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Abstract 

 

Idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease (COPD) are 

two distinct respiratory diseases whose features including pathogenesis and progression are not 

fully understood. However, both clinicians utilise changes in serial pulmonary function 

measurements to gain an insight into disease severity and control. More accurate prediction of 

disease progression would be beneficial, particularly for IPF given the variability in its clinical 

course as an unknown factor at the time of diagnosis.  

 

Home-based, real-time monitoring of disease progression by spirometry has provided an 

opportunity to optimise the delivery of treatment and reduce the length of clinical trials. 

Therefore, the potential to understand the mechanisms underlying disease progression and 

generate effective treatment has been improved. In light of this, the motivation for this project 

is to understand the mathematical features within daily pulmonary function time series 

generated by IPF patients. Hopefully, statistical models of pulmonary function time series 

would aid the identification of significant clinical events such as acute exacerbation.   

 

The mathematical techniques used to identify potentially important features within pulmonary 

function time series involved the autocorrelation function, critical transitions and detrended 

fluctuation analysis (DFA). Temporal properties, such as the serial correlation, abrupt changes 

in trends and complexity, were assessed using time series from the PROFILE clinical trial and 

London COPD cohort.  

 

Forced vital capacity (FVC) measurements were found to be correlated to the previous day’s 

reading which may inform the sampling rate of lung function during clinical trials. The 

presence of short-term memory within FVC time series will influence the management of 

missing data within clinical trials, particularly methods of imputation. Also, FVC time series’ 

exhibit long-term memory and adaptability supporting the role of FVC as a surrogate marker 

for IPF disease progression.       
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1 Introduction 
1.1 Idiopathic pulmonary fibrosis and chronic obstructive pulmonary disease  
 

Interstitial lung diseases (ILDs) are a heterogeneous group of diseases1 that affect the tissue 

and space around the alveoli, termed the interstitium. ILDs are termed as restrictive diseases 

on the basis that changes in lung architecture result in reduced lung volumes and inadequate 

oxygenation of the blood. The manifestations of ILD include respiratory symptoms such as 

dyspnoea, specific chest radiographic abnormalities, changes in pulmonary function tests 

(PFTs) as well as microscopic patterns of inflammation and fibrosis. Disease in this group vary 

in terms of prevention, treatment and disease outcome. A notable subset of ILDs are the 

idiopathic interstitial pneumonia (IIP) on the grounds that the initiating cause of disease is 

unknown. Idiopathic pulmonary fibrosis (IPF) is the most common form of IIP with features 

that include chronic, progressive fibrosis associated with irreversible lung function and high 

mortality.   

 

In contrast, chronic obstructive pulmonary disease (COPD) consists of a group of poorly 

reversible lung diseases that cause morbidity and mortality by limiting expiratory airflow, 

hence is classified as obstructive. Patients afflicted with COPD suffer from mucus secretion 

and varying degrees of obstructive bronchitis and emphysema depending on the individual2. 

The most significant inhalational challenges that cause COPD in industrialised countries is 

tobacco smoke whereas in developing countries it is environmental pollutants such as those 

originating from cooking in confined spaces2.   

 

1.2 Epidemiology of IPF and COPD 
 

The overall incidence of IPF in the USA between 2005 and 2010 was 6.1 new cases per 100,000 

person-years3. It is more frequent in individuals who are older, male and former smokers3. IPF 

is an irreversible and progressive disease and patients have a median survival time of 2-3 years 

after diagnosis3. However, this overall survival figure obscures the variability in the rate of IPF 

disease progression between individuals whose decline may take a number of trajectories 

punctuated by life-threatening acute exacerbations4. Acute exacerbations are described as 

clinically significant respiratory deteriorations with no identifiable trigger. They are 

unpredictable events with no treatment and are a major cause of morbidity and mortality in 

IPF5.   
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COPD is a major cause of global illness and death that afflicts approximately 10% of the 

general population6, and up to 50% of those who are heavy smokers7. A rising trend in the 

prevalence of and mortality from COPD has been observed globally8, with the World Health 

Organisation predicting that by 2020, the position of COPD amongst the most prevalent 

worldwide diseases rising from 12th to 5th and the most fatal diseases rising from 6th to 3rd9. 

This escalation of COPD can be attributed to reduced mortality from other diseases, such as 

cardiovascular disease in the industrialised countries and infectious diseases in developing 

countries, as well as cigarette smoking and environmental pollution.  

 

1.3 Pathogenesis of IPF  
 

IPF was initially perceived as a chronic inflammatory disorder that gradually evolved into 

fibrosis. However, this view point was challenged when immunosuppressive therapy 

incorporating prednisolone and azathioprine was observed to increase mortality10,11 rather than 

improve patient outcome. IPF is now considered to be the result of multiple interacting genetic 

and environmental risk factors, with progression towards aberrant wound healing being 

initiated by repetitive local micro-injuries to ageing alveolar epithelium12 (Figure 1-1).  

 

These micro-injuries trigger abnormal epithelial-fibroblast communication that, in turn, 

stimulate matrix-producing myofibroblasts to remodel the lung interstitium by an accumulation 

of the extracellular matrix. Deposition of an altered extracellular matrix by these 

myofibroblasts destroys the normal alveolar architecture and disrupts gas exchange. Changes 

to the extracellular matrix composition impacts cell behaviour so much so that a positive loop 

between fibroblasts and the extracellular matrix encourages fibrosis13. 

 

Genome-wide association studies14–16 and studies of familial interstitial pneumonia3,17–20  

indicate that genetic susceptibility is an important factor in the development of IPF. These 

studies suggest, if not a causal link, an important role of changes in host defence (MUC5B, 

ATP11A, TOLLIP), telomere maintenance (TERT, TERC, OBFC1) and epithelial barrier 

function (DSP, DPP9). The MUC5B gene encodes a protein that contributes to airway mucous 

production. The altered expression of the MUC5B gene has been localised to the bronchiolar 

epithelium where elevated injury is the consequence of either reduced mucociliary clearance 

or impede normal lung repair16,21. 
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Figure 1-1 Pathobiologic features of IPF. A schematic model of IPF pathobiology highlights how the disease is characterised 

by recurrent epithelial-cell injury, senescent alveolar epithelial cells, microbiome changes and host defence abnormalities 

(Panel A). Histology indicates the marked patchy fibrosis with the fibroblastic foci (asterisk) forming a prominent feature 

(Panel B and C) Source: D. J. Lederer and F.J. Martinez et al.   

 

 

 



11 | P a g e  

 

  

1.4 Diagnosis, disease progression and treatment of IPF 
 

IPF is defined by the American Thoracic Society (ATS)/ European Respiratory Society (ERS) 

classification as a “specific form of chronic, progressive fibrosing interstitial pneumonia of 

unknown cause, occurring primarily in older adults, limited to the lungs, and associated with 

the histopathologic and/or radiologic pattern of UIP”3. The process of diagnosing IPF requires 

the exclusion of other known causes of ILD and requires collaboration between clinicians, 

radiologist and pathologists22. This multidisciplinary approach combines an understanding of 

the relationship between histopathologic patterns and subject responsiveness to treatment, 

access to video-assisted thoracoscopic lung biopsy and high-resolution computerized 

tomography (HRCT)22.  

 

Difficulties in obtaining an accurate diagnosis are compounded by the unpredictable and 

variable evolution of disease (Figure 1-2). These issues are likely to arise as a consequence of 

IPF itself being the result of the interaction between a multitude of initiating stimuli, epithelial 

cells, immune cells, fibroblasts and cytokines23–29. Biomarkers therefore have the potential to 

contribute to our understanding of the biological mechanisms of IPF, our ability to stratify 

patients into precise groups within IPF, predict disease progression and response to treatment. 

 

Acute exacerbations can occur at any time during and may be the presenting feature. The exact 

incidence of acute exacerbations is unclear but seems to range between 4.4-19% per year with 

variability due to differences in case definition, method and population30. Acute exacerbation 

are more common amongst males31 and occur more frequently during winter months32–34. 

Smoking35 and the administration of proton pump inhibitors for gastroesophageal reflux36 may 

reduce the incidence of acute exacerbations. The outcome of patients suffering an acute 

exacerbation were poor in the immediate- and long-term with either death in hospital or with a 

shorter median survival35. 
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Figure 1-2  Examples of the three clinical phenotypes of IPF disease behaviour. The rate of disease progression to mortality 

may be rapid (line A), slow (line C and D) or mixed (line B). There is little indication of how to classify the patient at the onset 

of symptoms. Source: Ley et al. [4] 

It is important to appreciate that the current diagnostic process for IPF relies on aggregating 

patients with a similar clinical phenotype and failure to meet the diagnostic criteria for other 

ILDs into a common group. Research into the pathogenesis of IPF would be greatly benefited 

by the introduction of IPF endotypes, by allowing patients to be grouped with coherent and 

homogenous genetic and molecular biomarker profiles. In particular, patients who have 

experienced an acute exacerbation are characterised by a distinct gene expression profile from 

those who experience stable IPF37. Improved understanding of the incidence and pathobiology 

of acute exacerbation would be benefited by the prospective collection of biological sample 

and lung function data38, which has been hindered by the retrospective diagnosis of acute 

exacerbations.  

 

1.5 Monitoring disease progression of respiratory illness 
 

Systems biology can contribute to improving the diagnosis and management of IPF by, firstly, 

providing better non-invasive diagnostic markers. In doing so, this could increase the 

confidence with which clinicians are able to diagnose IPF with HRCT39 alone, avoiding 

invasive biopsy procedures which carry a significant morbidity and mortality. Secondly, more 

descriptive diagnostic markers of IPF permits better stratification of patients which will form 

a foundation for clinical trials. Thirdly, diagnostic biomarkers may help guide therapy, 

highlighting specific endotypes which are more likely to respond to therapy and also allowing 

the assessment of response to any administered anti-fibrotic treatment40.  
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Several therapeutic and diagnostic challenges for IPF exist in clinical practice such as 

identifying those subjects who need lung biopsies to confirm diagnosis41 or identifying 

individuals who may respond preferentially to one of the two available pharmacotherapies. 

Current pharmacotherapy for the treatment of IPF subjects is limited to the anti-fibrotic drugs 

pirfenidone and nintedanib42. These two treatments slow the rate of functional impairment, but 

are unable to prevent the advancement of the disease41. 

 

The clinical management and treatment of IPF is complicated by patients experiencing variable 

disease course and response to anti-fibrotic treatment. More accurate prediction of IPF disease 

progression would facilitate clinicians to make treatment decisions and counsel patients more 

appropriately. Traditionally, clinical trials have been designed using serial changes in FVC 

over 12-months to assess disease progression43–46 meaning that trials can be long. Improved 

prediction of disease progression would benefit clinical trials by reducing their duration, 

allowing cohort enrichment47, alleviating lead-time bias4 and accounting for a background of 

anti-fibrotic therapy48.  

 

Disease progression tend to be readily evaluated by physiological parameters including 

worsening symptoms (e.g. worsening dyspnoea)49,50, worsening physical function51–53 and the 

occurrence of acute respiratory worsening requiring hospitalisation35,43,54. However, the serial 

change in FVC is a commonly accepted measure of disease progression in IPF43,45,55–58, with 

its predictive power of survival improving with time from six- to twelve-months58. Clinical 

information used to predict the mortality of IPF patients tend to poorly predict future disease 

progression.  

 

The formal integration of relevant clinical parameters into a classification scheme, or staging 

systems, that guide management decisions have been adopted for diseases such as lung cancer, 

HIV/AIDs and COPD59. Several baseline features are useful for the staging of IPF, including 

age, desaturation during the 6-minute walk test or honeycombing on high-resolution computed 

tomography (HRCT)55. Traditional approaches for staging IPF disease progression, for 

example the gender, age and physiology (GAP) model60 endeavour to use reliable baseline 

parameters of IPF disease severity and progression, like single breath diffusing capacity for 

carbon dioxide (DLco) and FVC, to assess risk of mortality. However, their use in clinical 

practice is limited because IPF disease progression is not linear and do not reflect distinct 

biological or clinical phenotypes.    
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The primary endpoint chosen for monitoring IPF disease progression is important for 

demonstrating success of any therapeutic agent during future clinical trials and indicating when 

treatment efficacy changes. FVC is the most commonly accepted primary endpoint in clinical 

trials of IPF61 given that it is easy to measure, reliable and reproduce. FVC is a highly relevant 

measure of lung function thereby reflecting the burden of the fibrotic disease process. The 

preference for FVC as a primary endpoint despite DLco being a better prognostic indicator62 

is because DLco is difficult to measure, involves a breath hold which may be challenging for 

symptomatic patients and yields greater intrinsic variability.  

 

Whilst both the baseline FVC and change in FVC are indicative of mortality45,62,63, the minimal 

clinically important difference (MCID) is a source of contention.  Designating a threshold for 

a significant change is advantageous over considering FVC as a continuous variable because 

IPF disease progression can progress in a stepwise manner, it would allow patients who fail to 

respond to treatment to exit a trial and allow combining a decline in FVC and mortality to 

assess progression-free survival.  

 

A clinically relevant threshold of a 10% decline in FVC percent-predicted has been established 

over 24-weeks3 because it is associated with a fivefold increased risk of mortality63. The use 

of relative change in FVC for the assessment of IPF disease progression is preferred as it adjusts 

for the different clinical implications any given change in lung function has depending on 

disease severity and provides a higher prevalence for the decline signal. A marginal threshold 

of a 5-10% FVC has been associated with a twofold increase in 1-year mortality63, which is not 

sufficient to influence management but can guide the assessment of disease progression in the 

context of symptomatic deterioration or changes in chest radiography45. The FVC threshold is 

calculated from two serial measurements which are traditionally 3 months apart, however there 

is no evidence to support whether this is the optimal period.     

 

IPF disease progression is unpredictable because of variability between individuals and the 

interspersion of life-threatening acute exacerbations and episodes of infection. This means that 

the low frequency of serial measurements for surrogate markers such as FVC and DLco is not 

sufficient to capture enough information to accurately calculate the rate of disease progression. 

Therefore any future staging system would need to integrate baseline information with 

longitudinal parameters such as categorical decline in FVC of greater than 10% predicted11.  

An innovative advancement is the feasibility assessment of home-based spirometry64 that 

examined whether daily observations of lung function can provide high-resolution monitoring 
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of IPF disease progression.  High frequency monitoring has the potential to detect subtle 

changes in lung function prior to the establishment of irreversible fibrosis, acute exacerbations 

and early identification of individuals with rapid-progressive disease.  

 

High-frequency measurements also contribute to minimising the inaccuracy introduced to 

endpoint analysis by missing data associated with trial dropouts and deaths. In addition, the 

alleviated frequency of observations allows for improved precision for estimates of disease 

trajectory thereby decreasing sample size and/or duration of clinical trials. Given that future 

early-phase clinical trials will be conducted on a background of anti-fibrotic therapy that slow 

disease progression, the benefits of daily home spirometry will contribute to overcoming the 

difficulties of identifying incrementally beneficial therapies.  

 

1.6 Home monitoring of respiratory disease progression 
 

Despite the theoretical benefits, conducting home spirometry are associated with limitations 

from resource implications and inconvenience to patients. Daily home spirometry 

measurements consistently underestimate lung function compared to hospital-based 

observations obtained under the supervision of a respiratory physiologist with hospital-based 

lung function equipment64. As a testament to the benefit of longitudinal data, the predictive 

value of serial FVC measurements for IPF disease progression remain because the 

underestimate was constant for all time points.  

