contributions begin in Section 3, which describes the new pro-
jections used to calculate effect size analogues. Section 4 describes GroupRATE and
how it is calculated for last layer Bayesian neural network architectures.

The results begin in Section 5, which shows how GroupRATE can be used for post-hoc
interpretation of a Bayesian neural network in a biomedical setting and compares its
performance to several other group-level importance methods. This is done using
simulated covariates and a simulated response. Section 6 describes a similar set of
simulations but using real genotype data as covariates with a simulated response.
Section 7 demonstrates how GroupRATE can be used to inspect a computer vision
model for common biases.

2 Computing variable importances using RATE

2.1 Variable prioritisation vs variable selection

RATE performs variable prioritisation - it computes a ranking of variables that re-
flects their importance in the model. One limitation of RATE is that it does not
provide a clear threshold below which a variable can be considered as non-causal,
meaning there is no clear rule by which to decide whether or not a variable is as-
sociated with the response. This is in contrast to variable selection methods such
as linear models with L1 regularisation (Lasso and ElasticNet), which explicitly ex-
clude variables from the model by setting their coefficients to zero, resulting in a
sparse set of effect sizes.

In the applications for which RATE has been developed (e.g. genetic association
testing) the aim of statistical analysis is often to generate candidate variables for
follow-up studies (Hormozdiari et al., 2015). Since there are limited resources to
perform such studies only the most highly-ranked variables are likely to be con-
sidered for follow-up. Provided these highly-ranked variables are true associations
then the fact that non-causal variables (those not associated with the response) are
not explicitly excluded is not a severe limitation.

2.2 Recap of the RATE calculation

RATE is designed for use in a supervised learning setting where a dataset D = (X, y)
consisting of an n × p design matrix X and n-dimensional vector of labels y has been
used to train a Bayesian non-parametric predictive model. This training procedure
calculates p( f | X, y), the posterior distribution over f = ( f (x1), . . . , f (xn)), the
predicted function values at each of the observed data. Each data point, xi, i =

1, . . . , n, is the p-dimensional vector xi = (x
(1)
i , . . . , x

(p)
i ) corresponding to the ith

row of X.
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Recall from Chapter 2 (Section 3) that RATE values are calculated for a trained model
in two steps:

1. using a multivariate Gaussian p( f | X, y) and a linear projection Proj(X, f ), cal-
culate p(β̃ | X, y) where β̃ ∈ Rp are per-variable effect size analogues (ESAs);
then

2. calculate Kullback-Leibler (KL) divergences using

KLDj = KL
(

p(β̃−j) || p(β̃−j | β̃ j = 0)
)

, j = 1, . . . , p ,

where β̃−j = (β̃)k, k ∈ {1, . . . , p} \ j.

RATE scores are the normalised KL-divergence values

γj =
KLDj

∑
p
k=1 KLDk

, j = 1, . . . , p , (4.1)

which satisfy γj ∈ [0, 1] as each KLDj is positive. As p( f | X, y) is exactly mul-
tivariate Gaussian and Proj(X, f ) defines a linear transformation, p(β̃, X, y) is also
multivariate Gaussian. The result is that each KLDj can be computed in closed-form.

Following Crawford et al. (2019), the full KL-divergence in step 2 is approximated by
the quadratic term as the remaining terms are approximately constant across vari-
ables and so have no effect on the resulting ranking. This term can be written as

KLDj ≈
1
2
(ω−jω

−1
j µj)

TΛ−j(ω−jω
−1
j µj) , (4.2)

where ωj, ω−j, Λ−j and µj are taken from a partitioning of the ESA posterior p(β̃ |
X, y) = N (µ, Ω),

µ =

(
µj

µ−j

)
, Ω =

(
ωj ωT

−j

ω−j Ω−j

)
, Λ =

(
λj λT

−j

λ−j Λ−j

)
,

for ESA posterior precision Λ = Ω−1. For a p-dimensional vector v, v−j is a (p − 1)-
dimensional vector with elements vk, k ∈ {1, . . . , p} \ j. Similarly, for a p× p matrix
M, M−j is the (p − 1) × (p − 1) matrix with elements Mkl , k, l ∈ {1, . . . , p} \ j.
Therefore the importance of variable j is calculated using:

• µj ∈ R, the ESA posterior mean of variable j (its marginal effect);

• ωj = Ωjj ∈ R, the ESA posterior variance of variable j;

• ω−j ∈ R(p−1)×1, the ESA posterior covariance between variable j and the other
p − 1 variables; and

• Λ−j ∈ R(p−1)×(p−1), the ESA posterior precision of the other j − 1 variables.

The partitioning of µ and Ω in the three-variable case is illustrated in Figure 4.1.
The next section decomposes the calculation in (4.2) to show that RATE calculates
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If Λkl 6= 0 then the corresponding summation term in (4.5) is non-zero, and is larger
when the effects of variables k and l have large ESA posterior covariance with vari-
able j. The value of ηj is therefore larger for variables whose effects show greater
dependency on the effects of other variables.

2.4 Three-variable toy example

This section demonstrates how RATE balances the relative sizes of the marginal ef-
fects and the centrality of each variable in the ESA covariance graph to produce a
ranking using a simple example. Here, centrality refers to the centrality of a variable
in the graph defined by Σ. Variables whose effects have large, positive covariance
with other variables have higher centrality while variables whose effects are inde-
pendent of or negatively correlated with other effects have low centrality.

Figure 4.2(A) shows three ESA posterior covariance structures:

(A) cov(β̃1, β̃2) = 0.7, cov(β̃1, β̃3) = 0.1 and cov(β̃2, β̃3) = 0.2;

(B) cov(β̃1, β̃2) = 0.7, cov(β̃1, β̃3) = 0.6 and cov(β̃2, β̃3) = 0.1; and

(C) cov(β̃1, β̃2) = 0.2, cov(β̃1, β̃3) = 0.6 and cov(β̃2, β̃3) = −0.4;

All three covariance structures have ones on the diagonal in these illustrative exam-
ples. The RATE values and the terms that comprise them are shown in Figure 4.2(B)
for different values of µ1, where µ = (µ1, 1, 0.1). The first row of plots shows the
RATE values, the second shows the square of the marginal effect, the third shows
ηj, the covariance-precision term (which is independent of µ1) and the fourth shows
the product µ2

j ηj.

The third row of Figure 4.2(B) shows that each scenario produces a different ordering
of the variables based on their ηj values (reflecting different degrees of centrality in
the ESA covariance). These ηj values are balanced by the marginal effects of the
variables, where µ2 = 1 represents a large marginal effect and µ3 = 0.1 represents a
small marginal effect.

In Scenario A the effects of variables 1 and 2 are the most central as ω12 ≫ ω13, ω23,
which implies that η1 ≈ η2 and η1, η2 ≫ η3. As variable 3 also has the smallest
marginal effect the order of the RATE values is determined by the relative sizes of
µ1 and µ2.

In Scenario B ω12, ω13 ≫ ω23 and so η1 > η2 > η3. Variable 3 therefore always
has the smallest RATE value as its marginal effect is also the smallest. Similarly to
Scenario A, the relative sizes of the RATE values for variables 1 and 2 is determined
by the relative sizes of µ1 and µ2. However, as η1 > η2 the marginal effect of variable
1 does not need to be as large as µ2 for its RATE value to be larger.

In Scenario C ω13 > ω12 > ω23, which means that η3 > η1 > η2. The RATE values
of variables 2 and 3 are approximately balanced as µ2 > µ3 by a similar factor as
η3 > η2. This means that variable 1 has the smallest RATE value for small values of
µ1, but as µ1 increases variable 1 becomes the highest-ranked variable.
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3 Alternative projections for effect sizes analogues

While the previous section considered the behaviour of RATE values given p(β̃ |
X, y), in practice this must be computed from the fitted posterior p( f | X, y) using
a projection. The projection provides a summary of each variable’s marginal effect
and so its choice can have a significant effect on the resulting RATE values. The
original RATE paper by Crawford et al. (2019) only uses a single projection,

β̃pinv = Proj(X, f ) = (XTX)−1XT f = X† f , (4.6)

where X† is the pseudoinverse of X. This is motivated by the fact that the Maximum
Likelihood estimate of the ordinary least squares coefficients is X†y. This Pseudoin-
verse projection is therefore a linear summary of the dependence of the model pre-
diction f on each variable in the dataset.

One of the aims of this chapter is to investigate the behaviour of some alternative
projections. Recall that these projections must be linear in order to maintain the
multivariate normality of p(β̃ | X, y) that permits the corresponding closed-form
KL-divergence calculation using (4.2).

A well-known limitation of the pseudoinverse in the context of ordinary least squares
is that it becomes unstable when XTX is rank-deficient (it has rank less than p),
which is guaranteed when n < p but can also occur when n > p if the columns of
X are not linearly independent. Either scenario can be addressed using L2 regular-
isation, which leads to a ridge regression model (Hoerl and Kennard, 1970). This
naturally motivates an analogous Ridge projection,

β̃ridge = Proj(X, f ) = (XTX + λI)−1XT f , (4.7)

where λ > 0 is a hyperparameter controlling the L2 regularisation strength whose
value is typically selected using cross-validation. The final projection investigated
here is the Covariance projection,

β̃cov =




cov(x(1), f )
...

cov(x(p), f )


 , (4.8)

where x(j) = (x
(j)
1 , . . . , x

(j)
n ) is the value of variable j across the n samples (the jth

column of X). As (4.8) is the concatenation of the sample covariance of each variable
with f , the Covariance projection is distinct from the multivariate Pseudoinverse
and Ridge projections in that it is univariate. The equivalent matrix multiplication-
based calculation of (4.8) is

β̃cov =
1

n − 1
XTC f , (4.9)

where C = I − 1
n 1n1T

n is the centring matrix and 1n is an n-dimensional vector of
ones.
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3.1 Computing the ESA posterior

If an appropriate predictive model (for example, a GP regressor) has already been
fit on the dataset (X, y) then p( f |X, y) = N (µ f , Ω f ) is available. The ESA posterior
density p(β̃|X, y) = N (µ, Ω) is then obtained using the linear transformation

µ = Lµ f , Ω = LTΩ f L , (4.10)

where L ∈ Rp×n is the linear operator that defines the chosen projection. The opera-
tors for the three projections are

Lpinv = (XTX)−1XT (4.11)

Lridge = (XTX + λI)−1XT (4.12)

Lcov =
1

n − 1
XTC . (4.13)

For each of these three projections the ESA posterior mean is straightforward to
understand as a linear summary of the main effect of that variable. However, the
importance of a variable according to RATE also incorporates the relative centrality
of each variable in the ESA posterior covariance Ω. Using the relation Ω = LTΩ f L
the covariance between the ESA of variables i and j is given by

cov(β̃i, β̃ j) = Ωij =
n

∑
k=1

n

∑
l=1

Lki (Ω f )kl Ll j . (4.14)

The terms in this summation are large if variables i and j both have large linear
effects (with the same sign) in a large number of samples. The two samples must
also have a large covariance in p( f | X, y). On the other hand, summation terms
are close to zero if (i) the two samples have close to zero covariance ((Ω f )kl = 0) or
if (ii) the variables do not have large covariances (of the same sign) in any pairs of
samples.

4 GroupRATE: variable prioritisation for grouped variables

In many biological applications variables fall naturally into groups. For example,
single-nucleotide polymorphisms (SNPs) form genes, while microbiota form taxa
and medical images contain groups of pixels corresponding to anatomically relevant
features. For this reason it is often of interest to prioritise variables at the group
level. This has motivated the development of a novel extension to RATE, called
GroupRATE.

Grouping variables can also dramatically reduce the number of objects to be com-
pared by reducing the resolution at which a system is studied. This leads to a re-
duction in both the computational cost and statistical difficulty (for example, by
reducing the number of tests when working in a hypothesis testing framework).
Furthermore, groups may be a more natural resolution at which to interpret the sys-
tem of interest. This is the case in brain magnetic resonance imaging (MRI) scanning,
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where individual voxels have extremely limited meaning but can be grouped into
brain regions that are far more relevant and interpretable (Wehenkel et al., 2018).
Grouping variables before calculating importance can also give statistical benefits
when variables exhibit a high degree of collinearity within a group. This is the case
in medical imaging, where there is high spatial correlation between pixels/voxels as
well as in genetic studies, where linkage disequilibrium can cause SNPs on a gene
to be highly collinear.

4.1 Calculating GroupRATE values

RATE is calculated for a single variable using (4.3). If the variables now form a set G
of groups G = {g1, . . . , gG} with sizes |g1|, . . . , |gG|, then (4.3) becomes

KLDg ≈ 1
2
(ω−g ω−1

g µg)
TΛ−g(ω−g ω−1

g µg) ∀g ∈ G , (4.15)

where g is a |g|-dimensional index set of group members.

Given p(β̃ | X, y) = N (µ, Σ) (which is still computed on a per-variable basis), solv-
ing KLDg for group g requires an analogous partitioning of µ and Σ as is performed
in the RATE case. The main difference is that RATE requires removing a single row
(and column for matrices) corresponding to the jth variable, while GroupRATE re-
moves the |g| rows corresponding to all the variables in group g. The visualisation
in Figure 4.1 still applies but the quantities now have the dimensions listed in Table
4.1.

TABLE 4.1: Comparison between quantities in the RATE and
GroupRATE calculation for p variables.

RATE quantity GroupRATE equivalent Description

j ∈ {1 , . . . , p} g ⊂ {1 , . . . , p} variable index/group indices

µj ∈ R µg ∈ R|g| ESA posterior mean of variable(s) of interest

µ−j ∈ Rp−1 µ−g ∈ Rp−|g| ESA posterior mean of other variables

ωj ∈ R ωg ∈ R|g|×|g| ESA (co)variance for variable(s) of interest

ω−j ∈ R(p−1) ω−g ∈ R(p−|g|)×|g| ESA covariance between variables
of interest and the rest

Λ−j ∈ R(p−1)×(p−1) Λ−g ∈ R(p−|g|)×(p−|g|) ESA precision of other variables

4.2 Calculating GroupRATE for Bayesian neural networks

Last layer Bayesian regression network

Previous work on RATE focused on the interpretation of Gaussian process (GP)
regression models (Crawford et al., 2019). One of the primary contributions of
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this chapter is its extension to Bayesian neural networks. Chapter 2 (Section 1.4)
described last layer Bayesian neural networks trained using variational inference,
where variational posteriors are placed over the parameters of the final layer. The
inner layers, which act as feature extractors, use point estimates as their parameters.
A regression last layer only Bayesian neural network can be written as

yi ∼ N ( f (xi), σ2(xi)) , i = 1, , . . . , n , (4.16)

where f (·) and σ2(·) are the two outputs of a single neural network, given by

(
f (x)

σ2(x)

)
= w hθ(x) + b ,

(
w
b

)
∼ p(θ̃) , (4.17)

where the random variables {w, b} = θ̃ are the weights and biases of the final layer
and p(θ̃) is their prior. The inner-layer activations hθ(x) depend deterministically
on the inner-layer parameters θ, which are point estimates. This model is essen-
tially a Bayesian linear regression with neural network features, where hθ(x) are
these extracted features. Training the network via variational inference (described
in Chapter 2, Section 1.4) returns estimates of both θ̃ and θ, which allows samples to
be drawn from the predictive posterior as follows:

(
ŵ

b̂

)
∼ qφ(θ̃) sample final layer parameters

(
f (x)
σ(x)

)
= ŵ hθ(x) + b̂ mean/variance from neural network

ŷ ∼N ( f (x), σ2(x)) sample prediction from normal distribution

Calculating (Group)RATE values using the closed-form expressions in Section 2 re-
quires access to a multivariate Gaussian p( f | X, y), which are then transformed
to effect size analogues using one of the linear projections. For GP regression this
is simply the posterior distribution, which is multivariate Gaussian by definition.
For this last layer Bayesian neural network p( f | X, y) is also multivariate Gaussian
when qφ(θ̃) is Gaussian, as it is a linear transformation of θ̃ ∼ qφ(θ̃) using a deter-
ministic set of features hθ(x). The predicted noise variance σ2(x) is also multivariate
Gaussian for the same reason and so could be the target in the GroupRATE calcula-
tion. As the aim is to associate variables with the mean of the response (and not the
variance) f (x) is used as the GroupRATE target throughout.

Computing GroupRATE values in closed-form

The first step of calculating GroupRATE values for a Bayesian neural network us-
ing a batch of n examples X ∈ Rn×p is to compute the final layer activations H =
(hθ(x1), . . . , hθ(xn))T ∈ Rn×K, where K is the size of the penultimate layer. As H de-
pends deterministically on the inner layer parameters θ (which are point estimates)
they are not random variables and so do not affect the shape of p( f | X, y).
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Last layer Bayesian neural networks make a prediction by multiplying the extracted
features H by the final layer parameters θ̃ = {w, b} ∼ qφ(θ̃). This linear operation
computes a set of means f = ( f (x1), . . . , f (xn))T and variances (σ2(x1), . . . , σ2(xn))T

that parametrise a univariate Gaussian, from which a predicted label is then sam-
pled. For the GroupRATE calculation only the part of this calculation that computes
f is required.

Written out explicitly, the linear operation performed by hte final layer of the work
on a batch of inputs is




| hθ(x1) |

...

| hθ(xn) |



︸ ︷︷ ︸
H




| |
w f wσ2

| |




︸ ︷︷ ︸
w

+




b f bσ2

...
...

b f bσ2


 =




f (x1) σ2(x1)
...

...

︸ ︷︷ ︸
f

f (xn) σ2(xn)


 .

