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Abstract

A Py-free graph is called a cograph. In this paper we partially
characterize finite groups whose power graph is a cograph. As we will
see, this problem is a generalization of the determination of groups in
which every element has prime power order, first raised by Graham
Higman in 1957 and fully solved very recently.

First we determine all groups G and H for which the power power
graph of G x H is a cograph. We show that groups whose power graph
is a cograph can be characterised by a condition only involving ele-
ments whose orders are prime or the product of two (possibly equal)
primes. Some important graph classes are also taken under consider-
ation. For finite simple groups we show that in most of the cases their
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power graphs are not cographs: the only ones for which the power
graphs are cographs are certain groups PSL(2,¢q) and Sz(q) and the
group PSL(3,4). However, a complete determination of these groups
involves some hard number-theoretic problems.

AMS Subject Classification (2020): 05C25.
Keywords: Power graph, induced subgraph, cograph, nilpotent group, di-
rect product, prime graph, simple groups.

1 Introduction

There are various graphs we can define for a group using different group
properties [4]. These graphs include the commuting graph, the generating
graph, the power graph, the enhanced power graph, deep commuting graph,
etc. The power graphs were first seen in early 2000’s as the undirected power
graphs of semigroups [19]. For a semigroup S, the directed power graph of S,
denoted by P(S), is a directed graph with vertex set V(P(S)) = S; and two
distinct vertices x and y are having an arc x — y if y is a power of z.

The corresponding undirected graph is called the undirected power graph
of S, denoted by P(S). The undirected power graph of a semigroup was
introduced by Chakrabarty et al. [11] in 2009. So the undirected power
graph of S is the graph with vertex set V(P(S)) = S, with an edge between
two vertices v and v if u # v and either v is a power of uw or u is a power
of v. These concepts are defined for groups as a special case of semigroups.
In the sequel, we only consider groups;“power graph” will mean “undirected
power graph”, and all the groups in this paper are finite.

The power graphs are well studied in the literature [1, 2, 5, 6, 7, 8, 9, 11,
12, 22]. We find several research papers in which researchers give complete or
partial characterization of different graph parameters for the power graphs.
We mention few notable works in this context:

e P(G) is a complete graph if and only if either G is trivial or a cyclic
group of prime power order. (Chakrabarty et al. [11])

e P(G) is always connected and we can compute the number of edges in

P(QG) by the formula |E(P(G))| = % Y acc(20(a) — p(o(a)) — 1)|.

e The power graph of a finite group G is Eulerian if and only if G has
odd order.



e Curtin et al. [16] introduced the concept of proper power graphs. They
determine the diameter of the proper power graph of .S,,.

e Chattopadhyay et al. [12] have provided bounds for the vertex connec-
tivity P(G) where G is a cyclic group.

e Cameron [5] proved that, for any two finite groups G; and G, if power
graphs of G and G5 are isomorphic then P(G;) and P(Gs) are also
isomorphic.

In our previous paper [9], we partially characterized finite groups whose power
graphs forbid certain induced subgraphs. These subgraphs include P, (the
path on 4 vertices); Cy (the cycle on 4 vertices); 2K, (the complement of
Cy4); etc. A graph forbidding P, is called a cograph. In other words, a
graph I' is a cograph if it does not contain the 4-vertex path as an induced
subgraph. Cographs have various important properties. For example, they
form the smallest class of graphs containing the 1-vertex graph and closed
under complementation and disjoint union. (The complement of a connected
cograph is disconnected.) See [3, 4] for more about these concepts.

We will use the term power-cograph group, sometimes abbreviated to
PCG-group, for a finite group whose power graph is a cograph.

In [9], we completely characterized finite nilpotent power-cograph groups.
We proved the following theorem:

Theorem 1.1 (][9], Theorem 3.2). Let G be a finite nilpotent group. Then
P(G) is a cograph if and only if either |G| is a prime power, or G is cyclic
of order pq for distinct primes p and q.

For a given group G, the power graph of any subgroup of GG is an induced
subgraph of P(G). Thus, if the power graph of a group is a cograph then
the power graph of any of its subgroups is also a cograph. In other words,
the class of finite power-cograph groups is subgroup-closed.

