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Abstract

We give an overview of operator-theoretic tools that have recently proved useful in the anal-
ysis of boundary-value and transmission problems for second-order partial differential equations,
with a view to addressing, in particular, the asymptotic behaviour of resolvents of physically
motivated parameter-dependent operator families. We demonstrate the links of this rich area,
on the one hand, to functional frameworks developed by S. N. Naboko and his students, and
on the other hand, to concrete applications of current interest in the physics and engineering
communities.

In memoriam Sergey Naboko

1 Introduction

It has transpired recently that a number of operator-theoretical techniques which have been under
active development for the past 60 years or so are extremely useful in the asymptotic analysis of
highly inhomogeneous media. Apart from yielding sharp asymptotics of the corresponding Hamil-
tonians in the norm-resolvent topology, this research has resulted in a number of new important,
yet mostly unexplored, connections between certain areas of the modern operator and spectral the-
ory. These include the theory of dilations and functional models of dissipative and non-selfadjoint
operators in Hilbert spaces, the boundary triples theory in the analysis of symmetric operators,
zero-range models with an internal structure and, finally, the theory of generalised resolvents and
their out-of-space “dilations”.

The present survey, based on our results published in [41–45,45–48,76,117,118,120], attempts to
shed some light on these connections and to thus present the subject area of strongly inhomogeneous
media under the spotlight of modern spectral theory. We aim to show that in many ways this novel
outlook allows one to gain a better understanding of the mentioned area by providing a universal
abstraction layer for all the main objects to be found in the asymptotic analysis. Moreover, in most

1

ar
X

iv
:2

20
4.

01
19

9v
1 

 [
m

at
h.

SP
] 

 4
 A

pr
 2

02
2



cases one can then proceed in the analysis on a purely abstract level surprisingly far, essentially
postponing the use of the specific features of the problem at hand till the very last stages.

For readers’ convenience, we have included a rather detailed exposition of the relevant areas
of operator and spectral theory, keeping in mind that some papers laying the foundations of these
areas have been poorly accessible to date.

We start with Section 2, devoted to the now-classical theory of dilations of dissipative operators.
The role of dissipative operators as opposed to self-adjoint ones is that whereas the latter represent
physical systems with the energy conservation law (“closed”, or conservative, systems), the former
allow for the consideration of a more realistic setup, where the loss of the total energy is factored
in. The importance of dissipative systems has been a common place since at least the works of
I. Prigogine; it is well-known that such systems may possess certain rather unexpected properties.
The main difference between the self-adjoint and dissipative theories can be clarified, following
M. G. Krĕın, as follows: the major instruments of self-adjoint spectral analysis arise from the Hilbert
space geometry, whereas this geometry doesn’t work very well in the non-selfadjoint situation, with
modern complex analysis taking the role of the main tool in the investigation.

Since the seminal contribution of B. Sz.-Nagy and C. Foiaş, the main object of dissipative
spectral analysis has been the so-called dilation, representing an out-of-space self-adjoint extension,
in the sense of (1) below, of the original dissipative operator L. Our argument actually goes as far
as to suggest that this concept underpins the whole set of ideas and notions presented in the paper.
B. S. Pavlov’s explicit construction of dilation relies upon the second major ingredient, which is
the characteristic function S(z), see (5), which is an analytic operator-valued contraction in C+.
The analysis of the dissipative operator L is reduced to the study of the function S(z), and hence
from this point onward it belongs to the domain of complex analysis. It turns out that the sole
knowledge of S(z) yields an explicit spectral representation of the dilation. Moreover, Naboko has
shown that, in the same representation, a whole family of operators “close” to L, self-adjoint and
non-selfadjoint alike, are modelled in an effective way. This idea in particular led to the description
of absolutely continuous subspaces of all the operators considered as the closure of the so-called
smooth vectors set. This latter is characterised as the collection of vectors such that the resolvent
of the operator in question in the spectral representation maps them as the multiplication operator.
An explicit construction of wave operators and scattering matrices then follows almost immediately.

In Section 2.3, we give a systematic exposition of this approach applied to the family of ex-
tensions of a symmetric densely defined operator on a Hilbert space H possessing equal deficiency
indices. In so doing, we follow closely the strategy suggested by Sergey Naboko which he had
applied in the analysis of additive relatively bounded perturbations of self-adjoint operators. We
thus hope to provide a coherent presentation of the major contribution by Naboko to the spectral
analysis of non-selfadjoint operators.

Our analysis is facilitated by the boundary triples theory, being an abstract framework, from
which the extensions theory of symmetric operators, especially differential operators, greatly ben-
efits. That’s why we start our exposition by introducing the main concepts of this theory. The
formula obtained for the scattering operator in the functional model representation allows us to
derive an explicit formula for the scattering matrix, formulated in terms of Weyl-Titchmarsh M -
matrices, i.e., in the natural terms associated with the problem. In Section 3, we consider an
application of this technique to an inverse scattering problem on a quantum graph, where we are
able to give an explicit solution to the problem of reconstructing matching conditions at graph
vertices.
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In Section 2.4, we consider the possible generalisation of the approach described above to the
case of partial differential operators (PDO), associated with boundary value problems (BVP).
Although the theory of boundary triples has been successfully applied to the spectral analysis of
BVP for ordinary differential operators and related setups, in its original form this theory is not
suited for dealing with BVP for partial differential equations (PDE), see [34, Section 7] for a relevant
discussion. Recently, when the works [17,34,65,69,70,120] started to appear, it has transpired that,
suitably modified, the boundary triples approach nevertheless admits a natural generalisation to
the BVP setup, see also the seminal contributions by J. W. Calkin [37], M. S. Birman [25], L. Boutet
de Monvel [31], M. S. Birman and M. Z. Solomyak [26], G. Grubb [68], and M. Agranovich [6], which
provide the analytic backbone for the related operator-theoretic constructions.

In all cases mentioned above, one can see the fundamental rôle of a certain Herglotz operator-
valued analytic function, which in problems where a boundary is present (and sometimes even
without an explicit boundary [12]) turns out to be a natural generalisation of the classical notion
of a Dirichlet-to-Neumann map. Moreover, it is precisely this object that permits to define the
characteristic function which in turn facilitates the functional model construction.

In Section 4, we pass over to the discussion of zero-range models with an internal structure. The
idea of replacing a model of short-range interactions by an explicitly solvable one with a zero-radius
potential (possibly with an internal structure) [22, 24, 36, 79, 80, 111, 135] has paved the way for an
influx of methods of the theory of extensions (both self-adjoint and non-selfadjoint) of symmetric
operators to problems of mathematical physics. In particular, we view zero-range potentials with an
internal structure as a particular case of out-of-space self-adjoint extensions of symmetric operators,
the theory of which is intrinsically related to the analysis of generalised resolvents. The latter area
is introduced in Section 2.5. We argue that out-of-space self-adjoint extensions corresponding to
generalised resolvents naturally supersedes the dilation theory as presented in Section 2.2.

On yet another level, we claim that zero-range perturbations (and more precisely, zero-range
perturbations with an internal structure) appear naturally as the norm-resolvent limits of Hamil-
tonians in the asymptotic analysis of inhomogeneous media. This relationship is established using
the apparatus of generalised resolvents, as explained in Section 4.4.

Finally, we mention here that the theory of functional models as presented in Section 2 is
directly applicable to the treatment of models of zero-range potentials with an internal structure.
Its development yields a complete spectral analysis and an explicit construction of the scattering
theory for the latter.

Two different models are considered in Section 4, one of these being a one-dimensional periodic
model with critical contrast, unitary equivalent to the double porosity one. The PDE counterpart
of the latter is discussed in Section 5. The second mentioned model pertains to the problem with a
low-index inclusion in a homogeneous material. Our argument shows that the leading order term in
the asymptotic expansion of its resolvent admits the same form as expected of a zero-range model;
the difference is that here the effective model of the media is no longer “zero-range” per se; rather
it pertains to a singular perturbation supported by a manifold. Therefore, this allows us to extend
the notion of internal structure to the case of distributional perturbations supported by manifolds.

The discussion started in Section 4 is then continued in Section 5. We note that in every
model considered so far, the internal structure of the limiting zero-range model is necessarily the
simplest possible, i.e., pertains to the out-of-space extensions defined on H ⊕ C1, where H is the
original Hilbert space. It turns out that this is due to the fact that we only consider norm-resolvent
convergence when the spectral parameter z is restricted to a compact set in C.
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Passing over to a generic setup with z not necessarily in a compact, we are able to claim that in
some sense the internal structure can be arbitrarily complex, provided that the spectral parameter
z is allowed to grow with the large parameter a, which describes the inhomogeneity, increasing
to +∞. This allows us to present an explicit example of a non-trivial internal structure in the
leading order term of the norm-resolvent asymptotics in Section 4.4, which is supplemented with
the discussion of the so-called scaling regimes which we introduce in Section 5.1.

The remainder of Section 5 is devoted to the analysis of a double porosity model of high-
contrast homogenisation, where the leading order term of the asymptotic expansion is obtained
by an application of the operator-theoretical technique based on the generalised resolvents, as in
Section 4.

2 Functional models for dissipative and nonselfadjoint operators

Functional model construction for a contractive linear operator T acting on a Hilbert space H
is a well developed domain of the operator theory. Since the pioneering works by B. Sz.-Nagy,
C. Foiaş [130], P. D. Lax, R. S. Phillips [87], L. de Branges, J. Rovnyak [29,30], and M. S. Livšic [90],
this field of research has attracted many specialists in operator theory, complex analysis, system
control, Gaussian processes and other disciplines. Multiple studies culminated in the development
of a comprehensive theory complemented by various applications, see [52, 63, 103, 104, 107] and
references therein.

The underlying idea of a functional model is the fundamental theorem of B. Sz.-Nagy and
C. Foias establishing the existence of a unitary dilation for any contractive (linear) Hilbert space
operator T , ‖T‖ ≤ 1. The unitary dilation U of T is a unitary operator on a Hilbert space H ⊃ H
such that PHU

n|H = Tn for all n = 1, 2, . . . . Here PH : H → H is an orthoprojection from H to
its subspace H. The dilation U is called minimal if the linear set ∨n>0U

nH is dense in H. The
minimal dilation U of a contraction is unique up to unitary equivalence. The spectrum of U is
absolutely continuous and covers the unit circle T = {z ∈ C : |z| = 1}. If one denotes by µ the
spectral measure of U , the spectral theorem yields that operator T is unitarily equivalent to its
model T = PHz|H , where f 7→ zf is the operator of multiplication on the spectral representation
space L2(T, µ) of U .

Due to its abstract nature, a significant part of the functional model research for contractions
took place among specialists in complex analysis and operator theory. The parallel theory for
unbounded operators is based on the Cayley transform T 7→ −i(T + I)(T − I)−1 applied to a
contraction ‖T‖ ≤ 1. Assuming that clos ran(T − I) = H, the Cayley transform of T , ‖T‖ < 1 is
a dissipative densely defined operator L = −i(T + I)(T − I)−1, not necessarily bounded in H. It
is easily seen that the spectrum of L is situated in the closed upper half plane C+ of the complex
plane. The imaginary part of L (defined in the sense of forms if needed) is a non-negative operator.

Alongside the developments in operator theory, the second half of the 20th century witnessed
a huge progress in the spectral analysis of linear operators pertaining to physical disciplines. The
principal tool of this was the method of Riesz projections, i.e., the contour integration of the
operator’s resolvent in the complex plane of spectral parameter. The spectral analysis of self-
adjoint operators of quantum mechanics can be viewed as the prime example of highly successful
application of contour integration in the study of conservative systems, i.e., closed systems with
the energy preserved in the course of evolution.

Topical questions concerning the behavior of non-conservative systems, where the total energy is
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not preserved, and of resonant systems motivated in-depth studies of (unbounded) non-selfadjoint
operators. The analysis of non-conservative dynamical systems and of non-selfadjoint operators
especially relevant to the functional model theory was pioneered in the works of M. S. Brodskǐi,
M. S. Livšic and their colleagues, see [32,33,91]. Starting with a (bounded) self-adjoint operator A =
A∗ as the main operator of a closed conservative system, these authors considered the coupling of
this system to the outside world by means of externally attached channels. This construction
represents a model of the so-called “open system”, that is, of a physical system connected to its
external environment. The energy of such modified system can dissipate through the external
channels, while at the same time the energy can be fed into the system from the outside in the
course of its evolution. In works of M. S. Brodskǐı and M. S. Livšic, the external channels are
modelled as an additive perturbation of the main self-adjoint operator A by a (bounded) non-
selfadjoint perturbation: A → L = A + iV , V = V ∗. The “channel vectors” form the Hilbert
space E = clos ran |V |. If V ≥ 0, the operator L is dissipative (i.e., Im(Lu, u) > 0, u ∈ H); it
describes a non-conservative system losing the total energy. In turn, and quite analogously to the
case of contractions, under the assumption C− ⊂ ρ(L) (recall that dissipative operators satisfying
this condition are called maximal), the self-adjoint dilation of L is a self-adjoint operator L on a
wider space H ⊃ H such that

(L− zI)−1 = PH(L − zI)−1|H , z ∈ C−, (1)

where PH is an orthogonal projection from H onto H. The operator L describes a (larger) system
with the state space H, in which the energy is conserved, whereas L describes its subsystem losing
its total energy. In the general case, a non-dissipative L corresponds to an open system where both
the energy loss and the energy supply coexist.

The analysis of a non-selfadjoint operator L relies on the notion of its characteristic function [89,
127] discovered by M. S. Livšic in 1943–1944. It is a bounded analytic operator-function Θ(z),
z ∈ ρ(L∗) defined on the resolvent set of L∗ and acting on the “channel vectors” from the
space E. For dissipative L the function Θ coincides with the characteristic function of a con-
traction T = (L − iI)(L + iI)−1 (the inverse Cayley transform of L), featured prominently in the
works by B. Sz.-Nagy and C. Foias. The characteristic function of a non-selfadjoint operator L (or,
alternatively, of its Cayley transform) determines the original operator L uniquely up to a unitary
equivalence (see [90,130]), provided L has no non-trivial self-adjoint “parts”. Therefore, the study
of non-selfadjoint operators is reduced to the study of operator-valued analytic functions. In and
of itself, this does not mean much as these functions might be as complicated as the operators
themselves. A simplification is achieved when the values of these functions are either matrices or
belong to Schatten-von Neumann classes of compact operators, which is often the case in physical
applications.

Closely related to the Sz.-Nagy-Foias model for contractions and to the open systems framework
are the Lax-Phillips scattering theory [87] and the “canonical model” due to L. de Branges and
J. Rovnyak [30]. The latter is developed for completely non-isometric contractions and their adjoints
with quantum-mechanical applications in mind. The Lax-Phillips theory was originally developed
to facilitate the analysis of scattering problems for hyperbolic wave equations in exterior domains
to compact scatterers. It provides useful intuition into the underpinnings of the functional model
construction and this connection will be exploited in the next section.

It was realized very early [2] that the three theories, i.e., the open systems theory, the Sz.-
Nagy-Foiaş model, and the Lax-Phillips scattering, all deal with essentially the same objects. In
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particular, the characteristic function of a contraction (or of a dissipative operator) emerges, albeit
under disguise, in all three theories. Being a purely theoretical abstract object in the Sz.-Nagy-
Foiaş theory, the characteristic function emerges as a transfer function of a linear system according
to M. S. Brodskǐı and M. S. Livšic, and as the scattering matrix in the Lax-Phillips theory. The
characteristic function of a contraction is also the central component in the L. de Branges and
J. Rovnyak model theory [30]. Deep connections between the Sz-Nagy-Foias and the de Branges-
Rovnyak models are clarified in a series of papers by N. Nikolskii and V. Vasyunin [105–107].

2.1 Lax-Phillips theory

The Lax-Phillips scattering theory [87] for the acoustic waves by a smooth compact obstacle in Rn
with n ≥ 3 odd provides an excellent illustration of the intrinsic links between the operator theory
and mathematical physics. A number of concepts found in the theory of functional models of
dissipative operators find their direct counterparts here, expressed in the language of realistic
physical processes. For instance, the characteristic function of the operator governing the scattering
process is realized as the scattering matrix, the self-adjoint dilation corresponds to the operator of
“free” dynamics, i.e., the wave propagation process observed in absence of the obstacle, and the
scattering channels are a direct analogue of the channels found in the Brodskǐı-Livšic constructions.
In this section we briefly recall the main concepts of Lax-Phillips scattering theory.

Let H be a Hilbert space with two mutually orthogonal subspaces D± ⊂ H, D− ⊕ D+ 6= H.
Denote by K the orthogonal complement of D− ⊕ D+ in H. Assume the existence of a single
parameter evolution group of unitary operators {U(t)}t∈R with the following properties

U(t)D− ⊆ D−, t ≤ 0,

U(t)D+ ⊆ D+, t ≥ 0,

∩t∈RU(t)D± = {0},

clos∪t∈RU(t)D± = H.

(2)

In the acoustic scattering, the space H consists of solutions to the wave equation (i.e., acoustic
waves) and is endowed with the energy norm. The group U(t) describes the evolution of “free” waves
in H, that is, the group U(t) maps the Cauchy data of solutions at the time t = 0 to their Cauchy
data at the time t. Since U(t) is unitary for all t ∈ R, the energy of solutions is preserved under the
time evolution f = U(0)f 7→ U(t)f , for any Cauchy data f ∈ H. Correspondingly, the infinitesimal
generator B of U(t) is a self-adjoint operator in H with purely absolutely continuous spectrum
covering the whole real line. The subspaces D± are called incoming and outgoing subspaces of U(t).
These names are well justified. Indeed, the subspace D− consists of solutions that do not interact
with the obstacle prior to the moment t = 0, whereas D+ consists of scattered waves which do
not interact with the obstacle after t = 0. There exist two representations for the generator B
associated with D± (the so called incoming and outgoing translation representations), in which the
group U(t) acts as the right shift operator U(t) : u(x) 7→ u(x− t) on L2(R, E) with some auxiliary
Hilbert space E. In these representations the subspaces D± are mapped to L2(R±, E). It is not
difficult to see that this construction satisfies the assumptions (2). Denote by P± : H → [D±]⊥ the
orthogonal projections to the complements of D± in H. The elements of K are the scattering waves
that are neither incoming in the past, nor outgoing in the future, i.e., the waves localized in the
vicinity of the obstacle. The interaction of incoming waves with the obstacle, i.e., the scattering
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process, is then described by the compression of the group U(t) to the neighborhood of the obstacle:

Z(t) = P+U(t)P− = PKU(t)PK, t ≥ 0.

Here PK = P−P+ is an orthoprojection on H. The operator family {Z(t)}t≥0 forms a strongly
continuous semigroup acting on K. Since Z(t) is a compression of the unitary group, it is clear
that ‖Z(t)‖ ≤ 1 for all t ≥ 0. The infinitesimal generator B of the semigroup {Z(t)}t≥0 turns
out to be a linear operator with purely discrete spectrum {λk} with Re(λk) < 0, k = 1, 2, . . . .
The poles {λk} of the resolvent of B and the corresponding eigenvectors are interpreted as the
scattering resonances. These resonances correspond to the poles of the scattering matrix defined
as an operator-valued function acting in the space L2(R−, E), i.e., the space of vector functions
taking values in E.