The part corresponding to f can be therefore be written as

f = H w f + (b f , . . . , b f )
T , (4.18)

which means that the posterior density of p( f | X, y) can be obtained via a linear
transformation of the variational parameters φ. As the variational posterior qφ(θ̃)
is mean-field Gaussian over the elements of w and b, the full set of variational pa-
rameters only contains a mean and variance for each element of w and b. It is given
by

qφ(θ̃) =
K

∏
k=1

[
N
(

mw fk
, vw fk

)
N
(

mw
σ2

k

, vw
σ2

k

) ]
N
(

mb f
, vb f

)
N
(

mb
σ2 , vb

σ2

)
,

(4.19)

which is a 2K + 2 dimensional diagonal Gaussian over the elements of w and b.

The variational posterior over the elements of w f and b f (the elements of w and b
required to compute f ) is obtained by simply selecting the appropriate means and
variances from this diagonal Gaussian to give,

qφ(w f , b f ) = N (m, diag(v)) , (4.20)

where diag(v) denotes a matrix with v on its diagonal and zeros elsewhere and

m = (mw f1
, . . . , mw fK

, mb f
)T (4.21)

v = (vw f1
, . . . , vw fK

, vb f
)T . (4.22)

A linear transformation of (4.20) using (4.18) gives the posterior density p( f | X, y) =
N (µ f , Σ f ), where
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µ f = H mw f
+ (mb f

)n
i=1 (4.23)

Ω f = H diag(vw f
) HT + (vb f

)n
i=1 . (4.24)

Given a linear projection operator L, the ESA posterior parameters can then be cal-
culated using (4.15).

µ = Lµ f , Ω = LTΩ f L , (4.25)

from which the KL-divergences can be calculated for each group using (4.15).

5 Group prioritisation simulations: simulated covariates

5.1 Simulation aims

This section presents a simulation study that emulates a scenario in which a last
layer Bayesian neural network has been trained to predict a continuous response
from grouped variables. The simulation procedure is

1. given a dataset D = (X, y), where the columns of X have a grouped structure,
train a Bayesian neural network,

2. calculate post-hoc importances for each group,

3. evaluate the variable importance scores using the AUC (area under curve).

The aim is to evaluate how well GroupRATE is able to identify variables that are as-
sociated with the response. In this simulation setup both the covariates and a contin-
uous response are simulated. The following section (Section 6) uses real covariates
from human genotype data.

5.2 A group-dependent covariance structure

Covariates are simulated under a log-normal distribution as it is commonly used to
model a range of biological data, such as gene expression (Torrenté et al., 2020) and
single-cell RNA Seq (Luecken and Theis, 2019). Here, the design matrix X ∈ Rn×p

is sampled from a zero-mean log-normal distribution,

log X ∼ N (0, ΣX) , (4.26)

where ΣX = 0.9ΣG
X + 0.1Σ

bg
X for a group-dependent covariance ΣG

X and background

covariance Σ
bg
X . In each replicate a background covariance Σ

bg
X is sampled according

to Σ
bg
X ∼ W−1(Ip, p + 3), which is an inverse Wishart distribution with an identity

scale matrix and p + 3 degrees of freedom. The inverse Wishart is a distribution
over positive-definite matrices and is the conjugate prior to a multivariate Gaussian
covariance, which makes it a natural choice to sample covariance matrices. The
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FIGURE 4.3: An sample of the covariance structure and variable
groupings used in the simulations in Section 5. The matrices are par-

titioned based on the group structure.

number of degrees of freedom in the inverse Wishart controls the concentration of
the density around the scale matrix, with larger values increasing the concentration.

The structure of ΣG
X is block-diagonal, with a block for each group in G = {g1, . . . , gG}

and zeroes elsewhere,

ΣG
X =




Σ
g1
X

Σ
g2
X

. . .
Σ

gG
X


 , (4.27)

where

Σ
g
X ∼ W−1(I|g|, |g|+ 3) , ∀g ∈ G . (4.28)

The group structure is an important part of these simulations. Each simulation con-
tains p = 10G variables whose sizes are distributed according to

|g|1, . . . , |g|G ∼ Multinomial
(

p,
1
p

)
, (4.29)

which enforces ∑g∈G |g| = p but allows for different sizes of groups. A single sample
of ΣX is shown in Figure 4.3 with G = 10 and p = 100. This construction of ΣX

ensures there is group-dependent structure in the covariance while also containing
non-trivial covariances between other variables.

5.3 Phenotype model

The final element of the simulated dataset is the response. The response should de-
pend non-linearly on the covariates as the ability of neural networks to model such
non-linear behaviour is the primary motivation for their adoption in these settings.
A fictitious continuous phenotype y ∈ Rn is generated from the simulated X under
the following model:
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y = X̃β︸︷︷︸
main effects

+ W̃Θ︸︷︷︸
pairwise effects

+ ε ,︸︷︷︸
environmental effects

ε ∼ N (0, I) (4.30)

where X̃ is a matrix containing the columns of X corresponding to variables with
main effects, W̃ contains the products of variables involved in pairwise interactions,
β, Θ are the corresponding effect size vectors with elements drawn from a standard
normal and I is the identity matrix. The construction of X̃ and W̃ from X is described
in the next section.

The variance of y is equal to 1 and the contributions of each set of effects controlled
such that

var(X̃β) + var(W̃Θ) = H2 broad-sense heritability (4.31)

var(X̃β) = h2 narrow-sense heritability (4.32)

var(W̃Θ) = H2 − h2 variance due to interactions (4.33)

var(ε) = 1 − H2 variance due to environment (4.34)

Narrow- and broad-sense heritability are terms used in genetics to describe propor-
tions of phenotypic variance. While this simulation setup is not explicitly in the
genetics setting the same terms are used here for consistency with the simulations in
Section 6, which do use genetic data.

The narrow-sense heritability of a trait, h2, is the proportion of phenotypic vari-
ance explained by additive genetic effects while broad-sense heritability, H2, is the
proportion explained by all genetic effects (Tenesa and Haley, 2013). The differ-
ence H2 − h2 is therefore the proportion of phenotypic variance explained by non-
additive effects, which are assumed to consist solely of pairwise interactions. The
remainder of phenotypic variance (1 − H2) is explained by environmental effects.

Simulations are run under two different scenarios:

Scenario A: h2 = 0.6 and H2 − h2 = 0.2; and

Scenario B: h2 = 0.4 and H2 − h2 = 0.4.

Scenario A simulates a phenotype that is controlled mostly by main effects, with a
smaller share of the phenotypic variance controlled by pairwise interactions. In Sce-
nario B main and pairwise effects account for an equal share of phenotypic variance.

5.4 Strong hierarchy assumption

The pairwise interactions in the model are generated under a strong hierarchy as-
sumption, where interaction effects are restricted to occur between variables with
a main (linear) effect. This is one of two standard genetic modelling assumptions
along with weak hierarchy, which allows for interactions between pairs where only
one variable has a main effect. Strong hierarchy is the more common of the two
assumptions (T. T. Wu et al., 2009; Bien et al., 2013; M. Lim and Hastie, 2015).
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Bien et al. (2013) outline two main arguments in favour of strong hierarchy assump-
tions. They consider the following interaction model,

y = (β0)
n
i=1 + ∑

j

β jx
(j) + ∑

j,k,j 6=k

Θjk x(j) ⊙ x(k) + ε , ε ∼ N (0, I) , (4.35)

where x(j), x(k) ∈ Rn are columns j,k of X , β0 is the intercept, β j are main effects,
Θjk are interaction effects and ⊙ denotes the element-wise product. The strong and
weak hierarchy assumptions can be formulated as

Θjk 6= 0 =⇒ β j, βk 6= 0 strong hierarchy (4.36)

Θjk 6= 0 =⇒ β j 6= 0 or βk 6= 0 . weak hierarchy (4.37)

The first argument in favour of strong hierarchy considers (4.35) under strong and
weak hierarchy:

y = β0 + β1x(1) + β2x(2) + Θ12x(1)x(2) + . . . strong hierarchy (4.38)

y = β0 + (β1 + Θ12x(2))x(1) + . . . . weak hierarchy (4.39)

In (4.38) x(1) will have an effect on y irrespective of the value of x(2). However, in
(4.39) x(1) only affects y when x(2) 6= 0. While this may be true in specific scenarios
it is unlikely to be true in general. Furthermore, if x(2) undergoes an affine trans-
formation ax(2) + b, b 6= 0, then the model (4.39) satisfies strong hierarchy. Given
that variables commonly undergo such transformations during statistical analysis
pipelines (e.g. normalisation/whitening), this suggests that a strong hierarchy as-
sumption is a sensible default.

The second argument is that a strong hierarchy assumption increases statistical power
as the size of search space when identifying pairwise interactions is greatly reduced.
Furthermore, interactions involving two variables with main effects are likely to be
both easier to identify and of greater interest than pairs where only one variable has
a main effect. This is especially true in genetics applications where there are a large
number of candidate variables of interest and limited resources for follow-up exper-
iments. Models that prioritise interactions between candidate variables with main
effects are therefore preferable to those which identify hard to validate interactions.

5.5 Selecting main and pairwise effects

In each replicate a set of variables with main and pairwise effects are selected based
on their grouping structure. These variables then form the columns of X̃ and W̃
in the response model (4.30). Given a set of G groups G, a subset with size G

10 are
sampled without replacement to be causal (associated with the response), denoted
by G̃. The set of variables corresponding to the groups in G̃,

S̃ = {j ∈ g : g ∈ G̃} , (4.40)

are the candidates to be associated with the response. One variable is then selected
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from each member of G̃ to have a main effect - these variables form the columns of
X̃ and are denoted by S̃main ⊂ {1 , . . . , p}, where |S̃main| = G

10 .

Under the strong hierarchy assumption the variables involved pairwise interactions
must both have a main effect. Let P denote the set of candidates for pairwise inter-
actions, which are the unordered pairs

P = {{i, j} : i ∈ S̃main, j ∈ S̃main, i 6= j} , (4.41)

from which a set of of variable pairs are sampled without replacement and placed in
the set of interacting variables, P̃ , where

P̃ ⊂ P , |P̃ | = G

20
. (4.42)

The columns of W̃ are the products of each pair in P̃ ,

x(i) ⊙ x(j) ∀ {i, j} ∈ P̃ , (4.43)

where ⊙ again denotes the element-wise product.

5.6 Final simulation procedure

The final simulation procedure is as follows. In each replicate ΣX, the group struc-
ture and X are sampled. Then the set of causal groups, causal variables and the
corresponding effect sizes are sampled and used to calculate the response. A four-
layer, last layer Bayesian neural network is then trained on this simulated dataset
by maximising the evidence lower bound using the Adam optimiser with a learning
rate of 10−3 for a maximum of 300 epochs (Diederik P Kingma and Ba, 2014).

Training uses 80% of the samples while the remaining 20% are held-out as testing
data. In addition, 10% of the training set is used as validation data to monitor the
behaviour of the loss function - if the validation loss does not decreases for 30 epochs
then training is terminated (early stopping). The weight of the KL-divergence reg-
ularisation term in the evidence lower bound (often denoted using β, Higgins et
al., 2016) is set to 0.3 throughout and a standard normal prior is used for all varia-
tional parameters. Rectified linear unit activations are used for hidden layers, each
of which contains eight units. The output layer contains two units and uses an iden-
tity activation. This is repeated for 100 replicates.

Note that no hyperparameter optimisation is performed on the Bayesian neural net-
work as the aim here is not to optimise generalisation performance. In a real appli-
cation it is assumed that an extensive hyperparameter search and cross-validation
would already been performed to obtain a final model. The task here is then to
interpret this model via a post-hoc analysis.

5.7 AUC as an evaluation metric for group prioritisation

As noted in the previous chapter, the AUC can be interpreted as the probability that
the score of a randomly-selected positive item has a higher score than a randomly-
selected negative label (Fawcett, 2006) and so is equivalent to a Mann-Whitney U/Wilcoxon
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rank sum test on the scores of the positive and negative groups (Calders and Jaroszewicz,
2007). This interpretation of AUC highlights its scale-invariant property as it de-
pends only on the ordering of the scores.

The AUC is one of the most popular metrics in machine learning for evaluating
classifiers, in which case the labels correspond to the class labels and the scores are
outputs from a classifier. In this setting, however, the labels denote whether groups
appear in the model and the scores are group importances. The AUC is therefore
an appropriate metric for variable prioritisation as it will be equal to 1 if and only if
all the causal variables have higher scores than non-causal variables (i.e. a perfect
ranking).

5.8 Predictive performance of the Bayesian neural network

Model checking is an important part of the analysis pipeline even if predictive per-
formance is not the primary focus of the analysis. Figure 4.4 shows the predictive
mean squared error of the models across the 100 replicates. The mean squared er-
ror is determined by a combination of two factors: (i) the curse of dimensionality
and (ii) the proportion of variance due to additive effects (h2). The curse of dimen-
sionality means that the problem becomes more difficult as the ratio n/p decreases,
while a larger h2 value also results in an easier regression task. While the Bayesian
neural network is able to effectively model the non-linear portion of the response,
this requires more samples than the equivalent linear signal. The regression task for
smaller h2 is therefore more difficult for a fixed sample size.

These factors explain the decreasing test mean squared error as n increases, which
is to be expected. It also explains why the the test mean squared error is larger
when more groups are used (for a fixed sample size), as well as why the test mean
squared error is lower in Figure 4.4(A) than Figure 4.4(B). The regression task is at
its most difficult in the right-hand plot of Figure 4.4(B), which is when n/p and h2

are both set to their smallest values. This leads to some catastrophic over-fitting in
some replicates, as the test mean squared error is greater than 1 (the expected mean
squared error of a baseline model that predicts the mean of the training set). These
replicates are excluded from the variable importance analysis in the next section.

The training mean squared error is approximately constant across all the plots in
Figure 4.4 as in each case the model has the capacity to memorise the training data.
However, for more difficult tasks (smaller h2 or n/p) these learned features are more
likely to lead to over-fitting, resulting in a large test mean squared error.

5.9 Correcting the bias in KL-divergences from group size

The groups in this simulation have a range of sizes which may introduce a bias in
GroupRATE scores that are not present in the original RATE calculation. Figure
4.5(A) shows that the KL-divergence values for a group is positively correlated with
the group size, especially for the Covariance projection. This correlation decreases
towards zero as n increases, but this bias can be mitigated by dividing the KL-
divergences by the group size (Figure 4.5(B)). This motivates calculating GroupRATE
scores using
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FIGURE 4.4: Mean squared error of the Bayesian neural network
models across 100 replicates. A baseline mean model has an expected

mean squared error of 1 (red dashed line).

γj =
KLDj

1
|gj|

∑k KLDk
1

|gk |
, (4.44)

where |gk| is the size of group k, which down-weights the GroupRATE scores of
larger groups. This simple correction results in the median correlation between the
KL-divergences and group size being zero.

5.10 Calculating group-level importance scores

The main area of interest for this study is the evaluation of GroupRATE’s post-hoc
grouped variable importance scores. In addition to GroupRATE, some alternative
group-level importances are included here for comparison purposes. Using the
trained models group importance scores are calculated with one of nine methods:

• GroupRATE with either of Covariance, Ridge or Pseudoinverse projection;

• vanilla gradients;

• gradient×input;

• integrated gradients;

• guided back-propagation;

• smoothed gradients; and
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GroupRATE scores (plot B).

• a random forest mimic model with mean decrease Gini variable importance.

All of these methods are described in Chapter 2 (Section 2.5). All saliency methods
(vanilla gradients, gradient×input, integrated gradients, guided back-propagation
and smoothed gradients) compute local (per-example) scores using the gradient of
the network output with respect for an example. Here, these local scores are ag-
glomerated to global scores by taking the mean score over a set of n examples. The
group-level score s(g) is then the mean score over the variables in a group,

s(g) =
1

|g|n ∑
j∈g

n

∑
i=1

s
(j)
i , g ∈ G , (4.45)

where s
(j)
i is the local score of variable j in example i. For example, if using the

vanilla gradients then then s
(j)
i is the absolute value of the gradient,

s
(j)
i =

∣∣∣∣∣
∂ f (x)

∂x(j)

∣∣∣∣
x=xi

∣∣∣∣∣ , (4.46)

evaluated at x = xi. The other saliency methods are defined as in Chapter 2 (Section
2.5).

The random forest mimic model, which is a regression model trained on the orig-
inal X but with the predicted probabilities of the fitted neural network as labels,
computes global scores but on a per-variable basis and so its group-level scores are
given by

s(g) =
1
|g| ∑

j∈g

s(j) , (4.47)

where s(j) is the mean-decrease Gini importance of variable j according to the mimic
model. Using the mean to agglomerate variable-level importances to groups has
been investigated by Wehenkel et al. (2018) in the context of 3D brain imaging data
and random forest importance scores. Thier simulation studies found that the mean
resulted in the best variable selection performance and so that is the approach used
here.
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5.11 Evaluation of group prioritisation methods

Figure 4.6 shows the group prioritisation AUCs for the different methods over 50
replicates. These AUCs show almost all the methods have high power when iden-
tifying the causal groups, with AUC values greater than 0.9 for the largest sample
sizes. The only exception is the random forest mimic AUC which has a median
value closer to 0.85 in the easiest regression tasks (larger n/p and h2) which de-
creases towards 0.6 for the hardest tasks. The other methods also exhibit decreasing
AUCs as the number of groups increases, with the AUCs corresponding to inte-
grated gradients and gradient×input also performing relatively poorly compared
to the other methods. The GroupRATE AUCs are competitive with the other best-
performing methods (guided back-propagation and smoothed gradients) but there
are small differences between the projections. Using the Ridge and Pseudoinverse
projection both lead to larger AUCs than the Covariance projection.