This gives a necessary condition for a group to be a power-cograph group:
any nilpotent subgroup of such a group is either a p-group or isomorphic to
Cpq, Where p and g are distinct primes. So if GG has a nilpotent subgroup which
is neither a p-group nor isomorphic to C,,, then P(G) is not a cograph. In
our previous paper, we have asked the following question: Classify the finite
groups G for which P(G) is a cograph. In this paper we provide further
results towards the answer to this question.



We now give several equivalent conditions on a finite group which are
known to imply that the power graph is a cograph. First we require a few
definitions.

e For a finite group G, Let 7(G) denote the set of all prime divisors of
|G|. The prime graph or Gruenberg—Kegel graph of G is a graph with
V = 7(G) and two distinct elements p and ¢ of 7(G) are connected if
and only if GG contains an element of order pq.

e The enhanced power graph of G is the graph with vertex set G, in which
vertices  and y are joined if there exists z € GG such that both x and
y are powers of z. Clearly the power graph is a spanning subgraph of
the enhanced power graph.

e The group G is an EPPO group if every element of G has prime power
order.

Theorem 1.2. For a finite group G, the following conditions are equivalent:
(a) G is an EPPO group;
(b) the Gruenberg—Kegel graph of G has no edges;
(c) the power graph of G is equal to the enhanced power graph.

If these conditions hold, then the power graph of G is a cograph.

For the equivalence of (a)—(c), see Aalipour et al. [1]. The class of
EPPO groups was first investigated (though not under that name) by Gra-
ham Higman in 1957 [18], and the simple EPPO groups were determined by
Suzuki [25, 26]but the complete determination of these groups only appeared
in a paper not yet published [10].

Suppose that G is an EPPO group. The reduced power graph of G (ob-
tained by removing the identity vertex from P(()) is the disjoint union of
reduced power graphs of subgroups of prime power order. Each of this is a
cograph, by Theorem 1.1; thus P(G) is a cograph.

Hence our problem is a generalization of the classification of EPPO groups.
We note that the condition that G is a power-cograph group does not
imply (a)—(c). Moreover two groups may have the same prime graph, yet
one and not the other is a power-cograph group. For example, consider

Gl = 012 and Gg = D6.



In this paper we explore various graph classes and try to identify whether
their power graphs are cographs or not. First we discuss direct product two
groups. We are able to identify certain solvable groups whose power graph is
a cograph. Finally we consider finite simple groups. Our result is as follows:

Theorem 1.3. Let G be a non-abelian finite simple group. Then G is a
power-cograph group if and only if one of the following holds:

(a) G =PSL(2,q), where q is an odd prime power with ¢ > 5, and each of
(g —1)/2 and (¢ + 1)/2 is either a prime power or the product of two
distinct primes;

(b) G = PSL(2,q), where q is a power of 2 with ¢ > 4, and each of ¢ — 1
and g+ 1 is either a prime power or the product of two distinct primes;

(c) G = Sz(q), where ¢ = 2%¢T! for e > 2, and each of ¢ — 1, ¢+ v/2q + 1
and q — /2q + 1 is either a prime power or the product of two distinct
primes;

(d) G = PSL(3,4).

We end the introduction with a remark about this theorem. In the first
three cases, determining precisely which groups occur is a purely number-
theoretic problem which is likely to be quite difficult. For example, the
values of d (at least 2) for which the power graph of PSL(2,2%) is a cograph
for d < 200 are 1, 2, 3, 4, 5, 7, 11, 13, 17, 19, 23, 31, 61, 101, 127, 167, and
199, and the values of e (at least 1) for which the power graph of Sz(2%*1)
is a cograph for e < 100 are 1, 2, 3, 4, 5, 6, 8, 44.

Problem Are there infinitely many non-abelian finite simple groups G
which are power-cograph groups?

2 Direct products

Recall that a finite nilpotent group can be written as a direct product of its
Sylow subgroups. Thus if P(G x H) is a cograph then, by using Theorem
1.1, we have only a few choices for the orders of G and H. The following
theorem gives a complete characterization for all direct products G x H such
that P(G x H) is a cograph.



Theorem 2.1. Let G and H be non-trivial groups. Then G x H is a power-
cograph group if and only if one of the following holds:

(a) the orders of G and H are powers of the same prime;
(b) G and H are cyclic groups of distinct prime orders;

(c) there are primes p and q and an integer m > 1 such that ¢™ | (p — 1);
one of G and H 1s a cyclic group of order q, and the other is the non-

abelian group
(a,b:a? =1,b7" =1,b"'ab = a*),

where k is an integer with multiplicative order ¢™ (mod p).