The scattering matrix is mapped by the Fourier transform to the analytic in the lower half-plane
operator function S(z), z ∈ C− with zeroes at zk = −iλk. The boundary values S(k−i0) on the real
axis exist almost everywhere in the strong operator topology and are unitary for almost all k ∈ R.
The function S(z) permits an analytic continuation S(z) = [S∗(z̄)]−1 to the upper half-plane, where
it is meromorphic.

The results of [2] show that θ(z) := S∗(z̄) coincides with the Livšic’s characteristic function
of a dissipative operator being unitary equivalent to the infinitesimal generator of Z(t). Con-
sequently, θ

(
(z + i)/(z − i)

)
is the characteristic function of its Cayley transform as defined by

B. Sz.-Nagy and C. Foiaş [130]. Finally, the resolvents of operators L = −iB and L = −iB satisfy
the dilation equation (1). In other words, the operator corresponding to the free dynamics is the
self-adjoint dilation of the dissipative operator that governs the scattering process.

2.1.1 Minimality, non-selfadjointness, resolvent

The beautiful geometric interpretation of scattering processes provided by the Lax-Phillips theory
is not entirely transferable to the modelling of a general dissipative (or contractive) operator. For
instance, given an arbitrary dissipative operator L on a Hilbert space K, its selfadjoint dilation
L does not exists a priori and must be explicitly constructed first. In addition, such a dila-
tion L should be minimal, that is, it must contain no reducing self-adjoint parts unrelated to the
operator L. Mathematically, the minimality condition is expressed by the equality

clos
∨
z /∈R

(L − zI)−1 |K = H

where H is the dilation space H ⊃ K. The construction of a dilation satisfying this condition
is a highly non-trivial task which was successfully addressed for contractions by B. Sz.-Nagy and
C. Foiaş [130], aided by a theorem of M. A. Năımark [102], and then by B. Pavlov [109,110] in two
important cases of dissipative operators arising in mathematical physics. Later, this construction
was generalized to a generic setting. We dwell on this further in the following sections.

For obvious reasons, the functional model theory of non-selfadjoint operators deals with op-
erators possessing no non-trivial reducing self-adjoint parts. Such operators are called completely
non-selfadjoint or, using a somewhat less accurate term, simple. The rationale behind this condi-
tion is easy to illustrate within the Lax-Phillips framework. Let the dissipative operator L = −iB
governing the wave dynamics in a vicinity of an obstacle possess a non-trivial self-adjoint part.
This part is then a self-adjoint operator acting on the subspace spanned by the eigenvectors of L
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corresponding to its real eigenvalues. The restriction of Z(t) to this subspace is an isometry for
all t ∈ R, and the energy of these states remains constant (recall that the space K is equipped with
the energy norm). Therefore these waves stay in a bounded region adjacent to the obstacle at all
times. These bound states do not participate in scattering, as they are invisible to the scattering
process describing the asymptotic behaviour as t→ ±∞, so that the matrix S (or the characteristic
function of L) contains no information pertaining to them. In operator theory, this is known as
the claim that the characteristic function of a dissipative operator is oblivious to its self-adjoint
part. It is also well-known, that the characteristic function uniquely determines the completely
non-selfadjoint part of a dissipative operator.

The interaction dynamics of the Lax-Phillips scattering supposes neither minimality nor com-
plete non-selfadjointness. One can envision incoming waves that do not interact with the obstacle
during their evolution and eventually become outgoing as t → +∞. It is also easy to conceive of
trapping obstacles preventing waves from leaving the neighbourhood of the obstacle at t → +∞.
The geometry of such obstacles cannot be fully recovered from the scattering data because, as
explained above, these standing waves do not participate in the scattering process.

In the applications discussed below, unless explicitly stated otherwise, all non-selfadjoint oper-
ators are assumed closed, densely defined with regular points in both lower and upper half planes.
The latter condition can be relaxed but is adopted in what follows for the sake of convenience.

2.2 Pavlov’s functional model and its spectral form

Functional models for prototypical dissipative operators of mathematical physics (as opposed to the
model for contractions), alongside explicit constructions of self-adjoint dilations, were investigated
by B. Pavlov in his works [108–110]. Two classes of dissipative operators were considered: the
Schrödigner operator in L2(R3) with a complex-valued potential, and the operator generated by
the differential expression −y′′+ q(x)y on the interval [0,∞) with a dissipative boundary condition
at x = 0. In both cases the self-adjoint dilations are constructed explicitly in terms of the problem at
hand, and supplemented by the model representations known today as “symmetric” and commonly
referred to as the Pavlov’s model. The results of [108–110] were extensively employed in various
applications and provided a foundation for the subsequent constructions of self-adjoint dilations
and functional models for general non-selfadjoint operators.

2.2.1 Additive perturbations [108,109]

Let A = A∗ be a selfadjoint unbounded operator on a Hilbert space K and V a bounded non-
negative operator V = V ∗ = α2/2 ≥ 0, where α := (2V )1/2.

The paper [109] studies the dissipative Schrödinger operator L = A+ (i/2)α2 in R3 defined by
the differential expression −∆+q(x)+(i/2)α2(x) with real continuous functions q and α such that
0 ≤ α ≤ C <∞. The operators A = −∆ + q and V = α2/2 are the real and imaginary parts of L
defined on dom(L) = dom(A). Assuming the operator L has no non-trivial self-adjoint components
and the resolvent set of L contains points in both upper and lower half planes, the operator L is a
maximal completely non-selfadjoint, densely defined dissipative operator on K.

According to the general theory, there exists a minimal dilation of L, which is a self-adjoint
operator L on a Hilbert space H ⊃ K such that

(L− zI)−1 = PK(L − zI)−1|K , z ∈ C−, (3)
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where PK is the orthogonal projection from H onto its subspace K.
The dilation constructed in [109] closely resembles the generator B of the unitary group U(t) in

the Lax-Phillips theory: Pavlov realised that a natural way to construct a self-adjoint dilation would
be to add the missing “incoming” and “outgoing” energy channels to the original non-conservative
dynamics, thus mimicking the starting point of Lax and Phillips. The challenge here is to determine
the operator that describes the “free” evolution of the dynamical system given only its “internal”
part, thus in some sense “reversing” the Lax-Phillips approach.

Denote E := clos ranα and define the dilation space as the direct sum of K and the equivalents
of incoming and outgoing channels D± = L2(R±, E),

H = D− ⊕K ⊕D+

Elements of H are represented as three-component vectors (v−, u, v+) with v± ∈ D± and u ∈ K.
The Lax-Phillips theory suggests that the dilation L restricted to D−⊕{0}⊕D+ should be the self-
adoint generator A of the continuous unitary group of right shifts exp(iAt) = U(t) : v(x) 7→ v(x− t)
in L2(R, E). By Stone’s theorem, one has

iAv = lim
t↓0

t−1[U(t)v − v] = lim
t↓0

t−1
(
v(x− t)− v(x)

)
= −v′(x),

so that the generator of U(t) is the operator A : v 7→ idv/dx. Hence, the action of L on the
channels D± is defined by L : (v−, 0, v+) 7→ (iv′−, 0, iv

′
+). The self-adjointness of L = L ∗ and the

requirement (3) yield the form of dilation L as found in [109],

L

 v−
u
v+

 =


i
dv−
dx

Au+
α

2
[v+(0) + v−(0)]

i
dv+

dx

 , (4)

defined on the domain

dom(L ) =
{

(v−, u, v+) ∈ H | v± ∈W 1
2 (R±, E), u ∈ dom(A), v+(0)− v−(0) = iαu

}
Embedding theorems for the Sobolev space W 1

2 guarantee the existence of boundary values v±(0).
The “boundary condition” v+(0)− v−(0) = iαu can be interpreted as a concrete form of coupling
between the incoming and outgoing channels D± realized by the imaginary part of L acting on E.

When α = 0, the right hand side of (4) is the orthogonal sum of two self-adjoint operators, that
is, the operator A on K and the operator id/dx acting in the orthogonal sum of channels L2(R, E) =
D− ⊕ D+. The characteristic function of L is the contractive operator-valued function defined by
the formula

S(z) = IE + iα(L∗ − zI)−1α : E → E, z ∈ C+ (5)

According to the fundamental result of Adamyan and Arov [2], the function S coincides with the
scattering operator of the pair (L ,L0) where L0 is defined by (4) with u = 0 and α = 0.

9



2.2.2 Extensions of symmetric operators [110]

Consider the differential expression
`y = −y′′ + q(x)y

in K = L2(R+) with a real function q such that the Weyl limit point case takes place. Denote
by ϕ and ψ the standard solutions to the equation `y = zy with z ∈ C+, satisfying the boundary
conditions

ϕ(0, z) = 0, ϕ′(0, z) = −1, ψ(0, z) = 1, ψ′(0, z) = 0

Then the Weyl solution χ = ϕ+m∞(z)ψ ∈ L2(R+), where m∞(z) is the Weyl function pertaining
to ` and corresponding to the boundary condition y(0) = 0, is defined uniquely. The function
m∞(z) is analytic with positive imaginary part for z ∈ C+.

Define the operator L in K = L2(R+) by the expression ` supplied with the non-selfadjoint
boundary condition at x = 0

(y′ − hy)|x=0 = 0, where Imh =
α2

2
, α > 0

A short calculation ascertains that L is dissipative indeed.
The Pavlov’s dilation of L is the operator L in the spaceH = D−⊕K⊕D+, whereD± = L2(R±),

defined on elements (v−, u, v+) ∈ H which satisfy

v± ∈W 1
2 (R±), u, `u ∈ L2(R+),

u′ − hu
∣∣
0

= αv−(0), u′ − h̄u
∣∣
0

= αv+(0)
(6)

The action of the operator L on this domain is set by the formula

L

 v−
u
v+

 =


i
dv−
dx

`u

i
dv+

dx

 . (7)

The characteristic function of L is the scalar analytic in the upper half-plane function S(z) given
by

S(z) =
m∞(z)− h
m∞(z)− h̄

, Im(z) > 0.

Note that since Imh = α2/2, the function S(z) can be rewritten in a form similar to that of the
characteristic function (5), i. e.,

S(z) = 1 + iα
(
h̄−m∞(z)

)−1
α. (8)

2.2.3 Pavlov’s symmetric form of the dilation

According to the general theory [130], once the characteristic function S is known, the analysis of
the completely non-selfadjoint part of the operator L is reduced to the analysis of S. Hence, the
typical questions of the operator theory (the spectral analysis, description of invariant subspaces)
are reformulated as problems pertaining to analytic (operator-valued) functions.
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Assume that L is completely non-selfadjoint and ρ(L) ∩ C± 6= ∅. Let L be its minimal
self-adjoint dilation, S being the characteristic function of L. Owing to the general theory [130],
the operator L is unitary equivalent to its model acting in the spectral representation of L in
accordance with (3). Recall that the characteristic function S(z), z ∈ C+ is analytic in the upper
half-plane taking values in the set of contractions of E,

S(z) : E → E, ‖S(z)‖ ≤ 1, z ∈ C+

Due to the operator version of Fatou’s theorem [130], the nontangential boundary values of the
function S exist in the strong operator topology almost everywhere on the real line. Put S =
S(k) := s-limε↓0 S(k + iε) and S∗ = S∗(k) := s-limε↓0[S(k + iε)]∗, both limits existing for almost
all k ∈ R. The Fatou theorem guarantees that the operators S(k) and S∗(k) are contractions on E
for almost all k ∈ R. The symmetric form of the dilation is obtained by completion of the dense
linear set in L2(E)⊕ L2(E) with respect to the norm∥∥∥∥(g̃g

)∥∥∥∥2

H

:=

ˆ

R

〈(
I S∗

S I

)(
g̃

g

)
,

(
g̃

g

)〉
E⊕E

dk, (9)

followed by factorisation by the elements of zero norm. In the symmetric representation, the
incoming and outgoing subspaces D± admit their simplest possible form. On the other hand,
calculations related to the space K can meet certain difficulties, since the “weight” in (9) can be
singular. Also note that the elements of H are not individual functions from L2(E)⊕ L2(E) but
rather equivalence classes [104,106]. Despite these complications, the Pavlov’s symmetric model has
been widely accepted in the analysis of non-selfadjoint operators, and in particular of the operators
of mathematical physics. Two alternative and equivalent forms of the norm ‖ · ‖H that are easy to
derive, ∥∥∥∥(g̃g

)∥∥∥∥2

H

= ‖Sg̃ + g‖2L2(E) + ‖∆∗g‖2L2(E) = ‖g̃ + S∗g‖2L2(E) + ‖∆g̃‖2L2(E) ,

where ∆ :=
√
I − S∗S and ∆∗ :=

√
I − SS∗, show that for each

(
g̃
g

)
∈ H expressions Sg̃ + g,

g̃ + S∗g, ∆g̃, and ∆∗g are in fact usual square summable vector-functions from L2(E). Moreover,
due to these equalities the form (9) is positive-definite indeed and thus represents a norm.

The space

H = L2

(
I S∗

S I

)
with the norm defined by (9) is the space of spectral representation for the self-adjoint dilation L
of the operator L. Henceforth we will denote the corresponding unitary mapping of H onto H
by Φ. It means that the operator of multiplication by the independent variable acting on H , i.e.,
the operator f(k) 7→ kf(k), is unitary equivalent to the dilation L . Hence, for z ∈ C \ R, the
mapping

(
g̃
g

)
7→ (k − z)−1

(
g̃
g

)
is unitary equivalent to the resolvent (L − z)−1 and therefore

(L− zI)−1 ' PK (k − z)−1
∣∣
K
, z ∈ C−,

where the ' sign is utilised to denote unitary equivalence.
The incoming and outgoing subspaces of the dilation space H admit the form

D+ :=

(
H2

+(E)

0

)
, D− :=

(
0

H2
−(E)

)
, K := H 	 [D+ ⊕D−]
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where H±2 (E) are the Hardy classes of E-valued vector functions analytic in C±. As usual [115],
the functions from vector-valued Hardy classes H±2 (E) are identified with their boundary values
existing almost everywhere on the real line. They form two complementary mutually orthogonal
subspaces so that L2(E) = H2

+(E)⊕H2
−(E).

The image K of K under the spectral mapping Φ of the dilation space H to H is the subspace

K =

{(
g̃

g

)
∈H : g̃ + S∗g ∈ H2

−(E), Sg̃ + g ∈ H2
+(E)

}
The orthogonal projection PK from H onto K is defined by formula (10) on a dense set of
functions from L2(E)⊕ L2(E) in H

PK

(
g̃

g

)
=

(
g̃ − P+(g̃ + S∗g)

g − P−(Sg̃ + g)

)
, g̃ ∈ L2(E), g ∈ L2(E). (10)

Here P± are the orthogonal projections of L2 onto the Hardy classes H±2 .
Further information on model representations can be found in the series of papers [104–107]

and the treatise [103].

2.2.4 Naboko’s functional model of non-selfadjoint operators

The development of the functional model approach for contractions inspired the search for such
models of non-dissipative operators. The attempts to follow the blueprints of Sz.-Nagy-Foias and
Lax-Philitps meet serious challenges rooted in the absence of a proper self-adjoint dilation for non-
dissipative operators: the dilatation in this case is a self-adjoint operator acting on a space with an
indefinite metric [49]. Consequently, the characteristic function of a non-dissipative operator is an
analytic operator-function, contractive with respect to an indefinite metric [50], which considerably
hinders any further progress in this direction. We mention the works [16, 93], the monograph [83]
and references therein for more details and examples.

An alternative approach was suggested in the late seventies with the publication of papers [95,96]
and especially [97] by S. Naboko who found a way to represent a non-dissipative operator in a model
space of a suitably chosen dissipative one. We refer the reader to the relevant section of the paper
on Sergey Naboko’s mathematical heritage in the present volume for the details of the mentioned
approach and the relevant references. In the next section of the present paper we outline the main
ingredients of an adaptation of the latter to the setting of extensions of symmetric operators, which
was developed by Sergey’s students.

We mention that this set of techniques allows one to significantly advance the spectral analysis
of non-selfadjoint operators, including the definition of the absolutely continuous and singular
subspaces and the study of spectral resolutions of identity. In particular, of major importance is
the possibility to construct the wave and scattering operators in a natural representation. It should
be noted that the self-adjoint scattering theory (and all the major versions of the latter) turns out
to be included as a particular case of a much more general non-selfadjoint one.

2.3 Functional model for a family of extensions of a symmetric operator

The generic model constructed in [92,118] lends itself as a powerful and universal tool for the anal-
ysis of (completely) non-selfadjoint and (completely) non-unitary operators. Since characteristic
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functions of such operators are essentially unique and define the operators up to unitary equiv-
alence, all model considerations are immediately available once this function is known. In many
applications, however, the results sought need to be formulated in terms of the problem itself (i.e.,
in the natural terms), rather than in the abstract language of characteristic functions (and their
transforms). One prominent example when the general theory is not sufficient is the setting of exten-
sions of symmetric operators and the associated setting of operators pertaining to boundary-value
problems. Within this setup, the results are expected to be formulated as statements concerning
the symmetric operator itself and the relevant properties of the extension parameters. Some results
in this direction were obtained by B. Solomyak in [124], but the related calculations tend to be
rather tedious due to the reduction to the case of contractions which is required.

The extension theory of symmetric operators, especially differential operators, greatly benefits
from the abstract framework known as the boundary triples theory. The basic concepts of this
operator-theoretic approach can be found in the textbook [122] by K. Schmüdgen. The recent
monograph [20] contains a detailed treatment of this area.

It is therefore quite natural to utilise this approach in conjunction with the functional models
techniques outlined above in the analysis of non-selfadjoint extensions of symmetric operators. This
section briefly outlines the results pertaining to the functional model construction for dissipative
and non-dissipative extensions of symmetric operators and the related developments, including an
explicit construction of the wave and scattering operators and of the scattering matrices. Since all
the considerations in this area are essentially parallel to the ones of Naboko in his development of
spectral theory for additive perturbations of self-adjoint operators, one can consider this narrative
as a rather detailed exposition of Naboko’s ideas and results in a particular case, important for
applications.

2.3.1 Boundary triples

The fundamentals of the boundary triples theory have been introduced in [20, 122], see also refer-
ences therein.

Denote by A a closed and densely defined symmetric operator on the separable Hilbert space
H with the domain domA, having equal deficiency indices 0 < n+(A) = n−(A) ≤ ∞.