 

Any residual concerns relating to feasibility and data integrity when considering primary 

endpoints derived from home-based assessments were alleviated by an investigation of weekly 

home spirometry65. However, an outstanding question relates to the optimum frequency for 

home spirometry and whether the additional data points provided by daily spirometry further 

reduce trial numbers enough to justify patient inconvenience. In order to fulfil the potential of 

home spirometry, electronic appliances or personalised devices that permit automated data 

acquisition and data processing need to be introduced.  

 

A home monitoring system that is wireless and real-time, rather than reliant on paper-based 

collection, would allow for quality control of measurements and prompt timely responses to 

FVC decline or non-adherence.  The integration of home monitoring with real-time wireless 

home spirometry has been demonstrated as feasible and readily received by patients66. This is 

encouraging given that it allows for the continual monitoring of a patient population with 
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progressive breathlessness and declining mobility whilst reducing the burden of hospital visits. 

Real-time uploading and automated email alerts would allow for the quality review of 

measurements and detection of FVC decline.  

 

The ability to predict the course of IPF disease progression using physiological markers can be 

improved with molecular and genetic biomarkers47. The need for prognostic biomarkers is 

compelled by the introduction of the sole effective therapies for IPF, pirfenidone and 

nintedanib67, because they reduce the change in physiological parameters being used to assess 

mortality risk or disease progression. Biomarker discovery for IPF has been hampered by a 

variety of redundant molecular pathways that contribute to the aberrant inflammation and 

wound repair observed amongst patients68. Thus, further motivation for biomarker discovery 

are the elucidation of relevant disease mechanisms, identification of therapeutic targets for 

treatment and assessment of therapeutic responses during clinical trials69.  

 

1.7 IPF clinical trials 
 

The ASCEND (Assessment of Pirfenidone to Confirm Efficacy and Safety in Idiopathic 

Pulmonary Fibrosis) pirfenidone trial70 and the two INPULSIS™ nintedanib trials71 are 

significant in that they have clarified the treatment effectiveness of the first available IPF 

therapies. Patient management has been transformed by both these drugs having been approved 

worldwide as IPF treatments70,71. Nintedanib is a tyrosine kinase inhibitor that suppresses 

multiple signalling receptors involved in fibrosis pathogenesis, including fibroblast growth 

factor receptor72,73. Pirfenidone is an orally administered pyridine with combined anti-

inflammatory, antioxidant and antifibrotic actions, however the precise mechanism of action 

remains ambiguous74,75. 

 

Regardless of their individual mechanisms of action, both drugs exhibit similar reductions on 

the rate of decline in FVC over 1 year40,70,71. Neither drug demonstrated any survival benefit 

during the respective trials, however a trend towards declining mortality was perceived. 

Therefore, the safety profile and tolerability of these drugs will guide patient and provider 

choice.  

 

Whilst the ASCEND and INPULSIS clinical trials represent major breakthroughs for IPF 

patients, extrapolating their findings to patients who are outside the recruitment criteria should 

be done with extreme caution. These studies do not provide any indication as to the 



17 | P a g e  

 

effectiveness of these drugs for patients with severe disease (FVC <50% of the predicted value) 

or with an acute exacerbation. In addition the effectiveness of these drugs beyond 1-year, in 

combination with each other or efficacy for pulmonary fibrosis of other ILD forms has yet to 

be characterised.  

 

The PROFILE (Prospective Observation of Fibrosis in the Lung Clinical Endpoints) study76 is 

the largest longitudinal study which recruited patients diagnosed with either IPF or idiopathic 

non-specific interstitial pneumonia to two coordinating centres (Nottingham, UK and Royal 

Brompton Hospital, UK). This study has established that dynamic changes in biomarkers of 

extracellular matrix turnover of the lung are able to predict IPF disease progression76 and that 

epithelium-derived proteins in the serum are able to identify disease course and risk of death77 

in treatment-naïve patients.  

 

1.8 Diagnosis of COPD 

 
The diagnosis of COPD relies on the patient history, a physical examination, chest radiography 

and the use of spirometry to prove airflow obstruction. The spirometric contribution to COPD 

diagnosis relies on establishing that the post-bronchodilator ratio of forced expiratory volume 

in 1 second (FEV1) to FVC as smaller than 0.70 to indicate significant airflow obstruction78,79. 

Having established a diagnosis, disease severity can be assessed using percentage predicted 

post-bronchodilator FEV1 as it is objective, reproducible, corresponds well with disease 

severity and prognosis80,81. In addition, serial FEV1 measurements aids the management of 

COPD by allowing the progress of disease to be monitored and guide treatment options as the 

disease enters different stages of the disease. 

 

The serial assessment of physiological and clinical outcomes in IPF and COPD is crucial to the 

design and interpretation of clinical trials, requiring a different combination of longitudinal 

markers that reflect their unique aetiology. Already noted is the use of FVC as a measure of 

the fibrotic burden for IPF patients compared to FEV1 as an indication of airflow obstruction 

for COPD disease82. Both diseases have the potential to benefit from the use of biomarkers to 

assess disease heterogeneity and predict disease progression. Whilst inflammatory markers 

may seem to correlate with disease severity and risk of exacerbation in COPD83, proteins 

expressed by the lung epithelium may reflect disease progression for IPF patients67.  However, 

both types of respiratory disease benefit from similar methods to assess serial exercise capacity, 

the six-minute walk test, and health status, the St. George’s Respiratory Questionnaire. 
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1.9 Mechanisms of COPD 
 

COPD is characterised by airflow obstruction that is the consequence of an aberrant 

inflammatory response in the airways and alveoli. The reduction in the airway diameter and 

corresponding increased resistance to flow84 are because of the unusual presence of 

inflammatory cellular infiltrates that cause the airway to thicken by remodelling its architecture 

(Figure 1-3)85. In addition, inflammatory infiltrates within the alveolar walls are associated 

with alveolar destruction and enlarged air spaces. T-cell mediated inflammation that can persist 

years after the cessation of smoking is a key component of COPD86,87.  

 

 

Figure 1-3 Summary of inflammatory and cellular interactions linking chronic cigarette exposure to the chronic 

inflammation of COPD. . Amplification signals released by inflammatory cellular infiltrates are important in augmenting the 

inflammatory responses that underpin COPD. Source: K.F. Chung & I.M. Adcock [85] 

 

Cigarette smoke contains xenobiotic compounds and free radicals that injure the lung 

epithelium, the extent is proportional to their concentration88,89. Epithelium-cell injury 

stimulates an innate immunity cascade that ultimately cause alveolar macrophages and 

neutrophils to secrete proteolytic enzymes and reactive oxygen species to further damage the 
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lung90. Eventually, cytokines and chemokines produced by macrophages and dendritic cells 

coordinate the inflammatory response required to activate the adaptive immune system91,92.  

 

CD8+ and CD4+ cells activated by antigen-bearing dendritic cells are recruited to the lung in 

a tissue-specific manner. The severity of COPD is proportional to the amount that structural 

cells of the airways and pulmonary arteries express the chemoattrative ligands for type 1 helper 

and cytolytic T cells93–95. The lung destruction in COPD is the consequence of CD8+ cell, and 

possibly protease, induced cell death of epithelial and endothelial cells which is not replaced 

by cell proliferation96. B cells have been identified in the lymphoid follicles of the airways and 

parenchyma of COPD patients97,98 are likely to promote immune and complement deposition 

and therefore any tissue injury and airway remodelling. Taken together, tissue destruction 

perpetuates the cellular mechanisms contributing to COPD by generating additional antigenic 

material.  

 

Due to the destruction of the alveolar walls, the total respiratory surface is reduced meaning 

that the gas exchange of oxygen and carbon dioxide is impaired. This is compounded by 

increased airway resistance resulting in breathing difficulties, air trapping in the lung, and 

hyperinflation of the lung. Air trapped in the lungs means that there is impaired regional 

ventilation corresponding to a ventilation-perfusion (V/Q) mismatch.  

 

1.10 Approaches to time series analysis  
 

The analysis of longitudinal spirometric observations to monitor the rate of IPF or COPD 

disease progression can be considered to be an integral stage in a home telemonitoring 

workflow. An established home telemonitoring workflow would be an automated process 

involving the transmission of data regarding a patient’s lung function from their home to their 

health care provider99 coupled to the continuous acquisition and processing of data with 

decision support. Therefore, home telemonitoring has the potential to provide high-frequency 

monitoring of patients, identification of early symptoms and prompt responses to acute 

exacerbations.   

The development of techniques in physiology, like home spirometry, will provide us with 

insights into biological processes by generating data. However, in order to fully understand the 

processes and their dynamic interplay within respiratory diseases, the development of statistical 

tools that will aid the utilisation of this information is required. Traditional statistical methods 

that provide summary measures like the mean, standard deviation or absolute change can be 
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useful to conceptualise the time series. However, time series methods will permit us to account 

for the time-ordered nature of home spirometric data thereby allowing us to characterise any 

periodicity and correlations within the data. In doing so, time series analysis provides us with 

tools required to characterise simple and complex biological behaviours, ultimately allowing 

us to predict outcomes. 

 

This will be instrumental in the provision of timely care and therapy as it would help detect 

individuals who are experiencing rapidly progressive disease or suffering from an acute 

exacerbation. The use of interrupted time series analysis for the data processing of longitudinal 

data would be important in determining the efficacy of therapies and guide when treatment 

strategies need to be changed. Indeed, maintaining the FVC of IPF patients close to their 

baseline levels corresponds with a better outlook for individuals43,63,100. An initial step in the 

interrogation of longitudinal data is exploratory data analysis that seeks to establish the patterns 

in systematic variation between groups of patients and the features of random variation that 

discriminate individual patients.  

 

Exploratory data analysis provides the foundation for determining the features of spirometric 

longitudinal data pertinent to development of statistical models of IPF disease progression. A 

popular statistical method for modelling and forecasting of time series is the ARIMA model. It 

is a category of model with the acronym for AutoRegressive Integrated Moving Average that 

incorporates a range of different temporal structures that exist within time series data, including 

autocorrelation, trends or seasonal variation. This forms the basis as to why time series models 

possess greater predictability and wider applicability than non-temporal techniques101. ARIMA 

models have been employed in a range of applications from managing healthcare resources 

like the use of hospital beds during epidemic incidences of the severe acute respiratory 

syndrome (SARS)102 and haemorrhagic fever with kidney fever103 to predicting and 

investigating antimicrobial resistance104–106. 

 

The modelling and analysis of cardiovascular and respiratory time series can be categorised 

either into linear mechanistic models107,108 or nonlinear descriptive indices109–111. Whilst linear 

techniques have the advantage of unveiling the individual relationships between observed 

variables, non-linear indices of complexity capture the dynamical behaviours within specific 

underlying mechanisms. The aberrant wound healing process that drives IPF disease 

progression and inferred by the loss of lung volume, is being driven by multiple redundant 

pathways68. In the longer term, the use of non-linear time series techniques will aid 
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understanding the contribution of specific biological pathways to IPF disease progression. The 

eventual incorporation of serum-based biomarkers76 into any statistical analysis will allow us 

to derive inferences regarding the physiology underpinning the IPF disease process by helping 

to account for biological variability and effects of intervention that contribute to the noise 

within the medical time series.  

 

1.10.1 Detrended Fluctuation Analysis  
 

The respiratory system is a complex system whose physiological phenotype arises from the 

non-linear interaction of environmental stimuli with a complex web of immunological, 

mechanical and inflammatory components112. These comprise of structural and regulatory 

feedback loops that operate at varying temporal and spatial scales thereby allowing adaptation 

to the stresses of everyday life113. Therefore, a healthy, stable system is associated with 

physiological parameters that fluctuate continuously under non-equilibrium steady-state 

conditions to maintain adaptability to external or internal stimuli114. Hence, analysis of these 

fluctuations may harbour information about the adaptability of the physiological system, but it 

is yet unknown whether any given disease state is associated with increased regularity or 

irregularity115.   

 

Fractals are used to describe the relationship between spatial or temporal patterns within 

complexity analysis, where a smaller structure resembles a larger scale form116, a phenomenon 

described as self-similarity. Detrended Fluctuation Analysis (DFA) is a statistical technique for 

analysing self-similarity within a time series by providing a quantitative parameter termed the 

scaling exponent, which represents the correlation properties within the time series. The DFA 

method has been used to characterise the long-range correlations within many fields of research 

like cardiac dynamics117,118 and bioinformatics119. Furthermore, this technique can be used to 

identify different states of the same system and so distinguish between healthy and sick 

individuals based on heart inter-beat intervals120 or the efficacy of therapeutics for asthmatics121 

or chronic obstructive pulmonary disease122.  

 

The scaling exponent, as quantified by DFA, measures the long-range correlations within the 

physiologic time series of lung function such as peak expiratory flow (PEF)121,122, thereby 

providing an indication of the temporal history of the disease. Successive time points are 

considered to have no relationship with each other when the scaling exponent, as calculated by 

DFA, is 0.5. However, if the scaling exponent is greater than 0.5, long-range correlations exist 
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within the time series. The associated system can be described as having a memory where the 

current situation is influenced by its temporal history.  

 

Fluctuation analysis, and specifically changes in the scaling exponent, can provide insight as 

to the optimal timing of regularly given drugs for chronic disease, e.g. the  regular 

administration of short-acting β2 agonists for asthma tends to drive the internal regulation of 

airway tone towards a random process and therefore a less stable system121. The scaling 

exponent could potentially be used as a surrogate marker for any pathological condition, given 

that it is important to establish how the scaling exponent changes with the risk of each 

pathological condition. For example, whilst higher values of the scaling exponent are 

associated with decreased risk of severe asthma episodes121,123, they are associated with an 

increased exacerbation frequency in COPD122.   

 

1.10.2 Critical transitions 
 

An acute exacerbation exhibits the typical characteristics of a critical transition in that there is 

a qualitative, rapid change in the disease progression and the crossing of a threshold resulting 

in a new ‘plateau’ (Figure 1) from which disease progression continues as before124. The study 

of critical transitions in complex systems such as ecosystems and societies suggest that as a 

system approaches a tipping point, a set of circumstances arise that exaggerate a minor 

perturbation towards an alternative state125. A reduction in a system’s ability to recover is 

termed “critical slowing down” which can be equated to an inability of the IPF lung to heal 

from injury. 

 

Whilst much progress into the mathematical modelling of tipping points has been made with 

respect to catastrophic meltdowns in financial markets, their use within the financial field has 

been limited by stochastic modelling of parameters relating to investor and market 

behaviours126. This means that abrupt transitions in financial markets are characterised as a 

stochastic not critical transitions on the basis that they can occur away from the tipping point. 

The Lehman Brothers bankruptcy is an example of how stochastic transitions can occur without 

much warning because of the way in which financial institutions set interest-rate swaps in 

maturities. This meant that financial institutions became interdependent on each other to cater 

for their commitments127.  
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The extent to which the financial institutions are dependent on each other reflects the likelihood 

that a stochastic transition will occur should one of them default. In contrast to critical 

transitions, stochastic transitions tend to occur without early warning signals meaning that 

predicting a transition is difficult e.g. a financial institution defaulting on a loan. However, the 

modelling of an acute exacerbation within the IPF lung as a critical transition suggest that there 

are indicators of the fragility of the lung to the injury and that its ability to restore lung 

architecture to normal is diminished.  

