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Abstract

We examine the structure of Farey maps, a class of graph embeddings on surfaces that have

received significant attention recently. When the Farey graph is embedded in the hyperbolic

plane it induces a tessellation by ideal triangles. Farey maps are the quotients of this tessellation

by the principal congruence subgroups of the modular group. We describe how the Farey maps of

different levels are related to each other through regular coverings and parallel products, and use

this to find their complete spectra. We then generalise Farey maps to include those defined by

non–principal congruence subgroups of the modular group, finding their spectra and diameter.

We also examine a similar class of maps defined by Hecke groups, again obtaining results for

their spectra and diameter. Most of this work is the subject of [63], which has been published

in Acta Mathematica Universitatis Comenianae.

Fundamental to the theory of continued fractions is the fact that every infinite continued

fraction with positive integer coefficients converges; however, this is not so if the coefficients are

integers which are not necessarily positive. We show that integer continued fractions can be

represented as paths on the Farey graph, and use this to develop a simple test that determines

whether an integer continued fraction converges or diverges. In addition, for convergent continued

fractions, the test specifies whether the limit is rational or irrational. This work, carried out

jointly with Ian Short, is the subject of [57], which has been published in the Proceedings of the

American Mathematical Society.

Finally further work is described, including practical applications of our spectral results, and

a search for interesting expansions of real numbers as generalised continued fractions.
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Chapter 1

Introduction

This thesis is an account of the class of graph embeddings on surfaces known as Farey maps. A

feature of these maps is that paths on them can represent integer continued fractions; we use

this to find conditions for the convergence of these fractions. We also study Farey map spectra,

proving conjectures developed from experimental results by considering how different Farey maps

are connected through coverings and parallel products.

In this introduction we give a selection of our most significant results, then explain in detail

the motivation and context for each one. The formal definitions of the terms we use will be given

in Chapter 2, together with the background results from classical theory which we use.

1.1 Main results

Our first main results concern the way in which Farey maps are connected through coverings.

This work is explained in detail in Chapter 3, and is the subject of [63]. We will use coverings

to find the spectra of Farey and related maps, obtaining by more straightforward means results

given recently in [50] using the theory of finite valuation fields. We also use coverings to give an

alternative proof of a recent result in [38] concerning certain map diameters.

Maps are graphs embedded in surfaces in such a way that the components of their comple-

ments are homeomorphic to the unit disc. As we explain in more detail later, the universal

9



CHAPTER 1. INTRODUCTION 10

triangular map is shown in [59] to be the regular triangulation of the hyperbolic plane known as

the Farey tessellation. Its automorphism group is the modular group. Farey maps are regular

maps on oriented surfaces which are constructed by taking quotients of the Farey tessellation by

congruence subgroups of the modular group of different levels. A formal definition is given in

Section 3.3.

Our first two theorems concern the way in which Farey maps of different levels are connected

to each other through coverings and parallel products.

Figure 1.1.1: The Farey maps of level 2, a triangle, and level 4, an octahedron. The octahedron
is a 4-sheeted covering of the triangle, ramified at the vertices, with ramification index 2.

The formal definitions of the terms used are given in Section 2.7. We give an informal example

in Figure 1.1.1, which shows the Farey map of level 2, a triangle embedded in a sphere, and the

Farey map of level 4, an octahedron. A net of the octahedron consists of 4 rhombuses, pairs of

white and grey triangles, which could be cut and folded in such a way that each rhombus covers

the 2 faces of the Farey map of level 2. We say that the octahedron is a 4-sheeted covering of

the Farey map of level 2. It has 4 times as many faces and 4 times as many edges, but only

twice as many vertices as each vertex is in 2 sheets. The covering is ramified at the vertices,

with ramification index 2. The covering would be unramified if each vertex were in exactly one

sheet - a map consisting of 4 separated triangles embedded in a surface topologically equivalent

to 4 spheres would be an unramified 4-sheeted covering of the Farey map of level 2.

The parallel product of two maps is the smallest map which is a covering of both maps.

Theorem 1.1.1. For a prime p and a positive integer k, the Farey map of level pk is a regular
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covering of the Farey map of level pk−1, ramified at the vertices with ramification index p. The

covering has 4 sheets if pk = 4, and otherwise has p3 sheets.

Theorem 1.1.2. Let m be a positive integer.

(i) If m is odd, the Farey map of level 2m is the parallel product of the the Farey map of level 2

and the Farey map of level m.

(ii) If l and m are coprime integers, and neither l nor m is twice an odd integer, then the Farey

map of level lm is a regular unramified double covering of the parallel product of the Farey

map of level l and the Farey map of level m.

Work has also been developed in [30,38] on similar quotients of other universal tessellations,

the Hecke maps. In [30] it is shown that the universal map whose faces are q sided polygons

is a tessellation whose automorphism group is the Hecke group of level q; in fact the modular

group is the Hecke group of level 3. Hecke maps are constructed from the Hecke group in a

way analogous to the construction of Farey maps from the modular group. We will prove the

following theorem in Chapter 3, using graph coverings rather than map coverings.

Theorem 1.1.3. For odd n, the underlying graph of the Hecke map of type (4, n) is a double

graph covering of the underlying graph of the Farey map of type (3, n). If n is not a multiple of 3,

the underlying graph of the Hecke map of type (6, n) is a double graph covering of the underlying

graph of the Farey map of type (3, n).

These theorems then enable us to find the complete spectra of all Farey maps and of some

Hecke maps, as is explained in detail in Chapter 4.

The second part of this thesis presents new necessary and sufficient conditions which depend

solely on the coefficients for the convergence of a continued fraction with integer coefficients. This

result is explained in detail in Chapter 6.4, and is the subject of [57], which has been published

in the Proceedings of the American Mathematical Society. A regular continued fraction is a
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continued fraction

(b0, b1, . . . ) = b0 +
1

b1 +
1

b2 +
1

b3 + · · ·

. (1.1.1)

such that the coefficients bi are strictly positive integers. Conditions for the convergence of these

fractions have been well known since the work of Euler and Lagrange in the eighteenth century,

but we do not know of any such results for integer continued fractions, whose coefficients can be

any integer, positive, negative or zero. However integer continued fractions can be interpreted

as paths on the Farey graph or tessellation, and we have been able to use this idea to obtain, for

the first time, criteria for their convergence.

We give further technical details on continued fractions in Section 2.8. It is usual to write an

infinite integer continued fraction as in (1.1.1). However we prefer to use the negative continued

fractions defined by

[b0, b1, . . . ] = b0 −
1

b1 −
1

b2 −
1

b3 − · · ·

, (1.1.2)

where the coefficients bi can be positive or negative integers, or zero. We can easily switch

between this expression and the more usual one by using the formula

(b0, b1, b2, b3, . . . ) = [b0,−b1, b2,−b3, . . . ]. (1.1.3)

We will define an iterating function mapping the collection of negative continued fractions to

itself. Then p(n), the key position, is the position of the first coefficient equal to 0,1, or −1 after

n iterations of this function, and q(n) is the modulus of the coefficient in the position preceding

lim inf p(n) if that limit is finite. We will show that, if p(n) →∞, the continued fraction stabilises
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as a limit continued fraction [b∗0, b
∗
1, . . . ] (in a sense which we will make more precise later). We

will prove the following result in Chapter 5.

Theorem 1.1.4. Let [b0, b1, . . . ] be a negative continued fraction.

1. Suppose that p(n) →∞.

(a) If [b∗0, b
∗
1, . . . ] has the same tail as [2, 2, . . . ] or [−2,−2, . . . ], then [b0, b1, . . . ] converges

to a rational.

(b) Otherwise, [b0, b1, . . . ] converges to an irrational.

2. Suppose that p(n) 6→ ∞.

(a) If q(n) →∞, then [b0, b1, . . . ] converges to a rational or to infinity.

(b) If q(n) 6→ ∞, then [b0, b1, . . . ] diverges.

We now give details of the context for our results.

1.2 Background to the study of Farey maps

Cartographic maps, which in this thesis we simply refer to as maps, are graphs embedded in

surfaces in such a way that the surface is divided into regions with interiors homeomorphic to

the unit disc. We use the theory of maps on surfaces given in [59] and [33]. In these papers

universal maps on Riemann surfaces are introduced, and shown to be regular tessellations by

regular polygons. All finite maps on oriented surfaces are quotients of these universal maps by

various groups. Specifically, in [59], it is shown that the universal triangular map is the Farey

tessellation, which was first introduced by Hurwitz in 1894 in the context of quadratic forms. It

is embedded in the hyperbolic plane, and its quotients are embedded in Riemann surfaces.

Background to the study of Riemann surfaces can be found in [17] and [32]. In developing

their study of these surfaces and their representation as algebraic curves in 1880, Klein and

his student Dyck were particularly interested in two objects which describe the symmetries

of algebraic curves, and which we now call maps. These are the Klein map, a regular map

of degree 7, which has 24 vertices and is embedded in the surface of genus 3 known as the
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Klein quartic; and the Dyck map, a regular map of degree 8 with 12 vertices, which is also

embedded in a surface of genus 3. They were able to describe these maps as graph embeddings in

certain algebraic curves (representing Riemann sufaces) with equations, in homogeneous complex

variables, x3y + y3z + z3x = 0 and x4 + y4 + z4 = 0 respectively. In [43] there are studies of

the Klein quartic and of the Klein map, which turns out to be an example of the family of

maps which is the main focus of our study, the Farey maps. In fact, in [30], the Klein map is

constructed as the Farey map of level 7. In Chapter 3 we also study a related family of maps

which includes Dyck’s map.

Much current work defines maps in terms of their flags, a term which describes a triple

consisting of a vertex, an incident edge, and a face incident to that edge. This is necessary for

the study of maps embedded in surfaces which are not oriented. As the hyperbolic plane and its

quotients are oriented, we will instead define maps on oriented surfaces in terms of their directed

edges, or darts, as do [26,27,33,59].

1.3 Spectra of graphs and maps

One of the most important practical applications of graph theory is to the design of communica-

tion networks. As is explained in [40], it is important that these networks be as fast as possible,

which requires a small diameter, but also as reliable as possible, so that they are not put com-

pletely out of action by the failure of one or two circuits. It follows that it is not desirable for

the number of cuts needed to separate a set of vertices from the rest of the network to be too

small. Considerable emphasis has been given to the study of expanders, which are families of

graphs each of which, for a given diameter, maximises the number of cuts needed to separate a

set of vertices from its complement. Expanders can be used to construct large reliable networks.

A useful measure of reliability is the isoperimetric constant, which is the normalised minimum

of the number of edges joining a set of vertices to its complement. As is shown, for instance in

[40] and [68], the isoperimetric constant is related to certain eigenvalues of the adjacency matrix

of the network.

It is also desirable that the mixing time of a network, that is the time needed for any input

to reach a stationary distribution, be as short as possible. A well–known classical result ([45,
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Theorem 3.1]) relates mixing time to the modulus of a certain graph eigenvalue; this needs to

be as small as possible. In [20] an expected value for this modulus is found for a random graph.

Graphs that are ‘better than random’ are known as Ramanujan graphs and are the subject of

considerable research (see for instance [16,23,50]).

Both these important practical considerations motivate the study of the spectra, or sets of

eigenvalues, of graphs and maps, the basic theory for which is found in [7, 22]. We have found

results for the spectra of Farey maps and of some other families of maps by considering the way

they are connected to each other through regular coverings and through the parallel products

developed in [66,67].

1.4 Continued fractions and paths on Farey maps

Our results on integer continued fractions are motivated in part by the work of Beardon, Hockman

and Short, [3], who prove that all integer continued fractions can be represented by paths on the

Farey tessellation. Caroline Series in [56], uses a different geometric representation of regular

continued fractions on the Farey tessellation.

It is explained in [39,64] how the search for good approximations to π led Lord Brouckner to

propose to Wallis in 1655 the continued fraction expansion

4

π
= 1 +

12

2 +
32

2 +
52

2 +
72

2 + · · ·

.

In the eighteenth century Euler found a wealth of further expansions, as shown for instance

in [18,19].

The theory of regular continued fractions, both finite and infinite, is now a central part of

number theory and is explored in many texts, such as [24]. During the early twentieth century the

theory of continued fractions was extended to those with rational, real and complex coefficients.
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There is an extensive literature on the convergence of continued fractions – from Perron’s classic

treatise [51, 52] to more recent texts such as [44] – and there are a wealth of algorithms for

generating different types of integer continued fractions (see, for example, [28, Chapter 4] for

algorithms in the metric theory of continued fractions, and [37] for algorithms in the geometric

theory of continued fractions). A wide variety of tests for convergence of continued fractions

with real and complex coefficients are known. For instance, if |bn| > 2 for n = 0, 1, . . . , then the

integer continued fraction (b0, b1, . . . ) given by equation (1.1.1) converges – even if the coefficients

bn are complex numbers – and some slightly stronger tests are known when the coefficients are

integers (such as [36, Lemma 1.1]). There has, however, been relatively little work on the general

theory of integer continued fractions. The second part of this thesis, which gives a necessary and

sufficient condition for their convergence, extends results concerning the convergence of paths on

the Farey tessellation in [58] and applies them to integer continued fractions. The detail of this

work is set out in Chapter 5.



Chapter 2

Preliminaries

In this chapter we give the theoretical background for our research in detail, collecting the

definitions and results which we need.

We will use the following notation: Z is the set of integers, N the set of natural numbers,

and we define N0 = N ∪ {0}. R is the real number line, C the complex plane, and Q the set of

rationals. If z ∈ C, we will write z = x+ iy, where i2 = −1, x = Re(z) is the real part of z, and

y = Im(z) is the imaginary part of z.

Adjoining the point at infinity, we define the extended set of integers by Z∞ = Z ∪∞, and,

similarly, the extended sets of real numbers, complex numbers and rationals by R∞ = R ∪ ∞,

C∞ = C ∪ ∞, and Q∞ = Q ∪ ∞. We will represent a member of Q by the reduced rational

a/b, with a, b ∈ Z, b > 0, and gcd(a, b) = 1, and use the convention that 1/0 represents ∞ when

considered a member of Q∞; in this case we also take 1/0 to be a reduced rational.

2.1 Some linear and other groups

We will use the general linear group GLn(K), whose members are the invertible symmetrical

n×n matrices with elements in K, where K can be Z, Q, R or C. We also use the special linear

group, which is the subgroup SLn(K) of GLn(K) whose elements have determinants equal to 1.

The projective special linear group PSL2(K), is the quotient of SL2(K) by the subgroup {±I},

17



CHAPTER 2. PRELIMINARIES 18

where I is the identity of SL2(K). In order to avoid the frequent use of the ± symbol, we will

often write the members of PSL2(K) as

a b

c d

 =


a b

c d

 ,

−a −b

−c −d


 , where

a b

c d

 ∈ SL2(K).

We will also frequently use the group of Möbius transformations acting on K∞ = K ∪ ∞,

given, for all a, b, c, d ∈ K, with ad− bc 6= 0, by

K∞ −→ K∞

z 7−→ az + b

cz + d
,

with the usual conventions for the point at infinity.

We can define a left action of GL2(K) on K by

a b

c d

 z =
az + b

cz + d
,

and noting that, for all λ ∈ K, λ 6= 0

λaz + λb

λcz + λd
=
az + b

cz + d
,

we see that the action of the group of Möbius transformation coincides with that of the left

action of the projective special linear group PSL2(K).

If s and t are Möbius transformations, and the equivalent members of PSL2(K) are S and

T respectively, then we write the action of s followed by the action of t as t ◦ s. Its equivalent

matrix form is the matrix product TS.

The set of all possible permutations of the elements of a collection Ω of objects form the group

Sym(Ω). In group theory the action of a permutation x on the elements of Ω is a right action. If

h1, h2, h3 ∈ Ω, x takes h1 to h2, and y takes h2 to h3, we write h1x = h2, and h1xy = h3. Note

that if Ω is a set of objects which can be mapped to each other by Möbius transformations, and

the actions of the Möbius transformations s and t coincide with that of the permutations x and
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y respectively, we write t ◦ s(h1) = h3, but h1xy = h3.

Let G and H be two groups with group operations + and × respectively. Then a transfor-

mation σ : G −→ H is a group homomorphism if, for all u, v ∈ G, σ(u + v) = σ(u) × σ(v). The

kernel of σ in G, Ker(σ), is the set of members of G which σ maps onto the identity of H. If H

is a normal subgroup of G, and σ is a surjective homomorphism, Ker(σ) is a normal subgroup

of G.(See for instance [54, Theorems 3.9 and 3.22].) We will use the following result

G/Ker(σ) ∼= H. (2.1.1)

2.2 The hyperbolic plane

The upper half plane is the set H = {z ∈ C : Im(z) > 0}. The Riemannian or hyperbolic metric

is

|ds|2 =
dx2 + dy2

y
=
|dz|2

Im(z)
.

The upper half plane model of the hyperbolic plane is the upper half plane endowed with the

Riemannian metric. We define the unit disc to be D = {z ∈ C : |z| < 1}. Using the Möbius

transformation

H −→ D

z 7−→ i(1 + z)

1− z
,

we can transfer the hyperbolic metric from H to D to give the unit disc model of the hyperbolic

plane. We will mainly use the upper half plane model.

The paths of shortest length on a surface are its geodesics (also known as hyperbolic lines).

The geodesics between points on H are either vertical lines or segments of semicircles centered

on the real axis. Then the action on H of any member of the subgroup of the group of Möbius

transformations such that a, b, c, d ∈ R with ad − bc = 1 is an isometry, and is an orientation

preserving automorphism. In particular, geodesics are preserved.

Note that, as H does not include its limit points, which are ∞ and the points on the real axis,
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it is not compact.

Further details and proofs on this topic can be found in texts such as [17,21,32].

2.3 Graphs

A graph consists of a set of vertices and a set of unordered pairs of vertices called edges. Two

vertices u and v in the same edge {u, v} are said to be adjacent. We write v ∼ u. Alternatively,

we say that v is a neighbour of u, and vice-versa. The edge {u, u} is a loop. A simple graph has

no vertices which are not members of an edge, and no loops. For a simple graph, the number of

neighbours of a vertex is its valency. A simple graph in which every vertex has the same valency

is regular. The vertex valency is then termed the degree of the graph. A directed edge, or dart,

of a graph is, if the unordered pair {u, v} is an edge, one of the ordered pairs of vertices (u, v) or

(v, u). We say that u is the initial vertex and v the final vertex of the dart (u, v). The graphs

considered in this thesis are all simple graphs, which we shall just call graphs. A simple graph

can be completely specified by its set of darts. Unless we state otherwise, we consider undirected

graphs, that is graphs for which, if (u, v) is a dart, (v, u) is also a dart.

