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ABSTRACT 

Systems designed to detect the threat posed by drones should be able to both locate a drone and ideally determine its type 

in order to better estimate the level of threat. Previously, drone types have been discriminated using millimeter-wave 

Continuous Wave (CW) radar, which produces high quality micro-Doppler signatures of the drone propeller blades with 

fully sampled Doppler spectra. However, this method is unable to locate the target as it cannot measure range. By contrast, 

Frequency Modulated Continuous Wave (FMCW) data typically undersamples the micro-Doppler signatures of the blades 

but can be used to locate the target. In this paper we investigate FMCW features of four drones and if they can be used to 

discriminate the models using machine learning techniques, enabling both the location and classification of the drone. 

Millimeter-wave radar data are used for better Doppler sensitivity and shorter integration time. Experimentally collected 

data from Ttree quadcopters (DJI Phantom Standard 3, DJI Inspire 1, and Joyance JT5L-404) and a hexacopter (DJI S900) 

have been. For classification, feature extraction based machine learning was used. Several algorithms were developed for 

automated extraction of micro-Doppler strength, bulk Doppler to micro-Doppler ratio, and HERM line spacing from 

spectrograms. These feature values were fed to classifiers for training. The four models were classified with 85.1% 

accuracy. Higher accuracies greater than 95% were achieved for training using fewer drone models. The results are 

promising, establishing the potential for using FMCW radar to discriminate drone types. 

Keywords: Micro-Doppler, Millimeter wave radar, UAV, drone, machine learning, feature extraction, 

classification 

 

1. INTRODUCTION 

The potential misuse of widely available consumer drones presents a major security issue1. Drones can be used to transport 

contraband, engage in terrorist activity, and invade the privacy of unsuspecting individuals, motivating the development 

of systems that are able to detect, track, and classify them2. 

Detection system candidates include visual, acoustic, passive Radio Frequency (RF), thermal, and radar3. Radar is resistant 

to all weather conditions, can operate during day and night, and works on drones that do not emit signals unlike passive 

RF, so provides an advantageous method of drone detection. The incorporation of machine learning into a radar-based 

detection system allows targets to be identified rapidly, accurately, and without a human operator. 

For a detection system to be reliable, it needs to have a high probability of detecting a target and a low probability of giving 

a false alarm. Birds and drones both fly slowly and at low altitudes and have a low Radar Cross-Section (RCS), meaning 

birds are likely to produce false alarms for a drone-detecting security system if it is based on RCS for target discrimination4. 

As a result of this, many early studies of machine-learning in radar-based drone detection systems focused on 

discriminating birds from drones with micro-Doppler signatures. This has now been achieved with great success. 

Molchanov et al.’s 2014 study used Principal Component Analysis (PCA), calculating the correlation matrix of 

spectrograms for eleven classes including planes, birds, quadcopters, stationary rotors, and helicopters4. 

Eigendecomposition was used to find the eigenvectors of this matrix, which were Fourier transformed to obtain feature 

values that were used in conjunction with Support Vector Machine (SVM) and Naïve Bayes Classifier methods for 
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classification4. SVM achieved an accuracy of 95% for classifying birds, and an accuracy of 96% for one drone model. A 

Naïve Bayes Classifier (NBC) achieved an overall accuracy of 88.42%4.  

In 2014, de Wit et al. utilised Singular Value Decomposition (SVD) to extract features5. In 2017, Rahman and Robertson 

investigated blade flashes and Helicopter Rotation Modulation (HERM) lines, comparing these for CW and FMCW radar6. 

This study demonstrated the advantage of using millimeter-wave radar to obtain robust micro-Doppler signatures, which 

became significant for later studies discriminating multiple drone types from CW radar data7
. 

