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Abstract  
Despite significant progress in the control and elimination of malaria over the past two decades, the 

global burden remains high. The COVID-19 pandemic has seen malaria cases and deaths increase 

markedly over 2019 resulting in 241 million malaria cases and 627,000 malaria deaths worldwide in 

2020, an increase of 14 million cases and 69,000 deaths. Around 47,000 of these additional deaths 

were linked to pandemic-related disruptions in the provision of malaria prevention, diagnosis and 

treatment. The need for a highly efficacious childhood malaria vaccine has never felt more pertinent 

and in 2021, after 30 years of research and development, the World Health Organization 

recommended the first ever childhood vaccine against P. falciparum malaria, RTS,S/AS01E (RTS,S) for 

widespread use.  

The development of RTS,S, its deployment and continued evaluation has facilitated the synthesis of 

knowledge and data from across a wide range of different disciplines involved in malaria vaccine 

research. This depth of data has enhanced the development of mathematical modelling frameworks 

that combine immunological insights with epidemiological transmission models to address public 

health questions. These frameworks have formed a core part of the evaluation and policy 

recommendations surrounding RTS,S. 

The work presented in this thesis builds upon these modelling frameworks to provide insights into the 

potential impact of alternative RTS,S vaccination approaches. The two RTS,S approaches examined in 

this thesis are a delayed-fractional primary series and a seasonally targeted vaccination schedule, both 

of which have demonstrated promising efficacy in human challenge studies and field trials 

respectively.  

Drawing on data from the delayed-fractional RTS,S human challenge study I used a Bayesian 

framework to investigate immunological correlates of vaccine induced protection. I estimate that 

improvements to the quality, measured as antibody avidity, and not the quantity, measured as 

antibody titre, of the vaccine induced antibody response is critical to the increased efficacy against 

infection observed with this schedule.  

Next, I utilised data from seasonal malaria chemoprevention and seasonal RTS,S vaccination clinical 

trials to fit and validate an updated efficacy profile of the drug combination Sulfadoxine-

pyrimethamine plus amodiaquine (SP+AQ) used for seasonal malaria chemoprevention using a 

Bayesian survival analysis framework. This approach enabled me to capture uncertainty in the 

protection provided by seasonal malaria chemoprevention over time. I then use this updated efficacy 

profile along with the existing RTS,S vaccine efficacy profile to replicate trial cohorts in a transmission 
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model in order to validate the intervention models against clinical trial data. I found that the existing 

RTS,S model underestimated the protection provided by the seasonal vaccination schedule and 

explored several biologically motivated alterations to the model that brought results in line with those 

of the trial. These results combined with the trial reported antibody data suggest that efficacy 

improvements with this regime were not driven by increases in antibody quantity. Further model 

results suggest that when vaccination and chemoprevention were combined this resulted in potential 

synergistic interactions that enhanced the efficacy of SP+AQ in particular. This work resulted therefore 

in several updated versions of RTS,S and SP+AQ efficacy models that capture the current uncertainty 

in intervention effects.   

Finally extending these updated efficacy models from the validation exercise, I used a model of malaria 

transmission to investigate the long-term public health impact of novel RTS,S vaccination schedules 

compared to the original age-based RTS,S dosing schedule in seasonal settings. I considered the impact 

both in the presence and absence of seasonal malaria chemoprevention. I examined impact by degree 

of seasonality, transmission intensity and by wider health system and operational factors. RTS,S 

vaccination in seasonal malaria transmission settings could be a valuable additional tool to existing 

seasonal interventions, with seasonal delivery maximising impact relative to an age-based approach. 

Decisions surrounding deployment strategies of RTS,S in such settings will need to consider the local 

and regional variations in seasonality, current levels of other interventions and potential achievable 

RTS,S coverage.  
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Chapter 1 

1 Introduction  
Vaccines are historically one of the most cost-effective interventions that have greatly reduced the 

global burden of infectious diseases, particularly for childhood infections (Greenwood, 2014; Li et al., 

2021). However, the childhood burden of malaria remains significant even with widespread use of 

vector control interventions and effective treatment regimes. As vaccines are being introduced for 

more complex diseases, the development of an effective vaccine against malaria has remained a global 

priority. In this Chapter I first review the epidemiology and burden of malaria, following this I review 

the historical and current policy for malaria control and detail existing malaria interventions. Next, I 

provide an overview of the current understanding of naturally acquired immunity against malaria and 

how this provides evidence for potential vaccine development. Following this, I review the history of 

malaria vaccine development and detail recent progress and challenges, before introducing key 

mathematical models of malaria transmission dynamics and discussing how they have been used as 

tools to further malaria vaccine research and policy. Finally, the aims of this thesis are introduced.  

1.1 Malaria lifecycle  

Malaria is caused by the protozoan parasite Plasmodium of which there are five species that infect 

humans: P. falciparum, P. vivax, P. ovale, P. malariae, and P. knowlesi. Of these species, P. falciparum 

and P. vivax pose the greatest threat to human health. There is growing concern around P. knowlelsi, 

as zoonotic transmission has been associated with severe malaria outcomes in certain areas of South 

East Asia (Singh & Daneshvar, 2013).  

The lifecycle of P. falciparum is complex and involves many antigenically distinct stages and two hosts: 

the female Anopheles mosquito and humans (Figure 1.1) Mosquitos can inoculate between 15–200 

sporozoites into a human host, and these infective parasites then undergo development inside 

hepatocytes to form merozoites (Vanderberg, 1977). After a period of around 7–10 days sporozoites 
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mature into schizonts which then rupture, and merozoites are released into the bloodstream where 

they invade red blood cells (Murphy et al., 1989). Within the red blood cells, merozoites replicate, 

producing around 16–32 daughter merozoites which are then released into the blood stream 

following red blood cell rupture, where they reinvade new red blood cells (Warrell & Gilles, 2017). This 

process of invasion, replication and release occurs with a periodicity of 24–26 hours, and it is these 

periodic cycles that are associated with clinical disease manifestations (Warrell & Gilles, 2017). After 

approximately 10 days, a subset of red blood cell invading merozoites will differentiate into 

gametocytes, and these gametocytes continue to circulate in hosts until they are ingested by a feeding 

mosquito. Sexual reproduction then occurs in the mosquito midgut where gametes fuse to produce a 

zygote that elongates to become a motile ookinete, invades the midgut wall, and forms an oocyst. 

Following a sporogonic period of approximately 8–10 days, the oocysts burst to release sporozoites 

that travel to the mosquito's salivary glands, where they are ready for the cycle to repeat when the 

mosquito host takes a new blood meal.  

P. vivax differs from the P. falciparum lifecycle in several ways, however, one of the most 

epidemiologically significant is the ability of P. vivax to lie dormant and undetectable in the liver of 

infected human hosts. This hypnozoite stage can reactivate weeks, months, or even years after the 

initial infection and re-enters the bloodstream causing relapses in clinical malaria and further onwards 

transmission (Mueller et al., 2009). The variation in relapse times results from regional and seasonal 

Figure 1.1 The lifecycle of P. falciparum in humans and mosquitos. A) Inoculation of sporozoites and the pre-erythrocytic 
infection stages in the liver; B) Asexual reproduction and blood stage infection; C) Gametocyte production and ingestion 
during a bloodmeal; and D) Sexual reproduction and developmental stages within the mosquito. Drawn using BioRender 
(www.biorender.com).  

http://www.biorender.com/
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variations in mosquito vector populations, with tropical regions tending to experience shorter relapse 

periods, and longer periods in more temperate areas (White et al., 2016).  

1.2 Anopheles mosquito vector  

Malaria is a mosquito-borne parasitic disease that infects humans through the bite of an Anopheline 

mosquito vector. Of the approximately 70 Anopheles species that are able to transmit malaria to 

humans, an estimated  30–40 are dominant vector species, and are therefore of relevance to public 

health (Hay et al., 2010; Sinka et al., 2010a, 2010b; Warrell & Gilles, 2017). Anopheles species are 

found in varying geographic regions, and within regions distinct environments support different 

species, which affects malaria epidemiology and transmission. 

Malaria parasites are transmitted by the female mosquito of the Anopheles genus. Anopheles species 

have four distinct life stages: egg, larva and pupa make up the juvenile aquatic stages before the final 

adult stage. Juvenile stages last for around 5–14 days depending on the species and the ambient 

temperature (World Health Organization, 2013a). Once at the adult stage mosquitos tend to mate 

within a few days of emergence and fed on sugar sources for energy. Female mosquitos will also 

require a blood meal for the development of her eggs (Harrison, Brown & Strand, 2021). It is this stage 

that links the female mosquito and human hosts in the malaria transmission cycle. Following a blood 

meal, the female must rest while the eggs are developed, again this process depends on the ambient 

temperature taking around two to three days in tropical conditions (World Health Organization, 

2013a). Females will then lay their eggs in standing water and continue to seek further blood meals to 

sustain further egg production. This cycle continues until the female dies, around one to two weeks 

later (Matthews, Bethel & Osei, 2020). Chances of survival are dependent on temperature and 

humidity and the ability of the female mosquito to find a blood meal (World Health Organization, 

2013a). In order to transmit parasites mosquitos must survive for longer than the extrinsic incubation 

period of plasmodium which is around 9–18 days depending on species and temperature (higher 

temperatures accelerate parasite growth) (Stopard, Churcher & Lambert, 2021; Ohm et al., 2018). 

Many Anopheles species are opportunistic in their feeding behaviour and will take a blood meal from 

whatever host is available either human or animal. The degree to which a species favours humans, 

known as anthrophily, determines their efficiency as a vector of malaria. Anopheles gambiae and 

Anopheles funestus are two highly anthropophilic species that makes them the primary vector in much 

of sub-Saharan Africa (SSA) (Sinka et al., 2010b).  

1.3 Malaria disease  

Infection with the malaria parasite can lead to parasitaemia resulting in uncomplicated clinical malaria, 

that may then progress to severe malaria or death. Uncomplicated malaria is associated with the 
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erythrocytic stage of the parasite lifecycle. The first symptoms of disease are usually non-specific and 

similar to many febrile illnesses. These initial symptoms of malaria occur around 7–14 days following 

an infectious bite, and patients present with a fever or flu-like illness including shaking, chills, 

headache, muscle ache and tiredness. Unlike other febrile illness however, malaria fevers are often 

characterised by their periodic presentation, approximately every two days coinciding with the 

erythrocyte rupture (Crutcher & Hoffman, 1996). At this stage of disease, with prompt treatment with 

an effective antimalarial, malaria is curable. However, if left untreated or if treatment seeking is 

delayed, severe malaria complications can occur which often lead to death especially in the case of P. 

falciparum. Severe malaria often causes vital organ dysfunction, or abnormalities in the patient’s 

blood or metabolism, and manifestations can occur singularly but often present in combination. 

Manifestations of severe malaria include cerebral malaria, respiratory failure, acute renal failure, 

severe malarial anaemia, hypoglycemia and metabolic acidosis. Severe malaria can be treated with 

intravenous or intramuscular artesunate and symptoms of the severe manifestation are managed and 

treated in addition (World Health Organization, 2012a). 

1.4 Malaria burden and epidemiology  

According to the World Health Organization (WHO) World Malaria Report 2021 an estimated 241 

million cases of malaria (95% Confidence Interval (CI) 218–269 million) and 627,000 deaths (95% CI 

583,000–765,000) due to malaria occurred in 2020 (World Health Organization, 2021g). Globally the 

WHO Africa Region carries a disproportionately high burden of malaria and in 2020 95% of global 

malaria cases and deaths occurred in this region. In 2020, six countries in SSA accounted for just over 

half of all malaria deaths worldwide: Nigeria (27%), the Democratic Republic of the Congo (12%), 

Uganda (5%), Mozambique (4%), Angola (3%), and Burkina Faso (3%). Children under five years of age 

are particularly vulnerable to malaria and 77% of global malaria deaths occurred in this age group in 

2020, predominantly in SSA. 

The species responsible for the most severe and life-threatening form of malaria, P. falciparum, 

accounts for over 98% of global malaria cases and 99.7% of malaria cases in the WHO Africa Region. 

P. vivax is rare in SSA as a result of the high prevalence of the Duffy-negative phenotype which confers 

P. vivax resistance (Howes et al., 2011). P. vivax is, however, the dominant malaria parasite in most 

malaria endemic countries outside of SSA, having a much wider geographic range than P. falciparum 

in part due to its ability to lie dormant, allowing transmission to be sustained following seasons which 

are unsuitable for vectors (Figure 1.2) 
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1.5 Malaria transmission intensity  

Understanding the relationship between the prevalence of malaria infection, clinical incidence and 

transmission intensity is key to understanding the epidemiology and the impact of control 

interventions on malaria. Malaria transmission intensity varies greatly between populations, age-

groups and over space and time and can be quantified using measurements from epidemiological 

studies. A wide variety of methods and metrics have been developed to quantify malaria transmission 

intensity. 

The entomological inoculation rate (EIR) measures the average number of infectious bites per person 

per year (ibppy). This is a measure of the level of exposure of humans to infectious mosquitos. It is 

calculated as the product of the human biting rate (the number of bites per person per year) and the 

sporozoite rate (the proportion of mosquitos with sporozoites in their salivary glands) (Kelly-Hope & 

McKenzie, 2009). Human biting rates are estimated by catching and counting the number of 

Figure 1.2 Global malaria epidemiology 2019. Predicted age-standardised parasite prevalence rates for A) Plasmodium 
falciparum and B) Plasmodium vivax for children two to ten years of age in 2019. The colour scaling is split to better 
differentiate within low endemic areas, with one linear scale between zero and 0·01 (grey shades) and a second linear scale 
between 0·01 and 1 (colours from blue to red). Malaria Atlas Project. Creative Commons 3.0 Unported Licence (CC BY 3.0s) 
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mosquitoes that attempt to feed on a human, and the sporozoite rate is found by examining those 

mosquitoes for the presence of sporozoites. While considered one of the mainstays in quantifying 

malaria transmission, measuring the EIR is time consuming and costly, requiring intensive and 

repeated measures throughout the year and large sample sizes (Kelly-Hope & McKenzie, 2009).  

While the EIR measures the average number of infectious bites per year, not every infectious bite 

results in clinical malaria (Smith et al., 2010; Churcher et al., 2017; Rickman et al., 1990; Tall et al., 

2009). The force of infection (FOI) is defined as the number of infections per person per unit time and 

counts all new human malaria infections in some time interval with or without clinical symptoms, and 

whether or not a person is already infected (Smith et al., 2010). The number of infectious bites that 

actually progress to malaria per unit of time describes the efficiency of transmission and can be 

estimated as FOI/EIR (Smith et al., 2010). The FOI is often quantified using transmission models of 

malaria but can also be estimated from cohort studies (Molineaux, Gramiccia & Organization, 1980; 

Smith et al., 2010; Mugenyi, Abrams & Hens, 2017; Mueller et al., 2012) or repeat cross-sectional 

surveys (Felger et al., 2012). Another method of measuring the FOI is using serological markers of 

malaria infection (Drakeley et al., 2005; Stewart et al., 2009; Pull & Grab, 1974). Antibody 

measurements in exposed populations can be used to estimate the seroconversion rate which is 

defined as the rate at which individuals become seropositive (Drakeley et al., 2005; Stewart et al., 

2009; Pull & Grab, 1974; Cook et al., 2010; Pothin et al., 2016).   

A further mainstay of malaria transmission metrics is the parasite prevalence rate, PfPR/PvPR, defined 

as the proportion of a population infected with malaria. This is measured through cross-sectional 

surveys and is widely collected. It is important to note that the method of parasite detection 

(microscopy or polymerase chain reaction (PCR) testing) will influence the estimate the parasite 

prevalence (Okell et al., 2009).  Parasite prevalence rates measure the burden of both asymptomatic 

and symptomatic malaria infections at a specific period in time. Parasite prevalence rates have been 

crucial for mapping global malaria burden reductions and tracking declines in malaria over time (Bhatt 

et al., 2015; Weiss et al., 2019).  

Measurements of clinical malaria incidence, defined as the number of clinical malaria episodes 

(usually defined as fever plus parasite density above a given threshold) per population over a given 

time period instead capture a direct measure of disease burden. Clinical malaria incidence can be 

measured by active or passive case detection or indirectly estimated using other routine health 

information data (Olotu et al., 2010; Snow et al., 2005; Hellewell et al., 2018; Epstein et al., 2020). In 

addition to clinical malaria incidence, measurements of severe malaria at the population level can be 

determined as the number of severe cases per person year at risk, but is often measured via the 
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number of cases presenting to the hospital (Njuguna et al., 2019). This can be biased by differential 

levels of access to care and differences in diagnosis of severe malaria (Camponovo et al., 2017).   

A number of metrics derived from entomological data on vector behaviour are also of importance for 

measuring malaria transmission. Vectoral capacity describes the potential intensity of transmission by 

malaria vectors and is defined as the expected number of infectious bites that could eventually arise 

assuming perfect efficiency of transmission from all mosquito bites on a single human on a single day 

(Garrett-jones, 1964). The stability index provides a measure of the capacity of the environment to 

sustain malaria transmission and is defined as the number of human bites taken over the course of a 

vector’s lifetime (Kiszewski et al., 2004).  

Finally, the basic reproduction number of malaria, 𝑅0, defined as the expected number of secondary 

infections arising from a single index case in a fully susceptible population, is another key metric (Smith 

et al., 2007). If 𝑅0 is greater than one, transmission is sustained and if it is below one then transmission 

cannot be sustained of its own accord (Smith et al., 2007). Given the endemicity of malaria, we are 

often interested in understanding transmission in the context of pre-existing immunity and ongoing 

interventions meaning that populations are not fully susceptible. In this case, the effective 

reproduction number, 𝑅, is calculated.  

When thinking about malaria transmission intensity, it is important to consider the variation in 

transmission. Heterogeneity in malaria transmission exists across all spatial scales, from differences 

within households to continental geographic variation. Large-scale geographic variation in 

transmission is primarily driven by climatic and environmental factors including temperature, altitude, 

land-use and urbanicity and the impact that these have on vector and parasite survival and breeding 

site availability, for example (Doumbe-Belisse et al., 2021; Gething et al., 2011; Garske, Ferguson & 

Ghani, 2013; Shah et al., 2022; Bødker et al., 2003). On a smaller scale, heterogeneity within 

communities can be driven by proximity to breeding sites, housing quality and host availability through 

the ownership and use of bed-nets, and attractiveness to mosquitos (Smith, Dushoff & McKenzie, 

2004; Clark et al., 2008; Tusting et al., 2017; Atieli et al., 2011; Burkot, 1988). In addition, we also 

observe substantial temporal variation in malaria transmission which results from seasonal climate 

patterns, particularly rainfall, with transmission peaking during the rainy season and lowest during the 

dry season (Craig, Le Sueur & Snow, 1999; Reiner et al., 2015). Additionally, as mentioned above not 

all infectious mosquito bites result in blood-stage infection, and factors that impact the efficiency of a 

mosquito bite including immunity and heterogeneity in mosquito biting are also important 

determinants in the heterogeneity of malaria transmission.  
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1.6 Malaria control and elimination  

Given the global burden of malaria, its control and elimination are a public health priority. The 

promising results of early Dichlorodiphenyltrichloroethane (DDT) insecticide spraying campaigns 

during World War II led the WHO to commence a Global Malaria Eradication Campaign (GMEC) in 

1955 with DDT at the forefront (World Health Organization, 1955; Mendis et al., 2009). Despite some 

success of the GMEC in the Americas, Europe and some island nations, there was growing concern 

that eradication was not technically or economically feasible in many areas (World Health 

Organization, 1967). As financial and political will for this cause diminished, coupled with developing 

resistance to DDT, the campaign was unsuccessful and in many areas malaria resurged to levels 

equivalent to and higher than before the campaign (Mendis et al., 2009; World Health Organization, 

1969). The aim of eradication was subsequently replaced with longer-term control strategies and 

improvements in disease management (World Health Organization, 1969).  

The Roll Back Malaria (RBM) initiative was then established in 1998 bringing together multilateral, 

bilateral, nongovernmental, and private organisations with the aim of significantly reducing malaria 

incidence (World Health Organization, 1999). In 2000 African leaders gathered at an RBM summit to 

sign a declaration which committed to reducing malaria mortality by half by 2010 (Global Partnership 

to Roll Back Malaria, 2000). This renewed political and financial commitment to the control, 

elimination and eradication of malaria was reflected in the Millennium Development Goals agenda in 

2000 and the subsequent Sustainable Development Goals agenda in 2015 (United Nations, 2000, 

2015). In this Development Goal era, vector and parasite-based control initiatives have been 

successfully implemented in SSA. These include the widespread deployment of long-lasting 

insecticide-treated bed-nets (LLIN), the use of indoor residual spraying (IRS) and the use of highly 

effective artemisinin-combination therapies (ACT), both in routine care and in seasonal malaria 

chemoprevention (SMC) campaigns (World Health Organization, 2015a). The widespread distribution 

of these highly cost-effective control measures coupled with a period of considerable economic 

growth, and improvements in housing and health systems is considered to have significantly reduced 

incidence rates of new malaria cases by approximately 40% in SSA between 2000–2015 (World Health 

Organization, 2015a; Bhatt et al., 2015). Between 2000-2015 it was estimated that global efforts 

averted 6.2 million malaria deaths and 1.2 billion cases (World Health Organization, 2015a). In 

addition, during this time increasing numbers of countries moved towards malaria elimination 

(certified when a country achieves at least three consecutive years of zero indigenous malaria cases). 

Between 1987 and 2007 no country achieved WHO certification of malaria elimination, but since 2007 

thirteen countries have been certified (World Health Organization, 2021a).  
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However, global progress has stalled in recent years and clinical malaria case numbers have increased 

every year since 2015 (World Health Organization, 2020a). The increases from 2019 and 2020 were 

the highest between any two years in this time, with an estimated additional 14 million cases and 

68,000 deaths occurring in 2020 compared to the previous year (World Health Organization, 2021g). 

While these trends have been occurring since 2015 this was exacerbated by the COVID-19 pandemic 

and other humanitarian emergencies that led to disruptions in the delivery of essential malaria, and 

other healthcare, services. The WHO African Region contributed to over 95% of the increase in cases 

and deaths between 2019 and 2020 (World Health Organization, 2021g). Furthermore, of the 21 

countries identified as having the potential to eliminate malaria by the WHO in 2016, only seven 

countries achieved elimination certification (World Health Organization, 2021h). On 27 May 2021, the 

World Health Assembly adopted an updated Global Technical Strategy (GTS) for malaria (World Health 

Organization, 2021c). The updated strategy reflects lessons learned and experiences from the 5 years 

from when the GTS was first set out (World Health Organization, 2015b), including the plateau in 

global progress and the impact of the COVID-19 pandemic. The ambitious global targets now include: 

• Reducing malaria case incidence by at least 90% by 2030 

• Reducing malaria mortality rates by at least 90% by 2030  

• Eliminating malaria in at least 35 countries by 2030 

• Preventing a resurgence of malaria in all countries that are malaria-free 

The development of next-generation malaria tools that complement or replace existing tools will be 

essential for sustainable control and elimination programmes (World Health Organization, 2021c) and 

for achieving the ambitious target of malaria eradication within a generation (Feachem et al., 2019). 

While interventions against malaria are used in countries in each stage of malaria control or 

elimination there are key differences to these aims outlined below:  

• Malaria control: is the reduction of disease incidence, prevalence, morbidity, or mortality to 

a locally acceptable level resulting from targeted interventions. Continued intervention is 

required to sustain control. 

• Malaria elimination: is the interruption of local transmission achieving zero locally acquired 

cases within a year in a defined geographic area. Continued measures are required to 

prevent the reestablishment of transmission. 

• Malaria eradication: is the permanent reduction to zero of the worldwide annual incidence 

of malaria infection caused by all species of human malaria parasites. Interventions are no 

longer required.  
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1.7 Principal methods of malaria control and elimination 

The current suite of malaria interventions focusses on both the prevention of malaria through vector 

control and chemoprophylaxis and the prompt treatment of cases coupled with improved surveillance 

and reporting of malaria.  

Vector control is a vital component of malaria control and elimination strategies. Vector control aims 

to reduce transmission of the malaria parasite through preventing human contact with the Anopheles 

mosquito vector and reducing the vector population. The two mainstay vector control interventions 

currently recommended by the WHO are insecticide treated bed-bets (ITNs) and indoor residual 

spraying (IRS). ITNs are hung over beds to protect individuals from bites during the night; they act as 

a physical barrier and are impregnated with insecticides that repel, disable, or kill mosquitos that come 

into contact with the net (Lengeler, 2004; Lim et al., 2011). This means that ITNs not only protect the 

user but can also have a ‘community effect’ when high levels of coverage are achieved (>50%), 

protecting non-users due to the effect of the insecticide on mosquito survival and longevity (Killeen 

et al., 2007; Govella, Okumu & Killeen, 2010; Russell et al., 2010; Hawley et al., 2003; Howard et al., 

2000). Improvements in net design now means that insecticides are impregnated within the fibre of 

the net resulting in long-lasting protection (~3 years) without the need to regularly retreat nets  (Kilian 

et al., 2011; World Health Organization, 2019a). The scale-up of distributions of LLINs has been 

attributed as a major component in reducing malaria burden (Bhatt et al., 2015) however, increasing 

mosquito resistance to commonly used insecticide classes threatens the effectiveness of LLINs. To 

date, 29 countries have reported mosquito resistance to all main insecticide classes and 78 have 

reported resistance to at least one class (World Health Organization, 2021g). IRS involves the spraying 

of residual insecticide to potential vector resting surfaces within dwellings, again killing or repelling 

vectors from the house (Choi, Pryce & Garner, 2019; Pluess et al., 2010). The choice of insecticide used 

for IRS depends on the local vector susceptibility to the active compound (World Health Organization, 

2015c; Sherrard-Smith et al., 2018).  

Effective anti-malarial drugs are vital for both treatment of malaria but also as preventative 

interventions. Antimalarials act by targeting and clearing the blood-stage parasites from individuals, 

preventing the progression to severe disease or death. Historically chloroquine and sulphadoxine-

pyrimethamine (SP) were widely used as first line treatment, however resistance to these 

monotherapies developed and spread, rendering these drugs ineffective in many countries (Roux et 

al., 2021). These regimes were replaced with artemisinin-based combination therapies (ACTs) – an 

artesunate drug combined with a longer lasting partner drug (White, 1999a, 1999b; World Health 

Organization, 2001). Prompt and effective case-management of malaria is critical, as early diagnosis 

and treatment reduces morbidity and mortality (Sinclair et al., 2009). In addition, currently 
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recommended ACTs have also been shown to have gametocidal activity which can contribute to 

transmission reductions (Okell et al., 2008b). The WHO recommends that all suspected cases of 

malaria are confirmed using diagnostic methods, ensuring appropriate treatment for individuals, a 

rationed use of ACTs to help prevent resistance and improved surveillance, and reporting of malaria 

cases to help national programmes understand disease burden (World Health Organization, 2000). 

The development of rapid diagnostic tests (RDTs) for malaria have been vital in the expanded use of 

malaria diagnostics, enabling quick testing without the need for laboratory facilities. 

The development of resistance to currently available drugs is a large threat to malaria control. 

Resistance to artemisinin-based combination therapies is widespread across southeast Asia but to 

date has not been widely reported in SSA (Hamilton et al., 2019). Recent studies however have shown 

that genes associated with ACT resistance are present in Rwanda (Uwimana et al., 2020), and that 

such mutations correlated with an observable reduction in parasite clearance times in Ugandan 

patients (Balikagala et al., 2021; Asua et al., 2021). Given the historic prevalence of resistance to older 

drugs across Africa, the existence of partial artemisinin resistance in SSA is of great global concern 

(Conrad & Rosenthal, 2019). Not only is resistance to therapies a problem but genetic deletions that 

render parasites undetectable by currently available RDTs that detect histidine-rich protein 2 (HRP2) 

are also of concern, putting patients at risk of misdiagnosis, significant morbidity and death. Recent 

surveys in the Horn of Africa region found that over 50% P. falciparum cases are missed by RDTs due 

to the high prevalence of HRP2 deleterious parasites (World Health Organization, 2021d).  

Preventative chemotherapy using full courses of anti-malarial drugs delivered regardless of infection 

status has also been introduced as control methods in specific contexts and for particular risk groups. 

WHO recommended approaches to preventive chemoprophylaxis include: 

• Intermittent preventive treatment of infants (IPTi), SP delivered to infants (<12 months) at 

routine childhood immunisation appointments (World Health Organization, 2011a); 

• Intermittent preventive treatment of pregnant women (IPTp), SP delivered to all women in 

their first or second pregnancy from the second trimester onwards (World Health 

Organization, 2013b); 

• Seasonal malaria chemoprevention (SMC), SP+AQ delivered to all children under 6 years old 

at monthly intervals during the peak malaria transmission season (World Health 

Organization, 2012b); 

• Mass drug administration (MDA) treats the entire population of a defined geographic area, 

either with or without first screening for parasites, at the same time (World Health 

Organization, 2018).  
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Again, preventative chemotherapy is reliant on the anti-malarial remaining effective against parasite 

strains in specific locations. For example, resistance to SP is widespread in eastern Africa due to 

historic use of SP as a first line treatment (Okell, Griffin & Roper, 2017; Naidoo & Roper, 2011). This 

means that despite suitable conditions for SMC this intervention cannot be deployed (Cairns et al., 

2012).  

Despite the threat of resistance, current interventions remain effective and their scale-up is a priority. 

However, novel and complementary tools are required to ensure the sustainability and success of 

malaria control and elimination programmes. This includes the development of novel drugs, 

insecticides, and RDTs that could be deployed in the face of resistance but also totally novel 

interventions. Some examples include: genetically modified mosquitos (Hoermann et al., 2021; Nolan, 

2021), sterile insect techniques (Munhenga et al., 2011; Nolan, 2021), attractive toxic sugar baits 

(Traore et al., 2020; Fraser et al., 2021), transgenic fungi (Lovett et al., 2019), long-lasting antimalarial 

injectables (Burgert et al., 2022; Bakshi et al., 2018), monoclonal antibodies (Gaudinski et al., 2021; 

Kisalu et al., 2018), spatial repellent emanators (Hellewell et al., 2021; Ogoma et al., 2017), eave tubes 

(Sternberg et al., 2021; Snetselaar et al., 2017) and housing improvements (Furnival-Adams et al., 

2021; Tusting et al., 2017), ivermectin (Slater et al., 2020; Foy et al., 2019) and antimalarial treated 

bed nets (Paton et al., 2019). Notably a vaccine against malaria has been a long-term goal, and perhaps 

one of the most important classes of novel interventions against malaria and this now looks to be 

within reach.  

1.8 Naturally acquired immunity to malaria – the case for a vaccine  

Morbidity due to P. falciparum infections can vary from mild clinical symptoms of febrile illness to 

severe and life-threatening disease due to vital organ dysfunction. Individuals living in malaria 

endemic areas, however, do acquire substantial protection against clinical and severe forms of 

malaria, but rarely, if ever, is sterile immunity achieved (Doolan, Dobaño & Baird, 2009). Generally, 

immunity against severe malaria develops rapidly, followed by immunity against clinical disease and 

finally, more slowly, the build-up of immune tolerance to blood-stage parasites (Figure 1.3) (Gupta et 

al., 1999; Griffin et al., 2015; Snow et al., 1998). While immunity to patent parasitaemia can develop 

by adulthood, subpatent infections that are detectable with advancements in molecular diagnostic 

techniques still occur. It is this immune tolerance that results in asymptomatic carrier infections 

among adult populations in malaria endemic areas (Bousema et al., 2014; Okell et al., 2012; Mosha et 

al., 2013; Nguyen et al., 2018). The acquisition of immunity to malaria has been shown to be both age- 

and exposure-dependent leading to a high degree of variability in patterns of immunity across 

populations (Rodriguez-Barraquer et al., 2018; Greenwood, Marsh & Snow, 1991; Griffin et al., 2015; 

Baird, 1995; Reyburn et al., 2005; Idro et al., 2006). This progressive acquisition of immunity to malaria 
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is why younger children are particularly vulnerable to episodes of severe malaria, once a period of 

protection provided from maternally derived antibodies wanes and before the acquisition of this 

effective immunity (Riley et al., 2001).  

The development of naturally acquired immunity therefore forms a strong rationale for the 

development of a malaria vaccine that could protect children from the deadly consequences of 

malaria infections. Epidemiological patterns of anti-disease and anti-parasite immunity have been 

described across a range of transmission settings, however there are still fundamental gaps in our 

understanding of the mechanisms of immunity. Understanding the immunological basis of naturally 

acquired immunity is of further importance for rational vaccine development.  

1.8.1 Immunological responses to P. falciparum   

Due to the parasite multistage lifecycle, there are several points at which the immune system could 

respond to the invading threat. Upon first exposure to blood stage parasites, the innate immune 

system launches a non-specific immune response triggering a release of pro-inflammatory cytokines 

which help to limit parasite growth (Stevenson & Riley, 2004). These cytokine responses also allow for 

the effective priming of the humoral and cellular-mediated immune responses which then provide 

adaptive responses upon re-exposure (Stevenson & Riley, 2004). Key to the adaptive immune 

Figure 1.3 Progression of Naturally Acquired Immunity to Malaria. The relationship between age and malaria severity in an 
area of moderate transmission intensity shows how with repeated exposure by early childhood, protection is first acquired 
against severe disease, then more slowly protection builds up against clinical disease and finally much more slowly develops 
against parasitaemia. In areas with higher transmission intensity the rate of acquisition of naturally acquired immunity can 
increase. Reproduced from Griffin et al 2015 doi: 10.1098/rspb.2014.2657.  

Clinical  Severe  
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responses is the phenomenon of pattern recognition of parasite antigens by B and T cells, which 

enables a rapid and more effective parasite specific protective response to each lifecycle stage (Tew 

et al., 1997). However, the exact immune effector mechanisms involved in parasite regulation, control 

and elimination at each lifecycle stage are not fully characterised. The ability of malaria parasites to 

evade and interfere with effective immune responses also presents several challenges in mounting 

and understanding successful immune responses (Langhorne et al., 2008; Ramasamy, 1998; Gomes et 

al., 2016). The key mechanisms understood to play a significant role at each parasite life-stage are 

shown in (Figure 1.4).  

Antibodies directed against sporozoite antigens are a key mediator of pre-erythrocytic immunity 

(Beeson et al., 2019). The circumsporozoite protein (CSP) is the most abundant protein on the surface 

of sporozoites and is thought to be a major target for antibody responses (Nussenzweig & 

Nussenzweig, 1985); other antigen targets include liver-stage antigen 1 and 4 and Thrombospondin-

related adhesive protein (John et al., 2008, 2005). Antibodies can opsonise and immobilise free 

sporozoites in the skin and blood preventing hepatocyte invasion (Schwenk et al., 2003), and a strong 

role of antibody mediated phagocytosis and activation of the classical complement pathway has 

recently been eluded to in this response (Feng et al., 2021). Once sporozoites have invaded the liver, 

CD8+ T cells and interferon gamma (IFNγ) cytokine production have been shown to be instrumental 

at recognising and killing infected hepatocytes (Lefebvre & Harty, 2020; Epstein et al., 2011). However, 

this response is under heavy regulation to prevent inflammatory damage to liver cells and is frequently 

insufficient (Bertolino & Bowen, 2015; Riley & Stewart, 2013). There is also some evidence of long-

lasting protective immunity through memory B cells to pre-erythrocytic lifecycle stages from 

individuals in malaria endemic regions and international travellers (Weiss et al., 2010; Ndungu et al., 

2013; Nogaro et al., 2011). These naturally occurring immune responses to sporozoite life-stages are 

poor and frequently inefficient at eliminating parasites and are generally considered inadequate to 

confer protection against clinical malaria. 

The majority of naturally acquired immunity is directed against blood stage parasites – both freely 

circulating merozoites and infected red blood cells. Merozoites express a much larger number of 

proteins on their surface compared to the sporozoite life stage, and these proteins exhibit many more 

genetic polymorphisms and functional redundancies making identification of immune targets difficult. 

Key antigens are thought to include merozoite surface protein 1 and 2, apical membrane antigen 1 

and erythrocyte binding antigen 175 (Reiling et al., 2019; Richards et al., 2013; Mu et al., 2006; 

Volkman et al., 2006). Antibodies have been shown to be important for blocking merozoite invasion 

of red blood cells, opsonising free merozoites in the blood stream and activating complement 

pathways leading to parasite removal (Irani et al., 2015; Bouharoun-Tayoun et al., 1995; Boyle et al., 
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2015; Healer, Chiu & Hansen, 2018). Antibodies have also been shown to correlate with naturally 

acquired protection in longitudinal studies in malaria endemic regions (Reiling et al., 2019; Hill et al., 

2016; Osier et al., 2014; Boyle et al., 2015). In addition, a broad range of cellular mediated immune 

responses are induced at this stage. T cells support antibody production and secrete IFNγ, a pro-

inflammatory cytokine, which activates macrophages leading to phagocytosis of opsonised parasites 

and infected red blood cells (Stanisic & Good, 2016). If these inflammatory responses are not carefully 

regulated however, they can contribute to significant immunopathology (Coban, Lee & Ishii, 2018). 

The regulation of this inflammatory response requires production of anti-inflammatory cytokines such 

as interleukin-10 (IL-10) and transforming growth factor-β (TGF-β), the balance and timing of which 

are critical for determining disease outcomes (Stanisic & Good, 2016). Long-term memory B cell 

production for blood stage antigens has been demonstrated following a limited number of clinical 

episodes, and there is further evidence to suggest that repeat infections in endemic areas of moderate 

to high transmission could actually have a detrimental impact on the generation of memory B cells 

which could hamper immunological memory in certain settings (Pérez-Mazliah et al., 2020; Ly & 

Hansen, 2019).  

Additional anti-gametocyte immune responses that reduce onwards transmission in malaria exposed 

individuals have been shown to occur (Ouédraogo et al., 2011). Key antigen targets for naturally 

acquired sexual stage immunity include pre-fertilization antigens Pfs230 and Pfs48/45 (Ouédraogo et 

al., 2011; Stone et al., 2016). Naturally acquired antibodies against gametocytes can act by blocking 

development in human hosts, facilitating complement-mediated gamete killing or by interrupting 

fertilization and development in the mosquito following ingestion (Tonwong et al., 2012; Bousema et 

al., 2011; Stone et al., 2018). However, gametocyte specific antibodies are often poorly induced and 

not widely circulating in populations (Bousema et al., 2011).  
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Figure 1.4 Overview of the immune responses directed against each malaria parasite life stage. Drawn using BioRender 
(www.biorender.com). 

http://www.biorender.com/
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1.9 Malaria vaccine candidates 

While a deeper understanding of the mechanisms that mediate immunity to malaria is needed, the 

evidence of protective responses at each stage of the parasite lifecycle provides a strong rational for 

vaccine approaches to malaria. Modern vaccine development can therefore be split into three 

categories depending on the stage of the parasite lifecycle being targeted: 

1. Pre-erythrocytic vaccines: target inoculated free sporozoites and the intra-cellular liver-

stage parasites. A pre-erythrocytic vaccine that completely blocks the establishment of 

parasites in the liver or prevents maturation of the liver stage parasite would prevent 

both disease and onwards transmission.  

2. Blood-stage vaccines: target free merozoites or merozoite infected red blood cells. 

Sterile immunity will not be achieved with a blood-stage vaccine but instead it would 

induce protection against severe and clinical disease manifestations by reducing parasite 

densities.  

3. Transmission blocking vaccine: target the sexual stages of the parasite lifecycle 

(gametocytes, gametes, ookinetes) to prevent parasite development within the 

mosquito. A transmission blocking vaccine would have no impact on individual disease 

outcomes but would reduce onwards transmission with the aim of inducing community 

level protection against infection and thus disease.  

In the absence of a single life-stage vaccine that induces sterilising immunity, combination vaccines 

targeting multiple stages of the parasite’s lifecycle are an attractive developmental target. Through a 

vaccine platform that combines antigenic targets for each stage of the parasite lifecycle, an effective 

immunological safety net could be induced such that broad biological effects prevent infection, 

disease and onwards transmission (Moore & Hutchings, 2014).  

1.9.1 Malaria vaccine development  

In 2006 the WHO launched the Malaria Vaccine Technology Roadmap (MVTR) which formed a 

strategic framework to underpin the activities of the global malaria vaccine research and development 

process (Malaria Vaccine Funders Group, 2006). The framework was revised in 2013 in response to 

the changing epidemiological landscape of malaria and the renewed goals of eventual malaria 

eradication (Malaria Vaccine Funders Group, 2013). The roadmap sets ambitious targets to develop a 

malaria vaccine of at least 75% efficacy against clinical malaria after one year and the development of 

a vaccine to significantly reduce transmission of the parasite (Malaria Vaccine Funders Group, 2013). 

Malaria vaccine development is a challenging and difficult process, hampered by our still relatively 
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limited understanding of functional immunity that confers protection against malaria, and a lack of 

understanding of specific immune correlates of vaccine induced protection. 

Modern malaria vaccine development dates back to early immunisation studies in the 1960s using 

radiation-attenuated whole sporozoites, conducted first on mice (Nussenzweig et al., 1967) and then 

on humans in the 1970s (Clyde et al., 1973). While demonstrating that a high level of protection 

against malaria was possible, these approaches were not practical on a large scale, requiring 

numerous bites from irradiated mosquitos. However, this was the first proof of principle helping to 

stimulate many avenues of malaria vaccine research. In the 1980s the identification of the 

circumsporozoite protein (CSP) on the surface of sporozoites and the subsequent cloning and 

sequencing of this gene (Nardin et al., 1982; Dame et al., 1984) led to the development of vaccines 

that isolate and deliver specific antigens instead of whole parasites. By 1997 the first subunit vaccine 

based on the CSP antigen demonstrated protection against experimental challenge with malaria (Osé 

et al., 1997).   

Candidate malaria vaccines must be tested for safety, immunogenicity and efficacy in clinical trials. 

Clinical trials are carried out in phases with each phase focussing on some overlapping and some new 

research questions to inform researchers on the next steps of development. In addition, clinical trials 

provide data allowing policy makers to assess how vaccines could potentially be integrated into 

country health systems and contribute to knowledge on vaccine technology as well as infection and 

disease specific questions on immunity. The following are a summary of the typical phases associated 

with malaria vaccine research (MVI PATH, 2015):  

• Research and preclinical development includes identifying antigen targets, creating the 

vaccine platform, conducting preclinical studies in animal models or cell lines, and developing 

vaccine manufacturing processes.  

• Phase 1 clinical trials assess the safety and immunogenicity of a vaccine candidate in humans. 

Early trials typically involve small numbers of trial participants (<100 volunteers) and take 

around a year from recruitment to initial data analysis. Phase 1 trials for malaria vaccines are 

often conducted in two stages, the first in malaria naïve volunteers known as Phase 1a trials 

which then progress into Phase 1b trials in malaria exposed populations in endemic countries. 

A favourable safety and immunogenicity profile means the vaccine candidate can progress to 

Phase 2 trials.   

• Phase 2 clinical trials monitor the safety, potential side effects, immune response and 

preliminary vaccine efficacy against infection and/or clinical disease. These trials can also be 

used to determine the optimum dosage and schedules for vaccine candidates. Phase 2 trials 
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are larger in size, recruiting up to several thousand volunteers and last around 2 years. Phase 

2 trials are again conducted in two stages, Phase 2a trials in malaria naïve volunteers in non-

endemic countries are vaccinated and then exposed to the bites of infectious mosquitos in 

human challenge studies with close monitoring to see how long it takes for them to become 

infected, if infection is detected volunteers are treated with antimalarials. These challenge 

trials allow for the assessment of a vaccine efficacy before moving into Phase 2b trials in 

endemic-populations under natural exposure to malaria. If the vaccine maintains suitable 

safety and demonstrates efficacy in Phase 2 trials, it can proceed to Phase 3 testing.  

• Phase 3 clinical trials are large-scale long-term trials, recruiting thousands of participants and 

lasting for three to five years. Phase 3 trials monitor the safety and potential side effects and 

can evaluate vaccine efficacy on a large scale. Trials need to be large to ensure that vaccine 

efficacy can be measured under varied transmission settings. Once a vaccine has 

demonstrated safety and sufficient efficacy, manufacturers submit for licensure to regulatory 

authorities along with a plan for post-licensure safety monitoring.  

• Phase 4 clinical trials is an additional monitoring step that ensures any rare, serious adverse 

events including delayed side-effects are detected early as they might not become evident 

until sufficiently large numbers of people have been vaccinated. Phase 4 studies continue to 

monitor the effectiveness of the vaccine and can monitor the duration of protection over 

longer-time frames and impacts on secondary health outcomes for example reducing severe 

malaria outcomes or mortality.  

Over the past 20 years malaria vaccine development has progressed rapidly, and since 2000 around 

ten new malaria vaccine clinical trials were registered each year on ClinicalTrials.gov and vaccines 

targeting each stage of the P. falciparum lifecycle are now in pre-clinical or clinical studies. A full set 

of clinical trials for a successful candidate can take up to 15 years and is highly costly (MVI PATH, 2015). 

Table 1.1 highlights a selection of vaccine candidates, in clinical and pre-clinical trials in each of these 

categories. The most advanced of these candidates is the RTS,S/AS01E pre-erythrocytic vaccine 

(referred to as RTS,S) which has been developed in partnership with GlaxoSmithKline and the Malaria 

Vaccine Initiative at PATH since 2001. The vaccine recently received a positive recommendation from 

the WHO for widespread use in sub-Saharan Africa (World Health Organization, 2021f).  
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Table 1.1 Select malaria vaccine candidates in clinical and preclinical studies.  

Vaccine 
candidate 

Immunogen 
type  

Antigen  
Clinical 
trial status 

Summary Key references 

Pre-erythrocytic stage vaccines (infection blocking) 

RTS,S Subunit CSP Phase 4 
implement
ation 
studies 

RTS,S is a subunit vaccine created by fusing a portion of the CSP and the hepatitis B surface antigen 
(HBsAg) and is delivered with a potent adjuvant system AS01E developed by GSK. RTS,S is the first 
malaria vaccine to be recommended for widescale use by the WHO. Phase 3 clinical trials completed in 
2014 in 11 sites across sub-Saharan Africa. Efficacy of 68% (95% CI 64%-72%) was reported after 6 
months, with efficacy waning significantly to 36% (95% CI 32%-41%) by the end of follow up. 7 year 
follow up studies shown vaccine derived protection to reach zero by four years with potential negative 
efficacy in the fifth year.  

(RTSS Clinical Trials 
Partnership, 2015; Olotu 
et al., 2016; World Health 
Organization, 2021b) 

R21 Subunit CSP Phase 3 The first next generation RTS,S-like vaccine. The R21 vaccine is a virus-like particle based on the C-
terminal portion of the circumsporozoite fused to the N-terminus of HBsAg. R21 is manufactured using 
the Matrix-M adjuvant produced by Novavax. Recently completed Phase 2 field trials showed vaccine 
efficacy of 77% (95% CI 67%-84%) after 6 months in a cohort of children aged 5-17 months resident in a 
highly seasonal transmission setting in Burkina Faso with a background of substantial use of bednets, 
moderate implementation of seasonal malaria chemoprevention and minimal indoor residual spraying. 
Due to differences in case detection methods between the R21 and RTS,S trials and differences in the 
timing of vaccinations to the beginning of the malaria transmission season, the question of superiority 
or non-inferiority between these two vaccines remains unanswered.  

(Datoo et al., 2021; Collins 
et al., 2017) 

Full length 
CSP 

Subunit  CSP Phase 1 rCSP/GLA-LSQ malaria vaccine features a full length recombinant CSP protein which includes a region 
critical to sporozoite cell attachment and hepatocyte invasion that are not present in RTS,S. Human 
antibodies against the junction between the N-terminal and central repeat region have been isolated 
and protected against controlled human malaria infection suggesting potential advantage of including 
this junctional region in a CSP-based vaccine. A Phase 1 dose escalation study was recently completed 
with this rCSP/GLA-LSQ formulation and showed a favourable safety and tolerability and 
immunostimulatory results and is moving forward with next clinical trials.  
 

ClinicalTrials.gov 
Identifier: NCT03589794  
(Friedman-Klabanoff et al., 
2021) 
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PfSPZ 
PfSPZ-CVac 
PfSPZ-GA1 

Whole 
sporozoite, 
radiation 
attenuation, 
chemical 
attenuation, 
genetic 
attenuation 

Whole 
sporozoite 

Phase 2  In 2010 the company Sanaria introduced the PfSPZ vaccine, utilising a new technology that entailed 
harvesting sporozoites from the salivary glands of mosquitos infected with laboratory cultured 
parasites. Harvested sporozoites can then be attenuated by different mechanisms: through radiation, 
through chemoattenuation (concomitant administration of antimalarial drugs in vivo) or through 
genetic attenuation (deletion of genes required for liver-stage development). Efficacy of these PfSPZ 
approaches have been demonstrated in controlled human infectious challenge studies in malaria naïve-
adults and Phase 1 clinical trials. PfSPZ demonstrated 52% (95% CI 31%-86%) efficacy against malaria 
infection after 24 weeks in healthy adults living in malaria endemic areas in Mali. Larger-scale Phase 2 
field trials of PfSPZ have since been completed but the routine under examination showed no significant 
protection against infection with malaria by 6 months follow up but showed efficacy against clinical 
malaria of up to 46% (95% CI 7%-69%) after 3 months. PfSPZ-CVac administered under the prophylactic 
cover of pyrimethamine or chloroquine demonstrated after 3 months high levels of protection against 
homologous and heterologous challenge up to 100% in human challenge studies. PfSPZ-GA1, a PfSPZ 
vaccine attenuated by deletion of b9 and slarp genes has been tested for safety, immunogenicity, and 
preliminary efficacy in malaria-naïve Dutch volunteers. While no conclusions on protection from PfSPZ-
GA1 could be drawn from this study due to the small sample size, the favourable safety profile and 
immunogenicity warrant further clinical evaluation which is ongoing. PfSPZ vaccines require liquid 
nitrogen cold chains, are delivered intravenously and these do present a number of challenges for scale-
up and associated costs.  

(Sissoko et al., 2017; 
Oneko et al., 2021; 
Steinhardt et al., 2020; 
Oneko et al., 2020) 
(Mwakingwe-Omari et al., 
2021; Sulyok et al., 2021; 
Murphy et al., 2021)  
ClinicalTrials.gov 
Identifier: NCT03952650 
(Roestenberg et al., 2020) 

Blood stage stage vaccines (disease blocking) 

PfRH5 Subunit RH5 Phase 2 P. falciparum reticulocyte-binding protein homolog 5 (PfRH5) is a novel antigen that binds to an 
essential red blood cell receptor and shows limited levels of polymorphisms. PfRH5 vaccine candidates 
induced broadly neutralising antibodies in preclinical studies and has demonstrated protection in non-
human primate models of malaria. Most recently an RH5 recombinant protein vaccine formulated in 
AS01B adjuvant was found to be safe and well tolerated and while the current formulation was not able 
to prevent parasitaemia the authors observed a significant reduction in parasite growth rate in human 
challenge studies. A panel of human monoclonal antibodies against RH5 from this clinical trial were 
isolated and a subset identified with neutralizing, non-neutralizing and potentiating activity to help 
guide the next generation of immunogen design.  
 