A path in a graph G is is a sequence v1, v2, . . . , vN of vertices of G such that vi ∼ vi+1 for

i = 1, 2, . . . , N − 1. The length of this path, or the distance between the two vertices v1 and vN

along this path, is N − 1. We denote the shortest distance between 2 vertices u and v of a graph

by d(u, v). The diameter of a graph is the largest value of d(u, v) between any two of its vertices.

A graph isomorpism is a bijection from one graph to another that preserves adjacency between

the vertex sets of the two graphs. An isomorphism from a graph to itself is a graph automorphism.

The set of all automorphisms of a graph G form its automorphism group Aut(G). From [22,

Lemma 1.3.1], if a graph is connected, its graph automorphisms permute the vertices of equal

valency amongst themselves. A graph homomorphism is a transformation from one graph to

another that preserves adjacency between the vertex sets of the two graphs. A surjective graph

homomorphism π : G1 −→ G2 is a graph covering transformation if π induces a bijection between

the set of vertices adjacent to any vertex v of G2 and the set of vertices adjacent in G1 to any

vertex in π−1(v). G1 is then a graph covering of G2, as defined in [22].
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If G1 and G2 are graphs with dart sets Ω1 and Ω2, respectively, the graph direct product or

graph tensor product G1 × G2 is the graph whose dart set is the cartesian product of Ω1 and Ω2.

The adjacency matrix A of an N vertex graph G is the N × N square matrix whose rows

and columns are indexed by the vertices v0, v1, . . . , vN−1 of G. The entry of A corresponding to

the vertices vi and vj is 1 if vi ∼ vj , and 0 otherwise. The eigenvalues of A are the solutions of

the characteristic equation |A − λI| = 0; their multiplicity as solutions of this equation is their

algebraic multiplicity. The total number of eigenvalues counting multiplicities is N .

If the eigenvalues of A are λ1 ≥ · · · ≥ λN , the spectrum of G is the multiset of these eigen-

values with their algebraic multiplicities, which we write sp(G) = {λ(m1)
1 , λ

(m2)
2 , . . . , λ

(mi)
i } if its

i distinct eigenvalues are λ1, λ2, . . . , λi with algebraic multiplicities m1,m2, . . . ,mi respectively.

The complete graph on n vertices, Kn is a graph all of whose vertices are adjacent to every

other vertex. Kn is regular of degree n− 1. It is well known (see for instance [7, Section 1.4.1])

that

sp(Kn) = {−1(n−1), n− 1}. (2.3.1)

2.4 The Farey graph

1
3

1
2

2
3

10− 1
3− 1

2− 2
3

−1

∞

Figure 2.4.1: Part of the Farey graph drawn on the hyperbolic plane.

The extended rationals in Q∞ lie on the boundary R∞ of H. The Farey graph is the graph

whose vertices are the members of Q∞ represented by reduced rationals (including ∞ = 1/0),

and edges comprising those pairs a/b and c/d of reduced rationals for which ad − bc = ±1.
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We represent the edge incident to a/b and c/d by the unique geodesic in H between those two

boundary points. The collection of all edges creates an embedding of the Farey graph in the

hyperbolic plane which is a tessellation of H by triangles, the Farey tessellation F , part of which

is shown in Figure 2.4.1.

The modular group Γ is the group of unimodular Möbius transformations with coefficents in Z,

given, for all a, b, c, d ∈ Z, with ad− bc = 1, by

K∞ −→ K∞

z 7−→ az + b

cz + d
,

The modular group is isomorphic to PSL2(Z). It acts on C∞, on R∞, and on Q∞, with the

standard conventions regarding the point ∞. It acts on H as a group of orientation preserving

hyperbolic isometries. It is straightforward to check that the action of any member of Γ preserves

adjacency between the vertices of F , so Γ also acts on F ; therefore, as well as being an orientation

preserving automorphism of H, each element of Γ induces a graph automorphism of F .

2.5 Surfaces

A topological space is a set X of elements which we call points, together with a collection of

its subsets, which are called its open sets. Both X and the empty set are open sets, and the

collection of open sets is such that any union of open sets is open, and the intersection of a finite

number of open sets is open.

A Hausdorff space is a topological space in which any two distinct points are in open sets

whose intersection is empty.

A transformation between two topological spaces is continuous if the inverse image of every

open set is open. A homeomorphism between two topological spaces is a transformation which

is bijective and bicontinous.

We define a topological surface, as in [21, 32, 49], as a Hausdorff space S with an atlas.

This is a collection of pairs (Ui, φi), where Ui is an open set of S and
⋃
i Ui covers S; φi is

a homeomorphism, called the chart of Ui, from Ui to an open set of the complex plane C,
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and, if U1 and U2 with charts φ1 : U1 → C and φ2 : U2 → C respectively have a non-empty

intersection, the transition function φ2 ◦ φ−11 , which is a mapping between open subsets of C,

is also a homeomorphism. If all the transition functions of the atlas are holomorphic (that is

differentiable everywhere), the surface is a Riemann surface.

It is shown in [49, chapter 3] that every surface is homeomorphic to a space obtained from

the unit sphere by adding either g handles, in which case the surface is an orientable surface of

genus g, or h crosscaps, in which case it is a non-orientable surface of genus h.

A path on a surface is the image of the unit interval [0, 1] in C under a homeomorphism. A

path which starts and finishes at the same point is a closed path. If, given any two points on a

surface, there is a path between them, then that surface is said to be connected. If the closed

paths on a surface can be continuously deformed onto each other, the surface is simply connected.

2.6 Maps as graph embeddings in surfaces

We define a topological map MT as the embedding of a finite graph G (the underlying graph) in

a compact surface S (the supporting surface) such that each component of the complement of G

in S is homeomorphic to an open disc.

The components of the complement of G in S are the faces of the map. We write the numbers

of vertices, edges and faces of the map as, respectively, V (MT ), E(MT ) and F (MT ), or simply

as V,E, F if there is no ambiguity. It is well known (see for instance [49, Section 3.1]) that if a

graph is embedded in an oriented surface its genus, that is the genus g of its supporting surface,

is given by

2− 2g = V − E + F. (2.6.1)

Much work on topological maps deals with them algebraically. This was put on a firm

theoretical basis in [33]. In that paper it is shown, as we briefly sketch below, that any map

defined topologically is equivalent to an object defined purely algebraically called an algebraic

map. This enables the powerful tools of group algebra to be used to study maps and their

underlying graphs.
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As in [33], we define an algebraic map as a quadruple MA = (G,Ω, x, y), where Ω is a set

of objects, G is a subgroup of the group Sym(Ω) of all permutations of Ω, x and y generate G,

x2 = e, where e is the identity element of G, and G is transitive on Ω.

If a topological map MT is the embedding of a finite connected graph G in an orientable

compact surface S which has no boundary, we construct an algebraic map Alg(MT ) = (G,Ω, x, y)

by making Ω the set of darts or directed edges of G. Then we define x as the permutation of Ω

which sends each dart to the other dart on the same edge, and y as the permutation of Ω which

sends each dart to the next dart incident to its initial vertex in the direction of the positive

orientation of the surface S. We define G as the group generated by x and y. We then define the

vertices of Alg(MT ) algebraically as the left cosets of 〈y〉 in G, and the edges as the left cosets

of 〈x〉 in G.

The action of the permutation xy−1 on a dart h consists of mapping h onto the other dart

on the same edge, which is hx, and then sending that dart to the next dart around the final

vertex of h in a direction opposite to that of the positive orientation of S, which is hxy−1. As

shown in Figure 2.6.1, this is the dart following h in a path around a face. If m is the order of

xy−1, the repeated action of xy−1 takes h to m succesive darts in a closed path in the direction

of the positive orientation of S ending at the inital vertex of h. This path encloses a face of the

topological map, so we define the faces of the algebraic map as the left cosets of xy−1 in G, with

incidence defined by non-empty intersection.

h

hx

h

hy

hy−1
h

hx
hxy−1

Figure 2.6.1: The actions of the permutations x, y, y−1 and xy−1 on the dart h of a topological
map embedded in a surface whose positive orientation is anticlockwise.

If m is the order of xy−1 in G, and n the order of y in G, we say that both MT and

Alg(MT ) are of type (m,n). It is shown in [33, Corollary 5.2, Proposition 5.3] that, from

Alg(MT ) = (G,Ω, x, y), a topological map MR of the same type can be constructed in some
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Riemann surface, and that MT is isomorphic to MR. Unless the context is not clear, we will

in what follows simply refer to a map M, using the algebraic definition but also referring to its

topological model where this is helpful. If G is the underlying graph of a map M, the spectrum

of M is defined as sp(M) = sp(G).

A topological map automorphism is an angle preserving homeomorphism between the sup-

porting surface and itself which induces a graph automorphism of the underlying graph. An

algebraic map automorphism of an algebraic map (G,Ω, x, y) is the subgroup of Sym(Ω) which

preserves the incidence of edges and vertices. From [33, Corollary 3.2], we know that there is an

epimorphism θ between the topological map automorphism group Aut(MT ) and the algebraic

map automorphism group Aut(Alg(MT )). Its kernel Ker(θ) is the group of those angle preserv-

ing homeomorphisms of the supporting surface which leave each dart of the underlying graph

invariant. So Aut(MT )/Ker(θ) is isomorphic to Aut(Alg(MT )). We will refer to this algebraic

automorphism group simply as the map automorphism group, and denote it Aut(M).

We define a regular map as a connected map whose automorphism group is transitive on its

darts. Then the automorphism group of its underlying graph is also transitive on its darts, and,

by [22, Lemma 1.3.1], takes any vertex to another vertex with the same valency, so the graph is

regular. If M = (G,Ω, x, y) is a regular map of type (m,n), each vertex is incident to exactly n

darts, so n is the vertex valency, and, with our definiton, each face is incident to m darts, so m is

the face valency. Let h, h′ ∈ Ω. Then there is a g ∈ G with a right action on h such that hg = h′,

and, since the map is regular, an a ∈ Aut(M) with a right action on h such that ha = h′ = hg.

So there is an isomorphism between the actions of Aut(M) and of G on the set Ω. We choose a

base dart hB ∈ Ω. Then any h ∈ Ω can be written h = hBg for a unique g ∈ G, and conversely

for any g′ ∈ G there is a unique h′ ∈ Ω such that h′ = hBg
′. So we can identify the darts of a

regular mapM = (G,Ω, x, y) with the elements of G, identifying hB with e. In this way we will

define a regular map algebraically simply by the triple (G, x, y), where x2 = e and G = 〈x, y〉.

The 5 platonic solids can all be considered regular maps embedded in a topological sphere.

The tetrahedron is of type (3, 3), the cube of type (4, 3), the octahedron of type (3, 4), the

icosahedron of type (3, 5) and the dodecahedron of type (5, 3).
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2.7 Map coverings

We will use coverings to compare maps. We use the term covering as it is used in [26,27]. In [33]

the term morphism describes the same concept, and in [47] the term homomorphism is used.

As in [21, Definition 1.64], we define a surface covering transformation φ of order r from a

topological surface S to a topological surface S ′ as a continuous transformation such that every

point x′ ∈ S ′ is in an open set B′ of S′ such that φ−1(B′) =
⋃
Bi, where the r open sets

B1, B2, . . . , Br are pairwise disjoint and the restriction φ|Bi
from Bi to B′ is a homeomorphism.

We say that S is a covering of S ′ of order r, or an r-sheeted covering, or alternatively a covering

with r sheets. Then a topological map covering transformation is a surface covering transforma-

tion φ from the supporting surface of a map M with underlying graph G to that of a map M′

with underlying graph G′ whose restriction φ|G from G to G′ is a surjective graph homomorphism.

We then say thatM is a topological covering ofM′. If h′ is a dart and v′ a vertex ofM′, the sets

φ−1(h) and φ−1(v) are, respectively, the fibres of h and of v. The covering transformation group

CT(φ) is the subgroup of Aut(M) such that, if g ∈ CT(φ) and h is a dart of M, φ(hg) = φ(h).

The covering is regular if CT(φ) is transitive on all fibres, in which case the order of the group

CT(φ) is r, the order of the covering.

The above definition is that of an unramified covering. We encounter cases where for a

transformation φ, |φ−1(x′)| = r for most points x′ of a surface S ′, but, for a finite number of

points y′ of S ′, |φ−1(y′)| = s < r. We then say that the covering of surfaces is ramified at the

points y′. We define a ramified map covering in the same way. Many interesting map coverings

are ramified at the map vertices or at the map face centres, or at both.

As in [33], we define an algebraic covering transformation from a map M = (G,Ω, x, y) to

a map M′ = (G′,Ω′, x′, y′) as a pair of surjective functions (σ, τ), σ : G −→ G′, τ : Ω −→ Ω′,

where σ is a group homomorphism, σ(x) = x′, σ(y) = y′ and, for any g ∈ G and h ∈ Ω,

τ(hg) = τ(h)σ(g). In [33, Section 3] it is shown that, for any algebraic covering transformation

(σ, τ) between two algebraic maps, a topological covering transformation φ can be determined

between the corresponding topological maps; conversely, if φ is a covering transformation between

two topological maps, an algebraic covering transformation (σ, τ) can be determined between the
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corresponding algebraic maps.

If M = (G, x, y) and M′(G′, x′, y′) are two regular maps of type (m,n) and (m′, n′) respec-

tively, and σ is a group homomorphism from the group G to the group G′, with σ(x) = x′ and

σ(y) = y′, then the pair (σ, σ) is an algebraic map covering transformation as we identify the

group elements with the darts of the maps. We will refer to both this transformation and the

corresponding topological map covering transformation as the map covering transformation σ.

The automorphism group of M is G. Let h ∈ G. Then g ∈ G is in CT(σ) if and only if

σ(hg) = σ(h)σ(g) = σ(h). Therefore g ∈ G is in CT(σ) if and only if g ∈ Ker(σ), the kernel of

σ in G. So Ker(σ) is the covering transformation group.

Let h′ ∈ G′ be a dart of M′, and let h1, h2 ∈ σ−1(h′). Then, for some g2 ∈ Ker(σ),

σ(h2g2) = σ(h2) = σ(h1) = h′.

Now there is a g ∈ G such that h1g = h2, so

σ(h1gg2) = σ(h2) = h′ = σ(h1).

Therefore gg2 ∈ Ker(σ), and so g ∈ Ker(σ). This shows that Ker(σ) is transitive on the fibres of

the covering, which is therefore regular. So we recover a result given in [47, Theorem 3.2]: ‘Any

covering between regular maps is regular’.

If n 6= n′, since σ(xn) = σ(x)n = (x′)n, and xn = e, then σ(xn) = (x′)n = σe = e′,

where e and e′ are, respectively, the identities of G and G′. But n′ is the smallest integer such

that (x′)n
′

= e′, so n′ is an divisor of n. The covering is ramified at the vertices, with vertex

ramification index n/n′. In the same way, we can show that if m 6= m′, m′ is an divisor of m,

and the covering is ramified at the face centres, with face ramification index m/m′.
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2.8 Continued fractions

Continued fractions are defined as finite or infinite expressions of the form

b0 +
a1

b1 +
a2

· · ·+
an−1

bn−1 +
an

bn + · · ·

. (2.8.1)

The coefficients ai, bi can be members of N, Z, Q, R, C, or of rings such as Z/nZ. If the

expression is finite it can be evaluated. The result of evaluating the expression having truncated

it after the nth coefficient is known as the nth convergent of the continued fraction.

For a continued fraction with coefficients in the ring K, we will define the transformation

sn(z) = bn + an/z for z ∈ K∞. We will also sometimes write sn as the left action on K∞ of

either of the matrices ±

bn an

1 0

. To avoid frequent use of the ± sign, where it causes no

confusion, we will write

sn =

±
bn an

1 0


 =

bn an

1 0

 .
We also define Sn = s0 ◦ s1 ◦ · · · ◦ sn, for n = 0, 1, . . . . Then it can be shown that the nth

convergent of the continued fraction is

Sn(∞) = b0 +
a0

b1 +
a1

· · ·+
an−2

bn−1 +
an−1

bn

.

If the coefficents are integers, this convergent is a member of Q∞ which we write pn/qn. We
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define pk, qk, rk, sk ∈ Z by

Sk(z) =
pkz + rk
qkz + sk

.

Then p0 = b0, r0 = a0, q0 = 1, s0 = 0, p1 = b0b1 + a0, r1 = a1b0, q1 = b1, and s1 = a1. We see

that, for k = 1, rk = akpk−1 and sk = akqk−1. Assume this is true for all k such that 0 < k ≤ n.

Then, as Sk+1 = Sk ◦ sk+1, writing sn and Sn in matrix form,

Sk+1(z) =

pk+1 rk+1

qk+1 sk+1

 z =

pk akpk−1

qk akqk−1


bk+1 ak+1

1 0

 z =

pkbk+1 + akpk−1 ak+1pk

qkbk+1 + akqk−1 ak+1qk

 z.
So

Sk(z) =
pkz + akpk−1
qkz + akqk−1

for all k > 0,

and we have the recurrences

pk+1 = pkbk+1 + akpk−1 (2.8.2)

qk+1 = qkbk+1 + akqk−1. (2.8.3)

If ai = 1 for all i, and bi ∈ N, the expression is a regular continued fraction. If ai = 1 for all

i, and bi ∈ Z, the expression is an integer continued fraction.

It is usual to write an infinite integer continued fraction as

(b0, b1, . . . ) = b0 +
1

b1 +
1

b2 +
1

b3 + · · ·

(2.8.4)

Finite integer continued fractions are written (b0, b1, . . . , bn), with the obvious use of notation. A

continued fraction is considered to converge if its sequence of convergents converges. It diverges

if it does not converge. The limit, when it exists, is called the value of the continued fraction. If

the coefficients are integers, the convergents belong to the set of extended rationals Q∞, but the

value of the continued fraction could be irrational or infinity, and lies in R∞ .
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We say that two continued fractions (b0, b1, . . . ) and (c0, c1, . . . ) have the same tail if there

are positive integers r and s such that the two sequences br, br+1, . . . and cs, cs+1, . . . coincide.

We will often, as in Theorem 1.1.4 and in Chapter 6.4, find it more convenient to use the

following negative expression:

[b0, b1, . . . ] = b0 −
1

b1 −
1

b2 −
1

b3 − · · ·

(2.8.5)

We can easily switch between this expression and the more usual one by using the formula

(b0, b1, b2, b3, . . . ) = [b0,−b1, b2,−b3, . . . ]. (2.8.6)

These two continued fractions have the same sequence of convergents, so one converges if and only

if the other does, and if they do converge then they converge to the same value. An advantage

of using the negative expression is that we have

sn = bn − 1/z, or sn(z) =

bn −1

1 0

 z,
and so sn and Sn are members of the modular group PSL2(Z). A consequence of this, as we will

see in Chapter 5, is that it is straightforward to represent them as paths on the Farey tessellation.



