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Digital Collections of Examples in
Mathematical Sciences
James H. Davenport

Some aspects of Computer Algebra (notably Computation Group Theory and Com-
putational Number Theory) have some good databases of examples, typically of the
form “all the 𝑋 up to size 𝑛”. But most of the others, especially on the polynomial
side, are lacking such, despite the utility they have demonstrated in the related fields of
SAT and SMT solving. We claim that the field would be enhanced by such community-
maintained databases, rather than each author hand-selecting a few, which are often too
large or error-prone to print, and therefore difficult for subsequent authors to reproduce.

1 Introduction

Mathematicians have long had useful collections, either of systematic data or examples.
One of the oldest known such is the cuneiform tablet known as Plimpton 322,
which dates back to roughly 1800BC: see [23, pp. 172-176], or a more detailed
treatment in [42,50]. This use of systematic tables of data spawned the development
on logarithmic, trigonometric and nautical tables: Babbage’s Difference Engine was
intended to mechanise the production of such tables. But there were also tables of
purely mathematical interest: the author recalls using an 1839 table of logarithms and
what are now known as Zech logarithms [59] (but in fact they go back at least to [41]),
i.e. tables of the function log 𝑥 ↦→ log(1 + 𝑥), at least over R: Jacobi’s table [34] was
modulo 𝑝𝑛 for all the prime powers 𝑝𝑛 < 1000.

1.1 Data Citation

Citation and referencing is an important point of modern scholarship — Harvard-style
referencing is generally attributed to [43], and the history of Science Citation Index is
described in [29]. It is well-understood, and practically all research students, and many
undergraduates, get lessons in article citation practices.

Keywords: Benchmarking, Citation, OpenMath
MSC 2020: 00A35, 12-04, 20-04



2 James H. Davenport

Figure 1.1. Overlaps between data citation harvesters [56, Figure 5]

Despite the success of article citation, data citation is a mess in practice [56]: only
1.16% of dataset DOIs in Zenodo are cited1 (and 98.5% of these are self-citations).
It is still a subject of some uncertainty: [36, 46] and significant changes are still
being proposed [25]. Worse, perhaps, it is poorly harvested: see Figure 1.1. Assuming
independence and looking at the overlap statistics, we can estimate that there are
between 4,000–20,000 data sets waiting to be cited. In such circumstances, de facto
people cite a paper if they can find one.

2 Pure Mathematics

2.1 Online Encyclopedia of Integer Sequences

This database [52] can be said to have “colonised the high ground” in mathematics:
mathematicians from all sub-disciplines use it. It has evolved from a private enterprise,
for a long time at http://www.research.att.com/~njas/sequences, to a system
maintained by a foundation, and now at https://oeis.org/. The recommended citation
is “OEIS Foundation Inc. (2022), The On-Line Encyclopedia of Integer Sequences,
published electronically at https://oeis.org, [date]”, but the author had originally to
search the website to find it!

1In contrast, 60% of papers in Natural Science and Engineering had a citation in the next two
years [39, 49].

https://oeis.org/
https://oeis.org
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2.2 Group Theory

The Classification of Finite Simple Groups, as well as being a tour de force in
mathematics, also means that we have a complete database here. In most other areas,
we have to be content with “small’ databases.

An example of this is the transitive groups acting on 𝑛 points, where various authors
have contributed: [17] (𝑛 ≤ 11); [51] (𝑛 = 12); [16] (𝑛 = 14, 15); [32] (𝑛 = 16); [33]
(17 ≤ 𝑛 ≤ 31); [18] (𝑛 = 32). These are available in the computer algebra system GAP
(and MAGMA), except that (for reasons of space) 𝑛 = 32 isn’t in the default build for
GAP.

These are really great resources (if that’s what you want), but how does one cite
this resource: “[55, transgrp library]”?

There are several other libraries such as primitive groups. But it could be argued
that (finite) Group Theory is “easy”: for a given 𝑛 there are a finite number and we
“just” have to list them.

