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ABSTRACT

Galaxy Zoo: Clump Scout is a web-based citizen science project designed to identify and spatially locate giant star
forming clumps in galaxies that were imaged by the Sloan Digital Sky Survey Legacy Survey. We present a statistically

driven software framework that is designed to aggregate two-dimensional annotations of clump locations provided
by multiple independent Galaxy Zoo: Clump Scout volunteers and generate a consensus label that identifies the
locations of probable clumps within each galaxy. The statistical model our framework is based on allows us to assign

false-positive probabilities to each of the clumps we identify, to estimate the skill levels of each of the volunteers
who contribute to Galaxy Zoo: Clump Scout and also to quantitatively assess the reliability of the consensus labels
that are derived for each subject. We apply our framework to a dataset containing 3,561,454 two-dimensional points,

which constitute 1,739,259 annotations of 85,286 distinct subjects provided by 20,999 volunteers. Using this dataset,
we identify 128,100 potential clumps distributed among 44,126 galaxies. This dataset can be used to study the
prevalence and demographics of giant star forming clumps in low-redshift galaxies. The code for our aggregation
software framework is publicly available at: https://github.com/ou-astrophysics/BoxAggregator §

Key words: galaxies: structure – methods: data analysis – methods: statistical – software: data analysis – software:

public release

1 INTRODUCTION

One of the main goals for modern observational cosmology is
to discover and understand how galaxies and their constituent
substructures have assembled and evolved throughout cosmic
history.

During the last two decades, a large number of observa-
tional data have been assembled, which show strong evidence
for a substantial evolution in the dominant mode of star for-
mation in galaxies between z ∼ 3 and z ∼ 0.2 (e.g. Madau &
Dickinson 2014; Murata et al. 2014; Guo et al. 2015; Shibuya
et al. 2016; Guo et al. 2018).

Early observations using the Hubble Space Telescope
(HST) revealed that typical massive galaxies (M & 1010M�),
populating the z ∼ 2 star forming main sequence (Noeske
et al. 2007), exhibit thick, gas-rich, clumpy disks with star
formation rates Ṁ? ∼ 100 M� yr−1 (e.g. Genzel et al. 2011;
Elmegreen et al. 2004b,a). Many of these z ∼ 2 galaxies were
found to exhibit discrete, sub-galactic regions of enhanced

star formation (hereafter referred to as “clumps”) with appar-
ent radii . 1 kpc and stellar massesM? & 107 M� (Elmegreen
2007). More recent evidence suggests that these clumps may
in fact be aggregations of smaller substructures that could
not be resolved by HST (e.g. Wuyts et al. 2014; Fisher et al.
2017; Dessauges-Zavadsky & Adamo 2018), but this remains
to be confirmed. The prevalence of giant star-forming clumps
at high redshift and the overall characteristics of their host
galaxies are in stark contrast with the thin, uniform and gen-
erally quiescent (Ṁ? ∼ 1yr−1) disk morphologies that pre-
vail among star-forming galaxies in the local Universe (e.g.
Simard et al. 2011; Willett et al. 2013a).

The mechanisms that drove this evolution of star forma-
tion activity, their onset epochs and the timescales over which
they operated, remain to be fully established. If they can
be accurately determined, the abundances of clumps within
galaxies at different redshifts, together with their spatial dis-
tributions and intrinsic properties, provide obvious diagnos-
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2 Dickinson et al.

tics for the transition from clumpy to more diffuse star for-
mation. Historically, the most extensive surveys of clumpy
star formation have relied on HST imaging and focused on
intermediate and high redshift galaxies (e.g. Murata et al.
2014; Guo et al. 2015; Guo et al. 2018). A common conclu-
sion of these studies is that the overall fraction of massive
(M? & 109.5 M�), clumpy star forming galaxies decreases
rapidly for z . 2 and falls below ∼ 5% by z ∼ 0.2.

The scarcity of clumpy galaxies in the local Universe makes
the task of identifying them in large numbers much more chal-
lenging and related studies at low redshift have entailed fo-
cused investigations of small samples containing ∼ 50 galax-
ies, or fewer (See, however Mehta et al. 2021). Identifying
enough low-redshift clumpy galaxies to enable accurate in-
ference of their overall population demographics and charac-
teristics requires wide-field imaging surveys that encompass
a large fraction of the sky and a reliable method for discov-
ering candidate systems. In recent years, extensive ground-
based surveys like the Sloan Digital Sky Survey Legacy Sur-
vey (SDSS; York et al. 2000) and the Dark Energy Camera
Legacy Survey (DECaLS; Dey et al. 2019) have delivered
publicly available wide field imaging data that make system-
atic searches for large numbers of low-redshift clumpy galax-
ies possible. Galaxy Zoo: Clump Scout (Adams et al. 2022)
is a citizen science project that used SDSS imaging data and
was designed to let volunteers from the general public iden-
tify clumpy galaxies and the clumps they contain. Multiple
volunteers inspect images of galaxies and provide two dimen-
sional annotations marking the locations of any clumps the
galaxies contain.

One of the most challenging aspects of collecting data us-
ing a citizen science approach is calibrating the reliability of
the responses that volunteers provide. Translating astrophys-
ical analyses into a citizen science context can be difficult
because the subject matter and related concepts are often
not familiar to non-experts. This unfamiliarity can result in
annotations that are noisy, with large variations between the
responses of different volunteers. The traditional approach for
mitigating such noise is to collect a large number of indepen-
dent annotations and derive an average result representing
the overall consensus between volunteers. This has two obvi-
ous disadvantages: firstly, volunteer effort may be wasted if
more responses are accumulated than are actually required to
mitigate the variation between responses and secondly, even
after a large number of responses have been collected, there
is no formal guarantee that the consensus is accurate or suf-
ficiently precise.

To address these issues, more quantitative approaches have
been developed that attempt to infer statistical estimates for
the reliability of consensus derived from citizen science an-
notations and classifications. For example, Marshall et al.
(2016) developed the Space Warps Analysis Pipeline (SWAP)
which used a binomial model for a simple true-or-false re-
sponse to derive a Bayesian estimate for the probability that
astrophysical images included signatures of strong gravita-
tional lensing. The SWAP algorithm was also used by Wright
et al. (2017) to accelerate consensus for citizen-science classi-
fication of potential supernova flashes and assign false-alarm
probabilities to candidate events. Later, Beck et al. (2018)
showed that applying SWAP to galaxy morphology labels
collected via the Galaxy Zoo platform (Lintott et al. 2008;
Willett et al. 2013b) increased the rate of classification by

500% and reduced the volunteer effort that was required by
a factor of ∼ 6.5, relative to the Galaxy Zoo standard require-
ment for 40 volunteers to inspect each galaxy.

In this paper we build on the principle of SWAP and de-
velop an aggregation approach to derive quantitative esti-
mates for the reliability of two dimensional labels of clump
locations within galaxies based on annotations provided by
Galaxy Zoo: Clump Scout volunteers. Like SWAP, we rely on
a statistical model to derive probabilistic estimates for several
quantities that determine the reliability of a label that repre-
sents the consensus of multiple independent annotations. Two
dimensional annotations are more complex than the simple
binary classification tasks that SWAP was designed to pro-
cess and our statistical model is necessarily also more com-
plicated. We base our approach on an method that was ini-
tially presented by Branson et al. (2017) (Hereafter BVP17),
who tested their algorithm on small and relatively noise-free
annotation datasets that contained a few thousand annota-
tions and were collected from paid workers on the Amazon
Mechanical Turk platform1. We have developed a new imple-
mentation of this algorithm that is computationally efficient
enough to process millions of independent annotations pro-
vided for tens of thousands of images by the Galaxy Zoo:
Clump Scout volunteers. Our goal is to find out whether this
algorithm can be used successfully to derive complicated two-
dimensional labels with quantitative reliability estimates in
a mass-participation citizen-science context using noisy an-
notations provided by a cohort of non-expert volunteers. We
also aim to determine whether the reliability estimates we de-
rive can be used to accelerate the labeling process and reduce
the amount of volunteer effort that is required to accurately
label the clumps in each galaxy.

The remainder of this paper is organised as follows: In sec-
tion 2 we describe how the imaging data presented to volun-
teers in Galaxy Zoo: Clump Scout were selected and prepared.
In section 3 we outline the annotation workflow that volun-
teers used to annotate the images and the training they re-
ceived. In section 4 we provide details of the statistical model
that underpins our aggregation algorithm. In section 5, we
explain how our algorithm actually computes the labels it
derives. In section 6, we present the results of applying our
algorithm to the Galaxy Zoo: Clump Scout data and anal-
yse the quantitative reliability metrics that are generated.
In section 7 we discuss the implications of these results in
the context of the goals outlined above and the suitability of
citizen science as a method for complex astrophysical image
analysis. Finally, in section 8, we summarise our findings and
conclude.

2 DATA

In this section we briefly describe the the galaxy selection cri-
teria and the image preparation pipeline used for Galaxy Zoo:
Clump Scout . A much more detailed description is provided
by Adams et al. (2022).

1 https://www.mturk.com
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Galaxy Zoo: Clump Scout - a two-dimensional aggregation tool for citizen science 3

2.1 Galaxy Image Selection

The galaxy images used in Galaxy Zoo: Clump Scout com-
prise three subsets of the sample that was visually inspected
and morphologically classified by volunteers contributing to
the Galaxy Zoo 2 (GZ2) citizen science project (Willett et al.
2013a). The criteria that were used to select these subsets are
described in detail in Adams et al. (2022). For convenience,
this section summarises the most relevant properties of the
galaxies that were inspected by the Galaxy Zoo: Clump Scout
volunteers.

A primary sample of 53,613 galaxies with 0.02 ≤ z ≤ 0.25
was selected based on the morphological labels provided by
GZ2 volunteers. We anticipated that the presence of obvious
star-forming clumps in images of smooth elliptical galaxies
was very unlikely so for this primary sample, we limited our
selection to galaxies for which more than 50% of volunteers
responded negatively2 to the question “Is the galaxy simply
smooth and rounded, with no sign of a disk?”.

To estimate the number of clumpy galaxies that were ob-
served by SDSS but which were excluded from our primary
sample, we also include a smaller, secondary sample. This
sample contains 4,937 galaxies for which fewer than 50% of
GZ2 volunteers identified features or a disk and was selected
within a more restricted redshift range 0.02 ≤ z ≤ 0.075.

Finally, Galaxy Zoo: Clump Scout volunteers also anno-
tated a sample of 26,736 galaxies matching the selection cri-
teria used for the primary sample, but which had simulated
emission from clumps with known photometric and physical
properties superimposed (see Adams et al. 2022, for details
of the simulation procedure). Annotations of these simulated
clumps were used by Adams et al. (2022) to derive an esti-
mate of the Galaxy Zoo: Clump Scout sample completeness
for clumps with specified photometric properties.

Stellar mass estimates for galaxies in all three samples were
taken from the SDSS DR7 MPA-JHU value-added catalog
(Kauffmann et al. 2003; Brinchmann et al. 2004). All three
samples include galaxies with stellar masses 108.5M� .M? .
1012M�.

2.2 Galaxy Image Preparation

For each of our selected galaxies we extract square cutouts
from SDSS g, r and i band FITS (Pence et al. 2010) im-
ages that are normally 6 times larger than the galaxy’s mea-
sured 90% r -band Petrosian radius, but have a minimum side
length of 40 pixels3. Experience from previous iterations of
the Galaxy Zoo projects, including GZ2, has shown that siz-
ing cutouts relative to the host galaxy radius in this way
provides sufficient angular resolution for volunteers to dis-
cern morphological features, while including enough of the
surrounding context to help distinguish those features from
instrumental noise and background objects. We then resam-
ple these single band images onto a common pixel grid with
SDSS native resolution (0.396′′/pixel) before combining them
(without PSF-matching) into a three-channel colour compos-
ite. We assign the g, r and i bands to the red, blue and green

2 A negative response corresponds to selecting the answer “Fea-
tures or disk.”
3 This minimum size criterion is designed to handle galaxies that

have very small, incorrectly measured Petrosian radii.

channels respectively and scale each band independently us-
ing the formula presented in Lupton et al. (2004). For an
input pixel intensity Ix in band x the scaled intensity I ′x is
computed using

I ′x =
1

Q
asinh

Q ·
(
Ix
βx
−m

)
α

 (1)

We specify that {Q,α,m} = {7, 0.2, 0} for all bands and
that {βg, βr, βi} = {0.7, 1.17, 1.818}. Finally, we re-scale each
colour image so that its height and width are both 400 pix-
els. Note that this means the angular size of the cutout image
pixels varies between 0.1′′ pix−1 and ∼ 18′′ pix−1 for different
subjects depending on the angular size of the central galaxy.
The number of SDSS native image pixels spanned by the
SDSS imaging PSF FWHM varies between 1.5 and 7.5, with
a median value ∼ 2.8, for 99% of the unscaled cutout images.
The remaining of subjects 1% populate a tail out to ∼ 18 pix-
els. In the final scaled cutouts the number of pixels spanned
by the PSF FWHM varies between ∼ 1 and ∼ 70 with a me-
dian value of ∼ 11. Examples of the images generated using
this procedure are shown in figures 6, 18, D2 and D3

3 COLLECTING ANNOTATIONS

To identify the locations of clumps within their host galaxies,
we designed a web-based citizen science project using the
Zooniverse project builder interface4.