Fuhrman et al. (2017) utilised SVD to extract micro-Doppler features from the spectrograms of six drone types in 

laboratory scenarios, and from spectrograms of simulated bird flight8. Using SVM as a classifier, 100% accuracy was 

achieved. The study demonstrated that drones and birds could be discriminated reliably using micro-Doppler signatures 

but had not done so in a realistic outdoor scenario8. In 2019, Rahman and Robertson gathered data from outdoor drone and 

bird flights7. A combination of the authors’ own algorithms and SVD were used on a small dataset to extract micro-Doppler 

spread, strength, and periodicity. SVM achieved 91.7% accuracy, whereas Linear Discriminant Analysis (LDA) achieved 

100%7. 

Beyond the basic drone/bird classification problem, the subsequent goal of micro-Doppler-based drone classification is to 

determine the model of drone detected. This may allow a system to aid in determining a target’s threat level. Drone model 

classification based on propeller micro-Doppler signatures has been achieved with millimeter wave Continuous Wave 

(CW) radar9,10, but that method is unable to locate targets as it cannot measure range. 

Zhang et al.’s 2017 study used PCA to extract micro-Doppler features of three drone types from Continuous Wave (CW) 

micro-Doppler data, with an SVM classifier achieving 94.7% accuracy9. Rahman and Robertson (2020) also classified 

multiple drones with micro-Doppler features extracted from CW radar data10. The authors compared the classification 

accuracy of supervised machine learning techniques with that of a Convolutional Neural Network (CNN). GoogLeNet, the 

CNN, achieved an accuracy of 99.74%, whereas SVM and Linear Discriminant Analysis achieved only 75%10. Those 

studies have shown that experimental radar data can be used to classify individual drone models based on fully sampled 

micro-Doppler data. 

Unlike CW radar, Frequency Modulated Continuous Wave (FMCW) radar can locate targets, but due to hardware 

Constraints, micro-Doppler signatures of the very fast rotating propeller blades are under typically sampled11. We are not 

aware of previous studies that have achieved discrimination between drone models based on FMCW micro-Doppler 

signatures and that is the objective of this work. 

This paper aims to develop feature extraction algorithms for four drone models, the DJI Phantom Standard 3, DJI Inspire 

1, DJI S900 Hexacopter, and Joyance JT5L-404. These are a small quadcopter, a medium quadcopter, a large hexacopter, 

and a large quadcopter respectively. Section 2 presents the feature extraction algorithms, Section 3 describes the 

classification training results, and conclusions are given in Section 4.  

 

2. PROPOSED FEATURE EXTRACTION ALGORITHMS 

2.1 Training Dataset 

The four drone models used are shown in Figure 1. Data was collected with the ‘T-220’ 94 GHz FMCW radar in staring 

mode16, with a range to stationary hovering targets between 33 m and 138 m. Specifications of the radar used are shown 

in Table 1. In total, 14.1 GB of raw time series radar data, corresponding to approximately 210 s of drone flight were 

analysed. For each of the four drone types, range bins occupied by the drones during episodes of interest were manually 

selected from each collected time series data run for the labelled dataset creation, totalling 90.87 seconds of drone flight. 

For the S900, three runs with a total of 13.65 seconds of flight time were divided into 13 episodes. For the Joyance, six 

runs with a total of 43.02 seconds of flight time were divided into 12 episodes of interest. For the Phantom, three runs with 

Proc. of SPIE Vol. 12108  121080A-2
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 24 Oct 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



a total of 5.35 seconds of flight time were divided into 10 episodes of interest. For the Inspire, six runs with a total of 28.85 

seconds of flight time were divided into 12 episodes of interest. For each of these episodes, a spectrogram was generated. 

These spectrograms were analysed to identify candidate features for drone type classification. Algorithms were developed 

to extract the identified features automatically from each spectrogram generated for subsequent classification. Features 

were ultimately chosen for classification training based on their separation of drone types in feature space and their impact 

on classification accuracy. The features chosen were micro-Doppler strength, bulk to micro-Doppler ratio, and HERM line 

spacing, as discussed in the next section. 