Chapter 3

Farey maps and related maps

3.1 Introduction and main results

The Farey map of level n is the quotient of the Farey tessellation by the principal congruence

subgroup of level n of the modular group. We define related maps by taking the quotients of the

Farey tessellation by other congruence subgroups. We also study maps defined by congruence

subgroups of Hecke groups. In this chapter, we study how the different Farey and Hecke maps

are related to each other by regular coverings and parallel products. We prove Theorems 1.1.1,

1.1.2 and 1.1.3 given in the introduction; we restate them here.

Theorem 1.1.1 For a prime p and a positive integer k, the Farey map of level pk is a regular

covering of the Farey map of level pk−1, ramified at the vertices, with ramification index p. The

covering has 4 sheets if pk = 4, and otherwise has p3 sheets.

Theorem 1.1.2 Let m be a positive integer.

(i) If m is odd, the Farey map of level 2m is the parallel product of the the Farey map of level 2

and the Farey map of level m.

(ii) If l and m are coprime integers, and neither l nor m is twice an odd integer, then the Farey

map of level lm is a regular unramified double covering of the parallel product of the Farey

map of level l and the Farey map of level m.

31
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Theorem 1.1.3 For odd n, the underlying graph of the Hecke map of type (4, n) is a double

graph covering of the underlying graph of the Farey map of type (3, n). If n is not a multiple of 3,

the underlying graph of the Hecke map of type (6, n) is a double graph covering of the underlying

graph of the Farey map of type (3, n).

We also give an alternative proof of the following theorem from [38].

Theorem 3.1.1. Both the Hecke map of type (4, n) (for odd n) and the Hecke map of type (6, n)

(for 3 - n) have diameter 4.

3.2 Background theory

Recently, there has been significant research on Farey maps, see [29, 30, 38, 50, 60, 61]. In this

section we define them formally and describe them, mainly following the approach in [30,38,60],

and introduce the notation we will use.

In [59], the definition of an algebraic map is extended to include a map corresponding to the

infinite modular group Γ = PSL2(Z). Recall from Chapter 2 that Γ is the quotient by {±I},

where I is the 2× 2 identity matrix, of the group

SL2(Z) =


a b

c d

 : a, b, c, d ∈ Z, ad− bc = 1

 ,

and that, in order to avoid the frequent use of the ± symbol, we write the members of Γ as

a b

c d

 =


a b

c d

 ,

−a −b

−c −d


 , where

a b

c d

 ∈ SL2(Z).

The elements X =

 0 1

−1 1

 , of order 3, and Y =

1 1

0 1

 , of infinite order, generate Γ.

Note also that XY =

 0 1

−1 0

 , and that XY is of order 2.
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We define an infinite regular algebraic map F = (Γ, XY, Y ), of type (3,∞). In the same way as

we established in Section 2.6 that the darts of the topological representation of a regular finite

map (G, x, y) can be identified with elements of G, we identify any γ ∈ Γ with a dart of the

topological representation of F . Its vertices are the cosets

γ〈Y 〉 =


a ar + b

c cr + d

 : r ∈ Z

 .

Given a, c ∈ Z such that gcd(a, c) = 1, we can determine a unique vertex of F : we find b, d ∈ Z

such that ad − bc = 1. Then, if γ ∈ Γ is the matrix with entries a, b, c and d, the vertex

corresponding to the ordered pair (a, c) is γ〈Y 〉. Hence we can identify the vertices with the

reduced rationals a/c, with the usual convention that 1/0 =∞.

The coset γ〈XY 〉 is an edge consisting of the two darts γ and γXY . We say that a/c is the

initial vertex of γ and that, as b/d is the initial vertex of γXY , it is the final vertex of γ. The

reduced rationals a/c and b/d are vertices incident to the same edge, or adjacent vertices, if and

only if ad − bc = ±1. We recognise F as the Farey tessellation introduced in section 2.4, and

shown in Figure 2.4.1.

It is shown in [59, Theorem 1] that any map with triangular faces is the quotient of F by a

subgroup of the modular group. In this sense, F is the universal triangular map. This subgroup

is the stabiliser of the darts of the map in Γ, and is called the map subgroup. By [33, Theorem

6.3], the map is regular if and only if the map subgroup is a normal subgroup of the modular

group.

The principal congruence subgroup Γ(n) of level n is the normal subgroup of Γ given by:

Γ(n) =


a b

c d

 ∈ PSL2(Z) :

a b

c d

 ≡
1 0

0 1

 (mod n)

 .

The Farey map of level n is the regular map M3(n) = (Γ/Γ(n), XY Γ(n), Y Γ(n)). It is of

type (3, n). The group Γ/Γ(n) is isomorphic to PSL2(Z/nZ). The members of Γ/Γ(n), which

we identify with the darts of M3(n), are, for γ ∈ Γ, the cosets γΓ(n). It is well known (see for
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instance [17,30]) that the order of SL2(Z/nZ) is

n3
∏
p|n

(
1− 1

p2

)
,

and so the order of PSL2(Z/nZ) is

n3

2

∏
p|n

(
1− 1

p2

)
. (3.2.1)

As we wish to compare Farey maps of different levels, we will use the following notation,

where γ ∈ Γ, γ =

a b

c d

:

γΓ(n) =

a b

c d


n

=


a′ b′

c′ d′

 ∈ PSL2(Z) :

a′ b′

c′ d′

 ≡
a b

c d

 (mod n)

.
Recall that the subgroup Γ1(n) of Γ is given by

Γ1(n) =


a b

c d


n

∈ Γ/Γ(n) :

a b

c d


n

=

1 r

0 1


n

: r = 0, 1, . . . , n− 1.


Then we note that Γ1(n) is the group generated by Y Γ(n), and so the vertices ofM3(n) are, for

γ ∈ Γ, γ =

a b

c d

 the cosets γΓ(n)〈Y Γ(n)〉 = γ〈Y Γ(n)〉 = γΓ1(n), or

γΓ1(n) =


a ar + b

c cr + d


n

: r = 0, 1, . . . , n− 1.

 .

Given a, c ∈ Z such that gcd(a, c, n) = 1, we can determine a unique vertex of M3(n): we find

b, d ∈ Z such that ad− bc ≡ 1(mod n). Then, if γ ∈ Γ is the matrix with entries a, b, c and d, the

vertex corresponding to the ordered pair (a, c) is γΓ1(n), which we denote by [a/c]n. There is a

bijection between these vertices and the Farey fractions defined in [60], which are the equivalence
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classes {(a′, c′) ∈ Z×Z : gcd(a′, c′, n) = 1, (a′, c′) ≡ ±(a, c)(mod n)}. Note that, whereas 2/2 is

not a reduced rational, and so not a vertex of F , [2/2]5 is a vertex of M3(5), and [2/0]5 is not

the same vertex as [1/0]5. The n darts incident to [a/c]n all have [a/c]n as initial vertex, and

one of [b+ ar/d+ cr]n for r = 0, 1, 2, 3, 4 as final vertex.

An edge ofM3(n) is a coset γΓ(n)〈XY 〉, which consists of the two darts γΓ(n) and γΓ(n)XY .

So if γ ∈ Γ is the matrix with entries a, b, c and d, the coset


a b

c d


n

,

a b

c d


n

 0 1

−1 0


n

 =


a b

c d


n

,

−b a

−d c


n


is an edge of M3(n). The vertices [a/c]n and [b/d]n are adjacent in M3(n) if they are incident

to the same edge, that is if and only if ad− bc ≡ ±1(mod n).

A face of M3(n) is, for some γ ∈ Γ, a matrix with entries a, b, c, and d, the coset

γΓ(n)〈XΓ(n)〉 =

a b

c d


n

〈 0 1

−1 1


n

〉
=


a b

c d


n

,

−b a+ b

−d c+ d


n

,

−a− b a

−c− d c


n

 .

So the dart with initial vertex [a/c]n and final vertex [b/d]n is incident to the triangular face

with vertices [a/c]n, [b/d]n, and [(a+ b)/(c+ d)]n.

The number of darts ofM3(n) is the order of PSL2(Z/nZ), which is given by equation (3.2.1).

As n darts are incident to each vertex, the number of vertices is

V (M3(n)) =
n2

2

∏
p|n

(
1− 1

p2

)
. (3.2.2)

As 2 darts are incident to each edge, the number of edges is

E(M3(n)) =
n3

4

∏
p|n

(
1− 1

p2

)
.
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Then, as 3 darts are incident to each face, the number of faces is

F (M3(n)) =
n3

6

∏
p|n

(
1− 1

p2

)
.

The map is embedded in a surface whose genus g is given by equation (2.6.1), so

g = 1− 1

2
(E(M3(n)− V (M3(n))− F (M3(n))

= 1 +
n2

24
(n− 6)

∏
p|n

(
1− 1

p2

)
.

Note that g is always a non-negative integer. If n < 6, g = 0 and the supporting surface of the

map M3(n) is the sphere. If n = 6, g = 1, so the supporting surface of M3(6) is a torus.

Example 3.2.1. If n = 5, as gcd(2, 2, 5) = 1, we can find the vertex ofM3(5) corresponding to

the pair (2, 2). We note that 3× 2− 0× 2 = 1 (mod n), so it is the coset

[2/2]5 =

2 3

2 0

Γ1 =


2 2r + 3

2 2r


5

: r = 0, 1, 2, 3, 4.

 .

Note that [a/c]5 = [2/2]5 if and only if (a, c) ≡ ±(2, 2)(mod n), and so we have, for instance,

[3/3]5 = [7/2]5 = [2/2]5. The 5 darts incident to [2/2]5 all have [2/2]5 as initial vertex, and one

of [3 + 2r/2r]5 for r = 0, 1, 2, 3, 4 as final vertex. The edge of the map incident to the dart

2 3

2 0


5

is the coset


2 3

2 0


5

,

−3 2

0 2


5

 ,

which is determined by the unordered pair of vertices [2/2]5, [3/0]5. The face incident to the dart

2 3

2 0


5

is the coset


2 3

2 0


5

,

−3 5

0 2


5

,

−5 2

−2 2


5

 ,

So the dart with initial vertex [2/2]5 and final vertex [3/0]5 is incident to the triangular face with

vertices [2/2]5, [3/0]5, and [5/2]5.
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The number of vertices, edges and faces of M3(5) is given by

V (M3(5)) =
25

2
(1− 1/25) = 12

E(M3(5)) = 5× 12/2 = 30, and

F (M3(5)) = 5× 12/3 = 20.

A representation of M3(5) is the well-known icosahedron embedded in the sphere, as shown in

Figure 3.2.1

Figure 3.2.1: The map M3(5), an icosahedron embedded in a sphere, from [31]. The sufffix 5
has been omitted from the vertex labels.

Example 3.2.2. We can describe M3(7), the Klein map, in the same way. The number of its

vertices, and its genus, are given by

V (M3(7)) =
49

2
(1− 1/49) = 24,

g = 1 +
49

24
(1− 1/49) = 3.
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The underlying surface of this map is the well-known Klein quartic, a surface of genus 3. It

has many interesting properties, which can be found for instance in [43], along with attractive

illustrations. A representation of the map, with the vertices labelled in a way similar to that

which we have used, is in [30, Figure 3].

3.3 Regular coverings

We prove Theorem 1.1.1 by giving a more general result, which we will also use later.

Lemma 3.3.1. If n = dm, the Farey map M3(n) is a regular map covering of M3(m) of order

d3 if d 6= 4, or 4 if d = 2 and m = 2, which is ramified at the vertices with ramification index

d. The covering transformation takes the dart γΓ(n) to the dart γΓ(m), and the vertex [a/c]n to

the vertex [a/c]m.

Proof. We haveM3(n) = (Γ/Γ(n), XY Γ(n), Y Γ(n)) andM3(m) = (Γ/Γ(m), XY Γ(m), Y Γ(m)).

Since, as m divides n, Γ(n) is a subgroup of Γ(m), the mapping

σ : Γ/Γ(n) −→ Γ/Γ(m)

XΓ(n) 7−→ XΓ(m);

Y Γ(n) 7−→ Y Γ(m),

is an epimorphism and so a covering transformation. The kernel of σ has order d3 if n 6= 4, or 4

if d = 2 and m = 2, since

σ


1 + km rm

sm 1− km


n

 =

1 0

0 1


m

for k, r, s = 0, 1, . . . , d− 1.

As Γ = 〈X,Y 〉, we have, for all γ ∈ Γ, σ(γΓ(n)) = γΓ(m). The vertices of M3(n) are the

cosets γΓ1(n) = [a/c]n. So σ(γΓ1(n)) = γΓ1(m) = [a/c]m.

Putting n = pk−1, d = p in Lemma 3.3.1 then proves Theorem 1.1.1.
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Example 3.3.2. Figure 3.3.1 showsM3(2) andM3(4). The underlying surface of each of these

maps is a sphere. M3(4) is a four sheeted covering of M3(2), ramified at all the vertices with

ramification index 2. The covering transformation takes XΓ(4) to XΓ(2), and Y Γ(4) to Y Γ(2).

So we have γΓ(4) −→ γΓ(2) and [a/c]4 −→ [a/c]2. For instance

1 2

0 1


4

−→

1 0

0 1


2

, [1/0]4 −→ [1/0]2, and [2/1]4 −→ [0/1]2.

[0/1]2

[1/0]2

[1/1]2 [2/1]4 [3/1]4

[1/1]4
[0/1]4

[1/0]4

[1/2]4

Figure 3.3.1: The Farey maps M3(2) and M3(4).

3.4 Parallel products

In order to decompose M3(n) for a composite n, we use a product of maps which is consistent

with the tensor product of their underlying graphs. This is the parallel product of maps, the

minimal common covering of a set of maps, introduced in [67], and used recently in [26]. It is

analogous to the join of hypermaps defined in [5], and to the blend of polytopes used in [48].

The definition of the parallel product of groups, and then of maps, is given in [67] as follows.

Definition 3.4.1. Let G1 be a finite group generated by x1 and y1, and G2 a finite group

generated by x2 and y2. The parallel product of (G1, x1, y1) and (G2, x2, y2) is the group

(E, (x1, x2), (y1, y2)), where E is the subgroup of G1 ×G2 generated by (x1, x2) and (y1, y2).
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If x1 and x2 are both of order 2, so is (x1, x2). Then the triple (E, (x1, x2), (y1, y2)) defines a

regular map, the parallel product of the maps M1 = (G1, x1, y1) and M2 = (G2, x2, y2). If Γ is

the modular group, and H and K are the map subgroups of M1 and M2, so that G1 = Γ/H

and G2 = Γ/K, from [26, Lemma 3(vii)] and the discussion following [5, Proposition 3.1], the

parallel product of M1 and M2 is a map with map subgroup H ∩K.

If l and m are coprime integers, [66, Theorem 2] shows that, if G3(l) and G3(m) are the

underlying graphs of M3(l) and M3(m), the graph G3(l) × G3(m) can be embedded as a map

on a surface. This map is the parallel product of the maps M3(l) and M3(m).

We now prove Theorem 1.1.2, which gives an iterative method for decomposing the Farey map

M3(n) into a series of regular coverings and parallel products given the prime decomposition of

the integer n.

Proof of Theorem 1.1.2. Let l and m be positive coprime integers. If a ≡ b (mod lm), then we

have a ≡ b (mod l) and a ≡ b (mod m), so Γ(lm) ⊂ Γ(l) ∩ Γ(m). Therefore we can define the

group epimorphism

σ : Γ/Γ(lm) −→ Γ/(Γ(l) ∩ Γ(m))

γΓ(lm) 7−→ γ(Γ(l) ∩ Γ(m)).

Then σ is a regular map covering transformation. It maps each member of Γ/Γ(lm), a coset

γΓ(lm), onto the coset γΓ(l)∩Γ(m) in which it is contained, which is a member of Γ/Γ(l))∩Γ(m).

In particular the kernel of σ consists of those members of Γ/Γ(lm) which are mapped onto the

identity of Γ/Γ(l) ∩ Γ(m). This is the coset of Γ(l) ∩ Γ(m) in Γ containing the identity of Γ,

which is Γ(l) ∩ Γ(m).

If a matrix with entries a, b, c and d is a member of (Γ/Γ(lm)) ∩ (Γ(l) ∩ Γ(m)), then

a ≡ d ≡ ±1 (mod l), b ≡ c ≡ 0 (mod l) and

a ≡ d ≡ ±1 (mod m), b ≡ c ≡ 0 (mod m).

Then b ≡ c ≡ 0 (mod lm) and either a ≡ d ≡ ±1 (mod lm) or a ≡ d ≡ ±u (mod lm) for
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y

z

x b

c

a

d

Figure 3.4.1: The maps M3(2), with vertices x, y, z, and M3(3), with vertices a, b, c, d.

any u ∈ U , where U = {u ∈ Z : u ≡ 1 (mod l), u ≡ −1 (mod m) and u 6≡ ±1 (mod lm)}.

If either l = 2 or m = 2 , then U = ∅, so that Γ(2)∩Γ(m) = Γ(2m), andM3(2m) is the parallel

product of M3(2) and M3(m).

If neither l norm is equal to 2, as gcd(l,m) = 1, there is exactly one u, modulo lm, such that u ≡ 1

(mod l), u ≡ −1 (mod m) and u 6≡ ±1 (mod lm). So, as σ−1(Γ(l)∩Γ(m)) = {Γ(lm), uΓ(lm)} is

of order 2,M3(lm) is a double covering of the parallel product ofM3(l) andM3(m), unramified

at the vertices as both maps have vertex valency lm.

Example 3.4.2. As 6 is twice an odd number, M3(6) is the parallel product of M3(2) and

M3(3). We designate the 3 vertices of M3(2) by x = [1/0]2, y = [0/1]2, and z = [1/1]2, and the

4 vertices of M3(3) by a = [1/0]3, b = [0/1]3, c = [1, 1]3 and d = [2/1]3.

Then the 12 vertices of the parallel product are xa, xb, xc, xd; ya, yb, yc, yd; and za, zb, zc, zd.

The vertex xa is adjacent to the vertices yb, yc, yd, zb, zc and zd, and similarly the other vertices

all have 6 neighbours, so the parallel product of M3(2) and M3(3) is of degree 6.

This parallel product is shown in Figures 3.4.2, and we can see that is is isomorphic to the

map M3(6) shown in Figure 3.4.3. For instance the vertex [1/0]6 of M3(6) corresponds to the

vertex xa of the parallel product, and its neighbours [0/1]6,[1/1]6,[2/1]6,[3/1]6,[4/1]6 and [5/1]6

correspond, in order, to yb, zc, yd, zb, yc and zd.