3.1 Volunteer Training

For non-expert volunteers, identifying genuine clumps among
the potentially complex features of their host galaxies can be
daunting. To improve volunteers’ confidence and help them
to provide accurate annotations we provided several pedagog-
ical and training resources. Following the approach of other
Zooniverse projects, we designed a detailed practical tutorial
explaining each step of the annotation workflow. This tu-
torial was automatically presented to volunteers when they
joined the project and remained available for reference there-
after. Additional reference images and explanatory text were
provided using the Field Guide feature of the Zooniverse in-
terface. A separate About section of the project provided ped-
agogical material explaining the scientific motivation of the
project. Finally, to guide the progress of first-time volunteers,
we provided expert labels for a small subset of our galaxy
images. Ten such images were interspersed with decreasing
frequency among the first ∼ 20 subjects that each volun-
teer inspected. We implemented a system to provide real-time
feedback for volunteer annotations of expert-labeled galaxy
images and inform them if they missed genuine clumps or
mistakenly annotated an object that experts had disregarded.
This feedback system was designed to refine volunteers expec-
tations regarding the visual appearance of genuine clumps
during the early stages of their engagement with the project.

4 www.zooniverse.org/lab
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3.2 The annotation workflow

Volunteers following the Galaxy Zoo: Clump Scout workflow
inspect a sequence of single subject galaxy images (hereafter
“subjects”) that are randomly drawn from a global subject
set. The subject selection ensures that no volunteer inspects
the same image more than once and each subject is inspected
by a group of approximately 20 volunteers. Each volunteer
first annotates the two-dimensional location of the central
bulge of the central galaxy in the image if it is visible, be-
fore proceeding to annotate the locations of any clumps they
can discern. To mitigate against the possibility that volun-
teers would disregard genuine clumps with appearances that
confound their expectations, we provided an opportunity to
mark clumps as “unusual”. We investigate the impact of in-
cluding or discarding this unusual clump subset in section 6.

The full Galaxy Zoo: Clump Scout dataset contains
3,561,454 click locations, which constitute 1,739,259 anno-
tations of 85,286 distinct subjects provided by 20,999 volun-
teers.

3.3 Initial annotation processing

We expect that even the largest individual clumps will be at
best marginally resolved for the lowest redshift galaxies in our
data sample. This implies that almost all clumps will appear
as point-sources with a light profile equal to the instrumental
point-spread function (PSF). Our data preparation procedure
(subsection 2.2) results in subject images that have different
pixel sampling of the PSF depending on the angular size of
the central host galaxy. To account for this fact, we transform
the two-dimensional point estimates for clump locations that
volunteers provide into square boxes with side-length equal
to twice the full width at half maximum (FWHM) of the
pertinent subject’s PSF. Assigning a finite, instrumentally
motivated clump extension allows us to identify groups of
volunteer clicks with separations that are smaller than the
PSF. A prior assumption of our data aggregation approach
that it is impossible for a single volunteer to mark separate
clumps within the same subject that are closer than twice the
PSF FWHM5. It is likely that any such multiplets that volun-
teers do provide represent noise peaks in contrast-enhanced
subject images or are simply accidents. In section 4, we de-
scribe how our aggregation algorithm effectively deduplicates
multiple nearby annotations by individual volunteers.

3.4 A scale-free distance metric

Using square boxes to define the marked clump locations al-
lows us to inexpensively compute the ratio of the area of the
intersection between pairs of boxes and the area of their union
(see Figure 1). We use the complement of this ratio, which is
commonly referred to as the Jaccard distance (Jaccard 1912),
as a scale-free distance metric between any volunteer-marked
locations.

d = 1− Aintersection

Aunion
(2)

5 Even if volunteers are able to submit such nearby marks, our

algorithm is designed to only recognise one of them. The choice of
which nearby clicks to discard depends on the clicks provided by

other volunteers.

Figure 1. Geometric illustration of the ratio between the area of

the intersection between two boxes (dotted region) and the area of

their union (dashed region). We use the complement of this ratio
as a scale-free distance metric bounded between zero and unity.

The Jaccard distance is maximally unity if the boxes are dis-
joint and minimally zero if they coincide perfectly.

4 DATA AGGREGATION MODEL

The core of our data aggregation approach is based on a cus-
tom implementation of the probabilistic model and algorithm
proposed by BVP17. In this section, we present a detailed
description of the model and explain how it is used to opti-
mise the efficiency of clump detection using the volunteers’
annotations. We recognise that this paper contains a lot of
somewhat complicated notation, so to aid the reader we have
included a reference table of the most commonly recurring
symbols in Appendix B.

4.1 Overview

We construct a global model that simultaneously considers
NS individual elements of the full subject set S ≡ {si}NS

i=1

and individual members of the entire volunteer cohort V .
Each subject si ∈ S, is inspected by a randomly selected
group of volunteers Vi ∈ V , who each provide a set of in-
dependent two dimensional annotations of visible clump lo-
cations Zi ≡ {zij}|Vi|j=1. Throughout this paper we will use
the notation |X| to denote the number of elements in the
set X, so here |Vi| denotes the number of volunteers who an-
notate the subject si. For convenience, we define Sj ∈ S to
denote the subset of subjects that are inspected by the jth
volunteer. For every subject si, we define a true label yi to
encode the unknown locations of all real clumps in the image.
Using only the information provided by the global set of vol-
unteer annotations Z ≡

⋃
i Zi, we wish to derive a separate

estimated label ŷi for each subject that closely approximates
yi. Our goal is to minimise the mismatch between ŷi and
yi while keeping the number of volunteers who annotate the
subject si as small as possible and thereby to optimise our
use of volunteers’ effort. We facilitate this aim by computing
a “risk” metricRi for each subject that represents a weighted
combination of quantitative magnitude estimates for several
sources of approximation error in the estimated label (see
subsection 5.7 for more details). We expect that the risk for
a particular subject will decrease as the number of volunteer
annotations for that subject increases. Accordingly, by choos-
ing an appropriate global risk threshold Ri < τ , we aim to be
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Galaxy Zoo: Clump Scout - a two-dimensional aggregation tool for citizen science 5

able to confidently retire individual subjects from the classifi-
cation pool as soon as the expected error is acceptably small.
This approach differs from many traditional crowd-sourcing
techniques, which require a fixed number of volunteers to
inspect each subject. Such approaches are generally less ef-
ficient because stable consensus between volunteers is often
achieved before the prescribed number of annotations have
been gathered. An additional benefit of our approach is that
particularly difficult subjects can be segregated for expert in-
spection if their risk remains high after many volunteers have
inspected the subject.

4.2 Associating subject annotations with subject
labels

Each of the volunteer annotations zij ∈ Zi forms a set of

|Bij | ≥ 0 square boxes zij = {bkij}
|Bij |
k=1 that encodes the loca-

tions of any clumps that the volunteer perceived in the sub-
ject si. Analogously, we model the true clump locations for
si as an abstract set of |Bi| ≥ 0 rectangular boxes such that

yi ≡ {bli}
|Bi|
l=1 . The concrete sizes and shapes of these boxes

are ultimately determined by our aggregation algorithm, but
for subject si they are guaranteed to be at least as large
as the boxes comprising the volunteer annotations for that
subject. Our goal is to associate each of the click locations
corresponding to volunteer annotations for a particular sub-
ject with a single true clump location. Formally, we aim to
associate each of the concrete elements of Zi with a single
abstract element of yi. This task is complicated for several
reasons. Different volunteers may annotate different subsets
of clumps and the order in which they do so is not defined nor
even constrained. Volunteers may miss some real clumps, so
there may be elements of yi that have no counterpart anno-
tations in a particular zij . Conversely, the set of annotations
provided by a particular volunteer, for a particular subject
may contain false positives, so some elements of a particular
zij may not correspond with any elements of yi.

Figure 2 provides a schematic illustration of the process
by which we associate volunteer annotations with probable
clump locations and subsection 5.3 explains the notation and
the computational details. Formally, our aggregation algo-

rithm computes an optimal set of mapping indices {akij}
|Bij |
k=1

such that each volunteer-provided box bkij ∈ zij is associated

with real clump location b
akij
i ∈ yi. The possibility of false

positive boxes in zij is accounted for by defining a singleton
“∅” element to which they can be associated.

4.3 Modelling volunteer skill

For a given subject, the visibility of clumps to a particu-
lar volunteer, and the positional accuracy with which they
are able annotate the clumps they do perceive is likely to
be influenced by several factors. These may include: domain
expertise, experience gained from time spent contributing to
Galaxy Zoo: Clump Scout, confusion regarding the detailed
task instructions and even the screen size and resolution of
device they typically use to provide annotations.

To model the impact of these factors we consider three
scenarios, which relate a particular volunteer’s annotations
to the locations of real clumps in the subject image. Consider
the annotations provided by the jth volunteer in our cohort.

In the first scenario, volunteer j provides a true positive by
marking a location that lies close to a real clump. It is unlikely
that any volunteer’s mark precisely annotates the true clump
location and indeed, different volunteers may have different
perceptions of where the clump actually is. We model any
positional offset between the volunteer j’s annotation and
the true clump location as a random Jaccard distance dj ,
drawn from a Gaussian distribution with zero mean and a
volunteer-specific variance σ2

j .

dj ∼ Gaussian
(
0, σ2

j

)
(3)

In the second scenario, the volunteer provides a false posi-
tive by marking a location which does not correspond to the
location of a real clump. We model the rate of false positive
annotations for volunteer j by considering each mark they
provide as a Bernoulli trial with “success” probability pfpj .

Finally, volunteer j may provide an implicit false negative
by failing to mark the location of a real clump. We model
the false negative rate for volunteer j by considering each
opportunity to mark a real clump location as a Bernoulli
trial with “success” probability pfnj .

Hereafter, we refer collectively to the three model param-
eters Sj ≡ {σj , pfpj , p

fn
j } as volunteer j’s “skill” parameters.

4.4 Modelling subject difficulty

Notwithstanding the skill of individual volunteers, there are
numerous image characteristics that may result in varying
degrees of clump visibility at different locations for different
subjects in S. An obvious example is clump contrast; bright
clumps that appear superimposed on a smooth, faint back-
ground galaxy will be easier to discern than faint clumps on
a bright, noisy background. For simplicity, we assume that
the impact of all such confounding factors manifests as a po-
sitional offset between the true location of a clump and any
volunteer annotations that identify it. For a particular true
clump location bli ∈ yi, we model the size of this offset as a
random Jaccard distance di,l drawn from a Gaussian distri-

bution with zero mean and variance σli
2
.

di,l ∼ Gaussian
(

0, σli
2
)

(4)

Hereafter, we refer to the set Di ≡ {σli} as the subject “dif-
ficulty”.

4.5 Modelling volunteer annotations

We combine our volunteer skill and image difficulty models
to define a compound model for the annotation zij that each
volunteer provides for a each subject si.

p(zij |yi,Di,Sj) = (pfnj )nfn(1− pfnj )ntp

· (pfpj )nfp(1− pfpj )ntp

·
|Bij |∏
k=1,

l=akij 6=∅

Gaussian
(
|dkl|2;σkij

2
) (5)

The first and second terms represent binomial models, which
compute the probability that zij contains nfn false negatives,
nfp false positives and ntp = |Bij | − nfp true positives, given
pfpj and pfnj .
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6 Dickinson et al.

Figure 2. Schematic illustration of how elements of volunteers’ annotations are associated with elements of the subject label yi. We
illustrate a case in which three volunteers have provided three independent annotations of the same subject. Volunteers 1 and 2 both

annotate subsets of the real clumps in the image. Volunteer 3 mistakenly marks two foreground stars as clumps. The central column lists

the value of {akij} computed for each of the boxes forming the volunteers’ annotations. For volunteers 1 and 2, these values define the
index of the corresponding box in yi. Both annotations provided by volunteer 3 probably mark foreground stars and neither is marked by

another volunteer. In this toy example, the algorithm maps both to the “∅” element, thereby defining them as false positives.

The third term considers the Jaccard distances dkl between
any true positive (i.e. akij 6= ∅) box bkij ∈ zij and their coun-
terparts bli ∈ yi as well as the subject’s difficulty Di and the
volunteer’s skill Sj .

We combine the Gaussian components of the volunteer skill
and image difficulty models by computing a combined vari-
ance parameter

σkij
2

= (1− η) · σa
k
ij

i

2

+ η · σj2 (6)

where η weights the relative impact of volunteer skill and
image difficulty according to the p-values computed by their
respective probability models. Formally, we model η as the
expected value of a binary indicator variable, e

e =

{
1 if volunteer skill dominates dkl

0 if image difficulty dominates dkl
(7)

We assume that both sources of variance are equally likely to
dominate for any particular volunteer annotation (i.e. P (e =
1) = P (e = 0)), which implies (e.g. Ivezić et al. 2019)

η = E(e) =

1∑
e=0

eP (dkl|e)

1∑
e=0

P (dkl|e)
=

pj
pi + pj

(8)

where

pj = P (dkl|e = 1) = Gaussian
(
|dkl|2 ;σj

2)
pi = P (dkl|e = 0) = Gaussian

(
|dkl|2 ;σli

2
)

4.6 Global model and parameter priors

Our combined model for a single volunteer annotation of a
single subject (i.e. p(zij |yi,Di,Sj), Equation 5) forms the
kernel of a joint model for the set of all subject true labels
Y ≡ {yi}|S|i=1, the set of all subject difficulties D ≡ {Di}|S|i=1

and the set of all volunteer skills S ≡ {Sj}|V |j=1 given the union
of all volunteer annotations, which we denote Z.