Proof. Let G x H be a cograph. If the orders of G and H are each divisible
by exactly one prime then G x H is nilpotent. Therefore by Theorem 1.1,
we obtain first two cases. So we can suppose that at least one one of G and
H has order divisible by two primes.

Let p and ¢ be distinct primes such that p divides |G| and ¢ divides |H]|.
Let P be a Sylow p-subgroup of GG and () be a Sylow g-subgroup of G. Then
P x @ is a nilpotent subgroup of G x H; so |P| = p and |Q| = q¢.

First we consider that neither G nor H has prime power order. Then
it follows that both |G| and |H| are squarefree. For, if p? | |G|, then there
is a prime ¢ # p dividing |H|, a contradiction. Hence both G and H are
metacyclic [24, pp.246-247]. So each has a normal subgroup of prime order.
Moreover, each of G and H has the property that any abelian subgroup is
cyclic of prime order; since otherwise its direct product with a cyclic group
of prime order in the other factor would be nilpotent, contradicting Theo-
rem 1.1. Hence each of G and H is non-abelian with order the product of
two primes.

Suppose that G is a squarefree group of order pyps - - - p,, where py, po, ..., p,
are primes and p; < ps < --- < p,. Let P; be a Sylow p;-subgroup of G.
Then the order of the automorphism group of P; is only divisible by primes
smaller than py, so Cg(P1) = Ng(P;). By Burnside’s Transfer Theorem, G
has a normal p;-complement ()1, a normal subgroup of order p,---p,. By
continuing this procedure, we find eventually a normal subgroup of order p,,
say V.

Now suppose that the power graph of G x H is a cograph. Then G has
no abelian subgroup with order divisible by two primes, or else the direct
product of this subgroup with a subgroup of prime order in H is a nilpotent
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subgroup of G x H whose power graph contains P;. So Cg(N) = N, and
G/N acts faithfully as a group of automorphisms of N. Thus G/N is abelian,
and is isomorphic to a complement to N in GG. By the remark just made, N
is cyclic of prime order, so GG is a non-abelian group with order divisible by
just two primes, say p and ¢, with ¢ dividing p — 1. By symmetry the same
applies to H, and indeed the two prime divisors of |H| must also be p and
q. For, if r | |H| and a, b, ¢ are elements of orders p, ¢, r respectively, then
(a,ac,c,bc) is a copy of Py in the power graph.

Now let a be an element of order p in H, and let b and ¢ be two elements of
order ¢ in G which are not adjacent in the power graph. Then (b, ab, a, ac, ¢)
is an induced path in P(G x H), contradicting the assumption that this graph
is a cograph.

We have now ruled out the possibility that neither G nor H has prime
power order. So one of G and H (say G, without loss of generality) is a group
of prime power order ¢"". By assumption, H is not a g-group, and so contains
a subgroup P of prime order p # g. Then G x P is a nilpotent subgroup of
G x H with forbidden structure, unless |G| = ¢. Now p must divide |H| to
the first power only, and |H| = pg™ for some m > 1. We claim next that
H has a normal Sylow p-subgroup P. For suppose not, and let b and ¢ be
elements of order p not adjacent in the power graph, and a a non-identity
element of G. Then (b, ab, a,ac,c) is an induced path in the power graph of
G x H, a contradiction. As before, we conclude that Cy(P) = P, and so
the Sylow g-subgroup of H (which is a complement to P) is cyclic of order
dividing p — 1. This finally yields the claimed structure for G and H.

Now we prove the converse.
The first two cases are easy to verify. In both these cases G x H is
nilpotent and the result follows from Theorem 1.1.

Now suppose G is the non-abelian group (a,b: a? = 1,b9" = 1,b"tab =
a”®), where k is an integer with multiplicative order ¢™ (mod p) and H = C,,.
First we observe the structure of G. Since p > ¢ and G is non-abelian, there-
fore G has a unique Sylow p-subgroup and p Sylow g-subgroups. So each
non-identity element of G has order p or power of g. On the other hand,
P(H) is the complete graph K.

Now we show that P(G x H) is a cograph. On the contrary let us assume
that P(G x H) contains an induced Py, say (aj,by) ~ (az,b) ~ (as,bs) ~
(a4,by). Since P(H) is complete none of ay,as,as, as can be identity. Now



(ay,b1) ~ (ag,by) implies either both ay, ay has order p or power of g.