These feature extraction algorithms were then tested on a small FMCW micro-Doppler dataset, with the extracted features 

used in conjunction with supervised machine learning techniques to classify the four drone models. As relatively few data 

points were used in training, focus is placed on proving the validity of the developed algorithms for extracting features 

that successfully discriminate drone models. 

 

Operating frequency 94 GHz 

Operating mode FMCW, staring 

Bandwidth 150 MHz 

Antenna beamwidth 0.9° azimuth, 3° elevation 

Polarization Circular, odd-bounce 

Chirp time 51.2 µs 

Chirp period / chirp repetition frequency 80.489 µs / 12.4 kHz 

Sampling rate 10 MHz, 512 fast time samples, 256 range bins 

Maximum unambiguous velocity ±9.93 ms−1 

Short Time Fourier Transform (STFT) length 512-4096 samples, 41.2-329.6 ms 

STFT window Gaussian, width factor 0.4942-0.4950 

STFT overlap 95% 

 

Table 1 – Parameters of the T-220 FMCW radar16 

Figure 1 – The four drone models discriminated: (a) DJI Phantom Standard 312, (b) DJI S900 Hexacopter13, (c) DJI Inspire 114, (d) 

Joyance JT5L-40415  

(a) (b) 

(c) (d) 
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2.2 Micro-Doppler Strength 

The first feature extracted was the average micro-Doppler strength, derived from spectrograms with a window length, or 

coherent processing interval (CPI), of 512 samples (41.2 ms) for each episode of interest. The feature value was created 

by calculating the mean dBm value of the micro-Doppler sidebands, with any values below the selected noise floor of -80 

dBm discarded. As the average Doppler noise floor is approximately -86 dBm, a 5-6 dB margin is used to ensure only 

Doppler signal is selected and not noise. To ensure that the bulk Doppler was not considered when calculating this value, 

it was suppressed below the noise floor so that it was discarded in calculation. This process is illustrated by Figure 2 and 

shown by Algorithm 1. 

Algorithm 1 Suppress bulk Doppler 

begin procedure 

1  input: spectrogram 

2  Bulk suppression width = w 

3  Suppression interval width = w*round(window length/velocity range) 

4  Suppression value = s 

5  for i = 1 to Number of spectrogram CPIs 

6   Select Bulk Doppler index 

7             Calculate suppression interval start and stop points 

8  for n = Suppression interval start to stop 

9   nth data point of suppression interval of Bulk-suppressed spectrogram’s ith CPI = s 

10  end for 

11  end for 

12  output: bulk-suppressed spectrogram 

end procedure 

 

Bulk 

Doppler 

micro-Doppler 

Bulk Doppler 

suppressed 

Figure 2 – Two spectrograms generated from the same second of S900 flight, showing before (upper) and after (lower) the 

bulk Doppler suppression algorithm was applied 
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The mean was then taken of all values in the spectrogram matrix above -80 dBm (as per Figure 2 (lower)), giving a single 

average value for the amplitude of the micro-Doppler signature during the selected episode of interest. These micro-

Doppler strength values were normalised for the power fall-off with range of the drone using radar calibration data when 

added to the feature value dataset. An additional feature, the micro-Doppler density, was calculated as the number of 

elements in the matrix with a value above the noise floor, divided by the total number of elements in the matrix. These 

processes are shown in Algorithm 2. 

Algorithm 2 Calculate micro-Doppler strength and density 

begin procedure 

1  input: spectrogram 

2  for i = 1 to Number of Doppler bins 

3  for n = 1 to Number of spectrogram CPIs 

4   if the point in the ith Doppler bin of the nth spectrogram CPI ≥ noise floor 

5    Total micro-Doppler strength += value of point 

6    Data points above the noise floor +=1 

7   end if 

8   Number of data points +=1 

9  end for 

10  end for 

11  micro-Doppler strength = Total micro-Doppler strength/Number of data points 

12  micro-Doppler density = Data points above the noise floor/Number of data points 

13  output: micro-Doppler strength and micro-Doppler density 

end procedure 

 

Micro-Doppler strength was used as a feature value but micro-Doppler density did not show discrimination between drone 

types, so was not used as a feature. This is likely because the under-sampling of micro-Doppler in FMCW radar means the 

Doppler sideband energy is aliased and spread right across the Doppler spectrum, so this measure of Doppler ‘occupancy’ 

within the spectrogram does not vary significantly with drone type. 