P (Y,D,S|Z) =
∏
i

π(yi)π(Di)

·
∏
j

π(Sj)p(zij |yi,Di,Sj)
(9)

The additional terms in Equation 9 represent prior distribu-
tions for the parameters of our model.

(i) π(Di) models the prior probabilities of observing the
difficulty parameters associated with the ith subject.

(ii) π(Sj) models the prior probability of observing the
volunteer skill parameters associated with the jth volunteer.

(iii) π(yj) models the prior probability that the unknown
true label for si is yi. For simplicity, we assume that all pos-
sible labels are equally likely.
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Galaxy Zoo: Clump Scout - a two-dimensional aggregation tool for citizen science 7

Table 1. Framework hyper-parameter values used to process the

Galaxy Zoo: Clump Scout dataset.

Parameter Value

pfp0 0.1

pfp0 0.1

nfp
β 500

nfn
β 50

σ2
0,S 0.1

nχ,S 10
σ2
0,V 0.1

nχ,V 10
fV 0.1

dmax 0.9

For practical reasons, we choose prior distributions for each
parameter that are the conjugate priors6 of that parame-
ter for the corresponding likelihood model distribution. This
choice facilitates straightforward computation of model pa-
rameter updates when new annotations are collected.

Specifically, we use Beta distribution priors for the
binomial-distributed parameters {pfpj , p

fp
j }

π(pkj ) ∼ Beta(pkj ;nkβp
k
0 , n

k
β(1− pk0)) : k ∈ [fp, fn]. (10)

Intuitively, this prior simulates the information gained by
performing nβ Bernoulli trials with success probability pk0 .

For the parameters that are modeled as variances of Gaus-

sian likelihood models {σ2
j , σ

l
i
2}, we specify scaled inverse chi-

squared priors

π(σli
2
;nχ,S , σ

2
0,S) = Scale− inv−χ2(σ2;nχ,S , σ

2
0,S)

π(σ2
j ;nχ,V , σ

2
0,V ) = Scale− inv−χ2(σ2;nχ,V , σ

2
0,V )

(11)

which simulate the information gained from a sample of nχ
previous observations drawn from a Gaussian distribution
with zero mean and variance σ2

0 .
The initial values for parameters of our prior mod-

els {pfp0 , p
fp
0 , n

fp
β , n

fn
β , σ

2
0,S , nχ,S , σ

2
0,V , nχ,V } are hyper-

parameters of our algorithm which must be chosen a-priori.
Table 1 lists the values that we assign to each of these
hyper-parameters when processing the Galaxy Zoo: Clump
Scout dataset.

In Appendix A we provide detailed rationale for our choice
of prior distribution models and show how they yield esti-
mates for our likelihood model parameters that become in-
creasingly data-dominated as more annotations are collected.

5 COMPUTING AGGREGATED LABELS

Figure 3 provides a schematic overview of how our implemen-
tation computes aggregated labels for subjects. In subsequent
subsections we describe the illustrated operations in detail.

6 Specifying a conjugate prior π(θ) for parameter θ in Bayes’s
rule yields a posterior distribution p(θ|z) ∝ π(θ) · p(z|θ) that has

the same functional form as the prior itself. Note that in general
the conjugate prior depends on both the likelihood model and the

parameter of interest. For example, the variance and mean of a

Gaussian likelihood function have different conjugate priors.

5.1 The Working Batch

To minimise the dependence of aggregated clump locations on
our choice of model prior hyper-parameters we design our ag-
gregation framework to process elements from a dynamically
maintained working batch containing data and metadata for
. 25 thousand classifications.7 Each element in the working
batch represents a single click location marking a clump as
part of the annotation provided by a single volunteer.

To populate the working batch, we select subjects that have
been inspected by at least three volunteers and have at least
one annotated clump. For each selected subject, we assem-
ble all its available annotation data and append them to the
working batch in a single block of elements. This ensures
that any subject retirement decision is made on the basis of
all available information. We specify a minimum target batch
size and new blocks are added until the size of working batch
exceeds this target. If five or more volunteers inspect a sub-
ject and none annotate a clump, we assume that no clumps
are present and preemptively retire the subject instead of
adding its data to the working batch. Whenever a volunteer
inspects a subject that has at least one clump annotation,
but does not annotate any clumps themselves, we append
a single empty classification element to the working batch.
We require records of these empty classifications in order to
compute the probability that a particular volunteer fails to
annotate a real clump, i.e. pfnj .

After processing a single batch of classification data, the
most likely outcome is that only a subset of the correspond-
ing subjects will have Ri < τ (see subsection 4.1 and sub-
section 5.7) and be deemed sufficiently low-risk for retire-
ment. We update the working batch by removing the classi-
fication data for retired subjects and replenishing them with
new blocks of classification data for active subjects. Once a
subject is retired, the aggregated estimated label ŷi is con-
sidered final and any subsequently submitted classifications
for that subject will not be included in subsequent batches.

We impose a maximum lifetime for any data element by
specifying the maximum number of batch replenishment cy-
cles that they can persist within the working batch. Subjects
whose data remain after this lifetime has expired are retired
and flagged for inspection by experts. This forced retirement
strategy prevents the working batch becoming stale and dom-
inated by inherently difficult or high-risk subjects that never
retire normally.

5.2 Initialisation

Processing of each working batch begins with an initialisa-
tion phase. Adding new blocks of data to the working batch
implies introducing new subjects to our likelihood model. We
initialise the subject difficulty parameters of all new subjects
to the same value, which we specify as a hyper-parameter of
our aggregation framework.

σ2
i,init = σ2

S,0 ∀i (12)

7 Although our implementation does not explicitly limit batch
sizes, in practice we found that model data storage requirements

for batches containing & 25 thousand classifications exhausted the
32 GB memory capacity of our available hardware.
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Figure 3. Schematic overview of the aggregation algorithm.

The newly added data blocks may include annotations that
were provided by previously unknown volunteers. If so, we
initialise the skill parameters for all new volunteers identically
using three of the hyper-parameters that were introduced in
subsection 4.6.

pfpj,init = pfp0 ∀j (13)

pfnj,init = pfn0 ∀j (14)

σ2
j,init = σ2

V,0 ∀j (15)

A subset of elements in the working batch correspond with
subject blocks from earlier batches that did not retire. We re-
initialise the parameters for these subjects, and re-compute
the skill parameters of returning volunteers to reflect only
their annotations for subjects that have retired. This param-
eter propagation strategy allows us to use information that
we have learned about volunteers’ skills, while ensuring that
the subjects that persist between batches are processed iden-
tically to new subjects that happen to have received annota-
tions from returning volunteers. After initialising or propa-
gating the model parameters for all elements of the working
batch, we cache their values.

To complete the initialisation phase for each new work-
ing batch we use the algorithm described in subsection 5.3
to perform preliminary clustering of overlapping volunteer
annotations for each subject. The subsequent subsections ex-
plain how we apply iterative expectation maximisation to re-
fine the initial clusters, while simultaneously computing the
maximum likelihood solution of Equation 9.

5.3 Computing box associations

For each subject si ∈ S, we follow the approach of BVP17
and implement a Facility Location algorithm (Mahdian et al.
2001) to approximately8 derive the maximum likelihood map-

ping A = {akij}
|Bij |
k=1 between the click locations comprising

individual volunteers’ annotations zij = {bkij}
|Bij |
k=1 and the

set yi = {bli}
|Bi|
l=1 (see subsection 4.2 and Figure 2).

Facility location algorithms form clusters with a specific
topology comprising one or more cities, uniquely connected
to a single, central facility.9 This topology is illustrated in
Figure 4.

Our implementation identifies disjoint, spatially concen-
trated subsets of the boxes in Zi which we then identify
with true clump locations bli ∈ yi. We label each of these
aggregated clusters with the index l and denote them as Zli .
Establishing a new cluster entails labelling a particular box
bkij ∈ Zi as a facility and connecting at least one other box

bk
′

ij′ that was provided by a different volunteer. Note that

8 The chosen algorithm implements approximate computation of

the maximum log-likelihood solution and is guaranteed to find a
solution for which the log-likelihood is at most 1.61 times the op-
timal one.
9 This nomenclature reflects a common application of facility lo-
cation algorithms to optimise distribution of some essential com-

modity from facilities located at a small number of locations within

a larger network of cities.

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/advance-article/doi/10.1093/m
nras/stac2919/6759438 by O

pen U
niversity Library user on 24 O

ctober 2022



O
R
IG

IN
A

L
 U

N
E
D

IT
E
D

 M
A

N
U

S
C

R
IP

T

Galaxy Zoo: Clump Scout - a two-dimensional aggregation tool for citizen science 9

Figure 4. Top: The topology of the clusters that are assembled

by the Facility Location algorithm. In this case the set of boxes

has been partitioned into three clusters. Within each cluster, the
central facility (F 1-3) is connected to one or more cities (C 1-

5). Each city is connected to exactly one facility. Bottom: Possible
arrangement of aggregated box clusters corresponding to the illus-

trated topology for an image after inspection by three volunteers.

Blue boxes bli correspond to facilities (F 1-3) and red boxes bkij
correspond with the cities (C 1-5). Note that each volunteer may

contribute at most one box to each cluster and in this case the

same volunteer contributed the boxes that were assigned facility
status.

by associating box bkij with cluster Zli as either a city or a
facility, we establish the mapping akij = l. Each box in the
set of volunteer annotations is associated with at most one
true clump and each subset may contain at most one box
per volunteer. These constraints reflect our assumption that
separate marks provided by the same volunteer are intended
to indicate separate clumps.

We specify that assigning facility status to a particular box
incurs a real-valued cost

Cf(bkij) = −
|Vi|∑
j=1

ln(pfnj ) (16)

and connecting another box bk
′

ij′ to an established facility bkij
incurs a cost

Cfc(bkij , b
k′

ij′) = ln(pfnj′ )− ln(1− pfnj′ ) −

ln(1− pfpj′ )− ln
[
Gaussian(|d|2, σ2

j′)
]

= ln(pfnj′ )− ln(ptnj′ ) −

ln(ptpj′ )− ln
[
Gaussian(|d|2, σ2

j′)
]

(17)

where d represents the Jaccard distance between bkij and bk
′

ij′ .
Combining these cost definitions yields the assembly cost

for an individual cluster

C(Zli) = Cf(bkij) +
∑

bk
′
ij′∈Z

l
i

j 6=j′

Cfc(bkij , b
k′

ij′) (18)

Some boxes may represent false positive annotations. To
handle these cases we follow the approach of BVP17 and
establish a dummy facility at zero cost. Connections to the
dummy facility identify boxes as false positives and incur
box-specific costs

C∅c(bkij′) = − ln(pfpj′ ) (19)

Let Z?i be the set of all established clusters for subject si.
The definitions of Cf(bkij), C

fc(bkij , b
k′

ij′) and C∅c(bkij′) imply
an expression for the total cost Ci of all established clusters
and all connections to the dummy facility that closely approx-
imates the negative natural logarithm of the product over
volunteers

∏
j π(Sj)p(zij |yi,Di,Sj)) defined in Equation 5.10

Ci =
∑
Zli∈Z

?
i

C(Zli) +
∑

bk
ij′∈Zi\Z

?
i

C∅c(bkij′)

≈ − ln

(∏
j

p(zij |yi,Di,Sj))

)
(20)

The facility location algorithm is designed to compute the
box-to-cluster mapping that minimises Ci, which simultane-
ously yields the approximate maximum likelihood solution
of Equation 5 for given volunteer skill and image difficulty
parameters.

To derive the aggregated estimate for the subject label
ŷi, we merge the individual boxes comprising each cluster
by computing the mean coordinates of their corresponding
vertex indices.11 This yields a rectangular representation for
each true clump location that is at least as large as each of the
boxes comprising the set of annotations for the ith subject,
Zi.

During the initialisation phase, we use a simplified set of
facility location costs that do not depend on the volunteer
skill parameters or the image difficulties. We specify that es-
tablishing a new facility during initialisation incurs the same
cost for any volunteer annotation

Cf,init
i = fV|Vi| (21)

where fV ∈ [0, 1] is a hyper-parameter that represents the
fraction of volunteers who inspected a subject that must con-
tribute a box to an assembled cluster and we remind readers
that |Vi| denotes the number of volunteers who inspected the
ith subject. The initialisation-phase cost of connecting box

10 The correspondence is approximate because dkl in equation
Equation 5 represents the Jaccard distance between a volunteer

box and the true clump location, whereas d in equation Equa-
tion 17 is the Jaccard distance between two volunteer boxes, one
of which is labeled as a facility.
11 Concretely, let r be a generalised two dimensional coordinate

and the index m enumerate the corner vertices of a box, beginning
in the upper-left and proceeding along the box edges in a clockwise

direction, then

rli,m =
1

|Zli |

∑
bkij∈Z

l
i

rkij,m
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10 Dickinson et al.

bk
′

ij′ to an established facility bkij still depends on the Jaccard
distance d between them.