(Payne et al., 2017; 
Douglas et al., 2011; 
Minassian et al., 2021; 
Alanine et al., 2019) 
ClinicalTrials.gov 
Identifier: NCT02927145 

AMA1-
RON2 

Subunit AMA1 Preclinical Previously apical membrane antigen 1 (AMA1) showed poor efficacy in early blood stage vaccines trials 
but is known to be an important protein involved in parasite growth. Following the identification of a 
complex between AMA1 and rhoptry neck protein 2 (RON2) that is essential for parasites to enter red-
blood cells. Recently this AMA1-RON2 complex was tested in non-human primate models of malaria 
infection and was shown to protect Aotus monkeys.  

(Srinivasan et al., 2013, 
2017) 
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Chemically 
attenuated 
parasite 
vaccines 
(CAP) 

Whole 
blood-stage 
parasite 
(chemical 
attenuation) 

 Phase 1 Whole parasite asexual blood-stage vaccines are also being investigated. Chemoattenuation in this life-
stage approach currently involves using DNA-binding drugs known as Cyclopropylpyrolloindole 
analogues administrated in vitro. Early clinical studies in malaria naïve volunteers in Australia showed 
chemically attenuated parasites to be immunogenic, safe and well tolerated and they induced P. 
falciparum specific T cell responses but not antibody responses. This approach was also shown to 
induce protection against challenge in rodent models of malaria and has begun the process of a human 
trial of a 3-dose regime to assess efficacy in a controlled human malaria challenge study.   

(Good et al., 2013; Raja, 
Stanisic & Good, 2017; 
Raja et al., 2016; De et al., 
2016; Stanisic et al., 2018) 
ACTRN12618001314213 

Malaria in Pregnancy blood stage vaccines 

VAR2CSA Subunit chondroiti
n sulfate A 
(CSA) 

Phase 1 A finding central to vaccine development against malaria in pregnancy is that the associated adverse 
health outcomes of malaria in pregnancy are gravidity-dependent with first time mothers in areas of 
sustained transmission at substantially higher risk of morbidity. In subsequent pregnancies women 
acquire adaptive immunity that restricts the extent and consequences of placental infection. This 
protective immunity is believed to be driven by protective antibodies that block the parasite binding to 
chondroitin sulfate A (CSA) molecules in the placenta and opsonise infected red blood cells. VAR2CSA is 
a protein expressed by parasites and is the leading candidate antigen for placental malaria vaccines. 
Two VAR2CSA-derived placental malaria vaccines have begun Phase 1 clinical trials: PRIMVAC and 
PAMVAC. Both trials were designed as randomised, double-blind placebo-controlled dose escalation 
trials to evaluate the safety and immunogenicity of vaccine candidates. PRMVAC was tested in both 
malaria-naïve French volunteers and P. falciparum exposed non-pregnant women in Burkina Faso and 
PAMVAC tested in malaria-naïve German volunteers. Both formulations were safe and well-tolerated 
and immunogenic.  
 

(Fried et al., 1998; Fried & 
Duffy, 2015; Mordmüller 
et al., 2019; Sirima et al., 
2020) 
 
  

Transmission blocking vaccines  

Pfs25 Subunit  Zygote 
surface 
proteins 

Phase 1 Transmission blocking vaccines (TBVs) aim to incorporate surface antigens of the mosquito and sexual 
stages of the parasite (gametes and zygotes) to induce antibodies that kill parasites preventing parasites 
from successfully infecting a mosquito. Zygote surface proteins are expressed post-fertilization in the 
mosquito gut, two leading candidates are Pfs25 and Pfs28, with Pfs25 the first TBV candidate to be 
prepared as a recombinant protein and the leading candidate in clinical trials to date. Early iterations of 
recombinant Pfs25 vaccine candidates expressed antigens as monomers however, these showed poor 
immunogenicity in early clinical trials and several new approaches are now in development. The leading 
candidate is a Pichia pastoris produced Pfs25 (PpPfs25H-A) chemically conjugated to the mutant, non-
toxic ExoProtein A (EPA) of Pseudomonas aeruginosa to generate nanoparticles. This was shown in 2016 
to be well-tolerated, immunogenic and induced functional antibodies that blocked transmission in 
membrane feeding assays which correlated with antibody titres, but responses and activity waned 

(Barr et al., 1991; Kapulu 
et al., 2015; Menon et al., 
2018; Radtke et al., 2017; 
Talaat et al., 2016; 
MacDonald et al., 2016; 
Chichester et al., 2018; 
Jones et al., 2015)(de 
Graaf et al., 2021; Sagara 
et al., 2018)  
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rapidly. Further viral vectored Pfs25 candidates have also been tested and while demonstrating good 
safety profiles and being immunogenic, significant transmission reducing activity has not yet been 
demonstrated and alternative vaccine formulations need to be studied. Functional immunogenicity and 
durability must be improved before advancing transmission-blocking vaccines further in clinical 
development.  
  

Pfs230 Subunit Gamete 
surface 
proteins 

Phase 1 Gamete surface proteins are expressed in the human host and classified as pre-fertilisation antigens. 
Pfs230 antibodies have been shown to lyse gametes in the presence of compliment. Pre-clinical studies 
found Pfs230 to induce high levels of functional antibodies in animal testing. Recombinant Pfs230 
vaccine candidate (Pfs230 domain 1 (D1)-EPA conjugate vaccine) is currently being tested in Phase 1 
clinical trials in the US and Mali. Early prior results from Pf230D1-EPA formulated in Alhydrogel showed 
Pfs230D1 to be significantly more potent than Pfs25-EPA as a vaccine, and the addition of Pfs25 to 
Pfs230D1 did not appear to improve on this activity.  

(Read et al., 1994; Healy et 
al., 2021) 
ClinicalTrials.gov 
Identifier: NCT02942277; 
NCT03917654; 
NCT05135273; 
NCT02334462;  

Pfs48/45 Subunit Gamete 
surface 
proteins 

Preclinical  Pfs48/45 is a binding partner for Pfs230 and is considerably smaller but has been challenging to prepare 
as a properly folded recombinant protein. Recently Pfs48/45 domain 3 has been expressed in 
Lactococcus lactis as a fusion with the R0 region of asexual stage Glutamate Rich Protein, resulting in a 
construct called R0.6 C. R0.6 C induced transmission blocking antibodies in animal studies and a 
subsequent fusion protein that incorporated the pro-domain of Pfs230 induced significantly higher 
serum functional activity than in preclinical studies suggesting a benefit of combining Pfs230 and 
Pfs48/45.  

(Singh et al., 2017, 2019, 
2021) 
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1.9.2 RTS,S/AS01 pre-erythrocytic malaria vaccine  

RTS,S is a pre-erythrocytic subunit vaccine created by fusing a portion of the P. falciparum 

circumsporozoite protein (CSP) and the hepatitis B surface antigen and is delivered with a potent 

adjuvant system AS01E which was found to be more immunogenic than the previous AS02 adjuvant 

(Gordon et al., 1995; Leroux-Roels et al., 2014). The CSP is the dominant feature of the sporozoite 

surface; effectively forming a dense coat around the parasite making it a prime vaccine target (Nardin 

et al., 1982). CSP consists of an immunodominant central repeat region which is flanked by conserved 

motifs at the N-terminus and C-terminal (Nardin et al., 1982). As a pre-erythrocytic vaccine, the aim 

of RTS,S is to induce a CSP-specific antibody driven immune response to prevent inoculated 

sporozoites traversing the peripheral blood circulation and causing liver-stage infection. A single 

successful hepatocyte invasion is sufficient to initiate and maintain blood stage infection and so it was 

also hoped that vaccine induced CSP specific CD4+ T cells that could recognise and kill infected liver 

cells would act as an additional protective immune barrier. 

Phase 3 RTS,S efficacy trials were completed in 11 locations in seven countries in SSA, representative 

of different transmission settings following over 30 years of development (RTSS Clinical Trials 

Partnership, 2015). Vaccine efficacy against clinical malaria for a 0-, 1-, and 2-month dosing schedule 

was found to be 35.2% (95% CI 30.5%–39.5%) in children aged 5–17 months during 32 months of 

follow up. In those given a fourth booster dose of vaccine 18 months after the third dose efficacy 

reached 43.9% (95% CI 39.7%–47.8%)(RTSS Clinical Trials Partnership, 2015). Efficacy estimates were 

lower in the younger age group, aged 6–12 weeks at first immunisation and waned across both age 

groups through the course of follow up. Many sites experienced too few cases to generate reliable 

estimates for efficacy against severe malaria as a result of the high levels of access to care in the trial 

(RTSS Clinical Trials Partnership, 2015). Extended follow-up studies of RTS,S have since been 

completed and demonstrated that efficacy in these cohorts wanes significantly over time and that 

over seven years follow up efficacy was around 4.4% (95% CI −17.0%–21.9%) (Olotu et al., 2016). In 

this setting significant negative efficacy was measured in the fifth year among children with higher-

than-average exposure to malaria parasites (Olotu et al., 2016).  Following Phase 3 trials, RTS,S was 

given a positive scientific opinion from the European Medicines Agency under Article 58 (European 

Medicines Agency, 2015). Starting in 2018, Ghana, Kenya and Malawi in partnership with the WHO’s 

Malaria Vaccine Implementation Programme (MVIP) began implementation of a large-scale Phase 4 

pilot implementation of RTS,S/AS01 (Adepoju, 2019).  

Within these three countries, RTS,S has been delivered under an age-based schedule with doses 

delivered to children as part of routine childhood immunization services integrated with Expanded 
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Programme on Immunization (EPI) schedules (World Health Organization, 2021b). Ghana and Kenya 

provide the four doses at 6-, 7-, 9-, and 24-months of age and in Malawi the four doses were given at 

5-, 6-, 7-, and 22-months of age, in an effort to administer the primary vaccination series as early as 

possible (World Health Organization, 2021b). The MVIP has reached over 900,000 children and 

administered over 2 million vaccine doses (World Health Organization, 2021b). Coverage data showed 

that 62% of age-eligible children had received at least three vaccine doses which resulted in reductions 

in hospitalisations with severe malaria of 29% (95% CI 8%–46%) and hospitalisations with malaria 

parasitaemia or antigenaemia of 21% (95% CI 7%–32%) (World Health Organization, 2021b). Demand 

and uptake of the malaria vaccine has been strong across all three countries despite the challenges 

brought about by the COVID-19 pandemic and vaccine uptake was shown to be equitable and had no 

negative effects on the uptake of other vaccines, malaria interventions (LLIN use) or health seeking 

behaviour (World Health Organization, 2021b). In addition, the MVIP found that introduction of RTS,S 

increases equity in access to malaria control interventions with more than two-thirds of children who 

did not sleep under an LLIN receiving a malaria vaccine, meaning vaccine introduction resulted in over 

90% of children in the three countries having access to one or more preventative intervention (World 

Health Organization, 2021b).  

The evidence generated from the ongoing MVIP combined with results from mathematical modelling 

studies, cost-effectiveness studies and expert opinion led the WHO to recommended widespread use 

of RTS,S in sub-Saharan Africa and in other regions with moderate to high P. falciparum malaria 

transmission (World Health Organization, 2021b). Subsequently international financing of vaccine 

doses for country implementation was secured when the Board of Gavi, the Vaccine Alliance, 

approved funding for the malaria vaccine programme (Gavi The Vaccine Alliance, 2021). The initial 

investment of US$ 155.7 million will support malaria vaccine introduction, procurement, and delivery 

for Gavi-eligible countries in sub-Saharan African initially between 2022-2025. 

1.9.3 Next generation vaccines – progress and challenges  

One of the challenges surrounding RTS,S has been the relatively modest efficacy and its decay to low 

levels within a few years necessitating a fourth dose of vaccine. The results of the MVIP highlight the 

importance of delivering RTS,S in combination with other control interventions and ensuring good 

levels of access to care due to this partial protection. The MVTR goal of a vaccine with 75% protective 

efficacy against clinical malaria and a vaccine that reduces transmission is a target that RTS,S currently 

falls short of, and as such the development of second-generation vaccines are needed.  

As described in Table 1.1 studies are already underway to assess the next generation of vaccine 

platforms. Two pre-erythrocytic vaccine candidates R21/MatrixM and PfSPZ are approaching late-
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stage clinical evaluation. Additional vaccine candidates targeting other malaria life-stages, the blood 

stage vaccine candidate Rh5 and potential transmission blocking vaccines utilising Pfs25 and Pfs230 

for example are also progressing through clinical testing. In addition, new vaccine technologies along 

with the ongoing development of adjuvants and delivery platforms are also being explored for use in 

next-generation malaria vaccines. 

For example, new technologies including mRNA vaccine platforms that have been so successful over 

the COVID-19 pandemic are being applied to malaria. BioNTech recently announced plans to initiate 

a mRNA malaria vaccine clinical trial by the end of 2022 (BioNTech, 2021). Further to this, researchers 

at the Walter Reed Army Institute recently evaluated a potential P. falciparum CSP mRNA vaccine 

candidate and found it to be well expressed in mammalian cells when delivered in an encapsulated 

lipid nanoparticle, immunogenic in mice and protective in homologous and heterologous transgenic 

rodent models (Mallory et al., 2021). These results make for a compelling candidate for further 

investigation. In addition to novel mRNA-based platforms other new technologies are also being 

directed towards malaria vaccine research. These include nanoparticle display platforms, whose 

technology allows for self-assembling proteins that are conformationally stable, that can incorporate 

multiple epitopes that can then stimulate both B and Tcell responses [234–238, ClinicalTrials.gov 

Identifier: NCT04296279]. Continued development of novel virus like particle delivery platforms are 

also being directed towards malaria vaccine research, for example the SpyCatcher and novel 

bacteriophage platforms have recently shown promising results in pre-clinical studies (Janitzek et al., 

2016; Jelínková et al., 2021).  

In addition to vaccine platform development, the continued search for new vaccine candidate antigens 

from across the parasite’s lifecycle, that are ideally conserved, essential and susceptible to antibodies, 

are important for enhancing the potential breadth of current vaccine targets. Furthermore, vaccines 

that target multiple antigens either from the same or different life-cycle stages that could provide 

additive or synergistic benefits to efficacy are attractive next-generation vaccine targets. Multi-

component/multi-stage/multi-antigen formulations of malaria vaccines are in early stages of 

development with several promising approaches combining both pre-erythrocytic and transmission 

blocking antigens and pre-erythrocytic and blood-stage antigens in early pre-clinical studies (Yusuf et 

al., 2019; Collins et al., 2021; Hill et al., 2014).  

While these technologies and second-generation vaccine candidates remain in the early stages of 

clinical development, novel approaches to RTS,S vaccination are also being evaluated that aim to 

improve upon the current efficacy of first-generation RTS,S. These changes have included alterations 

to the dosing schedule and dose amount (Regules et al., 2016) and an alteration to the timing of 
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vaccination (Chandramohan et al., 2021). These two novel approaches to RTS,S delivery are the focus 

of this Thesis and are discussed further in Chapter 2, 4 and 5.  

The licensure of RTS,S as a first-generation vaccine also raises several challenges for the testing and 

evaluation of second-generation vaccines. Various options will remain for trial design dependent on 

factors including whether RTS,S is adopted as national policy and in use in counties where trials are 

planned which raises ethical issues for performing placebo-controlled trials (Fowkes, Simpson & 

Beeson, 2013; Vannice et al., 2012; World Health Organization, 2015d). Without regulatory accepted 

correlates of vaccine-induced protection second-generation vaccines will need to demonstrate safety 

and efficacy through randomised controlled trials with clinical endpoints. Whether superiority, non-

inferiority or equivalence trials are selected for evaluation will depend on the type of vaccine being 

evaluated. A superiority trial would be used to test whether the second-generation vaccine was more 

efficacious than first-generation vaccine as defined by a pre-specified margin (World Health 

Organization, 2015d). A non-inferiority trial has the objective of understanding if a second-generation 

vaccine is not “unacceptably worse” than the currently licenced vaccine within a pre-specified margin 

(World Health Organization, 2015d) and an equivalence trial aims to understand if the second-

generation approach is clinically equivalent in efficacy (Fowkes, Simpson & Beeson, 2013). Properly 

designed non-inferiority trials are considered justified in the context of development of new products 

which may bring advantages such as reduced cost, fewer doses, a simpler schedule, ease of 

administration, delivery and storage or an improved safety and tolerability profile (Fowkes, Simpson 

& Beeson, 2013). The determination of the non-inferiority margin will have to be carefully justified, 

taking into account scientific, clinical and public health opinion and needs and choice of the margin 

will have implications for the sample size required with narrower margins requiring larger sample sizes 

(Fowkes, Simpson & Beeson, 2013). If second-generation vaccines target different life-stages to the 

currently licenced vaccine this will also require careful planning of trial design. In this situation the 

vaccines may be delivered concurrently and could be compared with either first-generation or first-

generation and placebo. Table 1.2 highlights some of the important implications for field trial designs 

considering second-generation vaccines and their comparisons.   
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Table 1.2 Considerations of different trial designs and comparisons for second-generation malaria vaccines. Modified from 
(World Health Organization, 2015d) 

Field efficacy 
options 

2nd generation vs 
placebo  

2nd generation vs 
1st generation  

1st & 2nd generation 
vs 1st generation 

1st & 2nd generation 
vs 1st generation vs 
placebo  

Efficacy estimate 
Absolute efficacy 
estimated  

Relative efficacy 
estimated 

Relative efficacy 
estimated  

Absolute and 
relative efficacy 
estimated 

Trial type  
Superiority to no 
vaccine 

Non-inferiority to 
1st generation or 
superiority to 1st 
generation 

Superiority to 1st 
generation 

Superiority to 1st 
generation and no 
vaccine 

Limitations and 
considerations  

May be considered 
unethical to 
randomize to 
placebo, if 1st 
generation vaccine 
is available and 
recommended in 
country. 
 

Large sample sizes 
may be needed.  
Non-inferiority 
design would not 
clearly show 
progress towards 
75% efficacy goal, 
but could make 
alternative 
vaccines available. 

Large sample sizes 
may be needed. 1st 
and 2nd generation 
vaccines could be 
given together or 
as prime-boost.  

Large sample sizes 
may be needed 
(may not be 
feasible). May be 
considered 
unethical to 
randomise to 
placebo is 1st 
generation is 
available and 
recommended in 
country.  

Efficacy relative to 
1st generation 
would not be 
estimated with 
confidence.  

Efficacy relative to 
no vaccine would 
not be estimated 
with confidence.  

This design would 
not demonstrate 
efficacy of the 2nd 
generation vaccine 
independent of the 
1st generation 
vaccine. Efficacy 
relative to no 
vaccine would not 
be estimated with 
confidence.  

This design would 
not demonstrate 
efficacy of the 2nd 
generation vaccine 
independent of the 
1st generation 
vaccine. 

 

Malaria vaccine candidates are progressing in clinical trials and with RTS,S advanced to 

implementation, the question remains of how best we can deploy malaria vaccines to the advantage 

of those populations at risk. Continued antigen discovery, improved vaccine platforms and an 

expanding portfolio of vaccine candidates highlights the potential success on the horizon. As more 

candidates transition to licensure optimal deployment strategies that maximise vaccine impact in 

malaria endemic countries will be essential. One aspect that can help guide our understanding of 

optimal strategies is the use of mathematical modelling which I discuss in the following sections.   
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1.10 Mathematical modelling of malaria transmission  

Mathematical models that describe the dynamics of infectious diseases are tools which can help 

provide insights into the epidemiology of infection and disease as well as insights into host immunity 

and the parasite lifecycle and can assist in the design and evaluation of different intervention 

programmes. Transmission models have formed a vital component of malaria research.  

The first model of malaria transmission was developed by Ronald Ross in the early 1900s following his 

discovery that mosquitos transmit malaria parasites and while working on malaria control in Mauritius 

(Ross, 1908, 1910, 1911). This simple model which explained the relationship between the number of 

mosquitos in a location and the incidence of malaria in humans was used to show that the reduction 

of mosquitos below a certain threshold would be sufficient for the malaria parasite to die out. The 

model formulation described a value known as the critical threshold (𝑚′) the mosquito density in an 

area below which transmission could not be sustained. Ross’ insights have been standardised into the 

following formula (Smith et al., 2012a):  

𝑚′ > 
𝑔𝑟

𝑎2𝑏𝑐𝑒−𝑔𝑣
(1.1) 

where 𝑚 is the ratio of mosquitos to humans, 𝑔 the instantaneous death rate of a mosquito, 𝑟 the 

daily rate each human recovers from infection, 𝑎 the rate at which a mosquito takes a blood meal, 𝑏 

the probability that a bite by an infectious mosquito infects a human, 𝑐 the probability a mosquito 

becomes infected after biting an infected human, and 𝑣 the number of days from infection to 

infectiousness in the mosquito (Smith et al., 2012a). Ross extended his original model, which was built 

in discrete time, to take a continuous time form using a pair of differential equations to describe how 

the number of infected humans 𝑋 and mosquitoes 𝑍 change over time:  

𝑑𝑋

𝑑𝑡
= 𝑚𝑎

𝑍

𝑀
(𝐻 − 𝑋) − 𝑟𝑋 (1.2) 

𝑑𝑍

𝑑𝑡
= 𝑎𝑐

𝑋

𝐻
(𝑀 − 𝑍) − 𝑔𝑍 (1.3) 

where parameters are described as above and where 𝐻 and 𝑀 are the total number of humans and 

mosquitoes in the population. Ross's model drove the first few decades of malaria control when 

interventions focussed on destroying larval breeding sites.   

Following the initiation of the GMEP, George Macdonald built on Ross’s model, testing his critical 

threshold theory with data from epidemiological and entomological field trials (Macdonald, 1957). 
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The initial Ross model did not consider the delay from infection to infectiousness in the mosquito. 

MacDonald incorporated this latency period and introduced the concept of an exposed class to the 

mosquito component of the model. MacDonald also incorporated other biological processes such as 

the concept of superinfection (the potential for individuals who are already infected to be reinfected) 

(Macdonald, 1950, 1952b, 1952a)  

A schematic of the Ross-MacDonald model is shown in Figure 1.5, where each compartment 

represents the proportion of humans and mosquitos at equilibrium that are either infected (I) or 

susceptible (S) or for mosquitoes only exposed (E) i.e infected but not yet infectious. The parameters 

describing the rate of flow between compartments are as described above. This model captures key 

aspects of the transmission cycle and can be used to estimate important metrics such as the EIR, force 

of infection, parasite prevalence rate and the basic reproduction number. MacDonald’s work helped 

to explain how insecticides reduce malaria transmission through reducing the number of mosquitos 

that live long enough to allow the parasite to complete its lifecycle within the mosquito host 

(Macdonald, 1956). These insights helped to demonstrate the efficacy of using the insecticide DDT as 

a malaria control strategy for the GMEP.  

 

Following the GMEP the WHO launched the Garki Project in the 1970s to evaluate whether malaria 

could be controlled in a high transmission intensity setting in sub-Saharan Africa (Molineaux, 

Gramiccia & Organization, 1980). In planning and analysing this project, extensions to the Ross-

Macdonald model of malaria were developed that incorporated processes of human immunity and 

specific malaria control interventions (Dietz, Molineaux & Thomas, 1974). The model was validated 

Figure 1.5 Schematic representation of the Ross-MacDonald 
malaria transmission model, parameters, and rates between 
compartments.  
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against the data from the project and was able to replicate the observed trends in age-specific patterns 

of malaria and provided important insights into the project outcomes. As well as providing important 

insights into the successes and failures of the project, the model developed helped to identify key 

indices of malaria transmission, including the vectorial capacity and the human blood index.  

Since the 1900s advances in our understanding of mosquito behaviour, human immunity and parasite 

transmission coupled with advances in mathematical and statistical methods and computational 

power has driven the evolution of the early Ross-Macdonald model. Extensions to the early models 

have incorporated latent periods of infection in mosquitos and humans (Anderson & May, 1992), age-

related differences in susceptibility to and the development of immunity to malaria (Anderson & May, 

1992; Aron & May, 1982; Dietz, Wernsdorfer & McGregor, 1988; Aron, 1988; Filipe et al., 2007), spatial 

heterogeneity of hosts and parasites (Hasibeder & Dye, 1988; Gupta & Hill, 1995; Gupta, Swinton & 

Anderson, 1994; RodrÍguez & Torres-Sorando, 2001; Torres-Sorando & Rodríguez, 1997), behavioural 

differences in vector feeding (Dye & Hasibeder, 1986) and individual based model structures (Gu et 

al., 2003). As a result of progressive improvements to models alongside the advancements in modern 

computing. Current models are now capable of assessing the impact of a variety of current and 

potential future malaria control interventions.  

For example, mathematical modelling was a vital component of the creation of the WHO Global 

Technical Strategy for Malaria 2016–2030 helping to assess the long-term impacts of interventions on 

malaria (World Health Organization, 2015b, 2021c). Modelling found that if the coverage of malaria 

interventions remains at current levels, incidence could increase moderately. However, this rise, and 

its consequences could be averted through a concerted effort to optimize the use of currently 

available interventions at levels above 80% coverage of at-risk populations and by improving the 

quality of services. Furthermore, a number of WHO guidelines and policy recommendations for 

malaria interventions have incorporated findings from mathematical modelling studies or been 

supported by modelling studies. For example, increasing treatment coverage with ACTs (Okell et al., 

2008a; Johnston et al., 2014; Penny et al., 2015b), the introduction of SMC and other IPT programmes 

(Cairns et al., 2012; Walker et al., 2017), ITNs and IRS (Le Menach et al., 2007; Smith et al., 2009; 

Chitnis et al., 2010; Okumu & Moore, 2011; White et al., 2011a), larval control methods (Killeen, 

Fillinger & Knols, 2002; Eckhoff, 2011), MDA for malaria elimination (Brady et al., 2017) and now RTS,S 

vaccination (Penny et al., 2016; World Health Organization, 2021b). Additionally, throughout the 

COVID-19 pandemic mathematical models have been important to understanding the potential 

impact of the pandemic on malaria intervention coverage, morbidity, and mortality (Hogan et al., 

2020; Sherrard-Smith et al., 2020; Weiss et al., 2021).  
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The WHO relies on several contemporary models of malaria transmission and interventions to aid in 

our understanding of different aspects of malaria control programmes. Models of malaria 

transmission developed by teams at Imperial College London (Griffin et al., 2010), the Swiss Tropical 

and Public Health Institute (Swiss TPH) (Smith et al., 2006a) and the Institute for Disease Modelling 

(Eckhoff, 2013), have been instrumental to understanding the potential impacts of malaria vaccine 

candidates in particular. Critically these three dynamic individual based models were employed in a 

consensus modelling exercise aligned with WHO processes to support WHO guidance on RTS,S 

deployment prior to the MVIP programme (Penny et al., 2016). These models have continued to be 

used to address questions about future roles of RTS,S during the current phase of pilot deployment. I 

briefly describe the OpenMalaria model used by researchers at Swiss TPH and the EMOD DTK model 

used by researchers at the Institute for Disease Modelling and the model used by researchers at 

Imperial College London.  As I will be using the Imperial College London model in three of my Thesis 

Chapters I outline this model in detail in Appendix 8.1. I then briefly discuss the contributions of these 

models to malaria vaccine research and their impact on policy.  

1.10.1 Swiss TPH OpenMalaria model   

OpenMalaria is a stochastic individual-based, single location simulation model of malaria in humans 

linked to a deterministic model of malaria in mosquitos (Smith et al., 2006a, 2012b; Chitnis, Hardy & 

Smith, 2012). The model includes sub-models of infection in humans (Smith et al., 2006b), blood-stage 

parasite densities (Maire et al., 2006a), infectiousness to mosquitos as a lagged function of asexual 

parasite density (Ross, Killeen & Smith, 2006), and incidence of morbidity and mortality with the model 

including all severe malaria and hospitalisations with malaria (Ross et al., 2006).  Immunity is 

comprised of separate sub-models of pre-erythrocytic and blood-stage immunity, with blood-stage 

immunity predominating as infection-blocking immunity results from very high cumulative malaria 

exposure within the model structure (Maire et al., 2006a). OpenMalaria is formulated as an ensemble 

of 14 model variants with varying assumptions in the decay of natural immunity, within host variability 

between infection and entomological exposure, heterogeneity in transmission and heterogeneity in 

susceptibility to co-morbidities (Smith et al., 2012b).  The model has been parameterised using age-

incidence clinical malaria data from sites in Senegal and Tanzania. The severe disease and mortality 

model has been fitted to all-cause and cause-specific age-specific mortality from the pre-LLIN and pre-

ACT era, to hospitalisation rates by prevalence for multiple sites, and to age incidence of hospitalized 

severe malaria (with age-specific case fatality rate based on Tanzanian data). The model incorporates 

the current suite of malaria interventions including pre-erythrocytic, blood-stage and transmission 

blocking vaccines, LLINs, IRS, larviciding, repellents and screening, zooprophylaxis, odour-baited traps, 

sugar-baited traps, treatment and case-management of clinical and severe disease by specified drug, 
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facility level and diagnostic, mass screen and treat, mass drug administration, IPTi/IPTc and SMC and 

the model allows for drug resistance.  

1.10.2 Institute for Disease Modelling EMOD DTK model  

EMOD DTK is a discrete, stochastic, individual-based model of malaria in either local or spatially 

distributed settings. It includes a comprehensive model of the vector life cycle coupled to a detailed 

mechanistic representation of intra-host parasite and immune dynamics (Eckhoff, 2011, 2012a). The 

individual infection and immunity modules track the distribution of parasites by surface-antigen type 

with both innate and antigen-specific adapted immune responses, while human infectiousness is 

calculated directly from the mechanistic dynamics of parasite densities (Eckhoff, 2012a). Blood-stage 

immunity is acquired through cumulative exposure to different parasite variants in terms of their 

expressed variant surface antigens (Eckhoff, 2012b). Heterogeneity in individual biting rates is 

included in the model structure. The model relationships between transmission intensity, parasite 

prevalence, clinical episodes, and severe disease were calibrated to historical study-site data from 

several sites in Nigeria, Tanzania, Senegal and The Gambia (McCarthy et al., 2015). The model accounts 

for the combined effect of an extensive set of both vector- and human-directed interventions 

including vaccines, LLIN, IRS, larviciding and other novel vector control including: ivermectin, 

genetically modified mosquitoes, individual and spatial repellents, oviposition traps and sugar-baited 

traps.  

1.10.3 Imperial College London malaria transmission model  

An individual-based transmission model has been developed and validated by researchers at Imperial 

College London. The model has previously been fitted to data on the relationship between vector 

density, EIR, parasite prevalence, uncomplicated malaria, severe disease and death from data across 

SSA  (Griffin et al., 2010, 2015, 2016; White et al., 2011a). The model links a single population of 

humans to a stochastic compartmental mosquito model. The model tracks individuals through the 

stages of infection with pre-erythrocytic immunity and blood-stage immunity incorporated that 

capture the changing patterns of clinical disease, severe disease and asymptomatic infection with age 

and exposure (Griffin et al., 2015). The vector model incorporates larval and adult stages to capture 

the feedback of vector control on population dynamics (White et al., 2011a). Multiple vector species 

and heterogeneity in exposure are incorporated. The model captures the combined effects of multiple 

interventions including vaccines, LLIN, IRS, mass screen and treat, IPTi, SMC, IPTp, larval control, and 

novel interventions including ivermectin and sugar-baited traps. Treatment of clinical and severe 

disease is specified by drug type and diagnostic.  
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1.10.4 Contribution of mathematical models to malaria vaccine research and policy  

Mathematical models of malaria transmission have been used to evaluate the potential impacts of 

stage-specific malaria vaccines on transmission dynamics since the late 1980s following the 

incorporation of immunity dynamics into model structure following the Garki project (Struchiner, 

Halloran & Spielman, 1989; Halloran, Struchiner & Spielman, 1989; May & Gupta, 1989; Koella, 1991; 

Halloran & Struchiner, 1992).  

Following the demonstration of potential efficacy from RTS,S and prior to large-scale field trials, the 

three contemporary mathematical models described above have all been used to evaluate the 

potential impacts of pre-erythrocytic vaccination with hypothetical efficacy profiles (Maire et al., 

2006b; Penny et al., 2008; Griffin et al., 2010; Smith et al., 2012b; Brooks et al., 2012; Wenger & 

Eckhoff, 2013). These studies helped to describe the relative importance of vaccine properties namely 

the initial efficacy and its decay over time on potential burden reductions and how these two 

characteristics can help to achieve different operational targets namely reductions in morbidity and 

mortality or the interruption of transmission. Furthermore, these studies demonstrated the impact of 

transmission intensity on the potential burden reductions with pre-erythrocytic vaccination and 

highlighted the need for additional preventative interventions to counteract the potential for vaccines 

to reduce population-level immunity leading to increases or rebounding in clinical disease and death 

at older ages. 

In addition to modelling the population level impacts of malaria vaccines, within host models of 

malaria infection have been developed and used to characterise and predict vaccine impact at an 

individual level as a function of the vaccine induced immune response. White et al. used established 

pharmacological dose-response methods and fitted dose-response curves to immunological data from 

an early RTS,S human challenge study (White et al., 2013). Analysis of the challenge data enabled the 

characterisation of the relationship between antibodies and CD4+ T cell responses and vaccine 

induced protection from infection, showing that anti-CSP antibodies and CSP-specific CD4+ T cells 

were immunological surrogates of protection, with antibodies playing a dominant role in protection. 

Characterisation of this relationship enabled models to be fitted to predict vaccine efficacy for 

different levels of response titres, an important step in understanding the potential efficacy achievable 

if immunogenicity of RTS,S could be improved.  

Following the completion of Phase 3 RTS,S clinical trials modelling groups used data from the trial, in 

combination with their transmission models to estimate an efficacy profile for RTS,S. White et al. 

(2015) used the Imperial College London malaria transmission model to estimate the efficacy profile 

of RTS,S against malaria infection and clinical malaria using individual-level data on the incidence of 
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clinical malaria from the 11 trial sites of the Phase 3 trial along with antibody titre data from these 

individuals over the course of the follow up (according-to-protocol population) (White et al., 2015). 

Firstly, the kinetics of RTS,S-induced anti-CSP antibodies were described using a bi-phasic model of 

exponential decay. The decay in antibody titres was then related to efficacy against infection using a 

Hill function that captures the dose-response relationship between antibody titre and vaccine efficacy 

against infection over time. Vaccine efficacy against infection was then related to efficacy against 

clinical malaria using their model of age- and exposure-dependent acquisition of clinical immunity 

(Griffin et al., 2015). For the childhood cohort (5–17 months) the initial efficacy against infection 

estimated from this model following the third dose was 74%, waning to 28% by 12 months (White et 

al., 2015). This analysis was important for demonstrating the role of anti-CSP antibody titres to act as 

surrogate markers for protection against infection from malaria following RTS,S vaccination 

corroborating the earlier dose-response within host modelling work by White et al (White et al., 2013).  

Penny et al. used the OpenMalaria model to estimate the efficacy profiles of RTS,S against malaria 

infection and clinical malaria using pooled three-monthly incidence data from the intention-to-treat 

population of the Phase 3 trial (Penny, Pemberton-Ross & Smith, 2015). Each arm of the trial in each 

study site was explicitly simulated using an ensemble of six models assuming many different 

hypothetical profiles for vaccine efficacy against infection. The efficacy profile of RTS,S was described 

by a Weibull decay function and was determined through Bayesian model fitting comparing the 

resulting model predictions of clinical incidence over time to those reported in the trial. For the 

childhood cohort (5–17 months) the initial efficacy against infection estimated from this model 

following the third dose was 91% with an estimated half-life of seven months (Penny, Pemberton-Ross 

& Smith, 2015). The EMOD DTK model also used the pooled three-monthly incidence data from the 

intention-to-treat population of the Phase 3 trial to estimate RTS,S efficacy over time (Penny et al., 

2016). Again, each arm of the trial in each study site was explicitly simulated and vaccine efficacy 

described by exponential curve parameterized by an initial efficacy and half-life of protection. 

Simulations were run over a range of parameter values and Poisson regression was performed to 

compute the likelihood for the relationship between simulated case counts and trial data for each 

vaccine parameter set and the best fitting set chosen by selecting the vaccine properties that yielded 

the highest likelihood. For the childhood cohort (5–17 months) the initial efficacy against infection 

estimated from this model following the third dose was 80% with an estimated half-life of 13.5 months 

(Penny et al., 2016).  

Despite the differences in fitting approaches and transmission model structures, all three modelling 

groups estimated a high initial efficacy post dose three in the 5–17-month-old cohort, with similar 

rates of waning protection in the first 12 months, which then diverged with EMOD DTK and 
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OpenMalaria suggesting a more rapid decay than the model from Imperial (Penny et al., 2016). 

Following the fourth dose both Imperial and EMOD DTK estimated a higher initial efficacy and slower 

decline than the OpenMalaria model (Penny et al., 2016). Discrepancies in model estimates of RTS,S 

protection reflect differences in the model structures and differences in the parametric assumptions 

of efficacy.  

Once RTS,S efficacy profiles had been fitted, the three modelling groups were part of a consensus 

modelling exercise co-ordinated by the WHO to make more precise predictions on the potential long-

term public health impact of RTS,S (Penny et al., 2016). Results confirmed the results from earlier 

modelling studies that RTS,S could have considerable public health impact when delivered at scale. 

The results of this consensus modelling were used to support guidance on the deployment of RTS,S 

and the need for the large-scale pilot implementation (MVIP) (World Health Organization, 2016). The 

consensus modelling highlighted two important considerations that were not apparent from the 

results of the Phase 3 trial. The first is that modelling predicted an overall positive impact of RTS,S on 

severe disease and mortality due to the incorporation of realistic levels of access to care in the 

modelling exercise. This differed from the Phase 3 trial results in that very high levels of access to 

treatment meant there was significantly low levels of mortality in all trial participants. The second is 

that there was a lack of consensus between the modelling groups on the impact of the fourth dose of 

RTS,S with the OpenMalaria model predicting only marginal benefit of a fourth dose in terms of 

reducing severe malaria outcomes as a result of parameterisation of the protection following this 

fourth dose. The ongoing MVIP was therefore powered to understand the impact of RTS,S on both 

severe malaria outcomes and mortality, and the feasibility of delivering and the impact of the fourth 

RTS,S dose on these outcomes.  

Further to the consensus modelling exercise, modelling groups have expanded predictions of the 

public health impacts of RTS,S into country specific predictions of impact (Penny et al., 2015a) and 

estimates of the prioritisation of vaccine allocation among countries or administrative units to 

maximise cases or deaths averted (Hogan, Winskill & Ghani, 2020). Modelling has also been used to 

assess the potential cost-effectiveness of RTS,S vaccination in both generic transmission settings and 

for specific countries (Penny et al., 2016; Winskill et al., 2017; Sauboin et al., 2019a; Galactionova et 

al., 2017). Furthermore, modelling has also considered the impact of RTS,S not only as a morbidity 

reduction intervention but as a potential tool in low-prevalence settings to aid MDA in transmission 

interruption (Camponovo et al., 2019). Models of the duration of RTS,S protection over time have also 

been applied as potential transmission blocking vaccine efficacy profiles to understand the impact a 

vaccine with RTS,S like peak protection and duration could have on malaria (Challenger et al., 2021). 
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The use of modelling in the assessment of RTS,S has provided many insights for vaccine developers in 

terms of the relationship of immune responses and vaccine protection over time, and policy makers 

and countries in understanding the potential for RTS,S to form a part of intervention packages moving 

forwards. These modelling platforms are now well placed to tackle the next generation of RTS,S and 

other vaccine candidates moving through development.  
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1.11 Thesis aims and structure  

The aim of this thesis is to use mathematical models to provide insights into key problems in the field 

of second-generation malaria vaccine development and deployment, ranging from immunological 

correlates of protection to exploration of changes in efficacy profiles under novel schedules and 

optimal immunisation strategies for maximal public health impact in setting of seasonal malaria 

transmission. Throughout this thesis I have maintained a focus on questions relevant to malaria policy. 

Specific objectives for each proposed thesis chapter are as follows: 

Chapter 2: I use a Bayesian framework to investigate the relationship between RTS,S induced antibody 

responses and protection from malaria infection in malaria-naïve volunteers in a human challenge 

study.  

Chapter 3: I use a Bayesian survival analysis framework to fit an updated efficacy profile of 

Sulfadoxine-Pyrimethamine plus Amodiaquine (SP+AQ) the drug combination currently used for 

Seasonal Malaria Chemoprevention (SMC) using clinical trial data.  

Chapter 4: I use the efficacy model of SP+AQ fitted in Chapter 3 and an existing model of first-

generation RTS,S protection to replicate the first large-scale field trial of an alternative seasonal RTS,S 

vaccination approach. In this I aim to validate the efficacy model parameterisation of RTS,S under this 

new delivery approach in this trial.  

Chapter 5: Taking these updated efficacy models forwards from the fitting and validation exercises in 

Chapter 3 and 4 I use a transmission model to investigate the long-term public health impact of this 

alternative seasonal RTS,S vaccination schedule compared to first-generation RTS,S in seasonal 

settings in the presence and absence of SMC. I examine impact by degree of seasonality, transmission 

intensity and by wider health system and operational factors.  

Chapter 6: I summarise and discuss the implications of my findings in light of other literature, as well 

as outline the main limitations and provide suggestions for future work. 
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Chapter 2  

2 Characterising second-generation 
immunological markers of vaccine-induced 
protection  

In this chapter I investigate the potential for antibody avidity measurements to be used as markers of 

RTS,S/AS01E (RTS,S) vaccine-induced protection. I extend a previously published individual-based 

mathematical model of sporozoite inoculation to characterise the relationship between the quantity, 

measured as the antibody titre and the quality, measured as an avidity index of anti-circumsporozoite 

protein (CSP) antibodies and their relationship with protection from malaria infection in malaria-naïve 

adults in human challenge studies.  

Published as: Thompson HA, Hogan AB, Walker PG, White MT, Cunnington AJ, Ockenhouse CF, Ghani AC. 

Modelling the roles of antibody titre and avidity in protection from Plasmodium falciparum malaria infection 

following RTS, S/AS01 vaccination. Vaccine. 2020 Nov 3;38(47):7498-507. 

2.1 Background 

The ongoing RTS,S Malaria Vaccine Implementation Programme (MVIP)  in Ghana, Keyna, and Malawi 

has so far provided valuable information on the impact and safety of RTS,S, as well as the feasibility of 

delivering four doses of RTS,S through national programmes. The pilot programme also highlights the 

scale required for RTS,S studies to be able to fully understand the public health impact of the vaccine. 

Testing second-generation vaccines against RTS,S in comparative field trials will also require large 

sample sizes, extensive resources, and time commitments, and may also raise ethical and licensing 

dilemmas (Fowkes, Simpson & Beeson, 2013).  

Some second-generation vaccines for other childhood infections have bypassed these requirements 

as their licensure was based on an acceptable immunological output that conferred clinical efficacy 
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(Andrews, Borrow & Miller, 2003; World Health Organization Expert Committee on Biological 

Standardization, 2009; Van Els et al., 2014). However, this approach is currently not possible for 

comparing malaria vaccine candidates as we still do not fully understand the definitive mode of action 

by which the current RTS,S vaccine confers protection and no threshold for a protective immune 

marker has been established (Greenwood, 2011). Establishing immunological makers of protection 

that can predict individually or within the population whether a vaccine candidate will protect against 

natural infection will significantly accelerate the evaluation and downstream selection of new 

vaccines. Antibody titres to the repeat region of the circumsporozoite protein (NANP) have been 

established as the leading major correlate of protection, with higher titres shown to be associated 

with protection against infection and the rate of waning of antibody responses following vaccination 

associated with the magnitude and duration of efficacy over time (White et al., 2013, 2014, 2015).  

In addition to the concentration of antibodies, many other properties govern antibody function and 

may be important determinants of protective capacity against malaria sporozoites. One of these 

aspects is the quality of the antibody response. High quality antibodies are determined by the 

measurements of affinity and avidity, and the production of high affinity antibodies is a sign of 

successful priming by antigens or vaccines that have led to the development of antigen-specific B cell 

clones (Good-Jacobson & Shlomchik, 2010). These B cells have undergone affinity maturation through 

a process of somatic hypermutation of their VDJ genes to produce high affinity antibodies specific to 

the parasite antigen (De Silva & Klein, 2015). Affinity maturation results in mutated antibody variants 

with improved antigen-binding properties to better protect from invading pathogens (Imkeller et al., 

2018). Antibody avidity, measured using inhibition enzyme linked immunosorbent assays (ELISAs), is 

a representation of the overall strength of interaction between antibodies and antigens in a complex, 

and it takes into account the intrinsic affinity of antibodies to their specific epitopes and also valences 

of antibodies and any structural features of antibody binding confirmations (Goldblatt, Vaz & Miller, 

1998; Klasse, 2016; De Souza et al., 2004). High avidity antibodies have been shown to be important 

in the protection conferred by several viral and bacterial vaccines (Vermont et al., 2002; Alam et al., 

2013; Siegrist et al., 2004; Schlesinger & Granoff, 1992; Bachmann et al., 1997) and Haemophilus 

influenzae Type b vaccine failure has been shown to occur when individuals do not reach a threshold 

level of antibody avidity (Yeh et al., 2008). However, studies of antibody avidity responses following 

RTS,S vaccination during field trials have provided conflicting evidence on the relationship between 

avidity and protection from infection (Olotu et al., 2014; Reed et al., 1996; Ajua et al., 2015; Dobaño 

et al., 2019). Given the variation in protection that remains unexplained by anti-CSP antibody titre 

alone, the quality of these antibodies has continued to be theorised to contribute to vaccine efficacy 
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and may act as a marker for successful vaccine efficacy in combination with antibody titre (Kazmin et 

al., 2017; Chaudhury et al., 2016).  

Controlled human malaria infection challenge studies offer a unique opportunity to study immune 

mechanisms and correlates of protection during early Phase 1 and Phase 2 clinical trials (Figure 2.1) 

(World Health Organization Expert Comittee on Biological Standardization, 2016; Sauerwein, 

Roestenberg & Moorthy, 2011; Spring, Polhemus & Ockenhouse, 2014). In addition to providing 

efficacy estimates, challenge trials are carried out in a controlled environment in malaria naïve 

volunteers, allowing detailed immunological markers to be taken. This enables us to identify potential 

immune correlates and mechanisms of protection and establish if there are any observable dose-

response relationships between these and protection from infection. As more second-generation 

malaria vaccines are developed, challenge studies will be vital in helping to compare candidates and 

provide essential data for predicting their potential field impact.  

 

 

A Phase 2a challenge study of a second-generation RTS,S vaccine has demonstrated an increase in 

initial vaccine efficacy following a delayed-fractional immunisation regime, whereby the third dose of 

the primary RTS,S schedule was given with a five-month delay and at one-fifth of the standard dose 

compared to the standard full dose monthly schedule (Regules et al., 2016). Efficacy against infection 

was 86.7% (95% CI 66.8–94.6%) for those volunteers in the delayed-fractional arm at first challenge 

compared to 62.5% (95% CI 29.4–80.1%) for volunteers on the standard 0-, 1-, 2-month full dose 

regime (Regules et al., 2016). The immunological reasons for the difference in efficacy are not fully 

understood, and the increase in efficacy did not correlate with increases in antibody titre. Instead, it 

Figure 2.1 Malaria Human Challenge Study Protocol. Standardized methodology for pre-erythrocytic vaccine testing involves the 
randomisation of volunteers into vaccine recipient and control groups, following immunizations volunteers are exposed to the bites 
of 5 infectious mosquitos and microscopy and PCR monitoring of disease progression for 28 days post exposure enables rapid 
diagnosis and disease progression characterisation. During this time immunological measurements can also be taken at specified 
timepoints 
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was postulated that the improvement in efficacy resulted from an increase in affinity maturation 

resulting in a higher quality of antibody response following the delayed-fractional schedule (Regules 

et al., 2016). This trial provides us with key data to further understand the relationship that antibody 

quantity and quality might have with protective efficacy following RTS,S vaccination.  

2.2 Aims  

In this chapter I reanalyse the immunological data from this challenge trial using a biologically 

motivated mathematical model of P. falciparum infection. Using this approach, I quantify the potential 

amount of protection that is derived from each aspect of the antibody response through fitting dose-

response curves that relate the magnitude of each immune measurement to sporozoite killing. I aim 

to relate these probabilities to vaccine efficacy providing insights into the likely contribution of 

antibody characteristics in driving RTS,S efficacy. Using this approach I am able to combine data on 

the relative risk of infection and delays in the time to onset of detectable parasitaemia in those 

infected volunteers into measures of vaccine efficacy. 

2.3 Methods  

2.3.1 Challenge study data 

Data was obtained from the Phase 2a RTS,S/AS01B fractional third and fourth dose challenge study, 

full trial methodology can be found in the corresponding publication (Regules et al., 2016). Briefly, 46 

malaria naïve adults received full vaccination schedules, 30 received the updated delayed-fractional 

regime whereby the third dose was delayed by five months and given at one-fifth the standard dose 

and 16 volunteers received the standard 0,1,2-month regime of full dose vaccine. Three weeks 

following the third dose, volunteers underwent mosquito challenge through the bite of five P. 

falciparum (3D7, a clone of the NF54 strain) infected Anopheles stephensi mosquitos. Daily blood slide 

reading and PCR was performed to monitor parasitaemia levels from days five through 20 and then 

on every other day through day 28 post challenge. At the onset of detectable parasitaemia volunteers 

were treated with antimalarials. From the 46 volunteers who underwent vaccination and challenge 

infection status and time to onset of parasitaemia were recorded.  

Immunogenicity assessments are outlined in detail in the Supplementary Information of Regules et al 

(Regules et al., 2016). Briefly, IgG antibody levels against the NANP repeat region, C-terminal pf16 and 

full length recombinant CSP were measured using standard ELISAs (Clement et al., 2012). Plate 

absorbed R32LR antigen was used to measure antibodies against the repeat region with total IgG titre 

reported in ELISA Units. ELISA-based avidity assays were conducted to assess antibody binding to the 

repeat region NANP. These findings were reported as an avidity index calculated by dividing the serum 

titre in the presence of 4M urea (the chaotropic reagent) to the serum titre obtained without exposure 
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to the chaotropic agent. For the following analysis I used measurements of end-point total IgG titre 

and avidity indices against the immunodominant NANP repeat region taken from a single time point 

from each volunteer on the day of mosquito challenge. 

2.3.2 Statistical methods  

Immunological data was reanalysed to assess for any statistical differences in immune measurements 

between the two arms of the trial. I used non-parametric Mann-Whitney U tests to compare antibody 

titres and avidities from all volunteers from each arm of the trial, due to the non-normality in data 

distributions. I calculated Spearman’s rho to test for any correlation between the immune 

measurements from each individual and a log rank test was performed to test for significant difference 

in time to onset of parasitaemia between vaccination schedules.  