Definition 2.1 ( [77]). A triple {K,Γ0,Γ1} consisting of an auxiliary Hilbert space K and linear
mappings Γ0,Γ1 defined everywhere on domA∗ is called a boundary triple for A∗ if the following
conditions are satisfied:

1. The abstract Green’s formula is valid

(A∗f, g)H − (f,A∗g)H = (Γ1f,Γ0g)K − (Γ0f,Γ1g)K, f, g ∈ domA∗ (11)

2. For any Y0, Y1 ∈ K there exist f ∈ domA∗, such that Γ0f = Y0, Γ1f = Y1. In other words,
the mapping f 7→ Γ0f ⊕ Γ1f , f ∈ domA∗ to K ⊕K is surjective.

It can be shown (see [77]) that a boundary triple for A∗ exists assuming only n+(A) = n−(A).
Note also that a boundary triple is not unique. Given any bounded self-adjoint operator Λ = Λ∗

on K, the collection {K,Γ0,Γ1 + ΛΓ0} is a boundary triple for A∗ as well, provided that Γ1 + ΛΓ0

is surjective.
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Definition 2.2. Let T = {K,Γ0,Γ1} be a boundary triple of A∗. The Weyl function of A∗

corresponding to T and denoted M(z), z ∈ C \ R is an analytic operator-function with a positive
imaginary part for z ∈ C+ (i.e., an operator R-function) with values in the algebra of bounded
operators on K such that

M(z)Γ0fz = Γ1fz, fz ∈ ker(A∗ − zI), z /∈ R

For z ∈ C \ R we have (M(z))∗ = (M(z̄)) and Im(z) · Im(M(z)) > 0.

Definition 2.3. An extension A of a closed densely defined symmetric operator A is called almost
solvable (a.s.) and denoted A = AB if there exist a boundary triple {K,Γ0,Γ1} for A∗ and a bounded
operator B : K → K defined everywhere in K such that

f ∈ domAB ⇐⇒ Γ1f = BΓ0f

This definition implies the inclusion domAB ⊂ domA∗ and that AB is a restriction of A∗ to the
linear set domAB := {f ∈ domA∗ : Γ1f = BΓ0f}. In this context, the operator B plays the role
of a parameter for the family of extensions {AB | B : K → K}.

It can be shown (see [47] for references) that if the deficiency indices n±(A) are equal and AB is
an almost solvable extension of A, then the resolvent set of AB is not empty (i.e. AB is maximal),
both AB and (AB)∗ = AB∗ are restrictions of A∗ to their domains, and AB and B are selfadjont
(dissipative) simultaneously. The spectrum of AB coincides with the set of points z0 ∈ C such that
(M(z0)−B)−1 does not admit analytic continuation into it.

2.3.2 Characteristic functions

Assume that the parameter B of an almost solvable extension AB is completely non-selfadjoint. It
can be represented as the sum of its real and imaginary part

B = BR + iBI , BR = B∗R, BI = B∗I

These parts are well defined since B is bounded. The Green’s formula implies that for BI 6= 0 the
imaginary part of AB (in the sense of its form) is non-trivial, i. e., Im(ABu, u) 6= 0 at least for some
u ∈ dom(AB). Hence AB in this case is not a self-adjoint operator. It appears highly plausible
that complete non-selfadjointness of AB can be derived solely from complete non-selfadjointness
of B, assuming that A has no reducing self-adjoint parts. However, no direct proof of this assertion
seems to be available in the existing literature.

According to (5), the characteristic function of B has the form

ΘB(z) = IE + iJα(B∗ − zI)−1α : E → E, z ∈ ρ(B∗),

where α :=
√

2|BI |, J := signBI , and E := clos ran(α). On the other hand, direct calculations
according to [127] lead to the following representation for the characteristic function ΘAB

: E → E
of the non-selfadjoint part of the extension AB

ΘAB
= IE + iJα(B∗ −M(z))−1α, z ∈ ρ(A∗B).

These two formulae confirm an earlier observation that goes back to B. S. Pavlov’s work [110],
see (8) above. The function ΘAB

is obtained from ΘB by the substitution of M(z) for zIE , z ∈ C+

ΘAB
(z) = ΘB(M(z)), z ∈ ρ(A∗B).
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Alongside AB introduce the dissipative almost solvable extension A+ parameterized by B+ :=
BR + i|BI |. Note that the characteristic function S of A+ is given by (cf. (5))

S(z) = IE + iα(B∗+ − zI)−1α : E → E, z ∈ C+. (12)

Calculations of [117] (cf. [95]) show that the characteristic functions of AB and A+ are related
via an operator linear-fractional transform known as Potapov-Ginzburg transformation, or PG-
transform [14]. This fact is essentially geometric. It connects contractions on Krĕın spaces (i.e.,
the spaces with an indefinite metric defined by the involution J = J∗ = J−1) with contractions on
Hilbert spaces endowed with the regular metric. The PG-transform is invertible and the following
assertion pointed out in [95] holds.

Proposition 2.1.The characteristic function ΘAB
is J-contractive on its domain and the PG-trans-

form maps it to the contractive characteristic function S of A+ as follows:

ΘAB
7→ S = −(χ+ −ΘAB

χ−)−1(χ− −ΘAB
χ+), S 7→ ΘAB

= (χ− + χ+S)(χ+ + χ−S)−1 (13)

where χ± = (IE ± J)/2 are orthogonal projections onto subspaces of χ+E and χ−E, respectively.

It appears somewhat unexpected that two operator-valued functions connected by formulae (13)
can be explicitly written down in terms of their “main operators” AB and A+. This relationship
between the characteristic functions of AB and A+ goes in fact much deeper, see [13, 14]. In
particular, the self-adjoint dilation of A+ and the J-self-adjoint dilation of AB are also related via
a suitably adjusted version of the PG-transform. Similar statements hold for the corresponding
linear systems or “generating operators” of the functions ΘAB

and S, cf. [13,14]. This fact is crucial
for the construction of a model of a general closed and densely defined non-selfadjoint operator,
see [118].

2.3.3 Functional model for a family of extensions

Formulae of the previous secion are essentially the same as the formulae of [95] connecting charac-
teristic functions of non-dissipative and dissipative operators. Reasoning by analogy, this suggests
an existence of certain identities that would connect the resolvents of AB and A+ corresponding
to parameters B = BR + iBI and B+ = BR + i|BI |. Such identities indeed exist; they are the
celebrated Krĕın formulae for resolvents of two extensions of a symmetric operator. Their variant
is readily derived within the framework of boundary triplets, see [117] for calculations, where all
details of the following results can also be found.

The functional model of the dissipative extension A+ begins with the derivation of its minimal
selfadjoint dilation A . It is constructed following the recipe of B. Pavlov [108–110] and takes a
form quite similar to (6), (7)

A

v−u
v+

 =

 iv′−

A∗+u

iv′+

 ,

v−u
v+

 ∈ dom(A )

where dom(A ) consists of vectors (v−, u, v+) ∈ H = D− ⊕ H ⊕ D+, with v± ∈ W 1
2 (R±, E),

u ∈ dom(A∗+) under two “boundary conditions” imposed on v± and u:

Γ1u−B+Γ0u = αv−(0), Γ1u−B∗+Γ0u = αv+(0)
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The functional model construction for A+ follows the recipe by S. Naboko [97]. The following
theorem holds.

Theorem 2.2. There exists a mapping Φ from the dilation space H onto Pavlov’s model space H
defined by (9) with the following properties

1. Φ is isometric.

2. g̃ + S∗g = F+h, Sg̃ + g = F−h, where
(
g̃
g

)
= Φh, h ∈ H

3. Φ ◦ (L − zI)−1 = (k − z)−1 ◦ Φ, z ∈ C \ R

4. ΦH = H , ΦD± = D±, ΦK = K

5. F± ◦ (L − zI)−1 = (k − z)−1 ◦F±, z ∈ C \ R.

where bounded maps F± : H → L2(R, E) are defined by the formulae

F+ : h 7→ − 1√
2π

αΓ0(A+ − k + i0)−1u+ S∗+(k)v̂−(k) + v̂+(k),

F− : h 7→ − 1√
2π

αΓ0(A∗+ − k − i0)−1u+ v̂−(k) + S+(k)v̂+(k),

where h = (v−, u, v+) ∈ H and v̂± are the Fourier transforms of v± ∈ L2(R±, E).

Using the Krĕın formulae, which play the same role as Hilbert resolvent identities in the case
of additive perturbations, one can obtain results similar to those of [97] and obtain an explicit
description of (A+ − z)−1 in the functional model representation. An analogue of this result for
more general extensions of A corresponding to a choice of parameter B in the form BR + ακα/2
with bounded κ : E → E and BR = B∗R is proven along the same lines. This program was realized
in [118] for a particular case κ = iJ and in [47] for the family of extensions Aκ parameterized
by Bκ = ακα/2. The latter form of extension parameter utilizes the possibility of “absorbing”
the part BR = B∗R into the map Γ1, i. e., passing from the boundary triple {K,Γ0,Γ1} to the
triple {K,Γ0,Γ1 +BRΓ0}.

2.3.4 Smooth vectors and the absolutely continuous subspace

Here we characterise the absolutely continuous spectral subspace for an almost solvable extension
of a densely defined symmetric operator with equal (possibly infinite) deficiency indices. The
procedure we follow is heavily influenced by the ideas of Sergey Naboko, see [97,99] and is carried
out essentially in parallel to the exposition of [97]. In contrast to the mentioned works, dealing
with additive perturbations of self-adjoint operators, we are dealing with the case of extensions,
self-adjoint and non-self-adjoint alike. The narrative below follows the argument presented in our
papers [46,47].

Since we are not limiting the consideration to the case of self-adjoint operators, we first require
the notion of the absolutely continuous spectral subspace applicable in the non-self-adjoint setup.
In the functional model space H introduced in Section 2.2.3 constructed based on the characteristic
function S(z) introduced in Section 2.3.2 consider two subspaces N κ

± defined as follows:

N κ
± :=

{(
g̃

g

)
∈H : P±

(
χ+
κ (g̃ + S∗g) + χ−κ (Sg̃ + g)

)
= 0

}
,
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where

χ±κ :=
I ± iκ

2
.

and P± are orthogonal projections onto their respective Hardy classes, as above.
These subspaces have a characterisation in terms of the resolvent of the operator Aκ. This,

again, can be seen as a consequence of a much more general argument (see e.g. [116,118]).

Theorem 2.3. Suppose that kerα = 0. The following characterisation holds:

N κ
± =

{(
g̃

g

)
∈H : Φ(Aκ − zI)−1Φ∗PK

(
g̃

g

)
= PK

1

k − z

(
g̃

g

)
for all z ∈ C±

}
.

Here Φ denotes the unitary mapping of the dilation space H onto H , as above.

Consider the counterparts of N κ
± in the original Hilbert space H :

Ñκ
± := Φ∗PKN κ

± ,

which are linear sets albeit not necessarily subspaces. In a way similar to [97], one introduces the
set

Ñκ
e := Ñκ

+ ∩ Ñκ
−

of so-called smooth vectors and its closure Nκ
e := clos(Ñκ

e ).
The next assertion (cf. e.g. [116, 118], for the case of general non-selfadjoint operators), is an

alternative non-model characterisation of the linear sets Ñκ
±.

Theorem 2.4. The sets Ñκ
± are described as follows:

Ñκ
± = {u ∈ H : αΓ0(Aκ − zI)−1u ∈ H2

±(E)}.

Moreover, one shows that for the functional model image of Ñκ
e the following representation

holds:

ΦÑκ
e =

{
PK

(
g̃

g

)
∈H :(

g̃

g

)
∈H satisfies Φ(Aκ − zI)−1Φ∗PK

(
g̃

g

)
= PK

1

k − z

(
g̃

g

)
∀ z ∈ C− ∪ C+

}
, (14)

which motivates the term “the set of smooth vectors” used for Ñκ
e . (Note that the inclusion of the

right-hand side of (14) into ΦÑκ
e follows immediately from Theorem 2.3.)

The above Theorem together with Theorem 2.5 below motivates generalising the notion of the
absolutely continuous subspace Hac(Aκ) to the case of non-selfadjoint extensions Aκ of a symmetric
operator A, by identifying it with the set Nκ

e . This generalisation follows in the footsteps of the
corresponding definition by Naboko [97] in the case of additive perturbations (see also [116,118] for
the general case).

Definition 2.4. For a symmetric operator A, in the case of a non-selfadjoint extension Aκ the
absolutely continuous subspace Hac(Aκ) is defined by the formula Hac(Aκ) := Nκ

e .
In the case of a self-adjoint extension Aκ, we understand Hac(Aκ) in the sense of the classical

definition of the absolutely continuous subspace of a self-adjoint operator.
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It turns out that in the case of self-adjoint extensions a rather mild additional condition guaran-
tees that the non-self-adjoint definition above is equivalent to the classical self-adjoint one. Namely,
we have the following

Theorem 2.5. Assume that κ = κ∗, ker(α) = {0} and let αΓ0(Aκ − zI)−1 be a Hilbert-Schmidt
operator for at least one point z ∈ ρ(Aκ). If A is completely non-selfadjoint, then the definition
Hac(Aκ) = Nκ

e is equivalent to the classical definition of the absolutely continuous subspace of a
self-adjoint operator, i.e.

Nκ
e = Hac(Aκ) .

Remark 1. Alternative conditions, which are even less restrictive in general, that guarantee the
validity of the assertion of Theorem 2.5 can be obtained along the lines of [99].

2.3.5 Wave and scattering operators

The results of the preceding section allow us, see [46, 47], to calculate the wave operators for any
pair Aκ1 , Aκ2 , where Aκ1 and Aκ2 are two different extensions of a symmetric operator A, under
the additional assumption that the operator α has a trivial kernel. For simplicity, in what follows
we set κ2 = 0 and write κ instead of κ1. Note that A0 is a self-adjoint operator, which is convenient
for presentation purposes.

In order to compute the wave operators of this pair, one first establishes the model representation
for the function exp(iAκt), t ∈ R, of the operator Aκ, evaluated on the set of smooth vectors Ñκ

e .
Due to (14), it is easily shown that on this set exp(iAκt) acts as an operator of multiplication by
exp(ikt). We then utilise the following result.

Proposition 2.6. ( [97, Section 4]) If Φ∗PK
(
g̃
g

)
∈ Ñκ

e and Φ∗PK
(
ĝ
g

)
∈ Ñ0

e (with the same element1

g), then ∥∥∥∥exp(−iAκt)Φ
∗PK

(
g̃

g

)
− exp(−iA0t)Φ

∗PK

(
ĝ

g

)∥∥∥∥
H

−−−−→
t→−∞

0.

It follows from Proposition 2.6 that whenever Φ∗PK
(
g̃
g

)
∈ Ñκ

e and Φ∗PK
(
ĝ
g

)
∈ Ñ0

e (with the
same second component g), formally one has

lim
t→−∞

eiA0te−iAκtΦ∗PK

(
g̃

g

)
= Φ∗PK

(
ĝ

g

)
= Φ∗PK

(
−(I + S)−1(I + S∗)g

g

)
.

In view of the classical definition of the wave operator of a pair of self-adjoint operators, see
e.g. [75],

W±(A0, Aκ) := s-lim
t→±∞

eiA0te−iAκtPκ
ac,

where Pκ
ac is the projection onto the absolutely continuous subspace of Aκ, we obtain that, at least

formally, for Φ∗PK
(
g̃
g

)
∈ Ñκ

e one has

W−(A0, Aκ)Φ∗PK

(
g̃

g

)
= Φ∗PK

(
−(I + S)−1(I + S∗)g

g

)
. (15)

1Despite the fact that
(
g̃
g

)
∈ H is nothing but a symbol, still g̃ and g can be identified with vectors in certain

L2(E) spaces with operators “weights”, see details below in Section 2.3.6. Further, we recall that even then for(
g̃
g

)
∈ H , the components g̃ and g are not, in general, independent of each other.
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By considering the case t→ +∞, one also obtains

W+(A0, Aκ)Φ∗PK

(
g̃

g

)
= lim

t→+∞
eiA0te−iAκtΦ∗PK

(
g̃

g

)
= Φ∗PK

(
g̃

−(I + S∗)−1(I + S)g̃

)
again for Φ∗PK

(
g̃
g

)
∈ Ñκ

e .
Further, the definition of the wave operators W±(Aκ, A0)∥∥∥∥e−iAκtW±(Aκ, A0)Φ∗PK

(
g̃

g

)
− e−iA0tΦ∗PK

(
g̃

g

)∥∥∥∥
H

−−−−→
t→±∞

0

yields, for all Φ∗PK
(
g̃
g

)
∈ Ñ0

e ,

W−(Aκ, A0)Φ∗PK

(
g̃

g

)
= Φ∗PK

(
−(I + χ−κ (S − I))−1(I + χ+

κ (S∗ − I))g

g

)
and

W+(Aκ, A0)Φ∗PK

(
g̃

g

)
= Φ∗PK

(
g̃

−(I + χ+
κ (S∗ − I))−1(I + χ−κ (S − I))g̃

)
. (16)

In order to rigorously justify the above formal argument, i.e. in order to prove the existence and
completeness of the wave operators, one needs to first show that the right-hand sides of the formulae
(15)–(16) make sense on dense subsets of the corresponding absolutely continuous subspaces, which
is done in a similar way to [99]. Below, we show how this argument works in relation to the wave
operator (15) only, skipping the technical details in view of making the exposition more transparent.

Let S(z) − I be of the class S∞(C+), i.e. a compact analytic operator function in the upper
half-plane up to the real line. Then so is (S(z)−I)/2, which is also uniformly bounded in the upper
half-plane along with S(z). We next use the result of [99, Theorem 3] about the non-tangential
boundedness of operators of the form (I + T (z))−1 for T (z) compact up to the real line. We infer
that, provided (I + (S(z0) − I)/2)−1 exists for some z0 ∈ C+ (and hence, see [32], everywhere in
C+ except for a countable set of points accumulating only to the real line), one has non-tangential
boundedness of (I+ (S(z)− I)/2)−1, and therefore also of (I+S(z))−1, for almost all points of the
real line.

On the other hand, the latter inverse can be computed in C+:(
I + S(z)

)−1
=

1

2

(
I + iαM(z)−1α/2

)
. (17)

It follows from (17) and the analytic properties of M(z) that the inverse (I + S(z))−1 exists
everywhere in the upper half-plane. Thus, Theorem 3 of [99] is indeed applicable, which yields
that (I + S(z))−1 is R-a.e. nontangentially bounded and, by the operator generalisation of the
Calderon theorem (see [125]), which was extended to the operator context in [99, Theorem 1], it
admits measurable non-tangential limits in the strong operator topology almost everywhere on R.
As it is easily seen, these limits must then coincide with (I + S(k))−1 for almost all k ∈ R.

Then the correctness of the formula (15) for the wave operators follows: indeed, consider 1n(k),
the indicator of the set {k ∈ R : ‖(I + S(k))−1‖ ≤ n}. Clearly, 1n(k) → 1 as n → ∞ for almost
all k ∈ R. Next, suppose that PK(g̃, g) ∈ Ñκ

e . Then PK1n(g̃, g) is shown to be a smooth vector as
well as (

−(I + S)−1
1n(I + S∗)g

1ng

)
∈H .
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It follows, by the Lebesgue dominated convergence theorem, that the set of vectors PK1n(g̃, g) is
dense in Nκ

e .
Thus the following theorem holds.