Cfc,init(bkij , b
k′

ij′) =

{
0 if d ≤ dmax

∞ if d > dmax

(22)

where dmax ∈ [0, 1] is a hyper-parameter that represents the
maximum Jaccard distance between any city in a cluster and
its central facility. Finally, connecting any box to the dummy
facility during initialisation incurs unit cost

C∅c,init(bkij′) = 1 (23)

Table 1 lists the values we adopt for fV and dmax.

5.4 Computing Image Difficulty

For each rectangular box b̂li ∈ ŷi comprising the estimated
label for the ith subject, we use the global hyper-parameter
σ2
S,0 to define a subject-specific minimum difficulty

σ2
min,i =

σ2
S,0

|ŷi|
(24)

Intuitively, if a subject’s label includes more identified clump
locations then we assume that clumps are easier to precisely
locate and the minimum difficulty is reduced. We then update
the minimum value to reflect the scatter between the subset
of volunteer boxes bkij ∈ Zli that were associated with the
corresponding ground truth cluster. For each of these true

positive boxes we compute the Jaccard distance dkij
l

between
it and its corresponding rectangular box in the estimated
subject label, b̂li. Using these distances in conjunction with
Equation A11 we estimate

σli
2 ≈

nχ,Sσ
2
S,0

|Zli |+ nχ,S + 2

∑
b̂kij∈Z

l
i

|∆|2 (25)

where ∆2 = σ2
min,i + |dkij

l|2, and nχ,S is another hyper-
parameter or our algorithm (see subsection 4.6 and Appendix
A).

5.5 Computing Volunteer Skill

We compute each volunteer’s skill parameters pfpj , pfpj and

σ2
j (see subsection 4.3) by comparing their individual clump

annotations zij ∈ Z for each subject in si ∈ Sj with the
corresponding label estimate ŷi. For each volunteer, we com-
pute the number of false positives by counting the subset of
their annotation boxes that were associated with the dummy
cluster.

nfp,j =
∑
si∈Sj

∑
zij∈Zi

1[akij = ∅] (26)

We compute the number of false negatives for a volunteer by
summing the number of established clusters for each image
they inspected that do not contain one of their boxes.

nfn,j =
∑
si∈Sj

∑
Zli∈Zi

1[zij ∩ Zli = ∅] (27)

Note that ∅ in Equation 27 represents the empty set and
not our notation for the dummy facility ∅. Analogously, we

compute the number of true positives by counting the total
number of clusters to which the volunteer contributed.

ntp,j =
∑
si∈Sj

∑
Zli∈Zi

1[zij ∩ Zli 6= ∅] (28)

We use the expressions in Equation 26 and Equation 27 in
conjunction with Equation A6 to compute estimates for pfpj
and pfnj .

pfpj ≈
nβp

fp
0 + nfp,j

nβ + |Zj |
(29)

pfnj ≈
nβp

fn
0 + nfn,j

nβ + |Zj |
(30)

To compute σ2
j for each volunteer we follow a similar ap-

proach to that used when computing image difficulties. We

compute the Jaccard distances {dkij
l}ntp,j

l=1 between all true

positive boxes and the merged rectangular box b̂li that was
derived from the cluster to which they are associated. We
then use these distances in conjunction with Equation 28 and
Equation A11 to estimate

σ2
j ≈

nχ,V σ
2
0,V

ntp,j + nχ,V + 2

ntp,j∑
l=1

|dkij
l|2. (31)

As a consequence of our prior specifications the formula-
tions of Equation 29, Equation 29 and Equation 31 can all
be factored into terms that depend only on the current work-
ing batch and terms that depend only on prior information.
This allows us to straightforwardly update the skill parame-
ters of returning volunteers without having to reconsider the
annotations they contributed to previous working batches.

5.6 Computing Maximum Likelihood Labels

Once the associated clusters have been defined and the sub-
ject difficulties and volunteer skills have been computed we
are able to compute the likelihood of each subject’s estimated
label using Equation 8, Equation 6 and Equation 5. Practi-
cally, we compute the log-likelihood for each subject and sum
these to derive a global likelihood for all annotation data that
comprise the current working batch.

Recall (subsection 5.3) that we use a simplified set of fa-
cility location costs to derive an initial clustering solution for
each new working batch. These costs are used for initialisa-
tion because they can be computed without having estimated
volunteer skills or subject difficulties, but they will generally
not yield a set of clusters that correspond with the maximum
likelihood solution of Equation 5 for any subject. Similarly,
the likelihood model parameters that we compute based on
the initial clustering solution are unlikely to be good esti-
mates of the subject difficulties or volunteer skills. As illus-
trated by the red boxes in Figure 3, we use an iterative ap-
proach to derive the maximum likelihood solution for Equa-
tion 5 and the corresponding best estimates of the likelihood
model parameters.

After the initial set of volunteer skills have been computed,
we recompute the box associations for all subjects using the
nominal facility location costs specified in Equation 16, Equa-
tion 17, Equation 19. Using these clusters we recompute the
likelihood model parameters and the corresponding subject
label likelihoods. We repeat this procedure until the sum
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Galaxy Zoo: Clump Scout - a two-dimensional aggregation tool for citizen science 11

of log-likelihoods for all subjects converges to its maximum
value.

5.7 Computing Subject Risks

In subsection 4.1 we introduced the concept of a “risk” met-
ric Ri that can be computed for any subject si and used to
quantitatively determine whether the estimated label ŷi is
sufficiently representative of the unknown true label yi to be
scientifically useful. Specifying a risk that decreases mono-
tonically as the reliability of ŷi increases enables a principled
decision to retire the subject si when its risk falls below a
predefined threshold value which we denote τ .

To compute the risk for the ith subject, we follow the
approach of BVP17 and define Ri for each subject as the
weighted sum of three separate terms.

Ri = αfpN
fp
i + αfnN

fn
i + ασN

σ
i (δ) (32)

The first term, N fp
i , represents an estimate of the number of

detected clumps that are spurious, while N fn
i estimates the

number of genuine clumps that have not been detected. Fi-
nally, Nσ

i (δ) estimates the number detected clump locations
that are genuine but insufficiently accurate in the sense that
their Jaccard distance from the true clump location is likely
to exceed a threshold value δ, which we specify as a hyper-
parameter.

The weight terms αfp, αfn and ασ are hyper-parameters
that allow the properties of the clump sample for retired sub-
jects to be tuned for particular scientific investigations. For
a specific value of τ , increasing the value of αfp relative to
the other weights will result in a purer clump sample, while
a relative increase in αfn increases the sample completeness.
Specifying a larger value for ασ will result in more accurate
clump locations, which may be useful for studies considering
the radial distribution of clumps within their host galaxies.

To estimate the expected number of genuine clumps
in the estimated label for the ith subject, we consider
each established cluster Zli ∈ Zi and identify two subsets
V mark,l
i , V miss,l

i ∈ Vi of the volunteers who inspected the ith
subject si. The volunteers in V mark,l

i are those who inspected
si and contributed a box to the lth cluster Zli . Conversely,
V miss,l
i contains the volunteers who inspected si but missed

the clump associated with Zli . To estimate the overall prob-
ability that Zli represents a false positive detection, we com-
bine the probability that all volunteers in V miss,l

i correctly
omitted the detected clump from their annotation with the
probability that all volunteers in V match,l

i provided a spurious
annotation.

pfpl =

∣∣∣Vmiss,l
i

∣∣∣∏
j=1

(1− pfnj ) ·

∣∣∣Vmark,l
i

∣∣∣∏
j=1

pfpj (33)

Similarly, to estimate the overall probability that the cluster
Zli represents a true positive clump detection, we combine
the probability that all volunteers in V miss,l

i missed a gen-
uine clump with the probability that the associated boxes
provided by all volunteers in V mark,l

i were correct.

ptpl =

∣∣∣Vmiss,l
i

∣∣∣∏
j=1

pfnj ·

∣∣∣Vmark,l
i

∣∣∣∏
j=1

(1− pfpj ) (34)

Finally, we use Equation 33 and Equation 34 to estimate the

number of clusters in Zi that are false positives by summing
the expected value of an indicator variable that equals 1 when
the cluster is a false positive and 0 otherwise for all clusters
Zli ∈ Zi (Recall that we used an analogous approach to com-
pute the parameter η in subsection 4.5).

N fp
i =

|Zi|∑
l=1

pfpl
pfpl + ptpl

(35)

To estimate the expected number of clumps in the esti-
mated label for the ith subject that are genuine, but have in-
sufficiently accurate locations12, we consider the sets of true
positive boxes, supplied by the volunteers in V mark,l

i , that
were associated with each cluster Zli ∈ Zi. We model the
Jaccard distance dl between estimated clump location b̂li ∈ ŷi
and the true clump location bli ∈ yi as a random sample from
a Gaussian distribution with zero mean and variance derived
by summing the constituent box variances defined in Equa-
tion 6.

σli
2

=
∑
bkij∈Z

l
i

σkij
2

(36)

Using this Gaussian model, we estimate the expected number
of estimated clump locations that are inaccurate by more
than δ by summing the probabilities {pσl }

|ŷi|
l=1 that the errors

in the individual clump locations exceed this threshold.

Nσ
i =

∑
b̂li∈ŷi

pσl

=
∑
b̂li∈ŷi

1− erf

 δ√
2σli

2

 (37)

Our approach for estimating the expected number of gen-
uine clumps that are not represented in estimated label for
the ith subject (i.e. the number of false negatives) emulates
the one used by BVP17. We begin by using the facility loca-
tion algorithm to re-cluster the annotations for each subject,
subject to three additional constraints that are based on the
original maximum likelihood solution.

(i) Volunteer boxes that were originally associated with
true positive clusters are not considered as potential cities.
This means that the only way that true positive annotations
can contribute to clusters is by becoming facilities.

(ii) Only annotations that were not defined as facilities
originally are considered as potential facilities. This prevents
rediscovery of the clumps that were indicated by the maxi-
mum likelihood solution for the subject.

(iii) There is no dummy facility available, so all annota-
tions must either become a facility or connect to an existing
facility, regardless of how high the connection or establish-
ment costs are.

We assume that each of the assembled clusters {Z′l
′

i }
|Z′

i|
l′=1

comprising the constrained facility location solution Z′i rep-
resents a potentially missed clump detection. For each new
cluster we compute its assembly cost Cl′ using Equation 18

12 Recall that insufficient accuracy implies that the Jaccard dis-
tance between the estimated and true clump locations is likely to

exceed the value of the hyper-parameter δ
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12 Dickinson et al.

and compare this with the cost of connecting all the cities it
contains to the dummy facility.

C∅
l′ =

∑
bkij∈Z

′l′
i

C∅c(bkij) (38)

To compute an initial estimate for N fn
i we sum the expected

value of an indicator variable that equals 1 when the cluster
is a false negative and 0 otherwise for all clusters in Z′i.

N fn,init
i =

∑
Z′l′
i ∈Z

′
i

pfnl′

pfnl′ + ptnl′
(39)

where pfnl′ estimates the probability that cluster Z′
l′

i identifies

a real clump bl
′
i that was originally missed by the maximum

likelihood solution. By analogy with Equation 20

pfnl′ = e−Cl′ ≈
∏

zij∈Z′l′
i

p(zij |yi 3 bl
′
i ,Di,Sj) (40)

Furthermore, ptnl′ is the probability that the boxes in Z′
l′

i all
correspond with false positive clicks.

ptnl′ = e−C
∅
l′ =

∏
zij∈Z′l′

i

pfpj (41)

This initial estimate cannot be computed for a subject if no
volunteer boxes were originally connected to the dummy fa-
cility. However the absence of nominally false positive boxes
does not imply that no clumps have been missed. To esti-
mate how many clumps might have been missed when no
false positives are present we consider intersections between
the global set of all annotations provided by all volunteers for
all subjects in the working batch. We use this global set to
estimate a subject-agnostic probability that two boxes coin-
cide at any particular location within a subject. The higher
this probability is for a particular location, the more likely
it is that a clump will be located there. We define a coinci-
dence when two boxes are separated by a Jaccard distance
less than dmax.13 We begin by randomly shuffling the ele-
ments of the working batch. We then process the randomised
elements sequentially to find any mutually coinciding subsets
of volunteer boxes. For each box, we check for coincidence
with any of the previously processed elements. If the boxes
coincide we increment a coincidence count, which we denote
n∩

k
ij , for the previously processed element and remove the

current element from the shuffled batch. If no coincidences
are found we retain the current element, which allows coin-
cidences between it and subsequent elements to be identified
and counted. After the shuffled working batch has been pro-
cessed, we estimate the probability of a coincidence with each
of the remaining elements by computing the ratio between its
accumulated coincidence count and the total number of an-

13 As described in subsection 3.3, volunteer boxes have a side-
length equal to twice the FWHM of subject’s PSF, and may have
different absolute pixel dimensions. When computing N fn

i we ac-
count for this by using normalised image coordinates {x′, y′} ≡
{x/xmax, y/ymax} to define box boundaries when we compute the

Jaccard distance between boxes in the global set.

Table 2. Parameters used to determine subject retirement and

compute overall subject risk

Parameter Value

αfp 1

αfn 1

ασ 2
δ 0.5

N fp
i,max 1

N fn
i,max 0.3

Nσ
i,max 3

τ 5

notations nz comprising to the working batch.14

p∩
k
ij =

n∩
k
ij

nz
(42)

Figure 5 illustrates the different stages in our computation of
the p∩

k
ij using all boxes in the working batch.

Let B∩ represent the remaining elements of the shuffled
working batch, for which a value of p∩

k
ij has been computed.