 

Modelling an acute exacerbation as a critical transition suggest that early warning signals, 

called dynamical network biomarker (DNB)128, have the potential to anticipate the transition. 

The pre-disease state is characterised by little or no symptoms but the expression of these DNBs 

may indicate that a critical transition in the IPF lung is more likely. It is likely that these DNBs 

reflect molecular pathways that make the IPF lung more susceptible to periods of dramatic 

decline e.g. Krebs von den Lungen-6 (KL-6)129 as a marker of alveolar epithelial cell damage. 

High-throughput OMICS data can be obtained from a small number of samples for each 

individual and correlations between the variables can be made based on the high dimensions.    

 

In addition, the fragility of the lung can be measured by parameters that assess lung function 

i.e. spirometry on a regular basis. The data collected allows many samples for each individual 

to be collected that have low dimensions. This information is invaluable as it permits a non-

invasive method of assessing the health of lung and provides an opportunity to assess how an 

IPF patient’s disease is progressing as it is happening. Therefore, it is possible to pinpoint an 

exacerbation to a narrow window of time about its occurrence. 

 

1.11 Motivation for study 
 

The motivation for this study is to develop a statistical model that will contribute to monitoring 

patient wellbeing by detecting individuals with rapid progressive disease or those suffering 

acute exacerbation. Time series generated by the IPF patients performing home spirometry on 

a continual basis will form the basis of the algorithm been developed. Any statistical model 

would benefit from the increasing size of a longitudinal data set to establish short- and long-

term trends in changes in lung function. Therefore, this statistical model represents an 

improvement on the contemporary approach to classifying IPF disease progression which 

utilises two serial observations twelve-months apart44.  
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1.12 Study hypothesis 
 

Whilst individual variables are associated with IPF patient mortality, these variables are limited 

in their ability to accurately predict prognosis in isolation4,53. However, deterministic analysis 

has the potential to overcome the prognostic limitations of these variables by examining the 

temporal patterns in airway function by utilising all points within a time series. We hypothesize 

that the clinical course of IPF can be classified by deterministic methods applied to longitudinal 

lung function data. 

 

1.13 Objectives of the study 
 

The main aims of this study are set to provide a better understanding of the temporal features 

within the longitudinal lung function data of IPF patients and allow better, more timely 

classification of IPF disease progression. Therefore the four objectives of this thesis are 

1. to gain an understanding of the physiological parameters impact survival and clinical 

classification in patients with IPF. 

2. to identify the temporal components within the longitudinal lung function 

measurements of IPF patients.  

3. to assess the variability of the IPF airway calibre.  

4. to compare and validate the modelling approach to best identify changes in IPF disease 

progression. 
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2 Methods 
2.1 PROFILE IPF cohort 

2.1.1 Patients 
 

50 patients were identified as a subgroup of the PROFILE (Prospective Observation of Fibrosis 

in the Lung Clinical Endpoints) study76 from the Interstitial Lung Disease unit at the Royal 

Brompton Hospital, London who had a consensus diagnosis of IPF according to current 

international criteria3.  Ethical approval was given by the Royal Free Hospital and Medical 

School Research Ethics Committee, and all patients provided signed, informed consent. 

Patients were recruited into the PROFILE study within 6 months of being diagnosed with IPF. 

Clinical assessment was undertaken at baseline and at 3-monthly intervals, whilst full hospital-

based lung function testing (spirometry, plethysmography, and gas transfer) was undertaken at 

baseline, 6- and 12-monthly intervals. Patients were monitored until death or 1st April 2018.  

 

2.1.2 Spirometry 
 

Patients participating in the study were given a portable hand-held Micro spirometer 

(CareFusion, Kent, United Kingdom) that provides a digital read-out of FEV1 and FVC in litres. 

The accuracy of the Micro spirometer is factory calibrated to ±3% for FVC within the range of 

0.1-9.99L. Patients were given an hour dedicated instruction as how to perform spirometry 

which was reinforced a month later. Each patient was required to perform a single spirometry 

manoeuvre at the same time of day and record the reading in a dedicated diary. FVC 

measurements were recorded in litres to two decimal places. Prior to entry into an electronic 

database, measurements were reviewed by study staff. Patients were requested to contact study 

staff should their FVC measurements fall by 10% of baseline over 3 or more consecutive days. 

Spirometry conducted in a hospital environment were obtained in accordance with current 

international standards such that the best value of three technically adequate forced expiratory 

manoeuvres was recorded130. 

 

2.2 London COPD cohort 

2.2.1 Patients 
 

32 COPD patients enrolled in the London COPD cohort and who contributed at least 1 year of 

data between January, 1 1996 and December, 31 2002 were analysed. Inclusion criteria 

comprised of a post-bronchodilator FEV1 <80% predicted for age, height and sex and a 
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FEV1/forced vital capacity (FVC) ratio <0.7122.  Exclusion criteria were applied to patients with 

significant respiratory disease except COPD or the inability to complete diary cards.  

 

Ethics approval was acquired from the East London and City Research Ethics Committee as 

well as the Royal Free Hospital NHS Trust Ethics Committee. In addition, all patients gave 

written informed consent.  

 

This patient cohort has been the subject of previous publications pertaining to exacerbations131–

134 and time series complexity122 but the comparison of complexity between restrictive and 

obstructive respiratory diseases is novel.  

 

2.2.2 Recruitment 
 

At recruitment, lung function (FEV1 and FVC) measurements were obtained using a spirometer 

(Micro Medical Ltd, Chatham,Kent, UK)132. A history of reversibility to salbutamol after 

withdrawing bronchodilators, the number of exacerbations during the previous year and 

smoking habits were recorded. 

 

2.2.3 Monitoring and diagnosis of exacerbation 
 

At recruitment, patients were trained how to record in diary cards changes in respiratory 

symptoms. Major symptoms were classified as dyspnoea, sputum purulence and volume. 

Minor symptoms were categorised as coryza, wheeze, sore throat and cough. In addition, 

patients manually recorded the best of three daily morning post-bronchodilator peak expiratory 

flow (PEF). The mean PEF and coefficient of variation was calculated over the subsequent 365 

days. PEF is expressed as a percentage of predicted value and calculated using the equations 

of Garcío-Río et al.135.    

 

An exacerbation was diagnosed on the basis of the patient experiencing two or more 

consecutive days of an increase in either two major symptoms or a combination of major and 

minor symptoms131,132. In addition, exacerbations were identified when patients were admitted 

to hospital without associated changes in symptoms being recorded or during enquiry at clinic 

visits about primary care treatment131,132. The ratio of the number of exacerbations to the period 

(in years) of observation gave the exacerbation frequency. The exacerbation duration was 

defined by the number of days after the exacerbation onset that symptoms were still 
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experienced. Two consecutive days that the patient was symptom free defined the end of an 

exacerbation. An exacerbation was capped with a maximum duration of 100 days.  

 

2.3 Statistical analysis 
 

Data was analysed with R statistical computing platform version 3.5.1. Normally distributed 

data were expressed as mean ± SEM and comparison made using the t-test.  

 

2.3.1 Exploratory Time Series Analysis 
 

The lung function measurements (forced vital capacity (FVC) and forced expiratory volume in 

1 second (FEV1)) obtained from the PROFILE and London COPD cohorts form univariate time 

series given that they are time-ordered observations occurring at daily intervals and originate 

from a single individual. Time series can be characterised by three basic features consisting of 

variation, autocorrelation and stationarity136. There are four components of time series, 

comprising of trend, seasonality, cycles and irregular variation with the length of individual 

time series’ needing to be long enough to capture phenomena of interest such as an acute 

exacerbation (change in trend) and/or seasonality.  

 

Trend, seasonality and cycles represent systematic variability or regular patterns within the 

time series that can be modelled over different periods of time. If a statistical model accounts 

for all the systematic variance within a time series, the remaining component should be 

completely random or white noise. Autocorrelation explores the effect of previous states on 

attempts to incorporate this source of variation into the statistical model by examining the 

Pearson correlation of the variable with itself at various time intervals or lags136. Time series 

must be stationary, or have no trend, to assess the presence of autocorrelation.  

 

The augmented Dickey-Fuller (ADF) statistical test evaluates the null hypothesis that a given 

time series is non-stationary, whilst the Durbin-Watson statistical test assesses whether the 

residuals of a regression model are autocorrelation136. A non-stationary time series can be made 

stationary by a process of differencing that calculates the differences between consecutive 

observations and thereby eliminates the trend. Differencing can be achieved using the diff 

function within the R statistical computing platform. Evaluation of autocorrelation between 

observations at different lags, or time intervals, is done by using the complete and partial 

autocorrelation functions together. The distinction between the complete and partial 
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autocorrelation functions as measures of correlation of time series separated by k time units (yt 

and yt-k) is whether they adjust for the presence of the other terms at shorter lags (yt-1, yt-2,..yt-

k-1). 

 

Heteroscedasticity is a property concerning statistical variability within any given individual 

time series. The presence of this property can invalidate statistical tests of significance 

performed during regression analysis as they assume that modelling errors are uncorrelated and 

uniform. The Levene’s test is utilised to assess homogeneity of variance by testing the null 

hypothesis that population variances are equal. If the p-value is less than the level of 

significance then the null hypothesis can be rejected and the time series has heteroscedasticity. 

 

2.3.2 Detrended fluctuation analysis 
 

FVC time series of 38 IPF patients and the entire COPD patient cohort, having a minimum 

length of 75 days were assessed, with detrended fluctuation analysis (DFA)121. The first step 

of the DFA algorithm is the integration of the entire time series according to: 

 

𝑦(𝑘) = ∑(𝑥(𝑖) − �̅�)

𝑘

𝑖=1

 

 

where 𝑥(𝑖) is the ith FVC measurement and �̅� is the average FVC measurement. Next, the 

integrated time series is divided into boxes of equal length, n. Within each window of length 

n, a least-squares linear regression is fit to the data to represent the local trend. The y-coordinate 

of the straight line segments is denoted by yn(k). The entire time series was detrended by 

subtracting the local trend, yn(k), from the data. The second step of the DFA algorithm aims to 

calculate the root-mean-square fluctuation of this integrated and detrended time series as 

follows: 

 

𝐹(𝑛) = √
1

𝑁
∑[𝑦(𝑘) − 𝑦𝑛(𝑘)]2

𝑘

𝑖=1

 

 

 

The DFA algorithm is repeated over all time scales (box sizes) to determine the relationship 

between F(n) and box size. This relationship can visualised on a double log plot of F(n) against 
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n, and a summary statistic referred to as the scaling exponent (α) obtained from gradient of a 

straight line fit according to  

 

𝐹(𝑛) ∝ 𝑛𝛼 

 

2.3.3 Imputation of missing values 
 

Missing data is a characteristic that features within the spirometric time series of patients to 

varying extents. The univariate, FVC time series that are the focus of this study provide a 

challenge to standard imputation algorithms that use inter-attributable correlations to estimate 

values for missing data137. Effective univariate algorithms exploit individual time series 

characteristics meaning that imputation must be done on an ad hoc basis. The Kalman filter is 

the most effective method for dealing with missing data that can be implemented in R using 

the zoo package138.   

 

2.3.4 Critical Transitions 
 

An acute exacerbation is defined as being an abrupt, accelerated decline in lung function (>10% 

FVC) over a period of 10- to 14-days64. Serial FVC measurements provide an important insight 

into disease progression and can provide an indication of an acute exacerbation at its initial 

stages. Information about the drivers or conditions at which an acute exacerbation (critical 

threshold) is currently unknown and difficult to acquire. Leading indicators can act as generic 

early warning signals of patients who approach an acute exacerbation and are based on 

common mathematical properties that have the potential to be used in real-time124. 

 

As a system approaches a critical transition, the rate of return to equilibrium following a small 

perturbation declines139, termed “critical slowing down” 140. Critical slowing down causes an 

increase in short-term memory or correlation at low lags of a system prior to a transition that 

can be measured by autocorrelation140. Autocorrelation can be estimated according to  

 

𝜌1 =
𝐸[(𝑧𝑡 − 𝜇)(𝑧𝑡+1 − 𝜇)]

𝜎𝑧
2

 

An alternative measure of critical slowing down is variance because a system close to a 

transition would tend to drift more widely around its stable state. Variance can be measured by 

the standard deviation as defined by  
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𝑆𝐷 =  
1

𝑛 − 1
∑(𝑧𝑡 − 𝜇)2

𝑛

𝑡=1

 

 

An acute exacerbation has been defined as an acute clinically significant deterioration of 

unidentifiable cause associated with pronounced architectural distortion, decline in lung 

volumes and impaired gas exchange141. Therefore, the pre- and post-transition state of FVC 

measurements will form two distinct distributions. The calculation of a composite index142 

allows a comparison of the correlation between the local, contemporary group of FVC 

measurements (PCCin) with the that of FVC measurements since baseline (PCCout) whilst 

accounting for the noise or standard deviation of the FVC time series according to  

 

𝐼 = 𝑆𝐷
𝑃𝐶𝐶𝑖𝑛

𝑃𝐶𝐶𝑜𝑢𝑡 + 𝜀
 

 

where ε is a comparatively small positive constant to avoid zero division. The correlation of 

the local group is calculated from most recent FVC measurement and the two previous readings 

whilst the correlation of the group of observations since baseline will increase with time upon 

each calculation.  

 

2.3.5 Piecewise linear regression 
 

Each pair of observation within each patients’ spirometric time series can be described by an 

explanatory time variable and response composite index calculation. The relationship between 

time (x-axis values) and composite index (y-axis values) can be described by two linear 

regression functions143 as described by  

 

𝑦1 = 𝑎1 + 𝑏1 ∙ 𝑥𝑖                  𝑥𝑖 ≤ 𝑥0 

𝑦2 = 𝑎2 + 𝑏2 ∙ 𝑥𝑖                  𝑥𝑖 > 𝑥0 

 

where (x0,y0) represents the join point, a1,2 are the intercepts of the respective regression lines 

and b1,2 are the slopes of the respective regression lines.  

 

The response of the composite index calculation can be described by two linear regression 

functions with a join point (x0) that is defined by a point where the regression lines intersect. 
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An iterative approach can be employed to ascertain the joint point in a finite number of steps 

using statistical approaches. In each iteration, the time series is partitioned into two groups 

containing successive observations and the parameters of each linear regression is estimated. 

The residual sum of squares is calculated for each linear regression function and added together 

to assess the quality of fit at each iteration.  

 

For successive iterations an observation is shifted between the two parts of the time series with 

the parameters and residual sum of squares being recalculated each time. The iteration 

corresponding to the least residual sum of squares relates to the parameters of the optimal fit. 

Having selected the optimal fit, the angle between two regression lines at the point of 

intersection can be ascertained from  

 

𝑡𝑎𝑛𝛼 =  
𝑚2 − 𝑚1

1 + 𝑚1𝑚2
 

 

where m1 and m2 are the gradients of the respective regression lines and α denotes the angle 

at the point of intersection.  

 

2.3.6 Receiver operating characteristic 
 

The ability of the statistical model to classify patient disease progression with increasing time 

was estimated using receiver operating characteristic (ROC) curves. To estimate the 

classification accuracy using standard ROC methods, the gold standard or true disease 

progression status was available from clinical follow-up. Sensitivity (i.e. true positive rate) and 

specificity (i.e. true negative rate) are the fundamental measures that contribute to ROC 

analysis. Given the principal physiologic medical test result used to monitor IPF disease 

progression, forced vital capacity (FVC), is a continuous measurement, a threshold value of 

10% baseline over 12 months is used to classify patients44.  