 

2.3 Bulk to Micro-Doppler Ratio 

The second feature calculated for these spectrograms was the bulk to micro-Doppler ratio. Using the same initial 

spectrograms generated for calculating the micro-Doppler strength (Figure 2 (upper)), the values of the maximum 

amplitude for each CPI were summed then divided by the number of CPIs, to give a mean value for the bulk Doppler. As 

dBm values scale logarithmically, a ratio is obtained through subtraction. The previously obtained value of the micro-

Doppler strength was subtracted from the calculated value of the spectrogram’s bulk Doppler, giving a ratio that was used 

as a second feature value. Algorithm 3 shows this process. 

Algorithm 3 Calculate bulk to micro-Doppler ratio 

begin procedure 

1  input: spectrogram 

2  for i = 1 to Number of spectrogram CPIs 

3   Bulk Doppler = max(spectrogram’s ith CPI) 

4   Total bulk Doppler strength += Bulk Doppler 

5  end for 

6  Bulk Doppler strength = Total bulk Doppler strength/Number of spectrogram CPIs 

7  Bulk to micro-Doppler ratio = Bulk Doppler strength – micro-Doppler strength 

8  output: bulk to micro-Doppler ratio 
end procedure 
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2.4 HERM Line Spacing 

As HERM line spacing depends on the rotation rate and blade length of the observed propellers, which may be 

characteristic of drone type, this provided another primary candidate for feature value extraction. Spectrograms were 

generated with a long window length / CPI of 4096 (329.7 ms) so that the HERM lines were easily visible. For each 

spectrogram CPI, a region with a width of ±7 m/s about the bulk Doppler was extracted using the array of bulk Doppler 

index values. This was done to ensure that the same HERM lines were tracked through the spectrogram, should the drone 

move. 

The number of peaks in the region with a minimum prominence of 10 dBm were counted so that insignificant peaks in the 

micro-Doppler signature between HERM lines were not considered. Prominence is measured by first extending a 

horizontal line to the left and right of the peak until it crosses the signal due to a higher peak or reaches the end of the 

signal. The minimum of the signal is then measured for the left- and right-hand instances, which is either a valley or a 

signal endpoint. The higher of these two minima is the reference level from which the height of the peak above this is its 

prominence. A minimum prominence value can be set in MATLAB’s findpeaks function. The peak selection is 

demonstrated by Figure 3. The mean number of peaks per CPI was calculated by dividing the number of peaks by the 

number of CPIs in the spectrogram. The width of the region (14 m/s) was divided by the number of peaks to give the mean 

spacing of the HERM lines. This is shown in Algorithm 4. 

 

Algorithm 4 Calculate HERM line spacing 

begin procedure 

1  for i = 1 to Number of spectrogram CPIs 

2   Spectrogram CPI = ith column of the spectrogram matrix 

3   Select Bulk Doppler index 

4   Calculate HERM line interval start and stop points 

5  [Peak value array, Peak location array] = findpeaks(HERM line interval) 

6   Total number of peaks += length of Peak value array 

7  end for 

8  Average peaks per CPI = Total number of peaks/Number of CPIs 

9  HERM line spacing = Width of CPI/Average peaks per CPIs 

end procedure 

Bulk Doppler index 

7 m/s 

Figure 3 – A CPI showing the HERM line peaks, and the region in which these were selected for calculating HERM line spacing 
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2.5 Other Feature Extraction Algorithms 

Two further feature extraction algorithms were developed with the objective of finding more features that might 

discriminate between drone types. The first measured the symmetry of the HERM lines in each generated spectrogram, 

inspired by Bennet et al. 202017. The second used SVD, as this had been successful in discriminating between drone and 

bird micro-Doppler signatures5. Neither of these algorithms produced feature values that discriminated between drone 

models, so these were not used for classification training. 