Theorem 2.7. Let A be a closed, symmetric, completely nonselfadjoint operator with equal defi-
ciency indices and consider its extension Aκ under the assumptions that ker(α) = {0} and that
Aκ has at least one regular point in C+ and in C−. If S − I ∈ S∞(C+), then the wave operators
W±(A0, Aκ) and W±(Aκ, A0) exist on dense sets in Nκ

e and Hac(A0), respectively, and are given
by the formulae (15)–(16). The ranges of W±(A0, Aκ) and W±(Aκ, A0) are dense in Hac(A0) and
Nκ

e , respectively.2

Remark 2. 1. The condition S(z) − I ∈ S∞(C+) can be replaced by the following equiva-
lent condition: αM(z)−1α is nontangentially bounded almost everywhere on the real line, and
αM(z)−1α ∈ S∞(C+) for =z ≥ 0.

2. The latter condition is satisfied [66], as long as the scalar function ‖αM(z)−1α‖Sp is non-
tangentially bounded almost everywhere on the real line for some p <∞, where Sp, p ∈ (0,∞], are
the standard Schatten – von Neumann classes of compact operators.

3. An alternative sufficient condition is the condition α ∈ S2 (and therefore Bκ ∈ S1), or,
more generally, αM(z)−1α ∈ S1, see [98] for details.

Finally, the scattering operator Σ for the pair Aκ, A0 is defined by

Σ = W−1
+ (Aκ, A0)W−(Aκ, A0).

The above formulae for the wave operators lead (cf. [97]) to the following formula for the action of
Σ in the model representation:

ΦΣΦ∗PK

(
g̃

g

)
= PK

(
−(I + χ−κ (S − I))−1(I + χ+

κ (S∗ − I))g

(I + S∗)−1(I + S)(I + χ−κ (S − I))−1(I + χ+
κ (S∗ − I))g

)
, (18)

whenever Φ∗PK
(
g̃
g

)
∈ Ñ0

e . In fact, as explained above, this representation holds on a dense linear set

in Ñ0
e within the conditions of Theorem 2.7, which guarantees that all the objects on the right-hand

side of the formula (18) are correctly defined.

2.3.6 Spectral representation for the absolutely continuous part of the operator A0

and the scattering matrix

The identity ∥∥∥∥PK(g̃g
)∥∥∥∥2

H

=
〈
(I − S∗S)g̃, g̃

〉
which is derived in [97, Section 7] for all PK

(
g̃
g

)
∈ Ñ0

e allows us to consider the isometry F : ΦÑ0
e 7→

L2(E; I − S∗S) defined by the formula

FPK

(
g̃

g

)
= g̃.

2In the case when Aκ is self-adjoint, or, in general, the named wave operators are bounded, the claims of the
theorem are equivalent (by the classical Banach-Steinhaus theorem) to the statement of the existence and completeness
of the wave operators for the pair A0, Aκ . Sufficient conditions of boundedness of these wave operators are contained
in e.g. [97, Section 4], [99] and references therein.
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Here L2(E; I − S∗S) is the Hilbert space of E-valued functions on R square summable with the
matrix “weight” I − S∗S.

Under the assumptions of Theorem 2.7 one can show that the range of the operator F is dense
in the space L2(E; I − S∗S). Thus, the operator F admits an extension to the unitary mapping
between ΦN0

e and L2(E; I − S∗S).
It follows that the self-adjoint operator (A0 − z)−1 considered on Ñ0

e acts as the multiplication
by (k − z)−1, k ∈ R, in L2(E; I − S∗S). In particular, if one considers the absolutely continuous

“part” of the operator A0, namely the operator A
(e)
0 := A0|N0

e
, then FΦA

(e)
0 Φ∗F ∗ is the operator

of multiplication by the independent variable in the space L2(E; I − S∗S).
In order to obtain a spectral representation from the above result, it is necessary to diagonalise

the “weight” in the definition of the above L2-space. The corresponding transformation is straight-
forward when, e.g., α =

√
2I. (This choice of α satisfies the conditions of Theorem 2.7 e.g. when

the boundary space K is finite-dimensional). In this particular case one has

S = (M − iI)(M + iI)−1,

and consequently
I − S∗S = −2i(M∗ − iI)−1(M −M∗)(M + iI)−1.

Introducing the unitary transformation

G : L2(E; I − S∗S) 7→ L2(E;−2i(M −M∗)),

by the formula g 7→ (M + iI)−1g, one arrives at the fact that GFΦA
(e)
0 Φ∗F ∗G∗ is the operator of

multiplication by the independent variable in the space L2(E;−2i(M −M∗)).

Remark 3. The weight M∗−M can be assumed to be naturally diagonal in many physically relevant
settings, including the setting of quantum graphs considered in Section 3.

The above result only pertains to the absolutely continuous part of the self-adjoint operator
A0, unlike e.g. the passage to the classical von Neumann direct integral, under which the whole
of the self-adjoint operator gets mapped to the multiplication operator in a weighted L2-space (see
e.g. [27, Chapter 7]). Nevertheless, it proves useful in scattering theory, since it yields an explicit
expression for the scattering matrix Σ̂ for the pair Aκ, A0, which is the image of the scattering
operator Σ in the spectral representation of the operator A0. Namely, one arrives at:

Theorem 2.8. The following formula holds:

Σ̂ = GFΣ(GF )∗ = (M − κ)−1(M∗ − κ)(M∗)−1M, (19)

where the right-hand side represents the operator of multiplication by the corresponding function in
the space L2(E;−2i(M −M∗)).

2.4 Functional models for operators of boundary value problems

The surjectivity condition in Definition 2.1 is a strong limitation that excludes many important
problems for extensions of symmetric operators with infinite deficiency indices. The standard
textbook version of a boundary value problem for the Laplace operator in a bounded domain Ω ⊂ R3

with smooth boundary ∂Ω is a typical example. The “natural” boundary maps Γ0 and Γ1 are two
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trace operators Γ0 : u 7→ u|∂Ω, Γ1 : u 7→ −∂u/∂n|∂Ω, where ∂/∂n denotes the derivative along the
exterior normal to the boundary ∂Ω. The ranges of these operators do not coincide with H = L2(Ω)
(the simplest possible Hilbert space of functions defined on the boundary) so the assumption of
surjectivity does not hold. A simple argument reveals the source of this problem: it appears due
to the limited compatibility of the Green’s formula required to hold on all of dom(A∗) and the
required surjectivity of both boundary maps Γ0, Γ1 also defined on the same domain dom(A∗).
This limitation of the boundary triples formalism can be relaxed and the framework extended to
cover more general cases, albeit at the cost of increased complexity, see [17, 18], the book [20] and
the references therein for a detailed account.

Formally a more restrictive approach applicable to semibounded symmetric operators A and
not based on the description of domA∗ was developed by M. Birman, M. Krĕın and M. Vishik.
Despite its limited scope, this theory proves to be indispensable in applications to various problems
of ordinary and partial differential operators. The publication [5] contains a concise exposition of
these results. It was realized later that the Birman-Krĕın-Vishik method is closely related to the
theory of linear systems with boundary control and to the original ideas of M. Livšic from the open
systems theory, see e. g. [119,120] in this connection. Let us give a brief account of relevant results
derived from the works cited above and tailored to the purposes of current presentation.

2.4.1 Boundary value problem

Let H, E be two separable Hilbert spaces, A0 an unbounded closed linear operator on H with the
dense domain domA0 and Π : E → H a bounded linear operator defined everywhere in E.

Theorem 2.9. Assume the following:

• A0 is self-adjoint and boundedly invertible;

• There exists the left inverse Γ̃0 of Π so that Γ̃0Πϕ = ϕ for all ϕ ∈ E;

• The intersection of domA0 and ran Π is trivial: domA0 ∩ ran Π = {0}.

Since domA0 and ran Π have trivial intersection, the direct sum domA0uran Π form a dense linear
set in H that can be described as {A−1

0 f+Πϕ | f ∈ H,ϕ ∈ E}. Define two linear operators A and Γ0

with the common domain domA0 u ran Π as “null extensions” of A0 and Γ̃0 to the complementary
component of domA0 u ran Π

A : A−1
0 f + Πϕ 7→ f, Γ0 : A−1

0 f + Πϕ 7→ ϕ, f ∈ H,ϕ ∈ E

The spectral “boundary value problem” associated with the pair {A0,Π} satisfying these conditions
is the system of two linear equations for the unknown vector u ∈ domA := domA0 u ran Π :{

(A− zI)u = f

Γ0u = ϕ
f ∈ H, ϕ ∈ E, (20)

where z ∈ C is the spectral parameter.
Let z ∈ ρ(A0), f ∈ H, ϕ ∈ E. Then the system (20) admits the unique solution uf,ϕz given by

the formula
uf,ϕz = (A0 − zI)−1f + (I − zA−1

0 )−1Πϕ

If the expression on the right hand side is null for some f ∈ H, ϕ ∈ E, then f = 0 and ϕ = 0.
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Let Λ be a linear operator on E with the domain dom Λ ⊂ E not necessarily dense in E. Define
the linear operator Γ1 on dom Γ1 := {A−1

0 f + Πϕ | f ∈ H,ϕ ∈ dom Λ} as the mapping

Γ1 : A−1
0 f + Πϕ 7→ Π∗f + Λϕ, f ∈ H, ϕ ∈ dom Λ

This definition implies Λ = Γ1Π|dom Λ.
Denote D := dom Γ1 = {A−1

0 f + Πϕ | f ∈ H,ϕ ∈ dom Λ}. Obviously D ⊂ domA. The next
theorem is a form of the Green’s formula for the operator A.

Theorem 2.10. Assume that Λ is selfadjoint (and therefore densely defined) in E. Then

(Au, v)− (u,Av) = (Γ1u,Γ0v)E − (Γ0u,Γ1v)E , u, v ∈ D

Notice the difference with the boundary triples version (11), where the operator on the left hand
side is the adjoint of a symmetric operator. In contrast, Theorem 2.10 has no relation to symmetric
operators. The Green’s formula is valid on a set defined by the selfadjoint A0 and an arbitrarily
chosen selfadjoint operator Λ.

Under the assumptions of Theorems 2.9 and 2.10 the operator-valued analytic function

M(z) = Λ + zΠ∗(I − zA−1
0 )−1Π, z ∈ ρ(A0)

defined on domM(z) = dom Λ is the Weyl function (cf. [20]) of the boundary value problem (20)
in the sense of equality (cf. Definition 2.2)

M(z)Γ0uz = Γ1uz, z ∈ ρ(A0)

where uz = uf,ϕz is the solution to (20) with f = 0 and ϕ ∈ dom Λ.

For the boundary value problem pertaining to the Laplace operator in a bounded domain Ω ⊂ R3

with a smooth boundary ∂Ω the boundary maps Γ0, Γ1 are defined as Γ0 : u 7→ u|∂Ω, Γ1 : u 7→
−∂u/∂n|∂Ω. Then A0 is the Dirichlet Laplacian in L2(Ω) and Π is the operator of harmonic
continuation from the boundary space E = L2(∂Ω) to Ω. The conditions dom(A0) ∩ ran(Π) = {0}
and Γ0Π = IE are satisfied by virtue of the embedding theorems for Sobolev classes. In this
setting M(·) is known as the Dirichlet-to-Neumann map, which is a pseudodifferential operator
defined on H1(∂Ω). A special role of the operator Λ = M(0) for the study of boundary value
problems was pointed out by M. Vishik in his work [135] and sometimes Λ in the settings of elliptic
partial differential operators is referred to as the Vishik operator.

2.4.2 Family of boundary value problems

General boundary value problems for the operator A have the form (cf. [135]){
(A− zI)u = f

(αΓ0 + βΓ1)u = ϕ
f ∈ H, ϕ ∈ E. (21)

Here α, β are linear operators on E such that β is bounded (and defined everywhere in E) and
α can be unbounded in which case domα ⊃ dom Λ = D . Under certain verifiable conditions the
solutions to (21) exist and are described by the following theorem.
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Theorem 2.11 (see [120]). Assume that the conditions of Theorems 2.9 and 2.10 are satisfied and
that the operator sum α + βΛ is correctly defined on dom Λ and closable in E. Then α + βM(z),
z ∈ ρ(A0) is also closable as an additive perturbation of α+βΛ by the bounded operator M(z)−Λ.
Denote by B(z) the closure of α+ βM(z), z ∈ ρ(A0) and let B = B(0).

• Consider the Hilbert space HB formed by the vectors
{
u = A−1

0 f + Πϕ | f ∈ H,ϕ ∈ dom B
}

and endowed with the norm

‖u‖B =
(
‖f‖2 + ‖ϕ‖2 + ‖Bϕ‖2

)1/2
The formal sum αΓ0 + βΓ1 is a bounded map from the Hilbert space HB to E. Note that the
summands in (αΓ0 + βΓ1)u, u ∈HB need not be defined individually.

• Assume that for some z ∈ ρ(A0) the operator B(z) has a bounded inverse [B(z)]−1. Then
the problem (21) is uniquely solvable. Under this condition there exists a closed operator Aα,β
with dense domain

domAα,β = {u ∈HB | (αΓ0 + βΓ1)u = 0} = Ker(αΓ0 + βΓ1)

and the resolvent (Krĕın formula) holds:

(Aα,β − zI)−1 = (A0 − zI)−1 − (I − zA−1
0 )−1Π[B(z)]−1βΠ∗(I − zA−1

0 )−1

• Denote by A00 the restriction of A0 to the set Ker Γ1, that is, A00 = A|Ker Γ0∩Ker Γ1
. Then

A00 is a symmetric operator with its domain not necessarily dense in H and

A00 ⊂ Aα,β ⊂ A

Notice that A0 is a self-adjoint extension of A00 contained in A. It is not difficult to recognize
the parallel with the von Neumann theory of self-adjoint extensions of symmetric operators. The
operator A00 is the “minimal” operator with the “maximal” equal to A∗00 (whenever the latter
exists) and all self-adjoint extensions As.a. of A00 satisfy A00 ⊂ As.a. ⊂ A∗00. Within the framework
of Theorem 2.11 the equivalent of A∗00 is the operator A of the boundary value problem (20)
defined on the domain dom(A). The semiboundness condition for A00 is relaxed and replaced by
the bounded invertibility of A0, i. e., the existence of a regular point of A0 on the real line.

2.4.3 Functional model

The results of previous sections hint at the possibility of a functional model construction for the
family of operators Aα,β with a suitably chosen pair (α, β). Having in mind the model space (9),
the selection of a “close” dissipative operator is typically guided by the properties of the problem
at hand. In the most general case when parameters (α, β) are unspecified, a reasonable approach
seems to be to construct a model suitable for the widest possible range of (α, β). In accordance
with the work by S. Naboko [97], the action of the operator Aα,β will then be explicitly described
in the functional model representation.

This program is realized in the recent paper [48]. The “model” dissipative operator L = A−iI,I
corresponds to the boundary condition (Γ1 − iΓ0)u = 0 for u ∈ dom(L) in the notation (21). The
characteristic function of L then coincides with the Cayley transform of the Weyl function,

S(z) = (M(z)− iI)(M(z) + iI)−1 : E → E, z ∈ C+.
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Under the mapping of the upper half plane to the unit disk, the function S((z − i)/(z + i)) is
the Sz.Nagy-Foiaş characteristic function of a contraction, namely, the Cayley transform V0 of A00

extended to H 	 dom(V0) by the null operator, hence resulting in a partial isometry. If A00 has no
non-trivial self-adjoint parts, the dissipative operator L = A−iI,I is also completely non-selfadjoint.
The standard assumptions of complete non-selfadjointness and maximality of L are thus met. The
minimal self-adjoint dilation A of L formally coincides with the dilation obtained in Section 2.3.3
for the case of boundary triples with A∗+ = A, B+ = iIE , B∗+ = −iIE and α =

√
2IE .

The description of operators Aα,β in the spectral representation of dilation A , i.e. in the model
space (9), cannot be easily obtained for arbitrary (α, β). However, under certain conditions imposed
on the parameters (α, β) the model construction becomes tractable. Namely, one assumes that the
operator β is boundedly invertible, the operator B = β−1α is bounded in E and that the operator-
valued function M(z) is invertible and BM(z)−1 is compact at least for some z in the upper and
lower half-plane of C (and therefore for all z ∈ C \ R).

It follows, that the operator Aα,β has at most discrete spectrum in C \ R with possible accu-
mulation to the real line only. Moreover, the resolvent set of Aα,β coincides with the open set

of complex numbers z ∈ C such that the closed operator B +M(z) has a bounded inverse, i. e.
ρ(Aα,β) = {z ∈ C | 0 ∈ ρ(B +M(z))}.

Finally, the model representation of the resolvent (Aα,β − zI)−1, z ∈ ρ(Aα,β) is explicitly
computed in the model space (9).

Once the latter are established, it is natural to expect that the absolutely continuous subspaces
can be characterised for the operators of boundary value problems in the case of exterior domains
and the scattering theory can then be constructed following the recipe of Naboko, as presented
in Section 2.2. If this programme is pursued, this would yield a natural representation of the
corresponding scattering matrix purely in terms of the M−operator defined above. A paper devoted
to this subject is presently being prepared for publication.

2.5 Generalised resolvents

In the present Section, we briefly recall the notion of generalised resolvents (see [7] for details) of
symmetric operators, which play a major role in the asymptotic analysis of highly inhomogeneous
media as presented in the present paper. It turns out that generalised resolvents and their underly-
ing self-adjoint operators in larger (dilated) spaces feature prominently in our approach; moreover,
their setup turns out to be natural in the theory of time-dispersive and frequency-dispersive me-
dia. On the mathematical level, this area is closely interrelated with the theory of dilations and
functional models of dissipative operators, the latter (at least, in the case of dissipative extensions
of symmetric operators) being an important particular case of the former.

We start with an operator-function R(z) in the Hilbert space H, analytic in z ∈ C+. Assuming
that ImR(z) ≥ 0 for z ∈ C+, and under the well-known asymptotic condition

lim sup
τ→+∞

τ‖R(iτ)‖ < +∞,

one has due to the operator generalisation of Herglotz theorem by Neumark [102]:

R(z) =

ˆ ∞
−∞

1

t− z
dB(t),

where B(t) is a uniquely defined left-continuous operator-function such that B(−∞) = 0, B(t2)−
B(t1) ≥ 0 for t2 > t1 and B(+∞) bounded. By the argument of [59], it follows from the Neumark
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theorem [101,102] (cf., e.g., [98]) that there exists a bounded operator X : H 7→ H with an auxiliary
Hilbert space H and a self-adjoint operator A in H such that

R(z) = X(A− z)−1X∗

with
XX∗ = s- lim

t→+∞
B(t) = s- lim sup

τ→+∞
τ ImR(iτ).