If both of them has order p then as (az, bs) ~ (a3, bs), so as is of order p and
then all these 3 vertices lies in the same cyclic subgroup of G x H with same
order and so they forms a cycle.

Again, if orders of both aq,ay are powers of g then as G contains elements
of order only p or power of g and (as, b3) ~ (az, by) implies either o(as)|o(as)
or o(ag)|o(as) so az must be order power of ¢q. Similarly, ay must be of order
power of g. Thus the whole path contained in a subgroup of G x H whose
order is power of ¢ and by Theorem 1.1, power graph of this subgroup of
G x H is a cograph. So our taken path is impossible in any aspect. Hence,
P(G x H) is a cograph. O

Observation 2.2. Let G and H are two groups such that P(G x H) is a
cograph then both P(G) and P(H) are cographs. (For G x H has subgroups
isomorphic to G and H.)

Remark 2.3. The converse of the above is not true in general. Consider
G = Cy and H = Cg. Then by Theorem 1.1, both P(G) and P(H) are
cographs where as P(G x H) is not a cograph.

3 Minimal non-power-cograph groups

Let C be the class of finite groups G for which P(G) is a cograph. As noted
earlier, C is subgroup-closed; so it can be characterised by finding all minimal
non-C groups.

Theorem 3.1. Let G be a finite group. Then P(G) is not a cograph if and
only if G contains elements g and h with orders pr and pq respectively, where
p,q,r are prime numbers and p # q, such that

(a) gr = hq;

(b) if g =1, then g? & (hP).

Proof. Let G be a minimal non-C group. Suppose first that G is abelian.
By Theorem 1.1, it has order the product of three primes which are not all
equal. We distinguish three cases.

e Suppose that |G| = pgr where p, q,r are all distinct. Then G is cyclic;
say G = (z). Now if we put ¢ = 2% and h = 2", we see that the
conditions of the theorem are satisfied.



e Suppose that |G| = p?q, and that the Sylow p-subgroup of G is cyclic,
generated by g. Let z be an element of order ¢, and h = ¢gPz. Take
r = p in the conditions of the theorem.

e Finally, suppose that |G| = p*q and the Sylow p-subgroup is elementary
abelian, generated by = and y. Let z be an element of order q. Now
take g = xz and h = yz. Then g and h have order pq; g¥ = 2P = h?, but
g? = 2% ¢ (aP. So these elements satisfy the conditions of the theorem,
if we take r = ¢ and reverse the roles of p and gq.

So we can suppose that G is nonabelian.

Since P(G) is not a cograph, there is an induced path (a, b, ¢,d) in P(G).
Now we cannot have a — b — ¢ or ¢ = b — a in P(G), since — is transitive
but a and ¢ are nonadjacent in P(G). So either a — b < cor a < b — c.
Applying the same reasoning to b, ¢ and d, we see that (up to reversal of the
path) we have

a—b<+c—d.

Now (c) is a cyclic group and contains b and c. Since G is nonabelian, it
is a proper subgroup, and hence its power graph is a cograph. So the order
of ¢ is either a prime power or of the form pg where p and ¢ are distinct
primes. The former case is impossible. For the power graph of a cyclic group
of prime power order is complete, but b is not joined to d. So the order of
¢ is pq, with p # q. We may suppose without loss that b = ¢? has order p
while d = ¢? has order q.

Now consider the element a. We know that the order of a is divisible by
p (the order of b). By replacing a by a power of itself, we can assume that
the order of a is pr, where r is a prime which may or may not be equal to p.
(This power is still joined to b, but it cannot be joined to d. For if a and d
are joined, then d € (a) N (¢) = (b), contradicting the fact that d has order
g whereas b has order p. Also a cannot be joined to ¢, for this would imply
that ¢ — ¢ and hence a — d.)

We have now verified all the conditions of the theorem.

Conversely, if these conditions hold, then (g, g" = h9, h, h?) is an induced
path of length 3, so P(G) is not a cograph. ]

Remark 3.2. A minimal non-PCG group has nontrivial centre. For such a
group is generated by elements g and h as in the theorem, and g" = h? is in
the centre.