Example 3.4.3. As 15 is not twice an odd number, the second part of Theorem 1.1.2 tells us

that M3(15) is a double cover of the parallel product of M3(3) and M3(5).
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ya

zb

xc xd

zd

yb

zc

xb

yc

xa

yd

zb

zc

zaza

za za

Figure 3.4.2: The map of the parallel product of M3(2) and M3(3), drawn on a torus.

[2/3]6

[3/1]6

[5/2]6 [1/2]6

[5/1]6

[0/1]6

[1/1]6

[3/1]6

[4/1]6

[1/0]6

[2/1]6

[3/1]6

[1/1]6

[1/3]6[1/3]6

[1/3]6 [1/3]6

Figure 3.4.3: The map M3(6), drawn on a torus.
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3.5 Farey maps and complete graphs

We show that the underlying graphs of Farey maps of prime level are graph coverings of complete

graphs. The spectra of complete graphs are known, so this will enable us to find the spectra of

the Farey maps. We first collect some necessary information about the vertices of M3(n).

The poles of the mapM3(n) are defined in [60] as the vertices [a/0]n, where a is coprime to n.

If d is such that ad ≡ ±1(mod n) and 1 ≤ d ≤ n/2, then the vertices [b/d]n for b = 0, . . . , n− 1

are adjacent to [a/0]n.

The star of a vertex consists of that vertex and all vertices adjacent to it. In [60, Theorem 7]

it is shown that the stars of the h = 1
2 (p−1) poles ofM3(p) for an odd prime p are disjoint, each

contain p + 1 vertices, and, together, include all of the 1
2 (p2 − 1) = h(p + 1) vertices of M3(p).

The map M3(2) has 3 vertices, [1/0]2,[0/1]2 and [1/1]2 ; only one vertex, [1/0]2, is a pole, its

star consists of all three vertices of the map.

Let v be any vertex of M3(n) and let M be an automorphism of M3(n) which is such that

M([1, 0]n) = v. Then we define the copoles of v as M([a, 0]n) for a = 1, . . . , h.

Theorem 3.5.1. The underlying graph of the Farey map M3(p), for an odd prime p, is a graph

covering of order 1
2 (p − 1) of the complete graph Kp+1 on p + 1 vertices. The underlying graph

of the Farey map M3(2) is a graph covering of order 1 of the complete graph K3.

Proof. We label the p + 1 vertices of Kp+1 as 0, 1, . . . , p. We define a transformation φ, which

takes each vertex of M3(p) together with all its copoles to the same vertex of Kp+1.

φ : vertices of M3(p) −→ vertices of Kp+1

[a/0]p 7−→ p

for b 6= 0, [a/b]p 7−→ ab−1.
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There is a bijection τ between [1/0]p and its adjacent vertices, and the vertices of Kp+1:

τ : vertices of the star of [1/0]p −→ vertices of Kp+1

[1/0]p 7−→ p

for b = 0, . . . , p− 1, [b/1]p 7−→ b.

Let v be any vertex of M3(p), and let A be an automorphism of M3(p) which takes the vertex

v to [1/0]p. Then the transformation τ ◦ A is a bijection between the star of v and the set of

vertices of Kp+1, so φ is a graph covering. If p is an odd prime the covering has h = 1
2 (p − 1)

sheets as p has h pre-images. If p = 2, the covering has one sheet.

[1/0]5

[3/1]5

[4/1]5
[0/1]5

[1/1]5

[2/1]5

[2/0]5

[1/2]5

[4/2]5 [2/2]5

[0/2]5

[3/2]5

Figure 3.5.1: The map M3(5), showing the stars of the two poles [1/0]5 and [2/0]5. The edges
joining vertices in the same star are shown in black, the other edges in grey.

Example 3.5.2. The underlying graph of M3(5) is a double graph cover of K6. The poles

of M3(5) are [1/0]5 and [2/0]5, and h = 2, so the map can be drawn showing two stars, as in
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Figure 3.5.1. Then, as 2−1 = 3 in Z/5Z,

φ : vertices of M3(5) −→ vertices of K6

[a/0]5 7−→ 6 for a = 1, 2

[a/1]5 7−→ a for a = 0, 1, 2, 3, 4

[a/2]5 7−→ 3a (mod 5) for a = 0, 1, 2, 3, 4

M3(5) has 12 vertices and 25 edges, whereas K6 has 6 vertices and 15 edges. The graph covering

is a double covering of vertices, and maps vertices to adjacent vertices, but there is not a mapping

between the edges.

3.6 The Cayley graph of PSL2(Z/nZ)

Before describing some families of maps related to the Farey maps, we give an interesting repre-

sentation of the Farey maps, showing their connexion with the Cayley graphs of PSL2(Z/nZ).

Definition 3.6.1. If G is a group and S a subset of G, the Cayley graph of G with respect to

the defining set S, Cay(G,S), is a graph with the elements of G as vertices. If v and w are

members of G, vw is an edge of Cay(G,S) if and only if sv = w for some s ∈ S.

Before generalising, we consider the Cayley graphs of PSL2(Z/4Z), using as defining set

S = {h, g, g−1} where h =

0 −1

1 0


4

and g =

1 1

0 1


4

.

The 24 elements of PSL2(Z/4Z) are:
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I =

1 0

0 1


4

, g =

1 1

0 1


4

, g2 =

1 2

0 1


4

, g3 =

1 3

0 1


4

,

h =

0 3

1 0


4

, gh =

1 3

1 0


4

, g2h =

2 3

1 0


4

, g3h =

3 3

1 0


4

,

a = hg

0 3

1 1


4

, ghg =

1 0

1 1


4

, g2hg =

2 1

1 1


4

, g3hg =

3 2

1 1


4

,

b = hg2 =

0 3

1 2


4

, ghg2 =

1 1

1 2


4

, g2hg2 =

2 3

1 2


4

, g3hg2 =

3 1

1 2


4

,

c = hg3 =

0 3

1 3


4

, ghg3 =

1 2

1 3


4

, g2hg3 =

2 1

1 3


4

, g3hg3 =

3 0

1 3


4

,

d = hg2h =

3 0

2 3


4

, ghg2h =

1 3

2 3


4

, g2hg2h =

3 2

2 3


4

, and g3hg2h =

1 1

2 3


4

.

The Cayley graph is shown in Figure 3.6.1. Note that h is self-inverse, and that, although for

clarity only the directed edges corresponding to g are shown, since the defining set also contains

g−1 the graph is not directed. It is clear that by shrinking the squares (and identifying [1/3]4

with [3/1]4) we obtain the Farey map M3(4) shown in Figure 3.3.1.

This is an example of a general result concerning regular maps. We first give a definition of

the truncation of a map, as in [62].

Definition 3.6.2. Let M be a map, and vi and vj two adjacent vertices. The edges incident

to vi are labelled anticlockwise around vi as eij , ei,j+1, . . . , ei,j+di−1 , and similarly the edges

incident to vj are labelled as eji, ej,i+1, . . . , ej,i+dj−1, where di and dj are the vertex valencies of

vi and vj respectively.

Identify, on the edge eij joining vi to vj , two points tij and tji such that the path along the

edge from tji to vi is through tij and the path along the edge from tij to vji is through tji.

Repeat this for each edge.
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I

c

a

d b

(1 0) (0 1)

h

h

g(3 1)

(2 1) (1 2)

(1 1)

Figure 3.6.1: The Cayley graph of PSL2(Z/4Z) with generating set {h, g, g−1}. I is the identity
matrix, a = hg, b = hg2, c = hg3 and d = hg2h. The ordered pairs in each square are the bottom
rows of the matrices corresponding to its vertices.

The truncation of M, T (M) is the map whose vertices are the points tij . Any vertex tij is

adjacent to tji, and also to ti,j+1 and ti,j+di−1, as shown in Figure 3.6.2.

Theorem 3.6.3. The truncation of a regular mapM = (G, h, g) represents a Cayley graph whose

vertices are the members of the group G = 〈h, g〉, and whose defining set is S = {h, g, g−1}.

Proof. From [34, Theorem 2.1], if M is regular then C(G) ∼= G, where C(G) is the centraliser

of G. Each vertex tij of T (M) corresponds to a dart of M. Since G acts transitively on these

darts there is a member of G which sends e, the dart with initial vertex v0 and final vertex v1,

to any other directed edge. This member is unique as, from [33, Proposition 3.3], C(G) and

therefore G are semiregular. Let the permutation h send e to the dart corresponding to t10, and

g send e to the dart corresponding to t02. If a ∈ G sends e to tij , then ha(e) = h(a(e)) sends

e to tji, ga(e) = g(a(e)) sends e to ti,j+1, and g−1a(e) = g−1(a(e)) sends e to ti,j−1. So the

three neighbours of a on the Cayley graph of G with respect to {h, g, g−1} correspond to the

three neighbours of tij on the truncation ofM. This shows that there is an incidence preserving

bijection between the vertices and edges of the Cayley graph and the truncation, so we say that
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vi

vj

ti,j+1

ti,j+di−1

tji

tij

tj,i+1

Figure 3.6.2: The truncation T (M) of a mapM, where vi and vj are vertices ofM. The vertices
of the truncation are tkl. The edges of M are shown as dotted lines.

the truncation represents the Cayley graph.

We have the following straightforward corollary.

Corollary 3.6.4. The Cayley graph of PSL2(Z/nZ) for n > 2 with respect to the defining set

{g, h, h−1} with

g =

0 −1

1 0


n

, and h =

1 1

0 1


n

is the underlying graph of a truncation of M3(n).

3.7 Generalised Farey maps

In [48], McMullen, Monson and Weiss construct polyhedra with triangular faces from rotation

groups which are quotients of certain linear groups. They show that they can be considered as

regular maps, including Dycke’s map, which are are given realisations by describing their vertices

as ordered pairs in Z/nZ× Z/nZ.

We combine this approach with that which we took to define Farey maps in the previous

section. Whereas there the ordered pair (a, b) is identified with (−a,−b) in Z/nZ × Z/nZ, we

identify it with ordered pairs (ua, ub), where u is a unit of Z/nZ. This gives us a new family

of regular maps on Riemann surfaces. We will show how Dyck’s map can be modelled by the

representation shown in Figure 3.7.1.
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[1/4]
[7/1]

[3/2]

[4/1]

[5/1]

[1/4]

[1/4]

[1/4]

[6/1][1/4]

[1/1]

[3/2]

[7/1]

[1/4]

[2/1]
[1/2]

[0/1]

[1/4]

[3/1]

[3/2]

[1/1]

[1/4]

[4/1]

[1/2]

[2/1] [1/4]

[5/1]

[3/2]

[3/1]

[1/4]

[6/1]
[1/2]

[1/0]

Figure 3.7.1:
A realisation of Dyck’s map on a Riemann surface of genus 3, adapted from Figure 1 of [55].

Vertices with the same label are to be identified. The suffix 8, {±1,±3} has been omitted from
all vertices for clarity.

A congruence subgroup of the modular group Γ is a subgroup which contains one of the

principal congruence subgroups Γ(n). We consider the congruence subgroups

Γ(n,U) =


a b

c d

 ∈ PSL2(Z) :

a b

c d

 ≡
u 0

0 u

 (mod n), u ∈ U

 .

where U is a subgroup of the group of units of Z/nZ containing {−1, 1} and whose elements u

satisfy u2 ≡ 1(mod n).

Lemma 3.7.1. Γ(n,U) is a normal subgroup of PSL2(Z), Γ(n) is a normal subgroup of Γ(n,U),

and |Γ(n,U) : Γ(n)| = 1
2 |U |.

Proof. As the matrices in Γ(n,U) are diagonal, they commute with those in PSL2(Z).
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Let U ′ = U/{±1} be the group in which each element of U is identified with its negative. Since,

if u ∈ U,−u ∈ U , and, if n is even, n/2 is not a unit, we have |U ′| = 1
2 |U |. Let u′ be the member

of U ′ corresponding to ±u. Then the group homomorphism

ΦU : Γ(n,U)) −→ U ; ΦU


u 0

0 u


 = u′

is a surjection with kernel Γ(n), which proves the result.

So, from [59, Theorem 1], the quotient of the Farey tessellation F by Γ(n,U) is a regular

map M3(n,U) = (Γ/Γ(n,U), XY Γ(n,U), Y Γ(n,U)), which we call a generalised Farey map of

level n.

A member of Γ/Γ(n,U) is the coset

a b

c d

Γ(n,U), where

a b

c d

 ∈ Γ,

which can be writtena b

c d

Γ(nU) =


a′ b′

c′ d′

 ∈ Γ :

a′ b′

c′ d′

 ≡
ua ub

uc ud

 (mod n), u ∈ U


=


a′ b′

c′ d′


n

∈ Γ/Γ(n) :

a′ b′

c′ d′


n

=

ua ub

uc ud


n

: u ∈ U


We will denote a member of Γ/Γ(n,U), which is a dart of M3(n,U) as

a b

c d

Γ(n,U) =

a b

c d


n,U

where

a b

c d

 ∈ Γ,
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We define the subgroup Γ1(n,U) of Γ as

Γ1(n,U) =


a b

c d


n

∈ Γ/Γ(n) :

a b

c d


n

=

u ur

0 u


n

: r = 0, 1, . . . , n− 1; u ∈ U


=


a b

c d


n,U

∈ Γ/Γ(n,U) :

a b

c d


n,U

=

1 r

0 1


n,U

: r = 0, 1, . . . , n− 1

 .

Then we note that Γ1(n,U) is the group generated by Y Γ(n,U), and so the vertices ofM3(n,U)

are, for γ ∈ Γ, the cosets γΓ(n,U) 〈Y Γ(n,U)〉 = γ〈Y Γ(n,U)〉 = γΓ1(n,U), or

γΓ1(n,U) =


a ar + b

c cr + d


n,U

: r = 0, 1, . . . , n− 1.

 .

Given a, c ∈ Z such that gcd(a, c, n) = 1, we can determine a unique vertex of M3(n,U): we

find b, d ∈ Z such that ad− bc ≡ 1(mod n). Then, if γ ∈ Γ is the matrix with entries a, b, c and

d, the vertex corresponding to the ordered pair (a, c) is γΓ1(n,U), which we denote by [a/c]n,U ,

omitting the suffix where this does not cause confusion.

There is a bijection between these vertices and the equivalence classes

{(a′, c′) ∈ Z× Z : gcd(a′, c′, n) = 1, (a′, c′) ≡ (ua, uc) (mod n); u ∈ U}.

The n darts incident to [a/c]n,U all have [a/c]n,U as initial vertex, and one of [b+ ar/d+ cr]n,U

for r = 0, 1, 2, . . . , n− 1 as final vertex.

We can now define the edges and faces of M3(n,U) in the same way as we did those of

M3(n), as follows.

An edge of M3(n) is a coset γΓ(n,U)〈XY 〉, which consists of the two darts γΓ(n,U) and

γΓ(n,U)XY that is, if γ ∈ Γ is the matrix with entries a, b, c and d,


a b

c d


n,U

,

a b

c d


n,U

 0 1

−1 0


n,U

 =


a b

c d


n,U

,

−b a

−d c


n,U

 .
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The vertices [a/c]n,U and [b/d]n,U are adjacent inM3(n,U) if they are incident to the same edge,

that is if and only if ad− bc ≡ u (mod n) for some u ∈ U .

A face of M3(n,N) is the coset

a b

c d


n,U

〈 0 1

−1 1


n,U

〉
=


a b

c d


n,U

,

−b a+ b

−d c+ d


n,U

,

−a− b a

−c− d c


n,U

 .

So the dart with initial vertex [a/c]n,U and final vertex [b/d]n,U is incident to the triangular face

with vertices [a/c]n,U , [b/d]n,U , and [(a+ b)/(c+ d)]n,U .

We have

|PSL2(Z) : Γ(n,U)||Γ(n,U) : Γ(n)| = |PSL2(Z) : Γ(n)|,

so the number of darts of M3(n,U) is

|PSL2(Z) : Γ(n,U)| = n3

|U |
∏
p|n

(
1− 1

p2

)
,

where the product is over all prime divisors of n. Therefore the number of vertices, edges and

faces of M3(n,U), and its genus, g, are given by:

V (M3(n,U)) =
n2

|U |
∏
p|n

(
1− 1

p2

)
,

E(M3(n,U)) =
n3

2|U |
∏
p|n

(
1− 1

p2

)
,

F (M3(n,U)) =
n3

3|U |
∏
p|n

(
1− 1

p2

)
,

g(M3(n,U)) = 1 +
n2(n− 6)

12|U |
∏
p|n

(
1− 1

p2

)
.

If U = {±1}, the maps M3(n,U) are the Farey maps. As suggested in [48], introducing

larger sets U enables us to study additional maps, as the following examples show.

Example 3.7.2. The smallest map M3(n,U) where U 6= {±1} is M3(8, {±1,±3}), Dyck’s

map. It was first studied in 1880 along with Klein’s quartic by Dyck, a student of Klein’s, in
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connection with work on Riemann surfaces. Details, together with illustrations of how the map

can be realised as a polyhedron in three dimensional Euclidean space can be found in [6] and in

[55]. Its 12 vertices are (omitting the suffix 8, {±1,±3}):

[1/0], [0/1], [1/1], [2/1], [3/1], [4/1], [5/1], [6/1], [7/1], [1/2], [3/2], and [1/4].

The map has 48 edges and 32 faces. Its genus is 3. Its vertex valency is 8, and its faces are

triangles, so it is a map of type (3, 8). Its group of orientation preserving automorphisms is the

quotient of PSL2(Z/8Z) by the subgroup {I, 3I}, where I is the identity of PSL2(Z/8Z), and is

of order 96. As stated in [55], the whole group of automorphisms, including those which do not

preserve orientation, is of order 192. A realisation of this map is shown in Figure 3.7.1.

To find other maps in this family, we determine the values of n for which there are units u of

Z/nZ, other than ±1 , with u2 ≡ 1 (mod n).

From equation (2.2) of [48], if n = p0
α0p1

α1p2
α2 . . . pt

αt , there are 2t units of Z/nZ with

u2 = 1 (mod n) if α0 < 2, 2t+1 if α0 = 2, and 2t+2 if α0 > 2.

So if p is an odd prime we have |U | = 2 and M3(pk, U) =M3(pk) for any k. If n = 2k, |U | = 4

for k > 2. For many composite values of n we can have |U | > 2, and |U | can be large if n has

many different prime factors. We give some examples of these maps with n > 8.

Example 3.7.3. The map M3(12, {1, 5, 7, 11}).

The 24 vertices of this map are, omitting the suffix 12, {1, 5, 7, 11}:

[1/0], [0/1],[1/1],. . . ,[11/1],

[1/2],[3/2],[1/3],[2/3],[4/3],[7/3],[8/3],[11/3],

[1/4],[3/4], [1/6].