While these AUC values are informative it is also important to check the correspond-
ing ROC curves. The most important part of the curve is in the low false positive rate
(high sensitivity) region, as this corresponds to the highest-ranked groups. These
curves are shown in Figure 4.7 and they show that smoothed gradients or guided
back-propagation have high group prioritisation power in the high sensitivity re-
gion for all the dataset sizes. GroupRATE (Pseudoinverse and Ridge projections),
vanilla gradients, gradient×input and smoothed gradients exhibit this behaviour in
the larger samples, while the random forest mimic never has high power in the high
sensitivity region.

5.12 Empirical computation times

One area in which the different methods studied in this simulation setup differ is
computational cost. As these are all post-hoc methods this discussion does not in-
clude the cost of training the Bayesian neural network as this assumed to be fixed
across the methods.

The nine variable importance methods can be divided into three groups based on
how they compute group scores. The first three are GroupRATE with different pro-
jections, which all require the calculating the n × p linear operator L as the first step.
The Ridge and Pseudoinverse projections both require the singular value decom-
position of X, which has O(n2 p) running time. The Covariance projection only in-
volves a O(n2 p) matrix multiplication, which has the same asymptotic running time
as the decomposition but is cheaper. This makes the Covariance projection the com-
putationally cheapest of the three projections. Once L has been computed it is used
to calculate the posterior parameters of p(β̃ | X, y) via an additional O(pn2 + p2n)
matrix multiplication. The final step is solving (4.2) for each of the G groups, which
requires G independent solutions of a linear system, each of which are O(p3). The
running time complexity of the entire GroupRATE calculation is therefore

O(pn2 + p2n + G p3) , (4.48)

which is dominated by the ESA posterior calculation for n ≫ p datasets and by the
solution of the KL-divergences for p ≪ n datasets.

The empirical computation times in these simulations with each projection are shown
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in Figure 4.8(A-C). These timings are split into the time required to calculate the pa-
rameters of p(β̃ | X, y) and the subsequent KL-divergence interactions. The Covari-
ance projection is the fastest of the three, as expected. However, the difference is in
the order of minutes and so is negligible in practice for datasets of these sizes.

The second type of methods are those based on gradient evaluations (saliency maps).
Here, these are implemented in TensorFlow and so the gradient evaluations are
computed efficiently using automatic differentiation. However, within the saliency
methods there are those requiring a single gradient evaluation (vanilla gradients,
gradient×input and guided back-propagation) and those that use repeated evalua-
tions to smooth the gradients (integrated gradients and smoothed gradients).

The random forest mimic model is distinct from the other two types of method as
it requires training an entire additional model. This necessitates a hyperparame-
ter search and cross-validation, which while easy to parallelise is computationally
expensive.

The empirical computation times of the saliency-based methods and random forest
mimic are show in Figure 4.8(D). Integrated gradients, the random forest mimic and
smoothed gradients have by far the longest running times, which are an order of
magnitude longer than the other methods due to the factors outlined in the previous
paragraphs (repeated gradient evaluations or a cross-validation procedure). While
these methods are not particularly fast, none of these running times are sufficiently
long to preclude their inclusion in an analysis for datasets of these sizes.

6 Genotype simulations

6.1 Simulation aims

The previous set of simulations considered a scenario in which a Bayesian neural
network has already been trained and needs to be interpreted via a post-hoc anal-
ysis, which is an increasingly common scenario as researchers seek to apply neu-
ral networks to novel problems in biology. This next set of simulations asks a re-
lated but different question - how does a Bayesian neural network interpreted with
GroupRATE compare to two alternative predictive models for which group-level
importances can be computed using existing methods? These two alternative mod-
els - GroupLasso and random forest with grouped importance scores - are trained
directly on the observed data and so are not mimic models.

A second difference between this simulation and the previous one is the nature of
the covariates. The previous simulation simulated log-normal covariates as well
as a fictitious continuous response. Here, the covariates are real human genotypes
that are used to simulate a fictitious continuous phenotype. This setup mirrors the
genotype simulations in the original RATE paper by Crawford et al. (2019).

One drawback of this setup is that the maximum sample size is n = 10, 000, which is
fewer samples than are typically required to train a state-of-the-art neural network.
Again mirroring Crawford et al. (2019), a GP regression model is an attractive alter-
native, but the O(n3) required to fit such a model is too restrictive. For this reason
the more scalable sparse GP model (described in Chapter 2, Section 1.2) is included
alongside the Bayesian neural network. The group importance scores of the sparse
GP are also computed using GroupRATE.
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FIGURE 4.9: The size of each of the 1,255 Chromosome 1 genes in-
cluded in the genotype simulations.

6.2 Simulation data

This simulation follows Crawford et al. (2019) in that it uses real genotype data, from
which a fictitious continuous phenotype is simulated under a non-linear model. The
real covariates are human genotype data for Chromosome 1 from the Wellcome Trust
Case Control Consortium (WTCCC, WTCCC et al., 2007). As the variables represent
single-nucleotide-polymorphisms (SNPs), their real group structure (genes) are used
for the group definitions.

The full dataset contains the genotype information of 10, 000 individuals of Euro-
pean ancestry at 36,348 SNPs. Using Build 37 (hg19) of the Human genome, 16,504
of these SNPs are mapped to 1,391 genes, with the rest excluded from the simula-
tions. 8,042 low-variance SNPs are also excluded (those with variance less than 0.2
across the 10, 000 individuals) and an additional 962 SNPs that were highly collinear
with at least one other SNP (defined as a Pearson correlation greater than 0.95) are
also excluded. The remaining 7,405 SNPs (mapped to 1,255 genes) are used as the
covariates for these simulations. The number of SNPs for each of the included genes
are shown in Figure 4.9.

6.3 Description of models

The Bayesian neural network used here is identical to the one from the previous set
of simulations (see Section 5). The random forest model is trained using an identical
procedure to the mimic model used in Section 5, but it is trained directly on the
fictitious phenotype and not the predictions of the Bayesian neural network.

The sparse GP regression model is

f (x) ∼ GP(m(x), k(x, x′)) , (4.49)

where m(x) is a mean function and k(x, x′) is a radial basis function kernel. The
GP models are fitted on 80% of the samples via optimisation of the evidence lower
bound, with the median heuristic (Flaxman et al., 2016) used as a starting guess for
the single lengthscale. The locations of 1,000 inducing points are also learned dur-
ing this optimisation with their starting values initialised at a random subsample
of the training set. The optimisation is performed using the limited-memory Broy-
den–Fletcher–Goldfarb–Shanno algorithm (L-BFGS, D. Liu and Nocedal, 1989).
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The other comparison model is GroupLasso, which is a popular extension to to the
standard Lasso for grouped variables (Yuan and Y. Lin, 2006). It uses the Lasso loss
function with an additional group-level penalty,

L(β; X, y) = − log p(y|X, β) + λ1‖β‖1 + λG ∑
g∈G

√
G ‖β‖2 , (4.50)

where λ1 and λG are hyperparameters controlling the strength of variable- and group-
level regularisation (Moe, 2022). The optimisation of (4.50) results in a set of per-
variable model coefficients β ∈ Rp, meaning that the group variable prioritisation
score needs to be computed. For consistency with the random forest mimic model
the mean of the absolute variable coefficients,

s(g) =
1
|g| ∑

j∈g

|β j| , (4.51)

is used to agglomerate the variable scores to the group level. The GroupLasso and
random forest model hyperparameters are selected using k-fold cross-validation
with k = 5. Note that the sparsity in sparse GPs refers to sparsity in the samples,
which is distinct from GroupLasso that enforces sparsity in the features.

6.4 Final simulation setup

While the previous section used the terms variables and groups, this section uses SNPs
and genes due to the nature of the data. In each replicate of this simulation a set of
G genes, where G ∈ {100, 300, 1, 000}, are sampled without replacement from the
full set of 1,255 genes. The resulting number of SNPs (p) is shown in Figure 4.10.
Causal genes, causal SNPs and corresponding effect sizes are then sampled using an
identical procedure as used in the previous simulations (see Section 5.3).

A set of samples of size n, where n ∈ {2, 000 , 4, 000 , . . . , 10, 000}, are sampled with-
out replacement from the observed genotypes. A fictitious continuous phenotype is
simulated using the causal SNPs and their effect sizes using (4.30), which includes
both main and pairwise effects. Recall that the proportion of additive variance in the
phenotype is h2 and the variance due to pairwise interaction is H2 − h2. Each of the
four models (last layer Bayesian neural network, sparse GP regression, GroupLasso
and random forest) is fit to the tarining set (80% of samples) and their predictive
performance on the training and test sets (20% of samples) are recoded. Finally, the
grouped variable importance for each model is computed. For GroupLasso and ran-
dom forest computing the group scores has a negligible computational cost relative
to model training. The group scores for the Bayesian neural network and sparse GP
are computed using GroupRATE with each of the three projections. This is repeated
for 100 replicates.

6.5 Predictive performance of the four models

GP regression models are typically evaluated using log-marginal likelihoods (for
measuring goodness-of-fit on the training data) and predictive log-density (for mea-
suring predictive performance on held-out data). These will be the metrics used
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FIGURE 4.10: Number of SNPs, p, for different numbers of genes G
in the genotype simulations.

in Chapter 5, where all the predictive models under consideration are GPs. How-
ever, in order to make like-for-like comparisons between the four models the mean
squared error between the true labels and the predictive posterior mean is used here.

Figure 4.11 shows the predictive mean squared error for the Bayesian neural net-
work (plot A), sparse GP (plot B), GroupLasso (plot C) and random forest (plot D).
Recall that the phenotype is simulated under two scenarios: (i) where h2 = 0.6,
H2 − h2 = 0.2 and (ii) h2 = H2 − h2 = 0.4.

The Bayesian neural network is only able to capture predictive signal for the easiest
tasks, which are those where both n/p and h2 are at their largest values. This vindi-
cates the inclusion of the sparse GP in this section, as the Bayesian neural network
requires a much larger sample size for such high-dimensional data. The sparse GP
fits the training and test data well when G = 100 or G = 300 (it is able to capture
predictive signal). When G = 1, 000 and h2 = 0.4 the sparse GP essentially performs
as an intercept-only model and captures no predictive signal. This also occurs in the
majority of replicates when h2 = 0.6. This is because the required number of induc-
ing points increases with the dimensionality of the problem, but is fixed at 1,000 for
all values of G.

GroupLasso has similarly low test mean squared error when G ∈ {100, 300}, but
unlike the sparse GP its test mean squared error is unchanged when G = 1, 000. This
shows the power of the sparsity assumption that is unique to GroupLasso in this
context. Even though the GroupLasso is unable to model non-linear dependencies
between genotype and phenotype there is sufficient linear signal for GroupLasso to
achieve reasonable predictive performance.

The random forest is able to capture at least some predictive signal in every setting
(its test mean squared error are less than one), illustrating why it is such a popular
model in bioinformatics applications. However, as the number of genes increases
the amount of captured signal becomes small - this is because the cross-validation
procedure used to select the hyperparameters is not increasing in size even as the
regression task becomes more difficult.

6.6 Group prioritisation performance

These four models offer eight different methods for group prioritisation, as both the
Bayesian neural network and the sparse GP can be subjected to a post-hoc GroupRATE
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(B) Sparse GP regression
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FIGURE 4.11: Predictive mean squared error (MSE) of the four models
in the genotype simulations. Red line indicates baseline performance
of a model predicting mean of training labels. The Bayesian neural
network posterior mean is computed using 100 Monte Carlo samples.
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analysis using one of the three projections. These group prioritisation AUCs are
shown in in Figure 4.12.

GroupLasso is the best-performing method and has the largest group prioritisation
AUCs across all the scenarios. This is somewhat expected due to the strong hierar-
chy assumption embedded into the phenotype model. This means that any group
containing a SNP with a pairwise effect also has a main effect, which can be easily
detected by GroupLasso.

Using GroupRATE with the sparse GP is competitive with GroupLasso in many
settings, showing similarly high AUCs when G ∈ {100, 300}. The sparse GP is also
clearly preferable to the Bayesian neural network when G ∈ {100, 300} as a model
for group prioritisation. When G = 1, 000 the Bayesian neural network slightly
outperforms the sparse GP, which has learnt no predictive signal. However, its AUC
values are still far smaller than GroupLasso. Of the three projections, the Covariance
projection has the lowest AUCs for both the Bayesian neural network and the sparse
GP.

The grouped-variable importance scores of the random forest consistently has an
AUC close to 0.8 across all different settings in Figure 4.12. This fits with random for-
est’s reputation as a robust method that offers performance out-of-the-box with rel-
atively little tuning. It is likely that a more extensive hyperparameter search would
improve these AUCs, but as shown by the empirical timings in the previous section
this becomes very computationally demanding.

7 Real data applications from computer vision

Following these two simulation studies, this section now demonstrates how GroupRATE
can be used to interpret a last layer Bayesian neural network trained on real data.
However, the evaluation of real data results is challenging as ground truth labels in-
dicating which groups are causal are not available. This section therefore utilises an
alternative approach based on medical imaging data to demonstrate how grouped
variable importance is a useful analysis in practical biomedical applications.

Medical images are an important type of biomedical data. Furthermore, the fact that
many of the highest profile successes of deep learning have occurred in computer
vision has led medical imaging researchers to adopt deep learning at a faster rate
than many other biomedical fields (A. S. Lundervold and A. Lundervold, 2019).

7.1 Bayesian neural network classifier

The two simulation studies in this chapter both focused on regression tasks, but clas-
sification is far more common in computer vision and medical image-based diagno-
sis. Fortunately the last layer Bayesian networks can be extended to classification in
a straightforward manner. In the regression case a neural network computes a mean
and variance to parametrise a univariate Gaussian, from which the predicted label
is sampled. For classification the network computes an un-normalised probability
that parametrises a Bernoulli distribution,
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FIGURE 4.12: Group prioritisation AUCs for the nine methods in
the genotype simulations. The red dashed line denotes the expected
performance of random group importances. SGP: sparse GP, BNN:
Bayesian neural network, GRF: random forest with group importance

scores, GLasso: GroupLasso.
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yi ∼ Bernoulli
(

f (xi)

1 + exp(− f (xi))

)
, i = 1, . . . , n , (4.52)

where the un-normalised probability f (x) is known as a logit. Similarly to the re-
gression case f (x) is given by

f (x) = wT hθ(x) + b ,
(

w
b

)
∼ qφ(θ̃) , (4.53)

where qφ(θ̃) is the mean-field Gaussian variational posterior placed over the final
layer parameters θ̃ = {w, b} and hθ(x) is the activation of the penultimate layer that
depends deterministically on the inner layer parameters θ. The features contained
in hθ(x) are learned using three convolutional layers (with 32, 32 and 16 filters) fol-
lowed by three dense layers (all with size 16). The training procedure is identical to
the one used for the regression networks in the previous sections.

While the response is no longer multivariate Gaussian, the choice of qφ(θ̃) (a diago-
nal Gaussian) ensures that the distribution over f (x) for distinct inputs is multivari-
ate Gaussian. This means it can be targeted with (Group)RATE to calculate variable
(group) importance scores.

7.2 Global variable importances for images using saliency maps

Computer vision has produced a number of local interpretability methods based on
the gradient of the network output with respect to an input (see Chapter 2 Section
2.5). Throughout this chapter these local scores have been agglomerated to global
scores using

s(j) =
1
n

n

∑
i=1

s
(j)
i , (4.54)

and to the group-level using

s(g) =
1
|g| ∑

j∈g

s(j) . (4.55)

An implicit assumption for this agglomeration to produce meaningful results is that
variables have a fixed meaning across the entire dataset. This important requirement
is satisfied when the variables represent biological variables such as the expression
level of a gene, but is only satisfied for image data when the images are aligned.
This is illustrated in Figure 4.13. In the aligned images (plot A) the alignment of the
images means that a single pixel has an approximately fixed meaning across the im-
ages (in this case a particular region of the body). However, many computer vision
datasets contain unaligned images (plot B). In this example the pixels that corre-
spond to a single feature (e.g. ears) are different from image to image. RATE and
GroupRATE also require images to be aligned for the same reason as they compute
a single score per pixel/group of pixels.
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between these two extremes as they place non-zero importance on many pixel but
also place very low importance on many pixels. The three saliency methods show
strong agreement in their rankings (Spearman’s ρ > 0.75). RATE shows some agree-
ment with the saliency methods in terms of the overall pixel rankings (Spearman’s
ρ > 0.3), but it can be seen from the scatter plots that there is a higher degree of
agreement when only the top-ranked pixels are considered.

While the RATE scores suggest a plausible set of important pixels under visual in-
spection, a quantitative assessment of these findings is also required. As this is a real
dataset the ground truth importances of each pixels is not available. Ablation plots
can act as a proxy to this unavailable ground truth by quantifying how important
each pixel is to the model when it makes an out-of-sample prediction. An ablation
plot shows the prediction accuracy as an increasingly large set of pixels in the test
images are shuffled, which removes any existing dependencies between those pixels
and the labels. As progressively larger subsets of pixels are shuffled the test accuracy
will decrease fastest when the most relevant pixels are shuffled first, which enables a
quantitative comparison of the different variable importance methods (Samek et al.,
2016).

Figure 4.15 displays the ablation plot for each of the variable importance methods
plus a random baseline. The RATE values lead to the steepest initial decline in test
accuracy. Using vanilla gradients leads to a steeper drop in test accuracy for pixels
ranked 20 to 100, but RATE then “overtakes” it. RATE is the first method to lead the
network to exhibit random test performance.