2.3 𝑳-functions and Modular Forms

The 𝐿-functions and Modular Forms Database, known as LMFDB and hosted at
lmfdb.org is a third example of mathematical databases. The recommended citation,
“The LMFDB Collaboration, The L-functions and modular forms database, http://
www.lmfdb.org, 2021” is directly linked from the home page, which is a good model
to follow.

Computation in this area had a long history, from [9] and [54] to the current
database, which is the work of a significant number of people. The early computations
gave rise to the Birch–Swinnerton-Dyer Conjectures [10], now a Clay Millennium Prize
topic. The current computations are in active use by mathematicians: see Poonen’s
remarks in [28].

3 SAT and SMT Solving

3.1 SAT Solving

SAT solving is normally seen as solving a Boolean expression written in Conjunctive
Normal Form (CNF).

The 3-SAT problem is: given a 3-literals/clause CNF satisfiability problem,

(𝑙1,1 ∨ 𝑙1,2 ∨ 𝑙1,3)︸                ︷︷                ︸
Clause 1

∧(𝑙2,1 ∨ 𝑙2,2 ∨ 𝑙2,3) ∧ · · · ∧ (𝑙𝑁,1 ∨ 𝑙𝑁,2 ∨ 𝑙𝑁,3), (3.1)

where 𝑙𝑖, 𝑗 ∈ {𝑥1, 𝑥1, 𝑥2, 𝑥2, . . .}, is it satisfiable? In other words, is there an assignment
of {𝑇, 𝐹} to the 𝑥𝑖 such that all the clauses are simultaneously true.

lmfdb.org
http://www.lmfdb.org
http://www.lmfdb.org
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3-SAT is the quintessential NP-complete problem [24]. 2-SAT is polynomial, and
𝑘-SAT for 𝑘 > 3 is polynomial-transformable into 3-SAT. In practice we deal with
SAT — i.e. no limitations on the length of the clauses and no requirement that all
clauses have the same length.

Let 𝑛 be the number of 𝑖 such that 𝑥𝑖 (and/or 𝑥𝑖) actually occur. Typically 𝑛 is of a
similar size to 𝑁 .

Despite the problem class being NP-complete, nearly all examples are easy (e.g.
SAT-solving has been routinely used in the German car industry for over twenty years
[38]): either easily solved (SAT) or easily proved insoluble (UNSAT). For random
problems there seems to be a distinct phase transition between the two: [2, 3, 30], with
the hard problems typically lying on the boundary.

This means that constructing difficult examples is itself difficult, and a topical
research area: [5, 53].

SAT solving has many applications, so we want effective solvers for “real” problems,
not just “random” ones. This gives us the fundamental question: what does this mean?

3.2 SAT Contests

These are described at http://www.satcompetition.org. They have been run since 2002.
In the early years, there were distinct tracks for Industrial/Handmade/Random problems:
this has been abandoned.

The methodology is that the organisers accept submissions (from contestants2 and
others), then produce a list of problems (in DIMACS, a standard format) and set a time
(and memory) limit, and see how many of the problems the submitted systems can
solve on the contest hardware.

SAT is easy to certify (the solver just produces a list of values of the 𝑥𝑖). Verifying
UNSAT is much harder, but since 2013 the contest has required proofs of UNSAT for
the UNSAT track, and since 2020 in all tracks, in DRAT: a specified format (some of
these proofs have been > 100GB).

The general feeling is that these contests have really pushed the development of
SAT solvers, roughly speaking ×2/year. For comparison, Linear Programming has
done ×1.8 over a greater timeline and with more rigorous dcoumentation [11].

3.3 SMT: Life Beyond SAT

Consider a theory 𝑇 , with variables 𝑦 𝑗 , and various Boolean-valued statements in 𝑇 of
the form 𝐹𝑖 (𝑦1, . . . , 𝑦𝑛), and a CNF L in the form of (3.1) with 𝐹𝑖 (𝑦1, . . . , 𝑦𝑛) rather
than just 𝑥𝑖 . In principle 𝑇 can be anything: those currently supported3 are given in
Figure 1.2.