It has 144 edges and 96 faces. Its genus is 13.

Example 3.7.4. The map M3(15, {1, 4, 11, 14}).

The 48 vertices of this map are, omitting the suffix 15, {1, 4, 11, 14}:

[1/0],[2/0],

[0/1],[1/1],. . . ,[14/1],
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[0/2],[1/2],. . . ,[14/2], [1/3],[2/3],[4/3],[5/3],[7/3],

[1/5],[2/5],[3/5],[4/5],[6/5],[7/5],

[1/6],[2/6],[4,6],[5/6],[7/6].

It has 360 edges and 240 faces. Its genus is 37.

Example 3.7.5. The map M3(60, {1, 11, 19, 29, 31, 41, 49, 59}).

This map has 120 vertices, 1080 edges and 720 faces. Its genus is 145.

The following theorem extends some of the results in [48, Section 4]:

Theorem 3.7.6. If n = dm, the generalised Farey map M3(n,U) is a regular map covering of

M3(m,U) of order d3 if d 6= 2, or 4 if d = 2, which is ramified at the vertices with ramification

index d. The covering transformation takes the dart γΓ(n,U) to the dart γΓ(m,U), and the

vertex [a/c]n,U to the vertex [a/c]m,U .

Proof. We note that if U is a set of units in Z/mU including {±1}, with u2 = 1 if u ∈ U , then U

is also a set of units in Z/nU including {±1}, with u2 = 1 if u ∈ U . The proof of Lemma 3.3.1

can then be repeated, simply replacing Γ/Γ(n) by Γ/Γ(n,U).

We also note the following result:

Theorem 3.7.7. For any U and any n, M3(n) is a |U |/2 covering of M3(n,U).

Proof. As Γ(n) is a subgroup of Γ(n,U), the mapping

σ : Γ/Γ(n) −→ Γ/Γ(n,U)

XΓ(n) 7−→ XΓ(n,U);

Y Γ(n) 7−→ Y Γ(n,U),

is an epimorphism and so a covering transformation. So, as the identity of Γ/Γ(n,U) is


u 0

0 u


n

: u ∈ U

 ,
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the kernel of σ is ±u

1 0

0 1


n

:

 : u ∈ U

 ,

which is of order |U |/2.

So, for instance, M3(8) is a regular double cover of Dycke’s map. Note that M3(8) is of

genus 5, whereas Dycke’s map is of genus 3.

We can also extend a recent result from [60]:

Theorem 3.7.8. The diameter of M3(n,U) is at most 3.

Proof. The proof in [60] can adapted in a straightforward way. Alternatively, from [60, Theo-

rem 11] we know that between any 2 vertices v1 and v2 of M3(n) there is a path 〈v1, v, v′, v2〉

of length 3. Let w1 = [a/c]n,U and w2 = [b/d]n,U be any two vertices of M3(n,U). Then since

{−1, 1} ⊂ U , v1 = [a/c]n and v2 = [b/d]n are vertices of M3(n), and from [60, Theorem 11]

there is a path in M3(n) of length 3 joining them. Let this path be 〈v1, v, v′, v2〉 and let σ be

the mapping defined in the previous theorem. Then, since σ preserves adjacency, there is a path

〈σ(v1), σ(v), σ(v′), σ(v2)〉 of length 3 in M3(n,U) joining w1 = σ(v1) and w2 = σ(v2).

The maps developed in [48] also include those where U includes units u such that u2 = −1.

The corresponding matrices are not members of PSL2(Z), and the surfaces on which the maps

are embedded are not orientated. It could also be possible to study the case of U being any

group of units, including the whole group of units.

3.8 Maps defined by Hecke groups

We first summarise the theoretical background developed in [30]. The Hecke group Hq is a

discrete subgroup of infinite index in PSL2(Z[λq]) generated by the matrices

R =

0 −1

1 0

 and S =

1 λq

0 1

 , where λq = 2 cosπ/q.
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The universal Hecke map M̂q is the tessellation of the upper hyperbolic plane whose darts are

the dart from infinity to zero and its images under Hq. If q = 3, then λq = 1, so H3 is the

modular group and M̂3 is the Farey tessellation.

Hecke maps are quotients of M̂q by the congruence subgroups of Hq. We are particularly

interested in the map Mq(n) of type (q, n), which is the quotient of M̂q by the subgroup

Hq(n) = Hq/(n) defined by the ideal (n) = {n(a+ bλq) : a, b ∈ Z} of Z[λq].

As in [30, 38], we will consider the maps M4(n) and M6(n) corresponding to the Hecke

groups H4 and H6. These are relatively straightforward to deal with as λ4 =
√

2 and λ6 =
√

3.

The faces of M4(n) and M6(n) are, respectively, quadrilaterals and hexagons.

As is shown in [30], M4(n) has two types of vertices. If (a, c) is an ordered pair in Z × Z

such that gcd(a, c, n) = 1 and gcd(a, 2, n) = 1, an even vertex, which we will write [a/c
√

2]n, is

the equivalence class of ordered pairs

{(a′, c′) ∈ Z× Z : gcd(a′, c′, n) = 1, (a′, c′) ≡ ±(a, c) (mod n)}.

If (a, c) is an ordered pair in Z×Z such that gcd(a, c, n) = 1 and gcd(c, 2, n) = 1, an odd vertex,

which we will write [a
√

2/c]n, is the equivalence class of ordered pairs

{(a′, c′) ∈ Z× Z : gcd(a′, c′, n) = 1, (a′, c′) ≡ ±(a, c) (mod n)}.

If [a/c
√

2]n and [b
√

2/d]n with a, b, c, d ∈ Z/nZ are two vertices ofM4(n), then those vertices

are adjacent if and only if ad − 2bc ≡ ±1(mod n). Odd vertices are adjacent to even vertices,

and vice-versa. The vertex valency of M4(n) is n. Replacing 2 by 3 and 4 by 6 gives analogous

results for M6(n). G4(n) is the underlying graph of M4(n), and G6(n) that of M6(n).

We use the ideas of coverings as in the previous sections to obtain a new result linking some

Hecke maps to Farey maps. This is Theorem 1.1.3, which states that, for odd n, G4(n) is a double

graph covering of G3(n), and if n is not a multiple of 3, G6(n) is a double graph covering of G3(n).

These are graph coverings, not, in general, map coverings, but this result will be sufficient to

enable us to find the spectra of these maps in the next chapter.
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Figure 3.8.1: The Hecke map M4(3) and the Farey map M3(3).

Figure 3.8.1 shows the cube with skeleton G4(3) as a double graph covering of the tetrahedron

with skeleton G3(3). Both these graphs can be embedded as maps on the sphere. This is not a

map covering as there is no mapping from the 6 faces of M4(3) to the 4 faces of M3(3).

Proof of Theorem 1.1.3. Consider the mapping

σ : vertices of M4(n) −→ vertices of M3(n)

[a/c
√

2]n 7−→ [a/c]n

[a
√

2/c]n 7−→ [a/c]n

Then σ is a bijection between the odd vertices of M4(n) and the vertices of M3(n), and also

between the even vertices ofM4(n) and the vertices ofM3(n). So it is a graph covering transfor-

mation between the underlying graphs, of order 2 as each vertex of M3(n) has two pre-images.

Replacing 2 by 3 gives the corresponding result for M6(n) if 3 is not a factor of n.

We also obtain the diameter of certain Hecke maps, partially recovering a result in [38] by a

different method.

Theorem 3.1.1 states that both M4(n) (for odd n) and M6(n) (for 3 - n) have diameter 4.

Proof of Theorem 3.1.1. Define σ as in Theorem 1.1.3, and let P = 〈w1, w2, . . . , wk〉 be a path

inM3(n). Then σ−1(wi) consists of an even vertex ofM4(n), vi, and an odd vertex ui. As even

vertices are adjacent to odd vertices and vice-versa, P is lifted by σ−1 to two paths in M4(n):

P1 = 〈v1, u2, v3, . . .〉, and P2 = 〈u1, v2, u3 . . .〉.
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A lift of a path of even length in M3(n) will join two vertices of the same parity in M4(n),

and a lift of a path of odd length two vertices of opposite parity.

Now let va and vb be any two distinct vertices ofM4(n), and let wa = σ(va) and wb = σ(vb).

If wa = wb, va and vb are of opposite parities. There is a path of length 3 round the edges of a

triangle incident to wa; this lifts to a path of length 3 between va and vb, so d(va, vb) ≤ 3.

From [60], the diameter ofM3(n) for any n is 3, so if wa 6= wb, d(wa, wb) ≤ 3. If P is a path

of shortest length between w1 and wi, the vertices preceding wi−1 cannot be adjacent to wi. The

edge wi−1wi is incident to two triangles. Let w be the third vertex of one of these triangles.

Then there is a path 〈w1, . . . , wi−1, w, wi〉 from w1 to wi of length d(w1, wi) + 1.

So since d(wa, wb) ≤ 3, there is always both a path of odd length less than 4 and a path of

even length less than or equal to 4 between wa and wb, which lifts to a path of length less than or

equal to 4 between va and vb whether or not they are of the same parity. The result for M6(n)

if 3 - n follows similarly.

The further result that this is true for all n is given by [38, Theorem 14].



Chapter 4

Spectra of graphs and maps

4.1 Introduction and main results

In [10–12] the spectra of graphs are found using coverings ramified at the face centres of maps.

In this chapter we use the regular coverings ramified at map vertices which are specified by

Theorems 1.1.1 and 1.1.2 to find, for each positive integer n, the spectrum of the Farey map

M3(n) from the prime decomposition of n.

To express our results, we define a product of multisets as follows. Suppose that

sp(M1) = {λ(m1)
1 , λ

(m2)
2 , . . . , λ

(mi)
i } and sp(M2) = {µ(l1)

1 , µ
(l2)
2 , . . . , µ

(lj)
j }.

Then we define sp(M1)sp(M2) = {λrµ(mrls)
s : r = 1, . . . , i; s = 1, . . . , j}.

Also, for k ∈ Z, we define ksp(M1) = {kλ(m1)
1 , kλ

(m2)
2 , . . . , kλ

(mi)
i }.

We simplify notation by writing sp(M3(n)) = sp3(n). Then we have, from equation (2.3.1),

sp3(2) = {−1(2), 2} and sp3(3) = {−1(3), 3} and we will show that sp3(4) = {−2(2), 0(3), 4}. For

higher values of n, we prove the following two theorems.

Theorem 4.1.1. Let p be a prime number, and k a positive integer.

(i) If p > 3, then sp3(p) = {−√p(m),−1(p),
√
p(m), p}, where m = 1

4 (p− 3)(p+ 1).

59
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(ii) If pk > 4, then sp3(pk) = p sp3(pk−1) ∪ {−
√
pk

( 1
2pc), 0(c),

√
pk

( 1
2pc)},

where c = (p− 1)V (M3(pk−1)).

Theorem 4.1.2. Let m be a positive integer.

(i) If m is odd, then sp3(2m) = sp3(2)sp3(m).

(ii) If l and m are coprime integers, and neither l nor m is twice an odd integer, then

sp3(lm) = sp3(l)sp3(m) ∪ {−
√
lm

(N/4)
,
√
lm

(N/4)
}, where N = V (M3(lm)).

For example we have the following, first using (3.2.2) to find

V (M3(7)) =
72

2

(
1− 1

72

)
= 24, and V (M3(28)) =

282

2

(
1− 1

4

)(
1− 1

72

)
= 72,

sp3(7) = {−
√

7
(8)
,−1(7),

√
7
(8)
, 7},

sp3(49) = 7{−
√

7
(8)
,−1(7),

√
7
(8)
, 7} ∪ {−7(7×3×24), 0(6×24), 7(7×3×24)}

= {−7
√

7
(8)
,−7(511), 0(144), 7(504), 7

√
7
(8)
, 49},

sp3(14) = sp3(2)sp3(7)

= {−1(2), 2}{−
√

7
(8)
,−1(7),

√
7
(8)
, 7}

= {−1(2){−
√

7
(8)
,−1(7),

√
7
(8)
, 7} ∪ {2}{−

√
7
(8)
,−1(7),

√
7
(8)
, 7}

= {−7(2),−2
√

7
(8)
−
√

7
(16)

,−2(7),, 1(14),
√

7
(16)
, 2
√

7
(8)
, 14},

sp3(28) = sp3(4)sp3(7) ∪ {−
√

28
(72)

,
√

28
(72)
}

= {−2(2), 0(3), 4}{−
√

7
(8)
,−1(7),

√
7
(8)
, 7} ∪ {−2

√
7
(72)
, 2
√

7
(72)
}

= {−2(2)}{−
√

7
(8)
,−1(7),

√
7
(8)
, 7} ∪ {0(3)}{−

√
7
(8)
,−1(7),

√
7
(8)
, 7} ∪

{4}{−
√

7
(8)
,−1(7),

√
7
(8)
, 7} ∪ {−2

√
7
(72)
, 2
√

7
(72)
}

= {−14(2),−4
√

7
(8)
,−2
√

7
(88)
,−4(7), 0(72), 2(14), 2

√
7
(88)
, 4
√

7
(8)
, 28}.
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4.2 Evaluation of spectra using regular coverings.

In this section we give some general results on coverings for regular graphs and maps. Recall

that, if M1 is a regular covering of M2 with covering transformation σ, and h is a dart of M2,

then σ−1(h) is the fibre of h. Also, we define the fibre of a vertex v of M2 to be σ−1(v).

Lemma 4.2.1. Let M1 = (G1, x1, y1) and M2 = (G2, x2, y2) be regular maps such that M1 is

a regular covering of M2, and let their vertex valencies be n and m respectively. If v and v′ are

adjacent vertices of M2, then each of the vertices in the fibre of v is adjacent to exactly d = n/m

of the vertices in the fibre of v′.

Proof. Recall from Section 2.7 that m divides n. Let σ be the covering transformation, and let

the number of sheets of the covering be r = |Ker(σ)|. Let h be a dart of M2 with initial vertex

v and final vertex v′. Let s = |σ−1(v)|, and let w be a vertex of M1 in σ−1(v). Then the orbit

of w under the action of Ker(σ) is σ−1(v). Let d be the number of vertices in σ−1(v′) adjacent

to w. Then the stabiliser of w in Ker(σ) is the set of darts in σ−1(h) incident to w. By the orbit

stabiliser theorem r = sd. Now let D be the set of all darts in the fibres of all of the m darts

incident to v. We have |D| = rm = sn, so dm = n.

Lemma 4.2.2. Let a graph G1 be a covering of a graph G2 with graph covering transformation

φ. Let v and v′ be two adjacent vertices of G2. Then any vertex in φ−1(v) is adjacent to exactly

one of the vertices in φ−1(v′).

Proof. Let w be a member of φ−1(v). The transformation φ maps the vertices adjacent to w

bijectively onto the vertices adjacent to v, so φ−1 maps v′ to just one vertex adjacent to w.

Recall that the N eigenvalues of a graph or map with N vertices are those of its adjacency

matrix, which is an N × N square matrix whose rows and columns are indexed by the graph

vertices. For a graph G with vertices v1, v2, . . . , vN , the entry in the ith row and the jth column

is eij , where eij = 1 if vi and vj are adjacent, and otherwise eij = 0. An adjacency matrix has

real entries; for the simple, undirected graphs we are considering, it is symmetrical and so has

real eigenvalues; all its diagonal entries are 0.
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If A is the adjacency matrix of a graph with N vertices, an eigenvector x has N compo-

nents x1, . . . xN , which are indexed in the same way as the rows and columns of the adjacency

matrix, that is by the graph vertices. We will denote by xv the component of the eigenvector

corresponding to the vertex v, so that, if v is the vertex vi, we have xv = xi.

Lemma 4.2.3. Let G be a graph with adjacency matrix A. Then λ is an eigenvalue of A with

eigenvector x if and only if, for all vertices v of G,

λxv =
∑
u∼v

xu,

where the sum is over all the vertices of G adjacent to v.

Proof. By definition, x is an eigenvector for the eigenvalue λ of A if and only if Ax = λx. That

is equivalent to
∑N
j=1 eijxj = λxi for all i = 1, . . . , N or, as eij = 0 unless vi is adjacent to vj ,∑

u∼v xu = λxv .

Lemma 4.2.4. Let G1 and G2 be two regular graphs with vertex valencies n and m respectively,

where n = dm, and suppose either that they are the underlying graphs of two regular maps M1

and M2, and that M1 is a regular map covering of M2, or, if d = 1, that G1 is a graph covering

of G2. Let N be the number of vertices of G2. Then

(i) if d = 1, sp(G2) ⊂ sp(G1), and

(ii) if d > 1, d sp(G2) ∪ {0(γ)} ⊂ sp(G1), where γ ≥ N(d− 1).

Proof. Let π be the regular map covering transformation or graph covering transformation of G2

by G1. Let w be a vertex of G1 and v a vertex of G2 with π(w) = v. Then, from Lemmas 4.2.1

and 4.2.2, if v′ is adjacent to v in G2, w is adjacent to d of the vertices in π−1(v′). Let λ be an

eigenvalue of G2 with eigenvector x.

(i) Define the vector y by yw = xπ(w) for all vertices w of G1. Then

∑
w′∼w

yw′ = d
∑
v′∼v

xv′ = dλxv = dλyw.
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So dλ is an eigenvalue of G1 with eigenvector y. Since a different vector y corresponds to

each vector x in the eigenspace of λ, the geometric multiplicity of dλ in G1 is at least that

of λ in G2.

(ii) Let v be a vertex of G2, and let w be a vertex in the fibre of v. Let the m neighbours of

v be v′i for i = 1, . . . ,m. For each w ∈ π−1(v), label the d vertices in the fibre of each v′i

adjacent to w as w′i,1, . . . , w
′
i,d. Let K be an integer such that 1 ≤ K < d. Then, for any

pair (v,K), we define a vector z by its components zu (here the component zu corresponds

to the vertex u of G1):

zu =


1 if u = w′i,K for some w ∈ π−1(v) and some vi adjacent to v,

−1 if u = w′i,(K+1) for some w ∈ π−1(v) and some vi adjacent to v,

0 otherwise.

Let A be the adjacency matrix of G1. Then, for each pair (v,K), the r’th component of

the vector Az is, putting F = π−1(v),

∑
u

eurzu =
∑
w∈F

(
m∑
i=1

ew′
i,K ,w

−
m∑
i=1

ew′
i,(K+1)

,w

)
=
∑
w∈F

m∑
i=1

(1− 1) = 0zr.

So 0 is an eigenvalue of G1 with eigenvector z. The vectors z together with y form a linearly

independent set. So, as G2 has N vertices v, and K takes d − 1 values, 0 is an eigenvalue

of G1 with (possibly additional) geometric multiplicity at least N(d− 1).