 

3. CLASSIFICATION TRAINING RESULTS 

The three features used for classification training were micro-Doppler strength, HERM line spacing, and the micro-Doppler 

to bulk ratio. A data set of these feature values derived from the 47 selected spectrograms was created in Microsoft Excel, 

allowing them to be imported into MATLAB’s Classification Learner app. Each set of three feature values was labelled 

with the associated drone model, providing four target classes for classification (Phantom, Inspire, S900, and Joyance). 47 

values for each feature were used, corresponding to 4 drones. The Inspire had 12 values for each feature, the Phantom had 

10, the Joyance had 12, and the S900 had 13. In total 141 feature values were used; the Inspire had 36 feature values, the 

Phantom had 30, the Joyance had 36, and the S900 had 39. 

Classification was carried out for 4 classes, as well as results for all possible combinations of 3 and 2 classes created by 

excluding drone models and their feature values. For each classification type, classification training was carried out with 

all three features (micro-Doppler strength, bulk to micro-Doppler ratio, and HERM line spacing) and all possible 

combinations of two features. All 24 classifiers available in MATLAB’s Classification Learner app were tested for each 

of these combinations. Five-fold cross-validation was used to prevent overfitting the generated models to the data.  

Classification was also tested with Principal Component Analysis (PCA) enabled. With a small number of features, PCA 

produced a universal reduction in classification accuracy as the model depended on all features used for sufficient training. 

In most scenarios, only two features were used, so eliminating one of them affected the training significantly. 

The greatest accuracy achieved for each classification method is shown in Table 2, including the features and classifier 

that produced this result. Given that prediction speed is an important consideration in security applications, this is also 

included. Classification was performed on an Intel i5-4690K processor running at 3.50 GHz clock speed with 8 GB of 

RAM.  The results obtained for 4-, 3- and 2-class classification are discussed further in the following sections. It was 

observed that the first two features, micro-Doppler strength and HERM line spacing, are most separated in feature space. 

This is why in all but two cases these are the features used in classification 

As the dataset used was small, with 10-13 feature values per drone type, these results are proof of principle for the 

developed feature extraction algorithms, validating their potential in future work to create a larger dataset that could be 

used to locate and discriminate drone models in an FMCW radar-based drone detection system. 
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4.1 4-Class Classification 

For the 4-Class classification type, in which a model was trained to discriminate between all four drones, the best results 

were observed using micro-Doppler strength and HERM line spacing as features. A Quadratic SVM classifier produced 

the highest accuracy of 85.1%. This classifier also produced the highest accuracy for two 2-Class classification types. 

Figure 4 shows the predictions made by the model for each point in feature space. An SVM classifier was expected to 

give a high accuracy, given its success in previous studies discriminating drones from birds4. 

The feature values of the S900 and those of the Phantom occupy a similar region of the plot, making them difficult to 

discriminate for the model, creating the most inaccuracy. As shown by the confusion matrix in Figure 4, the greatest 

number of incorrect predictions occurred where a Phantom was classified as an S900. Training 3-Class models, in which 

one drone model is excluded, illustrates this further. 