2In 2020, contestants were required to submit at least 20 problems, as well as a solver.
3By the SMT-LIB standard: [6], which also says “ New logics are added to the standard

opportunistically, once enough benchmarks are available”.

http://www.satcompetition.org
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Figure 1.2. Available logics (March 2022) https://smtlib.cs.uiowa.edu/logics.shtml

For example QF_NRA is the Quantifier-Free theory of Nonlinear Real Arithmetic,
and QF_LRA (Linear Real Arithmetic) is included in this. Both QF_NRA and QF_UFLRA
(Uninterpreted Functions and Linear Real Arithmetic) are included in QF_UFNRA.

Then the SAT/UNSAT question is similar: do there exist values of 𝑦𝑖 such that L is
true (SAT), or can we state that no such exist (UNSAT), and the community runs SMT
Competitions (https://smt-comp.github.io/2022/). There is a separate track for each
theory 𝑇 , as the problems will be different. Within each, the problems are subdivided
as industrial/crafted/random.

The SMT-LIB format [6] provides a standard input format. The question of proving
UNSAT is in general unsolved (but see [37] for one particular theory 𝑇).

There has been substantial progress in SMT-solving over the years, possibly similar
to SAT, and probably also spurred by the contests.

4 Computer Algebra: Where are we?
Obviously, Group Theory and others are parts of computer algebra: what about the rest
of computer algebra?

In general the problems of computer algebra have a bad worst-case complexity, and
we want effective solvers for “real” problems, not just “random” ones. The question, as
in SAT and SMT, is “what does this mean?”.

But there are also various logistical challenges.
(1) Format: there is no widely accepted common standard. We do have OpenMath

[15], but it’s not as widely supported as we would like.

https://smtlib.cs.uiowa.edu/logics.shtml
https://smt-comp.github.io/2022/
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(2) Contests: There are currently none. Could SIGSAM organise them?
(3) Problem Sets: There are essentially no independent ones. Each author chooses his

own.
(4) Archive: Not really.
We now consider various specific problems.

4.1 Polynomial GCD

This problem is NP-hard (for sparse polynomials, even univariate) [27, 48]. Even
for dense polynomials, it can be challenging for multivariates. There is no standard
database: one has to trawl previous papers (and often need to ask the authors, as the
polynomials were too big to print in the paper). Verification is a challenge: one can
check that the result is a common divisor, but verifying greatest is still NP-hard [48].

4.2 Polynomial Factorisation

This is known to be polynomial-time for dense encodings [40], even though their
exponent is large, and much work has gone into better algorithms, e.g. [1]. Presumably
it is NP-hard for sparse encodings, though the author does not know of an explicit
proof. There is no standard database: one has to trawl previous papers (and often need
to ask the authors, as the polynomials were too big to print in the paper).

Verification is a challenge: one can check that the result is a factorisation, but
checking completeness (i.e. that these factors are irreducible) seems to be as hard as
the original problem in the worst cases.

It is worth noting that, with probability 1, a random dense polynomial is irreducible
(and easily proved so by the Musser test [47]), so the question “what are the interesting
problems?” is vital.

4.3 Gröbner Bases

The computation of Gröbner bases has many applications, from engineering to
cryptography. But this has doubly exponential (w.r.t. 𝑛, the number of variables) worst-
case complexity [45], even for a prime ideal [20]. If we take 𝑛 “random” equations in 𝑛

variables, they will satisfy the conditions for the Shape Lemma [7] and have 𝐷 ≤ 𝑛𝑛

solutions, so a Gröbner base in a purely lexicographical order will look like

{𝑝1(𝑥1), 𝑥2 − 𝑝2(𝑥1), 𝑥3 − 𝑝3(𝑥1), . . . , 𝑥𝑛 − 𝑝𝑛 (𝑥1)}, (4.1)

where 𝑝1 is a polynomial of degree 𝐷 in 𝑥1 and the other 𝑝𝑖 are polynomials of degree
at most 𝐷 − 1 in 𝑥1. Experience shows that the coefficients of the 𝑝𝑖 will generally be
large (theoretically, they can be 𝐷 times as long as the input coefficients). Conversely,
if we have 𝑛 + 1 equations, there are generally no solutions and the Gröbner base is
{1}: much shorter than (4.1).
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The good news from the point of view of this paper is that there is a collection [8],
but it’s very old (1996), so most of the examples are trivial with today’s hardware and
software, and completely static. Worse, some of the examples are only available in
PDF.