We can immediately use this lemma to find the spectrum of M3(4). That map is a covering

of M3(2), so since the spectrum of M3(2) is {(−1)(2), 2}, d = 2, and M3(2) has 3 vertices,

the lemma gives us 6 eigenvalues counting multiplicities, so as M3(4) has just 6 vertices and

therefore just 6 eigenvalues we have the following result.

Corollary 4.2.5. The spectrum of M3(4) is {(−2)(2), 0(3), 4}.

We will also use the following result.
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Lemma 4.2.6. Let A be an N ×N symmetric matrix, and suppose that, for some integer n,

A2 − nI =



C C · · · C

C C · · · C

...
...

. . .
...

C C · · · C


,

where C is an r × r symmetric matrix. Then either
√
n or −

√
n or both are eigenvalues of A

with total algebraic multiplicity greater than or equal to N − rank(C).

Proof. The rows and columns of A2 − nI are not linearly independent, so its determinant is 0

and n is an eigenvalue of A2. Since |A2 − nI| = |A −
√
nI||A +

√
nI|,

√
n or −

√
n or both are

eigenvalues of A with total algebraic multiplicity equal to the algebraic multiplicity of n as an

eigenvalue of A2.

We will denote the geometric multiplicity of an eigenvalue λ of a matrix M as γ(λ). It is the

dimension of the space generated by its eigenvectors, and equal to the nullity of M − λI. The

geometric multiplicity of an eignenvalue can never exceed its algebraic multiplicity. If X is the

dimension of the space on which M acts,

γ(λ) = X − rank(M − λI).

Then as the rank of A2 − nI is equal to the rank of C, n is an eigenvalue of A2 with geometric

multiplicity equal to N − rank(C), and therefore the total of the algebraic multiplicities of
√
n

and of −
√
n as eigenvalues of A is at least N − rank(C).

4.3 Farey maps of prime level

We denote the adjacency matrix of M3(n) by A(n), and index its rows and columns according

to the labelling we choose for the vertices ofM3(n). In particular we will label the vertex [1/0]n

as v0, so that it corresponds to the first row and column of A(n).

The entry of A(n)2 corresponding to the vertices vi and vj is equal to the number of walks of
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length 2 connecting them (see, for instance, [22, Lemma 8.1.2]). We find this entry by extending

the results given in [60, Theorems 11-15] for the distance between two Farey map vertices.

Lemma 4.3.1. Let the integers β and ∆ be such that gcd(β,∆, n) = 1, so vk = [β/∆]n is a

vertex of M3(n), and let gcd(∆, n) = r. Then the number of walks of length 2 between v0 and

vk is 

2 if r = 1,

0 if r is not a divisor of either of β ± 1,

r if r is a divisor of one of β ± 1, and

4 if r = 2 and β is odd .

Proof. Since all vertices adjacent to [1/0]n are of the form [x/1]n for x ∈ Z, the vertex vk has

a walk of length 2 to [1/0]n if and only if there is a vertex [x/1]n adjacent to [β/∆]n, that is if

and only if there is an integer x such that

x∆ ≡ β ± 1 (mod n).

Then the number of walks of length 2 from vk to [1, 0]n is equal to the total number of solutions

modulo n to these 2 congruences. The result follows, recalling, for instance from [2, Theorem 5.12-

5.14], that each congruence has one solution modulo n if and only if gcd(∆, n) = 1, no solutions

if gcd(∆, n) = r and r does not divide either of ∆ ± 1, and r solutions if r 6= 2 and r divides

either β + 1 or β − 1. If r = 2 and β is odd, 2 divides both β + 1 and β − 1, so there are 4 walks

of length 2.

Given any two vertices vi = [a/c]n and vj = [b/d]n of M3(n) we will use this lemma to find

the ijth entry of A(n)2. Define ∆n(ij) = ad − bc, and let λn(i), µn(i) ∈ Z be any two integers

such that aλn(i) + cµn(i) + νn = 1 for some ν ∈ Z. Then the automorphism

Mn(i) =

λn(i) µn(i)

−c a


n
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takes vi to v0, and vj to vl = [βn(ij)/∆n(ij)]n, where βn(ij) = λn(i)b+ µn(i)d. The ijth entry

of A(n)2 is then given by Lemma 4.3.1.

Example 4.3.2. Consider the vertices vi = [1/3]10 and vj = [3/2]10 of M3(10). Put λ10(i) = 1

and µ10(i) = 0. Then  1 0

−3 1


10

1 3

3 2


10

=

1 3

0 −7


10

,

so M10(i) takes [1/3]10 to [1/0]10, and [3/2]10 to [3/ − 7]10 = [3/3]10. Then, as gcd(3, 10) = 1,

there are 2 walks of length 2 from [1/0]10 to [3/3]10, and therefore there are 2 walks of length 2

from [1/3]10 to [3/2]10, and the ijth entry in A(10)2 is 2.

Example 4.3.3. Consider the vertices vi = [3/2]10 and vj = [1/4]10 of M3(10). Put λ10(i) = 1

and µn(i) = −1. Then  1 −1

−2 3


10

3 1

2 4


10

=

1 −3

0 0


10

,

so M10(i) takes [3/2]10 to [1/0]10, and [1/4]10 to [−3/0]10 = [3/0]10. Then as gcd(0, 10) = 10

does not divide 3± 1, there are no walks of length 2 from [1/0]10 to [3/0]10, and therefore there

are no walks of length 2 from [3/2]10 to [1/4]10, and the ijth entry in A(10)2 is 0.

Lemma 4.3.4. If ∆n(ij) ≡ 0(mod n), the ijth entry of the matrix A(n)2 − nI is 0.

Proof. If ∆n(ij) = νn for some ν ∈ Z, the automorphism Mn(i) takes vi and vj to [1/0]n and

[βn(ij)/νn]n. Then r = n divides βn(ij) ± 1 if and only if βn(ij) = ±1 + κn for some κ ∈ Z,

in which case [βn(ij)/νn]n = v0; so vi = vj , and the iith entry of A(n)2 is n, as expected, since

there are n paths to and from vi along each of the n edges incident to vi. If βn(ij) 6≡ ±1(mod n),

vi 6= vj . In this case the ijth entry of A(n)2 is 0, as [60, Theorem 14] shows that the shortest

path between these vertices is of length 3.

The underlying graphs of M3(2) and M3(3) are the complete graphs on 3 and 4 vertices

respectively. The spectrum of the complete graph on k + 1 vertices is {−1(k), k}, therefore

sp3(2) = {−1(2), 2} and sp3(3) = {−1(3), 3}. We can now prove Theorem 4.1.1(i).
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Proof of Theorem 4.1.1(i). All congruences in this proof are modulo p. If a ∈ Z, we define the

integers aC : aC ∈ Z, 0 ≤ aC < p, aC ≡ a, and aH : aH ∈ Z, 0 ≤ aH < p/2, aH ≡ a or p−aH ≡ a.

As the spectrum of Kp+1 is {−1(p), p}, from Lemmas 4.2.4 and 3.5.1, {−1(p), p} ⊂ sp(p).

If ∆p(ij) 6≡ 0, gcd(∆p(ij), p) = 1 and the ijth entry of A(p)2 is 2.

We order the vertices of M3(p) so that, if vi = [a/c]p,

i =


(aH − 1)(p+ 1) if c ≡ 0

((c−1)H − 1)(p+ 1) + (ac−1)C + 1 if c 6≡ 0.

We show that this ensures the p+ 1 vertices of each of the h = 1
2 (p− 1) stars are together, with

the poles p+ 1 positions apart. We note that ∆p(ij) ≡ 0 if, putting vj = [b/d]n, ad− bc ≡ 0.

If c ≡ 0, as a 6≡ 0, d ≡ 0, so i = (aH − 1)(p+ 1) and j = (bH − 1)(p+ 1), and therefore j − i is a

multiple of p+ 1.

If c 6≡ 0, i = ((c−1)H − 1)(p + 1) + (ac−1)C + 1, j = ((d−1)H − 1)(p + 1) + (bd−1)C + 1, and

ac−1 − bd−1 ≡ 0, so that j − i is again a multiple of p+ 1.

So the ijth entry of A(p)2 is 0 if and only if i and j are a multiple of p + 1 positions apart.

Therefore

A(p)2 − pI =



C C · · · C C

C C · · · C C

...
...

. . .
...

...

C C · · · C C

C C · · · C C


where C =



0 2 · · · 2 2

2 0 · · · 2 2

...
...

. . .
...

...

2 2 · · · 0 2

2 2 . . . 2 0


.

The matrix A(p)2 − pI is arranged as h × h copies of the (p + 1) × (p + 1) matrix C, whose ij

elements are equal to 2 if i 6= j, or to 0 if i = j. Then, from Lemma 4.2.6,
√
p or −√p or both are

eigenvalues of M3(p) with total algebraic multiplicity greater than or equal to 1
2 (p + 1)(p − 3).

The result follows as the total algebraic multiplicity of the eigenvalues of M3(p) is the number

of its vertices, which is 1
2 (p+ 1)(p− 1).
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Example 4.3.5. We use the example of M3(7) to show how the rows and columns of A(p),

the adjacency matrix of M3(p), and those of its square A(p)2 are indexed. We have p = 7 and

h = 3. The graph has 3(7 + 1) = 24 vertices, so the matrices are of size 24× 24. The three poles

are [1/0]7, [2/0]7 and [3/0]7. (We will omit the suffix 7 for the rest of this example).

We will divide the vertices into three blocks corresponding to the 3 stars of these poles, with

8 vertices each. We let [1/0] and its neighbours [a/1] for a = 0, . . . , 6 correspond, in order, to the

first 8 rows and columns of the matrices, that is [1/0] = v0, and [a/1] = va+1 for a = 0, . . . , 6.

Also [2/0] = v8 and the vertices vi for i = 9, . . . , 15 are the 7 vertices in the star of [2, 0], with

for instance [1/3] = v11 as 1× 8 + 2× 1 + 1 = 11. [3/0] = v16, and, for instance, [2/2] = v23.

Table 4.1 shows part of the matrix A(7)2 − 7I, together with the indexing of its rows and

columns. The way in which the indexing has been done ensures that the matrix can be subdivided

into 9 submatrices, the diagonal entries of which are 0.

4.4 Farey maps of prime power level

We begin this section by showing an example of the matrices which we are investigating.

Example 4.4.1. From Theorem 1.1.1, the mapM3(25) is a covering ofM3(5) with 125 sheets,

ramified at the vertices with ramification index 5. Since M3(5) has 12 vertices, M3(25) has

12× 25 = 300 vertices. We index these vertices in the following way: we designate as w0 to w11

the 12 vertices [a/c]25, where [a/c]5 are the 12 vertices of M3(5), ordered in the same way as

those in example 4.3.5; then the vertices w12 to w23 are [a/(c+ 5)]25, the vertices w24 to w35 are

[a/(c+10)]25, the vertices w36 to w47 are [a/(c+15)]25, and the vertices w48 to w59 [a/(c+20)]25;

a second set of 60 vertices w60 to w119 is found by replacing a by a+ 5, a third set by replacing a

by a+ 10, and so on. We have 5 sets of 60 vertices, each comprising 5 smaller sets of 12 vertices

each. Part of the square of the adjacency matrix ofM3(25) is shown in Table 4.2, its entries are

found using Lemma 4.3.1. They are eii = 25, eij = 0 if i ≡ j ≡ 0 (mod 60) and for vertices on

the corresponding diagonal, eij = 5 if i 6= j, and i ≡ j ≡ 0 (mod 6), but either i 6≡ 0 (mod 60)

or j 6≡ 0 (mod 60), and for vertices on the corresponding diagonals, and 2 otherwise.

To prove Theorem 4.1.1(ii) we need the following lemmas. We put q = pk−1.
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v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 . . .
[1/0] [0/1] [1/1] [2/1] [3/1] [4/1] [5/1] [6/1] [2/0] [0/1] . . .

v0 [1/0] 0 2 2 2 2 2 2 2 0 2
v1 [0/1] 2 0 2 2 2 2 2 2 2 0 . . .
v2 [1/1] 2 2 0 2 2 2 2 2 2 2 . . .
v3 [2/1] 2 2 2 0 2 2 2 2 2 2 . . .
v4 [3/1] 2 2 2 2 0 2 2 2 2 2 . . .
v5 [4/1] 2 2 2 2 2 0 2 2 2 2 . . .
v6 [5/1] 2 2 2 2 2 2 0 2 2 2 . . .
v7 [6/1] 2 2 2 2 2 2 2 0 2 2 . . .

v8 [2/0] 0 2 2 2 2 2 2 2 0 2 . . .
v9 [0/3] 2 0 2 2 2 2 2 2 2 0 . . .
v10 [4/3] 2 2 0 2 2 2 2 2 2 2 . . .
v11 [1/3] 2 2 2 0 2 2 2 2 2 2 . . .
v12 [5/3] 2 2 2 2 0 2 2 2 2 2 . . .
v13 [2/3] 2 2 2 2 2 0 2 2 2 2 . . .
v14 [6/3] 2 2 2 2 2 2 0 2 2 2 . . .
v15 [3/3] 2 2 2 2 2 2 2 0 2 2 . . .

v16 [3/0] 0 2 2 2 2 2 2 2 0 2 . . .
v17 [0/2] 2 0 2 2 2 2 2 2 2 0 . . .
v18 [5/2] 2 2 0 2 2 2 2 2 2 2 . . .
v19 [3/2] 2 2 2 0 2 2 2 2 2 2 . . .
v20 [1/2] 2 2 2 2 0 2 2 2 2 2 . . .
v21 [6/2] 2 2 2 2 2 0 2 2 2 2 . . .
v22 [4/2] 2 2 2 2 2 2 0 2 2 2 . . .
v23 [2/2] 2 2 2 2 2 2 2 0 2 2 . . .

Table 4.1: Part of the matrix A(7)2 − 7I, showing the indexing of its rows and columns.

Lemma 4.4.2. Let ∆ and a be integers such that ∆ + aq 6≡ 0(mod pq). Then we have

gcd(∆, q) = gcd(∆ + aq, pq).

Proof. Let r = gcd(∆, q) and s = gcd(∆ + aq, pq). It is straightforward to see that r 6 s. Then,

as ∆ + aq 6≡ 0(mod pq), s = pl, where 0 ≤ l 6 k − 1. Hence s divides q, and so, since s divides

∆ + aq, s divides ∆. Consequently s 6 r. Therefore s = r, as required.

Lemma 4.4.3. If pk > 4, and the number of vertices of M3(pk−1) is N , then

{(−
√
pk)(m), (

√
pk)(m)} ⊂ sp(pk), where m =

1

2
p(p− 1)N.
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w0 w1 w2 w3 w4 w5 w6 w7 w8 w9 . . .
[1/0] [0/1] [1/1] [2/1] [3/1] [4/1] [2/0] [0/3] [2/3] [4/3] . . .

w0 [1/0] 25 2 2 2 2 2 5 2 2 2 . . .
w1 [0/1] 2 25 2 2 2 2 2 5 2 2 . . .
w2 [1/1] 2 2 25 2 2 2 2 2 5 2 . . .
w3 [2/1] 2 2 2 25 2 2 2 2 2 5 . . .
w4 [3/1] 2 2 2 2 25 2 2 2 2 2 . . .
w5 [4/1] 2 2 2 2 2 25 2 2 2 2 . . .

w6 [2/0] 5 2 2 2 2 2 25 2 2 2 . . .
w7 [0/3] 2 5 2 2 2 2 2 25 2 2 . . .
w8 [2/3] 2 2 5 2 2 2 2 2 25 2 . . .
w9 [4/3] 2 2 2 5 2 2 2 2 2 25 . . .
w10 [1/3] 2 2 2 2 5 2 2 2 2 2 . . .
w11 [3/3] 2 2 2 2 2 5 2 2 2 2 . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
w60 [6/0] 0 2 2 2 2 2 5 2 2 2 . . .
w61 [5/1] 2 0 2 2 2 2 2 5 2 2 . . .
w62 [6/1] 2 2 0 2 2 2 2 2 5 2 . . .
w63 [7/1] 2 2 2 0 2 2 2 2 2 5 . . .
w64 [8/1] 2 2 2 2 0 2 2 2 2 2 . . .
w65 [9/1] 2 2 2 2 2 0 2 2 2 2 . . .

w66 [7/0] 5 2 2 2 2 2 0 2 2 2 . . .
w67 [5/3] 2 5 2 2 2 2 2 0 2 2 . . .
w68 [7/3] 2 2 5 2 2 2 2 2 0 2 . . .
w69 [9/3] 2 2 2 5 2 2 2 2 2 0 . . .
w70 [6/3] 2 2 2 2 5 2 2 2 2 2 . . .
w71 [8/3] 2 2 2 2 2 5 2 2 2 2 . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 4.2: Part of the matrix A(25)2, showing the indexing of its rows and columns.

Proof. From Lemma 3.3.1, there is a regular covering of M3(q) by M3(pq). Let vi = [a/c]q and

vj = [b/d]q be vertices of M3(q). Let wf and wg be vertices of M(pq) such that wf is in the

fibre of vi, so that wf = [a+ sp/c+ tp]pq for some s, t ∈ Z, and wg is in the fibre of vj .

We compare the entries of A(pq)2 and A(q)2. We can check that βpq(fg) = βq(ij) + ρq, and

∆pq(fg) = ∆q(ij)+τq for some ρ, τ ∈ Z. If ∆pq(fg) ≡ 0(mod pq), τ = 0, and ∆pq(fg) = ∆q(ij).

So gcd(∆pq(fg), pq) = gcd(∆q(ij), pq) = q = r.

Now assume that ∆pq(fg) 6≡ 0(mod pq). We order the rows and columns of the p2N × p2N

matrix A(pq)2 so that wf = [a + sp/c + tp]pq is in position f = sqN + tN + i if vi = [a/c]q is

in position i in M3(q). This ensures that, for any pair of integers s, t = 0, . . . , p − 1, the set of
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vertices wl : l = sqN + tN + i, i = 0, . . . , N − 1 contains exactly one vertex in each of the fibres

of the vertices vi of M3(q). Then, apart from the entries corresponding to ∆pq ≡ 0 (mod pq),

the matrix A(pq)2 consists of p2 × p2 copies of A(q)2.

If ∆pq ≡ 0 (mod pq), the fg entry of A(pq)2−pqI is 0. The first row of A(pq)2−pqI consists

of p2 copies of the first row of A(q)2, apart from entries equal to 0 corresponding to the vertices

[1 + lq/0]pq, which are in positions lpN for l = 0, . . . , p− 1. We can check that an automorphism

takes [1/0]pq to wf , and [1 + lq/0]pq to a vertex in a position a multiple of pN from wf .