7.4 Automatic diagnosis of pneumonia from chest X-rays

Distribution shift in medical imaging datasets

Binary classification tasks based on MNIST are useful for illustrative purposes but
are far more straightforward than many of the problems that motivate biomedical
research. Many more difficult tasks can be found in medical imaging, which is a
good example of an area in which there is a large gap between the potential and
realised impact of machine learning. This is evident from the massive growth in
medical imaging papers related to deep learning in the past decade and the lack of
actual deployment of these systems in a clinical setting (Leiner et al., 2021).

There are many reasons for this lack of clinical uptake, but one of the most pressing
is the lack of generalisability of many deep learning models. Any machine learning
model exhibits poor generalisation performance when it over-fits the training data,
but the lack of generalisation problem is especially relevant in the medical imaging
settings due to the nature of medical imaging dataset. Medical images exhibit strong
“batch” effects due to the choice of imaging device and the medical centre at which
the data are collected, resulting in systematic distribution shift between training and
test data (Shad et al., 2021).

This characteristic of imaging data is exacerbated by recent work showing that con-
volutional neural networks learn features based on these spurious artefacts in the
training set rather than learning clinically relevant signal (DeGrave et al., 2021) and
a related finding that post-hoc local explanations do not correspond to regions iden-
tified by human experts (Saporta et al., 2021; Arun et al., 2021). Furthermore, this
serious drawback cannot be fully mitigated via an external validation set as these
confounding factors may be sufficiently present in an external dataset for the model
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FIGURE 4.14: Pixel importances for a convolutional neural network
classifying odd and even digits in the MNIST dataset. The heat maps
on the diagonal show the importance of each pixel (normalised to aid
comparison between methods), with darker red indicating higher im-
portance. Lower diagonal scatter plots allow pairwise comparisons of
the scores of two methods, with the corresponding Spearman corre-

lations in the upper diagonal.
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provide a more natural level for interpretation and often correspond to anatomical
features. These regions are often computed automatically with post-hoc domain ex-
pert curation (Wehenkel et al., 2018). Here, this scenario is emulated by clustering
the matrix of correlation distances with elements

dij = 1 − cor(x(i), x(j)) , i, j = 1, . . . , p , (4.56)

where x(i), x(j) ∈ [0, 1]p are normalised pixel intensities and cor(·, ·) computes the
Pearson correlation. The set of groups G = {g1, . . . , g|G|} are defined such that the
minimum Pearson between members of a group is 0.7, which results in 744 groups
(see Figure 4.17(C)).

GroupRATE suggests different explanations on training and validation data

The GroupRATE values for this set of groups are shown in Figure 4.18 for the train-
ing (plot A) and test sets (plot B). The two simulation studies presented results with
GroupRATE calculated on the training data only. These values are calculated using
the Covariance projection. The agreement between them is shown in Figure 4.18(C),
which show that the greatest degree of difference between the two sets of impor-
tances is at the top of the rankings. This is clearly a concern as it suggests that the
features learned in training are not the same as those that are driving the impressive
predictive performance. In practice these importance scores could be used to search
for biases in the training data that are driving the model predictions or be passed to
domain experts to establish which of the two rankings (if either) is closer to clinically
relevant regions of the lung.

8 Discussion

This chapter proposed GroupRATE - a novel extension to the RATE method to the
setting of grouped variables - and showed how it can be used to compute grouped-
variable importance scores for a last layer Bayesian neural network. The ability of
GroupRATE to identify causal groups was investigated using two sets of simulation
studies. The first set of simulations compared GroupRATE with alternative post-
hoc methods for computing grouped variable importance for a Bayesian neural net-
work. The second simulation used human genotype data with the aim of identifying
causal genes associated with a continuous phenotype. This second simulation setup
did not assume that a Bayesian neural network was the most appropriate model
and so included three alternative models (sparse GP regression, GroupLasso and
random forest) for which grouped variable importances can be calculated. Finally,
GroupRATE was used to identify potential data biases in a Bayesian convolutional
neural network trained to diagnose pneumonia from x-ray images.

In the first set of simulations GroupRATE was able to effectively identify causal
groups using all three projections, but the Ridge and Pseudoinverse projections re-
sulted in better performance (larger AUCs), especially as the number of groups in-
creased. However, other methods based on saliency maps (vanilla gradients and
smooth gradients) showed similarly good performance, both in terms of their group
prioritisation AUC and their true positive rate in the high-sensitivity region of the
ROC curve. Methods based on training mimic models and other saliency maps (such
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(A) Pneumonia group (B) Control group

(C) Pixel groups used for the GroupRATE calculation.

FIGURE 4.17: Training examples from the pneumonia (A) and con-
trol (B) groups. For GroupRATE pixels are clustered into 744 groups
based on their Pearson correlation coefficient (C). The minimum cor-

relation within a cluster is 0.7.
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FIGURE 4.18: GroupRATE values calculated on the training (A) and
test (B) sets prioritise different groups. The top-ranked groups differ

greatly between the two sets of GroupRATE values (C).
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as gradient×input) were less able to prioritise causal groups. These results showed
that, given a Bayesian neural network, GroupRATE is a useful tool for post-hoc in-
terpretation via grouped variable importance. However, the fact that several of the
saliency-based methods also showed strong group prioritisation performance sug-
gests that they may be well-suited to global importance. Saliency maps are usually
applied for local importance analysis, where they are commonly criticised in the
literature for being noisy and invariant under data or model parameter randomi-
sation (Adebayo et al., 2018), as well as other shortcomings (described in Chapter
2, Section 2.5). To the best of my knowledge there are no systematic evaluations of
saliency maps for global importance analysis, but the strong performance of agglom-
erated saliency maps in these simulations suggest this may be a promising avenue
for research.

The first set of simulations assumed that the decision has already been made to use
a last layer Bayesian neural network as the predictive model. This is becoming an
increasingly common scenario as neural networks become more popular for datasets
of this size (n ' 105). However, the second set of simulations showed that in other
settings (namely, a genetics problem with n ≤ 104) both the sparse GP regression
and GroupLasso models had better predictive performance than the Bayesian neural
network. This is because the sample size is small relative to the datasets where
neural networks typically exhibit strong predictive performance, but also because
of the discrete nature of the covariates. In the second simulation the covariates are
genotypes (encoded as 0,1,2) and this discretisation of the input space means it is
more difficult for the neural network to interpolate the training data. This relatively
poor predictive performance was mirrored by low AUCs in the group prioritisation
task when GroupRATE was applied to the Bayesian neural network. However, the
group prioritisation AUCs were larger when GroupRATE was used with the sparse
GP regression model and were competitive with the best-performing model.

GroupLasso was the best model for group prioritisation in the second set of simula-
tions despite the fact that it assumes a linear relationship between the SNPs and the
phenotype. This can be explained by considering the effect of the strong hierarchy
assumption that was built into the simulations. Under strong hierarchy any variable
with an interaction effect also has a main effect, which GroupLasso will be able to
detect. This means that the GroupLasso group prioritisation performance is likely to
always be strong in such settings, even if the predictive performance of the model is
weaker than non-linear alternatives. This demonstrates the different requirements
of prediction and variable/group selection - strong predictive performance requires
assigning the correct weight to a variable, while variable selection only requires as-
signing a non-zero weight to a causal variable.

Like all simulation studies, the two studies described in this chapter had several
weaknesses. In both studies the density of causal groups (genes) and the density of
causal variables (SNPs) are both fixed. A natural extension is therefore to investi-
gate the behaviour of the different methods when the density of the causal groups
changes. Another limitation of the genotype simulations is that the confounding
role of population structure (relatedness between individuals) is not explicitly con-
sidered via the inclusion of the principal components (A. L. Price et al., 2006). While
the effect of population structure is relatively minor in the WTCCC genotype data
as all patients are of European ancestry (WTCCC et al., 2007), this discriminatory
inclusion criterion has serious ethical implications (Peterson et al., 2019).

While traditional differential expression/abundance analyses focus on detecting the
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changes in mean values between two groups it is becoming increasingly recognised
that relevant biological changes can lead to a change in expression variation (Ran
and Daye, 2017; Jong et al., 2019). This suggests a possible avenue of future work
in which GroupRATE is targeted to explain the noise variance output σ2(·) of a
Bayesian neural network that has been trained to predict gene expression levels.

Another major limitation of these types of automated simulation study with a large
number of replicates is that it is difficult to automate the real process of fitting non-
parametric predictive models in a large number of replicates. For Bayesian neu-
ral networks this is particularly difficult as their training procedure is highly sensi-
tive to parameter initialisations and optimiser hyperparameters, which necessitates
a large amount of hand-tuning by the practitioner. While this can be mitigated by
an automated hyperparameter search the computational cost quickly becomes in-
feasible. The training procedure is especially sensitive when the prediction task is
more difficult (due to a smaller ratio n/p or a large number of non-linear effects).
The genotype simulation setup therefore favours approaches such as GroupLasso
with simpler (convex) training procedures as these are both more robust and easier
to automate.

As GroupRATE was the main focus of this chapter the impact of the last layer Bayesian
network construction was not considered in detail. However, there are many aspects
of the model construction that could have a large impact on the both the predictive
power of the model as well as the performance of the group prioritisation meth-
ods. For example, a standard normal prior was used throughout this chapter as is
commonplace for networks trained with mean-field variational inference.

This study was motivated by the increasing popularity of non-parametric predictive
modelling (particularly neural networks) in the biomedical literature and addressed
their major drawback in such settings - their lack of interpretability. As long as such
models continue to be applied in areas where interpretability is a requirement post-
hoc methods such as Group(RATE) will be required. However, it is an open ques-
tion as to whether attempting to interpret neural networks is the most appropriate
approach if interpretability is a central requirement, despite their impressive pre-
dictive power (in the right setting) (Rudin, 2019). This is part of the motivation
of the genotype simulations, which compared GroupRATE’s interpretations of the
Bayesian neural network with a range of alternative models and found that an inter-
pretable, linear approach (GroupLasso) was the best option. Rudin (2019) suggest
that a better modelling approach is to place interpretability at the heart of model
building from the beginning of a project. Fortunately, Bayesian neural networks of-
fer this possibility via Bayesian variable selection, which can be used to induce spar-
sity in the inputs via sparsity inducing priors (Bergen et al., 2020) or from known
biological annotations (Demetci et al., 2021). However, this approach is extremely
challenging for problems with very little a priori knowledge and so post-hoc interpre-
tation methods are likely to remain popular for the foreseeable future.
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Chapter 5

Modelling phylogeny in microbial
datasets using string kernels

One of the defining characteristics of 16S rRNA (ribosomal ribonucleic acid) datasets
is the phylogenetic relationships that exist between taxa. However, this important
aspect is commonly ignored when performing analyses such as two-sample test-
ing and supervised learning. This chapter describes how kernel methods can be
used to model these phylogenetic relationships in both these settings in a unified
framework. This is done by utilising the power of string kernels, which were orig-
inally developed for protein classification and natural language processing tasks.
This study is the first to demonstrate their utility for modelling phylogeny in 16S
rRNA datasets.

1 Chapter aims and contributions

Microbial datasets, such as those collected via 16S rRNA gene sequencing, are driv-
ing our rapidly increasing understanding of the role of the microbiome in human
health. The variables in a 16S rRNA dataset represent separate organisms (taxa),
which are related to one another via historical evolutionary relationships (phylogeny).
These phylogenetic relationships distinguish 16S rRNA datasets from those gener-
ated using other sequencing modalities and so phylogeny-aware statistical tools are
required to analyse them.

This chapter presents a simulation-based investigation of string kernels (a kernel
function that operates on pairs of strings) applied to two important statistical prob-
lems in microbial datasets: (i) the kernel two-sample test and (ii) host-trait prediction
using Gaussian process (GP) regression. Its contributions are

• the first application of string kernels to model phylogeny in 16S rRNA datasets;

• demonstrating that string kernels induce a more appropriate kernel two-sample
test than kernels that only model taxa abundance; and

• showing that a Bayesian hypothesis test involving GP regression models with
a string kernel can identify how the effects of taxa on host phenotype are dis-
tributed across the phylogenetic tree.

Existing kernel-based approaches for two-sample testing seek to associate bacterial
community composition with an external variable via mixed effects models rather
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than performing a true kernel two-sample test (N. Zhao et al., 2015 and its exten-
sions). The single exception by Banerjee et al. (2019) applies a kernel two-sample test
but neglects the importance of phylogenetic relationships. When existing studies do
include phylogeny, they only consider the UniFrac kernel (see Section 6) rather than
the string kernels used here. Furthermore, the use of kernel-based methods for host-
trait prediction has so far excluded Gaussian process regression. The contributions
of this chapter therefore address these gaps in the literature by presenting a detailed
study of the role of phylogeny in the kernel two-sample test and Gaussian process
regression for the first time. In addition, its findings are also relevant to existing
kernel-based approaches for microbial data as they reveal important characteristics
of the reproducing kernel Hilbert spaces on which they are based.

The chapter is structured as follows. Section 2 outlines the elements that comprise
a microbial dataset and how they are collected. Section 3 describes common ap-
proaches to simulating microbial datasets and outlines the approach utilised in these
simulations. Section 4 describes the kernel two-sample test before Section 5 dis-
cusses relevant studies from the literature. Section 6 describes the phylogenetic ker-
nels used in this chapter (including string kernels). The simulation studies begin
in Section 7, which presents a study demonstrating the utility of string kernels for a
phylogenetically-aware two-sample test. Section 8 presents an additional simulation
study in the context of host-trait prediction using GP regression.

2 Characteristics of 16S rRNA datasets

2.1 Essential components of microbial datasets

Before proceeding with the analysis this section will briefly restate the most relevant
points from the description of 16S rRNA datasets in Chapter 1 (Section 1.3), with a
focus on the characteristics of microbial datasets that motivate this study.

A combination of financial cost and the difficulty in obtaining sufficient biomass
means it is often impractical or even impossible to perform whole genome sequenc-
ing of the organisms that comprise microbial communities. The 16S rRNA gene
region is part of the bacterial genome that contains both conserved regions (which
are useful for designing primers to amplify the sequence) and variable regions (that
are used to identify taxa). Its sequence is therefore used to both identify organisms
and quantify their abundance in a sample, as well as to infer the evolutionary rela-
tionships that exist between the different organisms.

A processed 16S rRNA gene sequencing dataset consists of three elements:

• a count matrix X ∈ Z
n×p
≥0 , where Z≥0 = {0, 1, 2, . . .} are the non-negative

integers, containing n samples and p operational taxonomic units (OTUs);

• a set of host phenotypes (observable traits); and

• a phylogenetic tree describing the evolutionary relationships between the p
OTUs.

Recall that each OTU represents a set of organisms with a mutual 16S rRNA se-
quence similarity above 97%. The ijth element of X contains the number of sequences
assigned to OTU j in sample i.
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FIGURE 5.1: Phylogenetic trees for the Busselton and FAME OTUs.
Branches are coloured by genus, with any genus containing fewer
than 50 OTUs marked as Other. Trees are inferred using FastTree2

(M. N. Price et al., 2010).

2.2 Phylogenetic trees

Phylogenetic trees encode the evolutionary relationships between the OTUs in a sin-
gle dataset. They are connected, acyclic graphs G = {V, E}, whose nodes V =
{Vleaf ∪ Vinternal} are the union of two disjoint sets: (i) leaf nodes representing ob-
served taxa and (ii) internal nodes representing imputed common ancestors (M. N.
Price et al., 2010). The edges E represent evolutionary distances inferred from the
representative sequences of each OTU, as the differences between sequences are the
result of mutations over time. Phylogenetic trees are typically rooted and directed,
where the root node is the most recent common ancestor of all OTUs. The phy-
logenetic trees for the two datasets utilised in this chapter (Busselton and FAME,
described in Section 3.2) are displayed in Figure 5.1.

For an internal node v ∈ Vinternal the subset of nodes Uv ⊂ V descended from v is
the clade induced by v. All the nodes in Uv have v as their most recent common
ancestor. Clades are an important concept in evolutionary biology as they define a
set of taxa that are more closely related to one another than to taxa outside of their
clade. Each of the seven major taxonomic ranks (see Chapter 1, Section 1.3) defines
a set of disjoint clades C = {U1 , . . . , U|C|}. These clades are marked at the genus
level in Figure 5.1.
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2.3 Interpreting operational taxonomic units

OTUs are the variables in 16S rRNA datasets so it is clearly important to be able to
interpret what they mean and understand and differences between them when run-
ning statistical analyses. However, this can be challenging due to a severe lack of
prior biological knowledge at the OTU level. This is because this type of measure-
ment of microbial communities has only become routine in the past decade. When
such knowledge does exist it is often not at OTU-level resolution. For example, a
previously identified association may not apply to every member of a genus. These
challenges are compounded by the fast rate of bacterial evolution, which means that
the references databases used to name OTUs often contain multiple sequences per
species.

OTU names in 16S rRNA datasets are highly redundant (e.g. Pseudomonas1, Pseudomonas2,
Pseudomonas3, . . .) with hundreds or even thousands of indistinguishable names.
While these organisms are assigned to distinct OTUs it is not possible to establish
whether they are truly biologically or functionally distinct or whether the differences
in their sequences is trivial. The fast rate of evolution also means that functionally
or biologically equivalent organisms may be assigned to different to OTUs in two
different samples. This is the main reason that the agglomeration to higher-level
taxonomic ranks (as was done in Chapter 3) is such a popular strategy.