2.3.3 P. falciparum infection model  

The P. falciparum infection model was developed and previously described in White et al., (White et 

al., 2013). The model itself is an individual based mathematical model that captures the following 

parasite dynamics following challenge: sporozoites inoculated into the skin then migrate to the liver 

where they undergo intrahepatic development and merozoites are released into the blood stream. 

Merozoite progeny replicate in the blood until they become detectable by microscopy and treatment 

begins (Figure 2.2). The above biological processes are described by the models presented below.  

2.3.3.1 Sporozoite inoculation  

Following challenge with five mosquito bites there is a high level of variation in the number of 

sporozoites each mosquito deposits (Beier et al., 1991; Churcher et al., 2017; Vanderberg, 1977), 

which can be described by a Negative Binomial distribution. Therefore, the number of sporozoites that 

go on to complete intrahepatic development can be characterised by a Negative Binomial distribution 

with mean (𝑛) and standard deviation (𝜎𝑛). The probability that after challenge a given number of 

sporozoites 𝑘 will successfully initiate blood stage infection is given by:  

𝑆𝑘 =  (
𝑘 + 𝑟 − 1

𝑘
)

𝑟𝑟𝑛𝑘

(𝑛 + 𝑟)𝑟+𝑘
  (2.1) 

Where 𝑟 is a shape parameter of the Negative Binomial distribution 𝑟 =  
𝑛2

𝜎𝑛 − 𝑛
2  and 𝑘 = [1,∞].  

2.3.3.2 Merozoite progeny 

To initiate blood stage infection the sporozoites that survive intrahepatic development will release 

merozoite progeny into the blood stream, which occurs around 𝑇𝐿 = 6.5 days after challenge (Murphy 

et al., 1989). The number of merozoites released is assumed to be Gamma distributed with a mean 

(𝜇 = 30,000) (Coffeng et al., 2017) and standard deviation (𝜎µ). Once in the blood merozoites will 



59 
 

replicate at a given rate (𝑚 = 3.8/𝑑𝑎𝑦) (Bejon et al., 2005) until they reach the threshold number for 

detection of parasitaemia in the blood by microscopy (𝑃𝑇 = 50,000,000 𝑝𝑎𝑟𝑎𝑠𝑖𝑡𝑒𝑠/𝑚𝐿) and 

treatment is initiated (Bejon et al., 2006). If blood-stage infection is initiated with 𝑄 merozoites, then 

the number of parasites (𝑃) at time 𝑡 is 

𝑃(𝑡) =  {
0,                     𝑡 < 𝑇𝐿
𝑄𝑚𝑡−𝑇𝐿 , 𝑡 ≥ 𝑇𝐿

 (2.2) 

Given the observed day of the onset of detectable parasitaemia (𝑇), then the initial infectious dose 

of merozoites emerging from the liver (𝑄) can be estimated as:  

𝑄 = 𝑝𝑇𝑚
−(𝑇−𝑇𝐿) (2.3) 

 

This equation allows us to relate the delays observed in the time it takes for parasites to reach the 

detectable threshold in the blood to an initial reduction in the number of parasites that established 

blood stage infection.  

  

Figure 2.2 Depiction of the sporozoite infection model. The sporozoite infection model mathematically captures 
the parasite and immune dynamics following vaccination and challenge. This schematic conceptualises the model: 
following mosquito challenge with 5 infectious mosquitos, inoculated sporozoites migrate to the liver, undergo 
intrahepatic development, and release an initial infectious dose of merozoites. These merozoites cycle through 
blood stage development until they reach a threshold level for detection. Following vaccination with RTS,S the 
number of antibodies and the avidity of antibodies will influence the survival probability of the inoculated 
sporozoites. And subsequently, the antibody immune response will also influence the initial infectious dose of 
merozoites that emerge from the liver, which can be related back to longer delays in detection of parasitaemia. If 
an individual is protected, then I assume all infectious sporozoites will have been prevented from completing liver 
stage development. 
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2.3.3.3 Vaccine component  

Following challenge, an individual’s innate or adaptive immune response will act to detect and 

eliminate invading parasites. Given vaccination with RTS,S the prevention of infection and the killing 

of sporozoites is assumed to be driven by the vaccine-induced antibody response and can depend on 

both the number of antibodies and the relative avidity of these antibodies (Figure 2.2). If a volunteer 

is protected following challenge, then all sporozoites must have been cleared preventing blood stage 

infection. However, if an individual becomes infected then a proportion of sporozoites will have 

escaped the antibody response to initiate breakthrough infection. To quantify the contribution of the 

antibody response to protection dose–response curves were incorporated into the sporozoite 

infection model that relate IgG titre and avidity indices (‘dose’) to probability of sporozoite success 

(‘response’). Two parametric dose–response curves were considered: exponential and Hill functions. 

Exponential: 𝑓(𝑥) = 𝑒
−log (2)

𝑥

𝛽  (2.4)  

Hill function: 𝑓(𝑥) =  
1

1+(
𝑥

𝛽
)
𝛼      (2.5) 

In these equations, 𝑓(𝑥) is the probability of sporozoite survival for a given immune measurement 

(𝑥) and 𝛼 and 𝛽 are the shape and scale parameters of the respective distributions. Immune markers 

were considered alone and in combination. Where these immune characteristics provide protection 

independently of each other, dose-response curves were multiplied for each branch of the antibody 

response: IgG titre (𝑥𝑡) and IgG avidity index (𝑥𝑎𝑖): 

𝑓(𝑥𝑡 , 𝑥𝑎𝑖) =  𝑓(𝑥𝑡)𝑓(𝑥𝑎𝑖) (2.6) 

Interaction dose-response curves were also considered whereby synergistic or less than multiplicative 

effects of each immune component were modelled according to: 

𝑓 (𝑥𝑡  , 𝑥𝑎𝑖) =  𝑒

− 
log(2)
2

((
𝑥𝑡
𝛽𝑡
+
𝑥𝑎𝑖
𝛽𝑎𝑖

) +√(
𝑥𝑡
𝛽𝑡
+
𝑥𝑎𝑖
𝛽𝑎𝑖

)
2

+ 4𝛾
𝑥𝑡𝑥𝑎𝑖
𝛽𝑡𝛽𝑎𝑖

) 

(2.7)
 

  

where 𝛽𝑡/𝑎𝑖  are scale parameters and 𝛾 is a shape parameter. Here 𝛾 >0 suggests a synergistic 

interaction between immune markers, 𝛾=0 suggests immune markers act independently, and -1 < 𝛾 

<0 suggests a less than multiplicative effect of immune markers (White et al., 2011b; Greco, Bravo & 

Parsons, 1995).  
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2.3.3.4 Vaccine modified sporozoite inoculation  

Given vaccination status the number of successful sporozoites following challenge will be reduced as 

a function of the vaccine-induced immune response: from 𝑛 to 𝑛𝑓(𝑥). This relationship results in a 

sporozoite infection model with the probability that 𝑘 sporozoites initiate infection as:  

𝑆𝑘(𝑥) =  (
𝑘 + 𝑟 − 1

𝑘
)
𝑟𝑟(𝑛𝑓(𝑥))

𝑘

(𝑛𝑓(𝑥) + 𝑟)𝑟+𝑘
 (2.8) 

2.3.3.5 Model Likelihood  

Under the sporozoite infection model an individual’s infection status and time to onset of 

parasitaemia will depend on several parameters:  

• The mean and standard deviation of the number of successful sporozoites (𝑛, 𝜎𝑛) 

• The mean and standard deviation of the number of merozoites released per successful 

sporozoite (µ, 𝜎µ) 

• The shape and scale parameters (𝛼, 𝛽) describing the dose-response relationship between 

anti-NANP IgG antibody measurements and sporozoite survival probability.  

Let 𝜃 denote the vector of these parameters to be estimated 𝐼 an indicator for protection status (0 

protected, 1 infected), 𝑇 the observed time to onset of parasitaemia (days) and the resulting estimate 

of the liver-to-blood inocula (𝑄) and 𝑥 the volunteer specific vector of IgG antibody titre and avidity 

on the day of challenge. The above parameters can be estimated using the following likelihood 

equation:  

𝐿(𝜃|𝐼, 𝑇, 𝑥) =  ∏

(

 
 
 
 

(

 
 
∑𝑆𝑘(𝑥𝑗)

∞

𝑘=1

 (
𝜇

𝜎𝜇
2)

𝜇2

𝜎𝜇
2

 
𝑄
𝑗

𝜇2

𝜎𝜇
2 −1

 𝑒
−
𝑄𝑗𝜇 

𝜎𝜇
2

Γ (
𝜇2

𝜎𝜇
2)

)

 
 

𝐼𝑗

 𝑆0(𝑥𝑗)

1−𝐼𝑗

)

 
 
 
                          (2.9)

𝑗

𝑗=1

 

The likelihood can be explained when taken in its constitute parts. The index 𝑗 ( 𝑗 =

1,… ,46) represents the number of volunteers in the challenge study and the index 𝑘 represents the 

number of sporozoites inoculated in a 5-mosquito challenge. For a volunteer who was protected (𝐼𝑗 =

0) then 𝑘 = 0 sporozoites will be successful with the probability 𝑆0(𝑥𝑗). If an individual becomes 

infected (𝐼𝑗 = 1), then infection will have been initiated by k number of sporozoites theoretically from 

1 to ∞ with the probability 𝑆𝑘(𝑥𝑗). Each of these successful sporozoites will then release a given 

number of merozoites into the blood stream following a Gamma distribution Γ (
𝜇2

𝜎𝜇
2 ,
𝜎𝜇
2

𝜇2
).  
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2.3.4 Model fitting 

Model parameters were jointly estimated in a Bayesian framework using Markov chain Monte Carlo 

(MCMC) sampling and fitting to data from both vaccine schedule arms. Ten separate models were 

fitted to the individual data from the challenge study, those where antibody measurements were 

considered alone, in combination and a model where antibody measurements were not considered 

(Table 2.1).  

Parameters were jointly updated at each MCMC iteration using a random walk Metropolis-Hastings 

algorithm with update stages illustrated below, where ‘ denotes an attempted update:  

• Update parameters 𝜃′ = ( 𝑛′, 𝜎𝑛
′ , 𝜎µ

′, 𝛼𝑡
′ , 𝛽𝑡′, 𝛼𝑎𝑖′, 𝛽𝑎𝑖′) 

• Calculate updated model likelihood 𝐿(𝜃′|𝐼, 𝑇, 𝑥) and updated prior probability density 𝑃(𝜃′) 

• Accept the parameter update with probability: min (1,
𝐿(𝜃′|𝐼,𝑇,𝑥) 𝑃(𝜃′)

𝐿(𝜃|𝐼,𝑇,𝑥) 𝑃(𝜃)
) 

The MCMC algorithm was implemented in R and the code can be viewed at: 

https://github.com/ht1212/thesis_chapter_2. All updates were attempted with a multivariate-

Normal proposal distribution. The covariance of the multivariate-Normal proposal distributions for 

Metropolis-Hastings updates were adaptively tuned using the estimated posterior distributions during 

iterations 500 – 5000. This ensured the MCMC process adapted to the target distribution to keep the 

search effective at all times due to correlation between the parameters to be estimated. Further the 

magnitude of the proposed step size was calibrated using a Robbins-Munro algorithm to ensure an 

acceptance rate of approximately 23% (Gelman, Gilks & Roberts, 1997; Robbins & Monro, 1951; 

Atchadé & Rosenthal, 2005). The Robbins-Munro sampler will increase the value of the step-size if the 

acceptance rate is too high and will decrease the value of the step-size if the acceptance rate it too 

low. The total number of MCMC iterations was 200,000 with a burn-in period of 40,000 iterations. All 

Markov chains were visually examined for appropriate mixing and convergence. The MCMC fitting 

process was repeated multiple times to ensure consistent results and to test for lack of convergence. 

Prior distributions for parameters describing the parasite distributions were derived from the studies 

of White et al., (White et al., 2013) and Coffeng et al., (Coffeng et al., 2017). Note that informative 

gamma priors were selected due to the small number of data-points available to fit the model leading 

to problems in model convergence. Where prior information was unavailable for dose-response 

parameters, a diffuse gamma prior was required for 𝛽𝑡 to ensure convergence, a normal prior was 

selected for 𝛾 and uniform priors over reasonable ranges were selected for the remaining parameters 

(Table 2.1). Fixed parameters during model fitting are listed in Table 2.2. 

https://github.com/ht1212/thesis_chapter_2
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2.3.5 Model comparisons  

Model parameter estimates were summarised in terms of the median and 95% Bayesian Credible 

Intervals (95% CrI) of the posterior distributions for each parameter. I compared the fit of the ten 

proposed models using Deviance Information Criterion (DIC) methods, with the best fitting model 

selected as that with the lowest DIC. 

2.3.6 Predicted vaccine efficacy  

Following model fitting, parameters from the best fitting model were used to obtain estimates of 

vaccine efficacy given possible combinations of IgG antibody measurements (𝑥). Vaccine efficacy 

against infection (𝑉𝐸𝑖) was defined as the reduction in the probability of infection following infectious 

challenge in vaccinated volunteers compared to control volunteers. Given the assumption that the 

number of successful sporozoites follows a Negative Binomial distribution, efficacy against infection 

can be estimated as:  

𝑉𝐸𝑖(𝑥) = 1 −  
1 −  (

𝑟
𝑛𝑓(𝑥) + 𝑟

)
𝑟

1 −  (
𝑟

𝑛 + 𝑟)
𝑟  (2.10) 

  

where 𝑛 is the mean number of successful sporozoites multiplied by the dose-response relationship 

𝑓(𝑥) and 𝑟 the shape parameter of the negative binomial distribution 𝑟 =  
𝑛2

𝜎𝑛 − 𝑛
2 .  

Vaccine efficacy per sporozoite (𝑉𝐸𝑠) was defined as the proportional reduction in liver-stage parasite 

load (the liver-blood inoculum) and is calculated as: 𝑉𝐸𝑠(𝑥) = 1 − 𝑓(𝑥).  

2.3.7 Predictive time to onset of parasitaemia  

From our model calculations of the liver-to-blood parasite inocula from each volunteer (𝑄(𝑥)), 

expected time to onset of parasitaemia can be estimated via the following equation:  

𝑇(𝑥) =  𝑡𝐿 + 
log (

𝑃
𝑄(𝑥)

)

log(𝑚)
 (2.11) 

  

Here I assume that all individuals have the same merozoite blood stage replication rate (𝑚). 

2.3.8 Binary infection model  

An alternative way to parameterise the sporozoite infection model is to take into account only the 

binary outcome of protection status from trial volunteers (𝐼) and ignore the data on the time taken 

for blood-stage infection to be detectable in infected volunteers. This way the model reduces to a 

binomial likelihood where the dose-response curves relate directly to vaccine efficacy and not 
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sporozoite survival. After challenge it is thus assumed that volunteer 𝑗( 𝑗 = 1,… ,46) will either 

become infected (𝐼 = 1) or will be protected (𝐼 = 0) depending on the combination of their anti-NANP 

IgG titre and avidity index 𝑥𝑗. The likelihood equation for the parameters of the dose-response curves 

(𝜃) can be written as:  

𝐿(𝜃|𝐼, 𝑥) =  ∏𝑓(𝑥𝑗)
𝐼𝑗  (1 − 𝑓(𝑥𝑗))

1−𝐼𝑗
 

𝐽

𝑗=1

(2.12) 

 

 

Results from the binary infection model are shown in Appendix 8.2 for reference. 
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Table 2.1 Estimates of the sporozoite infection model parameters. Priors and Posteriors are presented as parameter median and 95% Credible intervals in brackets. U denotes a uniform 
distribution, N normal and G gamma. Posterior estimates are shown for models with different combinations of dose-response curves and are ordered left to right based on model fitting 
comparisons with Deviance Information Criterion. Hill denotes a Hill-function dose response curve and Exp and exponential dose-response curve, read as “titre dose-response curve - avidity 
index dose-response curve”.  

Param
eter 

Description Prior 

Posterior  

Hill-Exp Interaction Exp-Exp Hill-Hill Exp-Hill -Hill -Exp Hill- Base- Exp- 

𝒏 
Mean number of 
successful sporozoites 
per challenge 

G 150  
(75, 237) 

152  
(68-291) 

142 
 (61-267) 

143 
 (63-278) 

157 
 (73-299) 

157  
(71-290) 

156  
(73-295) 

145  
(62-280) 

141  
(63-282) 

102 
 (38-212) 

127  
(53-224) 

𝝈𝒏 
Standard deviation of the 
number of sporozoites 
per challenge 

G 194  
(93, 324) 

197  
(32-629) 

214 
 (38-635) 

215 
 (39-655) 

210  
(31-665) 

191 
 (29-608) 

204 
 (32-589) 

283  
(76-751) 

331  
(104-829) 

324  
(58-874) 

523 
 (180-948) 

𝝈µ 
Standard deviation in the 
number of merozoites 
per sporozoite 

G 62,700  
(47,700-
10,680) 

71,692  
(56,580-91,061) 

72,518 
 (56,772-92,295) 

72,107 
 (56,652-91,989) 

71,421 
 (56,248-91,770) 

70,939 
 (56,141-90,658) 

70,607  
(55,703-89,773) 

72,633 
 (56,960-92,541) 

73,901 
 (57,641-94,076) 

75,690  
(60,066-96,780) 

76,818  
(59,750-97,827) 

𝜷𝒕 

Anti-NANP antibody titre 
needed for 50% 
reduction in sporozoite 
survival probability 

G 16,666 
(10,000-
70,000) 

3,612 
 (553-38,658) 

29,986  
(7,490-98,883) 

16,051  
(6,458-63,718) 

7,873  
(573-78,358) 

20,708  
(7,770-77,207) 

- - 
944  

(510-4,997) 
- 
 

5,472 
 (3,586-13,235) 

𝜶𝒕 
Shape parameter for 
antibody dose-response U(0,30) 

1.3  
(0.3-3.6) 

- - 1.4  
(0.2-5.7) 

- - - 1.9 
 (1.4-3.2) 

- - 

𝜷𝒂𝒊 

Anti-NANP antibody titre 
needed for 50% 
reduction in sporozoite 
survival probability U(0,100) 

8.7  
(5.8-49.8) 

8.5  
(5.8-69.2) 

7.1  
(5.4-22.7) 

13.9 
 (1.3-55.9) 

10.3  
(1.3-28.1) 

7.6  
(1.5-23.8) 

5.9 
(4.8-7.7) 

- - - 

𝜶𝒂𝒊 
Shape parameter for 
antibody dose-response U(0,30) 

- - - 
3.7 (1.3-12.2) 3.4 (1.5-7.8) 

3.4 
 (1.8-7.8) 

- - - - 

𝜸 
Shape parameter for 
interaction dose-
response curve  N(0,10) 

- 
 

4.6  
(-0.5-19.7) 

- - - - - - - 
 

- 
 

𝑽𝑬 
Sporozoite killing 
probability for 
vaccination status only U(0,1) 

- 
 

- 
 

- 
 

- 
 

- 
 

- 
 

- 
 

- 
 

0.99 
 (0.82-0.99) 

- 
 

𝜟𝑫𝑰𝑪 
Difference in deviance 
informative criterion  

 

0.00 7.35 10.98 11.20 15.34 16.52 18.07 22.15 22.34 34.61 
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Table 2.2 Fixed model parameters.  

 

 

2.4 Results  

2.4.1 Challenge study data  

On the day of challenge volunteers vaccinated with the delayed-fractional regime had lower anti-

NANP IgG titres than in those receiving the standard regime on the day of challenge (Mann-Whitney: 

Parameter Description Value  Reference 

𝒕𝑳 Duration of liver stage development  
6.5 days  

(Murphy et al., 1989; 
Coffeng et al., 2017) 

𝒎 Daily blood stage parasite multiplication 
rate 3.8 day

-1
 (Bejon et al., 2005) 

𝑷𝑻 Threshold number of parasites for 
detection of infection (occurrence of 
parasitaemia, defined by positive blood 
slide) 

50,000,000  
Parasites/mL  

(Bejon et al., 2006) 

µ Mean number of merozoites released 
per sporozoite  

30,000 (Coffeng et al., 2017) 

Figure 2.3 Challenge study data summary. Box and whisker plots of the observed differences in anti-NANP IgG 
measurements by A) IgG titre (ELISA Units) (n=16) and B) IgG Avidity Index (n=30). Measurements are stratified by vaccine 
schedule and by infection status with outlying values shown by grey circles. C) Cumulative malaria incidence stratified by 
vaccine schedule arm. Follow up period for the challenge study reached 28 days after which point volunteers were 
deemed protected from infection following challenge. Infection was determined by a positive blood slide. 
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p-value=0.02). Whereas anti-NANP IgG avidity was significantly higher in volunteers from the delayed 

fractional arm (Mann-Whitney: p-value=0.03). In addition, there was a trend for protected volunteers 

to achieve higher avidity and titre measurements within arms (Figure 2.3). There was no significant 

correlation between these two immune measurements (Spearman’s rho: -0.05, p-value=0.72). The 

time to onset of parasitaemia in those volunteers who became infected was significantly different 

between the two arms (log rank test: p-value=0.04) with the delayed-fractional arm showing longer 

delays (Figure 2.3).  

2.4.2 Model fitting 

The model that provided the best fit to the data included both anti-NANP IgG titre and IgG avidity, 

with the DIC indicating this to provide a better fit than models with either antibody titre or avidity 

alone (Table 2.1). Furthermore, based on the DIC, avidity alone provided a better fit to the trial data 

than antibody titre alone (Table 2.1). I found that the best fitting dose-response curves modelled 

antibody titre according to the Hill function and avidity according to the exponential, parameter 

posterior distributions and MCMC trace plots for the best fitting model are shown in Figure 2.4.  

Despite the low number of data points available, the titre-avidity model replicated well the observed 

vaccine efficacy (Figure 2.5A) and recorded time to onset of parasitaemia (Figure 2.5C) in the trial 

arms. When only titre was accounted for this model failed to capture the increase in vaccine efficacy 

of the delayed-fractional arm over the standard arm and instead overestimated standard arm efficacy 

and underestimated delayed-fractional arm efficacy (Figure 2.5B). Again, the titre only model 

predicted earlier onsets of infection for individuals across both arms of the trial, whereas the inclusion 

of avidity dose-response terms better replicated the observed relationship and distinguished the later 

times to onset from the delayed-fractional arm (Figure 2.5D). The model does not take into account 

Figure 2.4 MCMC posterior distributions and trace plots. 
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inter-individual variation in innate immune responses and variations in the blood-stage parasite 

replicate rate which might result in underestimates of the time to onset for several volunteers.  

  

Figure 2.5 Comparisons of model predicted outcomes to challenge trial data. A) Model predicted vaccine efficacy resulting 
from the best fitting model including dose-response curves for IgG titre and avidity and (B) a comparison with the model 
when only IgG titre was included as a predictor of vaccine efficacy. Dashed black lines on both plots represents equivalent 
predicted and observed efficacy. Pink points represent the overall efficacy of the delayed-fractional arm and yellow the 
standard arm. Black points represent individuals grouped into quintiles of their predicted vaccine efficacy, with vertical lines 
representing binomial 95% Confidence Intervals for observed efficacy measurements. C) Model predicted time to onset of 
parasitaemia (dotted lines) for the best fitting model including dose-response curves for IgG titre and avidity and D) model 
predicted time to onset of parasitaemia (dotted lines) for the IgG titre only model. All model results at median predicted 
values. 
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Table 2.3 Comparison of model predicted (green) and observed (black) vaccine efficacy against infection at first challenge. 
Comparisons are  stratified into terciles based on observed immune marker measurements. Number in brackets for observed 
rows represents the number of individuals infected in each tercile/total number in each tercile 

  

2.4.3 Vaccine efficacy against infection  

Protection against infection was estimated to increase with both increasing antibody titre and avidity. 

bb shows the observed and model-predicted vaccine efficacy against infection for volunteers stratified 

into terciles (low, medium, high) based on their titre and avidity measurements. Of the five individuals 

with the highest recorded immune response measurements, all were protected following challenge, 

with modelled efficacy extremely close to sterile protection upon first challenge at 97.5% (95% CrI 

87.9%–99.6%). Efficacy was predicted to be higher if high avidity levels (avidity index≥60) were 

achieved but titres remained low, efficacy: 84.9% (95% CrI 48.0%–97.0%), compared to when high 

titre measurements were achieved but avidity remained low (≤44), efficacy: 76.8% (95% CrI 52.7%–

92.9%). For the lowest observed titre and avidity measurements efficacy was predicted to be almost 

half that for the highest terciles (Table 2.3). The estimated distribution of individual efficacy against 

infection is shown in Figure 2.6 and shows high between individual-variation due to the underlying 

variation in immune responses between individuals. Efficacy against infection predicted by the model 

for continuous combinations of both IgG antibody titre and avidity is shown in Figure 2.7A, noting the 

presence of a highly protected subgroup of volunteers all of whom had avidity measurements greater 

than 65 but whose titre measurements varied significantly across the observed range. Increasing 

avidity was estimated to substantially increase vaccine efficacy for all but the highest antibody titres.  

 

  

IgG 
Avidity 
Index  

Anti-NANP IgG Titre (ELISA Units) 

Low 
(3,399-18,512) 

Med 
(18,513-34,139) 

High 
(34,140-74,710) 

All 
(3,399-74,710) 

Low 
(28-44) 

44.6% 63.5% 76.8% 63.9% 

66.7% (1/3) 57.1% (3/7) 80.0% (1/5) 66.7% (5/15) 

Med 
(45-59) 

65.7% 84.9% 91.7% 77.1% 

62.5% (3/8) 100% (0/3) 80% (1/5) 75% (4/16) 

High 
(60-94) 

84.9% 95.2% 97.6% 93.2% 

75.0% (1/4) 100% (0/6)  100% (0/5)  93.3% (1/15) 

All 
(28-94) 

66.1% 78.4% 89.0% 
78.0% 

(95% CrI 60.3% - 88.8%)  

66.7% (5/15) 81.3% (3/16) 86.7% (2/15) 78.2% (10/46) 
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2.4.4 Vaccine efficacy per sporozoite 

In addition to estimating vaccine efficacy against infection, the model estimates the percentage 

reduction in the number of sporozoites initiating blood stage infection for a given level of immune 

response. I estimated the efficacy per sporozoite across the vaccination arms to be extremely high at 

99.7% (95% CrI 98.7 %–99.8%). This suggests that even if 1% of the infecting sporozoites escape the 

immune response they can go on to initiate breakthrough infection, all-be-it at a slower rate than in 

unvaccinated populations. Both efficacy against infection and efficacy per sporozoite increase with 

increasing titres and avidity (Figure 2.7B-E).  

  

Figure 2.6 Distribution of model predicted vaccine efficacy against infection.  Estimated for each volunteer (n46) in the 
challenge trial stratified by vaccination schedule. 
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Figure 2.7 Predicted efficacies as a function of the antibody immune response. A) Efficacy against infection as a function of anti-NANP IgG antibody titre (ELISA Units) and avidity index. Vertical 
dashed lines represent the median and 90% ranges of the observed antibody titres. Horizontal dashed lines represent the median and 90% ranges of the observed avidity index measurements. 
Isoclines represent the 30%, 50%, 70% and 90% estimated vaccine efficacies for combinations of avidity and titre. Green represents infected volunteers and white protected volunteers, * the 
Delayed-Fractional arm and • the standard arm. B,D) Efficacy against infection as a function of each single immune measurement with the other held constant at the value of the estimated β 
parameter from model fitting (avidity 8.7 and titre 3,612). C,E) Efficacy per sporozoite as a function of each single immune measurement with the other held constant at the value of the estimated 
β parameter from model fitting (avidity 8.7 and titre 3,612). Shaded areas represent 95% credible intervals. A histogram of the distribution of observed immune measurements is shown in grey.  
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2.5 Discussion  

Understanding the nature of the protective immune response elicited by second-generation RTS,S 

vaccines and the identification of immunological markers that reliably predict protection against 

malaria infection is critical for vaccine development and evaluation. Here I have shown that the quality 

of vaccine-induced responses is also an important consideration when evaluating associations 

between immune markers and protection from infection. This work highlights that high levels of 

protection can be achieved without further increases in antibody titre. Further, model fitting 

demonstrated how the combination of both IgG titre and avidity help to explain the observed efficacy 

improvements of the delayed-fractional regime better than if titre alone was used to predict efficacy.  

Across the volunteers in this trial the model predicts that RTS,S induced partial protection in everyone 

with subgroups of individuals highly protected against first challenge. It is important to note that this 

variation in protection stems from both the observed variation in immune responses and also the 

underlying variation in the potential infectious dose of sporozoites received per-challenge-per-

volunteer. Despite the presence of a highly protected sub-group of individuals who all achieved avidity 

indices greater than 60, no thresholds of protection for either immune marker were identified in this 

study. The model does predict efficacy against infection in excess of 70% if avidity indices greater than 

70 are achieved, regardless of the number of antibodies induced, which suggests that close to sterile 

protection could be achieved with further increases to avidity.  

At the lower levels of avidity achieved in this trial a higher antibody titre was required to achieve a 

given level of vaccine efficacy, suggesting that low functional avidity could be compensated for by high 

IgG titres and vice versa (Bachmann et al., 1997; Reverberi & Reverberi, 2007). High avidity antibodies 

that recognise and strongly bind sporozoites might be especially important in the short time frame 

following inoculation to successfully clear invading parasites. However it is not yet clear how avidity 

measurements relate to functional responses and if high avidity antibodies exert better biological 

functions (Mota & Rodriguez, 2004; Yang et al., 2017; Sidjanski & Vanderberg, 1997). One aspect of 

the antibody response not captured in this work is the subtype composition of IgG antibodies. A recent 

study suggested that the observed avidity improvements might result from an underlying change in 

IgG subclass composition, with a dominant IgG4 response in those volunteers from the delayed-

fractional regime (Chaudhury et al., 2017). Given that IgG subclass has implications for antibody 

function and it has been shown that differing subclass compositions associate with protection or risk 

of malaria infection, it will be important to further characterise whether total IgG avidity can 

potentially act as a successful surrogate marker of both serum antibody composition and protection 
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(Kurtovic et al., 2018, 2019, 2020; Chaudhury et al., 2017; Ubillos et al., 2018; Dobaño et al., 2019; 

Vidarsson, Dekkers & Rispens, 2014).  

While this challenge study was performed in malaria naïve adults in the United States, the 

measurements of avidity to repeat region antigens recorded from the standard arm mean 45.5 reflect 

those recorded from RTS,S/AS01 vaccinated children in malaria-endemic countries (median 41.2, 

mean 45.5 and geometric mean 39 (Ajua et al., 2015; Olotu et al., 2014; Dobaño et al., 2019)). Whilst 

the approaches and methodologies of the studies vary making comparisons difficult, if the 

improvements in avidity and efficacy observed in the delayed-fractional arm translate to target 

populations in malaria endemic countries modelling work suggests this could potentially result in an 

additional 21–25% more clinical cases averted compared to the standard RTS,S/AS01 dosing regimen 

over 10-years of routine delivery (Hogan et al., 2018). To further optimise the protective efficacy and 

delivery of RTS,S it will be important to disentangle the influence of the fractional dose versus the 

delay on both the immune response pathways and vaccine efficacy and such evaluations are currently 

ongoing in naturally exposed populations (Clinicaltrials.gov identifiers: NCT03276962). Preliminary 

results of these ongoing field trials as assessed in an interim analysis and presented to the 2021 WHO 

Malaria Policy Advisory group showed that fractional only regime was not superior to the standard 

regimen over either 6.5 or 12 months for the same outcomes and that there were no significant 

differences in antibody avidity among vaccinated groups (World Health Organization, 2022). While full 

trial results are not yet available results suggests the potential for the concurrent delay and fractioning 

might be critical for improvements in efficacy.  

Critically children in malaria endemic countries will have pre-exposure to P. falciparum, experience 

repeat exposure, between dose exposure and a diverse parasite strain environment all of which are 

not captured in challenge trials, which could influence the adaptive immune response and thus 

achievable efficacy of delayed-fractional RTS,S. Our results show that it will be important to measure 

both antibody markers in these studies to further assess their utility as predictors of protection in 

naturally exposed populations.  

Finally, vaccine dose reductions and dose spacing have been associated with improving affinity 

maturation responses in vaccinees, resulting in higher affinity protective antibodies (Lambert, Liu & 

Siegrist, 2005). Evidence suggests these changes can preferentially give rise to the formation of 

memory B cells and prioritise germinal centre formation over short term effector responses (Lambert, 

Liu & Siegrist, 2005). The increased levels of somatic hypermutation along with the improvements in 

avidity and recent work characterising the formation of CSP-specific memory B cells suggests that the 

delayed-fractional regime alters affinity maturation to some degree (Chaudhury et al., 2017; Regules 
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et al., 2016; Pallikkuth et al., 2020).  Due to the limited number of data points in this study I was unable 

to fit separate P. falciparum infection models to each vaccination arm and test this hypothesis that 

the schedule changes result in different relationships between efficacy against infection and immune 

markers. Further largescale trials will be key to exploring this hypothesis further. As noted previously 

delineating the role of dose spacing and dose reductions will be important for further optimising 

efficacy of RTS,S. Monitoring avidity in all future RTS,S clinical trials should be considered and further 

work into understanding its utility as a correlate of vaccine efficacy but also as a potential marker of 

underlying B cell changes should be a priority. 

2.6 Limitations 

There are several limitations to the results presented in Chapter 2. Firstly, the findings presented here 

only apply on the day of challenge and do not give information on the duration of protection. The 

dynamics of these antibody responses over time will be important for understanding the duration of 

protection afforded by delayed-fractional RTS,S and its overall public health impact. In addition to only 

looking at a single time point following challenge the dataset from this trial was small with only 46 

volunteers, 10 of whom developed infection. This limits the precision of the estimated biological 

parameters and leads to wide uncertainty intervals on all estimates. Given this small sample size 

informative priors were needed to ensure convergence during model fitting. The model itself being a 

simplification of a complex biological process also carries intrinsic limitations and cannot account for 

any periodic fluctuations in parasite density, short term influences of innate immunity or inter-

individual differences in parasite growth rates. The focus here is on the antibody response to a single 

region of the CSP protein, however differences in cellular immune responses and responses to other 

regions of the CSP protein should be considered in future field trials and subsequent analysis. Recently 

a study by Das et al., highlighted that the delayed-fractional regime breaches the immunodominance 

of the humoral immune response, inducing a balanced response across the C-terminal and the NANP 

region of CSP which were both found to be linked to protection following vaccination (Das et al., 2021). 

Conversely, the less efficacious standard regimen induced a more focused response to the NANP 

repeat region. The authors suggested that the fractional dosing regimen appeared to retain responses 

to the NANP repeat region that were induced by the standard regimen, while broadening the response 

to the C-terminal region that might also contribute to vaccine protection. Furthermore, the authors 

highlighted that IgG avidity to full-length CSP and C-terminus antigens did correlate to antibody 

effector functions suggesting that avidity could act as a surrogate marker for function as well as for 

improved vaccine outcomes but more work again is needed to explore this further. A further limitation 

and generalisability problem with this current work is that I rely on avidity measurements from 

inhibition ELISA with only 4M urea used as the chaotropic regent. The use of this assay has its own 
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limitations and these results therefore might not correlate to avidity indices evaluated from different 

assays (including thiocyanate or guanidine hydrochloride inhibition ELISA, plasma magnetic 

resonance, bilayer interferometry or multiplex assays) (Abu-Raya et al., 2020; Dimitrov, Lacroix-

Desmazes & Kaveri, 2011). Further work is needed to standardise avidity measurements in malaria 

vaccine research to improve the validity and precision in avidity as a potential correlate of vaccine 

efficacy.  

2.7 Conclusions 

In malaria vaccine development, considerable focus has been on the quantity of the vaccine-induced 

immune response. Here I have shown that the quality of these induced responses is also an important 

consideration when evaluating associations between immune markers and protection from infection. 

Given the need for continued development of a highly efficacious malaria vaccine and the challenges 

of testing new vaccine formulations in large field trials, the establishment of immune correlates will 

be invaluable. These results provide an early insight into the use of avidity as a surrogate marker of 

the quality of the vaccine-induced antibody response to form part of future malaria vaccine evaluation 

frameworks.  
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Chapter 3 

3 Fitting and validating the protective efficacy 
profile of Sulfadoxine-Pyrimethamine plus 
Amodiaquine against clinical malaria when used 
in seasonal malaria chemoprevention  

In this chapter, I use Bayesian methods to fit an updated efficacy profile of Sulfadoxine-Pyrimethamine 

plus Amodiaquine (SP+AQ) the drug combination currently used for Seasonal Malaria 

Chemoprevention (SMC) using clinical trial data. I then validate this profile by comparing model 

estimated impact outcomes with those of published trial data. This is the first of two chapters where 

I aim to validate seasonal malaria interventions against clinical trial data. Before using these models 

in further population level impact modelling in Chapter 5.  

3.1 Background 

The diverse climatic environment across sub-Saharan Africa (SSA) leads to significant variations in 

transmission patterns of malaria. In areas where the annual temperature is suitable for malaria 

transmission, seasonality in rainfall patterns is a key driver of seasonality in malaria transmission. In 

areas of the Sahel and sub-Sahel region that experience intense seasonality in rainfall, transmission of 

malaria is also highly seasonal with cases typically concentrated in three to six months of the year. 

Since 2012, the WHO has recommended seasonal malaria chemoprevention (SMC) in areas where 

around 60% of malaria cases fall within four months of the year, or 60% of the annual rainfall falls 

within three months of the year (World Health Organization, 2012b). Given these criteria two broad 

areas of SSA, the Sahel and sub-Sahel and a stretch of southern Africa from Namibia to Mozambique 

and Southern Tanzania in the east, were identified as suitable for SMC as an intervention (Cairns et 

al., 2012). However, due to high levels of resistance to the recommended drug combination used for 

SMC in south and east Africa following historic use of Sulfadoxine-Pyrimethamine as a first line 
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treatment, SMC has not been recommended in these areas despite suitable seasonality patterns 

(Cairns et al., 2012; World Health Organization, 2012b; Okell, Griffin & Roper, 2017; Naidoo & Roper, 

2011).  

Sulfadoxine-Pyrimethamine plus Amodiaquine (SP+AQ) is the current drug combination 

recommended for use in SMC campaigns, to be delivered at monthly intervals to children aged 3–59 

months old during the transmission season (World Health Organization, 2012b). Three- or four-

monthly cycles of SMC were initially recommended by the WHO in 2012 (World Health Organization, 

2012b). SP is delivered as a combined dose on day one and three daily doses of AQ are required for a 

complete monthly cycle of SMC.  

Through providing a full treatment course of antimalarials, SMC aims to prevent clinical disease by 

maintaining therapeutic levels of drug concentrations in the blood over the period of greatest malaria 

risk. A series of clinical trials of SMC with SP+AQ have shown SMC to be a highly promising tool for 

controlling malaria in areas of seasonal transmission, with a pooled protective efficacy against clinical 

malaria across the transmission season of 83% (95% CI: 72%–89%) (Wilson, 2011; World Health 

Organization, 2011b). Estimates of efficacy following a single monthly treatment course are reported 

to be between 78%–87% (Bojang et al., 2011; Cairns et al., 2020). In addition, estimates of time-varying 

efficacy over follow-up suggests SP+AQ provides a high level of protection against uncomplicated 

malaria for around four weeks after administration of each treatment course whereafter protection 

appears to decay rapidly (Zongo et al., 2015).  

Thirteen countries in the Sahel and sub-Sahel region have now adopted SMC programmes, delivering 

four-monthly cycles to populations at risk, reaching around 33.5 million children in 2020 (World Health 

Organization, 2021g). Similar to that observed in randomised trials, protective effectiveness of SMC 

against clinical malaria when delivered in routine settings was estimated at 88% within 28 days of 

administration and 61% between 29–42 days following administration in seven countries participating 

in the Achieving Catalytic Expansion of SMC (ACCESS-SMC) project (Baba et al., 2020). In addition, the 

routine use of SMC has been shown to reduce the number of malaria cases at outpatient clinics and 

the number of malaria deaths in hospitals (Baba et al., 2020).  

Understanding and characterising the efficacy profile of malaria interventions over time is essential 

for ensuring realistic model projections of intervention impact that can contribute to policy 

discussions. As currently implemented in the Imperial College London malaria transmission model 

RTS,S vaccine efficacy profile was determined through model fitting to large scale Phase 2 and Phase 

3 clinical trial data and has since been validated against the longer term follow up studies from these 

trials (White et al., 2014, 2015). Antimalarial treatment efficacy of first-line Artemisinin-based 
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combination therapies (ACT) was characterised using a previously published pharmacokinetic-

pharmacodynamic (PKPD) model, fitted to clinical trial data from six different sites in sub-Saharan 

Africa and validated against data from a long-term trial in Uganda (Okell et al., 2014). The temporality 

in efficacy of insecticide-treated bed nets and indoor residual spraying with several classes of 

insecticides along with the impact of insecticide resistance on effectiveness has also been 

characterised through statistical fitting to experimental hut trial data and validation to randomised 

control trials (Churcher et al., 2016; Nash et al., 2021; Sherrard-Smith et al., 2018). We lack the same 

level of validation and quantification of the uncertainty in the effect for our current SP+AQ efficacy 

profile that is used in the Imperial College malaria transmission model. In order to compare seasonal 

malaria interventions in Chapters 4 and 5 and incorporate uncertainty in intervention effects a 

statistical refitting and validation of the efficacy profile of SP+AQ is required.  

3.2 Aims 

In this chapter I aim to use a Bayesian framework to estimate a functional form of SP+AQ efficacy over 

time using previously published clinical trial data. I then aim to validate this efficacy profile by using 

the individual based Imperial College London malaria transmission model to simulate SMC clinical 

trials and compare efficacy estimates to those observed in the trial. Further, I will investigate the 

impact of different SMC protocols (four-, five-, six- or seven-monthly cycles) on burden reductions in 

countries that experience seasonality in malaria transmission to assess how seasonality influences the 

potential impact of SMC at scale. This fitting procedure will allow propagation of uncertainty 

surrounding SP+AQ protection in modelling the potential public health impact of SMC in comparison 

to RTS,S vaccination. 
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3.3 Methods  

3.3.1 Clinical trial data  

Individual level data were made available through requests to investigators of the Zongo et al study 

(Zongo et al., 2015). These data are derived from the SP+AQ arm and the control arm in this trial from 

the final month of SMC delivery through to the following month (Oct – Nov 2009). In brief, the trial 

was conducted in three trial sites, served by three health centres (Satiri, Kadomba and Balla), in the 

district of Lena, Burkina Faso. The control arm was recruited from the same area served by the Balla 

health centre. All SP+AQ treatments were directly observed, and children were given SP in a dosage 

of 25 mg sulfadoxine and 1.25 mg pyrimethamine per kg of body weight and AQ in a dosage of 10 

mg/kg. Parents were asked to bring their children to the study clinics whenever the child was unwell 

and, two weeks after drug administration, a study nurse would visit each household to check the child 

was well and refer any children to the clinic. Children who presented with a history of fever were 

administered a rapid diagnostic test for malaria, and if this was positive, they were treated with 

artemether-lumefantrine (AL), and a blood smear was taken. If a child was diagnosed with malaria on 

the day SMC was scheduled to be given (all children were tested before delivery), SMC was withheld 

that month and the child was treated with AL. In this analysis, clinical malaria was defined as: axillary 

temperature ≥ 37.5°C or history of fever in the last 24 hrs with any level of parasitaemia. Anonymized 

data from 940 individuals were provided along with their age at enrolment (in years), bed-net usage 

(yes/no), study site and their time until first malaria event (in days) or when they exited the study due 

to withdrawal, migration, death of another cause (last time point child was known to be malaria free).  

Ethical approval from the Head of the School of Public Health at Imperial College London was sought 

and approved for the analysis of this secondary data.  

3.3.2 SP+AQ profile 

Several functional forms were explored to describe the decay in efficacy of SP-AQ against clinical 

malaria over time. I define  𝑃𝑆𝑃𝐴𝑄(𝑡) as the probability that an individual is protected from infection 

at time 𝑡 following the third SP+AQ cycle in this trial. The functional forms used were the following: 

(a) the Weibull cumulative distribution function:  

 𝑃𝑆𝑃𝐴𝑄(𝑡) =  exp
−(𝑡 𝜆⁄ )𝑘 (3.1)  

where 𝑘 and 𝜆 are the shape and scale parameters to be estimated, (b) the Gamma cumulative 

distribution function: 
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 𝑃𝑆𝑃𝐴𝑄(𝑡) = 1 − 
1

Γ(𝑤)
𝛾 (𝑤,

𝑡

𝜃
) (3.2) 

where 𝑤 and 𝜃 are the shape and scale parameters to be estimated, Γ the gamma function and 𝛾 the 

lower incomplete gamma function and finally, (c) a Hill-function:  

 𝑃𝑆𝑃𝐴𝑄(𝑡) =  
1

1 + (
𝑡
𝑙
)
𝑟  (3.3) 

where 𝑟 and 𝑙 are the shape and scale parameters to be estimated.  

3.3.3 Infection model  

The control group in this trial reflects the baseline rate of malaria infections in the absence of SMC 

treatment. I assume that the timing of observed malaria events can be described by an exponential 

distribution (𝐸𝑥𝑝(𝛼)) such that the time-dependent hazard ℎ(𝑡) of an episode of clinical malaria over 

the trial is constant:  

ℎ(𝑡) =  𝛼 (3.4) 

If an individual is sleeping under an insecticidal treated bed-net (LLIN) then the hazard of clinical 

malaria is assumed to be adjusted by a factor 𝛿𝐿𝐿𝐼𝑁: 

ℎ(𝑡) =  𝛼 ∗ 𝛿𝐿𝐿𝐼𝑁  (3.5)

Further, given that the gradual acquisition of natural immunity to clinical malaria will influence 

patterns of clinical malaria in this trial a further age modification term for each age group 

(𝛿𝑎𝑔𝑒 0−1, 𝛿𝑎𝑔𝑒 1−2, 𝛿𝑎𝑔𝑒 2−3, 𝛿𝑎𝑔𝑒 3−4, 𝛿𝑎𝑔𝑒 4−5) in the trial cohort is included: 

ℎ(𝑡) =  𝛼 ∗ 𝛿𝐿𝐿𝐼𝑁 ∗ 𝛿𝑎𝑔𝑒 (3.6) 

Seasonal malaria chemoprevention is assumed to reduce the hazard of clinical malaria by a factor 1 −

 𝑃𝑆𝑃𝐴𝑄(𝑡):

ℎ(𝑡) =  𝛼 ∗ 𝛿𝐿𝐿𝐼𝑁 ∗ 𝛿𝑎𝑔𝑒 ∗ (1 − 𝑃𝑆𝑃𝐴𝑄(𝑡)) (3.7) 

This formulation of the model assumes that the hazard of clinical malaria over the final two months 

of the trial is constant which may be an unrealistic assumption given the seasonality of transmission 

in the trial site. Therefore, I also compare this constant hazard model to three formulations of a 

piecewise-hazard model. In these piecewise-hazard models the time axis is separated at defined cut 

points; I test 𝑛 = 2 monthly intervals using the following cut points 𝑐 = {(0,30], (30,60]}, 𝑛 = 5 bi-

weekly intervals using the following cut points 𝑐 = {(0,14], (14,28], (28,42], (42,56], (56,60]}, and 

𝑛 = 9 weekly intervals defined using the following cut points: 𝑐 = {(0,7], (7,14], (14 − 21], (21 −
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28], (28 − 35], (35 − 42], (42 − 49], (49 − 56], (56 − 60]}. The corresponding baseline time-

dependent hazard of an episode of clinical malaria is therefore:  

ℎ(𝑡) =  {
𝛼1, 𝑖𝑓 0 ≤ 𝑡 ≤  𝑐1

⋯
 𝛼𝑛 𝑖𝑓 𝑐𝑛−1 < 𝑡 ≤  𝑐𝑛

(3.8) 

The corresponding time-dependent survival function describing the probability of remaining malaria-

free at time 𝑡 is described by the following equations for the control arm and SMC arm respectively:  

𝑆(𝑡) = exp(− 𝛼𝑛 ∗  𝛿𝐿𝐿𝐼𝑁 ∗ 𝛿𝑎𝑔𝑒 ∗ 𝑡) (3.9) 

𝑆(𝑡) = exp(− 𝛼𝑛 ∗ 𝛿𝐿𝐿𝐼𝑁 ∗ 𝛿𝑎𝑔𝑒 ∗ ∑(1− (𝑃𝑆𝑃 𝐴𝑄(𝜏)))

𝑡

𝜏=1

) (3.10) 

3.3.4 Model likelihood for survival analysis  

Given the total number of individuals 𝐽 in the trial, during follow-up an individual (𝑗, 𝑗 = 1,2,… 𝐽) will 

either be diagnosed with malaria (𝐼𝑗 = 1), or be censored by remaining malaria-free (𝐼𝑗 = 0), by a 

certain time point 𝑡𝑗. For each individual 𝑗 the time spent in each interval is denoted by 𝑡𝑗1, 𝑡𝑗2, … , 𝑡𝑗𝑛′ 

where 𝑛′ indicates the time interval in which the 𝑗𝑡ℎ subject is diagnosed with malaria, or the time 

interval in which they were last known to be malaria-free. In this way, we define 𝐼𝑗𝑛 to be 0 for each 

interval 𝑛 where individual 𝑗 remains malaria free and 1 if they are diagnosed with malaria in that 

interval. I estimate the parameters pertaining to the baseline hazard of malaria (𝛼𝑛), the age-group 

and bed-net modifiers (𝛿𝐿𝐿𝐼𝑁, 𝛿𝑎𝑔𝑒) and the parameters of the SP-AQ efficacy profile (φ). The above 

parameters can be estimated using the following likelihood 

equation:

𝐿(𝛼𝑛, 𝛿𝐿𝐿𝐼𝑁 , 𝛿𝑎𝑔𝑒, 𝜑|𝐼, 𝑡) =  ∏
∏ ℎ𝑗𝑛(𝑡𝑗𝑛)

𝐼𝑗𝑛  𝑆𝑗𝑛
𝑛′(𝑗)
𝑛=1 (𝑡𝑗𝑛) 

 

𝐽
𝑗=1 (3.11) 

If an individual 𝑗 remains malaria free (𝐼𝑗𝑛 = 0) in time interval 𝑛 their contribution to the likelihood 

is simply the probability of remaining malaria-free up to time 𝑡 (𝑆𝑗𝑛(𝑡𝑗𝑛)). If an individual is diagnosed 

with malaria (𝐼𝑗𝑛 = 1) in the time interval 𝑛, their contribution to the likelihood is the instantaneous 

rate of malaria infection at time 𝑡 (ℎ𝑗𝑛(𝑡𝑗𝑛)) multiplied by the probability of remaining malaria-free 

up to time 𝑡 (𝑆𝑗𝑛(𝑡𝑗𝑛)). 