Define the N ×N matrices B = A2(q), T = A2(q) − qI, and let D be the pN × pN matrix

consisting of p blocks of rows each comprising p − 1 copies of B, with one copy of T in the

diagonal position, that is

D =



T B · · · B B

B T · · · B B

...
...

. . .
...

...

B B · · · T B

B B · · · B T


.

Then

A2(pq)− pqI =



D D · · · D D

D D · · · D D

...
...

. . .
...

...

D D · · · D D

D D · · · D D


.

The rank of D is less than or equal to pN . So, from Lemma 4.2.6,
√
pq or −√pq or both are

eigenvalues of M(pq) with total algebraic multiplicity greater than or equal to p(p− 1)N .

We can now prove Theorem 4.1.1(ii), which states that if pk > 4, then

sp3(pk) = p sp3(pk−1) ∪ {−
√
pk

( 1
2pc)
, 0(c),

√
pk

( 1
2pc)}

where c = (p− 1)V (M3(pk−1)) = N.
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Proof of Theorem 4.1.1(ii). We put pk−1 = q. The number of vertices of M(pq), and so the

number of its eigenvalues, is p2N . Either
√
pq or −√pq, or both, are eigenvalues of M3(pq)

with total algebraic multiplicity greater than or equal to p(p − 1)N , and 0 is an eigenvalue of

M3(pq) with algebraic multiplicity greater than or equal to (p− 1)N . Also, from Lemma 4.2.4,

p sp3(q) ⊂ sp3(pq). The sum of the lower bound of the multiplicities of all the eigenvalues of

M3(pq) we have found is p(p − 1)N + (p − 1)N + N = Np2, which is the total number of

eigenvalues of M3(pq), so we take the lower bound for all multiplicities and there are no more

eigenvalues. Since the entries on the main diagonal of A(pq) are all zero, its trace is zero, so the

sum of its eigenvalues is 0. Therefore, as the eigenvalues ofM3(q) also sum to 0,
√
pq and −√pq

have the same multiplicity as eigenvalues of M(pq).

Example 4.4.4. We find sp3(27), the spectrum ofM3(27). We first find the spectrum ofM3(9),

using Theorem 4.1.1(ii), putting p = 3 and k = 2. Then the number of vertices of M3(3) is 4,

so c = 2× 4 = 8 and 1
2pc = 12. We have sp3(3) = {−1(3), 3}, so

3{−1(3), 3} = {−3(3), 9} ⊂ sp3(9).

{−3(12), 0(8), 3(12)} ⊂ sp3(9),

and therefore

sp3(9) = {−3(15), 0(8), 3(12), 9}.

Next we obtain sp3(27) by again using Theorem 4.1.1(ii), putting p = 2 and k = 3. As the

number of vertices of M3(9) is 36, c = 2× 36 = 72, and 1
2pc = 108. Then

3{−3(15), 0(8), 3(12), 9} ⊂ sp3(27),

{−3
√

3
(108)

, 0(72), 3
√

3
(108)
} ⊂ sp3(27),

and therefore

sp3(27) = {−9(15),−3
√

3
(108)

, 0(80), 3
√

3
(108)

, 9(12), 27}.
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4.5 Farey maps of composite level

To find the spectrum ofM3(n) for a composite n we need the parallel product of maps introduced

in Section 3.4. From [66, Theorem 2], if the vertex valencies of two mapsM1 andM2 are coprime,

the underlying graph of their parallel productM is the tensor product G1×G2 of their underlying

graphs. Then, from [25, Theorem 4.2.12], sp(M) = sp(M1)sp(M2).

Lemma 4.5.1. If l and m are coprime integers, neither of which is twice an odd integer, then
√
lm or −

√
lm or both are eigenvalues of M3(lm) with total algebraic multiplicity greater than

or equal to half the number of its vertices.

Proof. From Theorem 1.1.2, M3(lm) is a double covering of the parallel product of M3(l) and

M3(m). Let u ∈ Z, 1 < u < lm be such that u ≡ 1(mod l) and u ≡ −1(mod m). The covering

transformation takes both the vertices wf = [a/c]lm and wf ′ = [ua/uc]lm of M3(lm) to the

vertex vi = ([a/c]l, [a/c]m) of the parallel product of M3(l) and M3(m). Let the number of

vertices of M3(lm) be 2V . Then the parallel product has V vertices. We order the vertices of

M3(lm) so that f ′ = f + V .

Let wg = [b/d]lm be a vertex of M3(lm), with wg 6= wf and wg 6= w′f . We compare the fg

and f ′g entries of the matrix (A(lm))2− lmI. We have ∆(fg) = ad−bc and ∆(f ′g) = uad−buc.

Then gcd(∆(fg), lm) = gcd(∆(f ′g), lm) = r. We note that uλ(fg)ua+ uµ(fg)uc+ νlm = 1, so

we put λ(f ′g) = uλ(fg) and µ(f ′g) = uµ(fg), and obtain β(f ′g) = β(fg). So the (fg)th and

(f + V, g)th entries of A(lm)2 − lmI are equal.

Therefore we can write A2(lm)−lmI as 2×2 blocks of an V×V matrix and apply Lemma 4.2.6.

It follows that ±
√
lm are eigenvalues of (A(lm))2 with total algebraic multiplicity greater than

or equal to V .

It is now straightforward to prove Theorem 4.1.2, which states that, if m is a positive integer,

(i) if m is odd, then sp3(2m) = sp3(2)sp3(m).

(ii) if l and m are coprime integers, and neither l nor m is twice an odd integer, then

sp3(lm) = sp3(l)sp3(m) ∪ {−
√
lm

(N/4)
,
√
lm

(N/4)
}, where N = |V (M3(lm))|.
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Proof of Theorem 4.1.2. Both parts of this theorem now follow from Theorem 1.1.2. For part

(ii), we also need Lemma 4.5.1, and we note that, as the spectrum of the parallel product is a

subset of the spectrum of M3(lm), and it has V eigenvalues counting algebraic multiplicities,

the total algebraic multiplicity of ±
√
lm as eigenvalues of (A(lm))2 cannot exceed V as the total

number of eigenvalues counting multiplicities is 2V . Also, as the trace of the adjacency matrix

of the parallel product is zero, its eigenvalues sum to zero; therefore the eigenvalues
√
lm and

−
√
lm have the same multiplicity since the eigenvalues of M3(lm) also sum to zero.

Example 4.5.2. We find sp3(10), the spectrum of M3(10).

We have

sp3(2) = {−1(2), 2}, and sp3(5){−
√

5
(3)
,−1(5),

√
5
(3)
, 5},

so by the first part of Theorem 4.1.2

sp3(10) = {−1(2), 2}{−
√

5
(3)
,−1(5),

√
5
(3)
, 5}

= {(−1(2))(−
√

5
(3)

), (−1(2))(−1(5)), (−1(2))(
√

5
(3)

), 5(−1(2)),−2
√

5
(3)
,−2(5), 2

√
5
(3)
, 10}

= {−5(2),−2
√

5
(3)
,−
√

5
(6)
,−2(5), 1(10),

√
5
(6)
, 2
√

5
(3)
, 10}.

Example 4.5.3. We find sp3(20), the spectrum of M3(20). We have

sp3(4) = {−2(2), 0(3), 4}, and sp3(5) = {−
√

5
(3)
,−1(5),

√
5
(3)
, 5}.

Since 20 is not twice a odd number, we use the second part of Theorem 4.1.2, so

sp3(20) =
(
{−2(2), 0(3), 4}{−

√
5
(3)
,−1(5),

√
5
(3)
, 5}
)
∪ {−2

√
5
(36)

, 2
√

5
(36)
}

= {−10(2),−4
√

5
(3)
,−2
√

5
(6)
,−4(5), 0(36), 2(10), 2

√
5
(6)
, 4
√

5
(3)
, 20} ∪ {−2

√
5
(36)

, 2
√

5
(36)
}

= {−10(2),−4
√

5
(3)
,−2
√

5
(42)

,−4(5), 0(36), 2(10), 2
√

5
(42)

, 4
√

5
(3)
, 20}.

The spectra of all the Farey maps M3(n) for n = 1, . . . , 36, and for n = 49, 64, 81 and 125

are given in Appendix A.
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4.6 Hecke maps

Theorem 4.6.1. The spectrum of M4(n) for odd n, and that of M6(n) for 3 - n, is the multiset

−sp3(n) ∪ sp3(n), where sp3(n) is the spectrum of M3(n).

Proof. From Theorem 1.1.3 and Lemma 4.2.4, if λ is an eigenvalue of M3(n), then it is also an

eigenvalue of M4(n). In M4(n) the vertices adjacent to an even vertex are all odd, and the

vertices adjacent to an odd vertex are all even, so that if we partition the vertices into the set of

even vertices and the set of odd vertices every edge of the map has one vertex in each set, and

therefore M4(n) is bipartite. Then, by Theorem 8.8.2 of [22], if λ is an eigenvalue of a bipartite

graph, −λi also an eigenvalue with the same algebraic multiplicity. Since M4(n) has twice as

many vertices as M3(n) it has twice as many eigenvalues, so there are no more eigenvalues and

the result follows. Replacing 4 by 6, we have the corresponding result for M6(n) if 3 is not a

factor of n.

4.7 Ramanujan graphs

A Ramanujan graph is a regular graph for which λ < 2
√
n− 1, where n is the degree of the graph

and λ is the graph eigenvalue with the second largest modulus. (See for instance [40, Definition

3.7] or [46, Definition 1.1].) Ramanujan graphs are the subject of much research as they can be

used to make particularly good communication networks, as we will explain in Section 6.5.

Lemma 4.7.1. Suppose that n > 4, and let p1 be the smallest prime divisor of n. Then λ(n),

the eigenvalue of M3(n) with the second largest modulus, is given by

λ(n) =



1
2n if p1 = 2,

1
3n if p1 = 3,

1√
p1
n otherwise.

Proof. In the spectrum of M3(pk), the largest eigenvalue is pk, and, from Theorem 4.1.1, the

eigenvalue with the second largest modulus is pk/
√
p1 for p1 > 3 , pk/2 for p1 = 2 , and pk/3
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for p1 = 3. We give the full proof of this lemma for the case p1 > 3; it is straightforward to

prove the corresponding results for p1 = 2 and p1 = 3 in the same way.

We proceed by induction on the number r of prime divisors of n. If r = 1, then n = pk1 and

λ(n) = n/
√
p1. Now assume that the lemma is true for any integer greater than 4 with r − 1

prime divisors. Let n be any integer with r prime divisors the smallest of which is p1. Write

n = pk1m where m is coprime to p1. We have m > 4, as otherwise p1 = 2 or p1 = 3, so that m is

an integer greater that 4 with r−1 prime divisors the smallest of which is p2 > p1. Then, by the

inductive hypothesis, the eigenvalue with the second largest modulus of M3(n) is the largest of

pk1
m
√
p2

and
pk1√
p1
m, which is equal to

n
√
p1

.

From this lemma we recover a result proved in a very different way in [16, Theorem 1],

[23, Theorem 4.2], and [50, Theorem 1.12,(i)].

Corollary 4.7.2. The underlying graph of the Farey map M3(n) is a Ramanujan graph if and

only if n is prime or equal to one of 4, 6, 8, 9, 10, 12, 14, 15, 21, 27 or 33.

Proof. The graph is a Ramanujan graph if and only if λ < 2
√
n− 1.

Suppose first that p1 = 2. Then the graph is a Ramanujan graph if and only if n/2 < 2
√
n− 1.

For n ∈ N, this is equivalent to n2 < 16(n − 1), or n < 15. So, if n = 2, 4, 6, 8, 10, 12 or 14, the

graph is a Ramanujan graph.

Suppose next that p1 = 3. Then the graph is a Ramanujan graph if and only if n/3 < 2
√
n− 1.

For n ∈ N, this is equivalent to n2 < 36(n − 1), or n < 35. So, if n = 3, 9, 15, 21, 27 or 33, the

graph is a Ramanujan graph.

Then if p1 > 3, the condition λ < 2
√
n− 1 is equivalent to n/

√
p1 < 2

√
n− 1, or

n2

n− 1
= n+ 1 +

1

n− 1
< 4p1, or n < 4p1 − 2.

Let n = mp1. Then the graph is a Ramanujan graph if and only if mp1 < 4p1 − 2. Now neither

2 nor 3 can be divisors of m so the inequality is true if and only if m = 1, that is if n is prime.



Chapter 5

The convergence of integer

continued fractions

5.1 Introduction and main results

This chapter describes joint work carried out with Ian Short. It is the subject of [57], which

has been published in the Proceedings of the American Mathematical Society. Building on

results concerning the convergence of paths on the Farey tessellation in [58], we have found

a necessary and sufficient condition for the convergence of integer continued fractions. It is

well known that every infinite continued fraction (b0, b1, . . . ) with positive integer coefficients

converges (to an irrational number). However, if we stipulate that the coefficients are integers,

but not necessarily positive integers, then the continued fraction need not converge; for example,

the periodic continued fraction (1,−1, 1,−1, . . . ) diverges as its sequence of convergents oscillates

between the three values 1, 0 and ∞.

We will prove Theorem 1.1.4 given in the introduction, which we restate here. We express our

results in terms of the negative continued fractions defined by equation (2.8.5) in Section 2.8, and

in this chapter we use the phrase ‘continued fraction’ to refer to a negative continued fraction with

integer coefficients. We will define a function Φ on a negative continued fraction [b0, b1, · · · ]. Then

p(n), the key position, is the position of the first coefficient equal to 0,1, or −1 after n iterations

77
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of Φ, and q(n) is the modulus of the coefficient in the position preceding lim inf p(n) if that limit

is finite. Then our main result is:

Theorem 1.1.4 Let [b0, b1, . . . ] be a continued fraction.

1. Suppose that p(n) →∞.

(a) If [b∗0, b
∗
1, . . . ] has the same tail as [2, 2, . . . ] or [−2,−2, . . . ], then [b0, b1, . . . ] converges

to a rational.

(b) Otherwise, [b0, b1, . . . ] converges to an irrational.

2. Suppose that p(n) 6→ ∞.

(a) If q(n) →∞, then [b0, b1, . . . ] converges to an extended rational.

(b) If q(n) 6→ ∞, then [b0, b1, . . . ] diverges.

5.2 The algorithm for continued fraction convergence

We first define the notation used in the statement of Theorem 1.1.4.

Let C denote the collection of all continued fractions [b0, b1, . . . ]. We define a function

Φ: C −→ C as follows. If bn 6= 0, 1,−1 for every positive integer n (ignore b0), then Φ fixes

[b0, b1, . . . ]. Otherwise, let m be the least positive integer for which bm is 0, 1 or −1. Then

Φ([b0, b1, . . . ]) =


[b0, b1, . . . , bm−2, bm−1 + bm+1, bm+2, . . . ], if bm = 0,

[b0, b1, . . . , bm−2, bm−1 − 1, bm+1 − 1, bm+2, . . . ], if bm = 1,

[b0, b1, . . . , bm−2, bm−1 + 1, bm+1 + 1, bm+2, . . . ], if bm = −1.

In each case, Φ removes the coefficient bm, and adjusts the two coefficients on either side, merging

them when bm = 0. The operations induced by Φ are familiar in the theory of continued

fractions, where they are sometimes referred to as ‘singularization’ operations (see, for example
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[28, Section 4.2]). We later give a geometric description of the function Φ, which will help to

explain its definition.

Given [b0, b1, . . . ] in C , we define p(n) to be the first position (not zero) at which a 0, 1

or −1 appears in the continued fraction Φn([b0, b1, . . . ]), and we define p(n) to be ∞ if there

is no such position. Let p = lim inf p(n). Suppose for the moment that p = ∞. In this case,

for each non-negative integer k, the sequence of integers obtained by taking the kth coefficient

of Φn([b0, b1, . . . ]), for n = 1, 2, . . . , eventually fixes on some value b∗k. Thus we obtain a limit

continued fraction [b∗0, b
∗
1, . . . ], where |b∗n| > 2, for n = 1, 2, . . . . Suppose now that p < ∞. In

this case, we define q(n) to be the modulus of the coefficient of Φn([b0, b1, . . . ]) in positon p− 1,

for n = 1, 2, . . . , to give a sequence of nonnegative integers (q(n)).

We highlight a corollary of part (i) of Theorem 1.1.4 for continued fractions with no coefficients

(other than perhaps b0) equal to 0, 1 or −1, which generalises the known result of the same type

that has bn > 2, for n = 1, 2, . . . (see, for example, [35, Section 1]).

Theorem 5.2.1. Suppose that |bn| > 2, for n = 1, 2, . . . . Then the continued fraction [b0, b1, . . . ]

converges to a rational if it has the same tail as [2, 2, . . . ] or [−2,−2, . . . ], and otherwise it

converges to an irrational.

The following examples illustrate how Theorem 1.1.4 can be applied.

Example 5.2.2. Consider the continued fraction

[b0, b1, . . . ] = [3, 1, 3, 4, 1, 2, 3, 5, 1, 2, 2, 3, 6, 1, 2, 2, 2, 3, . . . ].

Some numbers are shaded to indicate how the pattern of coefficients continues. If these were

the coefficients of a regular continued fraction, then that continued fraction would converge,

because all the coefficients are positive. However,[b0, b1, . . . ] is a negative continued fraction, and

to determine whether it converges we can use Theorem 1.1.4. To do this, we apply Φ repeatedly

to give the sequence Φn([b0, b1, . . . ]), for n = 1, 2, . . . , which is

[2, 2, 4, 1, 2, 3, 5, 1, . . . ]→ [2, 2, 3, 1, 3, 5, 1, . . . ]→ [2, 2, 2, 2, 5, 1, . . . ]→ · · · .
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Continuing in this way we see that p(n) →∞, and the limit continued fraction is

[b∗0, b
∗
1, . . . ] = [2, 2, . . . ].

Hence [b0, b1, . . . ] converges to a rational number (namely 1, the value of [2, 2, . . . ]).

Example 5.2.3. Consider the continued fraction

[b0, b1, . . . ] = [1, 2, 1, 3, 1, 4, 1, 5, 1, . . . ].

Applying Φ repeatedly, we obtain

[1, 1, 2, 1, 4, 1, 5, 1, 6, 1, 7, . . . ]→ [0, 1, 1, 4, 1, 5, 1, 6, 1, 7, . . . ]→ [−1, 0, 4, 1, 5, 1, 6, 1, 7, . . . ]

→ [3, 1, 5, 1, 6, 1, 7, . . . ]→ [2, 4, 1, 6, 1, 7, . . . ]→ [2, 3, 5, 1, 7, . . . ]→ · · · .