In summary, the variables in microbial studies have complex phylogenetic relation-
ships that go beyond more traditional statistical challenges such as collinearity and
zero-inflation (although these factors also exist in the data). Due to technical effects
of the sequencing modality and data preprocessing, it is possible (or even likely) that
functionally and evolutionarily equivalent microbes are assigned to separate OTUs,
either within or sample or between samples. It is therefore important to model these
phylogenetic relationships between variables in any statistical approach that utilises
a concept of distance, as treating all OTUs as independent variables ignores a crucial
part of the underlying process (the evolutionary relationships).

2.4 Compositionality

In addition to phylogenetic relationships there are characteristics of 16S rRNA count
data that introduce particular challenges to analysing microbial datasets. One such
characteristic that is increasingly being recognised in the literature is the compo-
sitional nature of OTU counts - that they only carry relative information on the
abundance of different taxa. The remainder of this section describes the basics of
compositional data analysis.

There is a growing consensus that microbiome datasets are compositional in nature
(Gloor et al., 2017; Quinn, Erb, et al., 2018). For any composition vector x,

x = (x(1) , . . . , x(p)) , (5.1)

x(j) > 0, j = 1, . . . , p , (5.2)
p

∑
j=1

x(j) = κ , (5.3)
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where each x(j) , j = 1, . . . , p, are called components or parts. The key feature of
compositional data is that they only carry relative information. 16S rRNA data is
compositional as each microbial sample is collected as a random sample of the en-
tire bacterial population using a sequencer that has a fixed maximum capacity. As
it is not possible to recover the unobserved absolute abundances from the observed
abundances, it is only appropriate to draw conclusions about the ratios of two com-
ponents (taxa).

A simple example is shown in Figure 5.2, which illustrates the limitations of ob-
served abundance in the context of clustering. Figure 5.2(A) shows the absolute
abundances of three clusters in a two-component system, which are perfectly sepa-
rable using absolute abundance. Given a measuring device with a fixed capacity κ,
the expectation of the measured values for an absolute abundance (x̃(1), x̃(2)) is the
intersection of two lines:

x(1) + x(2) = κ , (5.4)

x(2) =
x̃(2)

x̃(1)
x(1) , (5.5)

where (5.4) is the simplex defined by the measurement capacity and (5.5) is the line
from the origin to (x̃(1), x̃(2)). The solution to (5.4)-(5.5) is

x(1) =
κ

1 + x̃(2)/x̃(1)
, x(2) =

x̃(2)

x̃(1)
κ

1 + x̃(2)/x̃(1)
, (5.6)

which depends only on the ratio x̃(2)/x̃(1). The solutions (5.6) are displayed in Figure
5.2(B) and they illustrate two points:

1. clusters 2 and 3 have the same ratios of the two components and so cannot
be distinguished using the measured abundances (which only contain relative
information); and

2. the value of κ is an artefact of the measuring device and so is arbitrary.

The value of κ defines the unit of measurement of the composition. It is common
practice in microbial studies to assume κ = 1 without loss of generality, in which
case the components of x are relative abundances. Due to this sum constraint com-
positional data live in the p-simplex S p, where

S p = {x = (x(1) , . . . , x(p)) | x(j) > 0,
p

∑
j=1

x(i) = κ} . (5.7)

While the value of κ is arbitrary it is desirable when analysing a set of compositions
that they all live on the same simplex. The closure operation, given by

closure(x) =
κ

∑
p
j=1 x(j)

x , (5.8)

projects x onto the p-simplex defined by κ.
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Throughout this chapter absolute abundance refers to the unobserved true abundances
of taxa. The observed abundances are referred to as counts (or simply abundance),
which contain relative information under the assumptions of compositional data
analysis. Finally, relative abundance refers to the closure of the observed abundances
using κ = 1.

Compositional data analysis (CoDA, Aitchison, 1982) provides a framework to anal-
yse and interpret compositional data in terms of the relative importance of their
components. Given that compositional data contain relative information it is natu-
ral to work with log-ratios of their components, which live in Euclidean space. One
popular log-ratio is the centred log-ratio (CLR) transform, which is given by

clr(x) =

(
log

x(1)

g(x)
, . . . , log

x(p)

g(x)

)
, (5.9)

where g(x) = (∏
p
j=1 x(j))1/p is the geometric mean of the composition (Aitchison,

1982). For the CLR transform the components of x are interpreted relative to the
geometric mean of the sample. One of the most widely-used approaches to com-
positional data analysis is to apply (5.9) to transform the observed abundances to
Euclidean space and then apply standard statistical methodology. The results are
then interpreted in terms of ratios (Quinn and Erb, 2020). However, the covariance
matrix of the CLR-transformed data is at most rank p − 1 due to the sum constraint,
which follows from the sum constraint as it implies that the p components are not
independent (given p− 1 components the final component is determined by the sum
constraint).

Zero-handling is an important consideration when analysing compositional data as
zeros give undefined results as inputs to logarithms or denominators of ratios. Zeros
in compositional data can be classed as

1. true zeros - where a component is truly missing from the composition, or

2. rounded zeros - where a component is present in the composition but is below
the detection limit of the measuring device.

16S rRNA counts commonly contain up to 90% zeros (Weiss et al., 2017) and so zero-
replacement strategies that preserve the structure of the underlying ground-truth
(which is unavailable in practice) are required. A simulation study by Lubbe et al.
(2021) compared the effect of several strategies on the reconstructed count data and
its correlation/distance matrices and found that replacing zeros with values sam-
pled from a uniform distribution on [0.1a, a], for detection limit a provided a good
balance of simplicity while recovering the true distance matrix with acceptable accu-
racy. This is the zero-replacement strategy used throughout this chapter whenever
the CLR transform is applied.

3 Simulating 16S rRNA data

In order to develop novel statistical tools (or benchmark existing tools), it is impor-
tant to be able to simulate realistic 16S rRNA data. These simulated datasets should
capture the important characteristics of the OTU counts themselves while also in-
cluding the phylogenetic relationships present in real datasets.
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zero-inflated counterpart (Ai et al., 2019) have also been used to model count data,
motivated by ideas from compositional data analysis.

3.1 Dirichlet-multinomial models of OTU abundance

16S rRNA abundances are commonly modelled using the Dirichlet-multinomial (DMN)
distribution for generative clustering (I. Holmes et al., 2012), association testing (La
Rosa et al., 2012; C. Wu et al., 2016; Tang et al., 2017), benchmarking statistical tools
(Calgaro et al., 2020) and host phenotype prediction (Jun Chen and H. Li, 2013b;
X. Gao et al., 2017; Xiao et al., 2018; Koslovsky and Vannucci, 2021). DMNs have
also been highlighted as the preferred distribution for molecular ecology in general
and lung 16S rRNA modelling in particular (De Valpine and Harmon-Threatt, 2013;
Harrison et al., 2020). They have also been shown to result in accurate inference
for different zero-inflation models (Silverman, Roche, et al., 2020) and various de-
grees of compositionality effects (Fernandes et al., 2014). This chapter follows these
studies by using DMNs to generate fictitious but realistic OTU counts.

The DMN(N, α) is a compound distribution over non-negative integers Z≥0 that is
parametrised by a vector of concentrations α = (α1 , . . . , αK) ∈ RK

+ and N ∈ Zn

trials, where K is the number of categories (Mosimann, 1962). A sample x ∈ ZK
≥0 is

modelled as

θ ∼Dirichlet(α) , α1 , . . . , αK > 0 , (5.10)

x ∼Multinomial(N, θ) ,
K

∑
j=1

θj = 1 , (5.11)

where θj, j = 1, . . . , K are multinomial probabilities. The multinomial probabilities
{θj}K

j=1 are constrained to the p-simplex and therefore incorporate compositional
effects, while the subsequent multinomial sampling step simulates the observed
counts.

In microbiome applications the number of categories K corresponds to the number
of OTUs (p), while the number of trials N is the total number of reads per sample.
Maximum likelihood estimates of α from two real lung microbiome datasets are used
to generate fictitious OTU abundance tables in subsequent sections of this chapter.
The datasets are described in Section 3.2.

Modelling a variable number of reads per sample

The number of trials N ∈ Zn can itself be modelled as a random variable to emulate
the common scenario where different samples contain different numbers of reads,
with a negative binomial being a popular choice (Xiao et al., 2018). Throughout
these experiments N is drawn from a negative binomial N ∼ NB(a, b), where a is
the mean and b the dispersion. This is the standard parametrisation of the negative
binomial in ecology (Lindén and Mäntyniemi, 2011). Figure 5.3(A) shows the em-
pirical reads per sample in the two datasets while Figure 5.3(B) shows the negative
binomial distributions used to simulate the total reads per sample in these simula-
tions, which fix a = 105 and use b ∈ {3, 10, 30}. Smaller values of b result in datasets
where the reads per sample are more left-skewed.
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FIGURE 5.3: 16S rRNA commonly exhibit variable numbers of read
per sample (plot A). This is emulated in the simulated datasets by
modelling the number of reads per sample, N, as being drawn from a
negative binomial NB(105, b) with different values of the dispersion

parameter b (plot B).

3.2 Real datasets

The two simulation studies in this chapter (on the kernel two-sample test and host
trait prediction using Gaussian process regression) use two real lung microbiome
datasets to (i) generate realistic OTU counts via Maximum Likelihood estimates
of the DMN concentrations and (ii) obtain realistic phylogenetic relationships from
their inferred phylogenetic tree. The characteristics of the original datasets are dis-
played in Table 5.1 . The collection and pre-processing of these datasets is not part
of the contributions of this chapter and was performed by collaborators.

TABLE 5.1: Real lung microbiome datasets used in this chapter to
simulate OTU abundances. The phylogenetic tree is also used in or-
der to have realistic phylogenetic relationships between the OTUs.
The original study groups are not used in the simulations but are in-

cluded here for completeness.

Dataset name n p Original study groups Citation

FAME
(bacterial) 107 1,189

Cystic fibrosis and non-cystic
fibrosis bronchiectasis Ish-Horowicz,

Cuthbertson, et al.
(2022)

Busselton 578 1,689 Asthma and healthy controls McBrien (2020)

4 Kernel two-sample testing for 16S rRNA data

A key research question in microbial studies in biology is to determine whether two
groups of samples are drawn from distinct distributions (the two-sample test). In
most cases the two groups correspond to disease or treatment groups and it is of
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interest to establish whether the two groups have distinct microbial communities.
Given two sets of samples X = {xi}nx

i=1 and Y = {yi}ny

i=1, where

X ∼ P , Y ∼ Q , (5.12)

the two-sample (hypothesis) test is

H0 : P = Q , H1 : P 6= Q , (5.13)

where H0 and H1 are the null and alternative hypotheses. Univariate two-sample
testing forms the basis of differential expression/abundance analysis, which is a cor-
nerstone of biological research (Soneson and Robinson, 2018; Nearing et al., 2022).
Such a univariate test on the means of P and Q aims to identify individual taxa (in
microbiome applications) that are significantly differentially abundant between the
two groups. However, there may not be a significant difference between two pop-
ulations even if individual taxa are differentially abundant between them. A multi-
variate test is therefore required to establish if there are community-level differences
between the two groups.

As discussed in Section 3, microbiome samples are high-dimensional, zero-inflated
and likely to violate parametric assumptions. These characteristics presents statisti-
cal challenges such as the curse of dimensionality and sparsity, in addition to chal-
lenges due to the complex nature of the underlying biology (the phylogenetic rela-
tionships between variables). The maximum mean discrepancy (MMD, Gretton et
al., 2012) measures the distance between two distributions in an inner product space
defined a kernel function k(x, x′). Using MMD for two-sample testing is therefore an
appealing option for microbiome studies as it is non-parametric, well-suited to high-
dimensional data and provides a simple way of encoding prior domain knowledge.
The behaviour of the test can therefore be carefully controlled by the choice of kernel
function. This section briefly outlines the mathematical background of kernel-based
two-sample testing and motivates the use of kernels that model the phylogenetic
similarity between OTUs.

4.1 Kernel mean embeddings

Chapter 2 (Section 1.1) described the kernel trick, which enables the use of arbitrarily
complex feature mappings by specifying a kernel function. A valid kernel function
k(·, ·) satisfies

k(x, x′) = 〈φ(x), φ(x′)〉H , (5.14)

for a feature map φ : X → H which induces the reproducing kernel Hilbert space
(RKHS) H. In Chapter 2 the power of the kernel trick was illustrated with an exam-
ple from binary classification, where applying an appropriate kernel function caused
a non-linear boundary between two classes to become linear. In this setting (the
two-sample test) the implicit mapping using φ(·) on each data point is generalised
to allow an entire distribution to be mapped to a point in an RKHS. These so-called
kernel mean embedding of a distribution P is given by
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µP = Ex∼P[φ(x)] , (5.15)

and is the expectation of the distribution in H, the RKHS induced by φ(·) (Smola
et al., 2007). By representing P as an element of H it is possible to compute common
operations such as inner products and distances via µP. Furthermore, the properties
of H are fully determined by φ(·), which is specified using k(·, ·) due to the kernel
trick.

4.2 Maximum mean discrepancy

For two distributions P and Q their distance in H is simply the distance between
their embeddings,

MMD(P, Q) = ‖Ex∼P[φ(x)]− Ey∼Q[φ(y)]‖H (5.16)

= ‖µP − µQ‖H , (5.17)

which is called the maximum mean discrepancy (MMD, Gretton et al., 2012). The
kernel two-sample test uses MMD(P, Q) as the test statistic and assesses statistical
significance using a permutation test.

An important element of MMD two-sample testing is therefore the choice of kernel
function as it determines the properties of H and so the behaviour of (5.16). The
choice of kernel function provides a simple mechanism by which to encode complex
prior knowledge. Furthermore, kernels are well-suited for the analysis of discrete
data structures (such as trees and strings), which makes them an attractive option
for modelling 16S rRNA datasets.

As a simple example consider the linear kernel k(x, y) = xTy, for which the feature

map is φ(x) = x. In this case the MMD(P, Q) =
√
(Ex∼P[x]− Ey∼Q[y])2, which is

zero if and only if P and Q have different means. A linear kernel therefore induces
a test on the means of P and Q, while tests with higher order polynomial kernels
test for differences in the higher-order moments. MMD(P, Q) therefore computes
the difference in the feature means of P and Q for the feature means are defined by
φ(·).
For characteristic kernels MMD(P, Q) is equal to zero if and only if P = Q. This
result follows from the fact that the mean embeddings of P and Q in H (µP and
µQ) are injective when H is defined by a characteristic kernel (Gretton et al., 2012).
Two of the most popular kernels, the radial basis function and Matern class, are
characteristic. The feature map for these two kernels are infinite-dimensional and so
are guaranteed to detect a difference between P and Q unless all possible moments
are the same. However, these simulations will show that two-sample test with a
characteristic kernel is not well-suited to 16S rRNA datasets.
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FIGURE 5.4: Visualisation of the kernel mean embeddings of two dis-
tributions P and Q, where each contain the marginal densities of two
indistinguishable OTUs. A characteristic kernel leads to a large MMD
(plot A) but if the kernel models phylogenetic relationships it cor-

rectly finds that the distance between P and Q is small (plot B).

4.3 Kernels for 16S rRNA two-sample testing

As outlined in Section 2.3 interpreting OTUs can pose a challenge in 16S rRNA
datasets due to the redundancy in their identification. This leads to a large num-
ber of OTUs that are effectively indistinguishable - they may be functionally or bio-
logically equivalent but any difference cannot be established using 16S rRNA data.
This has clear implications for the two-sample test as an appropriate test should not
reject H0 on the basis of differences that are below the resolution of the sequencing
modality.

One way of constructing such a test is by using a kernel that explicitly models phy-
logenetic similarity in a kernel two-sample test. Some such kernels are described
in Section 6 but here the focus is on the desirable characteristics of the RKHS they
induce using two toy examples. The first is illustrated in Figure 5.4. Both P and Q
consist of the marginal distributions for two OTUs that represent biologically indis-
tinguishable organisms. In plot A the two-sample test is performed using a non-
phylogenetic, characteristic kernel, which results in a large value for MMD(P, Q)
that would likely lead to a rejection of H0. In plot B a kernel that models phylogeny
is used, which induces an RKHS in which MMD(P, Q) is close to zero, which is
clearly preferable. Note that such a phylogenetic kernel is not characteristic by defi-
nition as the kernel mean embeddings are surjective by design.
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For a slightly more complex example, consider a toy dataset of four OTUs with the
marginal OTU distributions shown in Figure 5.5. The populations P and Q are con-
structed such that

P = (p1(x), p0(x), p2(x), p0(x)) , (5.18)

Q = (p0(x), p1(x), p0(x), p2(x)) , (5.19)

where p1(x) and p2(x) are marginal probability mass functions that place some mass
on x > 0 and satisfy p1(x) 6= p2(x), while p0(x) places all its mass at zero. Now
consider two scenarios where:

1. all four OTUs are biologically distinct; and

2. the phylogenetic relationships between the four OTUs are as follows:

• OTU 1 has 96% sequence similarity to OTU 2;

• OTU 3 has 96% sequence similarity to OTU 4; and

• OTUs 1 and 2 are distantly related to OTUs 3 and 4.

In the first scenario it is clear that P 6= Q and that a two-sample test should reject
H0 (assuming a sufficiently large sample size). However, in the second scenario the
dataset only contains four OTUs because a 97% similarity threshold is used to de-
fine OTUs. If the convention was to use a 96% similarity threshold then the dataset
would contain only two OTUs and performing the same two-sample test on this col-
lapsed (but biologically equivalent) two-OTU dataset would have a well-calibrated
Type I error. Such a high degree of dependence of test behaviour on an arbitrary
technical feature of the preprocessing pipeline (the similarity threshold) is clearly
undesirable, but is unavoidable if the test is not aware of the phylogenetic relation-
ships between the OTUs.