3.3.5 Model fitting 

Model parameters were jointly estimated in a Bayesian framework using Markov Chain Monte Carlo 

(MCMC) sampling fitting to the data from the control and SP+AQ arms. The model was written in RStan 
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(Stan Development Team, 2020) and all code can be viewed at 

https://github.com/ht1212/thesis_chapter_3. Stan implements a Hamiltonian Monte Carlo (HMC) 

algorithm along with the No-U-Turn Sampler (NUTS), effectively generating an Adaptive Hamiltonian 

Monte Carlo algorithm. HMC supresses the random-walk behaviour of the Metropolis algorithm used 

in Chapter 2 which allows for a much more efficient searching of the posterior space (Neal, 2011). As 

with all Bayesian model fitting, the goal of sampling is to elucidate the posterior density of our model 

parameters (𝑞) given our data: 𝑝(𝑞|𝑑𝑎𝑡𝑎). HMC augments this posterior density with an independent 

momentum variable (𝜙) giving the joint density:  

𝑝(𝜙, 𝑞) = 𝑝(𝜙|𝑞)𝑝(𝑞) (3.12) 

 It is this joint density that defines a Hamiltonian as:  

𝐻(𝜙, 𝑞) = 𝑇(𝜙|𝑞) + 𝑉(𝑞) (3.13) 

which is composed of the sum of the potential energy: (𝑉(𝑞)) and the kinetic energy: (𝑇(𝜙|𝑞)). The 

potential energy is given by the negative log of the unnormalized posterior density of the model 

(𝑉(𝑞) =  −log (𝑝(𝑑𝑎𝑡𝑎|𝑞) ∗ 𝑝(𝑞))) (Stan Development Team, 2020; Betancourt, 2017; Neal, 2011).  

The algorithm updates following the stages below:  

1. Starting from the current value of parameters 𝑞  

2. Generate a random initial momentum 𝜙 from a multivariate Normal proposal distribution: 

𝜙 ~ 𝑀𝑉𝑁(0,𝑀), where 𝑀 is the Euclidean metric.  

3. The parameter values are updated using the Leapfrog integrator step size 𝜖 and number of 

steps 𝐿 according to Hamiltonian dynamics  

4. By applying 𝐿 leapfrog steps a total of 𝐿𝜖 time is simulated the resulting state at the end of 

each simulation is recorded (𝜙′, 𝑞′) 

5. A metropolis acceptance step is then applied where the probability of keeping the proposal 

(𝜙′, 𝑞′) generated by transitioning from (𝜙, 𝑞) is: min(1, exp(𝐻(𝜙, 𝑞) − 𝐻(𝜙′, 𝑞′))) 

To ensure efficient sampling, Stan is able to automatically optimise 𝜖 to match an acceptance-rate 

target, is able to estimate 𝑀, based on warmup sample iterations, and can dynamically adapt 𝐿 using 

the NUTS algorithm (Stan Development Team, 2020; Hoffman & Gelman, 2014). This algorithm 

automatically selects an appropriate number of leapfrog steps in each iteration to allow the proposals 

to traverse the posterior without doing unnecessary work (Stan Development Team, 2020; Hoffman 

& Gelman, 2014). The total number of MCMC iterations during model fitting was 5,000 with half of 

these discarded as warmup samples and 4 chains were run in parallel. All Markov chains were visually 

https://github.com/ht1212/thesis_chapter_3
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examined for appropriate mixing and convergence along with R-hat statistics for each parameter 

(Vehtari et al., 2019).  

Posterior median parameter estimates with 95% Credible Intervals (95% CrI) are presented in the 

results. Non-informative Gamma priors were placed on all 𝛼𝑛 parameters, log-normal priors were 

placed on each age-group parameter 𝛿𝑎𝑔𝑒, and a uniform prior on 𝛿𝐿𝐿𝐼𝑁, parameters and weakly 

informative Gamma priors were placed on the 𝑃𝑆𝑃𝐴𝑄 parameters based on the previous trial results 

that suggested the mean duration of protection of SP-AQ is around 28 days (Zongo et al., 2015; Cairns 

et al., 2020) (Table 3.1).  

The four models with different numbers of parameters describing the baseline hazard of malaria over 

time were compared visually and the model that provided the most representative fit to the observed 

trial data was selected. I then compared the fit of each model describing the shape of 𝑃𝑆𝑃𝐴𝑄 using 

leave-one-out cross-validation (loo-cv) implemented in the loo package in R (Vehtari, Gelman & Gabry, 

2015). loo-cv compares the difference in the expected log predictive density (elpd) of models, relative 

to the model with the largest elpd to select the best fitting model (Vehtari, Gelman & Gabry, 2015). 

The model with the highest elpd is the model with the predictions that are the closest to the ones of 

the true data generating process.  

3.3.6 Efficacy profile validation 

In order to validate the fitted efficacy profile of SP+AQ I used the Imperial College London malaria 

transmission model described in Appendix 8.1 to recreate previously published SMC clinical trials 

inside the model framework and compare model predicted trial endpoints of efficacy to those 

reported in the trials.  

3.3.6.1 Literature search  

I performed a literature search using Embase and MEDLINE with no language restrictions up to 20-04-

2021 to identify SMC clinical trial papers. The following search terms were used in all fields: (seasonal 

malaria chemoprevention OR intermittent preventative treatment) AND (sulfadoxine pyrimethamine 

AND amodiaquine). Studies were included in the validation process if they met the following criteria: 

1) randomised controlled trial 2) seasonal administration of SP+AQ as one of the therapeutic regimens 

and 3) evaluated the effect of SP+AQ administration on clinical malaria (with parasitological 

confirmation). Summary data were extracted on study design, trial location, study year, number of 

monthly cycles of SMC delivered and the months of delivery, coverage at each round, age ranges of 

delivery, bed-net usage, age distributions of the cohort in each trial and reported efficacy. An 
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assessment of the risk of bias in each identified study was performed using the Cochrane RoB2 tool 

(Sterne et al., 2019).  

3.3.6.2 Parameterising the model for trial locations  

For each trial the first administrative unit (admin-1) of the trial location was used for simulations with 

admin-1 boundaries sourced from GADM (GADM, 2021). The transmission model described in 

Appendix 8.1 was calibrated to Malaria Atlas Project (MAP) parasite prevalence in children aged 2-10 

years and clinical cases aligned with the World Malaria Report median case numbers for the year 

preceding the trial start (Pfeffer et al., 2018). Seasonality in malaria incidence for each admin-1 

location was derived from Fourier transformations of historical rainfall data from the Climate Hazards 

Group InfraRed Precipitation with Station data and offset by 35 days to reflect mosquito abundance 

(Funk et al., 2015; CHIRPS, 1999; Garske, Ferguson & Ghani, 2013). Local vector species composition 

is captured for each admin-1 unit derived from MAP datasets (Pfeffer et al., 2018; Sinka et al., 2016; 

Wiebe et al., 2017; Malaria Atlas Project, 2022). Country specific population data were sourced from 

the United Nations World Population Prospects (United Nations, 2019). Historic treatment coverage 

levels for each location from the year preceding the trial were derived from the Demographic and 

Health Surveys and historic insecticide-treated bed-net usage from MAP (Pfeffer et al., 2018; 

Demographic and Health Surveys, 2019).  

SMC with SP+AQ within the model structure acts to directly treat any existing infections with a 95% 

clearance probability which moves infected individuals in the model to a state of prophylaxis before 

moving back to the susceptible class. It also provides a period of drug-dependent prophylaxis to 

individuals who weren’t infected. This period of protection is characterised in this chapter and 

parameters describing SP+AQ protection over time can be found in the results section.  

SMC delivery was simulated according to the data presented in the trial publications, replicating the 

number of monthly cycles, age-ranges, delivery timings, and SMC coverage levels. Efficacy against 

clinical malaria was calculated as 1 –  𝐼𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒 𝑅𝑎𝑡𝑒 𝑅𝑎𝑡𝑖𝑜, comparing the modelled SP+AQ group 

to the modelled control group over the time-period as it was measured in the trials. I simulate across 

50 posterior draws of the SP+AQ efficacy profile estimated in this chapter to explore the minimal and 

maximal model-predicted impact.  

3.3.7 SMC protocol extension  

Motivated by ongoing policy discussions surrounding the optimal number of SMC monthly cycles 

(Word Health Organization, 2019), using the validated SP+AQ efficacy profile, I modelled the impact 

of increasing the number of monthly cycles of SMC in countries of the Sahel and West African region. 

I compare the percentage and absolute reductions in clinical malaria for SMC delivery schedules of 4-
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, 5-, 6- or 7-monthly cycles over a 12-month period in children aged 0-5 years old. Simulations were 

carried out at the resolution of the first administrative unit across countries of the Sahel and West 

African region that experience some degree of seasonality in malaria transmission (Cairns et al., 2012). 

For each administrative unit, the Imperial College London malaria transmission model was calibrated 

to P. falciparum prevalence in 2- to 10-year-old individuals (PfPR2–10) based on Malaria Atlas Project 

(MAP) prevalence estimates and World Malaria Report cases up to 2018 (Pfeffer et al., 2018; World 

Health Organization, 2019b). Again, seasonality in malaria transmission was derived from Fourier 

transformations of historical rainfall data from the Climate Hazards Group InfraRed Precipitation with 

Station data and offset by 35 days to reflect mosquito abundance (Funk et al., 2015; CHIRPS, 1999; 

Garske, Ferguson & Ghani, 2013). Local vector species composition is captured for each admin-1 unit 

derived from MAP datasets (Sinka et al., 2016; Wiebe et al., 2017; Malaria Atlas Project, 2022). Country 

specific population data were sourced from the United Nations World Population Prospects (United 

Nations, 2019). Historic treatment coverage levels for each location from the year preceding the trial 

were derived from the Demographic and Health Surveys and historic insecticide-treated bed-net 

usage from MAP (The DHS Program, 2019; Pfeffer et al., 2018). Vector control depends on the level of 

insecticide resistance in the local mosquito populations which diminishes the effectiveness of LLINs, 

levels of resistance for each administrative unit were incorporated into the model based on data from 

WHO bioassays over time and experimental hut trials (Churcher et al., 2016; Nash et al., 2021; 

Sherrard-Smith et al., 2018). Coverage and resistance levels were kept constant for future simulations. 

SMC coverage was calculated as the mean of those observed in the trials identified in the literature 

review (92%), which is at the upper limit of the reported levels following wide-scale routine 

implementation (Baba et al., 2020).  

SP+AQ delivery was timed in the model to coincide with the peak in the transmission season and 

delivered to children aged 3-59 months old. Clinical cases averted were calculated for a population of 

10,000 children aged under 5-years and percentage reductions in clinical malaria were calculated as 

1 –  𝐼𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒 𝑅𝑎𝑡𝑒 𝑅𝑎𝑡𝑖𝑜, comparing the modelled SMC scenario to a counterfactual baseline scenario 

with the removal of SMC delivery unless otherwise stated.  
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Table 3.1 Estimates of the infection model parameters. Posterior estimates are shown for models with different functional forms of SP+AQ efficacy and are ordered left to right based on model 
fitting comparisons with loo-cv. 

Parameter Description Prior Distribution 
Posterior (95% Credible Intervals) 

Weibull 𝑷𝑺𝑷𝑨𝑸 Hill 𝑷𝑺𝑷𝑨𝑸 Gamma 𝑷𝑺𝑷𝑨𝑸  

𝑘 SP+AQ shape parameter  Gamma(4,0.5) 3.40 (2.12-5.40)   

𝜆 SP+AQ scale parameter  Gamma(10,0.3) 39.34 (31.07-49.86)   

𝑟 SP+AQ shape parameter  Gamma(4,0.5)  3.88 (2.44-6.27)  

𝑙 SP+AQ scale parameter  Gamma(10,0.3)  34.97 (27.28-44.63)  

𝑤 SP+AQ shape parameter  Gamma(2,1.9)   1.86 (1.36-2.44) 

𝜃 SP+AQ scale parameter  Gamma(10,0.3)   31.10 (17.65-51.28) 

𝛼1 Exponential baseline hazard week 1 Gamma(0.001,0.001) 0.021 (0.009-0.045) 0.021 (0.009-0.045) 0.021 (0.009-0.043) 

𝛼2 Exponential baseline hazard week 2 Gamma(0.001,0.001) 0.020 (0.009-0.044) 0.020 (0.009-0.044) 0.019 (0.003-0.042) 

𝛼3 Exponential baseline hazard week 3 Gamma(0.001,0.001) 0.022 (0.010-0.049) 0.022 (0.010-0.049) 0.021 (0.009-0.045) 

𝛼4 Exponential baseline hazard week 4 Gamma(0.001,0.001) 0.017 (0.007-0.039) 0.017 (0.008-0.039) 0.017 (0.007-0.037) 

𝛼5 Exponential baseline hazard week 5 Gamma(0.001,0.001) 0.014 (0.006-0.032) 0.014 (0.006-0.032) 0.014 (0.006-0.032) 

𝛼6 Exponential baseline hazard week 6 Gamma(0.001,0.001) 0.039 (0.017-0.086) 0.039 (0.017-0.086) 0.044 (0.019-0.096) 

𝛼7 Exponential baseline hazard week 7 Gamma(0.001,0.001) 0.061 (0.025-0.140) 0.064 (0.027-0.148) 0.080 (0.044-0.182) 

𝛼8 Exponential baseline hazard week 8 Gamma(0.001,0.001) 0.087(0.035-0.213) 0.093 (0.036-0.224) 0.115 (0.044-0.276) 

𝛼9 Exponential baseline hazard week 9 Gamma(0.001,0.001) 0.172 (0.049-0.514) 0.177 (0.052-0.533) 0.212 (0.060-0.616) 

𝛿𝐿𝐿𝐼𝑁 Bed net modifier Uniform(0,10) 0.83 (0.60-1.13) 0.83 (0.60-1.13) 0.83 (0.61-1.14) 

𝛿𝑎𝑔𝑒 0−1 Age group modifier 0-1 years  Log-normal(0,0.8) 0.72 (0.33-1.56) 0.73 (0.34-1.59) 0.73 (0.35-1.59) 

𝛿𝑎𝑔𝑒 1−2 Age group modifier 1-2 years Log-normal(0,0.8) 1.19 (0.57-2.50) 1.20 (0.58-2.54) 1.18 (0.58-2.49) 

𝛿𝑎𝑔𝑒 2−3 Age group modifier 2-3 years Log-normal(0,0.8) 1.57 (0.75-3.33) 1.58 (0.76-3.34) 1.58 (0.78-3.35) 

𝛿𝑎𝑔𝑒 3−4 Age group modifier 3-4 years Log-normal(0,0.8) 1.13 (0.54-2.42) 1.14 (0.54-2.44) 1.14 (0.55-2.46) 

𝛿𝑎𝑔𝑒 4−5 Age group modifier 4-5 years Log-normal(0,0.8) 0.60 (0.27-1.34) 0.60 (0.27-1.34) 0.59 (0.28-1.31) 

      

𝜟𝒆𝒍𝒑𝒅 
Difference in expected log predictive density 

relative to the best fitting model  

 
0.0 -0.3 -1.8 
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3.4 Results 

3.4.1 Clinical trial data  

In total there were data from 940 individuals with 694 having received SMC with SP+AQ and 246 

individuals in the control arm (Table 3.2). Across the two months of follow-up a total of 133 first-

malaria events were reported in the SP+AQ arm and 153 in the control arm, and there were no repeat 

events in this dataset. There were no significant differences in reported characteristics between 

groups apart from when comparing the age-distributions of children in the SP+AQ arm located in 

Kadomba with those of the control arm (t-test: p-value = 0.002).  

 

Table 3.2 Summary characteristics of clinical trial data used in model fitting.  

Variable SP+AQ arm  Control arm  

Total individuals 690 250 

Number (%) of individuals in each study site   

1 (Kadomba) 302 (44) 0 

2 (Balla) 140 (20) 250 (100) 

3 (Satiri) 248 (36) 0 

Number (%) in age group    

<12 months 123 (18) 45 (18) 

12-23 months 150 (22) 62 (25) 

24-35 months 136 (20) 55 (22) 

36-47 months 132 (19) 45 (18) 

48-59 months 148 (21) 38 (15) 

Missing 1  5 (2) 

Number (%) reporting use of ITN 185 (27) 77 (31) 

Number (%) malaria events 133 (19) 153 (61) 

Median time to malaria event  47 days 17 days 
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3.4.2 Model fitting  

Model fitting revealed that assuming a single constant baseline hazard over the trial follow up resulted 

in a poor fit to observed clinical malaria patterns (Figure 3.1A). With each successive increase in the 

number of time intervals used to model the baseline hazard of malaria infection results align more 

closely with those observed in the trial (Figure 3.1B-D). The estimated mean duration of protection 

against malaria was found to be similar between the models that partitioned the follow up time, 

monthly: 34 days (95% CrI 29 days–39 days) bi-weekly: 34.5 days (95% CrI 28 days–42 days) weekly: 

35 days (95% CrI 28 days–44 days) compared to the model with a single baseline hazard: 31 days (28 

days–36 days). With each increase in the number of intervals to model the baseline hazard there was 

a corresponding increase in the uncertainty surrounding the SP+AQ efficacy estimates and a slight 

change in the shape of the waning efficacy over time resulting in slightly slower rate of decline (Figure 

3.1E-H). Given the improved fit to the observed times of malaria cases in both trial cohorts the 

piecewise hazard model with weekly cut points was selected for further model comparisons.  

Alternative parameterisations of the functional form of the SP+AQ efficacy over time did not result in 

significant improvements in model fit to the trial data when compared using leave-one-out cross-

validation (Table 3.1). The difference in expected log-posterior density between the three models was 

<4 (Table 3.1) suggesting the models have very similar predictive performances. The Weibull model 

was therefore selected for the validation. MCMC trace plots and posterior distributions for the Weibull 

model parameters are shown in Figure 3.2 and Figure 3.3. 

The estimated duration of protection against clinical malaria at a level of 50% or over from the best 

fitting model was 35 days (95% CrI 28 days–44 days), and the estimated duration of over 90% 

protection was 20 days (95% CrI 15 days–25 days). The final functional form of SP+AQ efficacy over 

time is shown in Figure 3.1H.  
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Figure 3.1 Model fitting outcomes. Collum 1 displays the results of the model fitting to the trial data describing the proportion of 
children infected during follow-up dependent on the number of fitted parameters that describe the baseline hazard of malaria 
over time A) assumes a single parameter, B) assumes two separate monthly parameters, C) assumes five bi-weekly parameters 
and D) assumes nine weekly parameters. Black stepwise lines show the data from each arm of the trial, and the coloured lines the 
fits of the model. Column 2 E-H) displays the resulting fitted parametric from of SP+AQ efficacy over time from each of the model 
fittings with each successive increase in parameters modelling the baseline hazard. Solid coloured lines representing the median 
model estimate and the shaded areas the 50% and 95% Credible Intervals of model estimates.  
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Figure 3.2 MCMC trace plots for all model estimated parameters. Trace plots resulting from the Piecewise baseline hazard 
with weekly cut points and a Weibull decay model of SP+AQ efficacy. 
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Figure 3.3 MCMC posterior distributions for all model estimated parameters. Trace plots resulting from the Piecewise 
baseline hazard with weekly cut points and a Weibull decay model of SP+AQ efficacy. 
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3.4.3 Efficacy validation  

Following de-duplication, 108 studies were identified in the literature search. Of these, following title 

and abstract screening, eight met the inclusion criteria and were included in the validation process 

(Table 3.3)(Bojang et al., 2010; Dicko et al., 2011; Konaté et al., 2011; Sesay et al., 2011; Zongo et al., 

2015; Tine et al., 2011; Ndiaye et al., 2019; Tagbor et al., 2016). These papers reported on SMC clinical 

trials carried out between 2007 and 2012 in five countries: The Gambia (2), Burkina Faso (2), Senegal 

(2), Mali (1) and Ghana (1) (Table 3.3 & Figure 3.4A). The locations in which these trials were carried 

out experience seasonal malaria transmission with seasonality ranging from a short sharp peak in 

incidence over three months in The Gambia to a longer period with incidence more evenly spread over 

around five to six months in Ghana (Table 3.3). SMC protocols varied across the studies identified with 

one trial delivering 2-monthly cycles (Tine et al., 2011), two trials delivering 5-monthly cycles (Ndiaye 

et al., 2019; Tagbor et al., 2016) and five delivering 3-monthly cycles (Bojang et al., 2010; Dicko et al., 

2011; Konaté et al., 2011; Sesay et al., 2011; Zongo et al., 2015) All studies estimated SP+AQ efficacy 

over the months of delivery. In addition, two trials also delivered ITNs to all trial participants (Dicko et 

al., 2011; Konaté et al., 2011) and two trials delivered SMC drugs to an extended age-range of children 

up to 10 years old (Ndiaye et al., 2019; Tagbor et al., 2016). Studies generally had low to moderate 

levels of bias (defined as the risk that they will overestimate or underestimate the true intervention 

effect), with a single study Bojang et al. having a high risk of bias due to the non-randomised control 

arm and the non-reporting of control arm baseline characteristics (see Appendix 8.3 for summaries of 

risk of bias assessments) (Bojang et al., 2010). Model parameterisation for each of these trials is 

summarised in Table 3.4. 
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Table 3.3 Characteristics of identified controlled studies and extracted data as reported in publications. 

 Bojang et al 2010  Dicko et al 2011 Konaté et al 2011  Sesay et al 2011  Zongo et al 2015  Tine et al 2011  Ndiaye et al 2019  Tagbor et al 2016  

Country The Gambia Mali Burkina Faso The Gambia Burkina Faso Senegal Senegal Ghana 

Trial location Basse – rural Kati – rural and urban Boussé - rural Farafenni - rural Lena - rural Bonconto - rural Saraya - rural Ejisu‐Juaben - rural 

Admin-1 Upper River Koulikoro Plateau-Central North Bank Haut-Bassins Kolda Kedougou Ashanti 

Trial year 2007 2008 2008 2008 2009 2010 2011 2012 

Baseline indicator of 
transmission intensity  

1-50‡ 7-37‡ 11-74‡ <10‡ NR NR NR 13.3%-57.6%¥ 

Average rainy season July - November June - October July - October July - November May - October July - November May - November May - October 

Peak transmission 
season 

October - November June - November July - November October - November August - October October - November July - December June - November 

Delivery months 
September, October, 

November 
August, September, 

October 
July, August, September 

September, October, 
November 

August, September, 
October 

October, November 
July, August, September, 

October, November 

July, August, 
September, October, 

November 

SMC drugs SP+AQ SP+AQ SP+AQ SP+AQ SP+AQ SP+AQ SP+AQ SP+AQ 

Number SMC cycles 3 3 3 3 3 2 5 5 

Delivery age range 6-59 months 3-59 months 3-59 months 6-59 months 3-59 months 12-119 months 3-119 months 3-59 months 

Control group  Non-randomised arm Placebo Placebo Placebo Non-randomised arm Cluster randomised Cluster randomised Placebo 

Delivery method 
Trial staff at health 

facility and caregivers 
Trial staff at health 

facility and caregivers 
Trial staff at health 

facility and caregivers 
Community health 

workers and caregivers 
Trial staff at both health 
facility and at the home 

Community health 
workers at health huts 

and at the home 

Community health 
workers and caregivers 

Trial staff at central 
community point, at 
home and caregivers 

Diagnostic method Microscopy Microscopy Microscopy Microscopy Microscopy RDT RDT RDT 

Coverage with SP+AQ* 94% 96% 83% 97% 98% 100% 91% 75% 

ITN usage  
66% SMC arm  

NR control arm 
>99% both arms 93% both arms 93% both arms 

36% SMC arm,  
32% control arm 

95% both arms 
94% SMC arm, 

 91% control arm 
79% SMC arm,  

84% control arm 

Reported efficacy 
93% 

(95% CI: 80%-98%) 
83% 

(95% CI 80%-86%) 
71% 

(95% CI 68%-74%) 
66% 

(95% CI -228%-96%) 
80% 

(95% CI 72%-86%) 
79%  

(95% CI 58%-90%) 
83%  

(95% CI 74%-89%) 
39% 

(95% CI 7%-59%) 

Risk of bias  High risk Low risk  Low risk Some concerns Some concerns Some concerns Low risk  Some concerns 

‡EIR = Entomological Inoculation Rate per person per year, ¥ parasite prevalence in study children at baseline, *Average monthly probability of receiving SP+AQ. NR = Not reported, RDT = Rapid diagnostic test
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Table 3.4 Site specific input parameterisations for SP+AQ model validation  

  Bojang et al 
2010  

Dicko et al 
2011  

Konaté et al 
2011  

Sesay et al 
2011  

Zongo et al 
2015  

Tine et al 2011  
Ndiaye et al 

2019  
Tagbor et al 

2016  

Location   
Upper River, 
The Gambia 

Koulikoro, Mali  
Plateau-
Central, 

Burkina Faso 

North Bank, 
The Gambia 

Haut-Bassins, 
Burkina Faso 

Kolda, Senegal 
Kedougou, 

Senegal 
Ashanti, Ghana 

Trial year  2007 2008 2008 2008 2009 2010 2011 2012 

Vector 
specification  

Proportion of mosquito 
population that is Anopheles 
arabiensis 

84% 57% 39% 81% 10% 35% 48% 0.1% 

Proportion of mosquito 
population that is Anopheles 
funestus 

10% 10% 19% 11% 15% 39% 27% 26% 

Proportion of mosquito 
population that is Anopheles 
gambiae 

6% 33% 42% 8% 75% 26% 25% 74% 

Seasonality in 
transmission  

Fourier seasonality coefficients         

a0 0.6767322 1.145392 0.7792459 0.9180093 1.528932 1.156818 1.418134 2.91713 

a1 -0.8297394 -1.586955 -1.065362 -1.072643 -1.996974 -1.451055 -1.793909 -1.791489 

b1 -0.7726926 -0.94171 -0.6386744 -1.127164 -1.114417 -1.271983 -1.486858 -0.7057204 

a2 0.03991472 0.4384197 0.2898839 -0.03517421 0.452105 0.1400272 0.206244 -0.9524563 

b2 0.6509968 0.8650493 0.6224794 0.948747 0.961317 1.084821 1.226261 -0.9296798 

a3 0.1403766 0.02352499 0.01776126 0.2789854 0.08475795 0.2079542 0.1972055 -0.1804138 

b3 -0.1635258 -0.2828369 -0.2243274 -0.2362525 -0.2745763 -0.289842 -0.2931582 0.9975769 

Transmission 
intensity 

Malaria prevalence in 2–10-year-
olds in the year before the trial 

14.2% 39.8% 46.1% 4.21% 59.2% 7.1% 14.8% 41.5% 

Health 
systems  

Treatment coverage the year 
before the trial 
Defined as the proportion of 
clinical cases that receive 
treatment 

57% 31% 43% 58% 44% 46% 45% 57% 

Vector 
interventions 

Insecticide treated net usage in 
the year before the trial defined 
as the effective coverage of nets 
within the population 

30% Pyrethroid 29% Pyrethroid 6% Pyrethroid 35% Pyrethroid 7% Pyrethroid 37% Pyrethroid 38% Pyrethroid 30% Pyrethroid 
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Efficacy estimates from these trials varied and ranged between 39%–93% (Table 3.3 & Figure 3.4B). 

Model-estimated SP+AQ efficacy was in-line with all the reported trial estimates, falling within trial 

reported confidence-intervals of all trials (Figure 3.4B-C). When considering the studies with the 

lowest risk of bias (Dicko et al., Konate et al., Ndiaye et al.) model-estimated efficacy was similar to 

that reported in the trial data. Model and trial results for these studies are highlighted in Table 3.5.  

Table 3.5 Comparison of efficacy estimates and model-estimated efficacies for the highest quality studies, assessed as 
having a ‘low risk of bias’, identified in the literature search.  

Trial  Reported Efficacy  Model estimated efficacy  

(Dicko et al., 2011) 
83% 

(95% CI 80%-86%) 
80% 

(95% CrI 76%-84%) 

(Konaté et al., 2011) 
71% 

(95% CI 68%-74%) 
68% 

(95% CrI 62%-71%) 

(Ndiaye et al., 2019) 
83%  

(95% CI 74%-89%) 
80% 

(95% CrI 76%-81%)  
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Figure 3.4 SP+AQ efficacy profile validation. A) Map displaying the admin-1 locations of the trials included in the validation with dots indicating the locality within the admin-1 unit. B) Summary of trial reported SP+AQ 
efficacy with 95% Confidence Intervals. Model-estimated efficacy for each trial represented by blue triangles, from 50 posterior draws of the SP+AQ efficacy profile. Coloured circles represent the risk of bias assessment 
results, red: high risk, yellow: some concerns, green: low risk. C) Equivalence comparison between trial observed and median model-predicted efficacy over 50 parameter draws. Trial efficacy is reported with 95% 
Confidence Intervals. The Confidence Interval for Sesay et al extends to -228% and is cut off for clarity. Diagonal line represents equivalence between observed efficacy and model estimated efficacy. 
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3.4.4 SMC protocol extension 

The trials identified in the above validation process all highlight the potentially high levels of efficacy 

that can be achieved with SMC in a range of settings and over a range of delivery protocols (2-, 3- or 

5- monthly cycles). Under the WHO guidance those countries that have now adopted SMC into their 

national malaria control programmes (Figure 3.5) have all implemented 4-monthly cycles of SMC 

(Baba et al., 2020). Using the fitted SP+AQ efficacy profile I wanted to explore the potential impacts 

of scaling up the number of SMC monthly cycles in countries of the Sahel and West African coastal 

regions and estimate impact over a full year to account for the variations in transmission seasonality. 

  

 

Figure 3.5 Areas that have integrated SMC into their national malaria control programme as of 2020. Map produced by 
Medicines for Malaria Venture and SMC Alliance and reproduced from the World Malaria Report 2021. 
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Figure 3.6 Impact of additional cycles of SMC with SP+AQ in Sahel and Sub-Sahel countries. A) % reductions in clinical malaria in children aged 0-5 for 4, 5, 6 or 7 monthly cycles of SMC over 
the course of 12-months. B) The number of clinical malaria cases averted over 12-months following 4 monthly cycles of SMC compared to no SMC. C) The percentage additional clinical malaria 
cases averted in children 0-5 years with 5, 6, or 7 monthly cycles of SMC compared to 4 cycles over the course of 12-months. Outlined in red are the two areas described in the results and in 
Figure 3.7. 
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The maps in Figure 3.6 highlight a distinction over the Sahel region in terms of the number of monthly 

cycles of SMC needed for the largest proportional reductions in malaria burden when measured over 

a full year. These maps highlight that increasing numbers of monthly cycles were needed to maintain 

a high level of impact in the southern regions of West Africa where the duration of malaria 

transmission tends to be longer and less peaked (Figure 3.6). Increasing the number of SMC cycles 

would enable countries and regions within countries that currently do no implement SMC to 

potentially integrate this into their control programmes (Figure 3.5, Figure 3.6). For example, many 

states in Nigeria that experience seasonality in malaria transmission could benefit particularly from 

extended SMC cycles (Figure 3.6). As an example, the average modelled seasonality in malaria 

transmission of Benue state in central Nigeria is shown in Figure 3.7A. With each successive increase 

in the number of monthly cycles an increased proportion of the transmission season could be covered. 

With 7-monthly cycles in this setting the model estimated a 72% (95% CrI 69%–76%) reduction in 

clinical incidence in children under five over 12 months compared to a 49% (95% CI 47%–52%) with 4-

monthly cycles. This increase to 7-monthly cycles resulted in an additional 3,402 (95% CrI 3,265–3,528) 

clinical cases averted per 10,000 children aged under five years over 4-monthly cycles.  

These maps also highlight that in those locations currently delivering 4-monthly cycles of SMC a 

further increase in the number of monthly cycles could further enhance malaria burden reductions. 

For example, using the transmission model parameterised to the Haut-Bassins region of Burkina Faso 

where 4-monthly cycles of SMC have been routinely administrated since 2015. Each successive 

Figure 3.7 Coverage of the transmission season in A) Benue Nigeria and B) Haut-Bassins Burkina Faso with increasing 
numbers of monthly cycles of SMC. Seasonality in transmission is derived from averaged rainfall time series data Fourier 
transformed across the geographic boundaries of each administrative unit. Dashed vertical lines represent model delivered 
SMC cycles and the shaded areas the periods of SP+AQ derived protection. 
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increase in monthly cycle number reduced clinical cases in children under five by a further 16% (95% 

CrI 15%–17%), 23% (95% CrI 22%–24%) or 26% (95% CrI 24%–27%) compared with 4-monthly cycles. 

The modelled seasonality in malaria transmission for this administrative unit and the period of the 

transmission season covered by each different cycle length is shown in Figure 3.7B, highlighting how 

increasing the number of monthly cycles provides protection in the months surrounding the peak of 

the transmission season where residual transmission remains.  

3.5 Discussion 

In this chapter I present estimates of the functional form of the decay in SP+AQ protection against 

clinical malaria over time using previously published SMC clinical trial data. I have validated this profile 

against the results of published randomised controlled trials using an individual based malaria 

transmission model. Finally, using this same individual based malaria transmission model and 

deploying this validated model of SP+AQ efficacy, I examine the potential population level public 

health impacts of increasing the number of monthly cycles of SMC with SP+AQ in Sahel countries that 

experience varying levels of seasonality in malaria transmission. 

Understanding the duration of protection from anti-malarial interventions is critical, especially for 

drug-based interventions whose effects are time dependent according to the pharmacokinetic and 

pharmacodynamic properties of the drug or combinations of drugs. Previous estimates of the duration 

of protection from SMC drugs in clinical trials relied on point estimates of efficacy at set time points 

(Cairns et al., 2008, 2010) or as time varying effects using smoothed regression splines (Zongo et al., 

2015; Lambert & Royston, 2009). However, no previous work has estimated a parametric functional 

form of protection with associated uncertainty suitable for integration into a transmission modelling 

framework, to be validated by assessing its ability to replicate overall trial efficacy estimates across 

different settings. I found that efficacy is best characterised by a Weibull cumulative distribution 

function and that a high level of protection is maintained for around 20 days before declining to zero 

protection by day 60. A higher degree of uncertainty was observed in the tail of the distribution was 

likely a result of the reduction in population at risk at these later time points. Independent estimates 

of efficacy estimated through the smoothed regression splines we found to fall within the credible 

intervals of the Weibull distribution estimated here suggesting the results from both analyses are 

aligned (Figure 3.8). Further to this, previous studies that have estimated SP+AQ efficacy or 

effectiveness at between 64% to 88% by 28 days (Cairns et al., 2021; Dicko et al., 2011; Konaté et al., 

2011; World Health Organization, 2011b; Cairns et al., 2010; Cissé et al., 2006; Cairns et al., 2020; 

Bojang et al., 2011). Here we estimated protection to be 73% (95% CrI 52%-85%) by day 28. These 
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results together highlight the importance of ensuring SP+AQ SMC delivery is spaced at monthly 

intervals to ensure high levels of protection are maintained across the period of greatest malaria risk.  

  

Results of the validation exercise provide further evidence that the functional form of SP+AQ efficacy 

estimated in this work replicates that of the dug-combination. This was an important additional step 

to test given that the trials sites had varying levels of malaria transmission intensity which will have 

affected the time to infection, dosing rules (weight or age based), detection methods, seasonality, 

vector control and other individual level variations. Critically the model estimates aligned extremely 

well with the clinical trials assessed to have the lowest risk of bias which themselves had the narrowest 

confidence intervals surrounding their efficacy estimates.  This validation further supports the notion 

that the transmission model is also accurately capturing seasonal dynamics and transmission intensity 

in the Sahel (Cairns et al., 2015). 

The model however struggled to replicate trial results from Bojang et al. (Upper River, Gambia) 

(Bojang et al., 2010), which may be a result of the limited reporting of information surrounding the 

control arm in this trial which itself was non-randomised and not placebo controlled and therefore 

unlikely captured well by the model. The model also struggled to replicate the results of Tagbor et al. 

(Ashanti, Ghana) (Tagbor et al., 2016) despite the model managing to replicate the standing of this 

Figure 3.8 Comparison of the best fitting SP+AQ decay function (blue) and a previously 
published efficacy profile estimated using regression splines (black) in Zongo et al., 2015. 
Shaded areas represent 50% and 95% Credible Intervals. 
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trial having the lowest efficacy of the trails considered, the model point estimate was significantly 

higher than that reported. This could potentially be a result of variation that we are not able to capture 

in the model such as adherence levels to the study drugs, which was reported to be implausibly high. 

Furthermore, as age-based dosing was used, potential under-dosing in children might have reduced 

the protective effect in this trial (Barnes, Watkins & White, 2008). 

A further important aspect that wasn’t captured in this work was the potential levels of parasite 

resistance to SP+AQ drugs in any of the studies or the fitting process. Significant resistance to both SP 

and AQ is common in much of Africa, particularly in areas of eastern or southern Africa where a high 

prevalence of antifolate resistance to SP makes these regimes unsuitable for SMC (Naidoo & Roper, 

2011; Okell, Griffin & Roper, 2017; Bwire, Mikomangwa & Kilonzi, 2020; Sitali et al., 2020; Cairns et 

al., 2012). A small subset sample from the Zongo et al study highlighted that the prevalence of 

resistance markers to SP and AQ were high in this trial both at baseline and endline but the impact of 

the prevalence of these resistance markers on the efficacy of the drugs was unknown (Zongo et al., 

2015). Given however that efficacy was estimated to remain high for a long time, which was reflected 

further in the trial validation, it is reasonable to infer that resistance was not having too much of an 

impact in reducing efficacy in these trials. Especially as these trials were all conducted prior to 

widescale use of SP+AQ in SMC campaigns. Previous work has shown that high community prevalence 

of 86Y and 76T AQ resistance markers reduced the duration of post-treatment prophylaxis of AS-AQ 

significantly and as such would be an important consideration to examine the impact of different 

resistance markers on SP+AQ efficacy given the widespread use of this drug-combination (Bretscher 

et al., 2020). While studies have been conducted monitoring the prevalence of SP and AQ resistance 

markers in communities delivering SMC this is not sufficient to understand the impact of resistance 

patterns on SMC efficacy and further studies are needed (Baba et al., 2020).  

As of 2020, 13 countries have adopted SMC into their national malaria control programmes with 

around 33.5 million children receiving treatment each month (World Health Organization, 2021g). 

Despite the complexity of delivering SMC at scale, many countries have achieved high coverage and 

have seen substantial reductions in malaria cases (Baba et al., 2020). However, despite these benefits, 

countries where SMC is currently deployed include some of the highest malaria burden countries 

including Nigeria, Burkina Faso and Mali (World Health Organization, 2021g). Despite the relatively 

high coverage of SMC in these countries this ‘residual burden’ of malaria that persists in the presence 

of current interventions must be tackled by novel methods. This could include for example, increasing 

the age range of SMC delivery up to 10 years old, combining delivery of other health related 

interventions (antibiotics, nutritional supplements or vaccination, which I will explore further in 

Chapters 4 and 5) or delivering more than the currently recommended 4-monthly cycles of SMC to 
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cover the burden that occurs outside the peak transmission season (Word Health Organization, 2019; 

Tine et al., 2011; Ndiaye et al., 2019; Sondo et al., 2021; Chandramohan et al., 2019, 2020). The 

findings in this work indicate that if SMC could be administered over a longer period of 5-, 6- or even 

7-months this could optimise SMC maximising reductions in malaria case incidence in countries 

currently delivering SMC and could also result in the expansion of SMC to geographical areas where 

the period of highest malaria risk is greater than four months, for example in the southern states of 

Nigeria or Ghana. This increase in monthly cycles has recently been implemented in Burkina Faso and 

Mali where 5-monthly cycles are now the standard of care. In addition, increasing the number of 

monthly cycles of SMC has the operational benefit of potentially making SMC programmes more 

resilient to annual fluctuations in the arrival or duration of the rainy season. Further recent modelling 

work has highlighted that increasing the number of cycles of SMC might not increase the selective 

pressure for resistance as such making it an attractive control method (Cuomo-Dannenburg et al., 

2019).  

However, increasing the monthly cycles of SMC raises important operational questions, including 

challenges in the delivery and supply of drug courses and challenges in ensuring high coverage and 

adherence to regimes. Operationally delivering SMC requires a large commitment of time and 

resources by National Malaria Control Programmes and their partners especially with the door-to-

door campaigns that help to ensure good coverage levels (Baba et al., 2020; Coldiron, Von Seidlein & 

Grais, 2017). Coverage of routine SMC delivery has shown that only around 50% of all eligible children 

received all four monthly cycles of SMC in 2016 (Baba et al., 2020), and when five monthly cycles were 

assessed in a clinical trial only 36% of children received all five cycles (Tagbor et al., 2016). Further to 

this adherence to the three daily doses is difficult to measure and with reports of both high adherence 

(>86%) and low adherence (<20%) to the three-day AQ regime in routine settings (Baba et al., 2020; 

Ding et al., 2020). Therefore, with increased cycles, medicine fatigue could hamper the potential 

impacts of this intervention. To combat these deployment challenges the development of long acting 

injectables, such as small molecule drugs or monoclonal antibodies, have been targeted as attractive 

interventions to replace or complement SMC (Kisalu et al., 2018; Tan et al., 2018; Bakshi et al., 2018). 

Recent modelling work highlighted that these interventions could make an attractive replacement 

only if the duration of protection from a single dose covered the duration of the transmission season 

and that early characterisation of the decay in protection will be essential to improving their impact 

relative to SMC (Burgert et al., 2022).  

3.6 Limitations  

There are several limitations to this work. Firstly, from the model fitting for the duration of SP+AQ 

protection the dataset was relatively small and only covered a single trial, as children are removed 
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from the dataset clinical cases during the later stages have a large impact on the model estimated 

hazards. There is therefore uncertainty in the shape of the functional form of protection that increases 

when we account for the temporal variations in the risk of clinical malaria that occurred over the 

transmission season. Further to this the data itself has limitations. This dataset only contained data 

from the final monthly cycle of SMC in this trial. There is the potential therefore for children to have 

residual levels of SP and AQ concentrations from the two preceding cycles that might impact the levels 

of observed protection in this trial. With further datasets covering each distribution cycle this could 

be resolved. The pattern of incidence of symptomatic episodes of clinical malaria will depend on 

exposure to infectious mosquito bites, with age influencing the acquisition of infection given levels of 

clinical immunity. Given the small dataset from a single site that was available for this analysis a 

mathematical model that accounts for the age and exposure dependent acquisition of clinical 

immunity was considered too complex for the dataset. However, these models have been used 

previously when combining data from studies across different geographical locations and transmission 

intensities to estimate both vaccine and anti-malarial efficacy over time and could be used in future 

studies if estimating efficacy of SP+AQ from individual level data across SMC clinical studies (Bretscher 

et al., 2020; White et al., 2015). This may also help to resolve some of the uncertainty in the efficacy 

at later time points with further datasets and model formulations. Finally, when considering the 

population level modelling of SMC we use average rainfall patterns across first administrative units in 

the Sahel and Sub-Sahel region to determine the seasonality in malaria transmission within that 

geographic range. However, seasonality patterns within these geographic units can be highly variable 

especially when administrative units span large geographical ranges as in Mali for example. Therefore, 

the results from the protocol extension provide a representative impact estimate for generalised 

seasonality patterns.  

3.7 Conclusions 

Seasonal malaria chemoprevention with SP+AQ has been demonstrated to be a highly efficacious tool 

in preventing clinical malaria across a number of clinical trials and has since shown high levels of 

effectiveness in routine programmatic conditions. Results of this chapter further our understanding 

of the decay in SP+AQ efficacy over time and the implications of this decay in ensuring optimised SMC 

programmes. The formulation of a simple model to estimate the parametric functional form of SP+AQ 

efficacy enabled quantification of uncertainty in the duration of protection something not previously 

available in our transmission model structure. With ongoing discussions on the ways to optimise SMC 

this work has shown that increasing the number of monthly cycles of SMC would enable the expansion 

of SMC into new geographies but also increases to the public health impact of SMC in those areas 

already implementing SMC.  
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Chapter 4 

4 Validation and exploration of efficacy models 
for RTS,S/AS01E when used in a novel seasonal 
vaccination schedule 

In this chapter I use the efficacy model of Sulfadoxine-Pyrimethamine plus Amodiaquine (SP+AQ) 

fitted in Chapter 3 and an existing model of first-generation RTS,S/AS01E (RTS,S) protection to replicate 

the first large-scale field trial of a novel RTS,S vaccination approach in the Imperial College London 

malaria transmission model. This replication of the seasonal vaccination trial is used to understand if 

the first-generation RTS,S efficacy parameterisation is sufficient to describe RTS,S protection in this 

trial or if a potential re-parameterisation is required.  

This work formed part of the evidence packet submitted to the Malaria Policy Advisory Committee 

meeting in October 2021: http://terrance.who.int/mediacentre/data/malaria/documents/mpag-

october2021-session5-rtss-malaria-vaccine.pdf?sfvrsn=9507a63b_10  

This work is under review at The Lancet Global Health.  

4.1 Background  

First-generation RTS,S/AS01E was assessed in Phase 3 field trials between 2009-2014, in 11 sites of 

varying transmission intensity across sub-Saharan Africa (RTSS Clinical Trials Partnership, 2015). 

Efficacy against clinical malaria was 43.9% (95% CI 39.7%–47.8%) in children aged 5–17 months who 

received four doses of the vaccine after 32 months of follow up. Efficacy was shown to wane 

significantly over the course of the trial with efficacy of 67.6% in 5–17-month-old children in the 6 

months following the third dose which declined to extremely low levels (~4%) by seven years despite 

the delivery of a fourth dose (Olotu et al., 2016).   

http://terrance.who.int/mediacentre/data/malaria/documents/mpag-october2021-session5-rtss-malaria-vaccine.pdf?sfvrsn=9507a63b_10
http://terrance.who.int/mediacentre/data/malaria/documents/mpag-october2021-session5-rtss-malaria-vaccine.pdf?sfvrsn=9507a63b_10
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The trial provided estimates of efficacy against clinical malaria but did not provide direct estimates of 

the underlying protection against infection, defined as the probability that the vaccine-induced 

immune responses prevent infection with pre-erythrocytic stages of malaria. This measure of vaccine 

efficacy against infection can be characterised directly in human challenge trials as described in 

Chapter 2, whereas in large scale field trials vaccine efficacy against clinical malaria is calculated as a 

relative measure of the incidence of malaria between control and vaccination groups. However, 

reductions in malaria infections in the vaccination group might reduce naturally acquired blood-stage 

immunity over time compared to in the control group, which will influence the levels of observed 

efficacy against clinical malaria, causing efficacy against clinical malaria to wane at a faster rate than 

efficacy against infection (White et al., 2015). This effect may be a factor in the observation in the 

longer term follow up where efficacy against clinical malaria during the fifth year of follow up was 

negative (i.e higher numbers of malaria cases in vaccinated than in the control group) among children 

in high transmission sites (Olotu et al., 2016)).  

Mathematical models of malaria transmission can be used to characterise vaccine efficacy against 

infection and the duration of this protection over time, by accounting for the dynamics of local malaria 

transmission and the acquisition of natural immunity that can be related to observed levels of efficacy 

against clinical malaria in trial cohorts. Previously different malaria transmission models with their 

underlying differences in model assumptions have been used for the purpose of characterising 

infection blocking efficacy (Penny et al., 2016). Despite the underlying differences in transmission 

models and fitting procedures, all groups came to qualitatively similar conclusions that RTS,S has a 

high initial efficacy following the third dose which declines rapidly in the first 12 months, with slower 

rates of decline after one year post dose three. All models again predicted lower efficacy of the fourth 

dose compared to the primary series with variable estimates in the rates of waning in protection 

following this fourth dose (see Penny et al. 2016 for full review).  

Given this high initial protection against malaria infection and disease that occurs following the first  

three doses of RTS,S and the associated decline over the ensuing months, a novel approach to RTS,S 

vaccination has garnered interest as a way to more effectively deploy RTS,S. It has been suggested 

that RTS,S could be used as a seasonal vaccine in areas of highly seasonal malaria transmission such 

as the Sahel or other areas with high seasonality including East Africa (Greenwood et al., 2017). This 

seasonal vaccination strategy would use the same first-generation formulation of RTS,S but primary 

doses (doses 1–3) would be delivered to young children (5–17 months old) immediately prior to the 

onset of the transmission season with subsequent additional doses delivered to these children 

annually prior to the transmission season (Chandramohan et al., 2020). With this approach the hope 
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is that the peak in RTS,S efficacy would align with the period of peak risk in malaria annually in these 

seasonal settings, with lower levels of protection during the intervening dry season.  

As discussed in Chapter 3, seasonal malaria chemoprevention (SMC) with SP+AQ is currently deployed 

in settings of seasonal malaria transmission to provide prophylactic cover to children aged 0–5 years 

old for the four months of highest malaria burden. Despite effective delivery of SMC there are areas 

of the Sahel where malaria morbidity and mortality remain high, including Burkina Faso for example, 

which is one of the six countries that accounts for almost half the global malaria burden (World Health 

Organization, 2021g). Additional control tools are needed in these counties. Previous studies have 

examined the additional benefit of adding azithromycin to the SMC drug course but found that this 

did not reduce hospital admissions or deaths from non-traumatic causes (Chandramohan et al., 2019). 

Thus, determining whether seasonally targeted RTS,S could be an alternative or additive tool to SMC 

is warranted.  

To evaluate seasonal RTS,S vaccination, an individually randomised Phase 3b clinical trial was 

conducted in children aged 5–17 months old in two sites of high intensity highly seasonal malaria 

transmission in Burkina Faso and Mali. This study was designed to assess whether vaccination was 

non-inferior to SMC in preventing clinical malaria and/or whether when combined the interventions 

were superior to either alone in preventing clinical and severe malaria (Chandramohan et al., 2020). 

This is the first large-scale RTS,S field trial of a novel delivery schedule to be completed. Approximately 

6,000 children were randomised and over three-years of follow up, seasonally targeted RTS,S 

vaccination alone was found to be non-inferior to SMC in preventing clinical malaria, the hazard ratio 

was 0.92, (95% CI: 0.84–1.01), which excluded the pre-specified noninferiority margin of 1.20. And the 

combination of interventions resulted in reductions in the incidence of clinical malaria, severe malaria, 

and deaths from malaria substantially greater than either intervention alone (Chandramohan et al., 

2021).  

4.2 Aims  

In this Chapter I use the Imperial College London malaria transmission model to replicate the Phase 

3b seasonal vaccination clinical trial to understand if the previously fitted and validated models of 

RTS,S/AS01 and SP+AQ are able to replicate the results observed under this novel schedule. Validating 

models against clinical trial data is a valuable way to ensue the model is accurately capturing the 

magnitude and duration of impact of these interventions across multiple clinical outcomes. This is 

useful for confirming the mechanistic relationships between interventions and health outcomes in the 

model and the predictive ability of the transmission model as a whole, which is important for 

increasing confidence in future predictions. Any changes to the underlying intervention efficacy 
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models as a result of this validation will then be used in Chapter 5 to examine the population-level 

public health impacts of this novel seasonal vaccination schedule.  