Corollary 3.3. Let G be a finite group. Let Py(G) be the set of non-identity
elements of G whose orders are either prime or the product of two (not nec-
essarily distinct) prime numbers. Then P(G) is a cograph if and only if the
induced subgraph on Pa(G) is a cograph.

Here is an application, which we will require later. Suppose that G is a
finite group containing elements a of order 4 and b of order 6 such that a? and
b® are conjugate. Replacing b by a conjugate, we may assume that a? = b3,
Now the theorem above implies that G is not a power-cograph group. These
conditions can be verified for the simple groups M;; and PSU(3, 8) using the
ATILAS of finite groups [14]. We will use this argument several times, so we
refer to it as the 4-6 test.

4 Examples

Below we let P*(G) be the reduced power graph of G, the induced subgraph
on the set G* = G\ {1}. Note that P(G) is a cograph if and only if P*(G)
is a cograph.

We also make the following observation.

Theorem 4.1. Let G be a finite group in which any two distinct maximal
cyclic subgroups intersect in the identity. Then P(G) is a cograph if and
only if the orders of the maximal cyclic subgroups are either prime powers or
products of two distinct primes.

Proof. Every edge of P(G) is contained in a maximal cyclic subgroup of G.
The hypothesis implies that P*(G) is the union of P*(C') as C runs over the
maximal cyclic subgroups of G. O]

Theorem 4.2. The symmetric group S, on n symbols is a power-cograph
group if and only if n < 5.

Proof. for n > 6, P(S,) contain a path (pgr)(zy) ~ (xy) ~ (qrz)(zy) ~
(gzr) and thus P(Ss) is not a cograph.

For n < 5, the maximal cyclic subgroups intersect in the identity, and
their orders are in the sets {2} (for n = 2), {2,3} (for n = 3), {2, 3,4} (for
n = 4), or {4,5,6} (for n = 5), so these symmetric groups are all power-
cograph groups, by Theorem 4.1. O]
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Theorem 4.3. Let p and q (< p) be primes and G be the semidirect product
of C, by Cym acting faithfully on C,. Then P(G) is a cograph.

Proof. By assumption, there are no elements of order pq, so the orders of the
maximal cyclic subgroups are p and ¢™. 0

Theorem 4.4. If G is a dihedral group of order 2m, then G is a power-
cograph group if and only if m is either a prime power or the product of two
distinct primes.

Proof. The orders of maximal cyclic subgroups are 2 and m, and any two
intersect in the identity. O

4.1 Remarks on solvable groups

Let G be a solvable group and G € C. Let F(G) be the Fitting subgroup
(the maximal normal nilpotent subgroup of G) of G. Then by Theorem 1.1,
the order of F'(G) is either a prime power or the product of two primes.

Let F(G) = C,, for distinct primes p and ¢q. Then F(G) contains its
centraliser, and so is equal to it; so G/F(G) acts as a group of automorphisms
of F(G). Thus G is contained in the group (C,.Cp_1) X (C,;.Cy—1). But we
can’t have a direct product larger than C, x C,. So the structure of G is
(C, x Cy).C, where r divides both p — 1 and ¢ — 1, and r is either a prime
power or the product of two primes.

Next suppose that F(G) be a p-group. If all the elements of G are of
prime power order then the prime graph of GG is a null graph, and hence
G € C. Higman [18] gave nice characterization of such groups. And in that
|G| has at most two prime divisors and G/F(G) is one of the following:

(a) a cyclic group whose order is a power of a prime other than p.
(b) a generalized quaternion group, p being odd; or

(¢) a group of order p%q® with cyclic Sylow subgroups, ¢ being a prime of
the form kp* + 1.

But the problem arises when G contains elements whose order is not a prime
power. One thing is for sure for in that case: If the order of a element is not
a prime power then it must be product of two distinct primes. We observe
that such group exists and we give two different examples for that. The
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Frobenius group F7 of order 42 whose power graph is a cograph; Here |F%|
is divisible by 3 primes, F7 contains an element of order 6, and it’s fitting
subgroup C;. Let G be the semidirect product of the Heisenberg group Hj
of order 27 by Cj, then G is solvable and G € C. In that case the fitting
subgroup F'(G) = Hs, and G contains elements of order 6.

Problem 4.5. Classify all solvable C-groups whose Fitting subgroup is a
p-group.

5 Finite simple groups

In this section we discuss simple groups whose power graphs are cographs.
For each prime p, the simple group C),, has complete power graph, therefore it
is a power-cograph group. In the next theorem we classify alternating groups
which are power-cograph groups.