5 Relevant work

Previous applications of kernel methods to 16S data focus on two tasks: (i) host-trait
prediction from bacterial community composition and (ii) differential abundance
analysis. For host-trait prediction the most common approach is to combine a kernel
with a support vector machine (Ning and Beiko, 2015; Jasner et al., 2021; Giliberti
et al., 2022) or kernel regression (Jun Chen and H. Li, 2013a; Randolph et al., 2018;
Xiao et al., 2018). The majority of studies use a radial basis function or linear ker-
nel. Some studies also include UniFrac kernels (described in Section 6) to explicitly
model phylogeny.

Kernel two-sample tests have previously been used with 16S rRNA data for testing
associations between community composition and host phenotype in the MiRKAT
method (microbiome regression-based kernel association test N. Zhao et al., 2015),
which has also been extended to survival times (Plantinga et al., 2017) as well as
to other outcome types (Koh et al., 2019). The work by Koh et al. (2019) incorpo-
rates phylogeny into its test by using the UniFrac kernel. A second method called
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• via the UniFrac distance (C. Lozupone and Knight, 2005), a popular distance
metric in microbial research; and

• via three types of string kernels (Spectrum, Mismatch and Gappy pair), which
measure the similarity between the representative sequences of OTUs.

As noted in the previous section, other studies have utilised the UniFrac kernel to
model phylogeny in a kernel framework.

Before introducing these phylogenetic kernels it is useful to discuss the other (non-
phylogenetic) kernels with which they will be compared. The first two are the radial
basis function (RBF) kernel,

k(x, x′) = σ2 exp
(−‖x − x′‖2

2
2l2

)
, (5.20)

and the Matern32 kernel,

k(x, x′) = σ2

(
1 +

√
3‖x − x′‖2

2
l2

)
exp

(
−
√

3‖x − x′‖2
2

l2

)
, (5.21)

where the signal variance σ2 > 0 and lengthscale l > 0 are hyperparameters. Both
the RBF and Matern32 are stationary kernels as the similarity they compute is a func-
tion of ‖x − x′‖. The fact that both kernels depend only on the Euclidean distance
between samples illustrates the motivation behind using a phylogenetic kernel - the
distance ‖x − x‖2

2 assumes that the samples are expressed in an orthonormal basis,
which is clearly inappropriate given the phylogenetic relationships that define the
OTUs. The non-phylogenetic linear kernel is computed using

k(x, x′) = σ2xx′T , (5.22)

which is proportional to the dot product of the two samples. The Linear kernel is a
special case of the String kernels that will be introduced in Section 6.2.

6.1 UniFrac kernel

UniFrac is a distance metric for pairs of microbial samples that incorporates the phy-
logenetic relationships between OTUs using the branch lengths of the phylogenetic
tree (C. Lozupone and Knight, 2005). The unweighted UniFrac distance between two
samples x and x′ is the ratio of unshared branch lengths between the two samples to
the total branch lengths in the tree,

duf-uw(x, x′) =
∑

p
j=1 lj|1(x(j) > 0)− 1(x′(j) > 0)|

∑
p
j=1 lj max(1(x(j) > 0), 1(x′(j) > 0))

, (5.23)

where p is the number of taxa (OTUs) in the tree, lj is the branch length between taxa
j and the root and 1(x(j) > 0) is an indicator function for whether taxa j appears in
sample x.

The weighted UniFrac distance (C. A. Lozupone et al., 2007) is weighted by the sam-
ple abundances,
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FIGURE 5.6: Calculating the UniFrac distance between pairs of sam-
ples. Both the weighted and unweighted UniFrac distance between
Sample 1 (A) and Sample 2 (B) is 1 as the two samples do not share
any branches (C). The weighted and unweighted UniFrac distances
between Sample 3 (D) and Sample 4 (E) are both less than 1, as they
share some branches (F), but they will not be equal to one another as

the samples have different abundances.

duf-w(x, x′) =
∑

p
j=1 lj|x(j) − x′(j)|

∑
p
j=1 lj(x(j) + x′(j))

. (5.24)

Figure 5.6 illustrates how both variants of the UniFrac distance are calculated. It
is common to practice to calculate both the weighted and unweighted versions of
the UniFrac distance as they can lead to different conclusions. Both the unweighted
and unweighted UniFrac distances take values in [0,1], with both being equal to one
when two samples do not share any non-zero OTUs. Unweighted UniFrac is equal
to zero when the two samples contain identical OTUs, but weighted UniFrac further
requires that the abundances are equal for its distance to be zero. Low-abundance
OTUs have a smaller effect on the weighted UniFrac distance, which is dominated
by OTUs with large abundances, while unweighted UniFrac is more sensitive to
rare taxa. This makes unweighted UniFrac better suited to quantifying community
structure.

6.2 String kernels

Each OTU is defined by a representative DNA sequence of ∼200 base pairs, which
means that OTU-wise similarity can be quantified using string kernels. As discussed
in the previous section, string kernels were developed in natural language process-
ing for text classification (Lodhi et al., 2002) and have been widely applied to classify
biological sequences such as proteins. However, in sequence classification tasks the
samples themselves are strings, while in 16S rRNA datasets samples are count vec-
tors whose elements (the OTUs) are related to one another by their representative
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sequences. This distinction means that the string kernels in this study are used to
construct an inner product space in which sample similarity is computed.

Relationship between positive-definite matrices and kernels

Given a valid kernel function s(·, ·) and a set of strings {zi}p
i=1 it is possible to con-

struct a positive definite matrix S whose ijth element is given by

(S)ij = s(zi, zj) , i, j = 1, . . . , p . (5.25)

Here, s(·, ·) is used to denote a kernel function that operates on pairs of variables
(representative sequences of OTUs) as opposed to k(·, ·) which operates on pairs of
observations. The matrix S defines an inner product 〈x, x′〉S = x′TSx, from which
the kernel matrix XSXT can be constructed given an n × p design matrix X. Further-
more, this kernel is satisfies

XSXT = −1
2
Jn∆SJn , (5.26)

where Jn = In − 1
n 1n1T

n is the n × n centring matrix and ∆S ∈ R
n×n
+ is a matrix

of sample-wise squared distances in S (Randolph et al., 2018). The matrix ∆S has
elements

(∆S)ij = ‖xi − xj‖2
S (5.27)

= 〈xi − xj, xi − xj〉S , (5.28)

where the distances are calculated in the inner product space defined by S. From
(5.26) it can be seen that the linear kernel is proportional to XXT and so is a specific
case of the String kernel with S = I (up to a multiplicative constant). The Linear
kernel therefore assumes independence between all OTUs.

For 16S rRNA datasets it is likely that S is not positive definite as the feature map
φ(·) may produce identical outputs for closely-related OTUs. In this case S, the
p × p matrix of OTU similarities, is rank-deficient (rank(S) << p) and therefore
only positive semi-definite. However, this is not a problem in practice as S itself is
not used as a kernel - the sample-wise kernel is XSXT, which is a square matrix of
size n << p. Even if S is rank deficient it is unlikely that the rank of X, which has
shape n × p, will be sufficiently low to cause the rank XSXT to be less than n.

Spectrum Kernel

The Spectrum kernel (Leslie, Eskin, and Noble, 2001) is defined by a feature mapping
that counts the number of k-mers that appear in string s and is given by

φ(s) = (h
spec
u (s))u∈Ak , (5.29)

where h
spec
u (·) counts the number of occurrences of substring u and Ak is the set of

possible k-mers in alphabet A. When analysing DNA sequences, A = {T, G, C, A}
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FIGURE 5.7: Spectrum kernels for 100 most abundant OTUs in the
Busselton dataset with k-mer length k ∈ {4, 12, 20}. Coloured bars
indicate the Family of the OTU - these show that the blocks of highly
similar OTUs correspond to taxonomic classifications. The value of k

can be tuned to correspond to different taxonomic classifications.

for the four nucleotide and so the k-mer feature space Ak has size 4k. k is a hyperpa-
rameter that must be tuned (e.g. by optimising the marginal likelihood in supervised
GP applications). The resulting kernel is the inner product

s(z, z′) = 〈φ(z), φ(z′)〉Ak , (5.30)

where z, z′ are the representative sequences of two OTUs. Figure 5.7 illustrates the
S = (s(zi, zj))

p
i,j=1 matrices for Spectrum kernels with lengthscales k ∈ {4, 12, 20}.

Smaller values of k produce a matrix with many non-zero elements while larger
values of k induce a block diagonal structure, with blocks corresponding to clades
of related OTUs.

Mismatch Kernel

DNA sequences undergo mutation, mainly in the form of insertions/deletions (in-
dels) and substitutions, while mismatches between identical sequences can also be
falsely recorded due to sequencing errors. Such similarities would not be recognised
by the Spectrum kernel. The Mismatch kernel (Leslie, Eskin, Weston, et al., 2003) ad-
dresses this by allowing for mismatches in k-mers of length m, which is an additional
hyperparameter whose maximum value is k − 1. Its feature map is given by

φ(s) = (hmis
u,m(s))u∈Ak , (5.31)

where hmis
u,m(s) counts the number of occurrences of any substring with at most m

mismatches with u.

Gappy Pair Kernel

The Gappy Pair kernel (Leslie and Kuang, 2003) allows for matches between a pair
of k-mers with up to g gaps, where g is an additional hyperparameter. Its feature
map is
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FIGURE 5.9: Empirical computation times for the string similarity
matrix S for different hyperparameter values. Calculations were run

on 8 cores using the Kebabs package for R (Palme et al., 2015).

The empirical compute times for the kernel matrix of the Busselton and FAME datasets
are shown in Figure 5.9, which show that the Mismatch kernel requires at least 3 or-
ders of magnitude more time than a Spectrum or Gappy pair kernel for the same
k-mer length. For the Spectrum, Gappy pair kernels and Mismatch kernels with
m ≤ 2 the compute time plateaus once it reaches some value of k (the specific value
depends on the type of kernel). This is because for all any moderately large k the
number of leaves in the trie (which is 4k) is far larger than the number of k-mers
actually present in the two strings z and z′, meaning that large parts of the tree are
unpopulated. These unpopulated subtrees are pruned before conducting the k-mer
search and so increasing the value of k does not increase the size of the search in
practice (Shawe-Taylor, Cristianini, et al., 2004).

While the time complexity of computing String kernels can be restrictive this is mit-
igated by a combination of two factors. Firstly, the elements of a kernel are indepen-
dent computations and so the computational time can be easily reduced using dis-
tributed computing infrastructure (so-called embarrassingly parallel computations).
Secondly, the nature of microbiome dataset analysis means that the definitions of the
OTUs (via their representative sequences) are fixed once the initial pre-processing
has been completed. The entire kernel matrix can therefore be computed in advance
and stored for future use, and so a computation time on the order of days (or even
weeks) is feasible as it only has to be performed once.

6.3 Implications of compositionality for kernel methods

A common strategy for analysing compositional data is to apply a log-ratio trans-
formation and then apply a statistical method to the transformed data, which live in
Euclidean space (Quinn and Erb, 2020). This is the strategy followed in this study.

Kernel methods centre around inner products in the feature space as any kernel
function k(x, x′) = 〈φ(x), φ(x′)〉H for a feature map φ(·) and RKHS H. As composi-
tional data live on the simplex, calculating Euclidean distances and inner products
on the observed abundances may give misleading results, but this is mitigated by
CLR transformation prior to computing the kernel function. For kernels that use
the Euclidean distance (such as RBF and Matern32) this is clearly appropriate as the
CLR transform maps the compositions to Euclidean space. The only requirement is
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to bear in mind that the transformed variables represent the abundance of an OTU
relative to the sample geometric mean when interpreting the results.

String kernels are computed using

k(x, x′) = x′SxT =
p

∑
i=1

p

∑
j=1

x′(i) Sij x(j) . (5.33)

When using absolute abundances each term weights the similarity of OTU i and
OTU j by their absolute abundance in x and x′. After applying the CLR transform
the ith sample contains the relative importance of OTU i and so it is valid to naively
apply (5.33) to the CLR-transformed abundances. The Linear kernel falls into this
category as it is simply a String kernel with S = I.

This is not the case for the UniFrac kernels as the UniFrac kernel is an inherently
non-compositional distance metric (Gloor et al., 2017). Both the weighted and un-
weighted variants depend on which branches of the phylogenetic tree have zero
abundance in two samples and zeros are not preserved by the combination of a zero-
replacement strategy and CLR transform. Therefore neither of two UniFrac kernels
are used with the CLR transform in this study.

7 Two-sample testing simulation study

7.1 Simulation aims

Given two sets of 16S rRNA samples, X = {xi}nx
i=1 ∼ P and Y = {yi}ny

i=1 ∼ Q,
where each xi, i = 1, . . . , nx, yi, i = 1, . . . , ny are p-dimensional vectors and a kernel
function k(·, ·), the following set of simulations aims to investigate the performance
of the test statistic MMDk(P, Q), the MMD between P and Q estimated using k(·, ·).
This is estimated from the samples in X and Y using

M̂MDk(X, Y) =

(
1

n2
x

nx

∑
i,j=1

k(xi, xj) +
1
n2

y

ny

∑
i,j=1

k(yi, yj)−
2

nxny

nx ,ny

∑
i,j=1

k(xi, yj)

)1
2

, (5.34)

which is the biased estimator of MMDk(P, Q) but has minimum variance (Gretton
et al., 2012). This estimator is simply the sum of the within-group similarities in
H minus the between-group similarities. Statistical significance is assessed using a
permutation test with Nperm permutations, where the p-value is given by

pperm =
∑

Nperm

i=1 1(M̂MDk(X∗
i , Y∗

i ) ≥ M̂MDk(X, Y))

1 + Nperm
, (5.35)

where {(X∗
i , Y∗

i )}
Nperm

i=1 is formed by permuting the combined samples of X and Y
(Phipson and Smyth, 2010).

This study requires a simulation strategy that:

1. uses a P and Q that generate realistic OTU counts;
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2. uses realistic phylogenetic relationships between the OTUs; and

3. offers control of the scale of phylogenetic differences between P and Q.

The first requirement is achieved by simulating the OTU counts from a Dirichlet-
multinomial DMN(N, α̂), where α̂ are Maximum likelihood estimates of the concen-
trations from a real 16S rRNA dataset. This also addresses the second requirement,
as it allows the use of the accompanying phylogenetic tree. The following section
describes how to address the third point by constructing P and Q such that they are
identical up to a given phylogenetic scale.

7.2 Controlling the phylogenetic differences between P and Q

In this simulation study the two populations are described by

P = DMN(N, α1) , Q = DMN(N, α2) , (5.36)

meaning that the difference between P and Q is fully defined by the relationship
between α1 and α2. Consider a scenario where each OTU is assigned to one of a set
of clusters C, where

C = {c1 , . . . , c|C|} . (5.37)

As each OTU is assigned to a single cluster it is possible to write the elements of
α1 as the union of disjoint subsets {α(ck)}|C|k=1, where each subset contains the DMN
concentrations corresponding to a single cluster of C.

It is then possible to define a family of permutation operations πC(·), for which

α2 = πC(α1) =⇒ α
(ck)
1 = α

(ck)
2 , ∀ck ∈ C . (5.38)

This ensures that the set of concentrations assigned to a cluster in P are identical to
the concentrations for that cluster in Q. The specific OTUs to which a concentration
is assigned may differ between P and Q if the cluster contains more than one item.
If the clustering C is constructed based on the phylogenetic distances between OTUs
then the difference between P and Q will be restricted to the same phylogenetic scale
as the OTU cluster assignments.

7.3 Phylogeny-aware clustering of OTUs

Controlling the scale of phylogenetic difference between P and Q therefore requires
defining clusters of phylogenetically similar OTUs. This can be achieved by clus-
tering the OTUs based on their phylogenetic distances, which are available via the
phylogenetic tree.

Consider a dataset of p OTUs, with accompanying phylogenetic tree τ = {V, E},
where the nodes V = {v1 , . . . , v|V|} are indexed such that {vi | i ≤ p} are the leaves
(OTUs) and {vi | i > p} are internal nodes (common ancestors). The tree τ can be
expressed as the symmetric matrix ∆τ ∈ R

p×p
+ whose elements are
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FIGURE 5.11: Distribution of OTU cluster sizes for the two datasets
at different values of the phylogenetic distance threshold ε (non-

singleton clusters only).

By combining the cluster definitions (5.40) with the permutation πC(·) (defined in
(5.38)) it is possible to construct two populations of OTU samples, P and Q, where
the differences between P and Q occur on a phylogenetic scale less than ε. The
permutation corresponding to the clustering Cε is denoted πε(·) from this point on-
wards, which is to say πε(·) := πC ε(·). This is illustrated in Figure 5.12.

This control results from the fact that πε(·) depends on the clustering Cε. Smaller
values of ε induce an OTU clustering that restricts any swaps from P to Q to occur
amongst closely-related OTUs. Two limiting cases are when

• ε = 0, when C0 contains p singleton clusters and π1 has no effect.

• ε = 1, when C1 contains 1 cluster of size p and π0 is a full permutation (it does
not consider the phylogenetic tree).

(
α
(c1)
1 α

(c1)
2 α

(c1)
3 α

(c2)
1 . . . α

(c|Cε|)
1 α

(c|Cε|)
2

)
Population 1 DMN concentrations

(
α
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2 α

(c1)
3 α

(c1)
1 α
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1 . . . α

(c|Cε|)
2 α

(c|Cε|)
1

)
Population 2 DMN concentrations

FIGURE 5.12: The difference between the two populations in the two-
sample test simulation study is a permutation that restricts swaps to

those within a set of clusters Cε = {c1 , . . . , c|Cε |}. Here α
(ck)
i is the

DMN concentration of the ith OTU in cluster ck. In this example the
clusters c1, c2 and c|Cε | have sizes 3, 1 and 2 respectively.