A particular case of this result, see [126], holds when (a) for some z0 ∈ C+ there exists a
subspace L ⊂ H such that (i) for all non-real z and all f ∈ L one has

R(z)f −R(z0)f = (z − z0)R(z)R(z0)f,

(ii) for any z ∈ C+ and any g ∈ L⊥ one has

‖R(z)g‖2 ≤ 1

Im z
Im〈R(z)g, g〉,

(iii) for all g ∈ L⊥ the function R(z)g is regular in C+; (b) R(z0)L = H.
Under these assumptions, the function R(z) is ascertained to be a generalised resolvent of a

densely defined symmetric operator A in H. Moreover, the deficiency index of A in C+ is equal to
dimL⊥. Precisely, this means that H ⊃ H and X = P , where P is the orthogonal projection of H
to H, i.e.,

R(z) = P (A− z)−1|H , Im z 6= 0, (22)

where A is a self-adjoint out-of-space extension of the symmetric operator A (or, alternatively, a
zero-range model with an internal structure, see Section 4 below). Moreover, under the minimality
condition

∨
Im z 6=0(A− z)−1H = H, it is defined uniquely up to a unitary transform which acts as

unity on H, see [101].
The latter representation takes precisely the same form as the dilation condition (3) in the

case of maximal dissipative extensions of symmetric operators, with the generalised resolvent R(z)
replacing the resolvent of a dissipative operator. It is in fact shown that the property (22) generalises
(3).

Namely, it turns out [126,128] that

R(z) = (AB(z) − z)−1 for z ∈ C+ ∪ C−.

Here in the particular case of equal deficiency indices, which is of interest to us from the point of
view of zero-range models with an internal structure, AB(z) is a z−dependant extension of A such
that there exists a boundary triple (K ,Γ0,Γ1) defining this extension as follows:

domAB(z) = {u ∈ domA∗|Γ1u = B(z)Γ0u}

with B(z) being a −R function (i.e., an analytic operator-function with a non-positive imaginary
part in C+).

Because of B∗(z̄) = B(z), which is the standard extension of an R−function into C− implied
here, the extension AB(z) turns out to be dissipative for z ∈ C− and anti-dissipative for z ∈ C+.
We henceforth refer to A as the Neumark-Strauss dilation of the generalised resolvent R(z) =
(AB(z) − z)−1. In a particular case of constant B(z) = B such that ImB ≤ 0, we have

(AB − z)−1 = P (A− z)−1|H for z ∈ C− and (AB∗ − z)−1 = P (A− z)−1|H for z ∈ C+,
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which are precisely (3) for both AB and AB∗ at the same time.
From what has been said above it follows that generalised resolvents appear when one conceals

certain degrees of freedom in a conservative physical system, either for the sake of convenience
or because these are not known. In particular, we refer the reader to the papers [59, 60], where
systems with time dispersion are analysed, with prescribed “memory” term. It turns out that
passing over to the frequency domain one ends up with a generalised resolvent. It then proves
possible to explicitly restore a conservative Hamiltonian (the operator A in our notation) which
yields precisely the postulated time dispersion. In a nutshell, the idea here is to work with an
explicit and simple enough model of the part of the space pertaining to the “hidden degrees of
freedom” instead of the unnecessarily complicated physical equations which govern them. Similar
ideas have been utilised in [131, 132]. The same technique has found its applications in numerics,
and in particular in the so-called theory of absorbing boundary conditions, see, e.g., [53, 71].

The problem of constructing a spectral representation for a Neumark-Strauss dilation of a given
generalised resolvent thus naturally arises. In a number of special cases, where H and A admit
an explicit construction (and in particular one has H = H ⊕ Ck for k ≥ 1), this can be done
following essentially the same path as outlined in Section 2.3 above. This is due to the fact that
in this case the operator A can be realised as a von Neumann extension of a symmetric operator
in H with equal and finite deficiency indices. The corresponding construction in the case when
k = 1 is presented in [45]. Surprisingly, this rather simple model already has a number of topical
applications, see Sections 4 and 5 of the present paper, and also the papers [57, 81, 82], where a
generalised resolvent of precisely the same class appears in the setting of thin networks converging
to quantum graphs.

The generic case has been studied by Strauss in [129], where three spectral representations of
the dilation are constructed, analogous to the ones of L. de Branges and J. Rovnyak, B. S. Pavlov,
and B. Sz.-Nagy and C. Foiaş. These results however present but theoretical interest, as they are
formulated in terms which apparently cannot be related to the original problem setup and are
therefore not usable in applications.

A different approach was suggested by M. D. Faddeev and B. S. Pavlov in [112], where a
problem originally studied by P. D. Lax and R. S. Phillips in [88] was considered. In [112], a
five-component representation of the dilation was constructed, which further allowed to obtain the
scattering matrix in an explicit form. It therefore comes as no surprise that, precisely as in the
Lax-Phillips approach, the resonances are revealed to play a fundamental role in this analysis (cf.
the analysis of the so-called Regge poles in the physics literature).

Later on, and again motivated in particular by applications to scattering, Neumark-Strauss
dilations were constructed in some special cases by J. Behrndt et al., see [11,19].

We remark that all the above results, except [45] and [129], have stopped short of attempting
to construct a spectral form of the Neumark-Strauss dilation. Any generic construction leading to
the latter and formulated in “natural” terms is presently unknown, to the best of our knowledge.

2.6 Universality of the model construction

The general form of the functional model of an unbounded closed operator [118] is a generalization
of the special cases, as developed in the papers by B. Pavlov and S. Naboko cited above. This
section aims to clarify the relationship between the models pertaining to different representations
of the characteristic function of a non-selfadjoint operator. As an illustration, we consider two
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special cases of operators of mathematical physics described above and link them to the general
model construction of [118].

2.6.1 Characteristic function of a linear operator [127]

Let L be a closed linear operator on a (separable) Hilbert space H with the domain dom(L).
Consider the form ΨL(·, ·) defined on dom(L)× dom(L):

ΨL(f, g) =
1

i
[(Lf, g)H − (f, Lg)H ] , f, g ∈ dom(L) (23)

Definition 2.5. The boundary space of L is a linear space E with a possibly indefinite scalar
product (·, ·)E such that there exists a closed linear operator Γ defined on dom(Γ) = dom(L) and
the following identity holds

ΨL(f, g) = (Γf,Γg)E , f, g ∈ dom(L) (24)

The operator Γ is called the boundary operator of L.

This definition is meaningful for any linear operator on H. For the purposes of model con-
struction, it is sufficient to focus only on the case when L is densely defined and dissipative. The
model representation of a non-dissipative operator is given in the model space of an auxiliary dis-
sipative one, as explained above. When L is dissipative, one has ΨL(f, f) ≥ 0, f ∈ dom(L) and
therefore the space E can be chosen as the Hilbert space obtained by factorization and completion
of {Γf | f ∈ dom(L)} with respect to the norm ‖Γf‖E , f ∈ dom(L). Note that the boundary
operator Γ defined in (24) is not uniquely defined. Due to the Hilbert structure of E, for any
isometry π on E the operator πΓ also satisfies the condition (24). Moreover, if (24) holds for some
operator Γ′ and space E′, then there exists an isometry π : E′ → E such that Γ = πΓ′.

Denote by E∗ and Γ∗ the boundary space and the boundary operator for the dissipative oper-
ator −L∗ endowed with the Hilbert metric. Assume that L is maximal, i. e., C− ⊂ ρ(L). Then
L∗ is also maximal and C+ ⊂ ρ(L∗). The following definition is valid for general non-selfadjiont
operators.

Definition 2.6. Let E and Γ be the boundary space and the boundary operator for a closed densely
defined operator L. Let E∗ and Γ∗ be the boundary space and the boundary operator for the op-
erator −L∗. The characteristic function of the operator L is the analytic operator-valued func-
tion S(z) : E → E∗ defined by

S(z)Γf = Γ∗(L
∗ − zI)−1(L− zI)f, f ∈ dom(L), z ∈ ρ(L∗)

If L is dissipative, then the spaces E and E∗ are Hilbert spaces, and the operator S(z) is a contraction
on E for each z ∈ C+.

Note that the actual form of S(z) depends on the choice of boundary spaces and boundary
operators. If Γ′ : dom(L)→ E′ and Γ′∗ : dom(L∗)→ E′∗ satisfy the condition (24) and S′(z) is the
corresponding characteristic function, then there exist two isometries π∗ : E∗ → E′∗ and π : E → E′

such that π∗S(z) = S′(z)π, z ∈ ρ(L∗). Such characteristic functions of the operator L are often
called equivalent.
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All steps involved in the model construction outlined above do not depend on the concrete
form of the characteristic function [35]. In particular cases when the characteristic function can be
expressed in terms of the original problem, the model admits a “natural” form in relation to the
problem setup. Examples of such calculations are provided towards the end of this section.

In order to compute a characteristic function of L one has to come up with a suitable definition
of boundary spaces and operators. Consider first the general case where no specific assumptions
on the operator L are made, and introduce the Cayley transform of L, i.e., T = (L− iI)(L+ iI)−1.
The operator T is clearly contractive. The operators

Q :=
1√
2

(I − T ∗T )1/2, Q∗ :=
1√
2

(I − TT ∗)1/2

are thus non-negative. A straightforward calculation [118] shows that the boundary spaces E, E∗
and the boundary operators Γ, Γ∗ can be defined as follows:

E = clos ran(Q), E∗ = clos ran(Q∗), Γ = closQ(L+ iI), Γ∗ = closQ∗(L
∗ − iI).

Here the operators Γ and Γ∗ are the closures of the respective mappings initially defined on dom(L)
and dom(L∗). This choice leads to the following expression for the characteristic function of the
operator L :

S(z) =
(
T − (z − i)Γ∗(L

∗ − zI)−1Q
)∣∣
E
, z ∈ C+. (25)

An explicit calculation reveals that S(z) is closely related to the characteristic function of T ,

S(z) = −ϑT
(
z − i

z + i

)
, z ∈ C+,

where
ϑT (λ) =

(
−T + 2λQ∗(I − λT ∗)−1Q

)∣∣
E
, |λ| < 1

is the Sz.-Nagy-Foiaş characteristic function of the contractive operator T . Therefore, the for-
mula (25) is the abstract form of the characteristic function of L regardless the “concrete” realiza-
tion of the operator L.

2.6.2 Examples

The actual choice of boundary spaces and operators is guided by the specifics of the problem
at hand. Let us demonstrate the “natural” selection for these objects for some of the models
introduced in Section 2.

Additive perturbations This is the simplest (and canonical) case of the characteristic function
calculations included here solely for the completeness of exposition. Let L be a dissipative operator
of Section 2.2.1, defined as an additive perturbation of a self-adjoint operator. Then for f, g ∈
dom(A) = dom(L) one has

ΨL(f, g) =
1

i
[(Lf, g)− (f, Lg)] =

1

i

[(
i
α2

2
f, g

)
−
(
f, i

α2

2
g

)]
= (αf, αg)

and therefore, the boundary space can be chosen as E = clos ran(α) with the boundary operator Γ
defined as a mapping Γf 7→ αf . In a similar way, E∗ = E and Γ∗ = Γ.

The characteristic function of L corresponding to this selection of boundary spaces and operators
is then computed as (5). As explained above, this characteristic function is equivalent to the
function (25).
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Almost solvable extensions In the notation of Section 2.3, let L = AB be a dissipative almost
solvable extension of a symmetric operator A corresponding to the bounded operator B = BR+iBI
with BR = B∗R and BI = B∗I ≥ 0 defined on the space K. Denote α :=

√
2(BI)

1/2. From the Green’s
formula (11) and the condition Γ1f = BΓ0f , f ∈ dom(L) we obtain for f, g ∈ dom(L):

ΨL(f, g) =
1

i
[(Lf, g)− (f, Lg)] =

1

i

(
(B −B∗)Γ0f,Γ0g

)
K = (αΓ0f, αΓ0g)K.

Next we demonstrate two alternative approaches to the derivation of the characteristic function
of L.

Approach 1. Define the boundary space E of the operator L = AB as the factorization and
completion of the linear set L = {Γ0f, | f ∈ dom(L)} endowed with the norm ‖u‖E = ‖α2u‖K,
u ∈ L. The norm ‖·‖E is degenerate if ker(α) is non-trivial, thus the factorization becomes necessary.
The corresponding boundary operator Γ is the map Γ : f 7→ Γ0f on the domain dom(Γ) = dom(L).
In a similar way, E∗ is defined as the factorization and completion of the linear set L∗ = {Γ0g, |
g ∈ dom(L∗)} with respect to the norm ‖u‖E∗ = ‖α2u‖K, u ∈ L∗. The boundary operator Γ∗ is the
mapping Γ∗ : g 7→ Γ0g defined on dom(Γ∗) = dom(L∗). Thus, both boundary spaces E and E∗ are
Hilbert spaces with the norm associated with the “weight” equal to α2.

An explicit computation then yields the following expression for the characteristic function S :

S (z) =
(
B∗ −M(z)

)−1(
B −M(z)

)
, z ∈ ρ(L∗),

where M(z) is the Weyl-Titchmarsh M−function of Section 2.3.

Approach 2. An alternative form of the characteristic function is obtained based on the boundary
operators Γ and Γ∗ introduced as the closures of the mappings f 7→ αΓ0f and g 7→ αΓ0g defined
on the linear sets dom(L) and dom(L∗), respectively. The boundary spaces E and E∗ in this case
are chosen as

E = clos ran
(
αΓ0|dom(L)

)
, E∗ = clos ran

(
αΓ0|dom(L∗)

)
.

In all applications considered in this paper, these spaces coincide: E = E∗. Similarly to the situation
of additive perturbations, it is often convenient (and common) to extend these spaces to clos ran(α).

The corresponding characteristic function is then represented by the formula (12) repeated here
for the sake of readers’ convenience:

S(z) = IE + iα
(
B∗ −M(z)

)−1
α : E → E, z ∈ ρ(L∗).

In contrast to Approach 1, this form captures the specifics of the extension parameter B. In par-
ticular, the dimension of the space E equals the dimension of the range of α. If the operator B
is a compact perturbation of a self-adjoint, i. e., BI = α2/2 ∈ S∞, then the characteristic func-
tion S(z) is an operator-valued function of the form I + S∞ defined on the (unweighted) Hilbert
space clos ran(α).

Equivalence of S and S. The mapping α̂ : f 7→ αf , f ∈ E is an isometry from the “weighted”
space E to the space K. The equality α̂S (z) = S(z)α̂, z ∈ ρ(L∗) expresses equivalence of the char-
acteristic functions S and S corresponding to different choices of boundary spaces and operators.
Both S and S functions are equivalent to the characteristic function of L written in its abstract
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form (25). It is easy to see that the boundary operators of Approach 1 and Approach 2 are also
related by means of the isometric mapping α̂.

In conclusion, we point out the recent paper [35] where the construction of the selfadjoint
dilation and the functional model of a dissipative operator is based entirely on the concept of
Strauss boundary spaces and operators (23), (24) with no reference to their “concrete” realizations.

3 An application: inverse scattering problem for quantum graphs

In the present section, we present an application of the theory introduced in Section 2.3, and
in particular of the explicit construction of wave operators and scattering matrices facilitated by
the approach based on the functional model due to Sergey Naboko. We first obtain an explicit
expression for the scattering matrix of a quantum graph which we take to be the Laplacian on a
finite non-compact metric graph, subject to δ−type coupling at graph vertices. Then we present an
explicit constructive solution to the inverse scattering problem for this graph, i.e., explicit formulae
for the coupling constants at graph vertices. The narrative of this Section is based upon the
papers [46,47].

For simplicity of presentation we will only consider the case of a finite non-compact quantum
graph, when the deficiency indices are finite. However, the same approach allows us to consider
the general setting of infinite deficiency indices, which in the quantum graph setting leads to an
infinite graph. In particular, one could consider the case of an infinite compact part of the graph.

In what follows, we denote by G = G(E , σ) a finite metric graph, i.e. a collection of a finite non-
empty set E of compact or semi-infinite intervals ej = [x2j−1, x2j ] (for semi-infinite intervals we set
x2j = +∞), j = 1, 2, . . . , n, which we refer to as edges, and of a partition σ of the set of endpoints
V := {xk : 1 ≤ k ≤ 2n, xk < +∞} into N equivalence classes Vm, m = 1, 2, . . . , N, which we call
vertices: V =

⋃N
m=1 Vm. The degree, or valence, deg(Vm) of the vertex Vm is defined as the number

of elements in Vm, i.e. card(Vm). Further, we partition the set V into the two non-overlapping sets
of internal V(i) and external V(e) vertices, where a vertex V is classed as internal if it is incident to
no non-compact edge and external otherwise. Similarly, we partition the set of edges E = E(i)∪E(e),
into the collection of compact (E(i)) and non-compact (E(e)) edges. We assume for simplicity that
the number of non-compact edges incident to any graph vertex is not greater than one.

For a finite metric graph G, we consider the Hilbert spaces

L2(G) :=
n⊕
j=1

L2(ej), W 2,2(G) :=
n⊕
j=1

W 2,2(ej).

Further, for a function f ∈ W 2,2(G), we define the normal derivative at each vertex along each of
the adjacent edges, as follows:

∂nf(xj) :=

{
f ′(xj), if xj is the left endpoint of the edge,

−f ′(xj), if xj is the right endpoint of the edge.

In the case of semi-infinite edges we only apply this definition at the left endpoint of the edge.

Definition 3.1. For f ∈ W 2,2(G) and am ∈ C (below referred to as the “coupling constant”), the
condition of continuity of the function f through the vertex Vm (i.e. f(xj) = f(xk) if xj , xk ∈ Vm)
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together with the condition ∑
xj∈Vm

∂nf(xj) = amf(Vm)

is called the δ-type matching at the vertex Vm.

Remark 4. Note that the δ-type matching condition in a particular case when am = 0 reduces to
the standard Kirchhoff matching condition at the vertex Vm, see e.g. [23].

Definition 3.2. The quantum graph Laplacian Aa, a := (a1, ..., aN ), on a graph G with δ-type
matching conditions is the operator of minus second derivative −d2/dx2 in the Hilbert space L2(G)
on the domain of functions that belong to the Sobolev space W 2,2(G) and satisfy the δ-type matching
conditions at every vertex Vm, m = 1, 2, . . . , N. The Schrödinger operator on the same graph is
defined likewise on the same domain in the case of summable edge potentials (cf. [54]).

If all coupling constants am, m = 1, . . . , N , are real, it is shown that the operator Aa is a
proper self-adjoint extension of a closed symmetric operator A in L2(G) [56]. Note that, without
loss of generality, each edge ej of the graph G can be considered to be an interval [0, lj ], where
lj := x2j − x2j−1, j = 1, . . . , n is the length of the corresponding edge. Throughout the present
Section we will therefore only consider this situation.

In [54], the following result is obtained for the case of finite compact metric graphs.