4.3 Methods 

4.3.1 Clinical trial data 

The seasonal malaria vaccination Phase 3b clinical trial occurred in two locations in southern Burkina 

Faso and Mali over the years 2017–2020 (Figure 4.1) (Chandramohan et al., 2021). There were three 

trial arms: seasonal-vaccination (SV) alone; SMC alone; and SV and SMC combined. Children aged 5–

17 months of age on April 1st, 2017, were enrolled into the trial and all children received a long-lasting 

insecticide treated bed net at enrolment. Children in the vaccine alone or combined group were 

scheduled to receive three doses of the RTS,S/AS01E vaccine in April, May and June 2017 followed by 

a fourth and fifth dose in June 2018 and 2019. Children in the SMC-only arm received a rabies vaccine 

in 2017 (Rabipur) and a single dose of hepatitis A vaccine (Havrix) in 2018 and 2019. Children in the 

SMC-alone or combined group received four courses of SP+AQ at monthly intervals during the 

transmission season each year whilst children in the vaccine-alone group received SP+AQ placebo at 

the same time points. SP+AQ doses were age dependent with children 12 months or older receiving 

500mg of sulfadoxine, 25mg of pyrimethamine and 150mg of amodiaquine, and with infants younger 

than 12 months receiving half of these doses. Administration of SP+AQ or placebo was directly 

observed by trial staff at distribution points in the village. Children who presented with malaria 

symptoms were tested for malaria at health facilities with the use of a rapid diagnostic test and 

Figure 4.1 Geographical locations of trial sites and their corresponding modelled seasonality profiles. A) Geographical 
locations of trial sites (dots) and their respective administrative level one boundaries (outline) used in model simulations. B) 
The associated seasonality patterns in rainfall that drive seasonal patterns in malaria incidence in these administrative level 
one locations used in model simulations. 
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children who were positive were treated with artemether-lumefantrine and a blood film was taken 

for subsequent reading. The primary trial outcome was uncomplicated clinical malaria, defined as a 

measured temperature ≥37.5⁰C or a history of fever within the previous 48 hours and parasite density 

≥5000 per cubic millimetre. In addition, sera from a randomly selected subset of children collected 

before and one-month after the third, fourth and fifth doses of RTS,S were collected each year. Anti-

CSP IgG antibody titres were measured using standardised ELISA (Sagara et al., 2021).  

4.3.2 Model methods 

Results from the clinical trial were compared to model predictions to determine whether the current 

intervention parameterisations of RTS,S and SMC satisfactorily matched the observed trial data. As in 

previous chapters, I use the Imperial College London malaria transmission model for this validation. 

Details of the full model are presented in Appendix 8.1 and I briefly describe the intervention models 

here.  

4.3.2.1 SMC SP+AQ intervention model  

The fitted SP+AQ SMC efficacy model from Chapter 3 was taken forward into this analysis. Briefly, to 

describe SP+AQ action within the model, I assume that SP+AQ directly treats any existing infections 

with a given clearance probability which then moves all infected individuals to a state of prophylaxis. 

SP+AQ also provides a period of drug-dependent prophylaxis to individuals who weren’t infected. The 

period of prophylactic protection for all individuals is captured by the fitted Weibull distribution from 

Chapter 3: 

 𝑃𝑆𝑃𝐴𝑄(𝑡) =  exp
−(𝑡 𝜆⁄ )𝑘 (4.1) 

Parameters describing the duration of protection are shown in  

Table 4.1 and the corresponding efficacy profile in Figure 4.2.  

 

Table 4.1 SMC parameters used in the analysis. 

Parameter & description  Value   

Probability of successfully 
clearing infection  

0.95 

Shape parameter of Weibull 
distribution (𝑘) 

3.40 

Scale parameter of Weibull 
distribution (𝜆) 

39.34 

 

Figure 4.2 Efficacy profile of SP+AQ over time. Solid line 
representing the median model estimate and the shaded 
areas the 50% and 95% Credible Intervals.  
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4.3.2.2 RTS,S antibody model of vaccine efficacy  

To establish the relationship between anti-circumsporozoite antibodies and vaccine efficacy, White et 

al. analysed immunogenicity data following primary vaccination with RTS,S/AS01E with and without a 

booster dose from the 11 Phase 3 clinical trial sites, and assessed how efficacy against clinical malaria 

depended on the rate of waning of vaccine induced antibodies in these study sites of varying 

transmission intensity (White et al., 2015). The model is composed of two parts: the antibody 

dynamics compartment and the association between antibodies and efficacy against clinical malaria.  

Antibody dynamics 

This part of the model takes the form of a biphasic exponential decay function. This function simulates 

the initial increase, and then decay, of antibody titres induced by the combined short-lived and long-

lived B cell responses to vaccination. Following three doses of RTS,S, antibody titres peak (𝐶𝑆𝑃𝑝𝑒𝑎𝑘) 

and then decline over time such that the antibody titre at time (𝑡) is given by: 

𝐶𝑆𝑃(𝑡) =  𝐶𝑆𝑃𝑝𝑒𝑎𝑘(𝜌𝑝𝑒𝑎𝑘𝑒
−𝑟𝑠𝑡 + (1 − 𝜌𝑝𝑒𝑎𝑘)𝑒

−𝑟𝑙𝑡) (4.2) 

This function contains two components to the immune response: the short-lived and long-lived 

antibody-secreting cells (ASC), with separate decay rates included in the equations as (𝑟𝑠) and (𝑟𝑙) 

respectively where 𝑟𝑠 = 𝑙𝑜𝑔𝑒(2)/𝑑𝑠 and 𝑟𝑙 = 𝑙𝑜𝑔𝑒(2)/𝑑𝑙, where 𝑑𝑠 and 𝑑𝑙  are the half-lives of each 

respective component. The proportion of antibodies generated from short-lived and long-lived ASC 

are incorporated here as: 𝜌𝑝𝑒𝑎𝑘 and 1 − 𝜌𝑝𝑒𝑎𝑘 respectively.  

Following a fourth dose at time (𝑡𝑓𝑜𝑢𝑟) titres will peak again to their new level (𝐶𝑆𝑃𝑓𝑜𝑢𝑟) and then 

decline. I assume that the decay rates of these post-dose four antibodies remain the same as above 

but that the proportion of the response that is generated from short-lived ASC (𝜌𝑓𝑜𝑢𝑟) is allowed to 

decrease to represent the priming that has been achieved following the first three doses. For any time-

point post dose four, the antibody titre will therefore be described by the equation:  

𝐶𝑆𝑃(𝑡) = 𝐶𝑆𝑃𝑓𝑜𝑢𝑟 (𝜌𝑓𝑜𝑢𝑟𝑒
−𝑟𝑠(𝑡−𝑡𝑓𝑜𝑢𝑟) + (1 − 𝜌𝑓𝑜𝑢𝑟)𝑒

−𝑟𝑙(𝑡−𝑡𝑓𝑜𝑢𝑟)) (4.3) 

To account for an additional fifth dose of RTS,S at time (𝑡𝑓𝑖𝑣𝑒), I assume the same relationship as in 

equation 4.3 to describe the peak and decline in antibodies over time:  

𝐶𝑆𝑃(𝑡) = 𝐶𝑆𝑃𝑓𝑖𝑣𝑒 (𝜌𝑓𝑖𝑣𝑒𝑒
−𝑟𝑠(𝑡−𝑡𝑓𝑖𝑣𝑒) + (1 − 𝜌𝑓𝑖𝑣𝑒)𝑒

−𝑟𝑙(𝑡−𝑡𝑓𝑖𝑣𝑒)) (4.4) 

The fitted parameters describing the antibody dynamics model are shown in Table 4.2. The observed 

peak antibody titre following the primary series (𝐶𝑆𝑃𝑝𝑒𝑎𝑘) was taken as the median value of the 11 

sites in the Phase 3 trial which was 621 EU/ml and for 𝐶𝑆𝑃𝑓𝑜𝑢𝑟 and 𝐶𝑆𝑃𝑓𝑖𝑣𝑒 this was 277 EU/ml (White 
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et al., 2015). Variation between individuals is captured by drawing antibody dynamics parameters 

from a Normal distribution on a natural log-scale.  

Table 4.2 Fitted parameters used for the antibody dynamics and dose response relationship between antibody titres and 
vaccine efficacy against infection. Median parameter values from White et al. 2015. 

 

Relating antibody dynamics to efficacy against clinical malaria  

To relate declining antibody titres to vaccine efficacy against infection over time, I use a Hill function 

to represent the dose-response curve: 

𝑉(𝑡) =  𝑉𝑚𝑎𝑥1 − (
1

1 + (
(𝐶𝑆𝑃(𝑡)
𝛽

)
𝛼) , (4.5) 

where 𝑉𝑚𝑎𝑥 (maximum efficacy against infection), 𝛼 (shape parameter – initial efficacy) and 𝛽 (scale 

parameter – duration of protection) were estimated during fitting and their values are given in Table 

4.2. For a clinical episode of malaria to be prevented, antibodies act to prevent or reduce the 

probability that sporozoites are successful at initiating blood stage infection.  

Figure 4.3 shows the resulting decay in antibody titres and vaccine efficacy over time for a five dose 

RTS,S schedule with the fourth and fifth doses given 12 months after the primary series using the fitted 

parameters from the Phase 3 trial analysis in Table 4.2.  

Parameter  Value  

Half-life of antibody component generated from short-lived 
ASC (mean in days) 

 𝑑𝑠  45 days 

Half-life of antibody component generated from long-lived 
ASC (days, sampled from log-normal distribution) 

 𝑑𝑠  591 days 

Proportion of antibodies generated from short-lived ASC 
following primary schedule 

𝜌𝑝𝑒𝑎𝑘  0.88 

Proportion of antibodies generated from short-lived ASC 
following dose four and dose five 

𝜌𝑓𝑜𝑢𝑟 

𝜌𝑓𝑖𝑣𝑒  
0.70 

Shape parameter of the dose-response curve  𝛼 0.74 

Scale parameter of the dose-response curve  𝛽 99.2 EU/mL 

Maximum efficacy against infection  𝑉𝑚𝑎𝑥 0.93 
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4.3.2.3 Validation  

For each trial the first administrative unit (admin-1) of the trial location was used for simulations with 

admin-1 boundaries sourced from GADM (GADM, 2021) (Figure 4.1A). To capture key characteristics 

of the trial cohorts, the Imperial College London malaria transmission model described in Appendix 

8.1 was calibrated to Malaria Atlas Project (MAP) prevalence estimates and to clinical malaria cases 

obtained from the World Malaria Report for the trial admin-1 locations for 2016 the year before the 

trial interventions were delivered (Pfeffer et al., 2018; World Health Organization, 2020b) (Table 4.3). 

Location-specific seasonality profiles (Figure 4.1B) were derived from the first three frequencies of a 

Fourier transformation to historic rainfall patterns from the Climate Hazards Group InfraRed 

Precipitation with Station (CHIRPS) data (Table 4.3) (Funk et al., 2015; CHIRPS, 1999; Garske, Ferguson 

& Ghani, 2013). Historic treatment coverage levels were derived from the Demographic and Health 

Surveys and insecticide-treated bed-net usage from MAP (Table 4.3)(The DHS Program, 2019; Pfeffer 

et al., 2018). Vector species compositions were determined from MAP datasets (Table 4.3)(Sinka et 

al., 2016; Pfeffer et al., 2018; Wiebe et al., 2017) Population growth in each location was incorporated 

into the model using data from the United Nations Population Prospects (United Nations, 2019). 

Parameterisation of the model was cross-checked with pre-intervention survey prevalence data from 

the trial sites and showed good alignment (Table 4.4). 

Study interventions were simulated according to the country-specific delivery timings, coverages and 

age-cohorts reported in the trial publication (Table 4.5) (Chandramohan et al., 2021). When modelling 

the combined intervention arm, interventions were correlated to be delivered to the same person 

Figure 4.3 Antibody titre (A) and efficacy profile (B), for a five-dose RTS,S schedule assuming the same parameters as in 
White et al. (2015). The heavy black line is the median of 5000 simulations, and the dark and light pink shaded regions 
represent the 50% and 95% predictive intervals respectively.  
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within the model structure. Model-predicted clinical malaria incidence rate ratios (IRR) between 

intervention arms after three years of delivery were compared with the trial-reported modified 

intention-to-treat hazard ratios for efficacy against clinical episodes of malaria. If model estimates fell 

outside the reported confidence intervals (CI) of the trial results, I explored changes to the underlying 

parameterisation of intervention efficacy models to improve model alignment with the trial results. 

To do so the model validation runs were repeated over 100 draws of the parameters that describe the 

initial efficacy and the duration in protection from RTS,S (𝑉𝑚𝑎𝑥, 𝛼, 𝛽) and SP+AQ (𝜆, 𝜅).  Once validated 

against the clinical malaria endpoints I also performed model comparisons to the secondary outcome 

measures of hospitalisations and deaths from malaria reported in the trial publication.  

Table 4.3 Site specific input parameterisations  

  
Burkina Faso Mali  

Vector 
specification  

Proportion of mosquito population 
that is Anopheles arabiensis 

9% 8% 

Proportion of mosquito population 
that is Anopheles funestus 

15% 27% 

Proportion of mosquito population 
that is Anopheles gambiae 

76% 65% 

Seasonality in 
transmission  

Fourier seasonality coefficients a0: 1.528932 
a1: -1.996974 
b1: -1.114417 
a2: 0.425105 
b2: 0.961317 

a3: 0.08475795 
b3: -0.2745763 

a0: 1.789623 
a1: -2.375921 
b1: -1.272668 
a2: 0.5633152 

b2: 1.092725 
a3: 0.06611265 
b3: -0.3077321 

Transmission 
intensity 

Malaria prevalence in 2–10-year-olds 
2016 

38.1% 45.7% 

Health systems  Treatment coverage 2016 
First line treatment: Artemether-
Lumefantrine 
Defined as the proportion of clinical 
cases that receive treatment 

47% 30% 

Vector 
interventions 

Insecticide treated net usage 2017 
defined as the effective coverage of 
nets within the population 

59% pyrethroid  58% pyrethroid 
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Table 4.4 Model calibration checks to pre-intervention survey data 

 Burkina Faso Mali Reference 

Parasite prevalence in primary school children aged 
6-12 living in trial areas and who did not receive 
SMC in 2016  

50% 54% 
(Chandramohan 

et al., 2019) 

Model value of parasite prevalence in primary 

school children aged 6-12  
47% 55% - 
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Table 4.5 Baseline characteristics and model validation inputs from the seasonal vaccination trial cohorts. 

                               Burkina Faso                              Mali 
 SMC SV Combined SMC SV Combined 

Total number of children 936 911 930 1029 1077 1037 

Number in each age group 
(%) 

      

< 8 months 210 (22.4) 202 (22.2) 218 (23.4) 261 (25.4) 246 (22.8) 245 (23.6) 
8-11 months 253 (27.0) 240 (26.3) 233 (25.1) 279 (27.1) 287 (26.6) 298 (28.7) 

12-15 months 215 (23.0) 230 (25.2) 229 (24.6) 271 (26.3) 322 (29.9) 308 (29.7) 

≥16 months 258 (27.6) 239 (26.2) 250 (26.9) 218 (21.2) 222 (20.6) 186 (17.9) 

Number (%) reporting use 
of LLIN  

721 (77.0) 671 (73.7) 705 (75.8) 872 (84.7) 899 (84.4) 898 (84.1) 

Delivery months*       

Year 1 Aug, Sep, Oct, Nov  Dose 3: July  Jul, Aug, Sep, Oct Dose 3: July   
Year 2 Jul, Aug, Sep, Oct Dose 4: June  Jul, Aug, Sep, Oct Dose 4: June  
Year 3  Jul, Aug, Sep, Oct Dose 5: June  Jul, Aug, Sep, Oct Dose 5: June  

Intervention coverage‡       

Year 1 69.4% 94.0% 
SMC: 81.7%  

SV: 93.9%  
74.7% 93.2% 

SMC: 75.7%  
SV: 93.7% 

Year 2  62.8% 95.6% 
SMC: 78.5%  

SV: 95.8% 
79.9% 94.8% 

SMC: 80.7%  
SV: 95.4% 

Year 3  73.8% 93.8% 
SMC: 82.1%  

SV: 95.1% 
86.7% 94.8% 

SMC: 84.5%  
SV: 95.0% 

*Median date of study contact for vaccination and administration of chemoprevention.  
 ‡Intervention coverage defined as percentage of children who received each intervention at each yearly contact.  
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4.3.2.4 Extension of trial results  

Further to the exploration of the number of rounds of SMC required for maximal impact in seasonal 

settings in Chapter 3, I explored the potential results of this trial had five monthly courses of SMC been 

delivered. I additionally utilise the ability of the model to include a baseline counterfactual scenario 

without any of the interventions considered to understand how the protective efficacy of 

interventions compares over time in this modelled cohort. Protective efficacy is defined as 

1 –  𝐼𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒 𝑅𝑎𝑡𝑒 𝑅𝑎𝑡𝑖𝑜 comparing interventions with the baseline counterfactual.  

 

4.4 Results 

4.4.1 Seasonal malaria vaccine Phase 3b clinical trial data  

A total of 5,920 children received the first dose of trial vaccine or placebo and were included in the 

trial analysis. Baseline characteristics for each trial arm in each location are shown in Table 4.5 and 

characteristics were well-balanced between the trial intervention groups. In total there were 3,825 

events of clinical malaria among the trial cohorts over the three years of follow up. The trial found 

that SV alone was non-inferior to SMC alone with a reported hazard ratio for the protective efficacy 

of SV relative to SMC of 0.92 (95% CI 0.84–1.01) (Chandramohan et al., 2021). The combined 

intervention delivery arm resulted in substantially lower incidence of clinical malaria compared to SMC 

or SV alone with a reported hazard ratio for the protective efficacy of the combined intervention 

compared to SMC alone of 0.37 (95% CI 0.03–0.42) and compared to SV alone of 0.40 (95% CI 0.36–

0.45) (Chandramohan et al., 2021).  

In total 202, 279 and 291 pre- and post-vaccination paired blood samples were obtained in 2017, 2018 

and 2019 respectively. High levels of anti-CSP antibody titres were reported following each 

vaccination. Following dose three, geometric mean antibody titres (GMT) reached 368.9 EU/ml (95% 

CI: 317.7–428.4). The GMT reduced to 257.5 EU/ml (95% CI 234.5–282.8) following the fourth dose 

and 177.4 EU/ml (95% CI 161.4–195.0) following the fifth dose. Large variation was reported across 

children over the three years of the trial Figure 4.4A. When comparing the observed antibody titres to 

the antibody decay model used within the model structure there is good alignment between the two 

(Figure 4.4B). However, the confidence intervals in Panel A are significantly wider than the range 

presented in panel B as A includes sample variation as a result of the relatively small population size 

in addition to the true population variance. Despite the observed reductions in antibody titre following 

each annual dose this was not associated with large reductions in efficacy against clinical malaria and 

this is explored further in the following results sections (Sagara et al., 2021; Chandramohan et al., 

2021).  



117 
 

 

4.4.2 Model validation  

Preliminary model validation using the existing intervention efficacy models detailed in the methods 

and shown in Figure 4.5A-B revealed several inconsistencies between the trial and model estimates of 

intervention impact. Figure 4.5C compares the model-estimated IRRs aggregated over both countries 

at the four different time points reported in the trial against the observed results. While the model-

estimated IRR between SV and SMC fell within the 95% CI of the trial results for Year 1, the model 

underestimated the remaining IRR across all comparison arms and time points (Figure 4.5C). To 

address these shortfalls in the model estimates I explored several alterations to the RTS,S model 

parameterisation.  

Firstly, the existing RTS,S efficacy profile (Figure 4.5A) assumes that antibody titre and thus efficacy 

following the fourth and fifth doses does not reach the same levels as after the primary series, as was 

demonstrated in the Phase 3 RTS,S vaccine clinical trial analysis (White et al., 2015; RTSS Clinical Trials 

Partnership, 2015). As shown in Figure 4.4, the observed antibody titres in the Phase 3b trial of SV 

follow this same trend, however yearly non-inferiority results suggest that efficacy following doses 

four and five does not decline significantly and is comparable with that of the protection following the 

primary series (Sagara et al., 2021; Chandramohan et al., 2021). Comparing the hazard ratios for SV 

against SMC for each year shows this trend: 1.01 (95% CI 0.85–1.21), 0.90 (95% CI 0.79–1.01), 0.87 

(95% CI 0.77–0.99).  

Figure 4.4 Seasonal RTS,S vaccination schedule antibody dynamics. A) Trial observed anti-CSP IgG antibody titres pre- and 
post- vaccination from a subset of around 200-300 children who received RTS,S/AS01E in Sagara et al. (2020). Data presented 
are the Geometric Mean antibody titres (GMT) and the minimum and maximum range reported. B) Comparison of the trial 
observed GMT pre and post vaccination (points) and the modelled antibody decay dynamics model fitted to data from the 
first-generation RTS,S Phase 3 clinical trial. The heavy black line is the median of 5000 simulations, and the dark and light 
shaded regions represent the 50% and 95% predictive intervals respectively using parameters from White et al., (2015).  
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Therefore, I explored a modified efficacy profile for the fourth and fifth doses that returns peak 

efficacy to the same level as after the primary series (Figure 4.5D). To do this, the underlying antibody 

decay model had to be modified such that  𝐶𝑆𝑃𝑓𝑜𝑢𝑟 and 𝐶𝑆𝑃𝑓𝑖𝑣𝑒 values were set to the same 621 

EU/ml value as 𝐶𝑆𝑃𝑝𝑒𝑎𝑘. The results from this updated efficacy profile fell within or on the edge of the 

95% CI of the IRR between SV and SMC across all time points (Figure 4.5F). 

However, the model still underestimated the impact of the combined intervention arms when 

compared to each single intervention alone (Figure 4.5F). I hypothesise that this could potentially 

result from potential synergies that occur when interventions are combined that are not currently 

captured in the model. To test this, I repeated the model validation across 100 sets of parameter draws 

that describe the uncertainty in the RTS,S efficacy model (𝑉𝑚𝑎𝑥, 𝛼, and 𝛽) and SP+AQ efficacy model 

(𝑘 and 𝜆). Visualising results across all combinations of parameter draws (Figure 4.6) highlights that 

through sampling over the uncertainty in the intervention models it is possible to capture the 

observed trial results. I then selected parameters that resulted in IRR values most similar to those 

reported in the trial. The resulting efficacy models from this selection are shown in blue in Figure 4.5G-

H, the parameters are reported in Table 4.6. The newly selected parameters altered the SP+AQ model 

more significantly that the RTS,S model. This modification resulted in a slower decline in efficacy and 

an increase in the mean duration of protection from SP+AQ (Figure 4.5H, Table 4.6). The mean 

duration of protection increased from 35 days to 41 days under the updated parameters. This slightly 

slower decline in efficacy was also captured with the updated parameters describing RTS,S efficacy 

(Figure 4.5G, Table 4.6). With these changes the model validation results captured the observed 

combined arm impact (Figure 4.5I). 

Table 4.6 Parameter updates to intervention efficacy models when interventions are delivered in combination in the 
model structure.  

  

Intervention 
model 

Parameter 

 
Single arm 

intervention 
value 

Combined 
arm 

intervention 
value 

RTS,S Shape parameter of the dose-response curve 
(related to initial efficacy of the vaccine) 

𝛼 0.74 0.87 

 Scale parameter of the dose-response curve 
(related to the duration of protection) 

𝛽 99.2 EU/mL 70.9 EU/mL 

 
Maximum efficacy against infection  𝑉𝑚𝑎𝑥 0.93 0.84 

SP+AQ 
Shape parameter of Weibull distribution  𝑘 3.40 2.87 

 
Scale parameter of Weibull distribution 𝜆 39.34 45.76 
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Figure 4.5 Intervention efficacy models and corresponding validation results. A) Efficacy profile for the SV 5-dose schedule based on the parameters from fitting to Phase 3 
RTS,S trial data. B) SP+AQ efficacy profile resulting from the fitting in Chapter 3. Used to produce the model estimates of intervention comparisons in C. D) Updated efficacy 
profile for the SV 5-dose schedule whereby the efficacy following the fourth and fifth doses return to the same level as following the primary series but wanes at the rate 
described by the Phase 3 fitted model of the fourth dose and E) SP+AQ efficacy profile from the fitting in Chapter 3. Used to produce the model estimate of intervention 
comparisons in F. G, H) the blue line in these plots depicts the resulting efficacy profiles selected from the uncertainty sampling to represent intervention synergies and I) the 
resulting model estimated intervention comparisons. C,F,I) The datapoints in black are the trial reported pairwise Hazard Ratios (and 95%CIs) for the intervention comparisons 
(modified Intention-to-treat) listed on the x-axis and the coloured triangles the model predictions. Dashed horizontal line represents the trial specified non-inferiority margin 
at 1.2 for RTS,S SV compared to SMC alone and the solid line the equivalence limit at IRR = 1.  
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Figure 4.6 Combined arm sampling results. The datapoints in black are the trial reported pairwise 
Hazard Ratios (and 95%CIs) for the intervention comparisons (modified Intention-to-treat) listed on 
the x-axis and the coloured triangles the model predictions for each set of parameter draws for RTS,S 
and SMC. Dashed horizontal line represents the trial specified non-inferiority margin at 1.2 for RTS,S 
SV compared to SMC alone and the solid line the equivalence limit at IRR = 1. 
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4.4.3 Secondary outcomes  

I also explored the modelled results with the secondary data outcomes reported in the trial 

publication. These were defined as hospital admission with any malaria, hospital admission with any 

severe malaria (according to the WHO classification (World Health Organization, 2014)) and deaths 

from malaria. Using the previously validated intervention efficacy profiles detailed above, incidence 

rate ratios comparing model estimates to the trial data are shown in Figure 4.7. Model predictions 

show good alignment with these secondary outcome measures, with a slight overestimate of the 

combined arm impact when considering hospitalisations with any malaria (Figure 4.7).  

4.4.4 Extension of non-inferiority comparison with five SMC cycles  

The trial finding of SV non-inferiority to SMC depends not only on the performance of the vaccine 

under seasonal conditions but also the performance of SMC. SMC programmes with four monthly 

cycles have been shown to be too short for the seasonality patterns in these two trial locations and 

five monthly cycles are now being delivered as the standard of care in Hounde, Burkina Faso. This can 

be seen in the plots in Figure 4.8 whereby the modelled SMC cohorts received an additional fifth 

monthly cycle which provided protection in the final month of the transmission season which wasn’t 

achieved with four cycles. If five cycles of SMC had been delivered, modelling suggest that the results 

comparing SV to SMC alone would have been more favourable for SMC than for SV with an estimated 

IRR of 1.1 but that the trial results would have remained within the non-inferiority margin (Figure 4.9).  

Figure 4.7 Secondary outcome model validation. The datapoints in black are the trial reported pairwise Hazard ratios for 
the intervention comparisons (modified Intention-to-treat) listed on the x-axis and the coloured triangles the model 
predictions. The solid line represents the equivalence limit at IRR = 1.  
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Figure 4.8 Model simulated clinical incidence in trial cohorts. With the inclusion of a simulated baseline control cohort that wasn’t included in the trial for ethical 
reasons.   
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Figure 4.9 Sensitivity analysis of trial comparisons when a fifth monthly cycle of SMC is included. The datapoints in black are the trial reported pairwise Hazard ratios for the intervention 
comparisons (modified Intention-to-treat) listed on the x-axis and the coloured triangles the model predictions. The dashed horizontal line represents the trial specified non-inferiority 
margin at 1.2 for RTS,S compared to SMC alone and the solid line the equivalence limit at IRR = 1. 
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4.4.5 Baseline counterfactual  

The inclusion of a control cohort in this study, whereby children did not receive any protective 

intervention would have been unethical. Within a modelling framework we can include a baseline 

counterfactual cohort to understand the expected transmission dynamics without any interventions 

under investigation, and how this might influence intervention efficacy in these settings. The incidence 

curves in Figure 4.8 highlight the temporal reductions in incidence across both countries in this trial 

compared to this counter-factual baseline scenario.  

When estimating the efficacy of interventions in this modelled cohort over time, it is clear that SMC 

with SP+AQ was more protective than RTS,S alone during the peak in the transmission season when it 

was delivered (Figure 4.10). However, RTS,S provided significant protection outside this period 

ensuring that the interventions were non-inferior over the entire trial period. The combination of 

interventions ensure protection against clinical malaria remained high both during the peak 

transmission season and in the intervening months (Figure 4.10). With the addition of the fifth 

monthly cycle of SMC the levels of protection in these cohorts remains high for a further month, 

reducing the period of time these children spent with no protection (Figure 4.10). 
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Figure 4.10 Intervention efficacy in modelled trial cohorts comparing four and five monthly cycles of SMC. Efficacy 
measurements are calculated in an according to protocol population, assuming 100% coverage of interventions. Efficacy 
is defined as the proportional reduction in weekly incidence between a modelled baseline cohort and each intervention 
arm. High levels of variation in efficacy are seen during the period between the peak transmission season as a result of 
model stochasticity in these low transmission intensity months.  
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4.5 Discussion  

In this chapter I used a mathematical model of malaria transmission to replicate the recent Phase 3b 

seasonal vaccination clinical trial. In this I aimed to understand if the current parameterisations of 

RTS,S and SP+AQ intervention models satisfactorily match observed trial outcomes. Current efficacy 

models were unable to satisfactorily match the trial results, underestimating the results for all trial 

endpoints. With biologically motivated reparameterizations to the efficacy models I was able to align 

the model and trial results. These results suggest that the alterations to the RTS,S vaccination schedule 

in this trial and the novel delivery of RTS,S and SMC combined could have potentially enhanced the 

protection of both interventions provided above and beyond that seen in trials previously.  

Our existing RTS,S vaccine model previously fitted to antibody titre measurements and  clinical disease 

endpoints from the RTS,S Phase 3 clinical trial (White et al., 2015), underestimated the impact of 

seasonal vaccination alone. The first change that was required to capture SV results was to return 

antibody levels and thus efficacy following fourth and fifth doses to the same level as after the third 

dose. This change was required despite the fact that antibody titres decreased with each successive 

vaccine dose in line with the decay model fitted to the original Phase 3 trial data. Despite these 

observed decreases in the immunogenicity of each additional dose of RTS,S in the SV trial this was not 

associated with large reductions in efficacy (Sagara et al., 2021; Chandramohan et al., 2021). 

Previously, as demonstrated in Chapter 2, dose spacing changes have been shown to influence the 

achievable efficacy of RTS,S without alterations to antibody titres (Regules et al., 2016). The reduction 

between the primary RTS,S series and additional doses from 18 to 12 months may have impacted 

humoral immune responses outside of antibody titres including the avidity of antibodies, antibody 

subclass, a breaching of the immunodominance resulting in a more balanced response to CSP target 

regions or other qualitative humoral response features (Kurtovic et al., 2020; Chaudhury et al., 2017; 

Pallikkuth et al., 2020; Das et al., 2021; Suscovich et al., 2020; Seaton et al., 2021). Further research 

into the potential changes to the RTS,S induced immune response dynamics observed in the Phase 3b 

clinical trial is required to explore this hypothesis further along with ongoing 12-month RTS,S dose 

spacing challenge studies in malaria naïve adults (Moon et al., 2020).   

Further to this SV study a recent Phase 2 clinical trial of a novel pre-erythrocytic malaria vaccine 

candidate R21, which was delivered seasonally in Nanoro, Burkina Faso with a 12-month dose spacing 

between the third and fourth dose, also demonstrated high vaccine efficacy in the six to 12 months 

following vaccination (Datoo et al., 2021). In this trial it is currently unclear whether the additional 

fourth dose will also retain these high levels of efficacy as following the primary series, but antibody 

titres were comparable to those measured after the third dose, suggesting efficacy could be high 
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(Datoo et al., 2021). The evidence from both of these clinical trials provides strong evidence for the 

advantage of providing seasonally targeted malaria vaccination to maximise efficacy in these settings.  

The second biologically-motivated change that was required to align model estimates with the trial 

results was to select parameters that significantly increased the duration of SP+AQ protection when 

the two interventions were delivered in combination, alongside a more modest increase in the 

duration of RTS,S protection. This change could reflect a potential synergistic relationship between 

anti-malaria vaccines and drugs when delivered in combination. This could potentially result from 

RTS,S induced reduction in the liver-to-blood inoculum of parasites which was demonstrated in 

Chapter 1 to be as high as 99%. This reduction in parasite load would then result in smaller initial 

generations of blood-stage parasites that could result in more efficient clearance of parasites by 

SP+AQ. This type of synergistic interaction has previously been shown in a mouse model between 

transmission blocking and pre-erythrocytic vaccine candidates (Sherrard-Smith et al., 2018). In this 

study the authors demonstrated that the presence of transmission blocking antibodies reduced the 

sporozoite parasite density inoculated by infected mosquitoes which allowed pre-erythrocytic 

antibodies to achieve greater efficiency at clearing sporozoites. Further research into any potential 

synergistic relationships between pre-erythrocytic vaccines and anti-malarial drugs is required.  

Understanding the temporality in efficacy of these interventions over time allows for a deeper 

exploration of the drivers of non-inferiority observed in this trial. Protection from SP+AQ was higher 

during the peak in transmission annually, but protection waned quickly in the final month after 

delivery as described in Chapter 3. The modelled SMC cohort is therefore left with no protection from 

clinical malaria in the months following the final delivery cycle. As a result, efficacy measured as the 

percentage reduction in clinical incidence between the intervention and baseline cohort falls below 

zero as residual transmission increases in these children who have had minimal exposure to malaria 

parasites during the transmission season. The model takes into account the impact of this reduced 

exposure on the delay in the acquisition of natural immunity in this cohort which is why efficacy falls 

below zero relative to the baseline cohort who develop immunity more rapidly. However, despite 

RTS,S efficacy being slightly lower during the transmission season, the vaccine provides protection 

across the course of the whole year which resulted in sustained reductions to clinical incidence 

between transmission seasons in this modelled cohort. These different dynamics of protective action 

of interventions resulted in the non-inferiority over the course of the full trial period. When SMC and 

RTS,S were combined this resulted in each intervention providing a protective safety-net to 

counterbalance the other weaknesses .  
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The use of a modelling framework to understand the potential non-inferiority relationship between 

SMC and RTS,S had five monthly cycles of SMC been administrated in these trial locations is important 

given the recent suggestions to allow greater flexibility in the number of monthly cycles of SMC that 

can be adopted in different locations as discussed in Chapter 3. Given the seasonality profile of these 

two trial locations, I predict that a fifth cycle of SMC would have resulted in an overall IRR that 

favoured SMC over RTS,S but that still remained within the non-inferiority margin specified in the trial 

protocol. When considering the potential utility of these seasonal interventions in locations that 

experience longer less peaked transmission seasons, the number of potential monthly cycles of SMC 

that could be implemented will be an important determinant of whether or not burden reductions 

with seasonally targeted RTS,S would be equivalent or exceed those with SMC.  

 

4.6 Limitations  

This work has several limitations. Firstly, the reparameterizations to the intervention efficacy models 

are driven by the discordance between the model and trial results and biologically motivated 

hypotheses for the reasons between these differences. However, these assumptions have yet to be 

shown in further research. As such, when examining the population level impacts of this novel RTS,S 

schedule in Chapter 5, I will use all parameterisations of RTS,S and SP+AQ efficacy to represent the 

current levels of uncertainty. Secondly, there was no direct baseline prevalence survey in this trial 

which meant parameterisations of the transmission intensity in the modelling framework were 

informed by overall first administrative unit trends in the two trial sites based on Malaria Atlas Project 

estimates. This parameterisation showed good alignment with a survey completed following the 

azithromycin plus SMC clinical trial conducted in the same study areas prior to the start of this trial in 

2016 (Chandramohan et al., 2019). However, in the prevalence surveys conducted again in school aged 

children at the end of each malaria transmission season during the current trial there appears to be a 

significant decrease in parasite prevalence in this population in Mali: 54% in 2016 compared to 17% 

in 2018 and 22.5% in 2019, with no measured levels in 2017 (Chandramohan et al., 2021). The same 

trends were not observed in the study areas in Burkina Faso. While the population size for these 

surveys decreased in the current trial from 500 to 250 children, real reductions in transmission 

intensity in these communities could have also occurred over this time and could potentially impact 

the observed relationships between intervention impacts, which is something we could not account 

for in this analysis. Notably the clinical trial results were observed under high levels of vector control 

(~80% of children reported using an insecticide treated bed-net at baseline and all children received a 

bed-net as per trial protocol) highlighting the maximum benefit that could be achieved under high 

coverage and usage levels of combined intervention packages.  
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4.7 Conclusions  

While models of malaria transmission are useful tools for setting realistic expectations for intervention 

programmes, they cannot replace high quality empirical field trials. I have shown in this work how 

modelling validation studies can complement ongoing field trials, particularly prior to extensive 

immunological data analysis being available to help to characterise and understand the potential 

efficacy changes as a result of novel second-generation delivery approaches. In this work I adapted an 

established model of RTS,S/AS01 efficacy within a transmission model framework to account for 

additional doses and changes in delivery structure. The required reparameterizations of intervention 

models provides early evidence for potential underlying immunological changes in the relationship 

between antibody titre and efficacy along with potential synergistic relationships between pre-

erythrocytic vaccines and anti-malarial drugs which have not previously been studied. These validation 

results are important for making population level public health impact assessments in a modelling 

framework which will be examined in Chapter 5.  
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Chapter 5  

5 Mathematical modelling of a seasonal use-case 
for the RTS,S/AS01E malaria vaccine 

In this chapter, I combine the results of all previous chapters to characterise the seasonal use-case for 

the RTS,S/AS01E malaria vaccine. Using the Imperial College London model of malaria transmission 

parameterised to capture West African seasonality archetypes I estimate the potential population-

level public health impacts of age-based and alternative seasonally-targeted RTS,S vaccination 

approaches in both the absence and presence of seasonal malaria chemoprevention.  

This work formed part of the evidence packet submitted to the Malaria Policy Advisory Committee 

meeting in October 2021: http://terrance.who.int/mediacentre/data/malaria/documents/mpag-

october2021-session5-rtss-malaria-vaccine.pdf?sfvrsn=9507a63b_10  

This work is under review at The Lancet Global Health.  

5.1  Background 

The Phase 3b clinical trial of seasonal RTS,S/AS01E (RTS,S) vaccination described in the previous 

Chapter showed that vaccination was non-inferior to seasonal malaria chemoprevention (SMC) in 

preventing clinical malaria in two locations in southern Burkina Faso and Mali (Chandramohan et al., 

2021). In addition, the combination of these two interventions provided significant additional 

protection against clinical and severe malaria outcomes in the trial. Impact projections of this novel 

approach to RTS,S vaccination in different epidemiological settings to those of the trial sites and for 

longer time frames at the population level are needed to inform policy recommendations surrounding 

seasonal vaccination approaches.  

Mathematical models of malaria dynamics have previously been useful for estimating the public 

health impact of first-generation RTS,S beyond the impact estimates obtained from clinical trials 

http://terrance.who.int/mediacentre/data/malaria/documents/mpag-october2021-session5-rtss-malaria-vaccine.pdf?sfvrsn=9507a63b_10
http://terrance.who.int/mediacentre/data/malaria/documents/mpag-october2021-session5-rtss-malaria-vaccine.pdf?sfvrsn=9507a63b_10
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(Penny et al., 2016). Transmission models that have been fitted to data from malaria-endemic settings 

have particular utility for understanding the potential impacts of vaccinations as models can account 

for the potential epidemiological changes in the age-burden of cases and deaths as a result of 

exposure reducing interventions that can delay the acquisition of naturally acquired immunity that is 

often not captured in trial follow up periods. In addition, by incorporating realistic assumptions about 

access to malaria treatment, models can be used to understand the impact of interventions on malaria 

mortality outside a trial setting where access to care can be higher than a real-world setting as was 

seen in the RTS,S Phase 3 trial (RTSS Clinical Trials Partnership, 2015).  

In 2015, following the Phase 3 RTS,S trial that provided estimates of vaccine impact in the 11 trial sites, 

four modelling groups were brought together to provide full population-level impact estimates of 

routine age-based RTS,S administration in settings of perennial transmission (Penny et al., 2016). This 

work found that RTS,S could have a substantial public health impact, averting on average 116,480 

(range 31,450–160,410) clinical cases per 100,000 fully vaccinated children across settings of perennial 

malaria transmission ranging from 10% to 60% parasite prevalence in 2–10 -year-olds (PfPR2-10) over 

a 15 year time horizon. Results also showed that RTS,S could be highly cost-effective with a median 

incremental cost-effectiveness ratio of $30 (range $18–$211) per clinical case averted in settings with 

>10% PfPR2-10 (Penny et al., 2016). This work made an important contribution to the broader policy 

assessment process related to RTS,S. However, this work did not consider the potential impact of first-

generation RTS,S in seasonal settings of malaria transmission and was conducted prior to the 

alternative RTS,S delivery approaches of delayed-fractional doses and seasonally targeted vaccination.   

These two approaches have since been assessed in modelling studies. Hogan et al. used the Imperial 

College London malaria transmission model to estimate the potential impact of an age-based four-

dose RTS,S regime that captured the potential delayed-fractional RTS,S efficacy increases observed in 

Regules et al. (Hogan et al., 2018; Regules et al., 2016). Modelling first-generation and delayed-

fractional RTS,S immunization Hogan et al. found that the delayed-fractional regime averted 21%–

25% more clinical cases per 1,000 children 0–5 years old over 10 years in perennial settings of malaria 

transmission with baseline levels of PfPR2-10 between 5%–45% (Hogan et al., 2018). Again, however, 

this work did not consider the impact of these schedules in settings of seasonal malaria transmission.  

Prior to the Phase 3b seasonal RTS,S vaccination trial, Camponovo et al. used the OpenMalaria 

transmission model to assess the potential of mass seasonal RTS,S vaccination and/or seasonal malaria 

chemoprevention (SMC) delivered to individuals older than six months in settings with a three month 

seasonal transmission season and low baseline parasite prevalence between 1%–20%, to reach 

malaria elimination and prevent resurgence (Camponovo et al., 2019). This work showed that, RTS,S 
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vaccination alone in these settings was a less effective intervention compared to chemoprevention 

strategies. However, when combined these interventions, deployed in a seasonal schedule, had the 

potential to achieve dramatic reductions in parasite prevalence levels and in some settings the 

interruption of transmission, due to the resulting synergistic interactions between RTS,S and SMC 

(Camponovo et al., 2019). This work however, only looked at mass seasonal 

vaccination/chemoprevention in near elimination settings and did not compare age-based or 

seasonally-targeted vaccination in settings of variable seasonality and high transmission intensity.  

These previous population-level modelling studies highlight the utility of transmission models to help 

inform guide decision making surrounding RTS,S. Following the evidence provided by the Phase 3b 

clinical trial of the impact of seasonally-targeted vaccination with or without seasonal malaria 

chemoprevention, I employ this population-level mathematical modelling approach to generalise 

these findings by estimating the public health impact of these approaches over a longer time frame 

and across a range of epidemiological transmission settings. These estimates can help national 

governments and international agencies to systematically evaluate the potential impact of seasonally-

targeted RTS,S compared to age-based administration, as well as the value of combining this 

intervention with seasonal malaria chemoprevention.  

5.2  Aims  

Mathematical models of malaria dynamics have been useful for estimating the public health impact 

of malaria vaccination beyond the impact estimates obtained from clinical trials previously. In this 

chapter, I aim to evaluate if RTS,S is more impactful if delivered seasonally compared to an age-based 

approach, and if RTS,S delivers additional benefit on top of SMC. I aim to understand how seasonality 

and transmission intensity influence these relationships and I explore how impact varies by wider 

health system and operational factors.  
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5.3  Methods  

The Imperial College London transmission model as described in Appendix 8.1 along with the 

intervention models described in Chapter 3 and Chapter 4 formed the basis of the modelling work 

presented in this Chapter.  

5.3.1 Transmission settings 

Two seasonality archetypes were considered in this analysis: a highly seasonal setting with a single 

strong peak in rainfall annually and a relatively short transmission season of around four to five 

months; and a seasonal setting with a less strong peak in rainfall annually with a transmission season 

of around seven to eight months (Figure 5.1). The seasonality archetypes are based on the averaged 

Fourier transformed rainfall data from the first administrative units of Fatik in Senegal and Upper East 

in Ghana (CHIRPS, 1999; Garske, Ferguson & Ghani, 2013). Several baseline prevalence rates were 

considered ranging from 10%–65%, representative of the range of transmission intensities across sub-

Saharan Africa (Pfeffer et al., 2018). Baseline prevalence levels are intended to reflect existing levels 

of malaria vector control interventions and access to treatment (first line Artemisinin Combination 

Therapy at 45%) with no change in coverage over the time horizon considered. Population size is 

assumed to remain constant.  

5.3.2 Intervention Delivery 

Aged-based RTS,S (AB-RTS,S) doses were delivered to children aged at 6-, 7- and 9-months of age for 

the first three doses, with a fourth dose at 24-months of age as per the schedules adopted in the 

Figure 5.1 Geographical locations of seasonality archetypes and their corresponding modelled seasonality profiles. The 
associated seasonality patterns in rainfall drive seasonal patterns in malaria incidence in these administrative level one 
locations used in model simulations.  
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Malaria Vaccine Implementation Programme (MVIP) in Ghana and Kenya (World Health Organization, 

2021b). RTS,S efficacy under this schedule is shown in Figure 5.2A. For seasonally targeted vaccination 

(SV-RTS,S), all children aged 5–17 months at the time of first vaccination received the first three doses 

in the three months preceding the transmission season, with any subsequent doses delivered annually 

(Chandramohan et al., 2020). I considered two SV-RTS,S schedules: a four-dose schedule to make a 

direct comparison to the four-dose age-based schedule and a five-dose schedule as was delivered in 

the seasonal trial. Three models of RTS,S efficacy under SV-RTS,S schedules were used to reflect the 

uncertainty in the dynamics of RTS,S efficacy as a result of the earlier model validation in Chapter 4 

(Figure 5.2B-E). Full vaccine coverage of 64% was assumed resulting from 80% coverage of the first 

three doses with a 20% drop off between the third and fourth dose in four-dose schedules and a 10% 

drop off for both dose four and dose five in a five-dose schedule.  

SMC was implemented in the model as both four- and five-monthly courses of SP-AQ given in 

consecutive months to children aged between three months to five years old with the doses timed to 

coincide with the months of highest transmission intensity. The decay in efficacy of SMC was modelled 

according to the Weibull survival function fitted in Chapter 3 and shown in Figure 5.2F, with a median 

duration of protection ≥50% of 35 days. A secondary efficacy profile was considered when SMC was 

combined with SV-RTS,S as a result of the model validation in Chapter 4 (Figure 5.2F dashed line). 

Coverage of 75% was assumed based on coverage levels observed in routine SMC use and defined as 

the proportion of eligible children who received all four or five cycles (Baba et al., 2020). I did not 

model the effect of incomplete adherence to the three-day course. When interventions were 

delivered in combination, interventions were distributed randomly to individuals in the model 

structure. 

Table 5.1 summarises key modelling parameterizations. 
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Figure 5.2 Intervention efficacy models used in the population modelling simulations. A) RTS,S efficacy profile for age-
based delivery resulting from fitting to the Phase 3 RTS,S clinical trial where the dose four is delivered 15 months following 
dose three as per the recent MVIP. B) Efficacy profile for the SV-RTS,S 4-dose schedule based on the parameters from fitting 
to the Phase 3 RTS,S clinical trial where dose four is delivered 12 months following dose three. C) Efficacy profile for the SV-
RTS,S 4-dose schedule with the updated fourth dose peak efficacy based on the results from the model validation runs in 
Chapter 4. Dashed line represents the efficacy assuming synergy between RTS,S and SMC when delivered in combination 
resulting from the model validation runs in Chapter 4. D) Efficacy profile for the SV-RTS,S 5-dose schedule based on the 
parameters from fitting to the Phase 3 RTS,S clinical trial where dose four is delivered 12 months and dose five 24 months 
following dose three. E) Efficacy profile for the SV-RTS,S 5-dose schedule with the updated fourth and fifth dose efficacy 
resulting from the model validation runs in Chapter 4. Dashed line represents the efficacy assuming potential synergy 
between RTS,S and SMC when delivered in combination resulting from model validation runs in Chapter 4. F) SP+AQ efficacy 
profile from fitting to clinical trial data described in Chapter 3. Dashed line represents the efficacy assuming potential synergy 
between RTS,S and SMC when delivered in combination resulting from model validation runs in Chapter 4. Solid lines in all 
plots correspond to the model medians with the shaded areas the 50% and 95% Credible Intervals.  
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Table 5.1 Parameterization and set-up of the malaria transmission model. 

 

  

Model 
parameterization 

Description 

Transmission 
intensity 

Baseline PfPR2-10 10%, 15%, 20%, 25%, 35%, 45%, 55%, 65%.  
 
Assume that PfPR2-10 reflects current levels of ITN, IRS and access to treatment which remain 
at static levels following vaccine introduction in all scenarios.  

Seasonality  
“Highly Seasonal” archetype based on seasonality patterns in Fatik, Senegal.  
“Seasonal” archetype based on seasonality patterns in Upper East, Ghana.  

Demographics  
Constant population size and demography based on the life table for Butajira, Ethiopia, with 
an average life expectancy at birth of 46.6 years.  

Case management  Effective coverage with ACT for clinical malaria at 45%.  

Vaccine scenarios  

Two main vaccination scenarios are considered: 
1. Routine age-based immunization with RTS,S (AB-RTS,S), with primary doses given at 

6, 7.5 and 9 months of age with a fourth dose at 24 months of age as per the 
schedules adopted in the MVIP in Ghana and Kenya.  

 
2. Seasonally targeted vaccination approach (SV-RTS,S) where primary doses are 

delivered to all children aged between 5-17 months old in the three months 
preceding the transmission season with a fourth dose delivered 12 months after the 
third dose and a fifth dose 24 months after the third dose. A four-dose SV-RTS,S and 
five-dose SV-RTS,S are considered. 

Vaccine efficacy and 
waning  

Model estimates of RTS,S efficacy are based on fitting to Phase 3 trial data (White et al., 
2015). Both vaccination schedules are run assuming this fitted profile. 
 
In addition, given the results of the model validation in Chapter 4, several additional changes 
to the RTS,S efficacy profile are considered for seasonal campaigns to represent uncertainty 
in the potential vaccine efficacy under this schedule:  

1. Improved fourth and fifth dose efficacy matching that of the third dose.  
2. Slight reduction in the rate of decay of RTS,S efficacy when combined with SMC.  