For each subject in the original working batch, we find the
subset B? of elements in B∩ that constitute that do not coin-
cide with any of the boxes b̂li ∈ ŷi that comprise the estimated
subject label. For each box in B?, we increment N fn,init

i by
the product of the probability that a coincidence occurs at
that location and the probability that all volunteers who in-
spected the image would have missed the clump.

N fn
i = N fn,init

i +
∑

bkij∈B
?

p∩
k
ij · e

−Cf (bkij) (43)

Note that for subjects that have no clumps identified in their
estimated labels, B? → B∩. In practice, we find that N fn,init

i

always dominates the estimate of N fn
i and that the second

term in Equation 43 is always � 1.

5.8 Subject retirement and batch finalisation

Computing the expected false positive, false negative and in-
accurate true positive counts (i.e. N fp

i , N fn
i and Nσ

i (δ)) in-
dependently for each subject allows us to define a compound
retirement criterion that specifies maximum permissible val-
ues , N fp

i,max, N fn
i,max and Nσ

i,max, for each of these quantities
as well as a threshold τ on the overall subject risk. Table 2
lists the thresholds we use in practise as well as the values we
adopt for the coefficients specified in Equation 32.

Once the subject risks have been computed we retire those
subjects for which the overall risk Ri < τ and N fp

i , N fn
i and

Nσ
i are all less than their specified maximum permissible val-

ues, before removing their elements from the working batch.
We also identify and remove any stale subject data that have
persisted for the maximum allowed number of batch replen-
ishment cycles without retiring. Such subjects are likely very
difficult or complicated so we mark them for expert inspec-
tion, assessment and labelling. For the remaining subjects

14 Recall (subsection 4.2) that we define an annotation zij =

{bkij}
|Bij |
k=1 to be the set of box markings provided by a particular

volunteer when they inspect a particular subject, so the number

of annotations is generally less than the size of the working batch.
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Figure 5. Computing the random coincidence probability using all boxes in the working batch. Left panel: Shaded boxes represent all
elements in the first working batch. Solid boundaries indicate groups of boxes that coincided using the dmax = 0.9 criterion. Note that large

boxes may validly encompass all or most of smaller ones without coinciding if the ratio of the box areas areas in normalised coordinates

less than 0.9dmax. Boxes that did not coincide with any others are shown using dashed lines. Middle panel: The elements of B∩ coloured
according to the number of boxes they were found to coincide with. Right panel : Two dimensional map showing the mean probability

that one or more boxes in the working batch will accidentally coincide at a given two-dimensional location.

that were not retired, we re-initialise their difficulty parame-
ters and discard any associated clusters that were established
when the working batch was processed.

Annotation data that were provided by a single volunteer
for different subjects can appear in separate working batches,
especially if volunteers return to the project regularly over an
extended period of time. It is also possible that only a subset
of the subjects annotated by a volunteer in a single work-
ing batch are retired when batch processing completes. If a
volunteer’s annotation data persist between batches, those
persistent data should not be used to update volunteer skills
multiple times during multiple batch processing cycles. This
could lead to pathological subjects unfairly inflating or reduc-
ing the skill parameter values (pfpj , pfnj , σ2

j ) for a particular
volunteer. To avoid this scenario, we restore the volunteer
skills that were cached at the start of the latest cycle and up-
date them using only annotation for subjects that did retire.

The batch processing cycle then restarts by acquiring new
annotation data and repopulating the working batch.

6 RESULTS

Recall that the full Galaxy Zoo: Clump Scout dataset (Z)
contains 3,561,454 click locations, which constitute 1,739,259
annotations of 85,286 distinct subjects provided by 20,999
volunteers and that approximately 20 volunteers inspected
each subject. Using this dataset, we identify 128,100 potential
clumps distributed among 44,126 galaxies. Figure 6 shows five
examples of galaxies in which clumps were detected.

6.1 Testing the effect of volunteer multiplicity

We expect that the performance of our aggregation frame-
work will vary depending upon the number of volunteers
who inspect each subject. To investigate this dependence we
assemble 17 subsamples of annotations {Z̃n}20n=3 ∈ Z, that
contain between 3 and 20 annotations per galaxy. Each Z̃n
is constructed by randomly sampling n annotations for each

subject si ∈ S. For example, Z̃5 includes 5 randomly sam-
pled annotations for each galaxy in the Galaxy Zoo: Clump
Scout subject set. We then use our aggregation framework
to derive the set of corresponding estimated subject labels
Ŷ (Z̃n) ≡ {ŷi,n}|S|i=1 where ŷi,n = ŷi(Z = Z̃n) is the label for
si based only on the n annotations for that subject within Z̃n
15. In subsequent sections, we will examine the differences be-
tween results derived using these different restricted datasets.
Note that the dataset containing 20 annotations per subject,
denoted Z̃20, is not quite the full Galaxy Zoo: Clump Scout
dataset Z because the Zooniverse interface occasionally col-
lects more than 20 annotations per subject.

6.2 Aggregated clump properties

Our aggregation algorithm assigns a separate false positive
probability pfpl to each clump it identifies (see subsection 5.7).
The left-hand panel of Figure 7 shows the distribution of this
false positive probability for clumps detected using 20 anno-
tations per subject, which is strongly bimodal with ≈ 90% of
clumps having 0.2 < pfpl > 0.8. The right hand panel shows
how the distribution of the false positive probabilities for all
identified clumps evolves as more volunteers annotate each
subject. For fewer than 5 annotations per subject (i.e. n . 5)
the estimates for the clumps’ false positive probabilities re-
main somewhat prior-dominated and the distributions are
unimodal with medians close to the hyper-parameter value
pfp0 = 0.1. For more than 5 annotations per subject (i.e.
n > 5), the distributions become progressively more bimodal
which increases their interquartile ranges. The distribution
medians decrease monotonically as the number of annota-
tions per subject n → 20, which indicates that providing
more volunteer annotations per subject allows our framework
to more confidently predict the presence of clumps.

15 Note that the labels for each subject may in principle depend

on all annotations in Z̃n via those annotations’ influence on the

volunteers’ skill parameters.
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14 Dickinson et al.

Figure 6. Examples of clump-hosting galaxies, illustrating the ability of our framework to exclude false-positive annotations. The left
hand column shows galaxy images as they were seen by volunteers. The second column overlays all volunteer annotations on a grey-scale

image of the same galaxy. In the third column volunteer annotations that were assigned to a facility and identified as clumps are shown
in colour. Annotations that were assigned to the dummy facility are shown in black. The fourth column shows the clump locations that
we ultimately identify.
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Galaxy Zoo: Clump Scout - a two-dimensional aggregation tool for citizen science 15

For every bounding box in each subject’s maximum like-
lihood label, we also compute the probability pσl that the
Jaccard distance between it and the unknown true location
of the clump exceeds δ = 0.5. The left hand panel of Figure 8
shows the distribution of pσl for clumps detected using 20 an-
notations per subject, while the right hand panel shows how
the distribution pσl of evolves as more volunteers annotate
each subject. Again, our model priors appear to dominate for
fewer than 5 annotations per subject and the distribution me-
dians decrease monotonically as the number of annotations
per subject n → 20. This pattern indicates that providing
more volunteer annotations per subject allows our framework
to more precisely determine the locations of clumps.

Figure 9 illustrates the spatial distribution of the de-
tected clump locations, in bins of estimated clump false pos-
itive probability pfpl . We observe that 99.9% of clumps with

pfpl . 0.5 (i.e. likely true positives) are located within a cen-
tral circular region occupying 20% of the area of their cor-
responding images. In contrast, clumps with pfpl & 0.5 (i.e.
likely false positives) are 10 times more likely to fall outside
this region. This central concentration of confidently identi-
fied clumps is reassuring because it reflects the typical foot-
prints of the target galaxies in each subject image, which is
where we would reasonably expect to find genuine clumps.
For all clumps, regardless of their estimated false positive
probability, we observe a clear under-density at the centre
of the distribution, which likely reflects the fact that most
volunteers correctly distinguish the target galaxies’ central
bulges from clumps.

6.3 Comparison with expert annotations

To quantify the degree of correspondence between the clumps
identified by volunteers and those identified by professional
astronomers, we used the Galaxy Zoo: Clump Scout inter-
face to collect annotations from three expert astronomers for
1000 randomly selected subjects and compared the recovered
clump locations with those derived from volunteer clicks by
our aggregation framework.

For each subject in this expert-annotated image set, we
consider the 17 different estimated labels ŷi,n that were com-
puted using 3 ≤ n ≤ 20 volunteer annotations per subject
(see subsection 6.1). We then filter each of these 17 labels
by selecting a subsample of its bounding boxes that have
associated false positive probabilities pfpl that are less than
a selectable threshold value, which we denote p?,fp. By set-
ting p?,fp close to one, we expect to select only the bounding
boxes that mark real clumps. Conversely, we expect that set-
ting p?,fp close to zero results in a subsample that is likely
to contain more false positive bounding boxes. We use the
symbol Ŷ ?n (p?,fp) to denote the set of estimated labels for all
expert-annotated subjects that were computed using n vol-
unteer annotations per subject and filtered to include only
those bounding boxes with false positive probabilities less
than p?,fp.

For a particular false positive filtering threshold p?,fp and
number of annotations per subject n, we consider the filtered
labels for all 1000 expert-annotated subjects and define NFP

n

to be the total number of empirically false positive aggregated
clump bounding boxes in Ŷ ?n (p?,fp) that contain zero expert
click locations. Conversely, NFN

n denotes the total number of

expert clicks located outside of any aggregated box, which we
designate as false negatives. We identify the remaining NTP

n

aggregated boxes that coincided with an expert click location
as true positives.

Using the set of aggregated clump designations we com-
pute the aggregated pfp-threshold-dependent clump sample
completeness

Cn(p?,fp) =
NTP
n

NTP
n +NFN

n

(44)

and purity

Pn(p?,fp) =
NTP
n

NTP
n +NFP

n

(45)

Figure 10 illustrates how the completeness and purity of
our aggregated clump sample depend on n. In the left-hand
panel we plot Cn and Pn values derived using the whole
expert-identified clump sample as a ground-truth set. The
values plotted in the right-hand panel are derived by com-
paring a restricted set of nominally normal ground-truth
clumps which experts did not identify as “unusual” (see sub-
section 3.2) with aggregated clumps that the majority of vol-
unteers who identified the clump classified it as being normal
in appearance. In both panels, the crosses show the “optimal”
completeness and purity values that maximise the hypotenuse√
C(p?,fp)2 + P(p?,fp)2 over all possible p?,fp thresholds. For

comparison, the square and triangular points in Figure 10
respectively illustrate the maximum values of completeness
and purity that can be achieved independently.

For both the full and the restricted ground truth sets, we
observe a general trend that increasing the number of volun-
teers who inspect each subject increases the optimal sample
completeness at the expense of reducing purity. Using the ex-
pert classifications as a benchmark it is clear that our most
complete aggregated clump samples suffer substantial con-
tamination. In the most extreme case, using the “normal”
clump comparison sets for n = 20 and letting p?,fp = 1 yields
∼ 97% completeness, but only ∼ 35% purity. The high level
of contamination indicates that volunteers are much more op-
timistic than experts when annotating clumps i.e. volunteers
will mark features that experts will ignore. Moreover, while
completeness values generally improve when comparing the
restricted “normal” clumps, the corresponding purity values
are substantially worse than those derived from the full clump
samples. This degradation in purity for the “normal” clump
subset likely indicates that volunteers and experts disagree
about the definition of a “normal” clump with volunteers be-
ing less likely to label a clump as unusual.

The top row of Figure 11 shows the g, r and i band flux
distributions16 for aggregated clumps that are empirically de-
termined to be false positive and true positive when compar-
ing them with expert clump annotations. To better represent
the appearance of the clumps that volunteers and experts
actually see, the band-limited fluxes shown in Figure 11 are
independently scaled in the same way as the correspond-
ing bands of the Galaxy Zoo: Clump Scout subject images
(see subsection 2.2). The distributions reveal that empirically
false-positive clumps are ∼ 5 − 10 times fainter on average

16 See §3 in Adams et al. (2022) for a detailed explanation of how

clump fluxes are computed.
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Figure 7. Left panel: Distribution of estimated false positive probability pfpl for clumps identified using 20 annotations per subject (i.e.

using Z̃20). The distribution is strongly bimodal with ≈ 90% of clumps having 0.2 < pfpl > 0.8. The inset shows the distribution in for

pfpl < 0.01. Right panel: Distributions of pfpl corresponding to n between 3 and 20 volunteer annotations per subject. The distribution

medians decrease monotonically from ≈ 0.04 for n = 3 to ≈ 5× 10−5 for n = 20, while the distribution interquartile ranges become wider

as more volunteers annotate each subject. We use a “logistic” scaling for the y axis to highlight the development of the bimodal structure
for large n. Note that the colour scale shows the number density of clumps to account for the fact that the two-dimensional histogram

bins cover different areas.

than empirically true positive clumps. The bottom row of
Figure 11 shows all non-redundant flux ratios for the g, r
and i bands. In general the empirically false positive clumps
are brighter in the g band and would appear bluer in the
subject images. Overall, the distributions in Figure 11 sug-
gest that volunteers are more likely to mark faint features
than experts, particularly when those features appear blue.
Figure 18 shows typical examples of the faint blue features
that volunteers annotate but experts ignore.