Proposition 3.1 ( [54]). Let G be a finite compact metric graph with δ-type coupling at all vertices.
There exists a closed densely defined symmetric operator A and a boundary triple such that the
operator Aa is an almost solvable extension of A, for which the parametrising matrix κ is given by
κ = diag{a1, . . . , aN}, whereas the Weyl function is an N ×N matrix with elements

mjk(z) =


−
√
z

( ∑
ep∈Ek

cot
√
zlp − 2

∑
ep∈Lk

tan

√
zlp
2

)
, j = k,

√
z
∑

ep∈Cjk

1

sin
√
zlp

, j 6= k; Vj , Vk adjacent,

0, j 6= k; Vj , Vk non-adjacent.

(26)

Here the branch of the square root is chosen so that =
√
z ≥ 0, lp is the length of the edge ep, Ek

is the set of non-loop graph edges incident to the vertex Vk, Lk is the set of loops at the vertex Vk,
and Cjk is the set of graph edges connecting vertices Vj and Vk.

In [46] this is extended to non-compact metric graphs as follows. Denote by G(i) the compact
part of the graph G, i.e. the graph G with all the non-compact edges removed. Proposition 3.1
yields an expression for the Weyl function M (i) pertaining to the graph G(i).

Lemma 3.2. The matrix functions M, M (i) described above are related by the formula

M(z) = M (i)(z) + i
√
zPe, z ∈ C+, (27)

where Pe is the orthogonal projection in the boundary space K onto the set of external vertices V
(e)
G ,

i.e. the matrix Pe such that (Pe)ij = 1 if i = j, Vi ∈ V (e)
G , and (Pe)ij = 0 otherwise.
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The formula (27) leads to M(s) − M∗(s) = 2i
√
sPe a.e. s ∈ R, and the expression (19)

for Σ̂ leads to the classical scattering matrix Σ̂e(k) of the pair of operators A0 (which is the
Laplacian on the graph G with standard Kirchhoff matching at all the vertices) and Aκ, where
κ = κ = diag{a1, . . . , aN} :

Σ̂e(s) = Pe(M(s)− κ)−1(M(s)∗ − κ)(M(s)∗)−1M(s)Pe, s ∈ R, (28)

which acts as the operator of multiplication in the space L2(PeK; 4
√
sds).

We remark that in the more common approach to the construction of scattering matrices, based
on comparing the asymptotic expansions of solutions to spectral equations, see e.g. [58], one obtains
Σ̂e as the scattering matrix. Our approach yields an explicit factorisation of Σ̂e into expressions
involving the matrices M and κ only, sandwiched between two projections. (Recall that M and κ
contain the information about the geometry of the graph and the coupling constants, respectively.)
From the same formula (28), it is obvious that without the factorisation the pieces of information
pertaining to the geometry of the graph and the coupling constants at the vertices are present in
the final answer in an entangled form.

We reiterate that the analysis above pertains not only to the cases when the coupling constants
are real, leading to self-adjoint operators Aa, but also to the case of non-selfadjoint extensions, cf.
Theorem 2.7.

In what follows we often drop the argument s ∈ R of the Weyl function M and the scattering
matrices Σ̂, Σ̂e.

It is easily seen that a factorisation of Σ̂e into a product of κ−dependent and κ−independent
factors (cf. (19)) still holds in this case in PeK, namely

Σ̂e =
[
Pe(M − κ)−1(M∗ − κ)Pe

][
Pe(M

∗)−1MPe

]
. (29)

We will now exploit the above approach in the analysis of the inverse scattering problem for
Laplace operators on finite metric graphs, whereby the scattering matrix Σ̂e(s), defined by (29), is
assumed to be known for almost all positive “energies” s ∈ R, along with the graph G itself. The
data to be determined is the set of coupling constants {aj}Nj=1. For simplicity, in what follows we
treat the inverse problem for graphs with real coupling constants, which corresponds to self-adjoint
operators.

First, for given M, Σ̂e we reconstruct the expression Pe(M
(i) − κ)−1Pe for almost all s > 0 :

Pe(M
(i) − κ)−1Pe =

1

i
√
s

(
2
(
Pe + Σ̂e[Pe(M

∗)−1MPe]
−1
)−1 − I

)
Pe. (30)

In particular, due to the property of analytic continuation, the expression Pe(M
(i) − κ)−1Pe is

determined uniquely in the whole of C with the exception of a countable set of poles, which

coincides with the set of eigenvalues of the self-adjoint Laplacian A
(i)
κ on the compact part G(i) of

the graph G with matching conditions at the graph vertices given by the matrix κ, cf. Proposition
3.1.

Definition 3.3. Given a partition V1 ∪ V2 of the set of graph vertices, for z ∈ C consider the
linear set U(z) of functions that satisfy the differential equation −u′′z = zuz on each edge, subject
to the conditions of continuity at all vertices of the graph and the δ-type matching conditions at the
vertices in the set V2. For each function f ∈ U(z), consider the vectors

ΓV1
1 uz :=

{ ∑
xj∈Vm

∂nf(xj)
}
Vm∈V1

, ΓV1
0 uz :=

{
f(Vm)

}
Vm∈V1

.
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The Robin-to-Dirichlet map of the set V1 maps the vector (ΓV1
1 −κV1ΓV1

0 )uz to ΓV1
0 uz, where κV1 :=

diag{am : Vm ∈ V1}. (Note that the function uz ∈ U(z) is determined uniquely by (ΓV1
1 −κV1ΓV1

0 )uz
for all z ∈ C except a countable set of real points accumulating to infinity).

The above definition is a natural generalisation of the corresponding definitions of Dirichlet-
to-Neumann and Neumann-to-Dirichlet maps pertaining to the graph boundary, considered in
e.g. [23], [84].

We argue that the matrix Pe(M
(i) − κ)−1Pe is the Robin-to-Dirichlet map for the set V(e).

Indeed, assuming φ := Γ1uz − κΓ0uz and φ = Peφ, where the latter condition ensures the correct
δ-type matching on the set V(i), one has Peφ = (M (i)−κ)Γ0uz and hence Γ0uz = (M (i)−κ)−1Peφ.
Applying Pe to the last identity yields the claim, in accordance with Definition 3.3.

We thus have the following theorem.

Theorem 3.3. The Robin-to-Dirichlet map for the vertices V(e) is determined uniquely by the
scattering matrix Σ̂e(s), s ∈ R, via the formula (30).

The following definition, required for the formulation of the next theorem, is a generalisation
of the procedure of graph contraction, well studied in the algebraic graph theory, see e.g. [133].

Definition 3.4 (Contraction procedure for graphs and associated quantum graph Laplacians). For
a given graph G vertices V and W connected by an edge e are “glued” together to form a new vertex
(VW ) of the contracted graph G̃ while simultaneously the edge e is removed, whereas the rest of
the graph remains unchanged. We do allow the situation of multiple edges, when V and W are
connected in G by more than one edge, in which case all such edges but the edge e become loops of
their respective lengths attached to the vertex (VW ). The corresponding quantum graph Laplacian
Aa defined on G is contracted to the quantum graph Laplacian Ãã by the application of the following
rule pertaining to the coupling constants: a coupling constant at any unaffected vertex remains the
same, whereas the coupling constant at the new vertex (VW ) is set to be the sum of the coupling
constants at V and W. Here it is always assumed that all quantum graph Laplacians are described
by Definition 3.2.

Theorem 3.4. Suppose that the edge lengths of the graph G(i) are rationally independent. The
element3 (1, 1) of the Robin-to-Dirichlet map described above yields the element (1, 1) of the “con-
tracted” graph G̃(i) obtained from the graph G(i) by removing a non-loop edge e emanating from V1.
The procedure of passing from the graph G(i) to the contracted graph G̃(i) is given in Definition 3.4.

Proof. Due to the assumption that the edge lengths of the graph G(i) are rationally independent,
the element (1,1), which we denote by f1, is expressed explicitly as a function of

√
z and all the

edge lengths lj , j = 1, 2, . . . , n, in particular, of the length of the edge e, which we assume to be l1
without loss of generality. This is an immediate consequence of the explicit form of the matrix M (i),
see (26). Again without loss of generality, we also assume that the edge e connects the vertices V1

and V2.
Further, consider the expression liml1→0 f1(

√
z; l1, . . . , ln; a). On the one hand, this limit is

known from the explicit expression for f1 mentioned above. On the other hand, f1 is the ratio of
the determinant D(1)(

√
z; l1, . . . , ln; a) of the principal minor of the matrix M (i)(z)−κ obtained by

3By renumbering if necessary, this does not lead to loss of generality.
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removing its first row and and first column and the determinant of M (i)(z)− κ itself:

f1(
√
z; l1, . . . , ln; a) =

D(1)(
√
z; l1, . . . , ln; a)

det
(
M (i)(z)− κ

)
Next, we multiply by −l1 both the numerator and denominator of this ratio, and pass to the limit
in each of them separately:

lim
l1→0

f1(
√
z; l1, . . . , ln; a) =

lim
l1→0

(−l1)D(1)(
√
z; l1, . . . , ln; a)

lim
l1→0

(−l1)det
(
M (i)(z)− κ

) (31)

The numerator of (31) is easily computed as the determinant D(2)(z; l1, . . . , ln; a) of the minor of
M (i)(z)− κ obtained by removing its first two rows and first two columns.

As for the denominator of (31), we add to the second row of the matrix M (i)(z) − κ its first
row multiplied by cos(

√
zl1), which leaves the determinant unchanged. This operation, due to the

identity

− cot(
√
zl1) cos(

√
zl1) +

1

sin(
√
zl1)

= sin(
√
zl1),

cancels out the singularity of all matrix elements of the second row at the point l1 = 0. We introduce
the factor −l1 (cf. 31) into the first row and pass to the limit as l1 → 0. Clearly, all rows but the
first are regular at l1 = 0 and hence converge to their limits as l1 → 0. Finally, we add to the second
column of the limit its first column, which again does not affect the determinant, and note that the
first row of the resulting matrix has one non-zero element, namely the (1, 1) entry. This procedure
reduces the denominator in (31) to the determinant of a matrix of the size reduced by one. As

in [55], it is checked that this determinant is nothing but det(M̃ (i) − κ̃), where M̃ (i) and κ̃ are the
Weyl matrix and the (diagonal) matrix of coupling constants pertaining to the contracted graph
G̃(i). This immediately implies that the ratio obtained as a result of the above procedure coincides
with the entry (1,1) of the matrix (M̃ (i) − κ̃)−1, i.e.

lim
l1→0

f1(
√
z; l1, . . . , ln; a) = f

(1)
1 (
√
z; l2, . . . , ln; ã),

where f
(1)
1 is the element (1,1) of the Robin-to-Dirichlet map of the contracted graph G̃(i), and ã

is given by Definition 3.4.

The main result of this section is the theorem below, which is obtained as a corollary of Theorems
3.3 and 3.4. We assume without loss of generality that V1 ∈ V(e) and denote by f1(

√
z) the (1,1)-

entry of the Robin-to-Dirichlet map for the set V(e). We set the following notation. Fix a spanning
tree T (see e.g. [133]) of the graph G(i). We let the vertex V1 to be the root of T and assume, again
without loss of generality, that the number of edges in the path γm connecting Vm and the root
is a non-decreasing function of m. Denote by N (m) the number of vertices in the path γm, and by{
l
(m)
k

}
, k = 1, . . . , N (m) − 1, the associated sequence of lengths of the edges in γm, ordered along

the path from the root V1 to Vm. Note that each of the lengths l
(m)
k is clearly one of the edge lengths

lj of the compact part of the original graph G.
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Theorem 3.5. Assume that the graph G is connected and the lengths of its compact edges are
rationally independent. Given the scattering matrix Σ̂e(s), s ∈ R, the Robin-to-Dirichlet map for
the set V(e) and the matrix of coupling constants κ are determined constructively in a unique way.
Namely, the following formulae hold for l = 1, 2, . . . , N and determine am, m = 1, . . . , N :

∑
m:Vm∈γl

am = lim
τ→+∞

{
−τ
( ∑
Vm∈γl

deg(Vm)− 2(N (l) − 1)
)
− 1

f
(l)
1 (iτ)

}
,

where
f

(l)
1 (
√
z) := lim

l
(l)

N(l)−1
→0

. . . lim
l
(l)
2 →0

lim
l
(l)
1 →0

f1(
√
z), (32)

where in the case l = 1 no limits are taken in (32).

4 Zero-range potentials with an internal structure

4.1 Zero-range models

In many models of mathematical physics, most notably in the analysis of Schrodinger operators, an
explicit solution can be obtained in a very limited number of special cases (essentially, those that
admit separation of variables and thus yield solutions in terms of special functions). This deficit of
explicitly solvable models has led physicists, starting with E. Fermi in 1934, to the idea to replace
potentials with some boundary condition at a point of three-dimensional space, i.e., a zero-range
potential.

The rigorous mathematical treatment of this idea was initiated in [22]. It was shown that the
corresponding model Hamiltonians are in fact self-adjoint extensions of a Laplacian which has been
restricted to the set of W 2,2 functions vanishing in a vicinity of a fixed point x0 in R3. These ideas
were further developed in a vast series of papers and books, culminating in the monograph [4],
which also contains an comprehensive list of references.

Physical applications of zero-range models have been treated in, e.g., [51]. It has been con-
jectured that zero-range models provide a good approximation of realistic physical systems in at
least a far-away zone, where the concrete shape of the potential might be discarded, making them
especially useful in the analysis of scattering problems. Here we also mention the celebrated Kronig-
Penney model where a periodic array of zero-range potentials is used to model the atoms in a crystal
lattice.

Despite the obvious success of the idea explained above, it still carries a number of serious
drawbacks. In particular, it can be successfully applied to model spherically symmetric scatterers
only. If one attempts to model a scatterer of a more involved structure, i.e., possessing a richer
spectrum, by a finite set of zero-range potentials, the complexity of the model grows rapidly,
essentially eliminating the main selling point of the model, i.e., its explicit solvability.

In 1980s, based in part on earlier physics papers by Shirokov et. al. where the idea was presented
in an implicit form, B. S. Pavlov [111] rigorously introduced a model of zero-range potential with
an internal structure. This idea was further developed by Pavlov and his students, see e.g. [3, 113]
and references therein. In the mentioned works of Pavlov, one starts by considering the operator
A0 being a Laplacian restricted to the set of W 2,2 functions vanishing in a vicinity of a fixed point
in R3, precisely as in [22]. Then, instead of considering von Neumann self-adjoint extensions of the
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latter, one passes over to the consideration of the so-called out of space extensions, i.e., extensions to
self-adjoint operators in a larger Hilbert space. The theory of out-of-space extensions generalising
that of J. von Neumann was constructed by M. A. Neumark in [100, 101] in the case of densely
defined symmetric operators and by M. A. Krasnoselskii [78] and A. V. Strauss [128] in the case
opposite, see also [129] for the connections with the theory of functional models.

In fact, Pavlov, being quite possibly unaware of these theoretical developments, has reinvented
this technique in the following way. Alongside the original Hilbert space H = L2(R3), consider an
auxiliary internal Hilbert space E (which can be in many important cases considered to be finite-
dimensional) and a self-adjoint operator A with simple spectrum in it. Let φ be its generating
vector and consider the restriction Aφ of A (non-densely defined) to the space

domAφ := {(A− i)−1ψ : ψ ∈ E, 〈φ, ψ〉 = 0}.

This leads to the symmetric operator A0 on the Hilbert space H ⊕ E, defined as A0 ⊕ Aφ on the
domain

domA0 :=

{(
f

v

)
: f ∈ domA0, v ∈ domAφ

}
,

where A0 is the restricted Laplacian on H introduced above. The operator A0 is then a symmetric
non-densely defined operator with equal deficiency indices, and one can consider its self-adjoint
extensions A. Among them, we will single out those which non-trivially couple the spaces H and E
by feeding the boundary data at x0 of a function f ∈W 2,2(R3) to the “part” of operator acting in E.
The latter then serves as the operator of the “internal structure”, which can be chosen arbitrarily
complex. We elect not to dwell on the precise way in which the extensions A are constructed as an
explicit examples of operators of this class will be presented below in the present section.

4.2 Connections with inhomogeneous media

Leaving the subject of zero-range models with an internal structure aside for a moment, let us briefly
consider a number of physically motivated models giving rise to zero-range potentials in general.
In particular, we will be interested in those models which lead to a distribution “potential” δ′,
where δ is the Dirac delta function. It is well-known, see, e.g., [4], that the question of relating an
operator of the form −∆+αδ′ to one of self-adjoint von Neumann extensions of a properly selected
symmetric restriction A0 of −∆ is far from being trivial, as δ′, unlike δ, is form-unbounded.

For the same reason, it is non-trivial to construct an explicit “regularisation” of a δ′−perturbed
Laplacian, i.e., a sequence of operators Aε being either potential perturbations of the Laplacian
or, in general, any perturbations of the latter which converge in some sense (say, in the sense
of resolvent convergence) to the Laplacian with a δ′ perturbation. In particular, we point out
among many others the paper [39] where Aε are chosen as first-order differential non-self-adjoint
perturbations of the Laplacian of a special form and the paper [67] where the perturbation is
assumed to admit the form ε−2v(x/ε).

It turns out that additive ε−dependant perturbations are not the most straightforward choice
for the task described, as zero-range perturbations (and more precisely, zero-range perturbations
with an internal structure) appear naturally in the asymptotic analysis of inhomogeneous media.
In particular, in the paper [41] we studied the norm-resolvent asymptotics of differential operators
Aε with periodic coefficients with high contrast, defined by their resolvents (Aε − z)−1 : f 7→ u as
follows:

−
(
aε
(
x
)
u′
)′ − zu = f, f ∈ L2(R), ε > 0, z ∈ C, (33)
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where, for all ε > 0, the coefficient aε is 1-periodic and

aε(y) :=


aε−2, y ∈ [0, l1),

1, y ∈ [l1, l1 + l2),

aε−2, y ∈ [l1 + l2, 1),

with a > 0, and 0 < l1 < l1 + l2 < 1. Here in (33) the “natural” matching conditions are imposed at
the points of discontinuity of the symbol aε(x), i.e., the continuity of both the function itself and
of its conormal derivative, so that the operators Aε can be thought as being defined by the form´
aε(x)|u′(x)|2dx. We remark that the operators Aε are unitary equivalent to the operators of the

double-porosity model of homogenisation theory in dimension one, see, e.g., [72].
The main result of the named paper can be reformulated as follows.

Theorem 4.1. The norm-resolvent limit of the sequence Aε is unitarily equivalent to the operator
Ahom in L2(R) given by the differential expression −l−2

2 d2/dx2 on

dom(Ahom)

=
{
U : ∀n ∈ Z U ∈W 2,2(n, n+1), U ′ ∈ C(R), ∀n ∈ Z U(n+0)−U(n−0) = l−1

2 (l1+l3)U ′(n)
}
,

where l3 := 1 − (l1 + l2). Moreover, for all z in a compact set Kσ such that the distance of the
latter from the positive real line is not less than a fixed σ > 0, this norm resolvent convergence is
uniform, with the (uniform) error bound O(ε2).