Vaccine coverage 
80% coverage of the first three doses is assumed with a 20% drop off in coverage of the fourth 
dose in four-dose schedule and a 10% drop off for each of the fourth and fifth doses in a five-
dose schedule. This gives a full vaccine coverage for all doses of 64%.  

Seasonal Malaria 
Chemoprevention  

Seasonal Malaria Chemoprevention with SP+AQ is explicitly modelled when assessing the 
impact of vaccination and SMC combined. This was modelled as 4 or 5 monthly cycles of SMC 
delivered to children aged 3 months to 5 years old during the peak in transmission season, 
with a coverage of 75% (Baba et al., 2020).  

Time horizon 15 years. 
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5.3.3 Outcome measures 

I summarise outputs as cumulative events averted over a 15-year time horizon. I assess the impact of 

intervention strategies on clinical cases and deaths from malaria and report these health outcomes 

per 100,000 children aged 0–5 years, and for one-year age groupings up to 20 years of age per 100,000 

population. Unless otherwise stated, events averted are calculated relative to a no-vaccine or no-SMC 

baseline scenario. Outputs are presented as median estimates from 25 parameter draws describing 

the fitted parameter uncertainty in the transmission model.  

5.3.4 Health systems considerations sensitivity analysis  

I conducted two sensitivity analysis to understand the impact of several health system operational 

factors on health outcomes in these settings. The first was a sensitivity analysis whereby I varied 

coverage levels of the primary series of all RTS,S schedules between 50%–90% and SMC coverage 

levels between 50%–90%. Secondly, within the model framework, delivery of interventions can easily 

be aligned to the peak in malaria transmission, in order to maximise impact. To understand each 

intervention’s robustness to delivery challenges I performed a sensitivity analysis by including +/- 1- 

and 2-month adjustments in delivery from those identified as optimal (Figure 5.3 SMC and SV-RTS,S 

timings relative to the underlying seasonality in transmission. Vertical lines in the top row of figures 

Figure 5.3 SMC and SV-RTS,S timings relative to the underlying seasonality in transmission. Vertical lines in the top row of 
figures represent the 4 monthly cycles of SMC and the lower panels the timing of the third, fourth and fifth vaccine doses. 
Shaded area represents the months over which SMC then provides protection with no protection provided outside these 
months. This is not shown for SV-RTS,S as the vaccine provides protection across the whole year following delivery.  
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represent the 4 monthly cycles of SMC and the lower panels the timing of the third, fourth and fifth 

vaccine doses. Shaded area represents the months over which SMC then provides protection with no 

protection provided outside these months. This is not shown for SV-RTS,S as the vaccine provides 

protection across the whole year following delivery. ).  

5.3.5 Delayed-fractional AB-RTS,S vs first-generation AB-RTS,S  

Finally, I include a sensitivity analysis with a focus on simulating a potential delayed-fractional age-

based RTS,S schedule (DF RTS,S). In the Regules et al. study that formed the basis of the work in 

Chapter 2, efficacy against malaria infection following dose three which was delivered with a five 

month delay and at one-fith of the standard dose resulted in an increase in efficacy to 86.7% (95% CI 

66.8–94.6%) compared to 62.5% (95% CI 29.4–80.1%) for volunteers on the standard 0-, 1-, 2-month 

full dose regime (Regules et al., 2016). Current delayed-fractional RTS,S field trials are not yet 

completed and as such I include an efficacy profile assuming a higher peak efficacy following the 

primary schedule, as in the work by Hogan et al. (Hogan et al., 2018). Protection following the fourth 

vaccine dose is assumed to peak at the same level as first-generation AB-RTS,S as no data is yet 

available to parameterise this. Due to the nature of the delayed-fractional schedule doses were 

delivered to children at 6-, 7- and 12- months of age for the first three doses to account for the five-

month delay between doses two and three and the fourth dose at 24 months of age to maintain the 

same vaccine contact for this dose as the prior analysis. RTS,S efficacy under this schedule in 

comparison to the first-generation AB-RTS,S is shown in Figure 5.4 Sensitivity modelling of a delayed-

fractional RTS,S efficacy profile. First-generation RTS,S efficacy is shown on the left (Vmax: 0.93, α: 

0.74, β: 99.2) with the modified potential second-generation delayed fractional efficacy shown on the 

right. This profile assumes a higher peak efficacy following the primary series which is captured by 

altering the underlying efficacy model parameters (Vmax: 0.93, α: 0.95, β: 70.0 as per Hogan et al 

2018). The peak efficacy of the booster remains unchanged as there is currently no data to 

parameterise this but the dose spacing between the third and fourth dose is reduced as a result of the 

delayed third dose but maintaining the fourth dose age contact at 24 months old.  Solid line 

corresponds to the model median with the shaded areas the 50% and 95% Credible Intervals..  

 

  

Figure 5.4 Sensitivity modelling of a delayed-fractional RTS,S efficacy profile. First-generation RTS,S efficacy is shown on 
the left (Vmax: 0.93, α: 0.74, β: 99.2) with the modified potential second-generation delayed fractional efficacy shown on 
the right. This profile assumes a higher peak efficacy following the primary series which is captured by altering the underlying 
efficacy model parameters (Vmax: 0.93, α: 0.95, β: 70.0 as per Hogan et al 2018). The peak efficacy of the booster remains 
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5.4  Results  

5.4.1 RTS,S impact in seasonal transmission settings: seasonally targeted compared to 
age-based 

The introduction of RTS,S either through age-based delivery or seasonal-vaccination campaigns was 

predicted to result in a significant reduction in clinical malaria cases and deaths in children under five 

years old in seasonal settings, with the absolute impact of vaccination increasing with higher 

transmission intensity (Figure 5.5, Table 5.2). Model simulations showed that SV-RTS,S resulted in 

greater reductions in cases and deaths than AB-RTS,S vaccination across all endemicity settings in both 

seasonal and highly seasonal settings over 15 years (Figure 5.5, Table 5.2). An additional fifth dose 

and/or higher fourth and fifth dose efficacy against infection increased this impact (Figure 5.5, Table 

5.2). AB-RTS,S vaccination was predicted to avert a median of between 11,000–80,000 clinical cases 

in children aged 0–5 years dependent on seasonality and transmission intensity whereas SV-RTS,S was 

predicted to avert between 15,000–152,000 with a four-dose schedule and 17,000–172,000 with a 

five-dose schedule, dependent on seasonality, transmission intensity and the underlying efficacy 

model (Table 5.2).  

Considering the effect of seasonality, the incremental benefit of SV-RTS,S over AB-RTS,S (defined as 

the proportion of additional events averted with SV-RTS,S versus AB-RTS,S) was slightly larger in highly 

seasonal settings compared to seasonal settings. On average, across all baseline PfPR2-10 levels SV-

RTS,S averted an additional 40–100% of cases and 42–94% of deaths in children under five years old 

in highly seasonal transmission settings and 32–88% and 31%–83% of cases and deaths in seasonal 

transmission settings depending on dose number and efficacy model.  
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Figure 5.5 Population impacts of different RTS,S vaccination strategies in seasonal settings. A) Cumulative clinical cases averted and 
B) deaths averted over 15 years as a function of baseline PfPR2-10 and seasonality in children aged 0-5 years old. Coverage is fixed at 
80% for the first three doses with a 20% drop off (from the third dose) for the fourth and fifth doses. AB-RTS,S - is the four-dose age-
based strategy, SV-RTS,S 4 & 5-dose is the seasonal strategy assuming the original vaccine efficacy profile from the Phase 3 RTS,S trials, 
SV-RTS,S 4 & 5-dose (updated booster) is the seasonal strategy assuming the updated higher efficacy against infection for the fourth 
and fifth dose based on the validation to the seasonal malaria vaccination Phase 3b clinical trial in Chapter 4. Model median values are 
presented in the coloured bars with error bars representing the 95% Credible Intervals.  
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Table 5.2 Predictions of public health impact of different RTS,S vaccination strategies at 15 years of follow-up in children aged 0-5 years, in regions with a parasite prevalence in 2–10 year 
olds of 10–65%. Cases and deaths averted are reported as cumulative over 15 years relative to a baseline no vaccination scenario per 100,000 population. Median value model predictions with 
95% Credible Intervals in brackets.  

 PfPR2-10  

Vaccination 
delivery 

Seasonality  Outcome 
Measure 

10% 15% 20% 25% 35% 45% 55% 65% 

AB-RTS,S Highly 
seasonal 

Clinical cases 
averted 

11,000  
 (8,000 - 14,000) 

20,000  
 (14,000 - 23,000) 

28,000  
 (19,000 - 33,000) 

36,000  
 (24,000 - 42,000) 

49,000  
 (37,000 - 62,000) 

67,000  
 (51,000 - 81,000) 

75,000  
 (55,000 - 96,000) 

80,000  
 (57,000 - 107,000) 

Deaths averted 
100  

 (70 - 160) 
160  

 (90 - 200) 
190  

 (90 - 240) 
210  

 (100 - 250) 
210  

 (100 - 310) 
230  

 (110 - 350) 
220  

 (90 - 410) 
210  

 (50 - 490) 

Seasonal Clinical cases 
averted 

11,000  
 (7,000 - 14,000) 

19,000  
 (13,000 - 23,000) 

28,000  
 (17,000 - 31,000) 

36,000  
 (23,000 - 40,000) 

50,000  
 (34,000 - 57,000) 

60,000  
 (46,000 - 74,000) 

69,000  
 (48,000 - 89,000) 

76,000  
 (51,000 - 102,000) 

Deaths averted 
100  

 (60 - 170) 
150  

 (80 - 200) 
180  

 (90 - 240) 
200  

 (100 - 250) 
220  

 (100 - 270) 
200  

 (100 - 290) 
200  

 (60 - 330) 
180  

 (60 - 440) 

SV-RTS,S 4-
dose 

Highly 
seasonal 

Clinical cases 
averted 

16,000  
 (10,000 - 20,000) 

27,000  
 (18,000 - 31,000) 

38,000  
 (26,000 - 45,000) 

49,000  
 (34,000 - 58,000) 

69,000  
 (52,000 - 85,000) 

93,000  
 (70,000 - 112,000) 

106,000  
 (81,000 - 138,000) 

122,000  
 (86,000 - 157,000) 

Deaths averted 
150  

 (80 - 230) 
210  

 (120 - 280) 
260  

 (130 - 320) 
280  

 (140 - 360) 
310  

 (150 - 420) 
330  

 (160 - 470) 
310  

 (130 - 550) 
330  

 (100 - 660) 

Seasonal Clinical cases 
averted 

15,000  
 (10,000 - 18,000) 

25,000  
 (17,000 - 30,000) 

36,000  
 (23,000 - 41,000) 

46,000  
 (31,000 - 52,000) 

66,000  
 (45,000 - 75,000) 

80,000  
 (60,000 - 98,000) 

94,000  
 (68,000 - 118,000) 

101,000  
 (73,000 - 131,000) 

Deaths averted 
140  

 (80 - 220) 
190  

 (110 - 260) 
230  

 (120 - 300) 
260  

 (120 - 330) 
290  

 (130 - 360) 
260  

 (130 - 390) 
270  

 (110 - 420) 
240  

 (100 - 520) 

SV-RTS,S 4-
dose 
updated 
booster 

Highly 
seasonal 

Clinical cases 
averted 

20,000  
 (13,000 - 24,000) 

34,000  
 (22,000 - 39,000) 

48,000  
 (32,000 - 57,000) 

61,000  
 (42,000 - 71,000) 

86,000  
 (66,000 - 106,000) 

114,000  
 (88,000 - 140,000) 

133,000  
 (100,000 - 169,000) 

152,000  
 (111,000 - 193,000) 

Deaths averted 
190  

 (100 - 280) 
270  

 (140 - 340) 
320  

 (160 - 410) 
350  

 (170 - 450) 
370  

 (190 - 520) 
390  

 (200 - 560) 
370  

 (160 - 630) 
380  

 (120 - 760) 

Seasonal Clinical cases 
averted 

19,000  
 (13,000 - 23,000) 

31,000  
 (21,000 - 37,000) 

45,000  
 (28,000 - 51,000) 

57,000  
 (38,000 - 67,000) 

81,000  
 (57,000 - 96,000) 

102,000  
 (76,000 - 124,000) 

121,000  
 (87,000 - 148,000) 

127,000  
 (90,000 - 165,000) 

Deaths averted 
180  

 (100 - 270) 
240  

 (130 - 330) 
290  

 (140 - 380) 
310  

 (160 - 400) 
340  

 (170 - 430) 
330  

 (170 - 450) 
340  

 (140 - 480) 
290  

 (120 - 600) 

SV-RTS,S 5-
dose 

Highly 
seasonal 

Clinical cases 
averted 

18,000  
 (12,000 - 22,000) 

31,000  
 (21,000 - 36,000) 

44,000  
 (29,000 - 52,000) 

56,000  
 (39,000 - 66,000) 

80,000  
 (60,000 - 97,000) 

106,000  
 (80,000 - 128,000) 

120,000  
 (93,000 - 155,000) 

141,000  
 (100,000 - 177,000) 

Deaths averted 
180  

 (100 - 260) 
240  

 (130 - 320) 
290  

 (140 - 380) 
310  

 (170 - 410) 
350  

 (180 - 470) 
350  

 (180 - 520) 
340  

 (150 - 580) 
360  

 (110 - 710) 

Seasonal Clinical cases 
averted 

17,000  
 (12,000 - 21,000) 

29,000  
 (19,000 - 34,000) 

41,000  
 (25,000 - 46,000) 

53,000  
 (35,000 - 60,000) 

74,000  
 (51,000 - 86,000) 

91,000  
 (68,000 - 113,000) 

108,000  
 (77,000 - 133,000) 

115,000  
 (84,000 - 148,000) 

Deaths averted 
160  

 (100 - 250) 
220  

 (120 - 300) 
260  

 (130 - 340) 
280  

 (140 - 360) 
310  

 (140 - 390) 
300  

 (150 - 410) 
300  

 (130 - 450) 
260  

 (110 - 560) 

SV-RTS,S 5-
dose 
updated 
booster 

Highly 
seasonal 

Clinical cases 
averted 

23,000  
 (15,000 - 27,000) 

38,000  
 (25,000 - 44,000) 

54,000  
 (36,000 - 64,000) 

70,000  
 (48,000 - 82,000) 

101,000  
 (75,000 - 121,000) 

135,000  
 (101,000 - 160,000) 

152,000  
 (117,000 - 196,000) 

172,000  
 (128,000 - 223,000) 

Deaths averted 
230  

 (120 - 330) 
300  

 (170 - 400) 
350  

 (180 - 460) 
390  

 (200 - 510) 
430  

 (220 - 580) 
440  

 (220 - 630) 
400  

 (190 - 680) 
400  

 (130 - 800) 

Seasonal Clinical cases 
averted 

21,000  
 (14,000 - 26,000) 

35,000  
 (24,000 - 42,000) 

52,000  
 (32,000 - 58,000) 

65,000  
 (43,000 - 76,000) 

93,000  
 (64,000 - 108,000) 

115,000  
 (86,000 - 141,000) 

135,000  
 (99,000 - 167,000) 

142,000  
 (104,000 - 188,000) 

Deaths averted 210  
 (110 - 310) 

270  
 (150 - 380) 

330  
 (170 - 420) 

350  
 (190 - 450) 

390  
 (190 - 480) 

370  
 (170 - 490) 

360  
 (160 - 520) 

320  
 (140 - 640) 



142 
 

Figure 5.6 Modelled population impacts of different RTS,S vaccination strategies in seasonal settings across 1 year age groupings. Cumulative number of clinical cases (top row) and deaths 
(bottom row) averted over 15 years for individuals up to 20 years old in 1-year age bands. The total cases averted are shown per 100,000 population for both seasonality settings. Results are 
presented for three baseline PfPR2-10 settings representative of low, medium and high transmission intensity. As expected with partially effective malaria control interventions, the model 
predicts a shift in cases to older ages due to the reduction in malaria exposure leading to a delay in the development of naturally acquired immunity. Therefore, the model predicts higher 
relative incidence at older ages resulting in slightly higher numbers of cases in the intervention groups compared to baseline shown here as the negative case reductions for older ages. Despite 
this overall cumulative impact of RTS,S on clinical cases and mortality over 15 years remains positive. Error bars represent the 95% Credible Intervals. Vaccine coverage is fixed at 80% for the 
first three doses with a 20% drop off (relative to the third dose) for the fourth and fifth doses.  
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Stratifying impact by age there was evidence of a shift in cases to older ages in high transmission 

settings as expected with this partially protective malaria intervention due to reduced malaria 

exposure leading to delays in the development of natural immunity (Figure 5.6)(Olotu et al., 2016). 

This effect was delayed with the introduction of a fifth dose in the SV-RTS,S schedule and was of similar 

magnitude across all vaccination scenarios and seasonality profiles (Figure 5.6). Despite this, the 

overall cumulative impact of all schedules and intervention models remained positive over this 15-

year horizon in all settings.  

Further, when stratifying impact by age there was evidence of some disparities between AB-RTS,S and 

SV-RTS,S in very young children. AB-RTS,S had a greater impact over 15 years in terms of reducing 

clinical cases and deaths in the first year of life compared to SV-RTS,S where impact was greater and 

sustained in children older than two (Figure 5.6). I examined this further in a single birth cohort of 

children, born over the course of a calendar year and followed from birth in the model simulation. 

This birth cohort is depicted in Figure 5.7 below where the shaded area represents the months at risk 

for a birth cohort born between months 1 and 12 on the x-axis, and the corresponding ages of children 

in the cohort at each time point. This disparity resulted in a slightly higher cumulative numbers of 

cases in the first 20 months of follow up in the SV-RTS,S cohort (reflecting the age range when all 

children would have received three doses under an age-based EPI schedule, but not all children would 

have received three doses under SV-RTS,S, depending on their birth month) (Figure 5.8). This is most 

marked when SV-RTS,S is compared to AB-RTS,S in seasonal settings. In highly seasonal settings, the 

disadvantage of SV-RTS,S (due to potential higher age at vaccination) was partly offset due to the 

shorter transmission season (Figure 5.8).  

  

Figure 5.7 Lexis plot of the age of a birth cohort over calendar time. The shaded 
green area shows months at risk for a birth cohort born between months 1 and 12 
on the x-axis, and the corresponding ages of children in the cohort at each follow up 
time point.  
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Figure 5.8 Impact of RTS,S vaccination schedules for a birth cohort of children over two years. Cumulative malaria deaths 
as a function of baseline PfPR2-10 (three settings representative of low, medium and high transmission intensity are shown) 
and seasonality. All SV-RTS,S scenarios are represented by the blue lines as impact is consistent for all schedules following 
the primary series prior to any additional doses. Results are presented for a seasonal setting (top row) and a highly seasonal 
setting (bottom row). Vaccine coverage is fixed at 80% for the first three doses with a 20% drop off (relative to the third 
dose) for the fourth and fifth doses. Baseline cumulative incidence assuming no vaccination is shown in the black line.  
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5.4.2 RTS,S impact in seasonal transmission settings in combination with seasonal malaria 
chemoprevention: seasonally targeted compared to age-based 

The combination of RTS,S and SMC was predicted to have substantially more impact than either 

intervention given alone in seasonal transmission settings. The combination of SV-RTS,S + SMC 

resulted in a greater number of cases and deaths averted in children 0-5 years old compared to AB-

RTS,S + SMC across all transmission levels and intervention models (Figure 5.9, Table 5.3). SV-RTS,S + 

SMC averted a median of between 37,000–407,000 clinical cases over 15 years with a four-dose 

schedule or between 38,000–421,000 with a five-dose schedule, dependent on seasonality, 

transmission intensity and efficacy model (Table 5.3). AB-RTS,S + SMC averted between 35,000–

340,000 clinical cases over 15 years dependent on seasonality and transmission intensity (Table 5.3). 

SMC alone was predicted to avert between 28,000–270,000 clinical cases over 15 years dependent on 

seasonality and transmission intensity.  

The combination of RTS,S vaccination on top of SMC therefore was predicted to avert up to an 

additional 151,000 clinical cases with a five-dose  seasonal schedule over 15 years in this target age 

group or with an age-based approach up to an additional 63,000 cases dependent on efficacy model, 

seasonality and transmission intensity. Seasonally targeting RTS,S averted up to 2.4 times more clinical 

cases than an age-based RTS,S schedule when combined with SMC.  

A difference noted when RTS,S was combined with SMC, rather than when considered alone, was that 

the additional modelled impact of vaccination over SMC was higher in seasonal transmission settings 

than in highly seasonal settings. On average, across all baseline PfPR2-10 levels, the addition of SV-RTS,S 

to SMC was predicted to reduce clinical cases and deaths in children 0-5 years old by a further 36%–

56% and 46%–70% respectively in seasonal settings and by 26%–41% and 32%–49% respectively in 

highly seasonal settings, depending on dose number and efficacy model. The incremental impact of 

AB-RTS,S over SMC was smaller across both seasonality profiles averting an additional 26% of cases 

and 35% of deaths in seasonal settings and 19% of cases and 23% of deaths in highly seasonal settings.  
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Figure 5.9 Population impacts of different RTS,S vaccination strategies in seasonal settings when combined with SMC. A) 
Cumulative clinical cases averted and B) deaths averted over 15 years as a function of baseline PfPR2-10 and seasonality in 
children aged 0-5 years old. Vaccine coverage is fixed at 80% for the first three doses with a 20% drop off (from the third 
dose) for the fourth and fifth doses and SMC coverage of 75%. AB-RTS,S - is the four-dose age-based strategy, SV-RTS,S 4 & 
5-dose is the seasonal strategy assuming the original vaccine efficacy profile from the Phase 3 RTS,S trials, SV-RTS,S 4 & 5-
dose (updated booster) is the seasonal strategy assuming the updated higher efficacy against infection for the fourth and 
fifth dose, SV-RTS,S 4 & 5-dose (synergy) assumes higher SP+AQ efficacy both based on the validation to the seasonal malaria 
vaccination Phase 3b clinical trial data in Chapter 4 and. Model median values are presented in the coloured bars Credible 
Intervals are not shown on the plot for clarity but can be seen in Table 5.3. Vaccine coverage is fixed at 80% for the first three 
doses with a 20% drop off (from the third dose) for the fourth and fifth doses, SMC coverage of 75%.  RTS,S 4 & 5-dose 
(synergy) assumes higher SP+AQ efficacy both based on the validation to the seasonal malaria vaccination Phase 3b clinical 
trial data in Chapter 4 and. Model median values are presented in the coloured bars Credible Intervals are not shown on the 
plot for clarity but can be seen in Table 5.3. Vaccine coverage is fixed at 80% for the first three doses with a 20% drop off 
(from the third dose) for the fourth and fifth doses, SMC coverage of 75%.   
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Table 5.3 Predictions of public health impact of different RTS,S vaccination strategies when combined with SMC at 15 years of follow-up in children aged 0-5 years, in regions with a parasite 
prevalence in 2–10 year olds (PfPR2-10) of 10–65%. Cases and deaths averted are reported as cumulative over 15 years relative to a baseline no vaccination no SMC scenario, per 100,000 
population. Median value model predictions with 95% Credible Intervals in brackets. 

 PfPR2-10  

Vaccination 
delivery 

Seasonality  Outcome 
Measure 10% 15% 20% 25% 35% 45% 55% 65% 

AB-RTS,S + 
SMC 

Highly 
seasonal 

Clinical cases 
averted 

40,000  
 (26,000 - 49,000) 

69,000  
 (45,000 - 82,000) 

101,000  
 (67,000 - 120,000) 

134,000  
 (90,000 - 157,000) 

198,000  
 (145,000 - 240,000) 

265,000  
 (200,000 - 321,000) 

312,000  
 (233,000 - 392,000) 

340,000  
 (248,000 - 433,000) 

Deaths 
averted 

400  
 (220 - 620) 

560  
 (310 - 780) 

690  
 (360 - 910) 

780  
 (410 - 1,020) 

870  
 (450 - 1,160) 

880  
 (460 - 1,270) 

840  
 (410 - 1,400) 

810  
 (280 - 1,620) 

Seasonal Clinical cases 
averted 

35,000  
 (23,000 - 42,000) 

58,000  
 (38,000 - 70,000) 

85,000  
 (54,000 - 98,000) 

110,000  
 (73,000 - 129,000) 

160,000  
 (112,000 - 189,000) 

202,000  
 (151,000 - 248,000) 

239,000  
 (173,000 - 295,000) 

245,000  
 (175,000 - 322,000) 

Deaths 
averted 

350  
 (180 - 520) 

460  
 (250 - 650) 

570  
 (290 - 740) 

620  
 (330 - 810) 

690  
 (340 - 880) 

660  
 (330 - 900) 

630  
 (250 - 960) 

540  
 (220 - 1,140) 

SV-RTS,S 4-
dose + SMC 

Highly 
seasonal 

Clinical cases 
averted 

42,000  
 (27,000 - 51,000) 

73,000  
 (47,000 - 86,000) 

106,000  
 (70,000 - 126,000) 

141,000  
 (94,000 - 165,000) 

210,000  
 (153,000 - 252,000) 

281,000  
 (214,000 - 341,000) 

335,000  
 (250,000 - 418,000) 

369,000  
 (271,000 - 472,000) 

Deaths 
averted 

440  
 (240 - 650) 

600  
 (320 - 830) 

740  
 (390 - 970) 

830  
 (440 - 1,080) 

930  
 (480 - 1,240) 

960  
 (490 - 1,350) 

930  
 (450 - 1,490) 

880  
 (310 - 1,710) 

Seasonal Clinical cases 
averted 

37,000  
 (24,000 - 44,000) 

62,000  
 (40,000 - 74,000) 

91,000  
 (57,000 - 105,000) 

117,000  
 (78,000 - 137,000) 

172,000  
 (119,000 - 201,000) 

218,000  
 (163,000 - 268,000) 

256,000  
 (186,000 - 317,000) 

269,000  
 (193,000 - 351,000) 

Deaths 
averted 

370  
 (190 - 550) 

490  
 (270 - 690) 

600  
 (310 - 780) 

670  
 (350 - 860) 

750  
 (380 - 940) 

730  
 (360 - 980) 

690  
 (310 - 1,030) 

600  
 (260 - 1,210) 

SV-RTS,S 4-
dose 
updated 
booster + 
SMC 

Highly 
seasonal 

Clinical cases 
averted 

44,000  
 (28,000 - 53,000) 

76,000  
 (49,000 - 90,000) 

111,000  
 (73,000 - 132,000) 

148,000  
 (99,000 - 174,000) 

222,000  
 (161,000 - 265,000) 

297,000  
 (226,000 - 360,000) 

355,000  
 (266,000 - 444,000) 

394,000  
 (290,000 - 502,000) 

Deaths 
averted 

460  
 (250 - 680) 

630  
 (350 - 880) 

770  
 (410 - 1,020) 

870  
 (470 - 1,140) 

990  
 (510 - 1,300) 

1,000  
 (520 - 1,430) 

970  
 (490 - 1,570) 

940  
 (330 - 1,770) 

Seasonal Clinical cases 
averted 

39,000  
 (26,000 - 47,000) 

66,000  
 (42,000 - 78,000) 

96,000  
 (61,000 - 111,000) 

124,000  
 (83,000 - 147,000) 

182,000  
 (126,000 - 215,000) 

234,000  
 (174,000 - 284,000) 

273,000  
 (201,000 - 341,000) 

293,000  
 (209,000 - 379,000) 

Deaths 
averted 

380  
 (200 - 580) 

520  
 (290 - 740) 

640  
 (350 - 840) 

710  
 (380 - 930) 

800  
 (400 - 1,010) 

780  
 (390 - 1,040) 

730  
 (340 - 1,100) 

650  
 (290 - 1,280) 

SV-RTS,S 4-
dose synergy 
+ SMC 

Highly 
seasonal 

Clinical cases 
averted 

45,000  
 (29,000 - 54,000) 

78,000  
 (51,000 - 92,000) 

113,000  
 (74,000 - 135,000) 

151,000  
 (101,000 - 177,000) 

227,000  
 (164,000 - 270,000) 

305,000  
 (232,000 - 369,000) 

366,000  
 (273,000 - 453,000) 

407,000  
 (298,000 - 514,000) 

Deaths 
averted 

470  
 (250 - 700) 

640  
 (360 - 900) 

790  
 (420 - 1,040) 

900  
 (470 - 1,160) 

1,000  
 (530 - 1,340) 

1,050  
 (530 - 1,460) 

1,010  
 (510 - 1,610) 

960  
 (340 - 1,820) 

Seasonal Clinical cases 
averted 

40,000  
 (26,000 - 48,000) 

67,000  
 (44,000 - 81,000) 

99,000  
 (63,000 - 114,000) 

128,000  
 (85,000 - 150,000) 

190,000  
 (131,000 - 222,000) 

242,000  
 (179,000 - 295,000) 

287,000  
 (209,000 - 355,000) 

302,000  
 (217,000 - 391,000) 

Deaths 
averted 

400  
 (220 - 610) 

540  
 (300 - 770) 

680  
 (350 - 860) 

740  
 (390 - 970) 

830  
 (430 - 1,060) 

810  
 (410 - 1,090) 

780  
 (350 - 1,130) 

670  
 (300 - 1,320) 

SV-RTS,S 5-
dose + SMC 

Highly 
seasonal 

Clinical cases 
averted 

43,000  
 (28,000 - 52,000) 

75,000  
 (49,000 - 89,000) 

109,000  
 (72,000 - 130,000) 

145,000  
 (98,000 - 170,000) 

217,000  
 (157,000 - 260,000) 

291,000  
 (220,000 - 351,000) 

347,000  
 (261,000 - 431,000) 

381,000  
 (285,000 - 489,000) 

Deaths 
averted 

440  
 (240 - 670) 

620  
 (340 - 860) 

750  
 (400 - 1,000) 

850  
 (460 - 1,110) 

960  
 (500 - 1,280) 

990  
 (500 - 1,390) 

950  
 (480 - 1,530) 

900  
 (320 - 1,750) 

Seasonal Clinical cases 
averted 

38,000  
 (25,000 - 46,000) 

64,000  
 (41,000 - 77,000) 

94,000  
 (59,000 - 108,000) 

122,000  
 (81,000 - 142,000) 

178,000  
 (124,000 - 209,000) 

227,000  
 (169,000 - 277,000) 

265,000  
 (195,000 - 329,000) 

282,000  
 (200,000 - 366,000) 

Deaths 
averted 

380  
 (200 - 570) 

520  
 (280 - 720) 

620  
 (320 - 820) 

700  
 (360 - 890) 

770  
 (390 - 980) 

760  
 (380 - 1,010) 

710  
 (330 - 1,060) 

620  
 (260 - 1,240) 
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SV-RTS,S 5-
dose 
updated 
booster + 
SMC 

Highly 
seasonal 

Clinical cases 
averted 

46,000  
 (29,000 - 55,000) 

78,000  
 (51,000 - 93,000) 

115,000  
 (76,000 - 136,000) 

153,000  
 (102,000 - 179,000) 

230,000  
 (166,000 - 275,000) 

310,000  
 (235,000 - 372,000) 

370,000  
 (278,000 - 463,000) 

412,000  
 (303,000 - 525,000) 

Deaths 
averted 

480  
 (250 - 710) 

650  
 (360 - 910) 

800  
 (420 - 1,050) 

900  
 (470 - 1,180) 

1,020  
 (530 - 1,360) 

1,060  
 (550 - 1,470) 

1,010  
 (510 - 1,620) 

960  
 (350 - 1,820) 

Seasonal Clinical cases 
averted 

41,000  
 (27,000 - 49,000) 

68,000  
 (44,000 - 81,000) 

100,000  
 (64,000 - 115,000) 

129,000  
 (86,000 - 152,000) 

192,000  
 (132,000 - 224,000) 

245,000  
 (183,000 - 299,000) 

291,000  
 (212,000 - 359,000) 

310,000  
 (221,000 - 400,000) 

Deaths 
averted 

410  
 (220 - 610) 

540  
 (300 - 780) 

680  
 (350 - 880) 

740  
 (390 - 960) 

840  
 (420 - 1,060) 

810  
 (400 - 1,090) 

770  
 (360 - 1,130) 

670  
 (300 - 1,320) 

SV-RTS,S 5-
dose synergy 
+ SMC 

Highly 
seasonal 

Clinical cases 
averted 

46,000  
 (30,000 - 55,000) 

80,000  
 (52,000 - 95,000) 

117,000  
 (77,000 - 139,000) 

156,000  
 (104,000 - 183,000) 

235,000  
 (170,000 - 281,000) 

318,000  
 (240,000 - 382,000) 

381,000  
 (286,000 - 473,000) 

421,000  
 (312,000 - 538,000) 

Deaths 
averted 

490  
 (250 - 720) 

670  
 (360 - 940) 

820  
 (430 - 1,090) 

930  
 (500 - 1,210) 

1,050  
 (550 - 1,390) 

1,080  
 (560 - 1,500) 

1,050  
 (520 - 1,640) 

990  
 (370 - 1,860) 

Seasonal Clinical cases 
averted 

41,000  
 (27,000 - 50,000) 

70,000  
 (45,000 - 83,000) 

103,000  
 (66,000 - 118,000) 

133,000  
 (89,000 - 158,000) 

198,000  
 (137,000 - 231,000) 

254,000  
 (189,000 - 308,000) 

298,000  
 (219,000 - 370,000) 

321,000  
 (230,000 - 413,000) 

Deaths 
averted 

420  
 (230 - 630) 

570  
 (320 - 800) 

700  
 (360 - 900) 

780  
 (410 - 1,000) 

880  
 (440 - 1,100) 

850  
 (430 - 1,140) 

800  
 (370 - 1,170) 

710  
 (320 - 1,350) 

SMC Highly 
seasonal 

Clinical cases 
averted 

35,000  
 (23,000 - 42,000) 

60,000  
 (39,000 - 71,000) 

87,000  
 (57,000 - 104,000) 

114,000  
 (77,000 - 136,000) 

169,000  
 (122,000 - 203,000) 

221,000  
 (168,000 - 270,000) 

256,000  
 (192,000 - 321,000) 

270,000  
 (201,000 - 344,000) 

Deaths 
averted 

350  
 (180 - 520) 

470  
 (270 - 650) 

580  
 (310 - 760) 

650  
 (340 - 830) 

720  
 (360 - 960) 

710  
 (360 - 1,040) 

650  
 (330 - 1,120) 

610  
 (200 - 1,260) 

Seasonal Clinical cases 
averted 

28,000  
 (19,000 - 34,000) 

48,000  
 (31,000 - 57,000) 

70,000  
 (44,000 - 81,000) 

89,000  
 (60,000 - 104,000) 

127,000  
 (88,000 - 150,000) 

158,000  
 (118,000 - 197,000) 

179,000  
 (131,000 - 225,000) 

182,000  
 (129,000 - 238,000) 

Deaths 
averted 

260  
 (160 - 400) 

370  
 (200 - 500) 

440  
 (230 - 570) 

480  
 (260 - 610) 

520  
 (250 - 660) 

480  
 (250 - 670) 

430  
 (190 - 700) 

360  
 (160 - 820) 
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Again, there was a shift in cases to older ages that was of a slightly higher magnitude than when only 

vaccination was modelled (Figure 5.11). But again, despite this age shift in cases, the overall 

cumulative impact of all schedules and intervention models remained positive over this 15-year 

horizon in all settings. In addition, the inclusion of SMC alongside SV-RTS,S marginally reduced the 

effect of disparity in age at first vaccination between SV- and AB-RTS,S strategies described above, 

since SMC provided protection from the age of three months (Figure 5.10).  

  

Figure 5.10 Modelled impact of RTS,S vaccination schedules for a birth cohort of children over two years in the presence 
of SMC or without SMC. Cumulative malaria deaths as a function of baseline PfPR2-10 (three settings representative of low, 
medium and high transmission intensity are shown) and seasonality. All SV-RTS,S scenarios are represented by the blue lines 
as impact is consistent for all schedules following the primary series. Results are presented for a seasonal setting (top row) 
and a highly seasonal setting (bottom row). Vaccine coverage is fixed at 80% for the first three doses with a 20% drop off 
(from the third dose) for the fourth and fifth doses, SMC coverage of 75%.   
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Figure 5.11 Modelled population impacts of different RTS,S vaccination strategies when combined with SMC in seasonal settings across 1 year age groupings. Cumulative number of clinical 
cases (top row) and deaths (bottom row) averted over 15 years for individuals up to 20 years old in 1-year age bands. The total cases averted are shown per 100,000 population for both 
seasonality settings. Results are presented for three baseline PfPR2-10 settings representative of low, medium and high transmission intensity. As expected with partially effective malaria control 
interventions, there was a shift in cases to older ages due to the reduction in malaria exposure leading to a delay in the development of naturally acquired immunity. Therefore, the model 
predicts higher relative incidence at older ages resulting in slightly higher numbers of cases in the intervention groups compared to the baseline groups shown here as the negative case 
reductions for older ages. Despite this overall cumulative impact of seasonal interventions on clinical cases and mortality over 15 years remains positive. Bars represent the median of model 
simulations, error bars with 95% Credible Intervals are not shown for clarity. Vaccine coverage is fixed at 80% for the first three doses with a 20% drop off (relative to the third dose) for the 
fourth and fifth doses, SMC coverage of 75%.   
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As discussed in Chapter 3, four monthly cycles of SMC are considered too short for the transmission 

seasons of much of the southern Sahel and an increase in the number of monthly cycles are 

increasingly being considered in the region. Exploring the modelled impact of RTS,S vaccination when 

combined with 5-monthly cycles of SMC in these characteristic seasonal settings, there was an 

increase in the overall number of cases averted in both seasonal settings with a greater increase in 

case reductions in seasonal compared to highly seasonal settings (Figure 5.12A). The incremental 

impact of any RTS,S vaccination schedule on top of SMC however was reduced as a larger proportion 

of the peak transmission season was covered by SMC (Figure 5.12B). Despite this, seasonally targeted 

Figure 5.12 Impact of an additional SMC monthly cycle. A) The impact of an additional round of SMC on cumulative clinical 
cases averted in children 0-5 years old over 15 years as a function of baseline PfPR2-10 (three settings representative of low, 
medium and high transmission intensity) and each vaccination schedule. B) Average change in the incremental impact 
(defined as the proportion of additional events averted with RTS,S combined with SMC over SMC alone) of combined arms 
simulations relative to SMC alone averaged over all baseline PfPR2-10 levels (10%-65%). Vaccine coverage was fixed at 80% 
for the first three doses with a 20% drop off (relative to the third dose) for the fourth and fifth doses with SMC coverage of 
75%. 
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RTS,S vaccination could still avert on average, across all baseline PfPR2-10 levels, up to an additional 

43% more cases than SMC alone B).  

5.4.3 Health Systems considerations - sensitivity analysis  

For all the previous analyses, assumed vaccine coverage was the same for both vaccine schedules at 

80% coverage with the first three doses with a 20% drop-off for the subsequent doses. Testing the 

sensitivity of results to the coverage of the first three doses I found that RTS,S vaccine impact for all 

schedules scaled approximately linearly with coverage (Figure 5.13).  

Figure 5.13 Effect of increasing vaccination coverage of the first three RTS,S doses on potential cases averted. 
Cumulative clinical cases averted per 100,000 children aged 0-5 years over a period of 15 years following vaccine 
introduction, stratified by seasonality profile and baseline PfPR2-10. Coverage of the fourth or fifth vaccine doses remains 
unchanged at a 20% drop off from the coverage of the first three doses.    
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Decisions surrounding what RTS,S schedule to implement will also have to account for the potential 

achievable coverage of the different delivery schedules. When comparing the additional cases averted 

with a SV-RTS,S schedule compared to an AB-RTS,S schedule, the coverage of each approach was a 

key determinant of the schedule with the highest impact in a particular setting (Figure 5.14). The 

superiority of SV-RTS,S across the majority of coverage comparisons remained especially with a five-

Figure 5.14. Comparability of vaccination schedules with varying levels of coverage of the first three vaccine doses. Colour 
scale represented the additional cases averted with a four- (top panel) of five- (bottom panel) dose SV-RTS,S schedule 
compared to an AB-RTS,S schedule dependent on coverage, seasonality and baseline PfPR2-10 (three settings representative 
of low, medium and high transmission intensity are shown). Note that the scale varies in each subplot. Equivalent case 
reductions are shown in white, dominance of SV-RTS,S in green and dominance of AB-RTS,S in purple. Comparisons are made 
assuming the same underlying parameterizations of the efficacy model in each scenario.  
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dose schedule apart from at very low SV-RTS,S coverage (~<50%) and very high AB-RTS,S coverage 

(~>80%) (Figure 5.14 bottom panel). However, when a four-dose schedule was considered at low 

coverage levels (~<65%) and with high AB-RTS,S coverage (~70%) an age-based approach was 

predicted to avert more cases over 15 years in this target population (Figure 5.14 top panel). The 

comparisons between schedules shown in Figure 5.14 are made assuming the same efficacy profile 

model parameters (Figure 5.2A,B,D) if the seasonal-vaccination updated booster model was used 

(Figure 5.2C,E) SV-RTS,S outperformed AB-RTS,S across all coverage comparisons.  

When combined with SMC the potential coverage of an SMC regime as well as that of the RTS,S vaccine 

will again be important determinants of impact. At lower SMC coverage vaccination had a higher 

predicted additional impact on top of SMC than when SMC coverage was high (Figure 5.15). However, 

even when the coverage of both interventions was high (>80%) RTS,S was predicted to provide 

significant additional impact on top of SMC (Figure 5.15).  

Further, for countries to adopt and deploy seasonally targeted intervention packages, knowledge of 

the timing of the annual transmission season is vital. As an intervention, SMC impact was highly 

sensitive to modelled changes in delivery relative to the peak in transmission (Figure 5.16A). This can 

make operational deployment of SMC challenging due to annual fluctuations in the rainy season with 

consequent logistical or supply issues. SV-RTS,S, however, was more robust to modelled changes in 

delivery (Figure 5.16A), therefore when interventions were combined the potential reduction in case 

burden was reduced relative to SMC delivery alone (Figure 5.16B). Given that RTS,S delivery through 

an age-based schedule is not reliant on calendar time, this approach may mitigate some of the 

challenges of optimal alignment in SMC delivery (Figure 5.16C).  
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Figure 5.15 Percentage additional clinical malaria cases averted when RTS,S vaccination is combined with SMC at varying 
coverage levels. Colour scale represents the percentage increase in clinical malaria cases averted when RTS,S is deployed 
alongside SMC in model simulations compared to SMC alone, dependent on coverage, seasonality and baseline PfPR2-10 
(three settings representative of low, medium and high transmission intensity are shown). Note that the colour scale varies 
in each panel. AB-RTS,S and SV-RTS,S with five doses are shown here assuming the same underlying parameterizations of 
the efficacy model. RTS,S coverage is for the first three doses. SMC modelled as four monthly cycles.  
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Figure 5.16 Impact of deviations in the alignment of intervention delivery relative to the malaria transmission season. Barplots show the 
cumulative clinical cases averted in children 0-5 over 15 years for a baseline PfPR2-10 of 35%. A) Comparing SMC alone and SV-RTS,S alone. 
The 5-dose SV-RTS,S strategy is show here for ease of comparison. B) Comparing SV-RTS,S + SMC to SMC alone and C) Comparing AB-RTS,S 
+ SMC to SMC alone. Vaccine coverage is fixed at 80% for the first three doses with a 20% drop off (relative to the third dose) for the fourth 
and fifth doses and SMC coverage of 75%.  
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5.4.4 Potential impact of a delayed-fractional age-based RTS,S vaccination schedule in 
seasonal settings 

Assuming a delayed-fractional schedule, combined with the potential improvements in efficacy 

following the primary series that was demonstrated in human challenge trials, results show that 

malaria burden reductions are improved over 15 years compared to first-generation AB-RTS,S across 

all seasonality and transmission settings (Figure 5.17). In terms of predicted cumulative cases averted 

per 100,000 children aged 0–5 years over a 15 year period, the modified DF-RTS,S schedule averted 

between 13%–27% more clinical cases than the first-generation AB-RTS,S RTS,S/AS01, across all 

seasonality and transmission settings. Despite these improvements, cases and deaths averted 

remained lower than in all SV-RTS,S simulations.  

 

 

Figure 5.17 Impact of a second-generation age-based RTS,S approach following the delayed-fractional schedule of 
Regules et al 2016. A) Cumulative clinical cases averted and B) deaths averted over 15 years as a function of baseline PfPR2-

10 and seasonality in children aged 0-5 years old. Coverage is fixed at 80% for the first three doses with a 20% drop off (from 
the third dose) to the fourth dose. AB-RTS,S - is the first-generation four-dose age-based strategy, DF-RTS,S is the second-
generation four dose age-based strategy. Model median values are presented in the coloured bars with error bars 
representing the 95% Credible Intervals.  
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5.5  Discussion  

These modelling results demonstrate that RTS,S vaccination alone, and to a greater extent when 

combined with SMC, could have a significant positive impact in areas with seasonal malaria 

transmission when delivered at scale. Seasonally targeting RTS,S with a four- or five-dose schedule 

consistently resulted in greater predicted reductions than age-based delivery at equivalent coverage 

levels. However, the predicted difference was reduced when vaccination was combined with SMC. 

SMC is widely used, reaching around 33.5 million children in 2020, and is a highly effective and key 

malaria intervention in the Sahel region (World Health Organization, 2021g). These modelling results, 

along with results from the recent clinical trial, highlight the significant additional impact that RTS,S 

could have when delivered with SMC in these settings.  

This additional impact of RTS,S when combined with SMC was driven by the protection provided by 

RTS,S outside the SMC target window alongside increased protection during the transmission season. 

The former component leads to a more prominent impact of vaccination in settings with a longer 

seasonal transmission season where malaria burden is more uniformly spread over 7–8 months. In 

these settings, even when five-monthly cycles of SMC were delivered, the additional impact of SV on 

top of SMC was significant averting up to 64,000 more clinical cases per 100,000 population over a 15-

year time horizon than SMC alone on average. If further monthly cycles are to be considered in these 

settings however, the additional impact of RTS,S on top of SMC will continue to be reduced. 

Conversely, when comparing vaccination schedules in the absence of SMC, the incremental benefit of 

SV-RTS,S over AB-RTS,S was greater in highly seasonal settings due to the burden of malaria being 

concentrated in a shorter period. Given these results, seasonality is an important determinant of 

vaccination schedule impact in these settings alongside whether SMC is deployed or not.  

When considering vaccination with RTS,S in the absence of SMC, by aligning peak vaccine efficacy with 

the period of highest malaria risk population level, reductions in malaria morbidity and mortality were 

maximised relative to an age-based approach. However, a child’s age at first vaccination under this 

approach can vary from 5–17 months, meaning some children will have substantial exposure to 

malaria before receiving their first dose of vaccine compared to an age-based approach where age at 

first vaccination is fixed. This disparity in age at first vaccination meant that age-based vaccination was 

slightly more beneficial than seasonally targeted vaccination between 10 to 20 months of age, when 

children are at a higher risk of severe malaria outcomes, particularly severe malarial anaemia (Griffin 

et al., 2015). Therefore, a potential third vaccination strategy in seasonal settings – a hybrid strategy 

that uses age-based delivery for the first three doses combined with annual pre-season fourth and 

fifth doses – could be considered. Such an approach could preserve the young age at first vaccination 
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while retaining the population-level benefits of seasonally targeted fourth and fifth doses that result 

in greater aggregate reductions in morbidity and mortality at older ages. Further modelling work is 

needed to examine the potential benefit of a hybrid RTS,S vaccination strategy in seasonal settings 

along with research into the minimum dose spacing between third and fourth doses.  

For countries considering RTS,S, the potential achievable coverage of each vaccination strategy will be 

an important determinant in deciding which strategy to adopt. For example, if other routine EPI 

vaccine coverage levels are low, but SMC or historical campaign vaccination coverage is high, SV 

campaigns that reach high coverage will likely have the greatest impact in that setting compared to 

low coverage uptake through age-based immunization and vice-versa. However, the inclusion of a fifth 

dose of RTS,S in the seasonal schedule may mitigate this differential, but additional boosters might 

result in higher rates of drop off in coverage that were not considered in this present analysis.  

Further, vaccine demand may outstrip initial supply as countries decide to adopt RTS,S. In this situation 

it will be vital to understand where and how to prioritise RTS,S, dependent on endemicity, seasonality 

and current interventions. Previous modelling work has highlighted that sub-national allocation of 

RTS,S through age-based EPI delivery would maximise the overall public health benefit if targeted to 

countries with the highest incidence—particularly those in the Sahel region (Hogan, Winskill & Ghani, 

2020). Given the potential for SV-RTS,S to have a greater public health impact in seasonal settings, 

further work is needed to understand how limited doses can best be geographically allocated given 

this new mode of delivery. The importance of sub-national allocation of interventions and tailoring of 

intervention packets to local malaria epidemiology is increasingly important with the limited resources 

available to malaria control. Within countries malaria seasonality patterns can vary greatly and as a 

result national malaria control programmes may want to consider different RTS,S vaccination 

strategies in different locations, dependent on observed seasonality. Further modelling work 

examining optimal vaccination strategies dependent on the local epidemiology and current 

intervention packets should be considered to help guide future RTS,S policy.  

A further operational consideration highlighted by this work is the relative robustness of vaccination 

impact to fluctuations in the start of the transmission season compared to SMC. The relatively short 

duration of protection provided by each SMC monthly course means that potential case reductions 

are highly sensitive to optimised delivery. Along with the associated public health gains of combining 

RTS,S with SMC, this also enhances the robustness of SMC. Given the threat of climate change in 

impacting weather patterns across sub-Saharan Africa, flexible intervention packages that can adapt 

to fluctuations or changes in seasonality patterns are, and will be vital (Monerie, Pohl & Gaetani, 2021; 

Ryan, Lippi & Zermoglio, 2020; Nissan, Ukawuba & Thomson, 2021).  
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The inclusion of a potential DF-RTS,S vaccination schedule was found in this analysis to result in higher 

levels of burden reduction to first-generation AB-RTS,S vaccination, highlighting that despite the 5-

month delay in receiving the third dose of RTS,S the increase in efficacy modelled under this schedule 

offsets any loss of protection during these 5 months. In modelled seasonal settings I predict similar 

levels of additional cases averted with this DF-RTS,S (13%–27% more clinical cases) as was modelled 

in perennial settings in Hogan et al. (21–25% more clinical cases) (Hogan et al., 2018). Despite these 

improvements in efficacy, in seasonal settings the targeting of RTS,S to the peak in the transmission 

season resulted in higher impact. The potential efficacy of this delayed-fraction regime however has 

not yet been tested in target populations in malaria endemic countries and further work on 

understanding the role of dose spacing and dose reductions is needed. As such, results are presented 

as a potential indication of what an increase in third dose efficacy might mean for population level 

impacts in seasonal settings.  