 

Individuals with a change in FVC measurement equivalent to or greater than 10% of their 

baseline reading over 6 months are classified as suffering rapidly progressive disease whilst 

those with a change in FVC corresponding to less than 10% baseline over 6 months are 

classified as experiencing steady illness. A 2X2 contingency table is formed containing counts 

of the four possible combinations of classification and true disease may be formed, namely true 

or false negatives and true or false positives. The accuracy of classification is assessed each 
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day for the 50 IPF patients of the PROFILE cohort in terms of the probability a rapid 

progressing patient is classified as positive (sensitivity) and the probability a patient 

experiences steady disease is classified as negative (specificity). 

 

2.4 Survival Analysis 
 

The prognostic value of FVC change modelled as a continuous value becomes meaningful 

sometime between 28 days and 3 months64. Successful prediction of clinical outcomes for IPF 

patient needs to account for non-linear lung function decline experienced by those suffering 

acute exacerbations. Hence, survival analyses were performed using R statistical computing 

platform version 3.5.1 supplemented with functions from the survival and survminer libraries.  

 

2.4.1 Kaplan Meier survival estimate 
 

The Kaplan-Meier estimator144 is a non-parametric statistic that permits the survival function 

of the patient cohort to be determined and reflects the probability that an individual patient will 

survive past a given time.  Preparation for Kaplan-Meier analysis involves the construction of 

a table of patient variables containing three essential input parameters, serial time, status at 

serial time and study group. The table is sorted by ascending survival times starting with 

shortest times for each group and including censored values. Censored patients are omitted 

from the point of omission to prevent them from influencing the proportion of surviving 

patients. The survival probability at a particular time, S(t), is given by  

 

𝑆(𝑡) = 𝑝1 × 𝑝2 ⋯ 𝑝𝑡 

 

where pt is the proportion of all patients surviving past a certain time point. 

 

A survival object can be compiled from the column of survival times and the variable indicating 

whether a patient is censored by the surv function. This survival object can then be interpreted 

by the survfit function to fit the Kaplan-Meier curves. A comparison of Kaplan-Meier curves 

can be achieved by the log-rank statistical test with the null hypothesis that the survival curves 

of the two populations do not differ.  
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2.4.2 Cox Proportional-Hazards Model 
 

In contrast the hazard function describes the probability of hazard or event should the 

individual survived up to certain time point. The hazard function is important when considering 

the influence of covariates when comparing the survival of patient groups. Explanatory 

variables, or covariates, may be predictive of an outcome or a factor that might need adjusting 

to account for interactions between variables. The parameters for covariates are; age at 

diagnosis as under 65years, 65-74years and over 74years; percentage predicted FVC and FEV 

above 80, 60-80 and below 60; percentage predicted DLCO groups comprise above 55 (mild 

disease), 36-55 (moderate disease) and below 35 (severe disease)59; and gender. 

 

A forest plot is a useful approach to visualise the hazard ratios (HR) for all the covariates that 

were included in the Cox Proportional-Hazards model. The Cox proportional hazards model 

was built using the coxph function and visualised using the ggforest function. A hazard ratio 

of greater than 1 denotes an increased risk of death compared to that less than 1 inferring a 

reduced risk of death, should the patient be met by a specific condition.  
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3 Results chapter 1: Temporal features of longitudinal lung function 
data 

3.1 Introduction 
 

The chapter hypothesis is that there are temporal features within FVC time series of IPF 

patients. This chapter aims to identify the physiological parameters that impact the survival 

and clinical classification of IPF patients. In addition, the parameters of the temporal 

components (e.g. autocorrelation and seasonality) within the longitudinal lung function 

measurements of IPF patients are explored within this chapter. Finally, the variability of the 

IPF airway calibre is investigated using the deterministic method, DFA.  

 

Idiopathic pulmonary fibrosis (IPF) is a progressive diffuse parenchymal lung disease with 

uncertain aetiology3,4,145. The urgency for an accurate diagnosis of IPF has increased with the 

development of two effective anti-fibrotic therapies, coupled with the limitations of traditional 

therapeutic combinations3,11. The diagnosis of IPF is dependent on a thorough clinical 

evaluation that is responsible for excluding alternate causes of disease, such as chronic 

hypersensitivity pneumonitis. Optimal accuracy for the diagnosis of various forms of 

pulmonary fibrosis, including IPF, requires a multi-disciplinary review with the inclusion of 

pulmonary, radiology and pathology teams146.   

 

Whilst the prognosis of IPF is poor, the trajectory of IPF disease progression varies from slow 

progression to acute deterioration and death145,147
 (Figure 1). In addition, patients can 

experience periods of acute respiratory decline in the absence of infection or other identifiable 

cause, referred to as an acute exacerbation38,148. IPF disease course has traditionally been 

assessed during clinical trials by measuring clinical endpoints every 3-4 months by trained 

study technicians in an office-based setting65. The main endpoints measured during IPF clinical 

trials include; change in forced vital capacity (FVC) as a primary endpoint149 and, as secondary 

endpoints, symptom severity, quality of life and survival time150. Given that IPF clinical course 

can vary with time, increased measurement frequency of individual predictors ought to improve 

analytical precision and reduce sample size requirements of clinical trials151 but require study 

subjects to return to the study centre where lung function technicians can perform procedures.  

 

Whilst IPF management decisions can be adequately informed by FVC measurements every 

three to six months, increased frequency of observations has the potential to detect subtle 

changes in lung function before irreversible fibrotic changes afflict the patient. The use of daily 



35 | P a g e  

 

home spirometry to monitor IPF disease progression is attractive as it has the potential to 

overcome the resource implications and inconvenience to patients that accompany increased 

observation frequency. This has been addressed in a sub-study of the PROFILE (Prospective 

Observation of Fibrosis in the Lung Clinical Endpoints) cohort64,76. Whilst daily home-based 

FVC measurements tended to be lower than their hospital-based equivalents, the trends 

between the more frequent longitudinal time series mirror hospital-based observations64.  

 

The potential to control the quality of measurements, or respond to FVC decline or non-

adherence can be addressed by employing bluetooth-enabled spirometers that transmit data via 

a secure encrypted connection66. Therefore the home monitoring experiences of IPF patients 

can be extended by replacing paper-based collection with real-time data transmission, thereby 

providing direct access to data for both patient and healthcare provider66. Real-time monitoring 

allows patients to be prompted in the event of either bothersome side-effects, an FVC decline 

of >10% over 3 consecutive days or failure to perform spirometry or record symptoms.  

 

The feasibility of obtaining a high-frequency of FVC measurements using home-spirometry by 

IPF patients has been established by a number of studies64–66. High-frequency measurements 

will make positive contributions for the future development of IPF clinical trials by reducing 

trial numbers and helping to evaluate the efficacy of additional drugs with cohorts whose rate 

of FVC decline is dampened by pre-existing anti-fibrotic therapy. This is because high-

frequency measurements offset the impact of biological and measurement variability within 

lung function assessments and permit more accurate longitudinal trajectory estimates of 

outcomes152,153.  

 

In contrast to IPF, Chronic Obstructive Pulmonary Disease (COPD) is a common respiratory 

condition characterised by airflow limitation, a consequence of pathologic changes to the lung 

parenchyma154, airways155 and pulmonary vasculature156. For COPD, the FEV1/ FVC is useful 

for assessing airway obstruction in patients at the point of diagnosis, and longitudinal FEV1 is 

informative for monitoring disease progression since FEV1 has previously been shown to 

decline with time130. 

 

The ability to monitor progression of IPF and COPD by spirometry is important as it allows a 

non-invasive measurement of the patient’s ability to breathe157. The clinical importance placed 

on the decline of an IPF patient’s exercise capacity is because it is deemed a reflection of the 

architectural destruction of the lung as a consequence of fibrosis64. Therefore, accurate 
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interpretation of spirometry is essential in assessing how rapidly the patient’s lung function is 

declining and whether the patient is suffering a complication. Timely identification of 

complications may allow early administration of therapy with favourable clinical outcomes. 

Indeed, maintaining the FVC of IPF patients close to their baseline levels seems to correspond 

with a better outlook for the wellbeing of those individuals43,63,100.  

 

Serial changes in pulmonary function tests (PFTs) over a 6 to 12 month period for IPF have a 

better prognostic value than baseline observations44,45,149. Understanding IPF disease 

progression from PFTs requires threshold values to define a significant decline from baseline, 

which are currently set at 10% for FVC and 15% for diffusing capacity of the lung for carbon 

monoxide3. Despite home disease monitoring being a feature of asthma self-management and 

detection of acute rejection for lung transplant recipients158, the issue of how home disease 

monitoring can be optimised for the benefit of IPF patients is a challenge that has yet to be 

addressed.   

 

An issue that still remains regarding home monitoring is the optimum frequency of FVC 

measurements and whether the additional data provided by daily spirometry can further reduce 

trial numbers. The next step for IPF home monitoring would involve the development of 

algorithms that can classify patients on the basis of the clinical form of IPF being experienced 

allowing therapy to be tailored to individual disease progression64. At the time of IPF diagnosis, 

how an individual’s clinical course will proceed is unknown. This may be addressed promptly 

by statistical models that are able to interpret the features of FVC longitudinal time series and 

appropriately stratify a patients’ clinical course.     

 

The data generated by home-based spirometry requires the application of specialised 

techniques that can identify patterns in successive observations taken at equally spaced 

intervals. Time series methods are unique to generalised statistical approaches in that they 

account for internal structures (autocorrelation, trend or seasonal variation) that may be present 

within the data159,160.  An important feature that needs to be considered during time series 

analysis whether there is dependence between various points within the time series and the size 

of the time interval at which this influence exists.  

 

Short- and long-term dependence can be quantified by autocorrelation functions or detrended 

fluctuation analysis respectively (DFA)161. Signals generated by complex biological systems 

harbour fluctuations that exhibit long-range correlations 162, termed self-similarity163. DFA has 
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been used to demonstrate that irregular airflow is decreased in asthmatic patients164, self-

similarity in peak expiratory flow is indicative of increased risk of unstable airway function121 

and is able to distinguish between atopic and non-atopic asthma165. 

 

Healthy breathing dynamics reveal complex patterns of variation that result from 

environmental stimuli interacting with an array of immunological, mechanical and 

inflammatory components forming the respiratory system112 with the purpose of optimising 

gas exchange166. An understanding of the non-linear behaviour underpinning the respiratory 

system has the potential to provide both insight into pathology and tools for clinical 

assessment161. 

 

DFA assesses self-similarity by comparing the extent of fluctuation about a trend within the 

physiologic time series using a number of different sized windows. The gradient, termed the 

scaling exponent, of a double log plot of window size versus fluctuation is indicative of long-

term correlation such that a value of 0.5 translate to successive points are unrelated to each 

other. However, a scaling exponent of between 0.5 and 1 suggest that the related time series 

exhibits long-range correlations and that past events influence the current situation. 

 

Autocorrelation is defined as the correlation of a particular signal with itself at various time 

intervals167. Correlation is a statistical method employed to understand the strength of the 

relationship between any given pair of variables. The evaluation of autocorrelation requires the 

comparison of the complete and partial autocorrelations depicted at various intervals of time 

or lags. If the autocorrelation function exhibits an exponential decay or falls below the level of 

significance at a certain lag, the two time-points can be deemed to be independent. For long-

term memory processes, the dependence is stronger resulting in the autocorrelation function 

decaying in a power-like manner.  

 

An important feature of time series data that needs to be evaluated prior to the assessment of 

autocorrelation is whether it is stationary. A stationary time series is a stochastic process whose 

properties don’t change when shifted in time. Longitudinal forced vital capacity measurements 

of IPF patients can be anticipated to be non-stationary on the basis that the disease is 

characterised by irreversible decline in lung function, however slow this may be3,100. 

Nonetheless, any time series can be converted to stationary process by taking the first-order 

difference, achieved by replacing each value in a time series with the difference between it and 
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the previous value160. The original time series is referred to as an integrated process of order 0, 

whilst the first-order difference time series is referred to an integrated process of order 1.    

 

Predicting the course of IPF from past trends within each patient FVC time series requires 

mathematical models that understand the temporal dynamics of the features present. 

Incorporating parameters that can form a general equation to model the FVC time series of 

each patient is complicated by the intrinsic variability of FVC, the influence of co-morbidities 

and dose interruptions. Furthermore, the rate of FVC decline during the current year predicts 

mortality, but not pulmonary function, in the subsequent following year168. Taken together, the 

ultimate model of fibrotic disease progression will not be linear and incorporate parameters 

that account for the influence of age, co-morbidities and type of treatment.   

 

The hypothesis for this chapter is that there is information within the time series’ of IPF lung 

function that reflect the disease progression within the patients’ lung. Therefore, the aims of 

this chapter are to understand the physiological parameters that impact the survival and clinical 

classification of IPF patients. The identification of the temporal components (e.g. 

autocorrelation and trend) within the longitudinal lung function measurements is the second 

aim of this chapter as these components could influence how IPF is classified and disease 

progression monitored. Establishing the variability of the IPF airway calibre is the final aim of 

this chapter which could contribute additional information about the state of the lung.     
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3.2 Results 

3.2.1 Patient Characteristics 
 

50 patients were recruited as a sub-study of the PROFILE clinical trial (90% men, 

median±IQR; age, 66.81±10.89yrs; height, 1.8±0.13 m, weight 85.8±24.4kg, FVC 

67.85±20.58% predicted and FEV1 73±19.65% predicted). Detailed baseline characteristics are 

presented in Figure 3.1. The study was performed prior to the availability of anti-fibrotic 

therapy meaning that knowledge of disease decline did not influenced therapy. The majority of 

patients within the study did not smoke (former smokers; 68% or non-smokers; 28%) (Figure 

3.1 (b)).  

 

3.2.2 Forced vital capacity (FVC) time series 
 

Ten patients were monitored at home for the entire 490-day study. For those patients remaining 

in the study, the median duration of the study was 151 days (range, 14-486 days), with thirty-

eight subjects dying during the clinical trial follow-up and two discontinuing due to disease 

progression, intolerance to the procedure, or response to seeing their decline reflected in 

spirometry readings. The distribution of values within each patient time series varies with no 

correlation to baseline FVC values (Figure 3.2 (a)). In addition, patient compliance varies 

between individuals with no correlation to baseline FVC (Figure 3.2 (b)), with the mean 

proportion of daily observations completed during participation was 81.5±70.8%. The 

distribution of missing values varied on an intra- and inter-subject basis. 

 

However, inspection of individual patient graphs of longitudinal FVC observations indicate 

IPF disease progression consistent with that previously described. Therefore, it is possible to 

utilise this information to classify patient disease behaviour. Within this dataset, there are 

patients who have experienced a rapid rate of disease progression associated with a projected 

annualised FVC decline exceeding 95% of baseline. In addition, there are four patients who 

has experienced an accelerated 14-day period of lung function decline corresponding to a loss 

of >10% FVC.  The symptoms, signs and radiographic findings for this subject are consistent 

with an acute exacerbation.  
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Figure 3-1 | Baseline characteristics of study participants, recruited as a subgroup of the PROFILE (Prospective 

Observation of Fibrosis in the Lung Clinical Endpoints) clinical trial. 50 patients were recruited from the interstitial lung 

disease unit at the Royal Brompton Hospital, London, the majority of whom were men (a). The majority of patients have 

previously smoked, with a minority currently smoking (b). Physical attributes at recruitment such as age, weight and height 

of the cohort that may influence interpretation of spirometry are indicated (c). Clinical assessment and full hospital-based 

lung function testing were undertaken at baseline (d). 