Theorem 5.1. The alternating group A, is a power-cograph group if and
only if n < 6.

Proof. Forn > 7, the 4-6 test applies, with a = (1,2,3,4) and b = (1, 3)(2,4)(5,6,7).
Now we consider n < 6.
If n = 3 then Ajz is nothing but the cyclic group C'5 and hence its power

graph is the complete graph K3 and hence a cograph.
For n = 4,5,6 then prime graph of A, is a null graph and by Theorem

1.2 the power graphs is a cograph. O

In the next few sections we discuss simple groups of Lie type of low rank
or over small fields and sporadic simple groups. Information about specific
groups is found in the ATILAS [14], and further information about the simple
groups and their subgroups is in Rob Wilson’s book [27].

We also use the fact that C is subgroup-closed; so, if a group G contains
a subgroup not in C, then G ¢ C.

5.1 Simple groups of Lie type of rank 1

The simple groups of Lie type of rank 1 are A;(q) = PSL(2,q), 2As(q) =
PSU(3,q), 2Bs(q) = Sz(q) where ¢ = 22" and 2Gy(q) = Ri(q) where
q= 32@—4—1.

12



In [5], Cameron proved that, if ¢ is an odd prime power then the power
graph of PSL(2,p) is a cograph if a only if (¢ —1)/2 and (¢ + 1)/2 are either
prime powers or product of two primes. And if ¢ > 4 is a power of 2 then
power graph of PSL(2, p) is a cograph if and only if ¢ — 1 and ¢+ 1 are either
prime powers or products of two distinct primes.

Next we show that power graph of PSU(3, ¢) is not a cograph for ¢ # 2.
Since PSL(3,2) is not simple, there are no simple power-cograph groups of
this type.

Theorem 5.2. Let q be a power of a odd prime p. Then power graph of
PSU(3,q) is not a cograph.

Proof. We use the fact that PSU(3, ¢), ¢ odd, has cyclic subgroups of orders
ny = (¢*> —1)/ged(q + 1,3), ny = (¢* —q+ 1)/ged(qg + 1,3) and nz =
p(g+1)/ged(q +1,3).

So, if the power graph is a cograph, then both (¢ — 1)/ ged(q + 1, 3) and
(¢+1)/ged(q + 1,3) are primes, or else both are powers of the same prime.

In the second case, the prime must be 2, and since one of ¢ — 1 and ¢+ 1
is not divisible by 4, we must have (¢ — 1,q+ 1) = (2,4) or (4,6), so ¢ = 3
or .

Now for ¢ = 3 we have ng = 12, so power graph of PSU(3,3) is not a
cograph. On the other hand PSU(3,5) contains A;. Therefore power graph
of PSU(3,q) is not a cograph. ]

Theorem 5.3. Let g > 4 be a power of 2. Then the power graph of PSU (3, q)
1s not a cograph.

Proof. Let 8 be a generator of the multiplicative group of GF(¢?). Then
B9 has order ¢ + 1. Let p be a prime factor of ¢ + 1 greater than 3, and
let d = (¢ +1)/p. Then o = U1 has order p. Then @ = %¢° -9 so
aa = AU~ = 1 in GF(¢?). Consider the elements

010
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a 0
0 0
0 0 ot

0
k=11

Then ¢ is a element of order 2 and it commutes with h. So o(gh) = o(hk) =
2p. On the other hand k? = h.

Therefore the elements the elements g, gh, h, k induce a path of length 3
in SU(2, q).

Now observe that g, h,k € SU(3,q) \ Z. Take v = gZ and n = hZ,
k = kZ. Then the elements v, yn, n, k induce a path of length 3 in the power
graph of PSU(3, ¢q).

The argument fails for ¢ = 8. But we saw earlier that PSL(3,8) is not a
power-cograph group, using the 4-6 test. O

Theorem 5.4. Let G = 2By(q) = Sz(q), ¢ = 2***'. Then G € C if and only
if each of q — 1, g+ /29 +1 and q — \/2q + 1 is either a prime power or the
product of two distinct primes.