Figure 12 illustrates the degree of correspondence between
the value of pfpl assigned to each clump by our aggregation
framework and their empirical categorisation as true or false
positives. The figure compares the distributions of pfpl for
empirically true positive and false clumps identified using all
available annotations in for the expert-annotated subject set.
The distributions represent the restricted subset of clumps in
Ŷ20 that the majority of volunteers labeled as “normal”. How-
ever, we recognise that volunteers and experts may disagree
about what criteria define a “normal” clump. Therefore, to
avoid conflating this categorical disagreement with genuine
cases when experts and volunteers mark different features
(regardless of the annotation tool used) we consider any ex-
pert identified clump when assigning true-positive or false-
positive labels. The majority of aggregated clumps in both
categories have very low estimated false positive probabil-
ities (pfpl � 1), indicating a high degree of consensus be-
tween volunteers, albeit that this consensus disagrees with
the expert annotations. Although clumps in both empirical
categories have estimated pfpl values spanning the full range

[0, 1], we note that 95% of empirically true-positive clumps
have pfpl < 0.3 compared with only 68% of empirical false
positives. This reinforces the evidence implicit in Figure 10
that the aggregated clump sample can be made purer with
respect to the expert sample by applying a threshold on pfpl .

6.4 Volunteer Skill Parameters

Our aggregation framework allows us to monitor the evolu-
tion of volunteers’ skill parameters as they spend time in the
project. The top panel of Figure 13 shows the distribution of
the Galaxy Zoo: Clump Scout volunteers’ subject classifica-
tion counts. The distribution is bottom-heavy with a median
of 3 subjects per volunteer and 19,859 volunteers (∼ 95%)
annotating fewer than 10 images, and only 176 volunteers
(∼ 0.08%) annotating more than 20017. The remaining pan-
els of Figure 13 illustrate how our estimates of the volunteers’
skill parameters evolve as volunteers inspect and annotate in-
creasing numbers of subjects. For all three skill parameters,
the mean and median of the maximum likelihood estimates
increase monotonically from their prior values as volunteers
annotate more subjects. The relatively slow evolution of pfpj
for subject inspection counts below ∼ 10 reflects the strong

17 This skewed non-uniform distribution for the nuber of annota-

tions per volunteer is also seen in many other Zooniverse projects

(e.g. Spiers et al. 2019).
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Figure 8. Left panel: Distribution of the estimated probability that an individual clump location is inaccurate (pσl ) for clumps identified

using 20 annotations per subject (i.e. using Z̃20). The distribution is concentrated close to zero with all clumps having pσl . 0.3. The
inset shows the distribution in for pσl < 0.01. Right panel: Distributions of pσl corresponding to n between 3 and 20 volunteer annotations

per subject. The distribution medians decrease monotonically from ≈ 0.05 for n = 3 to ≈ 4 × 10−4 for n = 20, while the distribution

interquartile ranges become wider as more volunteers annotate each subject. Note that the colour scale shows the number density of
clumps to account for the fact that the two-dimensional histogram bins cover different areas.

regularisation that results from setting the hyper-parameter
nfp
β = 500 (see Table 1).

6.5 Subject risk and its components

The distributions shown in Figure 14 reveal how the expected
numbers of false positive bounding boxes N fp

i , missed clumps
(or false negatives) N fn

i and inaccurate clump locations Nσ
i

(see subsection 5.7) evolve for the subjects in the the Galaxy
Zoo: Clump Scout subject set as more volunteers annotate
them. For the majority of subjects, our framework estimates
values less than one for all risk components, regardless of
how many volunteers annotated them. The distributions of
N fp
i , N fn

i and Nσ
i become broader and their median values

decrease monotonically as n → 20. This pattern indicates
that for the majority of subjects, increasing the number of
volunteers who annotate each subject improves the reliability
of their consensus labels.

A minority of subjects have estimated values for one or
more of N fp

i , N fn
i or Nσ

i that are greater than one. For this
subset of subjects, their associated risk component distribu-
tions appear to stabilise after five or more volunteers have an-
notated each subject. We suggest that estimates for subjects
that are annotated by fewer than 5 volunteers (i.e. for n . 5)
are noise-dominated or prior-dominated and somewhat un-
reliable. The structure that is visible in the distributions of
N fp
i in the upper-left panel is produced by a strong bimodal-

ity in the distribution of false positive probabilities (pfpl ) for
the clumps in the corresponding sets of estimated labels (i.e.
the clumps in the corresponding Ŷn – see Figure 7). For each

clump in the estimated label for a particular subject, its false
positive probability is very likely to be close to zero or one.
The expected number of false positive clumps in a subject’s
estimated label is derived by summing a term that includes
these probabilities in its denominator, so the distributions
of will naturally be concentrated into peaks around integer
values of N fp

i . Similar structures that are visible in the dis-
tributions of N fn

i are produced by a strong bimodality in the
summand in Equation 39. The fraction of subjects for which
N fp
i > 1 peaks at ∼ 10% for n = 15 and decreases to ∼ 8%

for n ∼ 20. In contrast, the fraction of subjects for which
N fn
i > 1 does not peak, but increases quasi-monotonically to

reach ∼ 2% as n → 20. The fraction of subjects for which
Nσ
i > 1 is negligible and < 0.05% for all n.

The overall median values for the estimated numbers of
missed clumps and inaccurate clump locations per subject
both decrease monotonically as the number of volunteers who
inspect each subject increases. However the overall median for
the expected number of false positive clumps per subject in-
creases slowly until n = 13 before beginning to decrease. We
assess the feasibility of reducing N fp

i by discarding aggregated
clumps with high individual false positive probabilities. The
upper right panel of the Figure 14 shows the effect of filtering
clumps with pfpl > 0.85 on the distribution of N fp

i . Apply-
ing this filter substantially reduces the estimated number of
false positive clumps after 5 or more volunteers annotate each
subject and moreover, the fraction of subjects for which the
expected number of false positive clumps per subject exceeds
one now peaks at ∼ 0.1% for n = 5 and decreases rapidly
thereafter.
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Figure 9. Detected clump locations in normalised image coordinates, in bins of estimated clump false positive probability, pfp. For

pfp . 0.5, 99.9% of detected clumps have Rclump =
√

(Xclump/Xmax)2 + (Yclump/Ymax)2 < 0.25. In contrast 10 times more clumps

(∼ 1%) with pfpl & 0.5 have Rclump > 0.25.

We note that filtering clumps based solely on their esti-
mated false-positive probabilities may inadvertently discard
real clumps if pfpl does not correlate appropriately with ob-
servable quantities like brightness and colour that can indi-
cate whether a particular feature is a genuine clump or spu-
rious18. Figure 15 illustrates the overall effect of discarding
clumps with individual false positive probabilities larger than
0.85 on the number of clumps per galaxy that our framework

18 Indeed, for this reason Adams et al. (2022) apply a very per-

missive pfpl threshold before filtering further based on observable

clump parameters.

identifies using different numbers of volunteer annotations
per subject. The impact is strongest for n & 7 but the overall
effect is small with . 0.5 fewer clumps identified per galaxy.
The left hand panel of Figure 16 plots fluxes in the g, r and
i bands versus the estimated individual false positive prob-
ability (pfpl ) for all clumps that our framework identifies us-
ing 20 annotations per subject. In all three bands, the mean
flux of clumps with pfpl < 0.2 is ∼ 1.5 times larger than the

mean flux for clumps with pfpl > 0.2. The right hand panel
of Figure 16 plots the non-redundant flux ratios i/g, r/g and
i/r versus pfpl . On average, clumps with low estimated false
positive probability appear brighter in bluer bands. Overall,
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Figure 10. Purity versus completeness for different numbers of volunteers per subject. The left-hand panel shows values derived using
the full volunteer label sets and all expert-identified clumps as a benchmark sample, while the values shown in the right-hand panel are

derived by comparing the sets of clumps which experts and volunteers identified as “normal”. Squares indicate the values of the maximum

possible completeness and purity for each number of volunteers, which can generally not be realised simultaneously. Crosses indicate the
optimal completeness and purity values that can be simultaneously realised for each volunteer count.

we observe a pattern whereby clumps that appear brighter
and bluer in the subject images tend to have lower pfpl . We
verified that this pattern does not change significantly when
clumps are filtered according to the fraction of volunteers
that labeled them as “unusual”. This is reassuring because
real clumps are expected to be bright and blue in colour and
suggests that filtering clumps based on pfpl is well motivated
physically. The correlations with flux and colour also resem-
ble the empirical patterns described in subsection 6.3 where
we observed that the sample of clumps that coincided with
expert clump annotations were brighter and bluer than the
sample of clumps that did not.

Figure 17 shows how the fractions of subjects that are re-
tired for different reasons vary as more volunteers annotate
each subject. More than 90% of subjects meet the subject
retirement criterion specified in subsection 5.8 regardless of
how many volunteers annotate each subject. Of the remain-
ing subjects, ∼ 7 − 9% become stale after persisting in the
working batch for more than 10 replenishment cycles and are
removed. The fraction of stale subjects peaks for n = 6 an-
notations per subject and decreases monotonically thereafter
as more annotations per subject are used. Fewer than 1% of
subjects failed to retire for any n. The fraction of unretired
subjects is maximally 0.9% for n = 3 and falls to < 0.1% for
n = 20. We comment that for n < 6 the computation of R
and its components is likely to be dominated by our model
priors and therefore the apparent decrease in the number of
stale subjects should probably not be interpreted as improved
performance within this domain.

7 DISCUSSION

Using the annotations provided by the Galaxy Zoo: Clump
Scout volunteers our framework has identified a large cata-

logue of potential clumps. In addition, our aggregation frame-
work provides quantitative metrics for the reliability of the
estimated subject labels it computes. These diagnostics al-
low us to better understand how volunteers interpreted the
definition for a clump that they were provided with and how
they execute the annotation task.

The observable properties of the clumps we detect appear
plausible, both in terms of their spatial distribution within
the subject images and their fluxes in the SDSS g, r and
i bands. The central concentration of confidently identified
clumps in Figure 9 is reassuring because it reflects the typical
footprints of the target galaxies in each subject image, which
is where we would reasonably expect to find genuine clumps.
For clumps with any estimated false positive probability pfpl ,
we observe a clear under-density at the centre of the dis-
tribution, which likely reflects the fact that most volunteers
correctly distinguish the target galaxies’ central bulges from
clumps.

The clump flux and colour distributions in Figure 16 reveal
that brighter, bluer clumps tend to have lower false positive
probabilities (pfpl ). This trend is also reassuring because real
clumps are expected to be bright and blue in colour and sug-
gests that filtering clumps based on pfpl is well motivated
physically. The correlations with flux and colour also resem-
ble the empirical patterns described in subsection 6.3 where
we observed that the sample of clumps that coincided with
expert clump annotations were brighter and bluer than the
sample of clumps that did not.

By comparing expert labels for 1000 subjects with those
estimated by our framework using volunteer annotations, we
showed that volunteers are much more optimistic that ex-
perts when annotating clumps. Overall, the distributions in
Figure 11 suggest that volunteers are more likely to mark
faint features than experts, particularly when those features
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Figure 11. Top row: Flux distributions in g, r and i bands for clumps that are empirically determined to be false positive or true positive

by comparing with expert clump annotations. Dashed vertical lines indicate the distribution means. Bottom row: Flux ratio distributions
for clumps that are empirically determined to be false positive or true positive by comparing with expert clump annotations. Dashed

vertical lines indicate the distribution medians. In both rows, the fluxes in each band are scaled in the same way as the corresponding

bands of the subject images (see subsection 2.2) to better reflect the data that volunteers actually see.
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Figure 12. Distribution of estimated clump false positive prob-

ability (pfpl ) values for aggregated clump locations that coincide
with expert annotations (orange) and those that did not (blue).
We use coincidence with any expert clump to establish the true-
positive or false-positive categories, but only aggregated clumps
that the majority of volunteers labeled as “normal” are considered.

The inset shows a zoomed view of the distributions for pfpl < 0.01.

appear blue. This results in aggregated clump samples for the
1000 test subjects that appear quite heavily contaminated
with respect to the expert labels. Moreover, this apparent
contamination worsens if clumps that experts or the major-
ity of volunteers labeled as “unusual” are discarded. This
degradation in purity for the “normal” clump subset likely
indicates that volunteers and experts disagree about the def-
inition of a “normal” clump with volunteers being less likely
to label a clump as unusual.

Using Figure 12 we illustrated that our framework tends
to estimate lower false positive probabilities for clumps that
were marked by both volunteers and experts. The formulation
of our likelihood model means that smaller estimated false
positive probabilities correlate broadly with a greater degree
of consensus between skilled volunteers that a clump exists
at a particular location. Therefore, it seems that while many
volunteers mark features that experts would not identify as
clumps, features that experts do mark tend to have also been
marked by a majority of more skilled volunteers who in-
spected the corresponding subject. The correlation between
clumps’ false positive probabilities and their expert classifi-
cations also reinforces the evidence implicit in Figure 10 that
the aggregated clump sample can be made purer with respect
to the expert sample by applying a threshold on pfpl .