Classification Type 

 

No. of features 

 

Classifier 

 

Accuracy (%) 

 

Prediction Speed 

(ms) 

4-Class 2 (M, H) Quadratic SVM 85.1 0.23 

3-Class (Inspire, S900, 

Joyance) 

2 (M, H) 

 

Subspace 

Discriminant 

97.3 

 

5.00 

 

3-Class (Inspire, Phantom, 

Joyance) 

2 (M, H) 

 

Kernel Naïve 

Bayes 

 

97.1 

 

0.59 

 

3-Class (Phantom, S900, 

Joyance) 

2 (M, H) 

 

Quadratic 

Discriminant 

88.6 

 

0.43 

 

3-Class (Inspire, Phantom, 

S900) 

2 (M, H) 

 

Kernel Naïve 

Bayes 

77.1 

 

0.56 

 

2-Class (S900, Joyance) 

 

2 (M, H) 

 

Quadratic 

Discriminant 

100 

 

0.63 

 

2-Class (S900, Inspire) 

 

3 (M, H, R) 

 

Logistic 

Regression 

100 

 

1.00 

 

2-Class (Joyance, Phantom) 

2 (M, H) 

 

Quadratic SVM 

 

100 

 

0.59 

 

2-Class (Joyance, Inspire) 

 

2 (M, H) 

 

Kernel Naïve 

Bayes 

95.8 

 

0.71 

 

2-Class (Phantom, Inspire) 2 (M, R) Quadratic SVM 95.5 0.48 

2-Class (S900, Phantom) 

 

2 (M, H) 

 

Kernel Naïve 

Bayes 

73.9 

 

0.71 

 

Table 2 – The results of classification training with the chosen feature values, micro-Doppler strength (M), HERM line spacing (H), and 

bulk to micro-Doppler ratio (R). For each classification type, the combination of features and classifier that gave the highest accuracy 

is show in in the table. The prediction speed of each classifier is also shown, as this is an important consideration. 
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4.2 3-Class Classification 

As with 4-Class classification, 3-Class classification also produced the best results using micro-Doppler strength and 

HERM line spacing as features. The results of these classifications support the suggestion that the S900 and Phantom were 

the greatest confusers in 4-Class classification, and therefore the greatest source of inaccuracy. The two 3-Class 

classification types excluding the S900 and Phantom scored 97.1% and 97.3% accuracy, respectively. 

Using the Inspire, Phantom, and Joyance as the three classes, a Kernel Naïve Bayes classifier produced the highest accuracy 

of 97.1%. Figure 5 shows the predictions made by the model for each point in feature space; there is significantly less 

overlap in the regions occupied by the classes than in 4-Class classification.  This classifier also gave the highest accuracy 

when classifying the S900, Inspire, and Phantom, as well as for two 2-Class classification types. Like SVM, Naïve Bayes 

classifiers also showed success in previous studies4, so were expected to perform well for drone model discrimination. 

 

Figure 4 – Scatter plot and confusion matrix for 4-Class classification. The scatter plot shows that the datapoints for the S900 and the 

Phantom occupy a similar area of the plot, causing the greatest source of confusion for the model. 
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Using the Inspire, S900, and Joyance as the three classes, a Subspace Discriminant classifier achieved the highest accuracy  

of 97.3%. Figure 6 again shows significantly less overlap in the regions occupied by the classes than in 4-Class 

classification. The Subspace Discriminant classifier is a classification ensemble provided by MATLAB’s Classification 

Learner app. As a result, the Subspace Discriminant classifier had the longest prediction speed, at 5 ms. Although this 

seems fast, allowing for 200 classifications per second, what is considered fast or slow depends on the application 

requirement. In the case of security, where a drone classification system would be deployed, real-time, low-latency 

classification is needed to launch a counter-measure. The Subspace Discriminant classifier is five times slower than the 

next fastest classifier and may therefore delay the deployment of such measures. 

Figure 5 – Scatter plot and confusion matrix for 3-Class classification with the Inspire, Phantom, and Joyance. The scatter plot shows 

that each class occupies a relatively distinct area in feature space compared to the 4-Class classification in Figure 4. 
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Comparatively, the two 3-Class classification types including the Phantom and S900 only scored 77.1% and 88.6% 

accuracy. These results were obtained with a Kernel Naïve Bayes classifier and a Quadratic Discriminant classifier, 

respectively. The significant drop in classification accuracy indicates that these drone models are the cause of greatest 

confusion. The reason for the similarity in feature values between the Phantom and S900, shown by Figure 7, is unclear 

and requires further investigation in the future. A possible cause is the similar length of these models’ propeller blades. A 

larger dataset in future may reveal more information and provide more clarity as to why a quadcopter and hexacopter 

produce such similar feature values. The Quadratic Discriminant classifier also produced the highest accuracy with one 2-

Class classification type. 