Proof. Any edge of the power graph is contained in a maximal cyclic sub-
group. The maximal cyclic subgroups of Sz(q) have orders 4, g—1, g++/2q+1
and g—+/2¢+1. These four numbers are pairwise coprime. (The last three are
odd. The difference between the third and fourth is a power of 2, but 2 does
not divide either. Suppose that p is a prime dividing both ¢ — 1 = 22¢*1 — 1
and ¢+ +/2q+ 1 = 22¢F1 4 2¢+1 + 1. Then p divides their difference, 21 + 2;
since it is odd, it divides 2°+1, and hence it divides 22¢—1, and also 22¢*1 —2.
This p divides 1. The argument for ¢ — 1 and g — v/2¢ + 1 is similar.) Thus
no element can lie in maximal cyclic subgroups of different orders. So, if the
power graph contains Py, then this P, must be contained in a maximal cyclic
subgroup, so this subgroup must have three prime divisors, not all equal.
The converse is clear. O]

Now let G' = 2G4(q) = Ri(q), ¢ = 3?“T!. The centraliser of an involution
in G is Cy x PSL(2, ¢), which contains subgroups Cy x Cg11y/2. So, if G € C,
then (¢ 4 1)/2 is either prime or a power of 2. If it is a power of 2, then we
have a solution to Catalan’s equation, contradicting the result of Mihailescu’s
Theorem: see [13, Section 6.11]. The numbers (¢4 1)/2 have opposite parity,
so cannot both be prime. So G is not a power-cograph group.
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5.2 Simple groups of Lie type of rank 2

The rank 2 simple groups of Lie type are As(q) = PSL(3,q), Ca(q) =
PSp(4,q), *As(q) = PSU(4, q), *Aa(q) = PSU(5, q), G2(q), *Fi(q) and * D4(q).
We examine each of the above cases. In the case of Ay(q), we prove a slightly
stronger result, for later use.

Theorem 5.5. Let G be a quotient of SL(3,q) by a subgroup of the group of
scalars. If G is a power-cograph group, then ¢ = 2 or q = 4.

Proof. We work in SL(3,q). Suppose that ¢ is odd. Consider the elements

0 -1 0 0 -1 0
g=11 0 0 h=1_1 1 0
0 0 1 0 0 1

It is easily checked that

o _,3_ (—12 O
g_h_<0 1

So (k% h,h® = g2, g) is an induced path of length 3 in the power graph.

Now observe that neither g nor h contains any non-identity scalar ma-
trix. So these elements project onto elements with the same property in the
quotient when a group of scalars is factored out.

Now we consider ¢ to be a power of 2, with ¢ > 4. If ¢ is an odd power of
2, then ¢ — 1 is not divisible by 3, while if ¢ is an even power of 2, then ¢ — 1
cannot be a power of 3 (according to the solution of Catalan’s equation) and
so must have a larger prime divisor.

Let o be an element of the multiplicative group of GF(q) of prime order
p greater than 3. Consider the elements

110 a 0 0
g=10 11 k=10 a2 0
001 0 0 «

It is routine to check that



an element of order 2; and that ¢® commutes with k, so that ¢g?k has order
2p, and (g*k)? = g*.

Putting h = g%k, we have h? = g2, so the elements g, g*> = h?, h, h? induce
a path of length 3.

No power of any of these elements except the identity is a scalar. (For
this we need p > 3, since if p = 3 then a™2 = a.) So factoring out a group
of scalars we get elements with the same properties.

Finally we note that PSL(3,2) and PSL(3,4) are power-cographs (their
Gruenberg—Kegel graphs are null). However, PSL(3,2) = PSL(2,7), so this
group does not need to be included in the statement of the theorem. O]

Theorem 5.6. Let G = PSp(4,q). Then P(G) is not a cograph.

Proof. A 4-dimensional symplectic space is the direct sum of two 2-dimensional
symplectic spaces; and the 2-dimensional symplectic group is the special lin-
ear group. So G = PSp(4, q) contains a subgroup which is the direct product
of two copies of PSL(2, q) if ¢ is even, or the central product of two copies of
SL(2, q) if ¢ is odd.

Thus G contains the direct product of cyclic groups of orders ¢ +1 if ¢ is
even, and a quotient of this by a subgroup of order 2 if ¢ is odd.

For g even, ¢ — 1 and ¢+ 1 are coprime, so P(G) is a cograph only if both
are primes; since one is divisible by 3, this requires ¢ = 2 or ¢ = 4.