We note that while using a visual labelling approach to
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Figure 13. Evolution of volunteer skill parameter statistics versus

number of subjects inspected. The top panel show the distribution
of the number of volunteers who have inspected at least as many

subjects as indicated by the upper boundary of each bin. This

means volunteers who annotate many subjects will contribute to
several bins. However, their skill parameters are sampled at the

point that they had inspected the maximum number of subjects

represented by a particular bin. Statistics for the different volun-
teer skill parameters pfpj , pfnj and σj are shown in the upper-middle,

lower-middle and bottom panels respectively. Red and blue mark-
ers plot the median and mean skill parameter of all volunteers

contributing to a particular bin, respectively. The orange band
illustrates the inter-quartile ranges of the bin-wise distributions.
Dotted and dashed lines indicate the 5th and 95th percentiles re-
spectively.

identify clumps provides more flexibility than relying on a
fixed set of brightness or colour thresholds, it is also unavoid-
ably subjective. To illustrate how this subjectivity may be
impacting the empirically determined purity and complete-
ness of our clump sample, Figure 18 shows typical examples
of the faint blue features that volunteers annotate but experts
ignore. Many of these any do appear clump-like and it is not
always obvious why experts have not marked them. Based
on these observations, we suggest that the sample of clumps
identified by our framework using volunteer annotations may
not be as severely contaminated as Figure 10 implies. We
also note that the clump samples our framework derives are
generally very complete and include the majority of expert-
labeled clumps. This means that that subsets of clumps for
particular scientific analyses can be selected from a nominally
impure sample using physically motivated criteria based on
directly observable or derived characteristics of the individ-
ual clumps. For example, Adams et al. (2022) derive samples
of bright clumps by using criteria based on photometry ex-
tracted from clumps and their host galaxies.

In addition to providing quantitative estimates for the re-
liability of individual clump labels, our framework allows us
to investigate the performance of individual volunteers and
the entire volunteer cohort. The positive gradients of skill pa-
rameter evolution curves in Figure 13 decrease with increas-
ing number of subjects inspected (their second derivatives are
negative except in the final bin which contains relatively few
volunteers). This suggests that the the volunteer skill param-
eters may converge to stable asymptotic values for very large
numbers of inspected subjects. The fact that this convergence
was not achieved for the Galaxy Zoo: Clump Scout dataset
likely indicates that the global maximum likelihood solution
is dominated by the large number of volunteers who inspect
very few images and may provide noisy annotations due to
their relative inexperience.

The noisiness of volunteer annotations probably indicates
that identifying clumps within star forming galaxies, which
can have complex underlying morphologies, is relatively diffi-
cult for inexperienced non-experts. In subsection 6.4 we noted
that most volunteers only annotated a small number of galax-
ies and may not have had time to learn the visible charac-
teristics of genuine clumps. While it may be the case that
the task of clump identification is too difficult for typical
Zooniverse volunteers, this seems unlikely and there are sev-
eral plausible strategies for making complex and subtle image
analysis tasks more feasible for citizen scientists. The most
obvious is to improve the amount and quality of the initial
training that is provided to volunteers. However, Zooniverse
volunteers are accustomed to participating in projects with
minimal tutorial material so imposing a more rigorous train-
ing requirement may discourage widespread participation. As
discussed in subsection 3.1, the volunteers to who contributed
to Galaxy Zoo: Clump Scout received real-time feedback for a
small number of expert-labeled subjects that they annotated
during the early stages of their participation. Providing more
detailed feedback for a larger sample of subjects may help vol-
unteers to better understand the task they are being asked
to perform.

Some Zooniverse projects also provide a dedicated tuto-
rial workflow with an accompanying video tutorial in which
experts annotate the same subjects that volunteers see and
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Figure 14. Evolution of the distributions for components of subject risk as the number of volunteer annotations per subject increases.
Distributions for the expected numbers of false positive bounding boxes N fp

i , missed clumps (or false negatives) N fn
i and inaccurate clump

locations Nσ
i are shown in the upper left, lower left and lower right panels respectively. The upper right panel shows the distributions of

N fp
i after discarding individual clumps with false positive probabilities pfpl > 0.85. Note that the y axis changes from logarithmic to linear

scaling at the values indicated by the black horizontal dashed lines to better illustrate the evolution of structures in each distribution.

explain their reasoning19. When using feedback as a training
tool, it is important that the feedback subjects contain galax-
ies and clumps that are properly representative of the global
populations within the full subject set, but it is difficult to en-
sure that this is the case unless the experts themselves inspect
a large number of subjects. Moreover, the feedback messages
that volunteers receive must be carefully chosen to avoid dis-
couraging volunteers if their annotations disagree with those
of experts.

An alternative to explicit training and feedback that was

19 e.g. https://www.zooniverse.org/projects/chrismrp/

radio-galaxy-zoo-lofar

pioneered by the Gravity Spy project20 involves incrementally
increasing the difficulty of subjects that volunteers inspect
and annotate as they spend longer engaged with the project
and their skill improves (Zevin et al. 2017). Using this “level-
ing up” approach requires an a priori metric for the relative
difficulty of subjects for volunteers, as well as ongoing as-
sessment of volunteers’ skills. While our framework naturally
fulfills the latter requirement, it does not facilitate prior seg-
regation of subjects to populate the different difficulty levels.
It might be possible to formulate a heuristic approach to es-
timating subject difficulty based on observable properties of

20 https://www.zooniverse.org/projects/zooniverse/

gravity-spy
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Figure 15. Evolution of the distribution of the number of clumps
per galaxy as more volunteers inspect and annotate each subject.

The red markers and lines plot the distribution means for the dif-

ferent numbers of volunteers per subject. Top panel: Number of
clumps per galaxy with any value for their estimated false positive

probability pfpl . Bottom panel: Number of clumps per galaxy with

pfpl < 0.85

the clumps’ host galaxies, but that is beyond the scope of
this paper.

As we discuss in subsection 4.1, the consensus reliability
metrics that our framework computes may enable quantita-
tively motivated early retirement of subjects if it can be es-
tablished that a stable consensus solution has been reached.
In subsection 5.7 we described how our framework formulates
a subject retirement criterion based on estimated metrics that
are proxies for the completeness (N fn

i ), purity (N fp
i ) and ac-

curacy (Nσ
i ) of that subject’s label. Figure 17 seems to show

that more than 90% of subjects fulfil this criterion, even when
only n = 3 volunteers inspect each subject. However, the dis-

tributions shown in 14 appear to be noise or prior dominated
for n . 5 and we suggest that estimates of the subject risk R
and its components {N fn

i , N
fn
i , N

σ
i } for that domain should

be treated with some caution.
In Figure 14, we showed that discarding clumps with esti-

mated individual false positive probabilities pfpl > 0.85 sub-
stantially reduces the number of subject labels that are ex-
pected to include one or more false positive clumps and that
this number reduces rapidly once more than 7 volunteers have
annotated each subject.

We interpret the fact that the estimated number of missed
clumps per subject (N fn

i ) increases as more volunteers an-
notate each subject as an effect of some of those volunteers
marking very faint features. Potential false-negative clumps
identified by the second, constrained run of the facility lo-
cation algorithm (see subsection 5.7) are typically on the
threshold of identification by our framework, which normally
means that several volunteers have marked them21. If the
fraction of highly optimistic volunteers within the overall co-
hort is small, then a relatively large number of volunteers
must inspect each subject for faint features to reach the
threshold where they are considered potential false negatives.
The increase in N fn

i as the number of annotations per sub-
ject n → 20 is then an indication that more faint features
are reaching, but not surpassing, our framework’s detection
threshold. Figure 15 provides an empirical estimate for the
number of clumps per galaxy that are missed when fewer
volunteers inspect each subject. Although the mean number
of identified clumps per galaxy does increase in the interval
7 < n < 20, the rate of increase is very slow and increasing n
from 7 to 20 results in just 0.5 more clumps with individual
false positive probabilities pfpl < 0.85 per galaxy on average.
In line with our previous observations regarding volunteer
optimism, we suggest that many of these additional clumps
may in fact be faint, blue features within the target galaxies.
As Figure 10 illustrates, our comparison with expert labels
also suggests that n ∼ 7 provides that best compromise be-
tween the completeness and purity of our aggregated clump
sample.

Empirically, it seems like at least 5 volunteers must in-
spect each subject to obtain a stable solution for the sub-
ject labels and that the majority of genuine clumps could be
identified by our framework for most subjects using the an-
notations provided by ∼ 7 volunteers. Increasing the number
of volunteers beyond this threshold seems to introduce more
noise into the annotation data and also results in progres-
sively fainter features being identified. Retiring the majority
of subjects after inspection by 7 volunteers, if it could have
been well motivated, would have reduced the volunteer ef-
fort required for the Galaxy Zoo: Clump Scout project by
a factor > 2. Unfortunately, we must acknowledge that the
reliability metrics computed by our framework do not seem
to converge in a way that is useful to facilitate an early re-
tirement decision. For most subjects, our framework predicts
expected numbers of false positives, false negatives and inac-
curate true positives that are less than one for any number of
annotations (i.e. N fp

i , N
fn
i , N

σ
i � 1 ∀n) and so these subjects

would have been retired when n < 7 based on the thresholds

21 The precise number of marks required depends on the skill pa-
rameters of the volunteers who provide them.
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Figure 16. Left panel: Clump flux in g, r and i bands versus estimated clump false positive probability pfpl . Right panel: Clump flux

ratios g, r and i bands versus estimated clump pfpl . In both panels, the fluxes in each band are scaled in the same way as the corresponding

bands of the subject images (see subsection 2.2) to better reflect the data that volunteers actually see. On average, clumps with low pfpl
appear brighter and bluer in the subject images.
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Figure 17. Fraction of subjects retired for different reasons versus

number of volunteers per subject

listed in Table 2. As we show in Figure 10, retiring subjects
this early would yield a lower sample completeness, even for
the brighter clumps that experts also identified.

Moreover, while predicted numbers of subject labels con-
taining false positive or inaccurate clump locations both de-
crease for n & 7 as n→ 20, the predicted number of subjects
labels that are missing real clumps increases. Using any re-
tirement criterion predicated on N fn

i � 1, considering the an-
notations from more volunteers would result in more subjects
becoming stale in the working batch and therefore requiring
inspection by experts. Fortunately in the case of Galaxy Zoo:
Clump Scout , the fraction of subjects for which the estimated
number of false positive clumps N fn

i > 1 for any n is < 3%
of the overall dataset (∼ 2500 subjects), so visual inspection
by experts would be feasible.

8 SUMMARY AND CONCLUSION

In this paper we have presented a software framework that
uses a probabilistic model to aggregate multiple annotations
that mark two-dimensional locations in images of distant
galaxies and derive a consensus label based on those anno-
tations. The annotations themselves were provided via the
Galaxy Zoo: Clump Scout citizen science project by non-
expert volunteers who were asked to mark the locations of
giant star forming clumps within the target galaxies. Among
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Figure 18. Six curated but representative examples of subject images that show agreements and disagreements between volunteers and

experts. Features labeled as clumps by volunteers but ignored by experts are highlighted by white boxes. Red boxes highlight features
that were annotated by both experts and volunteers. Red circles highlight features that were annotated by experts but not by volunteers.

Volunteers tend to mark fainter features than experts, particularly if those features appear blue in colour. None of the features highlighted

in this figure were labeled as “odd” by a majority of volunteers or the experts who marked them.

a sample of 85,286 galaxy images that were inspected by vol-
unteers, our software framework identified 44,126 that con-
tained at least one visible clump and detected 128,100 poten-
tial clumps overall.

To empirically evaluate the validity of the clumps we iden-
tify, we compared our aggregated labels with annotations
provided by expert astronomers for a subset of 1000 galaxy
images. We found that Galaxy Zoo: Clump Scout volunteers
are much more optimistic than experts, and are willing to
mark much fainter features as potential clumps, particularly
if those features appear blue in colour. However, volunteers
also mark the vast majority of bright clumps that experts
identify, so although the sample of clumps we identify is
∼ 50% contaminated with respect to the expert identifica-
tions, it is & 90% complete.

In addition to our empirical evaluation, we have used the
statistical model that underpins our framework to compute
quantitative metrics for the reliability of the overall aggre-
gated labels that we derive for each image. These metrics sug-
gest that stable consensus for most images’ labels is achieved
after ∼ 7 volunteers have annotated it, which is < 50% of the
20 annotations that were collected for each image via Galaxy
Zoo: Clump Scout and would represent a significant saving

in volunteer effort. However, the annotation data are quite
noisy with large variation between the numbers of locations
that are marked by different volunteers and this noise makes
it difficult to define a robust “early retirement” criterion that
could be used to safely curtail collection of annotations before
20 have been acquired.

We suggest that the noisy annotation data reflect the fact
that inexperienced non-experts find the task of identifying
clumps difficult, or that the task was not properly explained.
In section 7, we discuss how different approaches to volunteer
training could be used to help volunteers better distinguish
the visible characteristics of genuine clumps from those of
the faint, blue features that many ultimately marked. On the
other hand, one of the benefits of using citizen science to iden-
tify clumps is that it avoids being overly prescriptive regard-
ing the definition of a clump. Galaxy Zoo: Clump Scout repre-
sents the first extensive wide-field search for clumpy galaxies
in the local Universe and it may be that low-redshift clumps
have different properties to their more distant counterparts.
Using strict thresholds on brightness or colour might result an
unexpected population of fainter clumps being missed. More-
over, the sample of clumps identified by volunteers appears
to be very complete and so, if a subset of bright clumps is
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required for science analysis, such a sample can be straight-
forwardly constructed using photometric measurements for
each clump (e.g. Adams et al. 2022).