  



41 | P a g e  

 

 

Figure 3-2 | Distribution of Forced Vital Capacity (FVC) measurements. Patients were provided with a portable hand-held 

Micro spirometer (CareFusion, Kent, United Kingdom). Each Micro spirometer provides a digital read out of FEV1 and FVC 

measurements to an accuracy ±3% in a range of 0.1-9.99L FVC. Participants were asked to perform a single spirometry 

reading at approximately the same time of day and record the FVC measurement in a dedicated diary. The distribution of FVC 

measurements vary between individuals with outliers were classified as observations outside the 95% confidence interval (a). 

Each individual time series were characterised by different amounts of missing values (b).  
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3.2.3 Survival analysis 
 

There may be a number of individual clinical variables that may predict survival of patients 

diagnosed with IPF. The rate of change of FVC when considered as a continuous variable is 

predictive of subsequent mortality at 3, 6 and 12 months when adjusting for age, sex and 

baseline FVC64. In addition, the consideration of several baseline features may be pertinent in 

evaluating whether a patient is subject to an increased risk of mortality59. Understanding the 

risk of the smoking status on the survival of IPF patients requires an increased number of 

current smokers to be able to detect any statistical differences that may exist between the groups 

(Figure 3.3).   

 

Subjects whose baseline FVC predicted was between 50-80% (HR, 0.070; CI, 0.0063-0.77) or 

>80% (HR, 0.098; CI, 0.0059-1.64) had a lower risk of death compared to those FVC predicted 

was <50%. Patients who were diagnosed with a greater proportion of their maximum FVC, 

potentially had more lung function capacity to lose during the course of the study. Baseline 

FEV1 percent predicted does not seem to correlate with the risk of mortality from IPF as those 

who have the most expiratory volume, >80% (HR, 0.490; CI, 0.1118-2.15) and 60-80% (HR, 

1.102; CI, 0.4145-2.93), are comparable those with the least FEV1 predicted  <60%. This is 

consistent with IPF being a restrictive disease and serial FVC changes over 12 months being 

predictive of subsequent survival44,45. Whilst FEV1 and FVC measurements decline in 

proportion to IPF disease progression (Figure 3.4b), FVC has been identified as a reliable, 

reproducible marker of IPF disease progression and linked to mortality56,169. Hence, the 

correlation between FEV1 and fibrotic disease progression may not be 1:1.    
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Figure 3-3 | Comparison of baseline physiological parameters and their impact on survival. Kaplein-Meier survival curve 

for patients within this cohort indicated that patients have been censored by 4½  years (a). Multiple variables were associated 

with altered risk of mortality in idiopathic pulmonary fibrosis (IPF) patients. For the Tlco % predicted category, mild disease 

is defined as >55%, moderate disease corresponds to 35-55% and severe disease is < 35%59(b). 
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Figure 3-4 | Overview of changes in pulmonary lung function categorised by clinical classification. Patients classified with 

rapid progressive disease were most likely to die within 3 months (p-value = 0.0152; Chi-square test) (a). However, individuals 

with rapid progressive disease were equally likely to have FVC time series that were 3, 6 or 12 months long (p-value = 0.47; 

Chi-square test) (a). In contrast, patients with slow progressive disease tended to have FVC time series at least 12 months 

long (p-value = 0.0002; Chi-square test) (a). Changes in Forced Expiratory Volume in 1 second (FEV1) and FVC were 

identical for the period that both pulmonary function tests were performed for each patient (b). The decline in FVC was 

consistent for each clinical group over 3- (c) and 6-monthly (d) intervals. 
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3.2.4 Modelling patterns of behaviour 
 

Monitoring IPF patients is motivated by the need to assess disease progression and inform the 

administration of therapy more appropriately to subject needs. A categorical change in FVC 

over 1-year is strongly predictive of IPF mortality when a threshold value of 10% baseline is 

used44,45,64. Linear regression has been utilised to calculate the rate of change in FVC between 

two observations with baseline as a point reference64. Whether a linear regression model based 

on FVC time series can be informative of IPF disease progression has yet to be determined 

(Figure 3.5). The evaluation of the linear regression statistical model forms the basis for 

assessing statistical models generated by alternative approaches. 

 

Linearity, unequal error variances and outlier should be assessed for every patient time series. 

The rate of FVC decline over three- and six-monthly intervals seem to be constant for patients’ 

classified with slow or rapid disease progression, thereby implying linear trends (Figure 3.4 c 

and d). The acute exacerbation time series is observed when a IPF patient experiences a short 

period of unexplained, accelerated FVC decline (Figure 3.5). A linear regression model was 

performed on the entire time series for a patient who suffered an acute exacerbation (Figure 

3.5a). Given that the residuals do not bounce randomly nor form a horizontal band around ‘0’ 

in a residual versus fitted plot (Figure 3.5b) suggest that the linear assumption is inappropriate, 

and the variance of error terms is unequal.  

 

The normal Q-Q plot is graphical tool that helps us to determine whether the data forms a 

normal distribution. If the data comes from a normal distribution, then the normal Q-Q plot 

should form a straight line, however the extremities of the FVC time series from the acute 

exacerbation patient curve off (Figure 3.5e). This suggests that the extreme values are more 

extreme than expected if the data were from a normal distribution. A patient who has 

experienced an acute exacerbation would be expected to have distinct distributions in their 

FVC observations given that an acute exacerbation is defined as abrupt, irreversible decline in 

lung function170.    
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Figure 3-5 | Assessment of linear regression models of an individual experiencing an acute exacerbation [PRO1056]. Daily 

FVC measurements for a patient with differing periods of progressive disease to which a linear regression is applied with its 

confidence interval (a). The residuals vs fitted values is used to detect non-linearity, unequal error variances, and outliers (b). 

Normal Q-Q plots associated with this linear regression model allows us to determine whether the error terms in the linear 

regression model is normally distributed (c). The scale-location plot helps us to evaluate whether the residuals are spread 

evenly within the predictor range, however the line deviates from the horizontal suggesting that there is non-uniform variance 

in the residuals, i.e heteroscedastic (d).  An assessment of influential values on the linear regression model can be made with 

Cook’s distance (e) and residuals vs leverage plots (f). Taken together these two plots suggest that the measurements between 

350+ are the most influential and that removing them would have a big impact of the model.    
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The spread-location plot helps to assess whether there is equal variance (homoscedasticity) 

amongst the residuals (Figure 3.5d). Given that the line is not horizontal and the points aren’t 

equally spread underline the unequal variance (heteroscedasticity) observed earlier. Observing 

unequal variance for linear regression statistical model of a patient who has experienced acute 

exacerbation is reassuring given that their disease progression is non-linear in that they have 

experienced an acute period of accelerated decline.  

 

The final consideration when assessing the quality of a statistical model is the assessment of 

which observations are the most influential within the regression analysis, as evaluated by the 

Cook’s distance (Figure 3.5e) and residual versus leverage (Figure 3.5f) graphs. Cook’s 

distance is metric of the influence of an outlier as a function of residual size and leverage. The 

uneven distribution in the Cook’s distance (Figure 3.5e) and the increase in the standardised 

residuals (Figure 3.5f) indicate that the more recent observations have the greatest impact on 

the statistical model being generated and should they be excluded the model would be very 

different. 

 

Taken together, the linear regression model does not incorporate the features within the FVC 

time series, particularly a patient who has undergone an acute exacerbation. The general 

equation for linear regression is given by  

 

𝑦𝑖 = 𝛼 +  𝛽 ∙ 𝑥𝑖 + 𝜀𝑖 

 

where yi is the FVC value, xi is time and εi represents the error or residuals of the statistical 

model. With residuals of unequal variance and observations of differing influence, the 

associated statistical model can be considered a poor representation of the loss of lung function 

because information is lost within the residual terms.    

 

3.2.5 Rolling statistics of univariate time series 
 

The benefit of home-based spirometry is the accumulation of higher resolution information 

regarding patient disease progression compared to hospital-based spirometry64,65.  A common 

approach to model univariate time series is to employ a moving-average model, which can be 

visualised using rolling statistics (Figure 3.6a). As seen for time series for a patient who 

experienced an acute exacerbation, the moving-average process is an improvement to a linear 

regression model (Figure 3.6a). Firstly, the rolling mean provides a better impression that there 
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may be different periods of rate of change in lung function (Figure 3.6a). Secondly, the rolling 

window used to calculate the standard deviation gives an impression of whether variance is 

constant and careful interpretation can indicate which values may be outliers (mean ± SD 4.36 

±0.072L). The size of three measurements for each window is a comprise between detecting 

different periods of decline in lung function and the variability between measurements. This 

value should be adjusted to account for differences in the statistical parameters of patients.   

 

Whilst acute exacerbations in IPF are common with a 2-year frequency of 9.6%31, it is unusual 

to measure patient lung function during the event. The FVC time series before and after the 

acute deterioration suggest that the lung function measurements exhibit a binomial distribution 

(Figure 3.5b). This is consistent with the failure of this time series to adhere to a normal 

distribution (Figure 3.3c). The peaks within the binomial distribution corresponds to the 

extended period of observations before and after the period of deterioration. Acute 

exacerbations may be the clinical event that prompts patient diagnosis with IPF31 and so the 

presence of a binomial distribution cannot be expected to be the sole feature of identification.  

 

3.2.6 The autocorrelation function 
 

IPF is defined by an irreversible decline in lung function regardless of its clinical course4 

meaning that FVC time series are characterised by a negative gradient (Figure 3.7a). The 

original time series contrasts with a modified version that has been made stationary by 

differencing (Figure 3.7b). This represents an important processing step prior to evaluating 

whether serial correlation or autocorrelation is existing in the subject time series and requires 

repeating until stationarity is achieved. An inspection of both the complete and partial 

autocorrelation functions (Figure 3.6c & Figure 3.7d) indicate that contemporary FVC 

observations are influenced by measurements of time periods of a day and no greater. All the 

time series’ within the study population required one round of differencing and indicated that 

any given FVC value was correlated with the corresponding measurement from the previous 

day.  
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Figure 3-6 | Rolling statistics of time series of an example patient experiencing an acute exacerbation [PRO1056]. Daily 

FVC measurements for a patient with differing periods of progressive disease. A rolling mean was applied with a window size 

of three measurements. The size of window will need to balance the variation within the time series due to random noise, the 

distribution of missing values and the sensitivity to changes. The rolling mean helps to smoothen out outliers and identify the 

underlying trend within the time series (a). The time series of a patient who has experienced an acute exacerbation exhibits a 

binomial distribution (b). 
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Figure 3-7 | Relationship of measurements with previous values for individual examples [PRO1014]. Daily FVC 

measurements for a patient with steady progressive disease as recorded (a) is compared to the differenced time series to make 

the time series stationary (b). This is an important processing step to assess the degree of correlation, y-axis, with past values 

of the time series separated by different periods of the lag on the x-axis for autocorrelation (c) and partial autocorrelation (d). 

The shaded region represents the level of significance within which values can be attributed to chance. The patterns for 

autocorrelation and partial autocorrelation are important to determine which time periods are correlated with each other. 
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3.2.7 Detrended Fluctuation analysis 
 

The self-similarity features within the FVC time series from the IPF cohort was compared to 

31 COPD patients recruited from the observational cohort (28 males, mean ± SD age 65.9±9.5). 

Being an obstructive disease, COPD disease progression is evaluated by changes in FEV1 and 

FVC (FEV1 1.08±0.38 litres; FVC 2.58±0.67) (Figure 3.8a). The survival of COPD patients is 

not affected by whether individuals were classified as having moderate, severe or very severe 

on the basis of FEV1 predicted (Figure 3.8b). Patients with COPD had an increased risk of 

death if they are male (HR 3.51; CI 0.68-18.3) and had a lower weight (HR 1.36; CI 0.58-3.2) 

(Figure 3.8c). Whilst FVC does not influence the risk of death (HR 1.02; CI 0.24-4.4), which 

is consistent with COPD characterised by airway limitation, unusually the risk of death is 

reduced with a lower FEV1 (HR 0.69; CI 0.0.22-2.2) (Figure 3.8c).      

 

Detrended fluctuation analysis (DFA) measures self-similarity in the form of a scaling 

exponent. The variability a time series’ is determined by measuring the fluctuation about linear 

regressions performed within different sized windows (Figure 3.9 a-c). Variability informs the 

scaling exponent which is calculated by the gradient of a double log plot of fluctuation and 

window size (Figure 3.9d). The mean scaling exponents of the COPD and IPF cohorts are 

(0.82±0.15 and 0.85±0.16 respectively; mean ±SD) and are statistically similar (p-value = 0.44; 

student’s t-test) (Figure 3.9e). Baseline physiological parameters of IPF and COPF differed 

only in terms of weight, BMI, FEV1 and FEV1 % predicted.      
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Figure 3-8 | Distribution of lung function and comparison of baseline physiological parameters on survival of patients 

diagnosed with Chronic Obstructive Pulmonary Disease (COPD).  32 COPD patients were enrolled into the London COPD 

Cohort and contributed a minimum of 1 year of data. The distribution of Forced Expiratory Volume in 1 second (FEV1) and 

FVC measurements were obtained using a Micro spirometer with observations exceeding the 95% confidence interval 

indicated (a). Kaplein-Meier survival curve illustrates that survival probability on the basis of moderate (red, 50% < FEV1 < 

80%), severe (Green, 30% < FEV1 < 50%) and very severe (Blue, FEV1 < 50%) disease are indistinguishable. Cox hazard 

analysis compares the influence of multiple baseline variables on survival (c). 
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Figure 3-9 | Comparison of the variability in the forced vital capacity (FVC) time series of IPF and COPD patients using 

Detrended Fluctuation Analysis (DFA). Calculation of the scaling exponent, first, requires segmenting the entire patient time 

series into different sized windows and determining the fluctuation of each window size (a-c). Secondly, the scaling exponent 

is determined from the gradient of a double log plot of fluctuation against window size (d).  The variability of the FVC time 

series’ of 38 IPF and 32 COPD patients enrolled in the PROFILE study and the London COPD cohort respectively for a 

minimum period of 75 days were compared using the scaling exponent (α). A comparison of the mean scaling exponents of 

IPF and COPD patients (0.82±0.15 and 0.85±0.16 respectively; mean ±SD) indicate that there is no statistical difference 

between IPF and COPD (p-value = 0.44; student’s t-test) (e). 
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Variable IPF (mean) COPD (mean)  p-value 

Height 1.73 1.72 0.9 (NS) 

Weight 84.1 73.8 <0.001 

BMI 28 24.8 <0.01 

FVC 2.76 2.57 0.32 

Age 67.5 65.8 0.444 

FEV1 2.24 1.08 0 (signif) 

FEV1 & pred 76.2 2.96 0 (signif) 

Table 1 | Physiological parameters at baseline were compared between the IPF and COPD cohorts using the Student’s t-test 

to determine whether distributions were statistically different 
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3.3 Discussion 
 

The results of this chapter are that several physiological parameters are associated with altered 

risk of mortality. Changes in lung function correlated risk of mortality and disease progression 

in IPF patients at 3-monthly intervals. Modelling patterns of IPF disease behaviour must 

account for the potential non-linearity of the clinical course, i.e. occurrence of an acute 

exacerbation. Sequential values within the FVC time series are influenced by measurements 

observed the day before as demonstrated by autocorrelation. Finally, the variability within the 

FVC time series of IPF and COPD are similar suggesting that both diseases may have common 

features and defects at play.  