While currently outside the remit of this work, as the associated costs of seasonally targeted delivery 

are not yet available, it will be important to consider the cost-effectiveness of different RTS,S 

vaccination strategies in seasonal transmission settings moving forwards given the limited resources 

available for malaria control. When comparing AB-RTS,S to SV-RTS,S the potential introductory costs 

of a SV campaign compared to the costs associated with adding RTS,S into an existing Expanded 

Programme on Immunization schedule and the costs of additional doses requited by SV-RTS,S will be 

important determinant of the cost-effectiveness of each schedule. Previous work has shown that the 

introduction of RTS,S in seasonal setting though an age-based immunization schedule tended to enter 

the cost-effectiveness scale up pathway later once bed-net and SMC coverage had reached higher 

levels (Winskill et al., 2017). The temporal targeting of SMC to the peak in transmission increased its 

cost-effectiveness relative to age-based RTS,S in this work. However, a further study evaluating the 

cost-effectiveness scale up pathway of interventions in Ghana found that introducing AB-RTS,S would 

be the optimal first step followed by SMC (Sauboin et al., 2019b). These different conclusions are 

largely a result of different constraints placed on achievable coverage levels and costing inefficiencies 

(Galactionova, Smith & Penny, 2021). With the associated improvements of seasonally-targeting RTS,S 

a further understanding its cost-effectiveness in seasonal settings alongside SMC will be essential.  
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5.6  Limitations  

There are several limitations to the current work. Due to the results of the model validation in Chapter 

4, several SV-RTS,S and SP+AQ efficacy profiles had to be considered in this evaluation. This resulted 

in large variation in the potential reductions in malaria morbidity and mortality presented in the 

results. The outputs of this work should therefore be considered in the context of understanding 

overall patterns and relationships between interventions given these uncertainties. And further work 

examining the potential efficacy alterations of RTS,S under this seasonal-vaccination schedule are 

needed to refine estimates further. Further these results are presented in generic transmission 

settings, assuming existing levels of malaria vector control and treatment coverage that are not scaled 

up over time. In particular, I do not consider the scale up of insecticide treated bed-nets which are 

currently one of our most cost-effective interventions against malaria (Winskill et al., 2017). I also do 

not consider the impact of increasing the age-range of SMC delivery to children up to 10 years old 

which recent evidence from Senegal showed to be highly effective and had an indirect effect on 

transmission, reducing the incidence of malaria in older individuals who did not receive SMC (Cissé et 

al., 2016). This is currently being explored in additional modelling work (Cairns et al., 2019). 

Throughout this work I did not model any vaccine-induced protection until after the third dose. It is 

possible that some protection would be conferred from the first two doses, but additional data would 

be needed to capture this impact in the model. Finally, the results presented for the delayed-fractional 

efficacy model are indicative of only the potential for this approach. We currently lack data from any 

field trials to parameterise the efficacy model.  

 

5.7  Conclusions  

Overall, this work along with the clinical trial results demonstrate that RTS,S/AS01 vaccination in 

seasonal transmission settings could be a valuable tool to add to existing seasonal interventions, with 

seasonal delivery maximising impact relative to an age-based approach. Results of the trial and 

modelling suggest that RTS,S should not replace SMC where it is already implemented but that it can 

have significant health benefits when combined with SMC or could be introduced in seasonal settings 

where SMC is currently not implemented or recommended for use but malaria transmission is 

seasonal. Decisions surrounding deployment strategies of RTS,S in seasonal settings will need to 

consider the local and regional variations in seasonality, current levels of other anti-malarial 

interventions and the potential achievable RTS,S coverage.  
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Chapter 6 

6 Discussion 

“This is a historic moment. The long-awaited malaria vaccine for children is a breakthrough for 

science, child health and malaria control. Using this vaccine on top of existing tools to prevent 

malaria could save tens of thousands of young lives each year” – WHO Director-General Dr Tedros 

Adhanom Ghebreyesus, October 2021. 

After more than 60 years of research, the licensure of first-generation RTS,S is a huge step forward for 

malaria control and malaria vaccinology. Despite the partial protection that RTS,S provides, its 

deployment in the Malaria Vaccine Implementation Programme (MVIP) highlights the positive public 

health impact that RTS,S can have in malaria endemic countries. Pooled data across the 3 MVIP 

countries showed that hospitalization with severe malaria among children eligible for at least 3 doses 

of vaccine was reduced by 29%, and hospitalization with malarial parasitaemia or antigenaemia was 

reduced by 21% (World Health Organization, 2022). Critically the MVIP has also demonstrated that 

delivery of malaria vaccines is feasible and equitable (World Health Organization, 2022). While this is 

a significant achievement, the development of a highly efficacious malaria vaccine continues with 

priority strategic goals for second-generation vaccines against P. falciparum now calling for a vaccine 

with protective efficacy of at least 75% against clinical malaria to be licensed by 2030 (Malaria Vaccine 

Funders Group, 2013).  

To achieve these goals the field needs to continue to develop and build on the initial successes of 

RTS,S and the promise of other potential first-generation vaccines such as R21 and PfSPZ which are 

now in late-stage clinical trials, while maintaining and progressing the diverse development pipeline 

of other second-generation approaches. The development of RTS,S, its deployment and continued 

evaluation has facilitated the synthesis of knowledge and data from across a wide range of different 

disciplines involved in research into malaria vaccines. This depth of data has enhanced the 
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development of mathematical modelling frameworks that combine immunological insights, into 

epidemiological transmission models to address public health questions (White et al., 2011b, 2013, 

2014, 2015; Penny et al., 2016; Winskill et al., 2017; Galactionova, Smith & Penny, 2021). These 

frameworks have formed a core part of the evaluation and policy recommendations surrounding RTS,S 

(Penny et al., 2016; World Health Organization, 2016, 2022) and highlight how we can combine 

vaccinology and mathematical modelling to provide insights to help us further research into second-

generation approaches. 

In this thesis, I have used mathematical models as a tool to evaluate characteristics of and the 

potential public health impacts of novel RTS,S delivery schedules and dosing regimens. In this Chapter 

I summarise the findings of my thesis, highlight important data and research gaps before reviewing 

directions for future research. 

6.1 Summary and implications of findings  

In Chapter 2, using data from the delayed-fractional RTS,S human challenge study in malaria-naïve 

adults (Regules et al., 2016), I investigated the association between vaccine-induced anti-CSP antibody 

quantity and quality and protection from malaria infection. To do so, I extended a previously published 

individual-based mathematical model of sporozoite inoculation and merozoite release (White et al., 

2013) to include dose-response curves that relate antibody IgG titre and avidity indices (‘dose’) to 

probability of sporozoite survival (‘response’). Using this framework, I was able to combine data on 

the relative risk of infection and delays in the time to onset of detectable parasitaemia in trial 

volunteers into measures of vaccine efficacy against infection (defined as the reduction in the 

probability of infection following challenge) and vaccine efficacy per sporozoite (defined as the 

reduction in the liver-to-blood parasite inoculum). I found that incorporating both antibody titre and 

avidity measurements into the model framework provided a substantially better fit to the observed 

trial data than titre alone and helped to explain the observed efficacy improvement of the delayed-

fractional regime better than if titre alone was used to predict efficacy. No thresholds of protection 

for either immune marker were identified in this work but the model predicted that vaccine efficacy 

against infection in excess of 70% could be achieved if avidity indices greater than 70 are induced, 

regardless of the number of antibodies induced. For individuals with a high antibody titre response 

that also showed high avidity (both metrics in the top tercile of observed values in the trial) delayed-

fractional vaccination provided near sterile protection upon first challenge (98.2% [95% CrI 91.6–

99.7%]). Further, I found that delayed-fractional vaccination resulted in a 99.7% (95% CrI 98.7 %–

99.8%) reduction in the number of parasites entering the blood.  
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Considerable focus has been on the quantity of the vaccine-induced immune response as a marker for 

pre-erythrocytic efficacy. However, these results have shown that the quality of vaccine induced 

responses is also an important consideration when evaluating associations between immune markers 

and protection from infection. Given the need for continued development of a highly efficacious 

malaria vaccine and the challenges of testing new vaccine formulations in large field trials, the 

establishment of predictive immune correlates will be invaluable. These results provide an early 

insight into the use of avidity as a surrogate marker of the quality of the vaccine-induced antibody 

response to form part of future malaria vaccine evaluation frameworks and highlights the need for 

avidity measurements to be performed alongside antibody titre measurements in ongoing field trials. 

In Chapter 3, using data from previously published clinical trials of seasonal malaria chemoprevention 

(SMC) I fitted and validated the functional parametric form of the protective efficacy profile of 

Sulfadoxine-Pyrimethamine plus Amodiaquine (SP+AQ), the drug combination currently 

recommended for SMC. Currently all interventions in the Imperial College London transmission model 

have been fitted and validated against clinical trial data and their associated uncertainty in effect has 

been quantified. The previous model of SP+AQ efficacy in the model structure lacked this same level 

of validation and had no quantified uncertainty in effect. Therefore, to be able to make realistic model 

projections of a seasonal RTS,S vaccination approach that could be delivered concurrently with SMC I 

first characterised the protective efficacy of SMC to be used in the model structure. Using a Bayesian 

survival analysis framework and adjusting for a participant’s age and use of an insecticide treated bed-

net, the model was able to replicate the observed malaria incidence in both arms of the trial cohort. 

The findings showed that efficacy was best characterised by a Weibull cumulative distribution function 

and that a high level of protection was maintained for around 20 days before declining to zero 

protection by day 60. The estimated duration of protection against clinical malaria at a level of 50% or 

over from the best fitting model was 35 days (95% CrI 28 days–44 days). A higher degree of uncertainty 

was observed in the tail of the fitted distribution as a result of the reduction in population at risk at 

these later time points. Critically, results of the validation exercise in this Chapter provide further 

evidence that this functional form of SP+AQ efficacy is well characterised. This validation was an 

important additional step given that trial sites in these studies had varying levels of malaria 

transmission intensity which will have affected the time to infection, dosing rules (weight or age-

based), detection methods, seasonality, vector control and other individual-level variations.  

The results of this chapter further our understanding of the rate of decay in SP+AQ efficacy over time 

highlighting the continued need to ensure four-week gaps between cycles. Furthermore, current 

guidelines for implementing SMC are considered restrictive in terms of the number of monthly cycles 

that can be deployed and the locations that match the seasonality criteria (World Health Organization, 
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2012b; Word Health Organization, 2019). Ongoing discussions have focused on ways in which SMC 

policy could be less restrictive (Word Health Organization, 2019). The possibility of SMC being 

delivered in new geographies, in areas with longer transmission seasons, to older age groups, and with 

increases in the number of cycles delivered, are being researched as potential options to provide 

essential control interventions to those communities not currently reached. Findings from my work 

indicate that if SMC could be administered over a longer period of five, six or even seven months this 

could optimise SMC, maximising reductions in malaria case incidence in countries currently delivering 

SMC. The results further suggest that the expansion of SMC to geographical areas where the period 

of highest malaria risk is greater than four months can incur greater benefits in averting malaria cases. 

While the focus of this chapter is on chemoprophylaxis rather than vaccination, the results of this work 

are critical for the work in Chapters 4 and 5. 

In Chapter 4 I used the newly fitted SP+AQ efficacy model along with a model of first-generation RTS,S 

efficacy to replicate the Phase 3b seasonal vaccination clinical trial - the first completed large-scale 

field trial of a seasonal RTS,S delivery approach - in the Imperial College London malaria transmission 

model. In replicating the trial in the transmission model framework, I aimed to understand if the 

current parameterisations of intervention models were able to satisfactorily capture the results of the 

trial. I found that while model results were consistent with the trial data in terms of estimating the 

correct relationships between the interventions, the existing RTS,S vaccine model that was previously 

fitted to antibody titre measurements and clinical disease endpoints from the RTS,S Phase 3 clinical 

trial (White et al., 2015) underestimated the impact of seasonal vaccination. While this could be driven 

by heterogeneity that the model is not able to capture, model results were aligned with the trial results 

by making biologically-motivated changes to the underlying intervention models. The first change was 

to increase the peak efficacy of the fourth and fifth RTS,S doses so that efficacy returned to the same 

levels as after the first three doses. Despite this change, the impact of the combined seasonal-

vaccination and SMC arm in the model framework was still underestimated. Through sampling over 

the posterior distributions of efficacy model parameters I found that by selecting parameters that 

significantly increased the duration of SP+AQ protection, alongside a more modest increase in the 

duration of RTS,S protection I was able to capture the observed trial results. This suggested a potential 

synergistic interaction between pre-erythrocytic vaccination and chemoprevention when combined 

in this schedule. The required reparameterizations of intervention models provides early evidence for 

potential underlying immunological changes in the relationship between antibody titre and efficacy 

along with potential synergistic relationships between pre-erythrocytic vaccines and anti-malarial 

drugs which have not previously been studied.  
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Finally in Chapter 5, I combined the work of all previous Chapters to investigate the long-term public 

health impacts of the seasonal RTS,S vaccination schedules described in Chapter 4 compared to age-

based delivery of RTS,S in seasonal settings in the presence and absence of SMC. I found that 

seasonally targeting RTS,S resulted in greater absolute reductions in malaria cases and deaths 

compared to an age-based strategy, averting between 32%–100% more clinical cases dependent on 

seasonality and transmission intensity. I predict that adding seasonally targeted RTS,S to SMC would 

reduce clinical incidence by up to an additional 36%–56% in children younger than five compared with 

SMC alone. I found that the duration of the transmission season was a key determinant of intervention 

impact, with the advantage of adding RTS,S to SMC predicted to be smaller in areas with shorter 

transmission seasons. Further I found that a model of RTS,S efficacy that emulates the potential peak 

efficacy of the delayed-fractional approach could potentially avert more cases than those averted by 

the original RTS,S dosing schedule despite the delayed age at third vaccination, but that impact 

remained lower than a seasonally targeted approach.  

The results of this work have direct implications for global malaria policy and were presented to the 

Malaria Policy Advisory Committee in October 2021 (World Health Organization, 2021b). This work 

was therefore part of the evidence package that led to the recommendation by the WHO for countries 

to consider providing RTS,S seasonally, with a five-dose strategy, in areas with highly seasonal malaria 

or with perennial malaria transmission with seasonal peaks (World Health Organization, 2022). 

Further, the results of this work highlight several operationally important considerations for countries 

when deciding to adopt RTS,S including: patterns of seasonality and transmission intensity, coverage 

of other malaria interventions, and potential achievable coverage levels of RTS,S delivery schedules.  

6.2 Limitations and Future directions  

Mathematical models have a long history in epidemiological research, and although no model can 

claim to be ‘right’, most can offer insights into different aspects of the transmission of and impacts of 

interventions on malaria. The results presented in this thesis must therefore be viewed in the context 

of the assumptions and limitations of the models used and the data available to parameterise them. 

In doing so I also highlight potential research gaps and directions for future research.   

In Chapter 2, a mechanistic model of malaria infection was combined with data from a human 

challenge study of the delayed-fractional RTS,S vaccination approach. Primarily the dataset that was 

available from this study was small with only 46 volunteers, 10 of whom developed parasitaemia. This 

limits the precision of the estimated biological parameters and leads to wide uncertainty intervals on 

all estimates in this chapter. Given this small sample size, informative priors were needed to ensure 

convergence during model fitting. Further, the model assumed that each sporozoite that successfully 
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developed within the liver would release on average 30,000 merozoites into the blood stream, an 

estimate derived from recent work by Coffeng et al. (Coffeng et al., 2017). This parameter could not 

be fitted to the data in this thesis, due to the lack of datapoints and the high levels of correlation 

between this parameter and the parameter describing the mean number of sporozoites. Future work 

with larger datasets could extend the fitting to be able to further characterise the variation in this 

parameter. In addition, the model could be improved in several ways and applied to further datasets 

from human challenge studies for both RTS,S and other pre-erythrocytic vaccines. In the past few 

years, the literature surrounding the delayed-fractional approach has developed, suggesting that 

looking only at the NANP repeat region (as was identified as the leading correlate of RTS,S induced 

protection (White et al., 2013, 2015; Olotu, Fegan & Bejon, 2010)) may overlook antibody responses 

to other regions that are also important for protection from infection. Recently antibody responses to 

the C-terminal region of CSP have been identified as potentially important additional correlates of 

RTS,S induced protection (Dobaño et al., 2019; Das et al., 2021; Neafsey et al., 2015). Given these 

results the model described in Chapter 2 could be further extended to include dose-response curves 

of C-terminal antibody titres and avidity to understand the relative contribution of C-terminal and 

NANP repeat antibody quantity and quality to protective efficacy. In addition, separate models could 

be fit to both delayed-fractional and standard dosing of RTS,S to characterise any further potential 

changes to correlates of vaccine protection between the different approaches if larger datasets were 

available. Finally, additional studies are needed to see whether these findings extrapolate to children 

and infants living in malaria endemic regions.  

Despite the newly fitted SP+AQ efficacy profile in Chapter 3 showing good alignment with the results 

of clinical trials identified in the validation section, there are several limitations to this work and the 

model structure used to estimate SP+AQ efficacy. Firstly, a relatively small dataset was available from 

a single trial, limiting statistical power in drawing conclusions. Furthermore, the control cohort, while 

enrolled under the same inclusion criteria and followed up in a similar manner as the treated cohort, 

was not randomised and did not receive any placebo treatment. While the potential confounding 

factors of age and bed-net use were accounted for in the model structure, some residual bias or 

confounding as a result of this non-randomised control group may remain. To address this, further 

model extensions that include a fitted gamma frailty term to account for unobserved heterogeneity 

either at the individual or study village level could be considered (Balan & Putter, 2020). Currently in 

the model, each individual in the trial is assumed to experience the same weekly constant baseline 

force of infection, not accounting for any heterogeneity in exposure to infectious mosquitos, which 

has previously been shown to potential bias estimates of vaccine efficacy (White et al., 2010). 

Including a gamma frailty term would also account for this heterogeneity. Further, the dataset was 
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only available from the period following the third and final delivery of SMC. It is possible that 

individuals could have residual levels of SP+AQ concentrations from the two preceding months, which 

might slow parasite growth for example, that I was unable to account for. This could potentially lead 

to overestimates of the efficacy profile in this work. Therefore, a potential extension to this work 

would be to contact authors of the studies identified in the model validation to collect a larger and 

more diverse dataset in order to then fit a joint model of SP+AQ efficacy over time to all of these trials. 

Further this model framework could be applied to future studies that intend to examine the impact of 

potential drug-resistance markers in a population and their impact on the duration of SP+AQ 

protection as this will be a critical area of malaria surveillance and research moving forwards to ensure 

drugs remain highly effective in target populations.  

In Chapter 4, the reparameterizations to the intervention efficacy models are driven by the 

discordance between the model and trial results and the biologically-motivated hypotheses for the 

reasons between these differences. These hypotheses of sustained efficacy of the fourth and fifth 

doses and the potential for a synergistic relationship between vaccination and chemoprevention need 

to be further examined in future research. Current results suggest that despite some reductions in 

anti-CSP antibody titre following fourth and fifth doses of RTS,S, efficacy itself did not decline 

significantly (Chandramohan et al., 2021; Sagara et al., 2021). While the full panel of serological assays 

and data are not yet available from this study, when they do become available, future studies could 

adopt a similar approach to White et al. (2015), potentially extending the model of antibody kinetics 

and vaccine efficacy to also incorporate novel additional immunological makers such as antibody 

avidity or antibody responses to the C-term as determinants of vaccine efficacy over time. 

Additionally, the potential for synergistic relationships between pre-erythrocytic vaccines and anti-

malarial chemoprevention needs to be investigated further. Recent work has highlighted that pre-

erythrocytic vaccines can achieve higher efficacy when sporozoite loads are reduced via transmission 

blocking vaccines (Sherrard-Smith et al., 2018). RTS,S has  been shown in Chapter 2 to potentially 

reduce the liver-to-blood inoculum by >95%, which could potentially result in increased efficacy of 

SP+AQ at lower drug concentrations. A within-host modelling framework that explicitly captures 

parasite densities across pre-erythrocytic and blood-stages and accounts for the impact of RTS,S and 

SP+AQ on both the prevalence and density of infection could be used to investigate such an 

interaction.  

Finally in Chapter 5, the long-term effectiveness of RTS,S in seasonal settings both in the presence and 

absence of SMC was considered using the Imperial College London model of malaria transmission. 

There are several key knowledge and data gaps that contribute to the uncertainty of model estimates 

of intervention impact in this work. The first, is that the underlying uncertainty in interventions models 
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of seasonal RTS,S vaccination, delayed-fractional vaccination and SMC when combined with seasonal 

RTS,S drives significant uncertainty in the modelled outputs. As mentioned further research into the 

characterisation of intervention models are needed to resolve this. Secondly, I was not able to perform 

a cost-effectiveness analysis of the seasonal vaccination approach due to the current lack of cost data 

surrounding this delivery platform. This will be vital moving forwards for countries and funders to 

make informed choices about RTS,S delivery strategies, particularly as the recurrent and introductory 

costs of a seasonal vaccination schedule might be significantly higher than those associated with 

adding RTS,S into existing Expanded Program on Immunization schedules (Baral et al., 2021). Further 

to this, GSK has yet to release the cost per dose of RTS,S which as previous modelling has shown will 

be an important contributory factor to the overall cost-effectiveness of different RTS,S delivery 

approaches (Penny et al., 2016; Galactionova, Smith & Penny, 2021). Further, this work highlighted 

the potential for a third RTS,S schedule to be considered in seasonal settings, that of a hybrid age-

based primary series with additional pre-season boosters. Modelling work can be used to assess the 

impact of such a schedule; however, no such schedule has yet been delivered and decisions on 

minimal dose-spacing rules will need to be established to be able to characterise impact. The long-

term modelling in this chapter was performed assuming archetypal endemicity and seasonality 

settings with no constraints on vaccine dose supply and no consideration of the scale-up of other 

interventions. However, demand for RTS,S is expected to outstrip initial supply (World Health 

Organization, 2021e), therefore mathematical models parameterised at sub-national levels across 

sub-Saharan Africa can be used to identify where vaccine introduction should be prioritised, and under 

what immunization schedule to maximise public health impact given a range of different supply 

constraints and other intervention packets currently in use at a sub-national level (Hogan, Winskill & 

Ghani, 2020). Finally, as was shown with the initial evaluation of the long-term impacts of RTS,S (Penny 

et al., 2016) and in evaluation mass-drug administration programmes (Brady et al., 2017) it is beneficial 

to combine the predictions of different mathematical models to assess whether the same 

recommendations are made. This allows for differences in model assumptions and parameterisations 

of interventions to be brought within a single framework. Although the uncertainty in the underlying 

transmission model was accounted for in this thesis, future policy-relevant modelling of malaria 

vaccines should aim for consensus modelling approaches to improve our understanding of impacts in 

light of different model assumptions. Given the positive policy recommendation for the adoption of 

seasonally targeted RTS,S vaccination in areas with highly seasonal malaria or with perennial malaria 

transmission with seasonal peaks, further operational research will be needed specifically related to 

the feasibility and scalability of seasonal delivery of vaccine doses. Further evaluation will also be 

required to determine how best to deliver the combination of SMC and seasonal malaria vaccination 
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in these areas, and if there is the potential for concurrent or paired delivery systems. Further data on 

the immunogenicity and effectiveness of seasonal annual doses will also be vital especially from 

different seasonal settings and countries as the role out begins.  

6.3 Conclusions   

Malaria may, one day, be controlled effectively using highly effective multi-stage vaccines or through 

the advent of other novel control interventions. However, malaria control cannot wait for a silver 

bullet intervention. Reversing the recent stagnation in burden reductions is a global public health 

priority and achieving effective malaria control is likely only to be achieved through tailoring of 

different combinations of interventions dependent on the local epidemiology and operational 

constraints of a country. The value of RTS,S when delivered through country EPI schedules on top of 

existing tools has been demonstrated in the recent MVIP evaluation. New RTS,S dosing and delivery 

approaches that aim to improve on the efficacy of initial RTS,S schedules are being developed. In this 

thesis, I have used mathematical models of malaria infection and population level transmission to 

highlight the potential improvements and benefits of these novel approaches. The results of this thesis 

have consequently contributed to the WHO recommendation that seasonally-targeted vaccination 

strategies should also be considered for widescale use in seasonal settings. Going forwards, important 

decisions on local deployment strategies in the face of constrained dose supply and in the face of other 

next-generation vaccines, such as R21, will need to be considered by policy makers. Mathematical 

models can be used to help support such decisions.  
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Chapter 8  

8 Appendices  

8.1 Formal model description of the Imperial College London transmission 
model   

Individuals begin life susceptible to infection (𝑆) (see Figure 8.1 for model structure). At birth 

individuals are assumed to possess a level of immunity that is maternally inherited and this immunity 

decays exponentially over the first 6 months of life. throughout their life individuals (𝑖) are exposed 

to infectious bites from mosquitos, with the hazard of infection to each individual governed by the 

force of infection acting on each individual (𝛬𝑖). 𝛬𝑖 is dependent on their level of pre-erythrocytic 

immunity and several vector determined parameters (mosquito population size, biting rates, level of 

infectivity). Once infected, individuals experience a latent period of infection of 12 days (𝑑𝐸), and then 

either develop symptomatic clinical disease (𝐷) or asymptomatic infection (𝐴).  This outcome is 

determined by their probability of acquiring clinical disease (𝜙𝑖), which is dependent on their level of 

clinical immunity. If individuals develop clinical disease, they receive appropriate treatment with a 

fixed probability (𝑓𝑇) whereby they enter the infection state (𝑇) otherwise they do not seek 

treatment, with probability (1 − 𝑓𝑇), and move to the untreated disease state (𝐷). Treated 

individuals recover from infection at a rate 𝑟𝑇. They then enter a period of prophylactic protection as 

drug dependent protection from re-infection wanes over time and then return to the fully susceptible 

state (𝑆). Individuals who did not receive treatment recover to the asymptomatic state (𝐴) at rate 𝑟𝐷. 

From this asymptomatic state, individuals move to the sub-patent infection state (𝑈) with rate 𝑟𝐴, as 

parasite density is controlled due to immune responses. Finally they clear natural infection and move 

back to the susceptible state (𝑆) at rate 𝑟𝑈. Super-infection is included in the model (re-infection) and 

is possible for all individuals in states 𝐷, 𝐴 and 𝑈. If an individual is super-infected, they will move to 

state 𝑇 if they receive treatment, if no treatment is received, they will either develop clinical disease 

(𝐷) or asymptomatic infection (𝐴) in the same process as for primary infection. 
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The population size in simulations remains constant through the replacement of deaths (from natural 

causes) with a new-born individual with the same individual biting rate due to heterogeneity in biting 

patterns. These deaths are modelled using national life tables, with individuals removed from the 

population at age-specific rates to match the required age distribution (United Nations, 2019). 

  

Figure 8.1 Human Transmission Model. Flow diagram for the progression between human compartments of 
the transmission model. States are shown in boxes and transitions with arrows, dashed arrows representing 
superinfection, associated hazard rates are given with transitions. The circle represents the treatment node. S, 
susceptible; T, treated clinical disease; D, untreated clinical disease; P, prophylaxis; A, asymptomatic patent 
infection; U, asymptomatic sub-patent infection. All parameters and rates are described and referenced within 
Table 8.1.  
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Table 8.1. Infection state transition rates between human compartments  

Process Transition Rate 

Infection S → I 𝛬𝑖(𝑡 − 𝑑𝐸) 

Progression of untreated disease to 
asymptomatic infection 

D → A 𝑟𝐷 =
1

𝑑𝐷
 

Progression of asymptomatic to subpatent 
infection 

A → U 𝑟𝐴 =
1

𝑑𝐴
 

Progression of subpatent infection to 
susceptible 

U → S 𝑟𝑈 =
1

𝑑𝑈
 

Progression of treated disease to susceptible* T → S 𝑟𝑇 =
1

𝑑𝑇
 

Super-infection from untreated clinical disease, 
asymptomatic or subpatent infection 

D →I 
A→I 
U→I 

𝛬𝑖(𝑡 − 𝑑𝐸) 

* Treated individuals experience a period of drug-dependent partial protection from reinfection. 
 

8.1.1 Heterogeneity in biting rates  

Each individual in the model is assumed to have a unique biting rate. This is the product of their relative 

biting rate 휁𝑖 and their relative age-dependent biting rate  𝜓𝑖 which for a given age (𝑎) is: 

𝜓𝑖(𝑎) =  1 −  𝜌𝑒𝑥𝑝 (−
𝑎

𝑎0
) (8.1)

ere 𝜌 and 𝑎0 are parameters that determine the relationship between age (i.e. body size) and biting 

rate. 𝜔 is a normalising constant for the biting rate with age:  

𝜔 =  ∫ 𝜓(𝑎)𝑔(𝑎)𝑑𝑎
∞

0

 (8.2) 

where 𝑔(𝑎) is the cross-sectional human population age-distribution. The relative biting rate is drawn 

from a Log-normal distribution with a mean of 1 and it is assumed that this heterogeneity persists 

throughout their lifetime:  

𝑙𝑜𝑔(휁𝑖)~ 𝑁 (
−𝜎2

2
, 𝜎2) (8.3) 

The EIR 휀𝑖(𝑎, 𝑡)  and force of infection Λ𝑖(𝑎, 𝑡) experienced by individual 𝑖 with age 𝑎 at time 𝑡 is thus 

given by:  

휀𝑖(𝑎, 𝑡) =  휀0(𝑡)휁𝑖𝜓𝑖(𝑎) (8.4) 

Λ𝑖(𝑎, 𝑡) =  𝑏𝑖(𝑡)휀𝑖(𝑎, 𝑡) (8.5) 

where 휀0(𝑡) is the mean EIR experienced by adults at time t and 𝑏𝑖(𝑡) is the probability that an 

infectious bite leads to a patent infection. This probability is determined by the level of pre-
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erythrocytic immunity (see below) and is subject to a lag of 𝑑𝐸 days to account for the latent period 

of sporozoite infection.  

8.1.2 Immunity  

Several levels of immunity are captured within the model each responding to a distinct stage of 

infection. These are:   

1. Maternal immunity 𝐼𝐶𝑀 , 𝐼𝑉𝑀  – leads to a reduction in the probability of clinical or severe 

disease given an infection;  

2. Acquired immunity to infection (pre-erythrocytic immunity)  𝐼𝐵 – reduction in the probability 

of infection given an infectious bite; 

3. Blood stage immunity  𝐼𝑉𝐴 ,  𝐼𝐶𝐴 ,  𝐼𝐷 – reduction in the probability of developing clinical or 

severe disease and ultimately the detectability of asymptomatic infection and infectiousness 

to mosquitoes;  

4. Detection immunity – blood stage immunity that reduces both the probability of detection 

and reduces infectiousness to mosquitoes. 

The acquisition and loss of natural immunity is modelled dynamically and is dependent on both age 

and exposure. Newborns acquire a level of maternally derived immunity to clinical disease (𝐼𝑉𝑀) and 

severe disease (𝐼𝑉𝑀) at birth (through placental transfer of antibodies). The level of immunity at birth 

is set to a proportion 𝑃𝑀 of the acquired immunity in a randomly chosen population of 15-35 year-

olds with the same biting heterogeneity level. Maternal immunity decays exponentially from birth: 

𝑟𝑀 =
1

𝑑𝑀
 

Pre-erythrocytic immunity develops once individuals have reached older ages and is boosted by one 

following each exposure to an infectious bite provided it is after 𝑢𝐵 days since their last exposure. Pre-

erythrocytic immunity decays exponentially between exposures with rate: 𝑟𝐵 = 1/𝑑𝐵. Blood stage 

immunity is assumed to act by controlling parasite densities in the blood, thereby impacting the 

probability of an individual developing severe disease, clinical disease, and the detectability of 

asymptomatic infection. Acquired immunity to each of these outcomes is tracked separately and is 

developed in the above order through the associated parameterisations below. Each is boosted by 

one following each patent infection provided it is at least 𝑢𝑉, 𝑢𝐶, or 𝑢𝐷 days respectively since the last 

exposure. Again, each of these decays exponentially between exposures with rate 𝑟𝑉𝐴 =
1

𝑑𝑉𝐴
 , 𝑟𝐶 =

1

𝑑𝐶𝐴
  and  𝑟𝐼𝐷 =

1

𝑑𝐼𝐷
 respectively.  
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Immunity levels to infection, severe and clinical disease and detectability are subsequently converted 

to individual time-dependent probabilities using Hill functions. Therefore, the probability that an 

individual 𝑖 will develop infection at time 𝑡 following an infectious bite is given by:   

𝑏𝑖(𝑡) =  𝑏0(𝑏1 + 
1 − 𝑏1

1 + (
𝐼𝐵(𝑖, 𝑡)
𝐼𝐵0

)
𝜅𝐵
) (8.6) 

where 𝑏0 is the probability of infection with no immunity, 𝑏0𝑏1 is the minimum probability, 𝐼𝐵0 and 

𝜅𝐵 are the shape and scale parameters respectively and 𝐼𝐵(𝑖, 𝑡) is the level of pre-erythrocytic 

immunity of individual 𝑖 at time 𝑡.  

The probability that individual 𝑖 develops clinical disease at time 𝑡 conditional on being infected is 

defined as: 

𝜙
𝑖
(t) = 𝜙

0
(𝜙

1
+

1 − 𝜙
1

1 + (
𝐼𝐶𝐴(i, t) + 𝐼𝐶𝑀(𝑖, 𝑡)

𝐼𝐶0
)
𝜅𝐶
) (8.7) 

where 𝜙0 is the probability of disease with no immunity, 𝜙0𝜙1 is the minimum probability, 𝐼𝐶0 and 𝜅𝐶  

are scale and shape parameters respectively, 𝐼𝐶𝐴(𝑖, 𝑡) is the level of acquired immunity to clinical 

disease and 𝐼𝐶𝑀(𝑖, 𝑡) is the level of maternally acquired immunity to clinical disease of individual 𝑖 at 

time 𝑡. 

The probability that individual 𝑖 develops severe disease at time 𝑡 and age 𝑎 conditional on being 

infected is defined as:  

𝜃𝑖(𝑎, 𝑡) = 𝜃0(𝜃1 +
1 − 𝜃1

1 + 𝑓𝑉(𝑖, 𝑎) (
(𝐼𝑉𝐴(𝑖, 𝑡) + 𝐼𝑉𝑀(𝑖, 𝑡)

𝐼𝑉0
)
𝜅𝑉
) (8.8) 

where 𝜃0 is the probability of disease with no immunity, 𝜃0𝜃1 is the minimum probability, 𝐼𝑉0 and 𝜅𝑉 

are scale and shape parameters respectively, 𝐼𝑉𝐴(𝑖, 𝑡) is the level of acquired immunity to severe 

disease, 𝐼𝑉𝑀(𝑖, 𝑡) is the level of maternally acquired immunity to severe disease of individual 𝑖 at time 

𝑡 and  

𝑓𝑉(𝑖, 𝑎) = 1 −
(1 − 𝑓𝑉0)

(1 + (
𝑎
𝑎𝑉
)
𝛾𝑉
)

(8.9) 
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is an age-dependent (physiological) modifier of the risk of severe disease, where 𝑓𝑉0, 𝑎𝑉 and 𝛾𝑉 are 

parameters.  

The detectability of an asymptomatic infection by microscopy in individual 𝑖 of age 𝑎 at time 𝑡 is given 

by:  

𝑞𝑖(𝑎, 𝑡) = 𝑑1 +
(1 − 𝑑𝑚𝑖𝑛

((
1 + 𝐼𝐷(𝑖, 𝑡)

𝐼𝐷0
)
𝜅𝐷

𝑓𝐷(𝑖, 𝑎))

(8.10)
 

where 𝑑𝑚𝑖𝑛 is the minimum probability of detection, 𝐼𝐷0 and 𝜅𝐷 are scale and shape parameters 

respectively, 𝐼𝐷(𝑖, 𝑡) is the level of acquired immunity to the detectability of infection of individual 𝑖 

at time 𝑡 and 

𝑓𝐷(𝑖, 𝑎) = 1 −
(1 − 𝑓𝐷0)

(1 + (
𝑎
𝑎𝐷
)
𝛾𝐷
)

(8.11) 

is an age-dependent (physiological) modifier of the detectability of infection where 𝑓𝐷0, 𝑎𝐷 and 𝛾𝐷 are 

parameters.  

8.1.3 Onwards infectivity 

The reduction in parasite density that reduces the probability of detection is also assumed to decrease 

the probability of onwards transmission to mosquitos (each infection state is assumed to be onwardly 

infectious to mosquitoes who bite an individual, with highest infectivity associated with diseased 

states). Onwards infectiousness is 𝑐𝐷 and 𝑐𝑈 in states 𝐷 and 𝑈 respectively, and 𝑐𝑇 following 

treatment. In state 𝐴 infectiousness is modified by 𝑞𝑖, the detectability of individual 𝑖, and is given by 

the function 𝑐𝑈 + (𝑐𝐷 + 𝑐𝑈) 𝑞𝑖
𝛾𝑖

.  

8.1.4 Severe disease and mortality  

Severe disease incidence and malaria associated mortality are derived in the model from modelled 

estimates of clinical incidence. Following Griffin et al (2016), the incidence of severe malaria requiring 

hospitalisation in the age range 𝑎𝐿 to 𝑎𝑈 at time 𝑡 is given by: 

𝜆𝐻(𝑡, (𝑎𝐿 , 𝑎𝑈)) =
∑ ((1 − 𝑓𝑇) + 𝑓𝑇𝑓𝑇)Λ𝑖(𝑡)𝑖: 𝑎𝐿<𝑎𝑖(𝑡)<𝑎𝑈

𝜃𝑖(𝑡)

#{𝑖 :  𝑎𝐿 < 𝑎𝑖(𝑡)  < 𝑎𝑈}
(8.12) 

where Λ𝑖(𝑡) is the force of infection experienced by individual 𝑖 at time 𝑡 and 𝜃𝑖(𝑡) is the probability 

that individual 𝑖 develops severe disease at time 𝑡 conditional upon being infected. Malaria related 

mortality is assumed to be proportionally related to the incidence of severe disease and is defined as: 
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𝜇 = (𝑡, (𝑎𝐿 , 𝑎𝑈)) = 𝑣𝜆𝐻(𝑡, (𝑎𝐿 , 𝑎𝑈)) (8.13) 

where 𝑣 is a scaling factor, estimated to be 0.215 (Griffin et al., 2016). Individuals receiving treatment 

are assumed to experience a reduction, 𝑓𝑉𝑇, in the probability of progression from clinical to severe 

disease and hence death.  

8.1.5 Vector model structure 

The vector model captures infection in the mosquito population.  It is based on the deterministic 

model previously described in White et al. (2011) but is implemented it its equivalent compartmental 

stochastic structure for adult female mosquitos (the transmitters of parasites). Adult female 

mosquitos lay eggs at rate 𝛽, upon hatching from these eggs, larvae progress through early and late 

larval stages (𝐸 and 𝐿 compartments) before developing to the pupal stage (𝑃𝐿) before maturing into 

adult mosquito (𝑀). The duration spent in each larval stage is denoted by 𝑑𝐸 , 𝑑𝐿 , 𝑑𝑃𝐿. The larval stages 

are regulated by density dependent mortality (𝜇𝐸 , 𝜇𝐿 , 𝜇𝑃𝐿) with a time varying carrying capacity, 𝐾, 

that represents the ability of the environment to sustain breeding sites through different periods of 

the year. The density of larvae relative to the carrying capacity is regulated by parameter 𝛾. The 

environmental carrying capacity determines the mosquito density and hence the baseline 

transmission intensity in the absence of interventions. Adult mosquitos are stratified according to 

their infection status with P. falciparum, adults begin life susceptible (𝑆𝑀), once infected mosquitos 

enter an exposed but not infectious state (𝐸𝑀) of a fixed length (𝜏𝐸𝑀) before they become infectious 

to humans (𝐼𝑀) following the extrinsic incubation period. Mosquitos are assumed to remain infectious 

until they die at rate 𝜇𝑀. This mosquito death rate is defined as: 𝜇𝑀 = −𝑓𝑅log (𝑝1𝑝2), where 𝑝1 is the 

probability of a mosquito surviving one feeding cycle, 𝑝2 the probability of surviving one resting cycles 

and 𝑓𝑅 is the feeding rate. The probability that a mosquito survives the extrinsic incubation period of 

malaria is thus given by: 𝑃𝑀 = 𝑒
−𝜇𝑀𝜏𝐸𝑀.  

The differential equations describing the larval and adult population models are as follows:  

𝑑𝐸

𝑑𝑡
=  𝛽𝑀 − 𝜇𝐸 (1 +

𝐸 + 𝐿

𝐾
)𝐸 − 

𝐸

𝑑𝐸
(8.14) 

𝑑𝐿

𝑑𝑡
=  

𝐸

𝑑𝐸𝐿
− 𝜇𝐿 (1 +  𝛾 

𝐸 + 𝐿

𝐾
)𝐿 −

𝐿

𝑑𝐿
(8.15) 

𝑑𝑃𝐿
𝑑𝑡

=  
𝐿

𝑑𝐿
− 𝜇𝑃𝑃𝐿 −

𝑃𝐿
𝑑𝑃𝐿

(8.16) 

𝑑𝑆𝑀
𝑑𝑡

=  
𝑃𝐿
2𝑑𝑃𝐿

− 𝜇𝑀𝑆𝑀 (8.17) 
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𝜕𝐸𝑀
𝜕𝑡

=  𝛬𝑀𝑆𝑀 − 𝛬𝑀(𝑡 − 𝜏𝐸𝑀)𝑆𝑀(𝑡 − 𝜏𝐸𝑀)𝑃𝑀 − 𝜇𝑀𝐸𝑀 (8.18) 

𝑑𝐼𝑀
𝑑𝑡

=  𝛬𝑀(𝑡 − 𝜏𝐸𝑀)𝑆𝑀(𝑡 − 𝜏𝐸𝑀)𝑃𝑀 − 𝜇𝑀𝐼𝑀 (8.19) 

It is assumed that 50% of the emergent adult mosquitoes from hatching are female and all enter the 

susceptible state (𝑆𝑀). The rate at which adult female mosquitoes become infected is a function of 

the infectiousness of the human population including an appropriate time-lag (𝑡𝑙) to account for the 

period between humans becoming infected and becoming infectious. The force of infection 

experienced by mosquitoes (𝛬𝑀) is a function of infectious compartments in the human population 

and the relative infectivity of each state integrated over all human age groups and heterogeneity in 

exposures and is given by: 

𝛬𝑀(𝑡) =
𝛼

𝜔
∫ ∫ 휁𝜓(𝑎)(𝑐𝐷𝐷(휁, 𝑎, 𝑡 − 𝑡𝑙) + 𝑐𝑇𝑇

∞

0

∞

0

(휁, 𝑎, 𝑡 − 𝑡𝑙) + 𝑐𝐴𝐴(휁, 𝑎, 𝑡 − 𝑡𝑙) + 𝑐𝑈𝑈(휁, 𝑎, 𝑡 − 𝑡𝑙)𝑑𝑎𝑑휁(8.20) 

where 𝛼 is the biting rate on humans: 

𝛼 =
𝑄0
𝛿

(8.21) 

𝑄0 quantifies the level of anthropophagy and 𝛿 is the mean time between feeds. The parameter 𝜔 

represents a normalising constant for the biting rate over all ages: 

𝜔 = ∫ 𝜓(𝑎) 𝑔( 𝑎) 𝑑𝑎
∞∫

0

(8.22) 

where 𝑔(𝑎) is the human age distribution. There is a fixed delay 𝜏𝑀 before female mosquitoes become 

infectious to humans (𝐼𝑀) and they are assumed to remain infectious after this. 

8.1.6 Vector bionomics  

The model captures a range of different vector species compositions (An.gambiae s.s, An. arabiensis 

and An.funestus) within an area based on estimates from the Malaria Atlas Project (Sinka et al., 2016).  

The characterising bionomics parameters for each species are shown in Table 8.2.  

Table 8.2 Vector Bionomics Parameters (Griffin et al., 2016) 

Bionomics trait  An.gambiae s.s An.arabiensis An.funestus 

Anthropophagy 0.92 0.71 0.94 

Endophily 0.81 0.42 0.81 

% bites indoors 0.97 0.96 0.98 

% bites indoors and in bed 0.89 0.90 0.90 

Daily mortality of adults with 

no interventions 𝜇𝑀 0.132 0.132 0.112 
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8.1.7 Seasonality  

Seasonality is incorporated in the model by allowing a time-varying carrying capacity of the 

environment to support mosquito larvae, at time t, characterised by the functional form:   

𝐾(𝑡) =  𝐾0
𝑅(𝑡)

�̅�
(8.23) 

Where 𝐾0 is the carrying capacity, �̅� the mean rainfall over the year and 𝑅(𝑡), the time-varying 

seasonal curve:  

𝑅(𝑡) = 𝑔0 +∑𝑔𝑗 𝑐𝑜𝑠( 2𝜋𝑡𝑗) + ℎ𝑗 𝑠𝑖𝑛( 2𝜋𝑡𝑗)

3

𝑗=1

𝑚 (8.24) 

derived from the first three frequencies of a Fourier transformation to historic rainfall patterns from 

the Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) data (Funk et al., 2015; 

CHIRPS, 1999; Garske, Ferguson & Ghani, 2013). 

8.1.8 Model Parameter Values   

All baseline model parameter estimates are given in Table 8.3 below: these are obtained from previous 

publications on the transmission model and associated model fitting exercises (Griffin et al., 2010; 

Griffin, Ferguson & Ghani, 2014; Griffin et al., 2015, 2016; White et al., 2011a).  

Table 8.3 Model parameters 

Parameter Symbol Estimate 

Human infection duration (days)   

Latent period 𝑑𝐸 12 

Patent infection 𝑑𝐴 195 

Clinical disease (treated) 𝑑𝑇 5 

Clinical disease (untreated) 𝑑𝐷 5 

Sub-patent infection 𝑑𝑈 110 

Treatment Parameters   

Probability of seeking treatment if clinically diseased 𝑓𝑇  Variable 

Age and heterogeneity   

Age-dependent biting parameter 𝜌 0.85 

Age-dependent biting parameter 𝑎0 8 years  

Variance of the log heterogeneity in biting rates 𝜎2 1.67 

Immunity reducing probability of infection   

Maximum probability due to no immunity 𝑏0 0.59 

Maximum relative reduction due to immunity 𝑏1 0.5 

Inverse of decay rate 𝑑𝐵  10 years 

Scale parameter 𝐼𝐵0 43.88 

Shape parameter 𝜅𝐵 2.16 

Duration in which immunity is not boosted 𝑢𝐵  7 days 
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New-born immunity relative to mother’s 𝑃𝐶𝑀 0.77 

Immunity reducing probability of clinical disease   

Maximum probability due to no immunity 𝜙0 0.79 

Maximum relative reduction due to immunity 𝜙1 0.000737  

Inverse of decay rate 𝑑𝐶𝐴 30 years 

Scale parameter 𝐼𝐶0 18.02 

Shape parameter 𝜅𝐶  2.37 

Duration in which immunity is not boosted 𝑢𝐶  6 days 

Inverse of decay rate of maternal immunity 𝑑𝑀  68 days 

Immunity reducing probability of detection   

Minimum probability due to maximum immunity 𝑑1 0.16 

Inverse of decay rate 𝑑𝐼𝐷  10 years 

Scale parameter 𝐼𝐷0 1.58 

Shape parameter 𝜅𝐷 0.48 

Duration in which immunity is not boosted 𝑢𝐷  9.5 days 

Scale parameter relating age to immunity 𝑎𝐷  22 years 

Timescale with which immunity changes with age 𝑓𝐷0 0.007055 

Shape parameter relating age to immunity 𝛾𝐷 4.82 

Immunity reducing probability of severe disease and mortality   

Maximum probability due to no immunity 𝜃0 0.0749886 

Maximum relative reduction due to immunity 𝜃1 0.0001191 

Scale parameter 𝐼𝑉0 1.10 

Shape parameter 𝜅𝑉 2.00 

Inverse of decay rate 𝑑𝑉𝐴 30 years 

Duration in which immunity is not boosted 𝑢𝑉 11 days 

Inverse of decay rate of maternal immunity 𝑑𝑉𝑀 77 days 

New-born immunity relative to mother’s 𝑃𝑉𝑀 0.20 

Reduced probability of death due to treatment 𝑓𝑉𝑇 0.5 

Age-dependent severe disease risk modifier parameter 𝑓𝑉0 0.141 

Age-dependent severe disease risk modifier parameter 𝑎𝑉 2493.41 

Age-dependent severe disease risk modifier parameter 𝛾𝑉 2.91 

Mortality scaling factor from severe disease 𝜈 0.065 

Infectiousness to mosquitoes   

Lag from parasites to infectious gametocytes 𝑑𝑔  12 days 

Untreated disease 𝑐𝐷  0.068  

Treated disease 𝑐𝑇 0.022  

Sub-patent infection 𝑐𝑈 0.00062  

Parameter for infectiousness of state A 𝛾1 1.82 

Adult mosquito population model   

Daily mortality of adults with no interventions 
𝜇𝑀 

Varies by species – 

see Table 2.4 above 

Mean time between feeds 𝛿 3 days 

Extrinsic incubation period 𝜏𝐸𝑀  10 days 

Larval model   

Average number of eggs laid per female mosquito per day 𝛽 21 /day 

Early instar larval developmental period 𝑑𝐸 6.64 days 
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Late instar developmental period 𝑑𝐿 3.72 days 

Pupal developmental period 𝑑𝑃 0.643 days 

Mortality rate of early-stage larvae (density dependent) 𝜇𝐸 0.0338/day 

Mortality rate of late-stage larvae (density dependent) 𝜇𝐿 0.0348/day 

Mortality rate of pupae (density independent) 𝜇𝑃 0.249/day 

Effect of density dependence on late instars relative to early instars 𝛾 13.25 

 

8.1.9 Intervention Models  

The model incorporates a range of malaria control interventions. Here I describe the models 

pertaining to interventions that are not a key focus of this thesis. I discuss the other interventions that 

are a focus of this thesis (vaccination and chemoprophylaxis) in more detail in Chapters 3-5.  

8.1.9.1 Treatment 

Appropriate case management is implemented within the model. Treatment acts to return an 

individual from a clinically infected state to the susceptible class while also providing them with a drug-

dependent period of prophylaxis resulting in partial protection from infection. We assume that 

artemisinin combination therapies (ACTs) have a 95% probability of successfully clearing infection and 

non-ACTs a 75% probability of clearing an infection. For ACTs protection from infection was 

characterised using a previously published pharmacokinetic-pharmacodynamic (PKPD) model, fitted 

to clinical trial data from six different sites in sub-Saharan Africa (Okell et al., 2014). The protection 

from infection at time u after effective treatment is denoted by 𝑃𝑇(𝑢) and the probability of re-

infection is multiplied by 1 − 𝑃𝑇(𝑢) relative to the period with no prophylaxis. The overall degree of 

protection can be quantified by the area under the curve:  

𝐴𝑇 = ∫ 𝑃𝑇(𝑢) 𝑑𝑢
∞

0

(8.25) 

For first line treatment (Artemether-Lumefantrine) 𝐴𝑇 varies from 7 to 16 days depending on age.  