There always is a Gröbner base (no concept of UNSAT as such) but it’s not clear
what a useful certificate of “𝐺 is a Gröbner base for input 𝐿” might mean in general
(but see [4]). If 𝐺 = {𝑔1, . . . , 𝑔𝑀 } is a Gröbner base of 𝐹 = { 𝑓1, . . . , 𝑓𝑁 } then a general
certificate would consist of three components:
(1) A proof that 𝐺 is a Gröbner base, which would mean that every 𝑆-polynomial

𝑆(𝑔𝑖 , 𝑔 𝑗) reduces to 0 under 𝐺, which is easily checked;
(2) A proof that (𝐹) ⊆ (𝐺), which could be a set of _𝑖, 𝑗 such that every 𝑓𝑖 =

∑
_𝑖, 𝑗𝑔 𝑗 ;

(3) A proof that (𝐺) ⊆ (𝐹), which could be a set of `𝑖, 𝑗 such that every 𝑔𝑖 =
∑

`𝑖, 𝑗 𝑓 𝑗 .
However, the _𝑖, 𝑗 and `𝑖, 𝑗 might be (and generally are) extremely large.

4.4 Real Algebraic Geometry

Again, the problem of describing the decomposition of R𝑛 sign-invariant for a set 𝑆 of
polynomials 𝑓𝑖 in 𝑛 variables has doubly exponential (w.r.t. 𝑛) worst-case complexity
[14]. However, unlike Gröbner bases, it seems that this is the “typical” complexity,
though the author knows no formal statement of this. For a given problem, the
complexity can vary greatly: [14, Theorem 7] is an example of a polynomial 𝑝 in 3𝑛 + 4
variables such that any Cylindrical Algebraic Decomposition (CAD), w.r.t. one order,
of R3𝑛+4 sign-invariant for 𝑝 has 𝑂

(
22𝑛 ) cells, but w.r.t. another order has 3 cells.

𝑝 := 𝑥𝑛+1
((
𝑦𝑛−1 − 1

2

)2
+ (𝑥𝑛−1 − 𝑧𝑛)2

) (
(𝑦𝑛−1 − 𝑧𝑛)2 + (𝑥𝑛−1 − 𝑥𝑛)2

)
+∑𝑛−1

𝑖=1 𝑥𝑖+1
(
(𝑦𝑖−1 − 𝑦𝑖)2 + (𝑥𝑖−1 − 𝑧𝑖)2

) (
(𝑦𝑖−1 − 𝑧𝑖)2 + (𝑥𝑖−1 − 𝑥𝑖)2

)
+𝑥

(
(𝑦0 − 2𝑥0)2 +

(
𝛼2 + (𝑥0 − 1

2 )
)2
)
×(

(𝑦0 − 2 + 2𝑥0)2 +
(
𝛼2 + (𝑥0 − 1

2 )
)2
)
+ 𝑎.

The bad order (eliminating 𝑥, then 𝑦0, 𝛼, 𝑥0, 𝑧1, 𝑦1, 𝑧1, . . ., 𝑥𝑛, 𝑎) needs 𝑂
(
22𝑛 ) (Maple:

141 when 𝑛 = 0) cells. Any order eliminating 𝑎 first says that 𝑅3𝑛+3 is undecomposed,
and the only question is 𝑝 = 0, which is linear in 𝑎, and we get three cells: 𝑝 < 0, 𝑝 = 0
and 𝑝 > 0.

However, if we replace 𝑎 by 𝑎3, the topology is essentially the same, but the
discriminant is no longer trivial, and the “good” order now generateses 213 cells in
Maple, rather than three.

There is a collection [57], not quite as old as [8] (2014 was the last update), but
still completely static. The DEWCAD project [12] might update this, but there are still
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issues of long-term conservation. The format has learned from [8] and each example is
available in text, Maple input and QEPCAD.

If we are just looking at computing a CAD, which we might wish to do for motion
planning purposes [58], there is no concept of UNSAT, and the question of certificates
of correctness is essentially unsolved. Attempts to produce a formally verified CAD
algorithm have also so far been unsuccessful [21].