 

IPF is a disease that afflicts patients of older age with individuals of a median age of 66 years 

at time of diagnosis3,4. Inspection of the change of mortality with age are broadly consistent 

with the assertion that older age confers a poorer prognosis4 given that those subjects <65 years 

(HR, 0.458; CI, 0.1951-1.07)  at the point of diagnosis have a lower risk of mortality that those 

who were 65-74 years. The group who were diagnosed with IPF after 75 years (HR, 0.769; CI, 

0.2531-2.34) also tended to have a lower risk of mortality compared to the reference 65-74 year 

group, which may be a consequence of a large confidence interval and too few number of 

subjects (7 subjects, 14%).  

 

Baseline FVC predicted measurements differs between IPF patients consistent with variable 

asymptomatic periods prior to diagnosis4. Individuals with asymptomatic, early lung fibrosis 

have been identified within families of individuals with familial pulmonary fibrosis171, 

however it is unclear as to how individuals with subclinical IPF should be followed and 

managed4. The frequency and distribution of missing values varied within and between 

patients, which can be addressed by real-time spirometry65 and longitudinal data analysis.  

 

Imputation strategies can be employed to account for the non-random nature of missing data 

and serial trends in lung function before or after missing data172. Whilst most missing data in 

nature are informative, it was surprising that the amount of data did not correlate with clinical 

classification. However, other symptoms or co-morbidities may correlate with the distribution 

of missing data within the time series. Whether missing data are biased across treatment groups 

will have to be addressed in future clinical trials that consider individual or combination 

therapy.  
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Participants of the sub-study were required to be recorded spirometry readings in a dedicated 

diary64 meaning that patient compliance was evaluated retrospectively. Real-time spirometry 

has the potential to improve patient compliance by prompting patients to perform their 

spirometry manoeuvre65. In addition, real-time monitoring can enhance the quality of FVC 

measurements used for analysis by evaluating the manoeuvre during its performance and 

inform the participant whether a repeated observation is required65.     

 

Rolling statistics determine trends in the time series based on past information, in particular 

the average and variance. Whilst rolling statistics offer improvement to a linear regression 

approach (Figure 3.5a) for modelling changes in the lung function of IPF patients, rolling 

statistics fail to account for changes that may influence future measures of disease progression. 

Moving averages would be limited for individuals who experience multiple acute exacerbations 

as they exhibit high volatility173. In addition, determining the optimal window size used to 

calculate the mean and standard deviation will be difficult to determine on a prospective basis 

without additional information of individual patient clinical course173.  

 

The FVC time series for the participant who experienced an acute exacerbation adheres to a 

binomial distribution (Figure 3.6b), with the two distributions corresponding to pre- and post- 

acute deterioration. Identifying patients who have experienced an acute exacerbation is 

significant to understanding disease progression and assessing risk of mortality in a clinical 

setting174. Determining the distribution of lung function observations within a time series is a 

retrospective approach, meaning its value is limited to identifying patients after the clinically 

significant event and any therapeutic period.      

 

Longitudinal lung function data are characterised by repeated measurements through time 

which may be correlated with itself as a function of a delay. The autocorrelation, or Pearson 

correlation, at a time interval of 1 is significant within the IPF patients meaning that FVC 

measurements can be predicted using a linear regression between the present and immediately 

day before values. An important outcome of serial correlation between daily FVC 

measurements is that it favours daily home spirometry for the home monitoring of IPF disease 

progression. Time series analysis of daily home spirometry would benefit from an additional 

parameter autoregression which can contribute to generating a statistical model of IPF disease 

progression.   
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The temporal history of longitudinal FVC measurements for IPF patients can be investigated 

by comparing the scaling exponent with a COPD cohort. Self-similarity for peak expiratory 

flow (PEF) for this COPD cohort has been characterised previously and compared to other 

respiratory diseases121,122,175. The algorithm generated during this study produces a statistically 

similar scaling exponent value for PEF in the COPD cohort to previously reported values122. 

 

Given that the scaling exponent of COPD and IPF FVC time series are above 0.5 suggest that 

long-range correlations exist and that observations are related to previous values. This implies 

that the respiratory system of IPF and COPD have a memory meaning, which is consistent with 

the previously described autocorrelation.  COPD and IPF FVC time series have statistically 

similar scaling exponents that these two respiratory diseases may have common features and 

defects that influence daily variability in FVC, that are different from asthma. 

 

This chapter can be concluded with a partial acceptance of its hypothesis that there is clinically 

important information within the longitudinal measurements of physiological parameters 

relating to IPF disease progression. The design of future clinical trials will require sequential 

measurements of physiological parameters for IPF patients experiencing steady disease 

progression and acute exacerbations to allow the development of an optimisation strategy for 

the calculation of temporal components in real-time. It is yet to be determined how measures 

of these temporal components change with therapeutic interventions and whether they used as 

indicators of therapeutic efficacy. 
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4 Results chapter 2: Disease classification model assembly  
4.1 Introduction 
 

The chapter hypothesis is that information within the FVC time series of IPF patients can be 

used to classify IPF disease progression. Therefore, the principal aim of this chapter is to 

compare and validate the modelling approaches to best identify changes in the clinical course 

of IPF.  

 

A central dogma of physiology is the principle that all cells, tissues and organs endeavour to 

maintain a constant steady-state162,176. Contemporary signal processing technologies that obtain 

continuous time series data from physiological processes including heart rate (HR) and blood 

pressure (BP) are characterised by non-stationarity and non-linearity, even if the physiological 

system is described as being at “steady-state” conditions162,176. The maintenance of a healthy, 

optimal environment is the outcome of a continual, dynamic, bi-directional interaction between 

multiple neural, hormonal and mechanical control systems that operate at a local and global 

levels162,176.  

 

Data presented in the first results chapter suggest that the time series of IPF patients contain 

“hidden information” that can be characterised by applying specialised concepts and techniques 

from statistical physics162. Application of techniques like detrended fluctuation analysis (DFA) 

imply that long-range correlations exist with the IPF lung that result from the regulation of the 

complex processes that take place within it112,162. If these fluctuations were absent across a 

range of time scales, the ability of the lung to functionally respond to unpredictable stimuli and 

stresses would be restricted162. Scale-invariance, as measured by the scaling exponent in DFA, 

relate contemporary measured variables to recently preceding observations and fluctuations of 

the more distant past.  

 

Whilst DFA has been invaluable in establishing that physiological variability exists within the 

time series of IPF patients, this has been established retrospectively using time series’ with a 

minimum 75 observations. Therefore, a potential limitation of the DFA technique is its utility 

for monitoring IPF disease progression on an ongoing process given that clinically significant 

events like acute exacerbations occur within a 30-day period38. An alternative approach to 

assessing scale invariability is to utilise a visual tool that can be applied to relatively short time 

periods, termed to Poincaré plot177. 
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Poincaré plot analysis has been employed to determine the hidden patterns within the heart rate 

variability (HRV) thereby helping to assess the heart’s adaptability to altering physiological 

conditions of patients with heart failure, norepinephrine infusion and post-myocardial 

infarction178–181. Patterns formed by physiological variability can be visualised by generating a 

two-dimensional plot of consecutive points of the corresponding physiological time series (i.e. 

lag-1 plot). Visual inspection of the resulting distribution is guided by the standard descriptors, 

SD1 and SD2, described previously in linear statistics182. SD1 and SD2 describe the short- and 

long-term variability of the physiological time series by measuring the standard deviations 

perpendicular and parallel to the line of identity (i.e. 𝑦 = 𝑥 axis), respectively182. 

 

All statistical analyses are affected to some degree by the presence of missing data. Participants 

with IPF may discontinue daily spirometry because of their disease progression, technical 

difficulties or patient distress from witnessing their lung function decline183. Enhanced 

technology including blinding, data storage and remote data access may improve patient 

compliance by promoting patient participation and monitoring manoeuvre quality183. Simple 

univariate time series algorithms include the last observation carried forward, next observation 

carried backward and the Kalman filter. The Kalman filter is favoured as an imputation method  

because it utilises a number of measurements to understand the statistical noise within the time 

series when generating estimates160.          

 

A popular statistical method amongst medical researchers for analysing and forecasting time 

series data is the AutoRegressive Integrated Moving Average (ARIMA) model101,102,106,184. The 

general ARIMA model is a class of statistical model that incorporates three processes involved 

in univariate time series, autoregression (AR), integration (I) and moving average (MA). Each 

process for an ARIMA model is specified by integer values representing their order, denoted 

(p,d,q) respectively.  

 

An autoregression model describes the dependence of current and future values on past time 

points with the order referring to the lag observations. In addition, the integration process 

defines the extent of differencing required to make the time series stationary and the moving 

average denotes the dependency of an observation on the residual error obtained from a moving 

average. The suitability of the ARIMA statistical model is underlined by the dependency of 

FVC measurements on observations from the previous day, as shown previously. Akaike’s 

information criterion (AIC) and the Bayesian information criterion (BIC) allows the quality of 

a set of statistical models to be compared with each other.      
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The lung can be considered to be a complex system of immunological, mechanical and 

inflammatory components that fluctuate non-linearly in response to environmental stimuli112. 

Disease progression for some IPF patients may abruptly change, termed an acute exacerbation, 

resulting in a period of accelerated, irreversible loss in lung function4. This clinically significant 

event may be likened to similar sudden changes, referred to as tipping points, for complex 

dynamical systems in medicine, global finance or the earth system124. Generic early-warning 

signals may indicate whether tipping points are approaching for asthma attacks, shifts in 

oceanic circulation and systemic market crashes185–187.   

 

The tipping points of complex systems refer to a family of catastrophic bifurcations in 

mathematical models which themselves are simplifications of the stability properties of 

complex systems188. Given that the particular mechanism underpinning a tipping point within 

a complex system is unknown, recent research activity has sought to find generic indicators of 

the proximity of a tipping point. In particular, a phenomenon referred to as critical slowing 

down describes the ability of a complex system, including living systems, to return to 

equilibrium when subject to small perturbations188–190. Therefore, critical slowing down will 

increase in the proximity of a tipping point because the complex system has a reduced ability 

to recover from changes. In the context of longitudinal FVC measurements, critical slowing 

down will correspond with increased variance and temporal autocorrelation due to greater 

fluctuations124,191.  

 

The hypothesis of this chapter is that the temporal information within FVC time series’ of IPF 

patients can be utilised to classify IPF disease progression. Therefore, the main aim is to 

compare and validate the modelling approaches that classify the disease progression of IPF. 

These modelling approaches will need to account for the variability of lung function between 

patients and the unknown clinical course at diagnosis.  
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4.2 Methods 

4.2.1 Treatment of outliers and imputation of missing observations 
 

Linear statistics were applied to the original time series to determine the mean and standard 

deviation. Outliers were classified on the basis of observations falling outside the range 

specified by the mean ± standard deviation. Measurements above this range were replaced with 

the sum of the mean and standard deviation. Missing values within time series were imputed 

using the Kalman filter function provided by the imputeTS package and implemented in the R 

statistical computing environment192,193.     

 

4.2.2 Poincare Plot 
 

The Poincare plot is a geometrical demonstration of the time series in a Cartesian plane 

constructed by pairing values of the time series with measurements immediately before, i.e. 

lag-1194. Based on this construction, a sequence of equal observations will fall along the line of 

identity, which denotes the 45° diagonal. Assessment of variability within each time series is 

made by fitting an ellipse to the scattergram, which can be quantified using SD1 and SD2 

statistics.  Short-term variability, as measured by SD1, is defined by the width of the ellipse or 

spread of point perpendicular to the line of identity. However long-term variability, denoted by 

SD2, corresponds to the length of the ellipse or spread of points parallel to the line of identity.   

 

Quantification of the dispersion measured perpendicular and parallel by SD1 and SD2 

respectively are related to two basic statistical measures, standard deviation of RR interval 

(SDRR), and standard deviation of the successive difference of RR interval (SDSD)195. 

Therefore, SD1 and SD2 can be calculated by195:  

 

𝑆𝐷12 =
1

2
𝑆𝐷𝑆𝐷2 

= 𝛾𝑅𝑅(0) − 𝛾𝑅𝑅(1) 

 

𝑆𝐷22 = 2𝑆𝐷𝑅𝑅2 −
1

2
𝑆𝐷𝑆𝐷2 

= 𝛾𝑅𝑅(0) + 𝛾𝑅𝑅(1) − 𝑅𝑅2̅̅ ̅̅ ̅ 

where 𝛾𝑅𝑅(0) and 𝛾𝑅𝑅(1) are the autocorrelation functions for the lag-0 and lag-1 intervals of 

the time series and 𝑅𝑅 is the mean of the time series.    



62 | P a g e  

 

4.2.3 Detection of early-warning signal 
 

The gradual progression of chronic diseases such as IPF may be interrupted by a sudden health 

deterioration. Disease progression can be considered to occur in three states: a normal, pre-

disease and a disease state196–198. In the context of IPF, the disease is under control meaning 

that dynamically the system is highly resilient and robust to perturbations or injury. The pre-

disease state is situated at the limit of the disease state, just prior to the transition point, and is 

characterised by low resilience to perturbations due to its dynamical structure. During the pre-

disease state, the respiratory system can be regarded as reversibly sensitive to external stimuli 

but can potentially collapse through to a disease state when subject to a small perturbation.  

 

The diseased state represents a deteriorated period of high resilience and robustness to external 

stimuli meaning that the achieving a normal state even with treatment may not be an attainable 

goal. For many complex diseases, the ability to identify the pre-disease disease state is crucial 

to prevent acute deterioration but is difficult given that this state shares many characteristics 

with the normal state196. Distinguishing the pre-disease and disease states relies on the 

identification of dynamical network biomarkers (DNB) which are the first network of genes 

formed during critical transitions and are related to causal genes in a disease network196.  

 

The identification of the DNB relies on monitoring fluctuations in gene expression of 

molecules within and outside the network197. Concentrations of members in the DNB will 

fluctuate more in the pre-disease state whilst behaving collectively together. In order to develop 

a signal from changes in gene expression to form the following composite index was proposed 

to evaluate the nonlinear dynamics of the system197: 

 

I =
SD𝑑∙PCC𝑑

PCC𝑜
 

 

where SDd is the standard deviation of the dominant group, PCCd is the average Pearson’s 

correlation coefficient of the leading group and PCCo is the average Pearson’s correlation 

coefficient of the leading group and others.  

 

The composite index compares variance, as measured by the Pearson’s correlation coefficient, 

between members within DNB and those outside to determine whether these members form a 

unique group. This principle can be generalised to a univariate time series to compare the 
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variance of the most contemporary observations with those at baseline. Measurements of FVC 

during an acute exacerbation should be correlated better with themselves than with 

observations during the pre- or post-deterioration. Therefore, the composite index can provide 

an ongoing comparison of the Pearson’s correlation coefficient (PCCd) of the most 

contemporary FVC observation with that of every observation since baseline (PCCo). 