By inspection, the operator Ahom defined above corresponds to the formal differential expression

−l−2
2

d2

dx2
+

(l1 + l3)

l2

∑
n∈Z

δ′(x− n),

i.e., it is the operator of the Kronig-Penney dipole-type model on the real line. It is also quite
clear that the periodicity of the model considered has nothing to do with the fact that the effective
operator acquires the δ′-type potential perturbation. Thus it leads to the understanding that strong
inhomogeneities in the media in generic (i.e., not necessarily periodic) case naturally give rise to
zero-range potentials of δ′-type.

In order to relate this exposition to our subject of zero-range potentials with an internal struc-
ture, let us describe the main ingredient leading to the result formulated above. As usual in dealing
with periodic problems, we apply the Gelfand transform

Û(y, τ) = (2π)−d/2
∑
n∈Zd

U(y + n) exp
(
−iτ · (y + n)

)
, y ∈ [0, 1], τ ∈ [−π, π), (34)

to the operator family Aε, which yields the operator family A
(τ)
ε corresponding to the differential

expression

−
(
d

dx
+ iτ

)
aε(x)

(
d

dx
+ iτ

)
on the interval [0, 1] with periodic boundary conditions at the endpoints. Here τ ∈ [−π, π) is the
quasimomentum. As above, the matching conditions at the points of discontinuity of the symbol
aε(x) are assumed to be natural.
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The asymptotic analysis of the operator family A
(τ)
ε , as shown in [41, 44], yields the following

operator as its norm-resolvent asymptotics. Let Hhom = Hsoft ⊕ C1. For all values τ ∈ [−π, π),

consider a self-adjoint operator A(τ)
hom on the space Hhom, defined as follows. Let the domain

domA(τ)
hom be defined as

domA(τ)
hom =

{
(u, β)> ∈ Hhom : u ∈W 2,2(0, l2), u(0) = ξ(τ)u(l2) = β/

√
l1 + l3

}
.

On domA(τ)
hom the action of the operator is set by

A(τ)
hom

(
u

β

)
=


(

1

i

d

dx
+ τ

)2

− 1√
l1 + l3

(
∂(τ)u

∣∣
0
− ξ(τ)∂(τ)u

∣∣
l2

)
 .

Here

ξ(τ) := exp
(
i(l1 + l3)τ

)
, ∂(τ)u :=

(
d

dx
+ iτ

)
u.

Theorem 4.2. The resolvent (A
(τ)
ε − z)−1 admits the following estimate in the uniform operator

norm topology:

(A(τ)
ε − z)−1 −Ψ∗(A(τ)

hom − z)
−1Ψ = O(ε2),

where Ψ is a partial isometry from H = L2(0, 1) to Hhom. This estimate is uniform in τ ∈ [−π, π)
and z ∈ Kσ.

It is clear now that the operator A(τ)
hom is nothing but the simplest possible example of Pavlov’s

zero-range perturbations with an internal structure, corresponding to the case where the dimension

of the internal space E is equal to one. The definition of A(τ)
hom implies that the support of the

zero-range potential here is located at the point x0 = 0, which is identified due to quasi-periodic
(of Datta–Das Sarma type) boundary conditions with the point x = l2.

Next it is shown (see [41] for details) that under an explicit unitary transform the operator family

A(τ)
hom is unitary equivalent to the family A′hom(τ ′) at the quasimomentum point τ ′ = τ+π(mod 2π).

Here A′hom(τ ′) acts in the space L2[0, l2] and is defined by the same differential expression as A(τ)
hom,

with the parameter τ replaced by τ ′ : (
1

i

d

dx
+ τ ′

)2

,

on the domain described by the conditions

u(0) + e−i(l1+l3)τ ′u(l2) = (l1 + l3)∂(τ ′)u
∣∣
0
,

∂(τ ′)u
∣∣
0
= −e−i(l1+l3)τ ′∂(τ ′)u

∣∣
l2
.

An application of the inverse Gelfand transform then yields Theorem 4.1. This shows that the

operator A(τ)
hom which is an operator of a zero-range model with the internal space E of dimension

one is in fact a differential operator with a δ′−potential, up to a unitary transformation. In view
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of [85, 123] it is plausible that by a similar argument it could be shown, that an operator with a
δ(n)−potential can be realized as a zero-range model with dimE = n, for any natural n.

It is interesting to note that an operator admitting the same form as A(τ)
hom (with τ = 0) appears

naturally in the setting of [57,81,82], who discuss the behaviour of the spectra of operator sequences
associated with domains “shrinking” as ε→ 0 to a metric graph embedded into Rd. Here the rate
of shrinking of the “edge” parts is assumed to be related to the rate of shrinking of the “vertex”
parts of the domain via

vol(V ε
vertex)

vol(V ε
edge)

→ α > 0, ε→ 0. (35)

It is shown in the above works that the spectra of the corresponding Laplacian operators with
Neumann boundary conditions converge to the spectrum of a quantum graph associated with a
Laplacian on the metric graph obtained as the limit of the domain as ε→ 0. The “weight” l1 + l3
in A(τ)

hom plays the rôle of the constant α in (35).
By a similar argument to the one presented above one can show, that in the case of domains

shrinking to a graph under the “resonant” condition (35) one obtains, under a suitable unitary
transform, the matching condition of δ′ type at the internal graph vertices, with the corresponding
coupling constant equal to α.

4.3 A PDE model: BVPs with a large coupling

4.3.1 Problem setup

In [76], we studied a prototype large-coupling transmission problem, posed on a bounded domain
Ω ⊂ Rd, d = 2, 3, see Fig. 1, containing a “low-index” (equivalently, “high propagation speed”)
inclusion Ω−, located at a positive distance to the boundary ∂Ω. Mathematically, this is modelled
by a “weighted” Laplacian −a±∆, where a+ = 1 (the weight on the domain Ω+ := Ω \ Ω−), and
a− ≡ a (the weight on the domain Ω−) is assumed to be large, a− � 1. This is supplemented by the
Neumann boundary condition ∂u/∂n = 0 on the outer boundary ∂Ω, where n is the exterior normal
to ∂Ω, and “natural” continuity conditions on the “interface” Γ := ∂Ω−. For each a, we consider
time-harmonic vibrations of the physical domain represented by Ω, described by the eigenvalue
problem for an appropriate operator in L2(Ω). It is easily seen that eigenfunction sequences for

Figure 1: Domain with a “stiff” inclusion.
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these eigenvalue problems converge, as a→∞, to either a constant or a function of the form

v − 1

|Ω|

ˆ
Ω+

v,

where v satisfies the spectral boundary-value problem (BVP)

−∆v = z

(
v − 1

|Ω|

ˆ
Ω+

v

)
in Ω+, v|Γ = 0,

∂v

∂n

∣∣∣∣
∂Ω

= 0. (36)

Here the spectral parameter z represents the ratio of the size of the original physical domain to the
wavelength in its part represented by Ω+.

The problem (36) is isospectral to the so-called “electrostatic problem” discussed in [138, Lemma
3.4], see also [9] and references therein, namely the eigenvalue problem for the self-adjoint operator
Q defined by the quadratic form

q(u, u) =

ˆ
Ω+

∇v · ∇v, u = v + c, v ∈ H1
0,Γ :=

{
v ∈ H1(Ω+), v|Γ = 0

}
, c ∈ C

on the Hilbert space L2(Ω+) u C, treated as a subspace of L2(Ω).
Denote by A+

0 the Laplacian −∆ on Ω+, subject to the Dirichlet condition on Γ and the
Neumann boundary condition on ∂Ω and let λ+

j , φ
+
j , j = 1, 2, . . . , be the eigenvalues and the

corresponding orthonormal eigenfunctions, respectively, of A+
0 .

It is then easily shown, that the spectrum of the electrostatic problem is the union of two sets:
a) the set of z solving the equation

z

[
|Ω|+ z

∞∑
j=1

(λ+
j − z)

−1

∣∣∣∣ˆ
Ω+

φ+
j

∣∣∣∣2
]

= 0.

and b) the set of those eigenvalues λ+
j for which the corresponding eigenfunction φ+

j has zero mean
over Ω+.

4.3.2 Norm-resolvent convergence to a zero-range model with an internal structure

Suppose that Ω is a bounded C1,1 domain, and Γ ⊂ Ω is a closed C1,1 curve, so that Γ = ∂Ω−
is the common boundary of domains Ω+ and Ω−, where Ω− is strictly contained in Ω, such that
Ω+ ∪ Ω− = Ω, see Fig. 1.

For a > 0, z ∈ C we consider the “transmission” eigenvalue problem (cf. [121])

−∆u+ = zu+ in Ω+,

−a∆u− = zu− in Ω−,

u+ = u−,
∂u+

∂n+
+ a

∂u−
∂n−

= 0 on Γ,

∂u+

∂n+
= 0 on ∂Ω,

(37)

where n± denotes the exterior normal (defined a.e.) to the corresponding part of the boundary.
The above problem is understood in the strong sense, i.e. u± ∈ H2(Ω±), the Laplacian differential
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expression ∆ is the corresponding combination of second-order weak derivatives, and the boundary
values of u± and their normal derivatives are understood in the sense of traces according to the
embeddings of H2(Ω±) into Hs(Γ), Hs(∂Ω), where s = 3/2 or s = 1/2.

Denote by Aa the operator of the above boundary value problem. Its precise definition is given
on the basis of the boundary triples theory in the form of [120].

Consider the space Heff = L2(Ω+)⊕ C and the following linear subset of L2(Ω) :

domAeff =

{(
u+

η

)
∈ Heff : u+ ∈ H2(Ω+), u+|Γ =

η√
|Ω−|

1Γ,
∂u+

∂n+

∣∣∣∣
∂Ω

= 0

}
,

where u|Γ is the trace of the function u and 1Γ is the unity function on Γ. On domAeff we set the
action of the operator Aeff by the formula

Aeff

(
u+

η

)
=

 −∆u+

1√
|Ω−|

´
Γ

∂u+

∂n+

 . (38)

Theorem 4.3. The operator Aeff is the norm-resolvent limit of the operator family Aa. This
convergence is uniform for z ∈ Kσ, with an error estimate by O(a−1).

This theorem yields in particular the convergence (in the sense of Hausdorff) of the spectra
of Aa to that of Aeff . This convergence is uniform in Kσ, and its rate is estimated as O(a−1).
Moreover, it is shown that the spectrum of Aeff coincides with the spectrum of the electrostatic
problem (36).

Note that the form of Aeff is once again identical to that of a zero-range model with an internal
structure in the case when the internal space E is one-dimensional. The obvious difference is
that here the effective model of the medium is no longer “zero-range” per se; rather it pertains
to a singular perturbation supported by the boundary Γ. Therefore, the result described above
allows one to extend the notion of internal structure to the case of distributional perturbations
supported by a curve, see also [86] where this idea was first suggested, although unlike above no
asymptotic regularisation procedure was considered. Moreover, well in line with the narrative of
preceding sections, the internal structure appears owing exclusively to the strong inhomogeneity of
the medium considered.

We remark that a “classical” zero-range perturbation with an internal structure can still be
obtained by a rather simple modification of the problem considered. Namely, let a be fixed, and let
the volume of the inclusion Ω− now wane to zero as the new parameter ε → 0. This represents a
model that has been studied in detail, see, e.g., [8] and references therein. In this modified setup, a
virtually unchanged argument leads to the inclusion being asymptotically modelled by a zero-range
potential with an internal structure. Moreover, the dimension of the internal space E is again equal
to one, provided that a uniform norm-resolvent convergence is sought for the spectral parameter
belonging to the compact Kσ.

4.3.3 Internal structure with higher dimensions of internal space E

A natural question must therefore be posed: can strongly inhomogeneous media only give rise to
simplest possible zero-range models with an internal structure, pertaining to the case of dimE = 1,
or is it possible to obtain effective models with more involved internal structures? It turns out that
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the second mentioned possibility is realised, which we will demonstrate briefly using the material
of the preceding section.

Recall that in all the results formulated above the uniform convergence was claimed under the
additional assumption that the spectral parameter belongs to a fixed compact. If one drops this
assumption, within the setup of the previous section one has the following statement.

Theorem 4.4. Up to a unitary equivalence, for and k ∈ N there exists a self-adjoint operator Aeff

of a zero-range model with an internal structure on the space Heff := L2(Ω+)⊕ Ck such that

(Aa − z)−1 ' P(Aeff − z)−1P +O
(
max{a−1, |z|k+1a−k}

)
(39)

in the uniform operator norm topology. Here P is the orthogonal projection of Heff onto L2(Ω+)⊕C
(i.e., the space Heff of the previous section).

Note that unlike the results pertaining to the situation of the spectral parameter contained in
a compact, here the leading-order term of the asymptotic expansion of the resolvent of the original
operator Aa is not the resolvent of some self-adjoint operator (unless k = 1), but rather a generalised
resolvent. It is also obvious that the concrete choice of k to be used in the last theorem depends on
the concrete relationship between z and a and on the error estimate sought: the error estimate of
the theorem becomes tighter at k increases. In essence, this brings about the understanding that
despite the fact that on the face of it the problem at hand is one-parametric, it must be treated as
having two parameters, z and a.

The operator Aeff of the last Theorem admits an explicit description for any k ∈ N, but this
description is rather involved. In view of better readability of the paper, we only present its explicit
form in the case k = 2:

Aeff

 u+

η1

η2

 :=


−∆u+

1

κ

´
Γ

∂u+

∂n+
+ a(B2D−1η1 +Bη2)

a(Bη1 +Dη2)

 .

Here B,D and κ are real parameters, which are explicitly computed.
It should be noted that similar results can be obtained in the homogenisation-related setup of

the previous section, see also Section 5.

We can therefore conclude that zero-range models with an internal structure appear naturally
in the asymptotic analysis of highly inhomogeneous media. Moreover, in the generic case they
appear as Neumark-Strauss dilations (see [101,102,126,129]) of main order terms in the asymptotic
expansions of the resolvents of problems considered. The complexity of the internal structure can
be arbitrarily high (i.e., the dimension of the internal space E can be made as high as required),
provided that the spectral parameter z is allowed to grow with the parameter a → ∞ (or ε → 0).
Further, owing to the remark made above that an operator with a δ(n)-potential could be realized
as a zero-range model with dimE = n for any natural n, we expect models with strong inhomo-
geneities to admit the role of the tool of choice in the regularisation of singular and super-singular
perturbations, beyond the form-bounded case and including the case of singular perturbations
supported by a curve or a surface.
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4.4 The rôle of generalised resolvents

We close this section with a brief exposition of how precisely the asymptotic results formulated
above are obtained. The analysis starts with the family of resolvents, say (in the case of Section
4.2) (Aε − z)−1, describing the inhomogeneous medium at hand. One then passes over to the
generalised resolvent Rε(z) := P (Aε− z)−1P ∗, where P denotes the orthogonal projection onto the
“part” of the medium which is obtained by removing the inhomogeneities. Note that the generalised
resolvent thus defined is a solution operator of a BVP pertaining to homogeneous medium, albeit
subject to non-local z−dependant boundary conditions. The problem considered therefore reduces
to the asymptotic analysis of the operator Bε(z), parameterising these conditions. As such, it
becomes a classical problem of perturbation theory.

Assuming now, for the sake of argument, that Rε(z) has a limit, as ε → 0, in the uniform
operator topology for z in a domain D ⊂ C, and, further, that the resolvent (Aε− z)−1 also admits
such limit, one clearly has

P
(
Aeff − z

)−1
P ∗ = R0(z), z ∈ D ⊂ C, (40)

where R0 and Aeff are the limits introduced above. The idea of simplifying the required analysis by
passing to the resolvent “sandwiched” by orthogonal projections onto a carefully chosen subspace
is in fact the same as in [87], where the resulting sandwiched operator is shown to be the resolvent
of a dissipative operator.

The function R0 defined by (40) is a generalised resolvent, whereas Aeff is its out-of-space
self-adjoint extension (or Neumark-Strauss dilation [126]). By a theorem of Neumark [101] (see
Section 2.5 of the present paper) this dilation is defined uniquely up to a unitary transformation
of a special form, provided that the minimality condition holds. The latter can be reformulated
along the following lines: one has minimality, provided that there are no eigenmodes in the effective
media modelled by the operator Aε, and therefore in the medium modelled by the operator Aeff

as well, such that they “never enter” the part of the medium without inhomogeneities. A quick
glance at the setup of our models helps one immediately convince oneself that this must be true. It
then follows that the effective medium is completely determined, up to a unitary transformation,
by R0(z). Once this is established, it is tempting to construct its Neumark-Strauss dilation and
conjecture, that it is precisely this dilation that the original operator family converges to in the
norm-resolvent sense (of course, up to a unitary transformation).

This conjecture in fact holds true, although it is impossible to prove it on the abstract level:
taking into account no specifics of problems at hand, one can claim weak convergence at best. Still,
the approach suggested seems to be very transparent in allowing to grasp the substance of the
problem and to almost immediately “guess” correctly the operator modelling the effective medium.

5 Applications to continuum mechanics and wave propagation

Parameter-dependent problems for differential equations have traditionally attracted much interest
within applied mathematics, by virtue of their potential for replacing complicated formulations
with more straightforward, and often explicitly solvable, ones. This drive has led to a plethora
of asymptotic techniques, from perturbation theory to multi-scale analysis, covering a variety of
applications to physics, engineering, and materials science. While this subject area can be viewed
as “classical”, problems that require new ideas continue emerging, often motivated by novel wave
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phenomena. One of the recent application areas of this kind is provided by composites and struc-
tures involving components with highly contrasting material properties (stiffness, density, refractive
index). Mathematically, such problems lead to boundary-value formulations for differential opera-
tors with parameter-dependent coefficients. For example, problems of this kind have arisen in the
study of periodic composite media with “high contrast” (or “large coupling”) between the material
properties of the components, see [43,72,137].

In what follows, we outline how the contrast parameter emerges as a result of dimensional
analysis, using a scalar elliptic equation of second order with periodic coefficients as a prototype
example.

5.1 Scaling regimes for high-contrast setups

We will consider the physical context of elastic waves propagating through a medium with whose
elastic moduli vary periodically in a chosen plane (say (x1, x2)-plane) and are constant in the
third, orthogonal, direction (say, the x3 direction). For example, one could think of a periodic
arrangement of parallel fibres of a homogeneous elastic material within a “matrix” of another
homogeneous elastic material. We will look at the “polarised” anti-plane shear waves, which can
be described completely by a scalar function representing the displacement of the medium in the
x3 direction. In the case of the fibre geometry mentioned above, the relevant elastic moduli G then
have the form

G(y) =

{
G0, y ∈ Q0,

G1, y ∈ Q1,
=:

{
G0

G1

}
(y).

where Q0, Q1 are the mutually complementary cross-sections of the fibre and matrix components,
respectively, so that Q0 ∪ Q1 = [0, 1]2. the mass density of the described composite medium is
assumed to be constant. (The constants G0, G1 are the so-called shear moduli of the materials
occupying Q0, Q1.) This physical setup was considered in [94,114].