However, CAD was invented [22] for the purpose of quantifier elimination, i.e.
converting 𝑄𝑘𝑥𝑘𝑄𝑘+1𝑥𝑘+1 · · ·𝑄𝑛𝑥𝑛Φ( 𝑓𝑖), where 𝑄𝑖 ∈ {∃, ∀} and Φ is a Boolean
combination of equalities and inequalities in the 𝑓𝑖 , into Ψ(𝑔1, . . . , 𝑔𝑛′), where Ψ

is a Boolean combination of equalities and inequalities in the 𝑔𝑖 , polynomials in
𝑥1, . . . , 𝑥𝑘−1, and if the statement is fully quantified, the result is a Boolean. A common
case, particularly in program verification, is the fully existential case (all 𝑄𝑖 are ∃),
where Φ is “something has gone wrong”, and we want to show this can’t happen. Then
SAT is easy (exhibit values of 𝑥𝑖 such that Φ is true, but UNSAT is much harder to
certify. See [37] for some steps in this direction.

4.5 Integration

The computational complexity of integration, i.e. given a formula 𝑓 in a class L, is
there a formula 𝑔 ∈ L, or in an agreed extension of L, such that 𝑔′ = 𝑓 , is essentially
unknown (but integration certainly involves GCD, factorisation etc.). When L includes
algebraic functions, difficult questions of algebraic geometry arise (see [26, as corrected
in [44]]), and there is no known bound on the complexity of these.

“Paper” mathematics produced large databases of integrals, e.g. [31], but these
are (at best) in PDF, and the way they are commonly printed makes it extremely hard
to recover semantics from the layout. Probably the best current database is described
in [35]. But these databases are almost entirely of successful (SAT in our notation)
examples, and there is almost no collection of UNSAT ( ̸ ∃𝑔 ∈ L : 𝑔′ = 𝑓 ) examples.
Algorithm-based software (e.g. [26]) has an internal proof of UNSAT, but I know of
no software that can exhibit it. That proof is typically very reliant on the underlying
mathematics.

A new question here is the “niceness” of the output in the SAT case. Jeffrey and
Rich [35] give the example of∫

5𝑥4

(1 + 𝑥)6 d𝑥 =
𝑥5

(1 + 𝑥)5 , (4.2)

where Maple’s answer is

−10
(1 + 𝑥)3 + 5

(1 + 𝑥)4 − 5
(1 + 𝑥) −

1
(1 + 𝑥)5 + 10

(1 + 𝑥)2 . (4.3)

Note that (4.3) is not just an ugly form of the right-hand side of (4.2): the two differ by
1, which is a legitimate constant of integration.
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While some element of “niceness” is probably beyond automation, “simplicity”
in the sense of [19], essentially minimal Kolmogorov complexity, is probably a good
proxy, and could be automatically judged (at least in principle: there are probably some
messy system-dependent issues in practice).

5 Conclusions

(1) The field of computer algebra really ought to invest in the sort of contests that have
stimulated the SAT and SMT worlds.

(2) This requires much larger databases of “relevant” problems than we currently have,
and they need to be properly curated.

+ The technology of collaborative working, e.g. wikis, or GitHub, has greatly
advanced since the days of [8], which should make collaborative construction of
example sets easier, and would also help with the preservation challenge.

– Although OpenMath is in principle a suitable system-neutral notation that could
be the standard input (and output) format, such a use would challenge OpenMath
implementations. This would be a good development, though.

(3) This would allow much better benchmarking practices: see the description in [13].
(4) There are significant challenges in providing “certificates”, not just of UNSAT in the

case of integration, but elsewhere in algebra. For example, asserting 𝑔 = gcd( 𝑓1, 𝑓2)
involves, not just the claim that 𝑔 divides 𝑓1 and 𝑓2, but also that 𝑓1/𝑔, 𝑓2/𝑔 are
relatively prime, which may be much harder to demonstrate.

Acknowledgements. The author is grateful to Dr. Uncu for his comments on drafts, and
to the organisers of the MIDAS session at the 8th European Congress of Mathematicians
for prompting these reflections.
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