Figure 6 - Scatter plot and confusion matrix for 3-Class classification with the Inspire, S900, and Joyance. The scatter plot shows that 

each class occupies a relatively distinct area in feature space compared to the 4-Class classification in Figure 4. 
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4.3 2-Class Classification 

100% accuracy was achieved for three 2-Class classification types. Among these was the classification of the S900 and 

Inspire, which was the only classification type to achieve the highest accuracy using all three features. The classifier used 

was Logistic Regression. This level of accuracy indicates that these drone models are very well separated in feature space. 

This suggests that it is possible to group drones into separate categories, where each category will contain multiple drones 

having similar feature space values. Even though 100% accuracy may be due to the small dataset, and may be reduced 

when more datapoints are used, it definitely shows the potential of the model to discriminate between the three 

combinations of 2 drones with very high accuracy. 

Two of the three remaining 2-Class classification types also achieved a high accuracy, including the classification of the 

Phantom and Inspire. This was the only classification type to achieve the highest accuracy using only micro-Doppler 

strength and bulk to micro-Doppler ratio as features. 

Figure 7 - Scatter plot and confusion matrix for 3-Class classification with the Inspire, S900, and Phantom. The scatter plot shows that 

the datapoints for the S900 and Phantom occupy a similar region of the feature space, as in the 4-Class classification in Figure 4, leading 

to the greatest source of confusion. 
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The final 2-Class classification type, classifying the Inspire and S900 Hexacopter, achieved only 73.9% accuracy. This 

further supports the observation that these drone models act as the greatest source of confusion in classification types with 

a greater number of drone models, and are not discriminated well by the defined features. 

 

4. CONCLUSION 

In this paper, three feature extraction algorithms have been developed to train machine learning classifiers for multiple 

drone type classification based on a small set of FMCW radar data in which the micro-Doppler signatures are under-

sampled. Approximately 14 GB of raw experimental data of drones in flight, spanning ~210 seconds, from a 94 GHz 

millimeter-wave radar were analysed in this work. From the raw data, a total of 47 episodes of interest were extracted (10-

13 for each drone type), spanning about 90 seconds of flight, from which spectrograms were generated for feature 

extraction. from each spectrogram, the three feature values were extracted and labelled then used for classification. . The 

results are very promising, with the accuracy achieved validating the developed algorithms as having the potential for use 

in FMCW radar systems for locating and discriminating drone types. 

4-Class classification achieved an accuracy of greater than 85%. 3-Class classification also achieved high accuracies, with 

two classification types achieving greater than 97% and one achieving over 88%. The exception to this was the 

classification type including the S900 and Phantom, which achieved 77.1%. 2-Class classification achieved accuracies 

over 95% in all cases except discriminating between the S900 and Phantom. From this, it can be concluded that these two 

drone types are the greatest confusers and have similar feature values. 'This might be due to the similarity of their blade 

lengths, but further investigation is required (especially with a larger dataset) for a better understanding. 

To improve this classification and verify that the algorithms are suitable for use in a real-world system, a larger and more 

robust dataset that contains more datapoints per drone model is needed but that was outside of the authors’ scope and is 

therefore suggested as a focus for future work. Further work should also address the need to create a more diverse dataset 

including flying data and data acquired from radars with different parameters, allowing for optimisation of threshold 

factors. The creation of a large dataset would also provide the opportunity to test CNNs for classification of drone types 

based on FMCW micro-Doppler spectrogram images, as this may produce higher classification accuracies as seen with 

CW data in Rahman and Robertson (2020)10. 
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