7.4 Simulation Setup

The final simulation setup is
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X = {xi}nx
i=1 ∼ DMN(N, α1), (5.41)

Y = {yi}ny

i=1 ∼ DMN(N, α2), (5.42)

N ∼NB(105, b), (5.43)

α2 =πε(α1) , (5.44)

where the scale of phylogenetic differences are controlled by ε. Throughout these ex-
periments nx = ny = n, where n is the group size and the dispersion parameter b for
the total reads per sample takes one value from b ∈ {3, 10, 30}. For all non-UniFrac
kernels the effect of transforming the counts using log(x + 1) and clr(x) are inves-
tigated, while only log(x + 1) is used with UniFrac kernels. Applying a log(x + 1)
transform is a popular pre-processing step in biological data analysis as it preserves
zeros and can reduce variance (Changyong et al., 2014). The full simulation proce-
dure is stated in Algorithm 7.1.

Algorithm 7.1 Simulation procedure for MMD two-sample tests (Section 7.4).

Require: empirical DMN concentrations α̂, phylogenetic tree τ, phylogenetic dis-
tance thresholds {ε1 , . . . , εn}, kernel k(·, ·), reads per sample dispersion b
for i = 1, . . . , nreplicates do

α1 = π̂1(α̂), π̂1 ∼ π1 ⊲ Population 1 DMN concentrations
for ε = {ε1 , . . . , εn} do

α2 = π̂ε(α1), π̂ε ∼ πε ⊲ Population 2 DMN concentrations
N ∼ NB(105, b) ⊲ Total reads per sample
X ∼ DMN(N, α1)
Y ∼ DMN(N, α2)

Calculate M̂MDk(X, Y) ⊲ Test statistic, using (5.34)
Calculate p-value ⊲ 100-permutation test, using (5.35)

end for

end for

The aim of the study is to investigate the behaviour of the two-sample test with
MMDk(X, Y) as the test statistic. An appropriate kernel induces a two-sample test
which has well-calibrated Type I error and high power, but is also sensitive to the
value of ε. These experiments use the following kernels:

• Spectrum kernel with k ∈ {2, . . . , 20};

• Mismatch kernel with k ∈ {2, . . . , 7} and m ∈ {1, 2, 3};

• Gappy pair kernel with k ∈ {2, . . . , 10} and g ∈ {1, 2, 3};

• UniFrac kernel (Weighted and Unweighted);

• RBF and Matern32 kernels (with median heuristic lengthscale, Flaxman et al.,
2016); and

• Linear kernel.
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7.5 Simulation results I: Type I error and power

The metric used to evaluate the behaviour of the two-sample test with a given kernel
is the fraction of replicates in which H0 is rejected at a nominal significance level of
0.1, for which a well-calibrated test rejects H0 close to 10% of the time when data are
simulated under the null hypothesis. If the observed rate of H0 rejections is higher
or lower than 10% then the Type I error of the test is poorly-calibrated.

When ε = 0, a test with any phylogenetic kernel has well-calibrated Type I error

Figure 5.13 shows the H0 rejection rate for the Spectrum kernel with k = 20 and the
Unweighted and Weighted UniFrac kernels. These kernels are included in Figure
5.13 as they are the phylogenetic kernels with the highest power (when ε > 0). The
behaviour of other phylogenetic kernels (Spectrum kernels with other values of k,
Mismatch and Gappy pair kernels) are discussed later in this Section. For these
three kernels the Type I error is close to the nominal significance level of 0.1 when
ε = 0 (Figure 5.13(A) and (B), left-hand column).

The Spectrum (k = 20) kernel and two UniFrac kernels have high power when

ε ≥ 10−2

Figure 5.13 also shows that when ε ≥ 10−2, the power of the Spectrum (k = 20) and
two UniFrac kernels quickly converges to one (H0 is always rejected) as the group
size increases. For ε ∈ {10−1, 1} all three of these phylogenetic kernels have power
equal to one in both datasets, irrespective of the group size or transformation.

The power of the Spectrum (k = 20) kernel depends on the choice of transforma-

tion when ε = 10−3

Only the Spectrum (k = 20) kernel has non-zero power when ε = 10−3 (Figure 5.13).
In this case the power of the Spectrum (k = 20) kernel depends on the transforma-
tion used - for the log(x + 1) transform the power depends on the value of b, the
dispersion parameter for distribution of the total reads per sample, with lower val-
ues of b decreasing the power of the test. Using the CLR transform removes this
dependence on b increases the power of the Spectrum (k = 20) kernel.

Tests using non-phylogenetic kernels have high power for all ε > 0, but are not

sensitive to ε

Figure 5.14 shows that the RBF, Matern32 and Linear kernels have well calibrated
Type I error (ε = 0) and high power (ε > 0). In fact, these three non-phylogenetic
kernels have higher power than the three phylogenetic kernels shown in Figure
5.13. However, this behaviour is a reflection of an undesirable feature of the non-
phylogenetic kernels - there is no sensitivity to the value of ε in the behaviour of
the two-sample test. This is to be expected as these kernels do not model any phy-
logenetic relationships and weight all differences between OTUs equally. They are
therefore very likely to reject H0 based on differences between very closely-related
(and often indistinguishable) OTUs.
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FIGURE 5.13: Rate of null hypothesis rejections at a significance level
of 0.1 for MMD two-sample tests with the highest-power phyloge-
netic kernels. The solid red line denotes the nominal significance level
(0.1) and the dashed lines show its 95% binomial proportion con-
fidence interval. Data were simulated using the phylogenetic trees
and DMN concentrations of the Busselton (A) and FAME (B) datasets.

Generated from 1,000 replicates of Algorithm 7.1.
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FIGURE 5.14: Rate of null hypothesis rejections at a significance level
of 0.1 for MMD two-sample tests with non-phylogenetic kernels. The
solid red line denotes the nominal significance level (0.1) and the
dashed lines show its 95% binomial proportion confidence interval.
Data were simulated using the phylogenetic trees and DMN concen-
trations of the Busselton (A) and FAME (B) datasets. Generated from

1,000 replicates of Algorithm 7.1.
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For phylogenetic kernels differences in MMD are driven by phylogeny

The MMD measures the distance between P and Q in the RKHS defined by the cho-
sen kernel. As every kernel function (defined by a kernel and its hyperparameters)
induces a distinct RKHS it is not possible to compare MMD values calculated using
different kernels. However, it is possible to inspect the properties of a specific RKHS
by comparing its empirical MMD results for different values of ε.

For a single replicate of Algorithm 7.1 the DMN concentrations α1 are fixed, from
which α2 are obtained using πε(·) using a sequence of ε values. Therefore, an appro-
priate RKHS for microbiome applications should produce larger MMD values when
ε = 1 than when ε = 0.1. The two scenarios represented by these values of ε are very
different, as ε = 1 imposes no phylogenetic restrictions on the differences between
the P and Q, but ε = 0.1 forces any differences to occur amongst OTUs that are most
10% of the total phylogenetic variation apart.

Figure 5.15 shows the ratio of MMD values when ε = 0.1 to its value when ε = 1 for
a selection of kernels. The Spectrum (k = 20) and UniFrac kernels (top row of plots)
exhibit this desirable behaviour, while non-phylogenetic kernels do not (bottom row
of plots).

For non-phylogenetic kernels differences in MMD are driven by the size of the

permutation space πε(·)

The median ratio of in Figure 5.15 is less than 1 for the non-phylogenetic kernels but
this is not due to phylogenetic differences as is the case for the phylogenetic kernels.
The decrease in MMD from ε = 1 to ε = 0.1 is caused by the relative sizes of the set
of permutations πε(·) and not phylogenetic differences between the P and Q. Recall
that

α2 = πε(α1) , (5.45)

where πε(·) is the family of permutations that leaves the elements of the set Cε un-
changed.

Larger values of ε define a small number of large OTU clusters, while smaller values
define a large number of small clusters with many singleton clusters (see Figure
5.11). Given a set of clusters Cε = {c1 , . . . , c|Cε|}, the size of the permutation space
πε(·) is ∑c∈Cε

|c|!, which grows quickly with ε due to the factorial dependence (see
Table 5.2).

An important driver of the size of πε(·) is the number of singleton clusters as any
OTUs in singleton clusters have the same marginal distribution in both P and Q.
As smaller values of ε result in more singleton clusters it follows to expect larger
MMD values for larger ε, irrespective of phylogeny. This is because there are a larger
number of possible permutations contained in πε(·), which is denoted |πε(·)|.
The relative importance of phylogeny and |πε(·)| in controlling the magnitude of
MMD values can be established by comparing the MMD when α2 = πε(α1) with
those calculated using πε̃(·), where πε̃(·) is the set of permutations defined by a
set of clusters with the same sizes as Cε, but whose labels are assigned at random
(without using the phylogenetic tree). In other words, given a set of phylogenetic
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TABLE 5.2: The size of the permutation set πε(·) for different ε.

ε = 10−3 ε = 10−2 ε = 10−1

Busselton 3 × 103 3 × 10153 > 10308

FAME 1 × 105 1 × 1028 1 × 10170

clusters Cε, the set of permutations πε̃(·) simply shuffles the cluster labels amongst
the OTUs. The result is a set of permutations with the same size as πε(·) that have
no relation to phylogeny.

Figure 5.16 compares MMD values calculated when α1 and α2 are related to one
another by one of πε(·) or πε̃(·). In Figure 5.16 the permutation that defines α2 is
either constructed using phylogeny (πε(·)) or uses an equivalent random clustering
(πε̃(·)). MMDs for the Spectrum (k = 20) and two UniFrac kernels have distinct
MMD distributions across for the two permutations, but non-phylogenetic kernels
have identical distributions. This demonstrates that in an RKHS defined by a non-
phylogenetic kernel, MMD values are determined by |πε(·)| and not by the phylo-
genetic relationships encoded by πε(·).

Larger k-mer lengths increase power for String kernels

Before applying String kernels it is necessary to select the k-mer length as well as the
number of mismatches (m, for the Mismatch kernel) or number of gaps (g, for the
Gappy pair kernel). Figure 5.17 shows that the String kernels all have well-calibrated
Type I error for any choice of hyperparameters. However, the power of the test de-
pends critically on the choice of k (Figure 5.18). The larger the value of k, the more
powerful the test for all three variants of the String kernel. For the Mismatch and
Gappy pair kernels, the effect of k is larger than that of their additional hyperparam-
eter (m or g). In addition, the Mismatch kernel has lower power than the Spectrum
or Gappy pair kernel for a fixed value of k, irrespective of the choice of m.

This dependence of power on k can be explained by considering the role of k-mer
length when computing String kernels. A String kernel computes k(x, x′) = xSx′T,
where the the length of k-mer controls the entries of S. Small values of k (e.g. k ≤ 4)
result in an S matrix that has few non-zero entries, effectively modelling all OTUs
as highly related to one another (see Figure 5.7). This means that larger values of ε
or larger group sizes are required for a statistically significant MMD value, as differ-
ences between OTU abundances in X and Y are “smoothed” by the S matrix. As k
increases S approaches a block-diagonal structure, where the only non-zero entries
are those corresponding to clusters of OTUs with very similar sequences. These S
matrices only smooth differences in P and Q if they occur between closely-related
OTUs, resulting in tests with higher power.
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FIGURE 5.15: The ratio of the empirical MMD when ε = 0.1 to when
ε = 1 across 1,000 replicates. The red line indicates equality between
the MMD in the two scenarios. The top row contains kernels that
exhibit desirable behaviour (phylogenetic kernels with well-selected
hyperparameters) while the bottom row contains kernels which do

not exhibit this behaviour (non-phylogenetic kernels).
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The behaviour of the phylogenetic kernels is stable between the two datasets

The behaviour of the Type I error (when ε = 0) and statistical power (when ε > 0)
follow the same trends when using the Busselton or FAME OTUs, suggesting that
this modelling approach is capturing relevant characteristics of these two lung 16S
rRNA datasets. It is also observed in both datasets that:

• the UniFrac kernels have zero power for 0 < ε ≤ 10−2 and high power for
ε > 10−2;

• the unweighted UniFrac is at least as powerful as the weighted UniFrac kernel;

• larger values of k increase the power of all three String kernels;

• the Mismatch kernel has lower power than the Spectrum and Gappy pair ker-
nels for fixed ε, sample size and k;

• the power of the Gappy pair and Mismatch kernels are more dependent on k
than on g or m;

• of the phylogenetic kernels, only the Spectrum (k = 20) kernel has non-zero
power when ε = 10−3; and

• when ε = 10−3 the power of the Spectrum (k = 20) kernel is inversely pro-
portional to b when using log(x + 1) to transform OTU abundances, but this
dependence is removed when using the CLR transform.

8 Host trait prediction using Gaussian process regression

8.1 Simulation aims

One of the most common applications of supervised learning in microbiome studies
is host trait prediction, which aims to to predict host phenotype from microbial com-
munity composition. Constructing such predictive models is often the first step of a
pipeline that includes a variable importance analysis for association testing and/or
biomarker identification. The longer-term aims of such studies are in the field of
personalised/precision medicine, which aims to tailor treatments more specifically
to individual patients.

The aim of this set of simulations is to identify scenarios under which a phylogenetic
kernel improves the training data fit of a GP regression model and the predictive
performance. Once this has been achieved these results then show how to estimate
the degree to which OTU effects are related to 16S rRNA gene sequence similarity by
comparing the log-marginal likelihood of GP regression models with phylogenetic
and non-phylogenetic kernels in a Bayesian hypothesis testing framework.

8.2 Simulation setup

In these simulations the OTU abundances X ∈ Z
n×p
≥0 are sampled from a single

population with DMN concentrations α, which are a permutation of Maximum like-
lihood concentration estimates from one the of the two real datasets. The phenotype
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FIGURE 5.17: Type I error rate of string kernels with different hy-
perparameters at a nominal significance level of 0.1. The solid red
line denotes the nominal significance level (0.1) and the dashed lines
show its 95% binomial proportion confidence interval. These results
are for a group size of 200 using the CLR transform and b = 3 but
are representative of all simulation scenarios tested. Generated from

1,000 replicates of Algorithm 7.1.
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FIGURE 5.18: Power of string kernels with different hyperparameters
at a nominal significance level of 0.1. These results are for a group
size of 200 using the CLR transform and b = 3 but are representative
of all simulation scenarios tested. Generated from 1,000 replicates of

Algorithm 7.1.
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model (5.46) follows Xiao et al. (2018) and assumes that the relative abundance of
each taxa in a sample is the relevant quantity in determining phenotype. A fictitious
continuous host phenotype y ∈ Rn is generated from Z ∈ [0, 1]n×p using a linear
model of the form

y = βZ + η , η ∼ N (0, ρ2) , (5.46)

where β ∈ Rp are effect sizes, Z contains relative abundances satisfying ∑
p
j=1 Zij =

1 , j = 1 , . . . , n and η is observation noise with variance ρ2. The variance of βZ is
fixed to 1 throughout and two noise-levels defined by one of ρ ∈ {0.3, 0.6} were
tested, corresponding to signal to noise ratios of 10

3 and 10
6 .

OTU effect sizes

The phylogenetic component of the simulation is introduced via the OTU effect sizes
β, which are assigned to clusters of OTUs in two scenarios, each of which represents
a distinct hypothesis:

1. OTU effects are driven by the 16S rRNA gene sequence and so phylogeneti-
cally similar OTUs have similar effects; or

2. OTU effects are assigned at random and are unrelated to the tree and 16S rRNA
gene sequence.

Scenario 1 is achieved by clustering OTUs in the same manner used in the two-
sample test simulations with ε = 0.1 while Scenario 2 assigns clusters at random.
The cluster sizes in the two scenarios have the same distribution. Given a set of
clusters, a set of ten causal clusters are sampled without replacement and assigned
cluster-level effects β̃ ∼ N (0, 10 I10). The OTU level effects are given by

β j =

{
β̃k if OTU j is in cluster k

0 otherwise
, (5.47)

which results in a sparse β. The distribution of OTU effect sizes in the two scenarios
is illustrated in Figure 5.19.

8.3 Gaussian process regression model

Given the OTU relative abundances Z and continuos host phenotype y, the aim is to
investigate the performance of the GP regression model

f ∼ GP(0, k(·, ·)) , (5.48)

for different kernel functions k(·, ·). Similarly to the two-sample testing simula-
tions, the kernels include three non-phylogenetic kernels: (i) Linear, (ii) RBF and
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FIGURE 5.19: Generating OTU effect sizes that are related to phy-
logeny (plot A) or are unrelated to phylogeny (plot B). Unmarked

leaves denote OTUs with zero effect size in the phenotype model.

(iii) Matern32. As the phenotype model (5.46) explicitly assumes that relative abun-
dances are driving the phenotype the UniFrac kernels are not included in these ex-
periments.

The only phylogenetic kernel included here is the String kernel, with all three vari-
ants (Spectrum, Mismatch and Gappy pair) considered together as a single kernel.
Unlike in the two-sample test example it is possible to consider these three variants
as a single kernel in supervised learning as the hyperparameters k, m and g can
be selected using the marginal likelihood. The same marginal likelihood optimisa-
tion procedure is used to learn the signal and noise variance estimates for the RBF,
Matern32 and Linear kernels. In addition, the RBF and Matern32 kernels also learn
a single lengthscale for all dimensions and using the median heuristic as the starting
guess. The models are trained on the relative abundances Z.