8.1.9.2 Long lasting insecticide treated bed nets and Indoor residual spraying  

The two main forms of vector control methods: long lasting insecticide treated bed-nets (LLINs) and 

indoor residual spraying (IRS) are modelled according to Griffin et al. 2010 (Griffin et al., 2010; Le 

Menach et al., 2007), with the addition of one modification that accounts for the possibility of a 

mosquito being killed by IRS prior to feeding (Griffin et al., 2016). LLINs and IRS act by repelling female 

mosquitos from feeding on a human host or killing the mosquito during its feeding and resting cycle. 

When LLINs and IRS are present in the model there are 6 different outcomes of a mosquito attempting 

to feed, each modelled probabilistically:  

1. It bites a non-human host  
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2. It is killed by the LLIN before biting  

3. It is killed by IRS before biting  

4. It is killed by IRS after biting  

5. It successfully feeds and survives  

6. It is repelled without feeding either through the actions of the LLIN or IRS, once repelled a 

mosquito will attempt to find alternative blood meal sources.  

The probability that a female mosquito seeking a blood meal successfully feeds is both species 

dependent (due to species specific bionomics and behaviours) and dependent on the anti-vectorial 

interventions in the human population. In the model it is assumed that only humans reside inside a 

house and all livestock are kept outside the house and therefore all mosquitoes that enter a house 

will attempt to bite humans.  

Assume that person 𝑖 is protected by a given LLIN/IRS efficacy. Let the probability that a mosquito of 

a given species bites host 𝑖 during a single attempt be 𝑦𝑖; the probability that a mosquito bites a host 

and survives the feeding attempt be 𝑤𝑖, and the probability that it is repelled without feeding be 𝑧𝑖. 

These probabilities exclude natural vector mortality, so that for an individual with no protection, 𝑦𝑖 =

𝑤𝑖 = 1 and 𝑧𝑖 = 0.  

During a single feeding attempt, on either a human or animal, the probability that a female mosquito 

successfully feeds is:  

𝑊 = (1 − 𝑄0) + 𝑄0∑𝜋𝑖𝑤𝑖
𝑖

(8.26) 

or is repelled without feeding with probability:  

𝑍 =  𝑄0∑𝜋𝑖𝑧𝑖
𝑖

(8.27) 

where 𝑄0 is the proportion of bites taken on humans in the absence of interventions and 𝜋𝑖 is the 

proportion of bites that person 𝑖 receives in the absence of any interventions.  

The length of time a mosquito spends looking for a blood meal and resting between feeds are 𝛿1 and 

𝛿2 respectively. The mosquito feeding rate𝑓𝑅 is given by 𝑓𝑅 =
1

𝛿1+𝛿2
. Parameter 𝛿2 is assumed to be 

unaffected by the interventions, whilst 𝛿1 is increased to 𝛿1 =
𝛿10

1−𝑍
 where 𝛿10 is the value with no 

interventions. 

In the absence of interventions, the probability that a mosquito survives these periods of feeding and 

resting are 𝑝1 and 𝑝2 respectively, with no interventions:  
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𝑝10 = exp(−𝜇0𝛿10) (8.28) 

𝑝2 = exp(−𝜇0𝛿2) (8.29) 

where 𝜇0 is the natural death rate. And in the presence of interventions:  

𝑝1 = 
𝑝10 𝑊

1− 𝑍 𝑝10 
(8.30) 

Multiplying 𝑝1𝑝2 gives the probability of surviving a single feeding cycle. This allows us to find the 

mosquito death rate (𝜇𝑀) as: 

𝑝1𝑝2 = exp (−
𝜇

𝑓𝑅
) (8.31) 

𝜇 =  − 𝑓𝑅 log(𝑝1𝑝2) (8.32) 

As 𝜇 changes so to does the probability that a mosquito survives through the extrinsic incubation 

period (𝑝𝑀).  

The probability that a single feeding cycle then ends with a successful bite on human 𝑖, 𝑞𝑖, is given by:  

𝑞𝑖 = 𝑝10(𝑄0𝜋𝑖𝑤𝑖 + 𝑍 𝑞𝑖) (8.33) 

𝑞𝑖 = 
𝑝10𝑄0𝜋𝑖𝑤𝑖
1 − 𝑍 𝑝10

(8.34) 

The probability that a feeding cycle ends with a bite on a non-human host, 𝑞𝐴, is: 

𝑞𝐴 = 𝑝10(1 − 𝑄10 + 𝑍 𝑞𝐴) (8.35) 

𝑞𝐴 = 
𝑝10(1 − 𝑄0)

1 − 𝑍 𝑝10
(8.36) 

This means the proportion of successful bites on humans (𝑄) is given by:  

𝑄 = 1 − 
𝑞𝐴

𝑞𝐴 + ∑ 𝑞𝑖𝑖
= 1 − 

(1 − 𝑄0)

(1 − 𝑄0) + 𝑄0∑ 𝜋𝑖𝑤𝑖𝑖
= 1 − 

(1 − 𝑄0)

𝑊
(8.37) 

and the human biting rate by:  

𝛼 = 𝑄 𝑓𝑅  (8.38) 

The rate at which person 𝑖 is bitten by a given species is:  

𝜆𝑖 =
𝛼 𝜋𝑖𝑤𝑖
∑ 𝜋𝑖𝑤𝑖𝑖

 (8.39) 

In instances where IRS is used, some mosquitoes may successfully bite a human and then die after this 

feed while resting on a treated wall inside the house. In this instance when calculating the force of 
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infection on humans, the biting rate on each individual person need to be modified by a factor 
𝑦𝑖

𝑤𝑖
 

giving:  

�̃�𝑖 = 
𝛼 𝜋𝑖𝑦𝑖
∑ 𝜋𝑖𝑤𝑖𝑖

(8.40) 

Thus, the EIR experienced by a human 𝑖 due to a single mosquito species is �̃�𝑖𝐼𝑀 and the total EIR a 

single human experiences is given by the sum of each present vector species EIRs.  

The impact of LLIN and IRS are dependent on the proportion of bites a human receives while under 

the protection of each intervention (e.g. sleeping under the bed-net and being inside a sprayed house) 

(Griffin et al., 2016, 2010). Therefore the degree of protection from LLINs and IRS will depend human 

host movement and sleeping patterns, the behaviour of mosquito vectors and the intrinsic efficacy of 

the intervention.  

Let therefore, 𝜆𝐼(𝑡) be the rate at which a person who is indoors at time 𝑡 is bitten, and 𝜆𝑂(𝑡) be the 

outdoors rate. Knowing the proportion of human hosts who are indoors 𝑝𝐼(𝑡) or in bed 𝑝𝐵(𝑡) at time 

𝑡 enables the calculation of the proportion of bites taken while a human host is indoors (Φ𝐼) and in 

bed (Φ𝐵) as:  

Φ𝐼 = 
∑ 𝑝𝐼(𝑡)𝜆𝐼(𝑡)𝑡

∑ ((1 − 𝑝𝐼(𝑡))𝜆𝑂(𝑡) + 𝑝𝐼(𝑡)𝜆𝐼(𝑡))𝑡

(8.41) 

Φ𝐵 = 
∑ 𝑝𝐵(𝑡)𝜆𝐼(𝑡)𝑡

∑ ((1 − 𝑝𝐼(𝑡))𝜆𝑂(𝑡) + 𝑝𝐼(𝑡)𝜆𝐼(𝑡))𝑡

(8.42) 

Pulling this probabilistic model together, when a mosquito enters a house one of three outcomes can 

happen: it is repelled, feeds successfully or dies. The probabilities of each outcome in the presence of 

LLINs, IRS or both combined are given in   
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Table 8.4 and the parameter values used in the model are summarised in Table 8.5. 
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Table 8.4 Vector control probabilistic model. Outcome probabilities in the presence of LLIN or IRS alone and in 
combination.  

Outcome  Probability  

Any biting (𝒚𝒊)  

IRS only 1 − Φ𝐼 +Φ𝐼(1 − 𝑟𝐼)(1 − 𝑟𝐼𝑊 − 𝑑𝐼𝑊) 

LLIN only 1 − Φ𝐵 +Φ𝐵(1 − 𝑟𝑁)(1 − 𝑟𝑁𝑊 − 𝑑𝑁𝑊) 

IRS + LLIN 1 − Φ𝐼 + (Φ𝐼 −Φ𝐵)(1 − 𝑟𝐼)(1 − 𝑟𝐼𝑊 − 𝑑𝐼𝑊) 

Φ𝐵(1 − 𝑟𝐼)(1 − 𝑟𝐼𝑊 − 𝑑𝐼𝑊)(1 − 𝑟𝑁)(1 − 𝑟𝑁𝑊 − 𝑑𝑁𝑊) 

Bites and survives (𝒘𝒊)  

IRS only 1 − Φ𝐼 + Φ𝐼(1 − 𝑟𝐼)(1 − 𝑟𝐼𝑊 − 𝑑𝐼𝑊)(1 − 𝑑𝐼𝐹) 

LLIN only 1 − Φ𝐵 +Φ𝐵(1 − 𝑟𝑁)(1 − 𝑟𝑁𝑊 − 𝑑𝑁𝑊) 

IRS + LLIN 1 − Φ𝐼 + (Φ𝐼 −Φ𝐵)(1 − 𝑟𝐼)(1 − 𝑟𝐼𝑊 − 𝑑𝐼𝑊)(1 − 𝑑𝐼𝐹) 

Φ𝐵(1 − 𝑟𝐼)(1 − 𝑟𝐼𝑊 − 𝑑𝐼𝑊)(1 − 𝑑𝐼𝐹)(1 − 𝑟𝑁)(1 − 𝑟𝑁𝑊 − 𝑑𝑁𝑊) 

Repelled without feeding (𝒛𝒊)  

IRS only Φ𝐼(𝑟𝐼 + (1 − 𝑟𝐼)𝑟𝐼𝑊) 

LLIN only Φ𝐵(𝑟𝑁 + (1 − 𝑟𝑁)𝑟𝑁𝑊) 

IRS + LLIN (Φ𝐼 −Φ𝐵)(𝑟𝐼 + (1 − 𝑟𝐼)𝑟𝐼𝑊)

+ Φ𝐵(𝑟𝐼 + (1

− 𝑟𝐼)(𝑟𝑁 + (1 − 𝑟𝑁)(𝑟𝐼𝑊 + (1 − 𝑟𝐼𝑊 − 𝑑𝐼𝑊)𝑟𝑁𝑊)) 

Φ𝐼 , Φ𝐵 time dependent probability of feeding indoors and on someone in bed respectively 

𝑟𝑁, 𝑟𝐼 probability of being repelled before entering the house due to LLINs and IRS respectively 

𝑟𝑁𝑊, 𝑟𝐼𝑊 the probability of being repelled by LLIN after entering the house or IRS before feeding 
respectively  

𝑑𝑁𝑊, 𝑑𝐼𝑊  the probability of being killed by LLIN after entering the house or IRS before feeding 
respectively  

𝑑𝐼𝐹 probability of being killed after feeding after entry to a house due to IRS (this is a species-specific 
parameter)  
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Table 8.5 Vector control parameters (Griffin et al., 2016, 2010) 

 

  

Intervention Probability Symbol Value 

LLINs Repelled before entering the house 
Nr   0.113 

 Repelled by the bednet 
NWr   0.295 

 Killed by the bednet 
NWd   0.533 

IRS Repelled before entering the house  
Ir   0.687 

 Repelled by the IRS 
IWr  0 

 Killed before feeding 
IWd   0.295 

 Killed after feeding (An. gambiae ss and 
funestus) IFd  0.813 

 Killed after feeding  (An. arabiensis) 
IFd  0.422 
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8.2 Binary infection model  

The binary infection model was fitted using the same MCMC techniques as the main sporozoite 

infection model. Due to the reduction in the number of parameters being fitted we could increase the 

number of iterations to 800,000 without sacrificing computational time, 160,000 of which were 

discarded as burn-in. All updates were attempted with a multivariate-Normal proposal distribution. 

The covariance of the multivariate-Normal proposal distributions for Metropolis-Hastings updates 

were adaptively tuned using the estimated posterior distributions during iterations 500 – 10,000. This 

ensured the MCMC process adapted to the target distribution to keep the search effective at all times 

due to correlation between the parameters to be estimated. Further the magnitude of the proposed 

step size was calibrated using a Robbins-Munro algorithm to ensure an acceptance rate of 

approximately 23% as per the main text. Prior distributions were kept the same as in the main text 

(Table 8.6), and model comparisons were made using Deviance Information Criterion.  

For the same combination of dose-response curves explored in the sporozoite infction model, the 

results of model fitting using Bayesian methods are presented in Error! Reference source not found.. W

ith the best fitting model describing the dose-response between titre and avidity with Hill-function 

curves. The efficacy against infection estimated by the best fitting binary infection model was VE = 

77.9% (95% CrI, 75.9% - 79.8%). In the binary model of infection the dose-response curves relate 

directly to the proportion protected from infection and not sporozoite survival and therefore can only 

be used to estimate vaccine efficacy against infection and not per-sporozoite.  
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Table 8.6 Parameter estimates for binary infection models with different combinations of dose-response curves and model 
comparison with Deviance-Information Criterion (DIC). Priors and Posteriors are presented as median and 95% Credible 
intervals in brackets. U denotes a uniform distribution, N normal and G gamma. Posterior estimates are shown for models 
with different combinations of dose-response curves and are ordered left to right based on model fitting comparisons with 
Deviance Information Criterion. Hill denotes a Hill-function dose response curve and Exp and exponential dose-response 
curve, read as “titre dose-response curve – avidity index dose-response curve”. 

Param
eter 

Description Prior 
 

Posterior  

Hill-Hill Exp-Hill Hill-Exp Exp-Exp Interaction 

𝜷𝒕 

Anti-NANP antibody titre 
needed for 50% 
reduction in infection 
probability 

16,666 
(10,000-
70,000) 

4,864 
 (620-39,578) 

135,417  
(97,899-
149,379) 

848  
(511-3,269) 

78,759  
(55,386-
124,711) 

64,185 
 (30,822-
136,969) 

𝜶𝒕 
Shape parameter for 
antibody dose-response 

U(0,30) 
0.1  

(0-0.2) 
- 
 

0.2  
(0.1-0.3) 

- 
 

- 
 

𝜷𝒂𝒊 

Anti-NANP antibody titre 
needed for 50% 
reduction in infection 
probability U(0,100) 

30.1 
 (3.5-91.1) 

2.9 
 (1.1-8.9) 

82.6 
 (57.9-99.2) 

29.7  
(27.1-33) 

29.2 
 (26.3-33.2) 

𝜶𝒂𝒊 
Shape parameter for 
antibody dose-response 

U(0,30) 
0.2  

(0-0.6) 
0.4  

(0.3-0.6) 
- 
 

- 
 

- 
 

𝜸 
Shape parameter for 
interation dose-response 
curve  N(0,10) 

- 
 

- 
 

- - 
-0.3 

 (-0.9-1.5) 

𝜟𝑫𝑰𝑪 
Difference in deviance 
informative criterion  

 

0.00 9.73 14.98 91.25 165.54 
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8.3 Cochrane RoB2 tool results 

The following tables detail the framework of questions and answers from the RoB2 (Sterne et al., 2019) for each study identified in the literature review (see 

“Ref or Label”cell in the table for the study reference. The final table is a summary table highlighting the results from the RoB2 assessment across studies.  

Unique ID smc1 Study ID 1 Assessor HT 

Ref or Label Bojang et al 2010 Aim 

assignment to intervention 
(the 'intention-to-treat' effect)    

Experimental SP+AQ Comparator 
non-randomised arm 

Source  Journal article(s) 

Outcome Clinical malaria any parasitaemia Results 0.93 Weight 1 

Domain Signalling question Response Comments 

Bias arising from the 
randomization process 

1.1 Was the allocation sequence random? Y 

  
1.2 Was the allocation sequence concealed until participants were enrolled and assigned to 
interventions? 

Y 

1.3 Did baseline differences between intervention groups suggest a problem with the 
randomization process? 

Y 
Control cohort was non-randomised in a neighbouring 
area and characteristic differences were not listed  

Risk of bias judgement 
Some 

concerns 

 
 
Control cohort was non-randomised in a neighbouring 
area and characteristic differences were not listed  

Bias due to deviations 
from intended 
interventions 

2.1.Were participants aware of their assigned intervention during the trial? N 
Children were not aware of the drug regime given. Study 
nurses not involved with the evaluation of safety or efficacy 
measurements and who did not communicate any 
information on group allocation to the team in charge of the 
evaliation knew the study drugs allocated to each child at 
delivery.  

2.2.Were carers and people delivering the interventions aware of participants' assigned 
intervention during the trial? 

Y 
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2.3. If Y/PY/NI to 2.1 or 2.2: Were there deviations from the intended intervention that arose 
because of the experimental context? 

PN   

2.4 If Y/PY to 2.3: Were these deviations likely to have affected the outcome? NA   

2.5. If Y/PY/NI to 2.4: Were these deviations from intended intervention balanced between 
groups? 

NA   

2.6 Was an appropriate analysis used to estimate the effect of assignment to intervention? Y ITT 

2.7 If N/PN/NI to 2.6: Was there potential for a substantial impact (on the result) of the failure 
to analyse participants in the group to which they were randomized? 

NA   

Risk of bias judgement Low 

Children were not aware of the drug regime given. Study 
nurses not involved with the evaluation of safety or efficacy 
measurements and who did not communicate any 
information on group allocation to the team in charge of the 
evaliation knew the study drugs allocated to each child at 
delivery.  
 
 
 
 
 
 
 
ITT 

Bias due to missing 
outcome data 

3.1 Were data for this outcome available for all, or nearly all, participants randomized? Y 
Loss to follow up was similar among the treatment groups 
and was not associated with any of the baseline 
characteristics 

3.2 If N/PN/NI to 3.1: Is there evidence that result was not biased by missing outcome data? NA   

3.3 If N/PN to 3.2: Could missingness in the outcome depend on its true value? NA 

  

3.4 If Y/PY/NI to 3.3: Is it likely that missingness in the outcome depended on its true value? NA 
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Risk of bias judgement Low 

Loss to follow up was similar among the treatment groups 
and was not associated with any of the baseline 
characteristics 
 
 
  

Bias in measurement 
of the outcome 

4.1 Was the method of measuring the outcome inappropriate? Y 

Passive surveillance for malaria was maintained 
throughout the transmission season for 16 weeks 
(September to December). Parents/guardians of children 
in the trial and controls were encouraged to take their child 
to the health centre identified as being closest to their 
home at any time that their child became unwell. Project 
staff were based at each of these health facilities to identify 
children in the trial and to ensure that they were seen, 
properly investigated and treated promptly. A dipstick for 
diagnosis of malaria (CORE Diagnostics, Birmingham, 
UK) was used if fever (axillary temperature of ≥37.5°C) or 
a history of fever within the previous 48 hours was present. 
In such cases, a thick blood smear was also collected for 
subsequent confirmation of the diagnosis.  

4.2 Could measurement or ascertainment of the outcome have differed between intervention 
groups? 

PY 
No information was give but control group potentially 
attended different health clinics to those of the treatment 
arm.  

4.3 Were outcome assessors aware of the intervention received by study participants? NA   

4.4 If Y/PY/NI to 4.3: Could assessment of the outcome have been influenced by knowledge 
of intervention received? 

NA 

  
4.5 If Y/PY/NI to 4.4: Is it likely that assessment of the outcome was influenced by knowledge 
of intervention received? 

NA 

Risk of bias judgement High 

Passive surveillance for malaria was maintained 
throughout the transmission season for 16 weeks 
(September to December). Parents/guardians of children 
in the trial and controls were encouraged to take their child 
to the health centre identified as being closest to their 
home at any time that their child became unwell. Project 
staff were based at each of these health facilities to identify 
children in the trial and to ensure that they were seen, 
properly investigated and treated promptly. A dipstick for 
diagnosis of malaria (CORE Diagnostics, Birmingham, 
UK) was used if fever (axillary temperature of ≥37.5°C) or 
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a history of fever within the previous 48 hours was present. 
In such cases, a thick blood smear was also collected for 
subsequent confirmation of the diagnosis.  
 
No information was give but control group potentially 
attended different health clinics to those of the treatment 
arm.  
 
 
  

Bias in selection of the 
reported result 

5.1 Were the data that produced this result analysed in accordance with a pre-specified 
analysis plan that was finalized before unblinded outcome data were available for analysis? 

Y   

5.2 ... multiple eligible outcome measurements (e.g. scales, definitions, time points) within the 
outcome domain? 

N 
Results were reported for malaria any parasitaemia and 
malaria parasitaemia ≥5000/µl 

5.3 ... multiple eligible analyses of the data? N   

Risk of bias judgement Low 

 
 
Results were reported for malaria any parasitaemia and 
malaria parasitaemia ≥5000/µl 

Overall bias Risk of bias judgement High   
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Unique ID smc2 Study ID 2 Assessor HT 

Ref or Label Dicko et al 2011 Aim 

assignment to intervention (the 
'intention-to-treat' effect)    

Experimental SP+AQ Comparator 
placebo  

Source  Journal article(s) 

Outcome clinical malaria  Results 0.83 Weight 1 

Domain Signalling question Response Comments 

Bias arising from the 
randomization process 

1.1 Was the allocation sequence random? Y 

  
1.2 Was the allocation sequence concealed until participants were enrolled and assigned 
to interventions? 

Y 

1.3 Did baseline differences between intervention groups suggest a problem with the 
randomization process? 

N   

Risk of bias judgement Low   

Bias due to deviations 
from intended 
interventions 

2.1.Were participants aware of their assigned intervention during the trial? N 

  
2.2.Were carers and people delivering the interventions aware of participants' assigned 
intervention during the trial? 

PN 

2.3. If Y/PY/NI to 2.1 or 2.2: Were there deviations from the intended intervention that 
arose because of the experimental context? 

NA   

2.4 If Y/PY to 2.3: Were these deviations likely to have affected the outcome? NA   

2.5. If Y/PY/NI to 2.4: Were these deviations from intended intervention balanced 
between groups? 

NA   
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2.6 Was an appropriate analysis used to estimate the effect of assignment to 
intervention? 

Y   

2.7 If N/PN/NI to 2.6: Was there potential for a substantial impact (on the result) of the 
failure to analyse participants in the group to which they were randomized? 

NA   

Risk of bias judgement Low   

Bias due to missing 
outcome data 

3.1 Were data for this outcome available for all, or nearly all, participants randomized? Y   

3.2 If N/PN/NI to 3.1: Is there evidence that result was not biased by missing outcome 
data? 

NA   

3.3 If N/PN to 3.2: Could missingness in the outcome depend on its true value? NA 

  
3.4 If Y/PY/NI to 3.3: Is it likely that missingness in the outcome depended on its true 
value? 

NA 

Risk of bias judgement Low   

Bias in measurement 
of the outcome 

4.1 Was the method of measuring the outcome inappropriate? N   

4.2 Could measurement or ascertainment of the outcome have differed between 
intervention groups? 

PN   

4.3 Were outcome assessors aware of the intervention received by study participants? N   

4.4 If Y/PY/NI to 4.3: Could assessment of the outcome have been influenced by 
knowledge of intervention received? 

NA 

  
4.5 If Y/PY/NI to 4.4: Is it likely that assessment of the outcome was influenced by 
knowledge of intervention received? 

NA 

Risk of bias judgement Low   
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Bias in selection of the 
reported result 

5.1 Were the data that produced this result analysed in accordance with a pre-specified 
analysis plan that was finalized before unblinded outcome data were available for 
analysis? 

Y   

5.2 ... multiple eligible outcome measurements (e.g. scales, definitions, time points) 
within the outcome domain? 

N   

5.3 ... multiple eligible analyses of the data? N   

Risk of bias judgement Low   

Overall bias Risk of bias judgement Low   
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Unique ID smc3 Study ID 3 Assessor HT 

Ref or Label Konate et al 2011 Aim 

assignment to intervention (the 
'intention-to-treat' effect)    

Experimental SP+AQ Comparator 
placebo 

Source  Journal article(s) 

Outcome clinical malaria Results 0.71 Weight 1 

Domain Signalling question Response Comments 

Bias arising from the 
randomization process 

1.1 Was the allocation sequence random? Y 

  
1.2 Was the allocation sequence concealed until participants were enrolled and assigned to 
interventions? 

Y 

1.3 Did baseline differences between intervention groups suggest a problem with the 
randomization process? 

N   

Risk of bias judgement Low   

Bias due to deviations 
from intended 
interventions 

2.1.Were participants aware of their assigned intervention during the trial? N 

  
2.2.Were carers and people delivering the interventions aware of participants' assigned 
intervention during the trial? 

PN 

2.3. If Y/PY/NI to 2.1 or 2.2: Were there deviations from the intended intervention that arose 
because of the experimental context? 

NA   

2.4 If Y/PY to 2.3: Were these deviations likely to have affected the outcome? NA   

2.5. If Y/PY/NI to 2.4: Were these deviations from intended intervention balanced between 
groups? 

NA   
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2.6 Was an appropriate analysis used to estimate the effect of assignment to intervention? Y   

2.7 If N/PN/NI to 2.6: Was there potential for a substantial impact (on the result) of the failure to 
analyse participants in the group to which they were randomized? 

NA   

Risk of bias judgement Low   

Bias due to missing 
outcome data 

3.1 Were data for this outcome available for all, or nearly all, participants randomized? Y   

3.2 If N/PN/NI to 3.1: Is there evidence that result was not biased by missing outcome data? NA   

3.3 If N/PN to 3.2: Could missingness in the outcome depend on its true value? NA 

  

3.4 If Y/PY/NI to 3.3: Is it likely that missingness in the outcome depended on its true value? NA 

Risk of bias judgement Low   

Bias in measurement 
of the outcome 

4.1 Was the method of measuring the outcome inappropriate? N   

4.2 Could measurement or ascertainment of the outcome have differed between intervention 
groups? 

PN   

4.3 Were outcome assessors aware of the intervention received by study participants? PN   

4.4 If Y/PY/NI to 4.3: Could assessment of the outcome have been influenced by knowledge of 
intervention received? 

NA 

  
4.5 If Y/PY/NI to 4.4: Is it likely that assessment of the outcome was influenced by knowledge 
of intervention received? 

NA 

Risk of bias judgement Low   
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Bias in selection of the 
reported result 

5.1 Were the data that produced this result analysed in accordance with a pre-specified analysis 
plan that was finalized before unblinded outcome data were available for analysis? 

Y   

5.2 ... multiple eligible outcome measurements (e.g. scales, definitions, time points) within the 
outcome domain? 

N   

5.3 ... multiple eligible analyses of the data? N   

Risk of bias judgement Low   

Overall bias Risk of bias judgement Low   
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Unique ID smc4 Study ID 4 Assessor HT 

Ref or Label Sesay et al 2011 Aim 

assignment to intervention (the 
'intention-to-treat' effect)    

Experimental SP+AQ Comparator 
placebo 

Source  Journal article(s) 

Outcome clinical malaria Results 0.66 Weight 1 

Domain Signalling question Response Comments 

Bias arising from the 
randomization process 

1.1 Was the allocation sequence random? Y 

  
1.2 Was the allocation sequence concealed until participants were enrolled and 
assigned to interventions? 

Y 

1.3 Did baseline differences between intervention groups suggest a problem with the 
randomization process? 

N   

Risk of bias judgement Low   

Bias due to deviations 
from intended 
interventions 

2.1.Were participants aware of their assigned intervention during the trial? N 

  
2.2.Were carers and people delivering the interventions aware of participants' assigned 
intervention during the trial? 

N 

2.3. If Y/PY/NI to 2.1 or 2.2: Were there deviations from the intended intervention that 
arose because of the experimental context? 

NA   

2.4 If Y/PY to 2.3: Were these deviations likely to have affected the outcome? NA   

2.5. If Y/PY/NI to 2.4: Were these deviations from intended intervention balanced 
between groups? 

NA   
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2.6 Was an appropriate analysis used to estimate the effect of assignment to 
intervention? 

Y   

2.7 If N/PN/NI to 2.6: Was there potential for a substantial impact (on the result) of the 
failure to analyse participants in the group to which they were randomized? 

NA   

Risk of bias judgement Low   

Bias due to missing 
outcome data 

3.1 Were data for this outcome available for all, or nearly all, participants randomized? Y   

3.2 If N/PN/NI to 3.1: Is there evidence that result was not biased by missing outcome 
data? 

NA   

3.3 If N/PN to 3.2: Could missingness in the outcome depend on its true value? NA 

  
3.4 If Y/PY/NI to 3.3: Is it likely that missingness in the outcome depended on its true 
value? 

NA 

Risk of bias judgement Low   

Bias in measurement 
of the outcome 

4.1 Was the method of measuring the outcome inappropriate? N   

4.2 Could measurement or ascertainment of the outcome have differed between 
intervention groups? 

PN   

4.3 Were outcome assessors aware of the intervention received by study participants? N   

4.4 If Y/PY/NI to 4.3: Could assessment of the outcome have been influenced by 
knowledge of intervention received? 

NA 

  
4.5 If Y/PY/NI to 4.4: Is it likely that assessment of the outcome was influenced by 
knowledge of intervention received? 

NA 

Risk of bias judgement Low   
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Bias in selection of the 
reported result 

5.1 Were the data that produced this result analysed in accordance with a pre-specified 
analysis plan that was finalized before unblinded outcome data were available for 
analysis? 

Y   

5.2 ... multiple eligible outcome measurements (e.g. scales, definitions, time points) 
within the outcome domain? 

N   

5.3 ... multiple eligible analyses of the data? N   

Risk of bias judgement Low   

Overall bias Risk of bias judgement Some concerns   
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Unique ID smc5 Study ID 5 Assessor HT 

Ref or Label Zongo et al 2015 Aim 

assignment to intervention (the 'intention-to-
treat' effect)    

Experimental SP+AQ Comparator 
non-randomised arm 

Source  Journal article(s) 

Outcome clinical malaria Results 0.8 Weight 1 

Domain Signalling question Response Comments 

Bias arising from the 
randomization process 

1.1 Was the allocation sequence random? Y 

  
1.2 Was the allocation sequence concealed until participants were enrolled and assigned 
to interventions? 

Y 

1.3 Did baseline differences between intervention groups suggest a problem with the 
randomization process? 

PY 
The control arm was not randomised control so there were 
differences between the groups that needed to be accounted 
for.  

Risk of bias judgement 
Some 

concerns 
  

Bias due to deviations 
from intended 
interventions 

2.1.Were participants aware of their assigned intervention during the trial? PN 

  
2.2.Were carers and people delivering the interventions aware of participants' assigned 
intervention during the trial? 

Y 

2.3. If Y/PY/NI to 2.1 or 2.2: Were there deviations from the intended intervention that 
arose because of the experimental context? 

N   

2.4 If Y/PY to 2.3: Were these deviations likely to have affected the outcome? NA   

2.5. If Y/PY/NI to 2.4: Were these deviations from intended intervention balanced between 
groups? 

NA   
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2.6 Was an appropriate analysis used to estimate the effect of assignment to intervention? Y   

2.7 If N/PN/NI to 2.6: Was there potential for a substantial impact (on the result) of the 
failure to analyse participants in the group to which they were randomized? 

NA   

Risk of bias judgement Low   

Bias due to missing 
outcome data 

3.1 Were data for this outcome available for all, or nearly all, participants randomized? Y   

3.2 If N/PN/NI to 3.1: Is there evidence that result was not biased by missing outcome 
data? 

NA   

3.3 If N/PN to 3.2: Could missingness in the outcome depend on its true value? NA 

  
3.4 If Y/PY/NI to 3.3: Is it likely that missingness in the outcome depended on its true 
value? 

NA 

Risk of bias judgement Low   

Bias in measurement 
of the outcome 

4.1 Was the method of measuring the outcome inappropriate? N   

4.2 Could measurement or ascertainment of the outcome have differed between 
intervention groups? 

PN 

These children were followed up in a manner similar to that 
used for the other study children. However were not placebo 
so difficult to characterise differences in treatment seeking 
behaviour. 

4.3 Were outcome assessors aware of the intervention received by study participants? PN 

Open trial, as blinding was not feasible due to difference in 
the appearance of the study drugs but steps were taken to 
ensure concealed randomisation and staff who performed 
laboratory analyses were not aware of the child's treatment 
group. Unsure if the study nurses/physians were aware of 
the treatment group.  

4.4 If Y/PY/NI to 4.3: Could assessment of the outcome have been influenced by 
knowledge of intervention received? 

NA 

  
4.5 If Y/PY/NI to 4.4: Is it likely that assessment of the outcome was influenced by 
knowledge of intervention received? 

NA 
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Risk of bias judgement 
Some 

concerns 
  

Bias in selection of the 
reported result 

5.1 Were the data that produced this result analysed in accordance with a pre-specified 
analysis plan that was finalized before unblinded outcome data were available for 
analysis? 

Y   

5.2 ... multiple eligible outcome measurements (e.g. scales, definitions, time points) within 
the outcome domain? 

N   

5.3 ... multiple eligible analyses of the data? N   

Risk of bias judgement Low   

Overall bias Risk of bias judgement 
Some 

concerns 
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Unique ID smc6 Study ID 6 Assessor HT 

Ref or Label Tine et al 2011 Aim 

assignment to intervention (the 'intention-
to-treat' effect)    

Experimental SP+AQ Comparator 
cluster randomised  

Source   

Outcome clinical malaria Results 0.79 Weight 1 

Domain Signalling question Response Comments 

Bias arising from the 
randomization process 

1.1 Was the allocation sequence random? Y The randomization unit was the CHW in order to 
avoid contamination. Each CHW is covering one 
village. The CHWs were randomized using a random 
number generator from Excel software. 

1.2 Was the allocation sequence concealed until participants were enrolled and 
assigned to interventions? 

NI 

1.3 Did baseline differences between intervention groups suggest a problem with 
the randomization process? 

N   

Risk of bias judgement Some concerns   

Bias due to deviations 
from intended 
interventions 

2.1.Were participants aware of their assigned intervention during the trial? PY 
Potential for contamination between villages and 
clusters making participants aware?  
 
Unsure if the trial was placebo controlled so 
participants might be aware as drug regimes would 
have been delivered or not. CHW delivering the 
interventions also aware they were delivering IPTc.  
 
 
 
 In the four villages with combined HMM and IPTc, all 
doses of AQ and SP were administered by CHWs 
under direct observation. IPTc drug delivery was 
organized at the level of health huts. At scheduled 
days for IPTc administration, parents were asked to 
bring their child at the health huts for IPTc delivery. 

2.2.Were carers and people delivering the interventions aware of participants' 
assigned intervention during the trial? 

PY 
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In case a child was not seen at time of administration, 
the CHW was advised to visit that child at home and 
give the treatment. To facilitate SP and AQ 
administration, treatment doses were tabulated on a 
document and distributed to each CHW to serve as 
job aid. 

2.3. If Y/PY/NI to 2.1 or 2.2: Were there deviations from the intended intervention 
that arose because of the experimental context? 

PN   

2.4 If Y/PY to 2.3: Were these deviations likely to have affected the outcome? NA   

2.5. If Y/PY/NI to 2.4: Were these deviations from intended intervention balanced 
between groups? 

NA   

2.6 Was an appropriate analysis used to estimate the effect of assignment to 
intervention? 

Y   

2.7 If N/PN/NI to 2.6: Was there potential for a substantial impact (on the result) of 
the failure to analyse participants in the group to which they were randomized? 

NA   

Risk of bias judgement Some concerns   

Bias due to missing 
outcome data 

3.1 Were data for this outcome available for all, or nearly all, participants 
randomized? 

Y   

3.2 If N/PN/NI to 3.1: Is there evidence that result was not biased by missing 
outcome data? 

NA   

3.3 If N/PN to 3.2: Could missingness in the outcome depend on its true value? NA 

  
3.4 If Y/PY/NI to 3.3: Is it likely that missingness in the outcome depended on its 
true value? 

NA 

Risk of bias judgement Low   

Bias in measurement 
of the outcome 

4.1 Was the method of measuring the outcome inappropriate? N   
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4.2 Could measurement or ascertainment of the outcome have differed between 
intervention groups? 

PN   

4.3 Were outcome assessors aware of the intervention received by study 
participants? 

Y 
CHW would have been aware that IPTc was 
delivered to the children in their village.  

4.4 If Y/PY/NI to 4.3: Could assessment of the outcome have been influenced by 
knowledge of intervention received? 

N 
RDTs were used and temperature so no judegement 
was required by CHW.  

4.5 If Y/PY/NI to 4.4: Is it likely that assessment of the outcome was influenced by 
knowledge of intervention received? 

NA 

Risk of bias judgement Some concerns   

Bias in selection of the 
reported result 

5.1 Were the data that produced this result analysed in accordance with a pre-
specified analysis plan that was finalized before unblinded outcome data were 
available for analysis? 

Y   

5.2 ... multiple eligible outcome measurements (e.g. scales, definitions, time points) 
within the outcome domain? 

N   

5.3 ... multiple eligible analyses of the data? N   

Risk of bias judgement Low   

Overall bias Risk of bias judgement Some concerns   
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Unique ID smc7 Study ID 7 Assessor HT 

Ref or Label Nidaye et al 2019 Aim 

assignment to intervention 
(the 'intention-to-treat' effect)    

Experimental SP+AQ Comparator 
Cluster randomised 

Source   

Outcome clinical malaria  Results 0.83 Weight 1 

Domain Signalling question Response Comments 

Bias arising from 
the randomization 
process 

1.1 Was the allocation sequence random? Y 
 Cluster randomisation was chosen to allow the overall impact of SMC, including 
any indirect effect on transmission, to be captured, and to allow assessment of the 
impact of adding SMC on the overall workload of the health workers. Randomisation 
in each stratum was constrained to ensure balanced allocation with respect to 
population size, distance to the nearest health post or hospital, and the malaria 
incidence in the village the year before the trial, and was performed using Stata 
version 11 (StataCorp, College Station, Texas) by a statistician at the London 
School of Hygiene & Tropical Medicine.  

1.2 Was the allocation sequence concealed until participants were 
enrolled and assigned to interventions? 

Y 

1.3 Did baseline differences between intervention groups suggest a 
problem with the randomization process? 

N   

Risk of bias judgement Low   

Bias due to 
deviations from 
intended 
interventions 

2.1.Were participants aware of their assigned intervention during the 
trial? 

Y cluster randomised so those who recieved SMC knew they were recieving SMC in 
that village there was also radio and other announcements about SMC delivery and 
the CHM knew they were also delivering SMC in their village. Those that weren't 
recieving would also be aware of this.  

2.2.Were carers and people delivering the interventions aware of 
participants' assigned intervention during the trial? 

Y 

2.3. If Y/PY/NI to 2.1 or 2.2: Were there deviations from the intended 
intervention that arose because of the experimental context? 

N   

2.4 If Y/PY to 2.3: Were these deviations likely to have affected the 
outcome? 

NA   
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2.5. If Y/PY/NI to 2.4: Were these deviations from intended intervention 
balanced between groups? 

NA   

2.6 Was an appropriate analysis used to estimate the effect of 
assignment to intervention? 

Y ITT 

2.7 If N/PN/NI to 2.6: Was there potential for a substantial impact (on 
the result) of the failure to analyse participants in the group to which 
they were randomized? 

NA   

Risk of bias judgement Low   

Bias due to 
missing outcome 
data 

3.1 Were data for this outcome available for all, or nearly all, 
participants randomized? 

Y   

3.2 If N/PN/NI to 3.1: Is there evidence that result was not biased by 
missing outcome data? 

NA   

3.3 If N/PN to 3.2: Could missingness in the outcome depend on its true 
value? 

NA 

  
3.4 If Y/PY/NI to 3.3: Is it likely that missingness in the outcome 
depended on its true value? 

NA 

Risk of bias judgement Low   

Bias in 
measurement of 
the outcome 

4.1 Was the method of measuring the outcome inappropriate? N   

4.2 Could measurement or ascertainment of the outcome have differed 
between intervention groups? 

PN   

4.3 Were outcome assessors aware of the intervention received by 
study participants? 

Y   

4.4 If Y/PY/NI to 4.3: Could assessment of the outcome have been 
influenced by knowledge of intervention received? 

N 

  
4.5 If Y/PY/NI to 4.4: Is it likely that assessment of the outcome was 
influenced by knowledge of intervention received? 

NA 
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Risk of bias judgement Some concerns   

Bias in selection of 
the reported result 

5.1 Were the data that produced this result analysed in accordance with 
a pre-specified analysis plan that was finalized before unblinded 
outcome data were available for analysis? 

Y   

5.2 ... multiple eligible outcome measurements (e.g. scales, definitions, 
time points) within the outcome domain? 

N   

5.3 ... multiple eligible analyses of the data? N   

Risk of bias judgement Low   

Overall bias Risk of bias judgement Low   
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Unique ID smc8 Study ID 8 Assessor HT 

Ref or Label Tagbor et al 2016 Aim 

assignment to 
intervention (the 
'intention-to-treat' effect) 

   

Experimental SP+AQ Comparator 
placebo 

Source   

Outcome clinical malaria Results 0.39 Weight 1 

Domain Signalling question Response Comments 

Bias arising from the 
randomization 
process 

1.1 Was the allocation sequence random? Y 
ID numbers comprising a four digit code and a check digit were 
randomly allocated to one of three intervention groups in a 1:1:1 
ratio in permuted blocks of 12 using Stata version 13 (StataCorp, 
College Station, TX, USA). Treatment allocation was held in 
opaque sealed envelopes labelled only with the study ID number 
on the front. Upon enrolment to the study, the next envelope in the 
sequence was opened by the study team member to determine the 
treatment allocation of the child to be used throughout the study. 
This was carried out separately from the screening process; 
individuals screening children for eligibility were unaware of 
subsequent assignment.  

1.2 Was the allocation sequence concealed until participants were 
enrolled and assigned to interventions? 

Y 

1.3 Did baseline differences between intervention groups suggest a 
problem with the randomization process? 

PY 
Despite the large number of children randomised, there were some 
imbalances between treatment groups at baseline.  

Risk of bias judgement Some concerns   

Bias due to deviations 
from intended 
interventions 

2.1.Were participants aware of their assigned intervention during the 
trial? 

N 
To facilitate community‐based treatment of malaria with the 

assigned regimen (artemether‐lumefantrine or dihydroartemisinin‐
piperaquine), and to ensure that children received the correct 
regimen if they attended at health centres in the study area, ID 
cards were colour‐coded according to intervention group and 
labelled with the regimen to be used for case management. The 
study was therefore open‐label with respect to the regimen used 
for case management but blinded with respect to whether seasonal 
malaria chemoprevention was active or placebo (members of the 
research team from KNUST/CGHR and LSHTM were aware of the 

2.2.Were carers and people delivering the interventions aware of 
participants' assigned intervention during the trial? 

N 
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allocation, but those who administered the SMC, and 
mothers/children were blinded). 

2.3. If Y/PY/NI to 2.1 or 2.2: Were there deviations from the intended 
intervention that arose because of the experimental context? 

NA   

2.4 If Y/PY to 2.3: Were these deviations likely to have affected the 
outcome? 

NA   

2.5. If Y/PY/NI to 2.4: Were these deviations from intended intervention 
balanced between groups? 

NA   

2.6 Was an appropriate analysis used to estimate the effect of 
assignment to intervention? 

Y   

2.7 If N/PN/NI to 2.6: Was there potential for a substantial impact (on 
the result) of the failure to analyse participants in the group to which 
they were randomized? 

NA   

Risk of bias judgement Low   

Bias due to missing 
outcome data 

3.1 Were data for this outcome available for all, or nearly all, 
participants randomized? 

Y   

3.2 If N/PN/NI to 3.1: Is there evidence that result was not biased by 
missing outcome data? 

NA   

3.3 If N/PN to 3.2: Could missingness in the outcome depend on its 
true value? 

NA 

  
3.4 If Y/PY/NI to 3.3: Is it likely that missingness in the outcome 
depended on its true value? 

NA 

Risk of bias judgement Low   

Bias in measurement 
of the outcome 

4.1 Was the method of measuring the outcome inappropriate? N   

4.2 Could measurement or ascertainment of the outcome have differed 
between intervention groups? 

N   
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4.3 Were outcome assessors aware of the intervention received by 
study participants? 

N 
blinded with respect to whether seasonal malaria chemoprevention 
was active or placebo 

4.4 If Y/PY/NI to 4.3: Could assessment of the outcome have been 
influenced by knowledge of intervention received? 

NA 

  
4.5 If Y/PY/NI to 4.4: Is it likely that assessment of the outcome was 
influenced by knowledge of intervention received? 

NA 

Risk of bias judgement Low   

Bias in selection of the 
reported result 

5.1 Were the data that produced this result analysed in accordance 
with a pre-specified analysis plan that was finalized before unblinded 
outcome data were available for analysis? 

Y   

5.2 ... multiple eligible outcome measurements (e.g. scales, definitions, 
time points) within the outcome domain? 

N   

5.3 ... multiple eligible analyses of the data? N   

Risk of bias judgement Low   

Overall bias Risk of bias judgement Some concerns   

 

  

  



249 
 

Ref or Label Study ID Experimental Comparator Outcome Weight D1 D2 D3 D4 D5 Overall         

Bojang et al 
2010  

1 SP+AQ non-randomised arm 
Clinical malaria any 
parasitaemia 

1 

      

  

 

Low risk   

Dicko et al 
2011 

2 SP+AQ placebo  clinical malaria  1 

     

 

  

 

Some concerns   

Konate et al 
2011 

3 SP+AQ placebo clinical malaria 1 

      

  

 

High risk   

Sesay et al 
2011 

4 SP+AQ placebo clinical malaria 1 

     

 

        

Zongo et al 
2015 

5 SP+AQ non-randomised arm clinical malaria 1 

      

  D1 Randomisation process   

Tine et al 2011 6 SP+AQ cluster randomised  clinical malaria 1 

      

  D2 
Deviations from the intended 
interventions 

  

Ndiaye et al 
2019 

7 SP+AQ luster randomised clinical malaria  1 

      

  D3 Missing outcome data   

Tagbor et al 
2016 

8 SP+AQ placebo clinical malaria 1 

     
 

  D4 Measurement of the outcome   

            
      

  D5 Selection of the reported result   

The “traffic light” plots are of the domain-level judgements for each individual result and an overall summary of the risk of bias in each study.  
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8.4 Additional research outputs and publications  

 

Relevant journal articles  

• Thompson HA, Hogan AB, Walker PG, White MT, Cunnington AJ, Ockenhouse CF, Ghani AC. 

Modelling the roles of antibody titre and avidity in protection from Plasmodium falciparum 

malaria infection following RTS, S/AS01 vaccination. Vaccine. 2020  

• Thompson HA, Hogan AB, Walker PG, Winskill P, Zongo I, Sagara I, Tinto H, Ouedraogo JB, 

Dicko A, Chandramohan D, Greenwood B, Cairns M, Ghani AC. Mathematical modelling of a 

seasonal use-case for the RTS,S/AS01 malaria vaccine. The Lancet global health (in review). 

2022 

Evidence submitted to the Malaria Policy Advisory Group October 2021  

http://terrance.who.int/mediacentre/data/malaria/documents/mpag-october2021-session5-rtss-

malaria-vaccine.pdf?sfvrsn=9507a63b_10  

Oral presentations   

• “Modelling the roles of antibody titre and avidity in protection from Plasmodium falciparum 

malaria infection following RTS, S/AS01 vaccination” American Society of Tropical Medicine 

and Hygiene 2018  

• “Modelling the roles of antibody titre and avidity in protection from Plasmodium falciparum 

malaria infection following RTS, S/AS01 vaccination” School of Public Health PhD Symposium 

2018  

Other publications during the PhD 

• Thompson HA, Mousa A, Dighe A, Fu H, Arnedo-Pena A, Barrett P, Bellido-Blasco J, Bi Q, Caputi 

A, Chaw L, De Maria L. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) setting-

specific transmission rates: a systematic review and meta-analysis. Clinical Infectious 

Diseases. 2021 

• Thompson HA, Imai N, Dighe A, Ainslie KE, Baguelin M, Bhatia S, Bhatt S, Boonyasiri A, Boyd 

O, Brazeau NF, Cattarino L. SARS-CoV-2 infection prevalence on repatriation flights from 

Wuhan City, China. Journal of travel medicine. 2020  

• Verity R, Okell LC, Dorigatti I, Winskill P, Whittaker C, Imai N, Cuomo-Dannenburg G, 

Thompson HA, Walker PG, Fu H, Dighe A. Estimates of the severity of coronavirus disease 

2019: a model-based analysis. The Lancet infectious diseases. 2020 

http://terrance.who.int/mediacentre/data/malaria/documents/mpag-october2021-session5-rtss-malaria-vaccine.pdf?sfvrsn=9507a63b_10
http://terrance.who.int/mediacentre/data/malaria/documents/mpag-october2021-session5-rtss-malaria-vaccine.pdf?sfvrsn=9507a63b_10
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• Thompson HA, Mboup A, Cisse B, Nayagam S, Watson OJ, Whittaker C, Walker PG, Ghani AC, 

Mboup S. The projected impact of mitigation and suppression strategies on the COVID-19 

epidemic in Senegal: A modelling study. medRxiv. 2020. 

• Walker PG, Whittaker C, Watson OJ, Baguelin M, Winskill P, Hamlet A, Djafaara BA, Cucunubá 

Z, Olivera Mesa D, Green W, Thompson, H et al. The impact of COVID-19 and strategies for 

mitigation and suppression in low-and middle-income countries. Science. 2020. 

These are a selection of the main publications I worked on during my time with the Imperial College 

London COVID-19 response team during the pandemic 2020-2021. In addition to these papers listed 

here I was a co-author on further published articles and reports that can be found here: 

https://www.imperial.ac.uk/people/hayley.thompson12/publications.html  

I also spent three months between Feb-June 2020 working for the World Health Organisation in the 

Health Emergencies Programme as an epidemiologist during the early stages of the COVID-19 

pandemic. I Provided technical epidemiological analysis support to understand the evolving global 

spread of COVID-19. Explored and quantified key epidemiological parameters in real-time using large 

global datasets in R. Automated key data cleaning and analysis protocols in R and produced data 

visualisations using ggplot2 in R. Developed a dashboard in Rshiny for internal and external users to 

examine global trends. Led training sessions and workshops on how to interpret epidemiological 

analysis presented in this dashboard. Contributed to standard operating procedures. And I presented 

multiple analyses to WHO leadership which fed into meetings with member states, daily press 

briefings and guidance documents 

Public engagement  

• Interviewed on BBC Radio 4 “More or Less” to discuss the work in: Severe Acute Respiratory 

Syndrome Coronavirus 2 (SARS-CoV-2) setting-specific transmission rates: a systematic review 

and meta-analysis 

• Volunteer at Imperial College Lates and Festival 2019-2020 leading an interactive activity 

called “Pandemic Potential” 

https://www.imperial.ac.uk/people/hayley.thompson12/publications.html