 

The numerical value of the composite index is unique to each individual patient as it accounts 

for the fluctuation observed within each FVC time series. Interpretation of the composite index 

prior to and during an acute exacerbation can be described as consisting of two sections, each 

of which is described by two linear regression functions characterised by different slopes. The 

challenge is determining the point of separation between the two regression functions, which 

is not known a prior143. For n pairs of observations (xi,yi), i = 1,…, n and assuming that xi are 

ordered x1 ≤ x2 ≤ … ≤xn to maintain generality. The relationship between the x and y values can 

be described by two linear regression functions of the form  

 

𝑦1 = 𝑎1 + 𝑏1 ∙ 𝑥𝑖       𝑥𝑖 ≤ 𝑥0 

𝑦2 = 𝑎2 + 𝑏2 ∙ 𝑥𝑖       𝑥𝑖 > 𝑥0 

 

Where (x0,y0) is the coordinates of the join point, a1 and a2 represent the intercepts of the first 

and second regression lines respectively and b1 and b2 represent slopes of the first and second 

regression lines. Estimation of these parameters is based on the method of least squares where 

the optimal values of the aforementioned parameters correspond to the minimal residual sum 

of squares from the algorithm. For the first iteration of the algorithm, the first three observations 

of the data set are collated to estimate the parameters of the first regression function with the 

remaining observations used for fitting the second. Each subsequent iteration involves shifting 

an observation to the first part of the data until a range of join points are sampled143.  

 

 An alternative method to interpreting the numerical value of the composite index is proposed 

in the form of the additive model. A maximum threshold is calculated on a continual basis 

using the sum of the mean and standard deviation from values within the composite index. 

Three consecutive composite values that exceed the maximum threshold result in change in the 

binary output to ‘1’.    

 

The evaluation of changes in the composite index and the ability of the piecewise and additive 

model at interpreting them was assessed using simulated spirometric data. The trajectory of 
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simulated measurements was obtained from the logistic function that was reflected and 

translated in the y-axis. Variance was introduced by generating random number based on a 

normal distribution with a median standard deviation of 0.13L (range, 0.04-0.38L)64.  

 

4.2.4 Autoregressive integrated moving average (ARIMA) model  

 

The Box-Jenkins approach to ARIMA modelling of time series was adopted to take advantage 

of the associations between sequentially lagged relationships that exist within time series 

data199. ARIMA models are designed to describe, in mathematical terms, how variables vary 

with time and are formulated using three empirically driven phases: identification, estimation 

and diagnostic testing200. The identification phase involves ascertaining the presence of 

patterns within the time series, manipulation of the data to achieve stationarity and 

identification of potential models. An automated approach to selecting the optimal parameters, 

in terms of fit and parsimony, for each ARIMA model was implemented with the aid of the 

auto.arima function from the forecast package201.  

 

The parameters for that define a standard ARIMA model are the order of autoregression (p), 

the degree of difference (d) and the order of moving average (q). During the search for a 

suitable model for the order constraints provided within the function, the Akaike and Bayesian 

information criterion (AIC & BIC), are used to assess the quality of each model relative to the 

others generated. These two estimators evaluate the amount of information lost in balancing 

the goodness-of-fit and simplicity of the model. Hence, the model parameters that correspond 

to the least AIC & BIC values infer the model of the highest quality202.  

 

The estimation phase involves the ‘R’ statistical computing environment generating statistical 

estimates, obtained by the conditional least squares method, for each parameter in the 

model103,200.  Diagnosis of the model aims to assess how well the model fits and entails 

checking that there are no significant autocorrelations amongst the residuals using the Ljung-

Box test103,200.     
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4.3 Results 

4.3.1 Treatment of outliers and imputation of missing observations 
 

FVC measurements were retrospectively adjusted on the basis of exceeding the sum of the 

mean and standard deviation of the patient time series (Figure 4.1). Outliers were identified in 

the minority of observations with, at most, ten observations recorded into the diary by the 

patient being adjusted. Adjustments tended to localise around the trend of the time series as a 

whole and tended to either be under- or over- estimate local trends within the time series. The 

Kalman filter utilises the maximum likelihood method to allow variable periods of missing 

measurements to be imputed102 (Figure 4.1). Whilst observations tended to be overestimated, 

successive imputed measurements tended to follow the trends of the time series (Figure 4.1e,f).  

 

4.3.2 Short- and long-term variability of lung function time series 
 

Poincare plots allow a visual representation of the nature of the fluctuations within FVC time 

series. The ellipse-fitting technique and its quantification by the Poincare descriptors, SD1 and 

SD2, underpin the variability between patients (Figure 4.2). Variation between patients with 

regards to their fluctuations may be due to technical and biological sources. Biological 

variation primarily originates from the pattern of disease progression, with particular 

consideration to whether a patient experiences an acute exacerbation. The SD1/SD2 ratio 

represents the ratio between short- and long-term variability which has had mixed results in 

characterising complex dynamic behaviours194,203.  

 

Whether Poincare descriptors characterise the complex dynamic behaviours underpinning IPF 

disease progression was sought by comparing these parameters between clinical groups of 

disease progression (Figure 4.3). Of the 28 patients who experienced rapid disease progression, 

7 individuals survived the entire length of the study. However, 21 subjects endured slow 

disease progression, of whom 16 died during the course of the study. The SD1 and SD2 

parameters did not statistically distinguish between the clinical groups relating to disease 

progression (Figure 4.3b). Whilst the SD1/SD2 ratio, particularly between rapid/death and 

slow/death, was approaching statistical difference (Figure 4.3b). The study was under-powered 

requiring 45 individuals per group to ascertain whether a statistical difference exists.    
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Figure 4-1 | Statistical treatment of outlier and missing values within the Forced Vital Capacity (FVC) time series for a 

subgroup of participants within the PROFILE (Prospective Observation of Fibrosis in the Lung Clinical Endpoints) 

clinical trial. Outliers were retrospectively classified as exceeding the 95% confidence interval and where replaced with the 

maximum 95% confidence value for the corresponding time point. Missing values were retrospectively imputed using the 

Kalman filter. Original time series (a,c,e) are compared with their corresponding adjusted time series (b,d,e) for three selected 

patients. 
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Figure 4-2| Poincaré plots for a selection of time series’ for participants. Longitudinal Forced Vital Capacity (FVC) time 

series for three patient’s with adjusted outliers and imputed missing values are shown in (a,c,e) form the basis of standard 

Poincaré plots (b,d,f). The Poincaré descriptors, SD1, SD2 and the SD1/SD2 ratio, were calculated from each individual 

Poincaré plot (g). SD1 and SD2 are standard descriptors of linear statistics and characterise the deviation along and 

perpendicular to the line of identity, respectively. The SD1/SD2 ratio may play an important role in analysing data when non-

linear behaviour distinguishes between health and disease. 
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Figure 4-3 | Poincare descriptors for the daily spirometry subgroup of the PROFILE cohort. Clinical classification of patient 

disease progression for the daily spirometry subgroup (a). The threshold for disease progression on the FVC continuous 

variable is defined as a 10% decline of baseline over 1-year. At the time of censorship, of the patients with slow-progressive 

disease 5 were alive compared to 16 who had died. In contrast, from the proportion of participants who were classified with 

rapid-progressive disease 7 participants were alive  whilst 22 passed. A one-way ANOVA test suggests that there are 

significant differences between the disease progression at less than 0.05 significance level for the SD1/SD2 ratio but not for 

SD1 and SD2. A Tukey multiple pairwise-comparison suggests that a significant difference between the slow/death and 

rapid/death groups with an adjusted p-value of 0.06. Power analysis assuming an effect size of 0.25 suggest that each group 

would need 45 individuals to detect a statistically significant difference at the 0.05 confidence level. 
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4.3.3 Autoregressive integrated moving average (ARIMA) model 

 

Exploratory data analysis of FVC time series, in particular relating to autocorrelation, suggest 

that longitudinal lung function measurements of IPF patients are non-stationary and 

contemporary measurements are correlated to previous observations within a time interval of  

a day. The most parsimonious ARIMA models were evaluated for each FVC time series and 

every combination of parameter (p,d,q) up to the order of 5 using an automated algorithm 

within the auto.arima function201. The disease progression of twenty-two patients were 

modelled by an ARIMA(1,1,1) model and the remaining represented by an ARIMA(1,1,0) 

model, where each model corresponded to the lowest AIC and BIC of those generated  (Figure 

4.4a,c,e).  

 

Further diagnostic checking of each ARIMA model involved residual analysis, specifically 

measurement of the autocorrelation within the residuals of the selected ARIMA model using 

the Ljung-Box test. The p-value of the Ljung-Box statistic for both the ARIMA(1,1,1) 

(mean±standard deviation Ljung-Box statistic 0.88±1.99; p-value 0.68±0.31) and 

ARIMA(1,1,0) (Ljung-Box statistic 0.85±2.45; p-value 0.70±0.27) models exceed the 0.05 

level of significance indicating that the residuals are independent and that these models account 

for all trends present in the data.  

 

4.3.4 Detection of early-warning signal 
 

The value of the composite index remained constant (Figure 4.4) whilst the gradient of lung 

function did not change. At the beginning of an acute period of deterioration the value of the 

composite index rose, and varied as the period of deterioration continued. After the period of 

acute deterioration, the rate of lung function decline returned to original parameters albeit at 

new, lower absolute level. The initial value of the composite index is dependent on when the 

spirometry begins, and given that the time of diagnosis varies between patients there will be an 

issue interpreting changes in composite index. 

 

The piecewise and additive models provide two distinct methods for interpreting the composite 

on an individual time series basis. An additive model relies on three sequential composite index 

values exceeding the sum of the mean and standard deviation to generate an exacerbation signal 

of ‘1’ for the duration of the acute deterioration (Figure 4.5c,d). However, the piecewise model 
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uses the angle between two adjacent linear regressions to indicate the beginning and end of an 

exacerbation, which is highlighted by different signs (Figure 4.5e,f).  
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Figure 4-4 | Autoregressive Integrated Moving Average (ARIMA) statistical model for a selection of patients’ longitudinal 

FVC measurements. For each time series, the most parsimonious ARIMA model and its corresponding (p,d,q) parameters 

were chosen by selecting the model with the lowest Akaike and Bayesian Information Criterion for a range of systematically 

generated ARIMA models (a,c,e). Local maximum and minimum values were calculated from ARIMA fitted values for 

corresponding time series (b,d,f).  
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Figure 4-5 | Calculation and interpretation of the composite index to assess the presence of a critical transition. Simulated 

spirometry was used to form the basis for calculating the composite index that may be used to indicate the beginning of an 

acute exacerbation (a). Two linear regressions (represented by the ovals) are compared in the composite index to contrast the 

short-term decline in lung function with lung decline since baseline. The numerical value of the composite index needs to 

interpreted with respect to the baseline reading of each individual patient. The additive (c,d) and piecewise (e, f) models allow 

the comparison of composite index values for each patient to generate either a binary exacerbation signal for the additive 

model (d) or no-zero angle between adjacent linear regression gradients for the piecewise model (f). For the additive model 

the exacerbation signal is generated when three consecutive values exceed the 95% confidence interval (c).  
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4.4 Discussion  
 

The results of this chapter are that the imputation of outliers within patients’ time series can be 

improved with techniques like the Kalman filter that account for present trends. In addition, 

dynamic descriptors, like the Poincaré plot, have the potential to classify IPF patients according 

to their disease progression. Also, the application of the ARIMA model to FVC time series of 

IPF patients accounts for all trends present within the data. Finally, treating an acute 

exacerbation as a critical transition has the potential to provide an early-warning signal to this 

clinically significant event.  

 

The treatment of outliers is deemed to be important prior to determining the parameters of the 

ARIMA statistical model given that they reduce the ability of the model to account for trends 

within time series data. Outliers are likely to be present within the data due to data entry error 

and can be addressed by the introduction of Wi-Fi-enabled spirometers that can transmit data 

in real-time183. Whilst real-time transmission of data can promote patient compliance and 

reduce the extent of missing data, there is no guarantee the elimination of missing values. 

Therefore, dealing with missing data and outliers has the potential to improve ARIMA model’s 

ability to represent and forecast trends in disease progression. 

 

Inappropriate statistical modelling of home spirometry data and treatment of outliers can cause 

unanticipated technical and analytical issues that prevent potentially beneficial treatment being 

made available to patients of ILD204. Linear regression models do not best account for the 

information within home spirometry data meaning that large numbers of measurements are 

required to prevent the prediction of physiologically implausible values, particularly in the 

presence of outliers204.  

 

Outliers were identified retrospectively using statistical descriptors, such as mean and standard 

deviation, which apply to the entire time series. IPF disease progression can be non-linear, 

particularly during an acute exacerbation4, meaning that outlier treatment may be benefitted by 

segmenting the time series into shorter periods of uniform disease progression. Discrete periods 

of uniform disease progression can be aided by the application of piecewise linear regression 

to a sequence of localised maximum and minimum values (Figure 4.4).   

 

Both detrended fluctuation analysis (DFA) and Poincare plot analysis are complementary, non-

linear methods that can be used to analyse the variability in physiological time series205. DFA 
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provides insight into the long-range correlations and, therefore adaptability, within complex 

biological systems122,162,205. In contrast, Poincare plot analysis permits the quantitative and 

visual analysis of time series fluctuations and, specifically the evolution of a dynamical system 

in phase space205. A significant consequence of the Poincare plot being defined in phase space, 

rather than time space for DFA, is that the Poincare plot is influenced by the length of the 

interval but not the amount of intervals that occur206.    

 

Whilst this study has utilised DFA to establish that FVC time series from IPF patients contain 

long-range correlations, a limitation is that this technique requires a minimum of 75 daily 

observations. Poincare plot analysis has the potential to give a clinically useful insight into 

changes in patient well-being because it does not require long time series. The insights that 

Poincare plot analysis can provide regarding the variability of FVC time series and other 

parameters is yet to be verified. Power analysis indicate that at least 45 patients per clinical 

progression group are required (Figure 4.3) to determine whether the Poincare descriptors can 

distinguish patients’ disease progression. However, if Poincare descriptors can be used to 

characterise IPF patient disease progression, this would greatly assist establishing patient 

prognosis early in their clinical care.   

 

Statistical modelling of IPF disease progression can be achieved using a combination of 

autoregressive (AR) and moving average (MA) models. Inspection of residuals using the 

Ljung-Box test indicate randomness and that all systematic trends have been captured within 

the model. Each FVC time series were characterised by either an ARIMA(1,1,1) or 

ARIMA(1,1,0) model with unique combinations of coefficients relating to each model. These 

models characterise their respective time series and so can be used to indicate clinically 

significant events such as an acute exacerbation. In addition, ARIMA models can be used to 

forecast disease progression, which may potentially be useful to predict responses to therapy. 

 

The ability to identify patients who experience an acute exacerbation is clinically significant in 

terms of patient care, treatment and understanding disease mechanisms to develop therapy. 