The GP models are evaluated using their log-marginal likelihood (LML, calculated
on the training set) and their log-predictive density (LPD) on the test set. The train-
ing set contains 80% of the samples while the test set contains the remaining 20%.

8.4 Full simulation procedure

A single replicate of the simulation setup proceeds as follows. Starting with a set of
DMN concentrations estimated using one of the observed datasets α and the accom-
panying phylogenetic tree, X ∼ DMN(π̂1(α)), where π̂1(·) performs a full permu-
tation of the OTUs (ε = 1 places all OTUs in a single cluster). The OTUs are then
placed into clusters under one of the two hypotheses (using the phylogenetic tree or
at random) and the cluster-level effect sizes are sampled from β̃ ∼ N (0, 10 I10). The
continuous phenotype is then generated from these effect sizes and relative abun-
dances Z using (5.46) and a fixed noise variance ρ ∈ {0.3, 0.6}. A GP regression
model is then trained with 80% of the samples using each of the four kernels and the
LML and test LPD are recorded. This is repeated for 1,000 replicates.
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8.5 Results

Log-marginal likelihoods

Figure 5.20 shows the difference in LML between a GP using a String kernel and
between a GP using one of the three non-phylogenetic kernels (Linear, RBF and
Matern32). The LML quantifies the fit of the GP to the training data with larger
values indicating a better fit. The difference in LMLs between two GP regression
models is the Bayes factor, which quantifies the relative strength of the hypotheses
represented by the two models.

When the effect sizes of OTUs are assigned using the phylogenetic tree a GP with
a string kernel has a larger LML value than any of the three non-phylogenetic ker-
nels. This is observed in both the low-noise (top row) and high-noise (bottom row)
settings and for all combinations of sample size n ∈ {200, 400} and sample read
dispersion b ∈ {3, 10, 30}. The String kernel has a larger LML than the RBF or
Matern32 kernels under both scenarios because the underlying phenotype model is
linear. However, the benefit of using a String kernel is larger when the OTU effects
are related to phylogeny.

When OTU effect sizes are unrelated to phylogeny, using the Linear kernel results in
larger LMLs than the String kernel. This is to be expected as in this case the Linear
kernel represents the true model, in which case there is a linear relationship between
OTU relative abundance and phenotype and no relationship between phylogenetic
similarity and OTU effect size. However, in the case where the effect sizes depend
on phylogeny the String kernel is a better model and so has a larger LML.

The two stationary kernels (RBF and Matern32) are included here as they are the
most popular for GP regression modelling both generally and for 16S rRNA data
specifically. These results show that a naive application of these kernels is not appro-
priate in this setting. Furthermore, given that the true phenotype model is linear it is
expected that the Linear kernel should perform better than RBF or Matern32, which
can both capture linear effects but are generally preferred because of their ability
to capture higher-order interactions. As these higher-order interactions are not in-
cluded in the phenotype model the additional complexity of the RBF and Matern32
kernels are a hindrance rather than a help.

These results suggest a promising avenue for investigating different hypothesis about
the nature of the relationship between community structure and phenotype in a
given dataset. In these simulations the difference in LML between a GP with a String
kernel and a GP with a Linear kernel is a reliable indicator of the extent to which the
OTU effects are distributed according to the 16S rRNA sequences (see Figure 5.21).
Such an analysis can therefore be used to identify whether the factors controlling
a host trait are related to the observed 16S rRNA sequence or if they are driven by
other factors (such as areas of the bacterial genome that have not been sequenced or
environmental factors).

Log-predictive densities

The second quantity of interest when evaluating GP models is the LPD, which quan-
tifies the predictive performance of the GP model on the held-out test data. The dif-
ference in LPD values for a GP using a String kernel and one using one of a Linear,
RBF or Matern32 kernels are shown in Figure 5.22, which show similar behaviour to
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FIGURE 5.20: LMLstring − LMLother, where LMLk is the log-marginal
likelihood of a GP regression with kernel k. The red line indicates

where both kernels have the same log-marginal likelihood.
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FIGURE 5.21: Comparing the LML (log-marginal likelihood) of GP
models trained with a String or Linear kernel differentiates between
the two hypotheses. The dashed line indicates when the two ker-
nels result in the same LML. The difference in LMLs between the two

models is a Bayes factor.

the LMLs. The Linear kernel exhibits better predictive performance than the String
kernel (a higher median LPD across replicates) when the effect sizes are unrelated to
phylogeny, while the String kernel has a higher median LPD when closely-related
OTUs have identical effects. Both the RBF and Matern32 kernels exhibit worse pre-
dictive performance than the String kernel in both effect size scenarios. In some
replicates the RBF or Matern32 have larger LML but lower LPD than the String ker-
nel, which indicates that they are over-fitting the training data. Again, the benefit of
using a String kernel over the RBF or Matern32 is larger when the OTU effect sizes
are related to phylogeny.

8.6 Effect of string kernel hyperparameters

The previous results presented the LMLs and LPDs of the String kernel that max-
imised the marginal likelihood on the training data. However, it is of interest to
investigate the behaviour of the GP model with respect to the String kernel hyper-
parameters k, m and g. Figure 5.23 shows the number of times each value of k, m and
g were chosen during GP regression model selection using two datasets. For both
datasets there is a preference for larger k-mer length, with values of k < 5 never cho-
sen in either dataset when using the Spectrum kernel. There is also a dependence
on the sample size, as when n = 400 the Gappy pair (g = 3) kernel is more likely to
have the largest log-marginal likelihood than when n = 200. The Mismatch kernel is
almost never selected in either dataset, suggesting that using a Spectrum or Gappy
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FIGURE 5.22: LPDstring − LPDother, where LPDk is the test log-
predictive density of a GP regression with kernel k. The red line indi-

cates where both kernels have the same LPD on the test set.
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FIGURE 5.23: Number of times different String kernel hyperparame-
ters are selected in 1,000 replicates of the GP regression experiments.
String kernel hyperparameters are selected using the log-marginal
likelihoods of the resulting GP model. These plots are for b = 10
and σ2 = 0.3 but are representative of the results with other values.

pair kernel is always the preferred option as they are both cheaper to compute and
lead to a larger LML.

9 Discussion

These results demonstrate the utility of using kernels to model the phylogenetic re-
lationships present in microbial datasets in two tasks: (i) the kernel two-sample test
and (ii) host-trait prediction using Gaussian process regression. Modelling phylo-
genetic relationships when performing the two-sample test results in a test that is
sensitive to the phylogenetic scale of the differences between two populations. Two-
sample tests using either the RBF or Matern32 kernel, which are the most commonly
applied with 16S rRNA data in the literature, are not sensitive to phylogenetic scales
as they weight all differences between OTUs equally, which can lead to misleading
results. The regression simulations showed that when the effect sizes are assigned
to OTUs based on phylogenetic relationships GP regression models with a String
kernel have has a larger LML than a model using a non-phylogenetic kernel.

The two-sample test simulations demonstrated that popular characteristic kernels
may not be appropriate for two-sample tests with 16S rRNA data, at least under the
assumptions of these simulations. The most restrictive of these assumptions is the
fact that the two groups were exactly equal in size throughout, which is clearly not
realistic. They also only considered scenarios where differences between P and Q oc-
curred through permutations of the underlying α, when there are many other ways
for two populations to differ. However, this simulation setup was constructed to
demonstrate the undesirable behaviours of the RBF and Matern32 kernel in this set-
ting, as well as show that the phylogenetic kernels do not exhibit these behaviours.
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This aim was achieved and these findings are sufficient to warn against using RBF
and Matern32 kernels in a two-sample test on OTU-level data (or at least to exercise
caution when performing such tests).

However, several hurdles remain in developing an ideal two-sample test based on
String kernels. These results show that String kernels show sensitivity to the value of
ε in the two-sample test but a method for tuning the String kernel hyperparameters
to be sensitive to a desired value of ε is still required. This is left for future work.

The most interesting finding from the GP regression simulations is that a comparison
of the LMLs from a string and linear (i.e. a Bayes factor) is a precise indicator of the
distribution of OTU effects across the phylogenetic tree. As the tree is constructed
from the 16S rRNA gene sequences this summary statistic therefore quantifies the
degree to which the OTU effects are explained by 16S rRNA gene sequence vari-
ation. If a GP with a non-phylogenetic kernel has a larger LML than one with a
phylogenetic kernel then the OTU effects must be explained by (i) variation in parts
of the microbial sequence that have not been collected or (ii) by non-sequence (e.g.
environmental) factors. This is therefore a novel way to approach this biologically
relevant question in a Bayesian hypothesis framework.

However, this approach for hypothesis testing has only been shown to be effective
when the assumptions of the simulation are met. The most important of these is that
the relative abundance is the relevant quantity when relating community composi-
tion to host trait. While this is not especially restrictive and is commonly assumed
in most analyses, it is still worth stating as a limitation. The GP regression simula-
tions also assume a linear dependence (with sparse OTU effects) between relative
abundance and the host trait. An interesting option for future work is to investi-
gate the robustness of the results to mis-specification of the phenotype model (when
the phenotype model contains non-linear dependencies but the phylogenetic kernel
remains linear).

One of the benefits of this approach is that it can be applied as-is even as sequenc-
ing technologies improve. For example, there is a growing movement to replace
OTUs (which use 97% sequence identity) with amplicon sequence variants (ASVs)
which use 100% identity. Since ASVs are still defined by a single sequence the same
analysis pipelines used here can be applied directly. This also extends to alternative
sequences technologies for microbial datasets. While 16S rRNA is still the mainstay
of bacterial sequencing it is limited by the relatively short region of bacterial DNA
that is sequenced, which results in limited resolution (Jeong et al., 2021) as well as
preventing more detailed functional analysis. Whole genome sequencing (WGS) of-
fers many advantages over 16S rRNA, resulting from the fact that it provides the
entire genomic sequence (Ranjan et al., 2016). However, WGS is far more expensive
than 16S rRNA leading to some researchers adopting a hybrid approach where the
two modalities are used to complement one another where possible (Regalado et al.,
2020). Applying String kernels to WGS data would be prohibitively expensive in its
current form due to the increased length of the representative sequences (∼250 for
16S rRNA and > 105 for WGS). However, this could be achieved using existing work
on Monte Carlo approximations to String kernels (Blakely et al., 2020), which would
act as a drop-in replacement for the exact kernels used here. These analyses could
also be extended easily to biological fields where variables are defined by strings,
such as genetics, proteomics and transcriptomics.

The two datasets come from two very different studies (for example, FAME only
contains sample from two severe lung diseases while Busselton contains relatively
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mild asthmatics and healthy controls) and were collected and pre-processed sepa-
rately. However, the results of the two-sample test and GP regression simulations
showed high-levels of consistency between the two datasets. This suggests that this
kernel-based approach may be widely applicable to a range of microbial studies,
including other lung disease datasets and other non-lung sample sites (such as the
gut). This can be explored further by validating these analysis pipelines on more
datasets, such as those contained in the Microbiome Learning Repository (Vangay
et al., 2019).

A final limitation of these experiments is that they focus on modelling the phyloge-
netic relationships amongst the OTUs and have largely neglected some other impor-
tant features of OTU count data: sparsity and zero-inflation. While these features
were present in the simulated OTU tables they were not explicitly modelled in the
MMD two-sample test nor the GP regression models. Recent work has developed
zero-inflated Gaussian processes where the kernels incorporate a latent model that
predicts the presence or absence of a zero (Hegde et al., 2018). One of the many
benefits of kernel methods is their modularity - it is straightforward to construct a
GP that models both zero-inflated counts and phylogenetic relationships by taking a
product or sum of the appropriate kernels. This modularity means kernel methods
are a popular approach for biological data integration as their additive property (the
sum of two kernel matrices is a valid kernel) enables the straightforward combina-
tion of heterogeneous data types (Daemen et al., 2009; Hériché et al., 2014; Mariette
and Villa-Vialaneix, 2018).
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Chapter 6

Discussion and Conclusions

This thesis describes three research projects concerning the application of non-parametric
predictive models to biological sequence data. While the work in Chapters 3-5 is
largely separate, they cover several closely-related themes that arise from the appli-
cation of these methods in biological research.

Supervised learning forms a large part of the work in all three results chapters. The
three chapters each reflect a different aspect of the main motivation for constructing
predictive models in biomedical applications. These models usually act as an ab-
straction of the data-generating process and are used to gain biological insights into
the underlying system rather than make predictions on unseen data.

In Chapter 3 a random forest classifier is used as a proxy for the two-sample test. The
same classifiers are then used for differential abundance analysis via variable impor-
tance. This chapter is an empirical study of the behaviour of this common approach
using a real dataset, which demonstrated that the results of a random forest-based
two-sample test are largely robust to the choice of data transformation. This ro-
bustness was observed in the predictive performance of the model as well as in the
results of popular hypothesis tests on the receiver-operating-characteristic curves.
The behaviour of a differential abundance analysis (using variable importance anal-
ysis) was also explored for the first time using microbiome data and found to be
largely robust, with some notable exceptions. These exceptions are data-dependent
and so investigating the effect of data perturbations and transformations is required
to achieve robust results in practice.

Random forests are sometimes considered interpretable due to their ability to com-
pute these variable importance scores. A variable importance analysis is one of
the most useful statistical tools for extracting biological knowledge from a predic-
tive model and the ability to compute these scores which distinguishes random
forests from other black box methods. This motivates Chapter 4, which presents a
method of calculating post-hoc grouped variable importance scores for Bayesian neu-
ral networks and sparse Gaussian process regression models. The resulting method,
GroupRATE, is able to effectively prioritise causal groups in two different simulation
studies.

Chapter 5 also includes a supervised learning analysis using Gaussian process re-
gression. Similarly to the other chapters, these models are not used explicitly for
prediction but rather to investigate the role phylogenetic relationships in lung mi-
crobiome datasets using simulation studies. The predictive model in this chapter
was used in a Bayesian hypothesis testing framework to investigate how taxa effects
on host traits are distributed across the genetic tree. This is achieved using ker-
nels that model the phylogenetic similarity between taxa using their 16S rRNA gene
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sequence and string kernels. These kernels are also utilised in Chapter 5 in an alter-
native approach to the two-sample test explored in Chapter 3. Rather than an em-
pirical study of a commonly-used approach, Chapter 5 describes a novel approach
that considers phylogenetic relationships via these string kernels. The resulting test
is sensitive to the phylogenetic scale of the difference between the two populations.
This makes it more appropriate for use with 16S rRNA sequencing data than other
popular kernels, with are liable to reject the null hypothesis over biologically irrele-
vant differences.

In addition to the future work outlined in the individual chapters, one common av-
enue for extending all three chapters is fully-Bayesian inference using Markov Chain
Monte Carlo (MCMC). This provides a principled way to encode prior knowledge
into these types of data-driven analyses, which is clearly desirable in this setting.
While data-driven approaches are most useful when prior knowledge is unavailable
or hard to specify, as more is learned about these problems it becomes more useful
to encode this knowledge in predictive models.

While there is existing work on Bayesian non-parametric equivalents the random
forest models in Chapter 3 (Matthew et al., 2015), the most popular Bayesian decision
tree ensemble is Bayesian additive regression trees (BART, Chipman et al., 2010).
A fully Bayesian treatment for the last layer Bayesian networks in Chapter 4 (as
opposed to variational inference) would allow asymptotically exact inference for
non-conjugate priors for the final layer. While priors for the features of a large neural
network would be difficult to specify, this could be mitigated by enforcing a sparse
structure on the inner layer weights using biological annotations (Demetci et al.,
2021). A fully Bayesian treatment of the Gaussian process used for trait prediction
in Chapter 5 would give posterior samples of the kernel hyper-parameters using
MCMC, which would allow variable selection to be combined with the phylogenetic
modelling provided by string kernels.

In conclusion, non-parametric predictive models are an increasingly useful tool for
data-driven analyses of biological systems using sequence data. As the volume and
complexity of biological datasets continue to increase the main bottleneck in bio-
logical research has moved from data acquisition to data analysis (J. Chang, 2015).
Extensive future research is therefore required to both better understand these non-
parametric methods and increase their utility as they continue to increase in popu-
larity.
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Appendix: List of software
packages

This appendix lists all the software packages used in each of the three results chap-
ters (Chapters 3, 4 and 5).

Data wrangling and plotting in all chapters was done using the tidyverse suite of
packages (Wickham et al., 2019). Microbial datasets were managed using phyloseq
(McMurdie and S. Holmes, 2013).

Chapter 3

Random forest models were fitted in ranger (M. N. Wright and Ziegler, 2015) and
cross-validated using caret (Kuhn, 2015). ROC analysis was peformed using pROC
(Robin et al., 2011). Shapley values were computed using fastshap (B. Greenwell and
M. B. Greenwell, 2021). LeDell’s confidence intervals were calculated using cvAUC
(E. LeDell, Petersen, Laan, and M. E. LeDell, 2022).

Chapter 4

The Bayesian neural network models were implemented using TensorFlow proba-
bility (Abadi et al., 2016) and the sparse Gaussian process regression model used
GPFlow (Matthews et al., 2017). The GroupLasso model was trained using the
group-lasso Python package (Moe, 2022). The random forest models were fit using
Scikit-learn (Pedregosa et al., 2011).

Chapter 5

The string kernels were computed using the KeBABs package (Palme et al., 2015).
Tree visualisations were produced using the gtree package (Yu et al., 2017). Maxi-
mum likelihood estimates for the Dirichlet multinomial models were computed us-
ing the MGLM package (J. Kim et al., 2018). All kernels were implemented using
the GPFlow framework (Matthews et al., 2017). UniFrac kernels also used Scikit-bio
(The scikit-bio development team, 2020).
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