Denote by d the period of the original “physical” medium and consider time-harmonic wave
motions, i.e. solutions of the wave equation that have the form

U(x, t) = eiωtu(x), x ∈ R2, t ≥ 0, (41)

where ω is a fixed frequency. In the setting of time-harmonic waves, see (41), the function u = u(x)
satisfies the following equation, written in terms of the original physical units:

−∇x ·
{
G0

G1

}
(x/d)∇xu = ρω2u, (42)

Multiply both sides by G−1
1 and denote δ := G0/G1. the parameter δ represents the “inverse

contrast”, which will be assumed “small” later, and corresponds to the value a−1 of the “large”
parameter of Sections 4.3.2, 4.3.3. The equation (42) takes the form

−∇x ·
{
δ
1

}
(x/d)∇xu =

ρ

G1
ω2u

Note that

ω =
2πc1

λ1
=

2πc0

λ0
, (43)
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where cj , λj are the wave speed and wavelength in the relevant media (j = 0, 1).
Introduce a non-dimensional spatial variable x̃ = 2πx/λ1 :

−4π2

λ2
1

∇x̃ ·
{
δ
1

}(
x̃

2πd/λ1

)
∇x̃u =

ρ

G1
ω2u,

equivalently, with ε := 2πd/λ1 :

−∇x̃ ·
{
δ
1

}
(x̃/ε)∇x̃u =

ρ

G1
c2

1u,

where we have used (43). Note that c1

√
ρ/G1 = 1 and relabel x̃ by x :

−∇x ·
{
δ
1

}
(x/ε)∇xu = u,

Let us “scale to the period one” i.e. consider the change of variable y = x̃/ε = x/d :

−ε−2∇y ·
{
δ
1

}
(y)∇yu = u,

or

−∇y ·
{
δ
1

}
(y)∇yu =

(
2πd

λ1

)2

u.

The different scaling regimes, ranging from what we know as “finite frequency, high contrast” to
“high frequency, high contrast”, are described by setting

ε2 = δν z̃, (44)

where z̃ is obviously dimensionless is assumed to vary over the compact Kσ, and 0 ≤ ν ≤ 1. Note
that z̃ can be alternatively expressed as

z̃ = δ−νρG−1
1 (dω)2. (45)

In particular, the setup analysed in the paper [43] corresponds to the case ν = 1 :

− δ−1∇y ·
{
δ
1

}
(y)∇yu = zu. (46)

In terms of the original spatial variable x the equation (46) takes the form

−d2δ−1∇x ·
{
δ
1

}
(x)∇xu = zu,

or

−∇x ·
{
δ
1

}
(x)∇xu = k2u,

where the wavenumber (i.e. “spatial frequency”) is given by k := d−1
√
δz, so that

(kd)2 =
z

n2
,
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where n2 = δ−1 = G0/G1 is the shear modulus of the material occupying Q0 relative to the material
occupying Q1.

The setup (46) is the “periodic” version of the formulation discussed in Section 4.3, see also
Section 4.2 for the one-dimensional version of a high-contrast homogenisation problem that gives
rise to the same formulation. Similarly, choosing the values ν = 2/(k + 1), k = 2, 3, . . . , in (44)
gives rise to “high-frequency large-coupling” formulations, which in turn lead, in the limit as δ → 0,
to effective operators with an “internal space” of dimension k, see Section 4.3.3. The parameter z̃
is the related to the spectral parameter z in (39) via

z = z̃δ1−ν = z̃δ
k−1
k+1 = z̃a

k+1
k−1 , k = 2, 3, . . . ,

so that the error estimate in (39) is optimal for z̃ ∈ Kσ, in the sense that for such z̃ it yields an
error of order a−1 ∼ |z|k+1a−k for large a.

5.2 Homogenisation of composite media with resonant components

5.2.1 Physical motivation

The mathematical theory of homogenisation (see e.g. [15,21,74]) aims at characterising limiting, or
“effective”, properties of small-period composites. Following an appropriate non-dimensionalisation
procedure, a typical problem here is to study the asymptotic behaviour of solutions to equations
of the type

− div
(
Aε(·/ε)∇uε

)
− ω̃2uε = f, f ∈ L2(Rd), d ≥ 2, ω̃2 /∈ R+, (47)

where for all ε > 0 the matrix Aε is Q-periodic, Q := [0, 1)d, non-negative, bounded, and symmetric.
The parameter ω̃ here represents a “non-dimensional frequency”: ω̃2 = z̃, where z̃ is the spectral
parameter introduced in (44), so for example for ν = 1 one can set ω̃ = d

√
ρ/G0 ω, see (45).

One proves (see [28, 136] and references therein) that when A is uniformly elliptic, there exists
a constant matrix Ahom such that solutions uε to (47) converge to uhom satisfying

− div
(
Ahom∇uhom

)
− ω̃2uhom = f. (48)

In what follows we write ω, z in place of ω̃, z̃, implying that either the dimensional or non-
dimensional version of the equation is chosen.

In recent years, the subject of modelling and engineering a class of composite media with “un-
usual” wave properties (such as negative refraction) has been brought to the forefront of materials
science. Such media are generically referred to as metamaterials, see e.g. [38]. In the context of
homogenisation, the result sought (i.e., the “metamaterial” behaviour in the limit of vanishing ε)
belongs to the domain of the so-called time-dispersive media (see, e.g., [59, 60, 131,132]). For such
media, in the frequency domain one faces equations of the form

− div
(
A∇u

)
+ B(ω2)u = f, f ∈ L2(Rd), (49)

where A is a constant matrix and B(ω2) is a frequency-dependent operator in L2(Rd) taking the
place of −ω2 in (47), if, for the sake of argument, in the time domain we started with an equation
of second order in time. If, in addition, the matrix function B is scalar, i.e., B(ω2) = β(ω2)I with
a scalar function β, the problem of the type

− div
(
Ahom(ω2)∇u

)
= ω2u (50)
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appears in place of the spectral problem after a formal division by −β(ω2)/ω2, with frequency-
dependent (but independent of the spatial variable) matrix Ahom(ω2).

In the equation (50), in contrast to (48), the matrix elements of Ahom, interpreted as material
parameters of the medium, acquire a non-trivial dependence on the frequency, which may lead to
their taking negative values in some frequency intervals. The possibility of electromagnetic media
exhibiting negative refraction was envisaged in an early work [134], who showed theoretically that
the material properties of such media must be frequency-dependent, and the last two decades have
seen a steady advance towards realising such media experimentally. One may hope that upon
relaxing the condition of uniform ellipticity on Aε one may be able to achieve a metamaterial-
type response to wave propagation for sufficiently small values of ε. It is therefore important to
understand how inhomogeneity in the spatial variable in (47) can lead, in the limit ε → 0, to
frequency dispersion as in (49).

5.2.2 Operator-theoretic motivation

Already in the setting of finite-dimensional matrix algebra equations of the form (see (49))

Au+ B(z)u = f, u ∈ Cd, (51)

where A = A∗ ∈ Cd×d, f ∈ Cd, B is a Herglotz function with values in Cd×d, emerge when one
seeks solutions to the standard resolvent equation for a block matrix:(

A B

B∗ C

)(
u

v

)
− z

(
u

v

)
=

(
f

0

)
,

(
u

v

)
∈ Cd+k. (52)

where B ∈ Ck×d, C = C∗ ∈ Ck×k.
Indeed, it is the result of a straightforward calculation that (52) implies

Au− (B(C − z)−1B∗ + zI)u = f,

whenever −z is not an eigenvalues of C, so (52) implies (51) with B(z) = −B(C − z)−1B∗ − zI.
Another consequence of the above calculation is that for any vector (f, g)> ∈ Cd+k one has

u = P

{(
A B

B∗ C

)
+ zI

}−1

P ∗

(
f

g

)
,

where P is the orthogonal projection of Cd+k onto Ck and P ∗ is interpreted as a restriction to the
k-dimensional subspace of vectors of the form (f, 0)>, f ∈ Ck.

The above argument, in the more general setting of block operator matrices in a Hilbert space,
likely appeared for the first time in [59]. “Generalised resolvents”, i.e. objects of the form

P (A− z)−1P ∗, (53)

where A is an operator in a Hilbert space H and P is an orthogonal projection of H onto its
subspace H have already been discussed in the present survey, see Sections 2.5, 4.4. As discussed
in Section 2.5, abstract results of Neumark and Strauss [101,126] establish that solution operators
for formulations (51), where A is a self-adjoint operator in a Hilbert space H can be written in
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the form (53) for a suitable “out-of-space” extension A. Therefore, a natural question is whether
formulations (49) can be viewed as generalised resolvents obtained by an asymptotic analysis of some
parameter-dependent operator family describing a heterogeneous medium. One piece of evidence
pointing at the validity of such a conjecture is the result of Section 4.3.2, where the role of the
operator A in (53) is played by Aeff , see (38).

In [41,42,44] a model of a high-contrast graph periodic along a single direction was considered. A
unified treatment of critical-contrast homogenisation was proposed and carried out in three distinct
cases: (i) where neither the soft nor the stiff component of the medium is connected; (ii) where
the stiff component of the medium is connected; (iii) where the soft component of the medium is
connected. The analytical toolbox presented in these works was then amplified to the PDE setting
in [43]. In the wider context of operator theory and its applications, this provides a route towards:
constructing explicit spectral representations and functional models for both homogenisation limits
of critical-contrast composites and the related time-dispersive models, as well as solving the related
direct and inverse scattering problems.

5.2.3 Prototype problem setups in the PDE context

Consider the problem (47) under the following assumptions:

Aε(y) =

{
aI, y ∈ Qstiff,

ε2I, y ∈ Qsoft,

where Qsoft (Qstiff) is the soft (respectively, stiff) component of the unit cube Q = [0, 1)d ⊂ Rd, so
that Q = Qsoft ∪Qstiff, and a > 0.

Two distinct setups were studied in [43]. For one of them (“Model I”), which is unitary equiv-
alent to the model of [62, 72], the component Qsoft ⊂ Q is simply connected and and its dis-
tance to ∂Q is positive, cf. [40, 137]. For the other one (“Model II”) the component Qstiff has
the described properties. It is assumed that the Dirichlet-to-Neumann maps for Qsoft and Qstiff ,
which map the boundary traces of harmonic functions in Qsoft and Qstiff to their boundary normal
derivatives, are well-defined as pseudo-differential operators of order one in the L2 space on the
boundary [1, 10,61,73].

For both above setups, [43] deals with the resolvent (Aε − z)−1 of a self-adjoint operator in
L2(Rd) corresponding to the problem (47), so that its solutions are expressed as uε = (Aε − z)−1f
with z = ω2. For each ε > 0, the operator Aε is defined by the forms

ˆ
Rd

Aε(·/ε)∇u · ∇u, u, v ∈ H1(Rd).

It is assumed that z ∈ C is separated from the spectrum of the original operator family, in particular
z ∈ Kσ, where Kσ is defined in Theorem 4.1.

In order to deal with operators having compact resolvents, it is customary to apply Gelfand
transform [64], which we review next.
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Figure 2: Model setups. Model I: soft component Qsoft in blue, stiff component Qstiff in green. Model

II: soft component Qsoft in green, stiff component Qstiff in blue.

5.2.4 Gelfand transform and direct integral

The version of the Gelfand transform convenient for the analysis of the operators Aε is defined on
functions u ∈ L2(Rd) by the formula4 (cf. (34))

Gεu(y, t) :=

(
ε2

2π

)d/2 ∑
n∈Zd

u
(
ε(y + n)

)
exp
(
−iτ · (y + n)

)
, y ∈ Q, τ ∈ Q′ := [−π, π)d,

This yields a unitary operator Gε : L2(Rd) −→ L2(Q×Q′), and the inverse with the inverse mapping
given by

u(x) = (2π)−d/2
ˆ
Q′
Gεu

(
x

ε
, τ

)
exp

(
iτ · x

ε

)
dτ, x ∈ Rd,

where Gεu is extended to Rd ×Q′ by Q-periodicity in the spatial variable.
As in [28], an application of the Gelfand transform G to the operator family Aε corresponding

to the problem (47) yields the two-parametric family A
(τ)
ε of operators in L2(Q) given by the

differential expression

−(∇+ iτ)Aε(x/ε)(∇+ iτ), ε > 0, τ ∈ Q′,

subject to periodic boundary conditions ∂(εQ) and defined by the corresponding closed coercive
sesquilinear form. For each ε > 0, the operator Aε is then unitary equivalent to the von Neumann

integral (see e.g. [27, Chapter 7]) of A
(τ)
ε :

Aε = G∗ε

(
⊕
ˆ
Q′
A(τ)
ε dτ

)
Gε.

Similar to [62] and facilitated by the abstract framework of [120], the operator A
(τ)
ε can be

associated to transmission problems [121], akin to those considered in Section 4.3.2. To this end,

4The formula (34) is first applied to continuous functions U with compact support, and then extended to the
whole of L2(Rd) by continuity.
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consider Q as a torus with the opposite parts of ∂Q identified, and view Qsoft and Qstiff as subsets
of this torus. Furthermore, in line with the notation of Section 4.3.2, denote by Γ the interface
between Qsoft and Qstiff . For each ε, τ, f ∈ L2(Q), the transmission problem is formulated as finding
a function u ∈ L2(Q) such that u|Qsoft

∈ H1(Qsoft), u|Qstiff
∈ H1(Qstiff), that solves, in the weak

sense, the boundary-value problem (cf. (37))
−ε−2(∇+ iτ)2u+ − zu+ = f in Qstiff ,

−(∇+ iτ)2u− − zu− = f in Qsoft,

u+ = u−,

(
∂

∂n+
+ iτ · n+

)
u+ + ε−2

(
∂

∂n−
+ iτ · n−

)
u− = 0, on Γ.

where n+ and n− = −n+ are the outward normals to Γ with respect to Qsoft and Qstiff . By a

classical argument the weak solution of the above problem is shown to coincide with (A
(τ)
ε − z)−1f.

5.2.5 Homogenised operators and convergence estimates

Throughout this section, Hhom := L2(Qsoft)⊕C1, H := L2(Γ), and ∂τnu := −(∂u/∂n+ iτ · nu)|Γ is
the co-normal boundary derivative for Qsoft.

Model I. Set

domA(τ)
hom =

{
(u, β)> ∈ Hhom : u ∈ H2(Qsoft), u|Γ =

〈
u|Γ, ψ0

〉
Hψ0 and β = κ

〈
u|Γ, ψ0

〉
H

}
,

where κ := |Qstiff |1/2/|Γ|1/2, ψ0(x) = |Γ|−1/2, x ∈ Γ, and define

A(τ)
hom

(
u

β

)
=

(
−(∇+ iτ)2u

−κ−1
〈
∂τnu|Γ, ψ0

〉
H − κ

−2ε−2(µ∗τ · τ)β

)
,

(
u

β

)
∈ domA(τ)

hom,

where µ∗τ · τ is the leading-order term (for small τ) of the first Steklov eigenvalue for −(∇+ iτ)2

on Qsoft.
Model II. Set

domA(τ)
hom =

{
(u, β)> ∈ Hhom : u ∈ H2(Qsoft), u|Γ =

〈
u|Γ, ψτ

〉
Hψτ and β = κ

〈
u|Γ, ψτ

〉
H

}
,

where κ is as above and ψτ (x) = |Γ|−1/2 exp(−iτ · x)|Γ, x ∈ Γ. The action of the operator is set by

A(τ)
hom

(
u

β

)
=

(
−(∇+ iτ)2u

−κ−1
〈
∂τnu|Γ, ψτ

〉
H

)
,

(
u

β

)
∈ domA(τ)

hom.

Convergence estimate. Set γ = 2/3 for the case of Model I and γ = 2 for the case of Model

II. The resolvent (A
(τ)
ε −z)−1 admits the following estimate in the uniform operator-norm topology:(

A(τ)
ε − z

)−1 −Θ∗
(
A(τ)

hom − z
)−1

Θ = O(εγ), (54)

where Θ is a partial isometry from L2(Q) onto Hhom : on the subspace L2(Qsoft) it coincides with
the identity, and each function from L2(Qstiff) represented as an orthogonal sum

cτ‖Πstiffψτ‖−1Πstiffψτ ⊕ ξτ , cτ ∈ C1,

is mapped to cτ unitarily. Here Πstiff maps ϕ on Γ to the solution uϕ of −(∇+ iτ)2uϕ = 0 in Qsoft,
uϕ|Γ = ϕ. The estimate (54) is uniform in τ ∈ Q′ and z ∈ Kσ.
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[136] V. V. Zhikov, 1989. Spectral approach to asymptotic diffusion problems (Russian). Differ-
entsial’nye uravneniya 25(1), 44–50.

[137] V. V. Zhikov, 2000. On an extension of the method of two-scale convergence and its applica-
tions, Sbornik: Mathematics 191(7), 973–1014.

[138] V. Zhikov, 2005. On spectrum gaps of some divergent elliptic operators with periodic coeffi-
cients. St. Petersburg Math. J. 16(5), 773–790.

60


	1 Introduction
	2 Functional models for dissipative and nonselfadjoint operators
	2.1 Lax-Phillips theory
	2.1.1 Minimality, non-selfadjointness, resolvent

	2.2 Pavlov's functional model and its spectral form
	2.2.1 Additive perturbations MR0365199, MR0510053
	2.2.2 Extensions of symmetric operators Drogobych
	2.2.3 Pavlov's symmetric form of the dilation
	2.2.4 Naboko's functional model of non-selfadjoint operators

	2.3 Functional model for a family of extensions of a symmetric operator
	2.3.1 Boundary triples
	2.3.2 Characteristic functions
	2.3.3 Functional model for a family of extensions
	2.3.4 Smooth vectors and the absolutely continuous subspace
	2.3.5 Wave and scattering operators
	2.3.6 Spectral representation for the absolutely continuous part of the operator A0 and the scattering matrix

	2.4 Functional models for operators of boundary value problems
	2.4.1 Boundary value problem
	2.4.2 Family of boundary value problems
	2.4.3 Functional model

	2.5 Generalised resolvents
	2.6 Universality of the model construction
	2.6.1 Characteristic function of a linear operator Strauss1960
	2.6.2 Examples


	3 An application: inverse scattering problem for quantum graphs
	4 Zero-range potentials with an internal structure
	4.1 Zero-range models
	4.2 Connections with inhomogeneous media
	4.3 A PDE model: BVPs with a large coupling
	4.3.1 Problem setup
	4.3.2 Norm-resolvent convergence to a zero-range model with an internal structure
	4.3.3 Internal structure with higher dimensions of internal space E

	4.4 The rôle of generalised resolvents

	5 Applications to continuum mechanics and wave propagation
	5.1 Scaling regimes for high-contrast setups
	5.2 Homogenisation of composite media with resonant components
	5.2.1 Physical motivation
	5.2.2 Operator-theoretic motivation
	5.2.3 Prototype problem setups in the PDE context
	5.2.4 Gelfand transform and direct integral
	5.2.5 Homogenised operators and convergence estimates