Likening an acute exacerbation to a critical transition assists in the development of potential 

approaches that allow the trends within the time series to be understood. The composite index 

permits the detection of an acute deterioration by comparing the rate disease progression before 

and after a deterioration. An assumption is that the patient has been diagnosed prior to an acute 

exacerbation and has been monitored for a prescribed period of time. 
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Each patient is diagnosed at different stages during their illness meaning that their baseline 

FVC will be different4. Interpretation of changes in the composite index can be achieved by 

the either the additive or piecewise models in order to highlight a critical transition. The 

additive model has the advantage that the entire period of acute deterioration is marked by a 

‘1’ signal of binary output. In contrast, the piecewise model indicates the start and end of the 

acute deterioration with a positive or negative value but not the period. Whilst it is possible to 

utilise these models in conjunction, how these models perform in identifying a number of cases 

with an acute exacerbation remains to be seen.  

 

Much of the work has focused on the development of statistical models used to understand IPF 

disease progression from longitudinal FVC measurements. This is clinically important as it 

forms the basis for home monitoring of patients and timely administration of care. The 

statistical models, however, do not directly provide insight into the molecular mechanisms of 

IPF disease progression. These statistical models can be utilised during clinical trials to aid 

analysis of changes in biomarker expression during clinically important events and in response 

to potential therapies. Therefore, these statistical models could help to elucidation of the 

mechanisms that underpin IPF disease progression. 

 

There is sufficient data within this chapter to partially accept the hypothesis that the temporal 

information within FVC time series’ can be utilised to classify IPF disease progression. 

However, further work is required to address the application of various analytical approaches 

and the weighting of physiological parameters for individual patients given their therapeutic 

background and comorbidities. It would be of particular interest to establish how the Poincaré 

descriptors reflect the IPF clinical course, the parameters of the ARIMA model and whether 

the composite index can be used as an early warning signal of an acute exacerbation.   
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5 General Discussion 
 

Idiopathic pulmonary fibrosis (IPF) is characterised by poor prognosis with each patient 

experiencing a unique clinical course defined by their rate of deterioration, acute deterioration 

and death145,147. Presently, there is no established approach to combine the individual clinical 

parameters that do correlate with survival to accurately determine prognosis. The motivation 

for this study is to apply statistical time series techniques to obtain concrete and reliable 

information about IPF disease progression. 

 

In chapter 3, I determine common statistical features within the longitudinal forced vital 

capacity (FVC) measurements of IPF patients characterised by distinct disease progression 

profiles. Specifically, a linear regression model does not provide an adequate approach to 

account for all the information within FVC time series. In addition, FVC measurements are 

correlated to readings taken the day before, as evaluated by autocorrelation. Finally, FVC time 

series from IPF patients exhibit long-range correlation, or memory, as determined by detrended 

fluctuation analysis (DFA).  

 

Chapter 4 develops an approach to determine the disease progression on an individual, real-

time basis using a suitable statistical model. In particular, the autoregressive integrative moving 

average (ARIMA) class of statistical model was deemed appropriate given the non-stationary 

and lag-1 autocorrelation nature of longitudinal FVC time series. The parameters 

corresponding to the most parsimonious ARIMA model for each patient can be determined on 

an automated basis. Each ARIMA model forms the basis for characterising IPF disease 

progression with regards to deterioration rate, acute exacerbation events and responses to 

therapy.  

 

Even though these findings have been addressed in detail within their respective chapters, 

general concepts emerge that warrant further consideration. Therefore, during this concluding 

discussion, I will reflect on the following:  

1. Statistical models underpinning systems biology of IPF 

2. ARIMA modelling and modelling of IPF disease progression 

3. Non-linear dynamical analysis 

4. Outliers and missing data 
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1. Statistical models underpinning systems biology of IPF 

 

Home-based monitoring of physiological variables for complex respiratory diseases has 

become increasingly practicable due to miniaturisation and falling cost of equipment. In 

concert with improvements of wireless electronic connectivity, daily surveillance spirometry 

has the potential advantage for providing a faithful impression of disease behaviour and 

subsequent outcome64. Development of statistical models are necessary to exploit the 

longitudinal trends captured by more frequent observation, and to account for IPF as a 

heterogeneous disease with an unpredictable clinical course183.  

 

Recent technological advances including wireless-enabled spirometers accompanied by ready 

access to the internet can facilitate real-time feedback on home-based spirometry technique and 

optimise compliance65. Therefore, the lung function datasets generated should be characterised 

by fewer missing data and trends that are influenced by less technical variability207, making the 

development of accurate prognostic statistical models easier. Understanding the features of 

physiological time series, and suitable statistical techniques, will assist clinicians to gain a 

better impression of disease behaviour from statistical models based on longitudinal data.  

 

The purpose for any statistical model of lung function data will involve the interpretation of 

trends relating to IPF disease progression. A recommended approach to the staging of IPF 

disease in clinical practice is a 10% change in FVC over a 12-month period because this 

threshold correlates well with mortality3,45,58. The benefit of FVC severity threshold in guiding 

the clinical management of IPF patients centres on dichotomising a continuous variable. The 

limitation of the FVC severity threshold is its assumption that the clinical course of IPF disease 

progression is linear and fails to account for clinically significant events such as acute 

exacerbations that correlate with high-levels of mortality35,38.  

 

Intra-patient variability of longitudinal FVC measurements may influence the time period over 

which the FVC severity threshold is calculated, particularly if involving serial local maxima 

and minima. Identification of local maxima and minima within FVC time series can improve 

the correlation of serial change with mortality meaning that the FVC severity threshold could 

be calculated over a shorter period. Removal of noise using statistical techniques may seem to 

be a more straightforward solution but may be detrimental as the noise of the time series 

contains important information about the physiology of the lung.  
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The nonlinear dynamical analysis that I have conducted, in particular the detrended fluctuation 

analysis (DFA), has indicated that the temporal pattern in FVC time series of IPF patients 

exhibits long-term memory and adaptability115. Whilst the precise aetiology of IPF is unknown, 

it is believed that the excessive scarring within the lung is the consequence of an aberrant 

wound response to injury of the lung epithelium208. Therefore, I believe that fluctuations of 

FVC time series is informative of the IPF lung’s ability to restore pulmonary lung function. 

The FVC time series of the acute exacerbation reinforces this belief given that there are two 

distinct distributions, and therefore two attractors, about which fluctuations in FVC occur.  

 

The aberrant wound healing response of the IPF lung is consequence of the interaction of 

multiple pathways, cell types and biological processes68. In addition, different contributions of 

cell types and wound healing pathways underpins the heterogeneity observed between IPF 

patients39,68,209. Therefore, a systems biology approach is essential to understanding IPF disease 

and entails the longitudinal monitoring of multiple genes and proteins39,210. Lung function time 

series can guide the acquisition of samples from IPF patients and help to contextualise -omics 

data with respect to individual disease progression.  

 

Continual assessment of FVC time series, including nonlinear dynamical measures, can 

provide a foundation for the analysis of IPF disease mechanisms by providing an clear 

impression of disease progression including acute exacerbations124,191,211. Periodic hospital-

based assessment can include sampling of patient serum and lung tissue via bronchoscopy. 

Retrospective transcriptomic and proteomic analysis can aid the generation of dynamical 

network biomarkers that may highlight important mediators of disease progression142,212. The 

ultimate aim is the identification of reliable markers of disease activity at an early enough stage 

to permit the administration of disease-modifying therapy.   

 

Analysis of FVC time series is an important first-step in improving our understanding of the 

mechanisms of IPF disease progression and the development of effective and timely therapy. 

Whilst precise FVC measurement is essential to describing IPF clinical history, changes in 

FVC is the consequence of significant, irreversible modifications to the lung architecture. 

Development of accurate, non-invasive biomarkers can be invaluable tools to evaluate future 

disease behaviour, thereby allowing early tailoring of therapy including need for transplant39. 

In addition, biomarkers have the potential to detect the onset of acute exacerbation, possibly 

permitting their prevention or limiting their severity.    
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2. ARIMA modelling and modelling of IPF disease progression 

 

The autocorrelation analysis and ARIMA models relating of the FVC time series infer serial 

dependence between FVC measurements that are no more than a day apart. This is significant 

because it asserts that the frequency of home-based spirometry should be at least daily. 

Requiring more frequent measurements would risk undermining the freedom and convenience 

that remote monitoring offers patients whilst potentially reducing the degree of patient 

compliance. The ARIMA models generated were deemed to account for all the trends present 

with their corresponding time series meaning that these models can be applied for the efficient 

resource management of hospital resources101, risk assessment of tuberculosis infection213 and 

monitoring of intensive care patients160. 

 

Statistical analysis using the ARIMA modelling has the potential to be a significant resource 

for the characterising and forecasting of IPF disease progression on an ongoing basis. ARIMA-

based forecasting of disease trajectory may be indicative of clinically significant events such 

as acute exacerbations. A potential limitation of ARIMA-based modelling in predicting an 

acute exacerbation is the length of the time series prior to the event, given that some IPF 

patients are diagnosed whilst experiencing acute exacerbations214. Interrupted time series 

analysis, involving ARIMA modelling, to assess the efficacy and response to therapy during 

clinical trials can determine when treatment begins thereby circumventing this issue215.  

  

ARIMA modelling utilises the two distinct features of time series, the moving average and 

autocorrelation, to define the trends present within the associated system. I believe that the 

propensity of ARIMA statistical models relies on autocorrelation and, at least, daily lung 

function measurements. In contrast, the difficultly to apply technical analysis within the 

financial markets is meaningless because either there is no memory present or we lack the 

mechanistic insights to develop statistical models with appropriate predictive power127,216–218.  

 

An unexplored facet of ARIMA modelling and its application for IPF disease progression is its 

ability to identify periodic components including seasonality within time series. Long-term 

home monitoring of IPF patients has the potential to identify how disease progression changes 

throughout the year, thereby potentially guiding the management of resources according to 

patient needs. 
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3. Non-linear dynamical analysis 

 

Detrended fluctuation analysis (DFA) conducted within this project indicates that FVC time 

series of IPF patients exhibits long-range correlations and adaptability or memory. The scaling 

exponent generated by DFA has been demonstrated to vary in the time series of patients with 

asthma and chronic obstructive pulmonary disease (COPD) in response to therapy121,122. Non-

linear dynamical analysis can be a useful indicator of treatment efficacy in clinical practice or 

during clinical trials. Additional investigation is required to examine how the scaling exponent 

of DFA varies with the two anti-fibrotic agents of demonstrated therapeutic benefit, nintedanib 

and pirfenidone, with the slowing of disease progression in IPF patients40,70,219.   

 

The behaviour of dynamical indicators, like the scaling exponent, is dependent on therapy type 

and disease context, so its characterisation is essential for the interpretation of IPF patients’ 

response to therapy121,122. Dynamical indicators may potentially guide the administration of 

concomitant or switching between pirfenidone and nintedanib monotherapy220. DFA has been 

invaluable in establishing non-linear dynamics within the FVC time series of IPF patient. DFA 

requires a relatively long time series in order to evaluate the presence of long-range 

correlations, and therefore may be limited in indicating real-time changes in disease 

progression120,121.  

  

Alternative non-linear dynamical systems methods include Lyapunov exponents, recurrence 

plot, Poincaré plot and approximate entropy, which may be more suitable for real-time 

monitoring due to using shorter time series206. My motivation to using the Poincaré plot 

technique as a short-term dynamical analysis is its graphical approach to characterisation, 

meaning that its interpretation may be more accessible to clinicians and patients. The Poincaré 

plot descriptors provide an indication of the short- and long-term variability of the time series 

which may be useful in indicating the presence of an acute exacerbation. Further evidence is 

required to support the usefulness of the Poincaré plot analysis in defining the features of FVC 

time series’ of different types of disease progression, particularly in terms of power.   
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4. Outliers and missing data 

 

Until recently, there has been limited evidence to suggest that any drug had the ability to change 

the course of IPF disease progression221. The efficacy of pirfenidone and nintedanib has been 

shown to slow down the course of IPF due to the worldwide cooperative efforts of a few large 

randomised controlled trials40,70,71. These trials have utilised FVC decline as the primary end-

point, in conjunction with recommendations from the US Food and Drug Administration 

(FDA), and have measured mortality to sustain the FVC results222. However, lung function 

parameters and vital status data could not be evaluated for some study participants who have 

dropped out because of loss to follow-up, withdrawal or death resulting in missing data.  

 

Missing data for the primary endpoint poses obstacles for the evaluation of the magnitude and 

statistical significance of the treatment effect. However, it is important to note that most 

missing data are informative in nature and possibly biased across treatment groups, particularly 

when assessing efficacy outcomes. The success of future clinical trials relies on understanding 

the main challenges that missing values pose and the limitations of the methods used to handle 

them. 

 

Imputation strategies employed during the INPULSIS trials required that the mean FVC at each 

time-point for all non-missing available data70,71. This meant that FVC was computed from a 

decreasing pool of patients over time and assumed that FVC decline was the same between 

those patients who dropped out and those who remained within the study. An alternative 

approach is the use of composite end-point, including death or FVC decline, which assigns a 

similar weighting to weight to death or FVC decline >10%223. However, there is a considerable 

loss of power because there is no natural FVC cut-off and dichotomisation of continuous 

variable (like FVC).  

 

Employment of distinct imputation strategies between clinical drugs trials could create 

confusion with results interpretation, e.g. differences in imputation policies between the 

ASCEND and INPULSIS trials led to confusion between inclusion criteria and recruitment 

issues224. The use of identical imputation strategies is unlikely to avoid false estimates when 

comparing the effect of drugs between two separate trials. Nonetheless, the optimal approach 

to determine the best drug is to conduct an adequately powered head to head study.   
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General summary 

 

The purpose of this project is to characterise the features of the FVC time series of IPF patients 

and to evaluate methods to define IPF disease progression. Classifying IPF disease progression 

based on continual, real-time home spirometry will provide important timely information about 

responses to therapy and changes in patient well-being prior to the onset of potentially 

irreversible physiological change in the lung. Given that the lung is a complex, dynamical 

system, the consequence of multiple components interacting together, statistical modelling of 

a physiological parameter represents a first-step in a long journey to effective treatment of IPF 

patients.  

 

Identification of an acute deterioration based on FVC time series, even whilst it is occurring, 

may well be too late for the delivery of meaningful treatment to reverse any decline. FVC time 

series analysis can form the basis of understanding other biological parameters including 

biomarkers of serum, bronchoalveolar lavage or lung epithelium in the context of lung 

physiology76,77,225,226. Elucidating biomarkers that correlate with distinct stages of IPF disease 

progression, including acute exacerbations, can help us to understand how disease develops, 

provide insight into therapeutic mechanisms and stratify patients according to therapeutic 

responses.    

 

Lung function measurements are physiological observations that are the consequence of a 

number of environmental and biological influences interacting together112. An acute 

exacerbation experienced by a subset of IPF patients may be likened to a critical transition on 

the basis of an abrupt change between two distinct stable physiological states124,142,227. IPF 

patients may experience a susceptible state prior to an acute exacerbation during which a 

clinical event may be avoided with a suitable intervention212. This so-called “pre-disease” state 

may be identified by dynamical network biomarkers and act as a warning prior to irreversible 

changes in physiology212. 

 

There is evidence to partially accept the overall hypothesis of this study that the clinical course 

of IPF can be classified by deterministic methods applied to longitudinal lung function data. 

This study is limited as how to integrate the temporal features of physiological function and 

vital data into a staging system for IPF disease progression. Future studies will need to select 

enough patients representing all IPF clinical courses, particularly acute exacerbations, to assess 

the application of analytical approaches.  
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