Although our framework was developed to aggregate anno-
tations for a specific citizen science project, its applicability
is more general. A large number of projects running on the
Zooniverse platform collect two dimensional image annota-
tions. Many of those projects consider subjects that are more
familiar to non-experts and may be less prone to noise. In
such cases, our framework may be able to substantially re-
duce the amount of effort and time taken to reach consensus
for each subject.

9 DATA AVAILABILITY

The data underlying this article were used in Adams et al.
(2022) and can be obtained as a machine-readable table by
downloading the associated article data from https://doi.

org/10.3847/1538-4357/ac6512.
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APPENDIX A: MODEL PARAMETER PRIORS

In this section we derive formulae that we use to compute and
update the priors for our likelihood model’s volunteer skill
and subject difficulty parameters. Crucially for the efficiency
of our framework, these formulae can all be factored into
terms that depend only on the current working batch and
terms that depend only on prior information. This allows us
to straightforwardly update the skill parameters of returning
volunteers without having to reconsider the annotations they
contributed to previous working batches.
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A1 Beta priors for pfp and pfn

Our model for volunteer skill assumes that the event in which
volunteer j incorrectly provides a false positive clump annota-
tion is Bernoulli Bern(pfpj ) and similarly that the event that

a volunteer misses a real clump is Bern(pfnj ). Note that in

general pfpj 6= 1− pfnj .

The probabilities pkj , k ∈ [fp, fn] for a particular volun-
teer are unknown a-priori and must be estimated using that
volunteer’s annotations Zj . Let nfp

j be the number of annota-

tions in Zj that are determined to be false positives and nfn
j

be the number of real clumps that the volunteer missed. The
posterior distribution for pkj is

p(pkj |Zj) = π(pkj )p(Zj |pk) = π(pkj )

|Zj |∏
r=1

Bern(pkj )

= π(pkj ) · (pkj )n
k
j (1− pkj )(|Zj |−n

k
j ) (A1)

We place beta distribution priors on the values of pfpj and pfnj ,
such that:

π(pkj ) ∼ Beta(pkj ;nβp
k
0 , nβ(1− pk0)) (A2)

where the beta distribution

Beta(θ; a, b) ∝ θ1−a(1− θ)1−b (A3)

This approach simulates having previously performed nβ
Bernoulli trials with success probability pk0 . The Beta dis-
tribution is the conjugate prior of the Bernoulli distribution,
so using a beta prior on a Bernoulli distribution yields a pos-
terior that is also Beta distributed. Expanding the posterior
distribution for pk yields

p(pk|Zj) ∝ (pkj )(1−nβp
k
0 )(pkj )n

k
j

· (1− pkj )(1−nβ(1−p
k
0 ))(1− pkj )(|Zj |−n

k
j )

∝ (pkj )(1−nβp
k
0 ) · (pkj )n

k
j

· (1− pkj )(1−nβ(1−p
k
0 )) · (1− pkj )(|Zj |−n

k
j )

∝ (pkj )(1−nβp
k
0+n

k
j )

· (1− pkj )(1−nβ(1−p
k
0 )+|Zj |−n

k
j )

∝ Beta
(
pkj ;nβp

k
0 + nkj , nβ(1− pk0) + |Zj | − nkj

)
(A4)

The expected value of the beta distribution Beta(θ|a, b) is

E(θ) =
a

a+ b
(A5)

Adopting E(pkj ) as an estimator for the volunteer skills pkj
yields

pkj ≈ E(pkj )

=
nβp

k
0 + nkj

nβpk0 + nkj + nβ(1− pk0) + |Zj | − nkj

=
nβp

k
0 + nkj

nβ(pk0 + 1− pk0) + nkj + |Zj | − nkj

=
nβp

k
0 + nkj

nβ + |Zj |

(A6)

A2 Scaled inverse χ2 priors for σ2

We use a scaled inverse χ2 priors to compute a posterior
distribution over variance parameters of our Gaussian models
for dj and di,l.

We specify a prior that simulates having drawn nχ samples
from a Gaussian distribution with zero mean and variance σ2

0 .
This implies the following prior density function

π(σ2;nχ, σ
2
0) = Scale− inv−χ2(σ2;nχ, σ

2
0)

=
(σ2

0nχ/2)nχ/2

Γ(nχ/2)
· 1

(σ2)1+nχ/2
· exp

[
−nχσ2

0

2σ2

]
(A7)

We multiply by the likelihood of the data that were observed.
To estimate σ2 we consider the Jaccard distances ∆ between
all true positive volunteer boxes and the locations of the es-
tablished clumps to which they are associated.

P (Z|σ2) ∝ 1

σn
exp

[
− 1

2σ2

ntp∑
i=1

|∆|2
]

(A8)

This yields the posterior density

P (σ2) ∝ 1

σntp
· 1

(σ2)1+nχ/2

· exp

[
− 1

2σ2

ntp∑
i=1

|∆|2
]
· exp

[
−nχσ2

0

2σ2

]

∝ 1

σntp+nχ+2
· exp

[
− 1

2σ2

(
nχσ

2
0 +

n∑
i=1

|∆|2
)]

∝ Scale− inv−χ2

σ2;ntp + nχ,

nχσ
2
0 +

ntp∑
i=1

|∆|2

ntp + nχ


(A9)

The expected value of the scaled inverse χ2 distribution is
undefined, so we compute the mode of the posterior as our
estimate for σ2. The mode of the scaled inverse χ2 distribu-
tion Scale− inv−χ2(x; ν, τ2) is

Mode(x) =
ντ2

ν + 2
(A10)

Substituting for the parameters of our posterior density func-
tion yields

σ2 ≈ nχσ
2
0

ntp + nχ + 2

ntp∑
i=1

|∆|2. (A11)

APPENDIX B: DOMAIN-SPECIFIC TERMS

In this section we provide short definitions for some of the
potentially unfamiliar terms that are used in this paper.

Subject A single image of a galaxy that volunteers are
shown via the Zooniverse platform and that they inspect to
search for clumps.

Volunteer A member of the public who participated in the
Galaxy Zoo: Clump Scout project by inspecting one or more
subjects and used Zooniverse platform interface to search for
and annotate the locations on clumps.
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Annotation A set of click locations provided by a single
volunteer as they inspect a single subject. The click locations
are later expanded into a set of square boxes as explained in
subsection 4.2.

Label A set of zero or more rectangular bounding boxes,
derived by our aggregation framework for a single subject
image, that estimates the locations of any clumps it contains.

Skill A compound metric, describing a particular volunteer,
that estimates the probability will mark a spurious clump, the
probability that they will miss a real clump, and the accuracy
of the locations they provide for any real clumps they mark.

Difficulty A quantitative metric for the degree to which the
properties of a single subject image affect the ability of volun-
teers to perceive and accurately label any clumps it contains.

Risk A metric that is designed to quantify the reliability and
scientific utility of a single subject’s consensus label.

Retire Stop collecting annotations for a subject.

APPENDIX C: TABLE OF SYMBOLS

In this section we provide a reference table for symbols that
recur in multiple sections of this paper.

APPENDIX D: COMPARISON WITH SCIKIT
LEARN MEANSHIFT CLUSTERING ALGORITHM

We emphasise that the aim of this paper is not to present
a novel and very complicated clustering algorithm. Indeed,
our focus is the likelihood model that we use to estimate
the Galaxy Zoo: Clump Scout volunteers’ skills, the difficulty
of the subjects that they inspect, and the reliability of the
consensus labels that we derive. Nonetheless, we recognise
that there are many well established clustering algorithms
in the literature and that some of them may outperform
our framework’s ability to actually detect clumps, even if
they cannot provide the same auxiliary information about
the final subject labels. Presenting exhaustive comparison
between our framework and every alternative algorithm is
beyond the scope of this paper. However, we have tested sev-
eral of the methods available from the Scikit Learn Python
package (Pedregosa et al. 2011). In this section we present a
representative comparison between our framework and the
Scikit Learn MeanShift clustering algorithm. We set the
MeanShift algorithm’s bandwidth parameter set equal to the
size of the SDSS imaging PSF for each subject image and all
other parameters were left set to their default values22.

Figure D1 shows the distribution of the difference between
the number of clumps detected by our framework and the
number detected using the MeanShift algorithm for each sub-
ject in the Galaxy Zoo: Clump Scout subject set. For the ma-
jority of subjects, our framework detects more clumps than

22 See https://scikit-learn.org/stable/modules/generated/

sklearn.cluster.MeanShift.html
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Figure D1. Distribution of the distribution of the difference be-

tween the number of clumps detected by our framework and the
number detected using the MeanShift algorithm for each subject

in the Galaxy Zoo: Clump Scout subject set.

the MeanShift algorithm. In Figure D2 we show some rep-
resentative subjects for which our framework detects more
clumps than the MeanShift algorithm and in Figure D3, we
show subjects for which the reverse is true. It is not obvious
from these figure that either algorithm is particularly biased
towards detecting clumps with specific properties. There is
some evidence that our algorithm detects fainter potential
clumps than the MeanShift algorithm, and seems less vul-
nerable to misidentifying objects like stars and background
galaxies as clumps. Even when such objects are detected by
our framework, they tend to be assigned false positive prob-
abilities greater than 0.8. In some cases, our framework fails
to detect clumps that many volunteers identify. We speculate
that this is a result of a small number of volunteers with very
high pfpj identifying the clump, which causes our framework
to deem other volunteers’ clicks as false positives as well.
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Table C1. Table of the most commonly recurring symbols used in this paper. We divide the symbols into categories and provide a brief

description of how they should be interpreted. Complete descriptions of each symbol are provided in the main text at the point they are
first introduced.

Category Symbol Description

Object indices i Index over subjects.

j Index over volunteers.

k Index over a volunteer j’s clump identifications for a single subject.
l Index over aggregated clump locations.

Subjects S The global set of subject images.
Sj The set of subject images inspected by volunteer j.

si A single subject image in S.

Ri The risk for subject si.

N fp
i The expected number of spurious clump locations (false positives) in the label for

subject i.
N fn
i The expected number of missed clumps (false negatives) in the label for subject i.

Nσ
i The expected number nominally true positive clump locations in the label for sub-

ject i that differ from the (unknown) true clump location by a Jaccard distance
greater than 0.5.

Subject difficulties σli
2

The variance of a Gaussian model for the Jaccard distance offset between the

estimated location of the lth detected clump for subject i and its corresponding
(unknown) true location.

Di The difficulty of subject i defined the set of σli
2

values for all detected clumps in

the image.

Volunteers V The global set of volunteers.

Vi The subset of volunteers who inspected subject i.

Volunteer skills pfpj The probability that volunteer j will click on a spurious clump.

pfnj The probability that volunteer j will miss a real clump.

σ2
j The variance of a Gaussian model for the Jaccard distance offset between volun-

teer j’s true positive click locations and the corresponding (unknown) true clump

locations, independent of subject.

Sj The skill of volunteer j defined as the set {pfpj , p
fn
j , σ

2
j }.

Annotations Z The global set of volunteer annotations.
Zi The set of annotations for a single subject image provided by all the volunteers

who inspected it.

Z̃n A randomly selected subset of Z containing exactly n annotations per subject.

zij A single annotation provided by volunteer j after inspecting subject i.

Bij The set of boxes, corresponding to click locations provided by volunteer j for subject
i.

Bi The set of all boxes, corresponding to click locations provided for subject i by all

volunteers who inspected it.
bkij A single box, corresponding to the location of a single click provided by volunteer

j for subject i.

σkij
2

The variance of a Gaussian model for the Jaccard distance offset between volunteer

j’s kth true positive click location for subject i and its corresponding (unknown)
true clump location.

akij An integer value that maps the kth click in volunteer j’s annotation of subject i to
a specific clump in that subject’s estimated label (or to the dummy facility if it is
deemed to be a false positive).

Labels Y The global set of subject labels.
yi The unknown true label for subject i.

bli A single box comprising part of the unknown true label for subject i.
ŷi The estimated label for subject i that is computed by our framework.

b̂li A single box comprising part of the estimated label for subject i.

pfpl The probability that the lth clump in the estimated label for a subject is a false
positive.

pσl The probability that the Jaccard distance between the lth clump in the estimated
label and the corresponding (unknown) true clump location exceeds 0.5.
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Figure D2. Examples of clump-hosting galaxies, for which our framework detects more clumps than the Scikit Learn MeanShift

algorithm. The first column shows galaxy images as they were seen by volunteers. The second column overlays all volunteer annotations

on a grey-scale image of the same galaxy. The coloured boxes in the third column show the clump locations that out framework identifies.
Dashed boxes indicate clumps with false positive probabilities pfpl > 0.8 assigned by framework label. Finally, the red circles in the fourth
column show the clumps detected by the MeanShift algorithm.

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/advance-article/doi/10.1093/m
nras/stac2919/6759438 by O

pen U
niversity Library user on 24 O

ctober 2022



O
R
IG

IN
A

L
 U

N
E
D

IT
E
D

 M
A

N
U

S
C

R
IP

T

Galaxy Zoo: Clump Scout - a two-dimensional aggregation tool for citizen science 31

Figure D3. Examples of clump-hosting galaxies, for which our framework detects fewer clumps than the Scikit Learn MeanShift

algorithm. The images, boxes and circles shown in the various columns have the same meaning as in Figure D2.
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