For g odd, one of (¢—1)/2 and (g+1)/2 is even, so the order of the cyclic
subgroup is divisible by 4 and (if ¢ > 3) by at least one further prime. So
P(G) is a cograph only if ¢ = 3.

Now PSp(4,2) = Sg is not simple; PSp(4, 3) contains elements of order 12;
and PSp(4,4) is ruled out by the 4-6 test. ]

Theorem 5.7. The power graph of Ga(q) is not a cograph.

Proof. The group Gs(q) contains both SL(3,¢) and SU(3,¢) [15, 21]. Now
SL(3,q) = PSL(3,¢q) if ¢ Z 1 (mod 3), while SU(3,q) = PSL(3,q) if ¢ # —1
(mod 3). So, for any ¢, G2(q) contains either PSL(3,q) or PSU(3,¢). Now
the former is in C only for ¢ = 2 or ¢ = 4, and the latter is never in C
except for ¢ = 2 (this group is not simple). So the only case needing further
consideration is ¢ = 2; but G(2) is not simple, and is not in C (it contains
PSU(3,3) as a subgroup of index 2). O

Below we give arguments for rest of the simple groups of Lie type of rank
2. We find that in each of the following cases the power graph is not a
cograph.
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Let G = 2A3(q) = PSU(4,q). This group contains PSp(4, q), so we
only need consider ¢ = 2. But PSU(4,2) = PSp(4, 3).

The group G = 2A4(q) = PSU(5, q) contains PSU(4,q). So G ¢ C.

The group 2F;(2¢) contains 2 F(2) for all odd d (Malle [23]), and 2F(2)
is ruled out by the 4-6 test.

The group G = 3D,(q) contains G(q) (see Kleidman [20]).

5.3 Higher rank

Let G be a simple group of Lie type of higher rank. We show that P(G) is
not a cograph.

Since the Dynkin diagram of G contains a single bond in all cases, G
has a subgroup of a Levi factor which is a quotient of SL(3,¢) by a group
of scalars. The results of the preceding section give the desired conclusion if
0 ¢ (2.4},

It remains to deal with groups over the fields of 2 or 4 elements.

Now PSL(4,2) = Ag, so its power graph is not a cograph, while PSp(6, 2)
is excluded by the 4-6 test. Moreover, PSL(4,4) contains PSL(4,2), and
PSp(6,4) contains PSp(6,2) (by restricting scalars). The orthogonal and
unitary groups of Lie rank 3 all contain PSp(4,q) for ¢ = 2 or ¢ = 4. So
P(G) is not a cograph.

5.4 Sporadic simple groups

Now we prove that there exist no sporadic simple group whose power graph
is cograph. Recall that there are 26 sporadic simple groups [14], namely,
the five Mathieu groups (Myy, Mia, May, Moz and May), four Janko groups
(J1, Jo, J3 and Jy), three Conway groups (Coy, C'oy and Cos), three Fischer
groups (Fligg, Fligz and Figg), Higman—Sims group (HS), the McLaughlin
group (M°L), the Held group He, the Rudvalis group (Ru), the Suzuki group
(Suz), the O’Nan group (O'N), the Harada—Norton group HN, the Lyons
group (Ly), the Thompson group (T'h) the Baby Monster group (B )and the
Monster group (M). Amongst these 26 groups the the Mathieu group My,
is of smallest order (|M;;]| = 7920 =2*-3%.5-11).

Observation 5.8. We observed, using information in the ATLAS of Finite
Groups [14], that Mj; is not a power-cograph group, by the 4-6 test; it
contains elements a, b of orders 4 and 6 respectively with a? = b?.
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Theorem 5.9. Let G be a sporadic simple group. Then P(G) is not a co-
graph.

Proof. Observation 5.8 shows that the power graph of the Mathieu group
M is not a cograph. Now the Mathieu group Mj; is a subgroup of all the
other sporadic simple groups except Ji, Mas, Jo, J3, He, Ru and Th. So the
power graphs of these groups are also not cographs.

For the other seven groups we look for subgroups which are not power-
cograph groups. We observe that J; contains D3 x Dj, My contains Az,
Jo contains Ay X As, J3 contains C3 x Ag, He contains S7, Ru contains Ag
and Th contains PSL(2,19) : Cy. By Theorems 2.1, 4.2 and 5.1, the power
graphs of these subgroups are not cographs. Hence the power graphs of the
original groups are not cographs. O]
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