Again we see that p(n) →∞, and this time the limit continued fraction is

[b∗0, b
∗
1, . . . ] = [2, 3, 4, 5, . . . ].

Hence [b0, b1, . . . ] converges to an irrational number.

Example 5.2.4. Consider the continued fraction

[b0, b1, . . . ] = [1, 0, 2, 0, 3, 0, 4, 0, . . . ].

Applying Φ repeatedly gives

[3, 0, 3, 0, 4, 0, 5, 0 . . . ]→ [6, 0, 4, 0, 5, 0 . . . ]→ [10, 0, 5, 0 . . . ]→ · · · .

By continuing with this process it becomes clear that, for each positive integer n, the coefficient

of Φn([b0, b1, . . . ]) in position 1 is 0, and the coefficient in position 0 is 1
2 (n + 1)(n + 2). Hence

p = lim inf p(n) = 1 and q(n) →∞. Therefore [b0, b1, . . . ] converges to an extended rational – to

infinity, in fact (this could easily be ascertained by other means).
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Example 5.2.5. Consider the continued fraction

[b0, b1, . . . ] = [3, 0,−3, 3, 3, 0,−3,−3, 3, 3, 3, 0,−3,−3,−3, . . . ].

Once more, applying Φ repeatedly we obtain

[0, 3, 3, 0,−3,−3, 3, 3, 3, 0,−3,−3,−3, . . . ]→ [0, 3, 0,−3, 3, 3, 3, 0,−3,−3,−3, . . . ]

→ [0, 0, 3, 3, 3, 0,−3,−3,−3, . . . ]→ [3, 3, 3, 0,−3,−3,−3, . . . ]→ · · · .

In this case the sequence of coefficients of Φn([b0, b1, . . . ]) in position 0, for n = 1, 2, . . . , takes

the value 0 infinitely often, as does the sequence of coefficients in position 1. Hence

p = lim inf p(n) = 1 and q(n) 6→ ∞, so [b0, b1, . . . ] diverges.

To obtain these results, as we explain in the next section, we use the model of continued

fractions as paths on the Farey tessellation F . We also use the geometry of F to establish the

following theorem about convergence of paths in F . It is a generalisation of [58, Theorem 1.4],

which states (in a more general context) that if an infinite path in F does not return to any

vertex infinitely often, then it converges.

Theorem 5.2.6. An infinite path in the Farey tessellation converges if and only if it does not

return to any two distinct vertices infinitely often.

In the language of continued fractions, this theorem says that a continued fraction [b0, b1, . . . ]

converges if and only if there are not two distinct extended rationals that each appear infinitely

many times in the sequence of convergents of [b0, b1, . . . ].

5.3 Continued fractions as paths on the Farey graph

Given two vertices u and v of F , we write u ∼ v if u and v are adjacent. An infinite path in

F is a sequence v0, v1, . . . of vertices of F such that vi ∼ vi+1, for i = 0, 1, . . . . We denote this

path by 〈v0, v1, . . . 〉, and represent it by directed edges along the hyperbolic geodesics joining vi

to vi+1 for i = 0, 1, . . .. Occasionally we consider finite paths in F , such as 〈v0, v1, . . . , vk〉, for
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i = 0, 1, . . . , k. An infinite path 〈v0, v1, . . . 〉 is said to converge in F if the sequence v0, v1, . . .

converges in R∞. Note that we allow paths to pass through the same vertex more than once; in

graph theory the term ‘walk’ would be used in place of ‘path’.

In [3, Theorem 3.1] it is shown that an integer continued fraction can be represented by a path

on the Farey tessellation. We adapt the proof, giving it in full for completeness, to show that

this is also true if the continued fraction is represented in the negative form given by equation

(2.8.5).

Theorem 5.3.1. The extended rationals v0, v1, . . . are the consecutive convergents of a negative

continued fraction if and only if 〈∞, v0, v1, . . . 〉 is an infinite path on F .

Proof. For a continued fraction [b0, b1, . . . ], we define the Mobius transformations sn(z) = bn−1/z

and Sn = s0 ◦ s1 ◦ · · · ◦ sn, for n = 0, 1, . . . . Both sn and Sn belong to the modular group Γ.

Let us define vn = Sn(∞), so that, as shown in Section 2.8, vn is the the nth convergent

[b0, b1, . . . , bn] of [b0, b1, . . . ]. Since 0 and ∞ are adjacent vertices of F , and Sn ∈ Γ, it follows

that Sn(0) ∼ Sn(∞) = vn. But Sn(0) = Sn−1 ◦ sn(0) = Sn−1(∞) = vn−1, so vn−1 ∼ vn, and

〈∞, v0, v1, . . . 〉 is an infinite path in F .

Conversely, given an infinite path 〈∞, v0, v1, . . . 〉 in F , we find a unique infinite continued

fraction [b0, b1, . . . ] whose sequence of convergents is v0, v1, . . . . First put b0 = v0. Then assume

that, for all i ≤ n, there are integers bi such that Si(∞) = Si−1(bi) = vi. Put bn+1 = S−1n (vn+1).

Then, putting sn+1(z) = bn+1 − 1/z, we have vn+1 = Sn(bn+1) = Sn+1(∞). Now vn+1 is

adjacent to vn in the Farey tessellation, that is Sn(bn+1) is adjacent to Sn(∞). As S−1n is in the

modular group it preserves adjacency, so bn+1 is adjacent to ∞, and therefore it is an integer. It

follows that the (n+ 1)th convergent in the continued fraction [b0, b1, . . . bn+1 . . .] is vn+1, and an

induction argument shows that any path on the Farey tessellation is a sequence of convergents

of a continued fraction.

Because of this correspondence between convergents and paths, we denote the sequence of

convergents v0, v1, . . . of a continued fraction by 〈v0, v1, . . . 〉 (omitting ∞ as an initial vertex).



CHAPTER 5. THE CONVERGENCE OF INTEGER CONTINUED FRACTIONS 83

Example 5.3.2. Consider the continued fraction [0,−3,−2, 0, 3,−2, . . .]. We calculate the con-

vergents in the following table using equations (2.8.2) and (2.8.3), then show the corresponding

path on the Farey tessellation.

n bn pn qn vn

0 0 0 1 0

1 −3 −1 −3 1/3

2 −2 2 5 2/5

3 0 1 3 1/3

4 3 1 4 1/4

5 −2 −3 −11 3/11

0 1
3

2
5

1
4

Figure 5.3.1: The path on the Farey tessellation from Example 5.3.2.

The connection between continued fractions and paths in the Farey tessellation has been

explored before, in, for example, [3,58]. Using this perspective we can describe the function Φ in

geometric terms, by looking at how it modifies the sequence of convergents. To see this, suppose

first that bm = 0. Then sm(z) = −1/z, so

Sm(∞) = Sm−1 ◦ sm(∞) = Sm−1(0),

and hence

vm = Sm(∞) = Sm−1(0) = Sm−2(∞) = vm−2.
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In this case the path of convergents 〈v0, v1, . . . 〉 travels from vm−2 to vm−1 and then back to

vm−2 = vm. The effect of applying Φ is to remove the vertices vm−1 and vm from the path of

convergents. This will be proved formally in Lemma 5.5.2.

We show how this applies to the continued fraction in example 5.3.2.

Example 5.3.3. We denote both the continued fraction and its path by γ.

Let γ = [0,−3,−2, 0, 3,−2, . . .], so that Φ(γ) = [0,−3, 1,−2, . . .]. As b3 = 0, both v2 and v3,

that is 2/5 and the second occurrence of 1/3, are removed from the path.

γ : n bn pn qn vn Φ(γ) : n bn pn qn vn

0 0 0 1 0 0 0 0 1 0

1 −3 −1 −3 1/3 1 −3 −1 −3 1/3

2 −2 2 5 2/5 2 1 −1 −4 1/4

3 0 1 3 1/3 3 −2 3 11 3/11

4 3 1 4 1/4

0 01
3

1
3

2
5

2
5

1
4

1
4

γ Φ(γ)

Figure 5.3.2: The paths γ and Φ(γ) from Example 5.3.3.

Now suppose that bm = 1, in which case sm(1) = 0, so Sm(1) = Sm−1 ◦ sm(1) = Sm−1(0).

Then vm = Sm(∞), vm−1 = Sm−1(∞) = Sm(0) and vm−2 = Sm−2(∞) = Sm−1(0) = Sm(1).

Since 1, 0 and ∞ are the vertices of a triangle in F , so are vm−2, vm−1 and vm. So vm−2 is

adjacent to vm in F , and the effect of applying Φ is to remove the vertex vm−1 and proceed

directly from vm−2 to vm. The vertices vk for k < m − 1 do not change, and for k ≥ m, the

vertex in position k moves to position k − 1.
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For bm = −1, we note that sm(−1) = 0, so Sm(1) = Sm−1 ◦ sm(−1) = Sm−1(0). The proof

is then identical to that for bm = 1, as ∞, 0 and −1 also form a triangle in F . The next two

examples demonstrate the cases bm = 1 and bm = −1.

Example 5.3.4. Let γ = [0,−3, 2, 1,−3, 2 . . .]. So Φ(γ) = [0,−3, 1,−4, 2 . . .].

γ : n bn pn qn vn Φ(γ) : n bn pn qn vn

0 0 0 1 0 0 0 0 1 0

1 −3 −1 −3 1/3 1 −3 −1 −3 1/3

2 2 -2 −7 2/7 2 1 −1 −4 1/4

3 1 -1 -4 1/4 3 −4 5 19 5/19

4 -3 5 19 5/19 4 2 11 42

The path goes straight from 1/3 to 1/4, removing convergent 2/7 as shown in Figure 5.3.

0 01
3

1
3

1
4

1
4

2
7

2
7

5
19

5
19

γ Φ(γ)

Figure 5.3.3: The paths γ and Φ(γ) from Example 5.3.3.

Example 5.3.5. Let γ = [0,−3, 2,−1,−3, 2 . . .]. So Φ(γ) = [0,−3, 3,−2, 2 . . .].

γ : n bn pn qn vn Φ(γ) : n bn pn qn vn

0 0 0 1 0 0 0 0 1 0

1 −3 −1 −3 1/3 1 −3 −1 −3 1/3

2 2 −2 −7 2/7 2 3 −3 −10 3/10

3 −1 3 10 3/10 3 −2 7 23 7/23

4 −3 −7 −23 7/23 4 2 17 56

The path goes straight from 1/3 to 3/10, removing the convergent 2/7 as shown in Figure 5.3.4.
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0 01
3

1
3

2
7

2
7

3
10

3
10

7
23

7
23

γ Φ(γ)

Figure 5.3.4: The paths γ and Φ(γ) from Example 5.3.5.

We also give, in Figure 5.3.5, a schematic representaion of the effect of Φ for bm = 0 and

bm = 1.

Figure 5.3.5: Schematic representations of the action of Φ on a Farey graph path in the cases
bm = 0 (upper) and bm = 1 (lower). The case bm = −1 is similar to that of bm = 1.

We now prove Theorem 5.2.6. We need the following lemma, which will be used several times.

Lemma 5.3.6. Let u and v be two adjacent vertices of F , and let γ be a finite path in F with

initial and final vertices in different components of R∞ \ {u, v}. Then γ passes through one or

both of u and v.

Proof. Observe that the two vertices of an edge of γ cannot lie in different components of
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R∞ \ {u, v}, for if they did then this edge would intersect the edge of F between u and v. It

follows, then, that γ must pass through u or v.

It is helpful to highlight another elementary lemma.

Lemma 5.3.7. Let α and β be distinct elements of R∞ that are not adjacent vertices of F .

Then the hyperbolic line between α and β intersects some edge of F .

Proof. Let ` be the hyperbolic line between α and β. If α and β are irrational, then ` must

intersect some edge of F , for otherwise the vertices of F in one of the components of R∞\{α, β}

are disconnected from the vertices in the other component. On the other hand, if one of the two

vertices (α, say) is rational, then for some automorphism M ∈ Γ, M(α) = ∞, in which case,

as M(β) is not an integer since α and β are not adjacent, the vertical line joining ∞ to M(β)

intersects the edge between n and n+ 1, where n is the integer part of β.

We are now able to prove Theorem 5.2.6.

Proof of Theorem 5.2.6. We will prove the contrapositive statement of Theorem 5.2.6, namely

that an infinite path in the Farey graph diverges if and only if it returns to two distinct vertices

infinitely often.

Let γ = 〈v0, v1, . . . 〉 be a path in F that diverges. Then γ must have two convergent

subsequences with distinct limit points α and β in R∞.

Suppose for the moment that α and β are not adjacent vertices of F . By Lemma 5.3.7, there

is an edge of F that intersects the hyperbolic line between α and β. Let u and v be the vertices

of this edge. Then α and β lie in different components of R∞ \{u, v}. Since γ approaches each of

α and β infinitely often, we see from Lemma 5.3.6 that γ passes through one of u or v infinitely

many times.

Suppose now that α and β are adjacent vertices of F . After applying an automorphism, that

is an element of the modular group Γ, we can assume that they are 0 and ∞. Then γ must pass

in and out of one of the intervals [−1, 0] or [0, 1] infinitely often. Applying Lemma 5.3.6 once

more, we see again that γ passes through a vertex of F infinitely many times.
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Thus, in both cases, and after applying another automorphism, we can assume that γ passes

through the vertex∞ infinitely often. However, γ diverges, so it must enter some interval [n, n+1]

infinitely often, where n is an integer. Since n and n+1 are adjacent vertices of F , we can apply

Lemma 5.3.6 yet again, to see that γ passes through one of n or n+ 1 infinitely often.

Therefore γ returns to two distinct vertices of F infinitely often, as required. The converse

implication is immediate.

5.4 Convergence to a rational

This section proves Theorem 5.2.1. Although this theorem is a corollary of Theorem 1.1.4, we

prove it independently, and then later use it to prove the stronger theorem.

Lemma 5.4.1. The continued fraction [b0, b1, . . . ], where |bn| > 2, for n = 1, 2, . . . , converges

to a value in [b0− 1, b0 + 1]. Furthermore, it converges to b0− 1 if and only if b1 = b2 = · · · = 2,

and it converges to b0 + 1 if and only if b1 = b2 = · · · = −2.

Proof. We prove the lemma when b0 = 0; the more general case follows immediately by applying

a translation.

Let tn(z) = −1/(bn+ z), for n = 1, 2, . . . , and let Tn = t1 ◦ t2 ◦ · · · ◦ tn. (It is marginally more

convenient to use these mappings in place of the mappings sn = bn−1/z and Sn = s1◦s2◦· · ·◦sn

defined earlier.) Then the nth convergent of [0, b1, b2 . . . ] is Tn(0), for n = 1, 2, . . . . Observe that

tn takes any point z ∈ [−1, 1] to a point tn(z) ∈ [−1, 1], and preserves the order of points in that

interval. It follows that Tn also takes points in [−1, 1] to points in [−1, 1], and preserves order

in that interval. It is straightforward to check that tn+1(−1) ≥ −1, so

Tn+1(−1) = Tn(tn+1(−1)) ≥ Tn(−1),

and similarly

Tn+1(1) = Tn(tn+1(1)) ≤ Tn(1).
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Furthermore, tn(−1) = −1 if and only if bn = 2, and tn(1) = 1 if and only if bn = −2. Thus

−1 6 T1(−1) 6 T2(−1) 6 · · · 6 T2(1) 6 T1(1) 6 1,

where equality holds in all of the left set of inequalities if and only if all coefficients bn equal 2,

and equality holds in all of the right set of inequalities if and only if all coefficients bn equal −2.

Now, Tn(0) ∈ (Tn(−1), Tn(1)), but Tn(0) = Tn+1(∞), so Tn(0) /∈ [Tn+1(−1), Tn+1(1)]. There-

fore either Tn(−1) < Tn(0) < Tn+1(−1) or Tn+1(1) < Tn(0) < Tn(1). From this we see that all

the points T1(0), T2(0), . . . are distinct. For any ε > 0 there are only finitely many edges of F

with vertices in [−1, 1] and with Euclidean diameter greater than ε. Since Tn(0), Tn(1) ∈ [−1, 1],

and they are the vertices of an edge of F (because 0 and 1 are adjacent in F and Tn ∈ Γ), we

see that |Tn(0)− Tn(1)| → 0, and similarly |Tn(0)− Tn(−1)| → 0.

Reasoning in this way we deduce that the sequences (Tn(−1)) and (Tn(1)) converge to the

same limit between −1 and 1, which is the value of the continued fraction. Furthermore, this

limit is −1 if and only if all coefficients bn equal 2, and it is 1 if and only if all coefficients bn

equal −2.

We can now prove Theorem 5.2.1, which says that if |bn| > 2, for n = 1, 2, . . . , then the

continued fraction [b0, b1, . . . ] converges to a rational if it has the same tail as ±[2, 2, . . . ], and

otherwise it converges to an irrational.

Proof of Theorem 5.2.1. We use the notation sn(z) = bn − 1/z, Sn = s1 ◦ s2 ◦ · · · ◦ sn and

vn = Sn(∞), for n = 0, 1, . . . , which was presented earlier. The convergents 〈v0, v1, . . . 〉 of the

continued fraction form a path in F , which converges to a limit α, a real number, by Lemma 5.4.1.

Suppose that α is rational. We claim that there is a nonnegative integer m for which vm ∼ α

and vm+1 6= α. (Recall that ∼ denotes adjacency in F .) To prove the claim, first suppose that

vk = α for some position k. Then vk+1 ∼ α. Now sk+2(∞) = bk+2 and s−1k+1(z) = 1/(bk+1 − z),

so s−1k+1(∞) = 0; therefore since bk+2 6= 0 we see that sk+2(∞) 6= s−1k+1(∞), and so

vk+2 = Sk+2(∞) = Sk+1 ◦ sk+2(∞) 6= Sk+1 ◦ s−1k+1(∞) = Sk(∞) = vk = α.
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Hence in this case we can choose m = k + 1.

We can now suppose that no vertex vk is equal to α. Choose vertices u and v of F each

adjacent to α with u < α < v such that the vertex v0 of the path does not lie in [u, v]. By

Lemma 5.3.6, the path γ must pass through one of u or v, so there is a postion m for which

vm ∼ α (and vm+1 6= α). This proves the claim. Observe that vm = Sm(∞), so ∞ = S−1m (vm).

Since vm ∼ α, it follows that ∞ ∼ S−1m (α), so S−1m (α) is an integer. We have

s0 ◦ s1 ◦ · · · ◦ sm ◦ sm+1 ◦ · · · = Sm ◦ sm+1 ◦ · · · ,

and therefore S−1m (α) = [bm+1, bm+2, · · · ]. Now vm+1 = Sm+1(∞) = Sm(bm+1), so we have

bm+1 = S−1m (vm+1), which is distinct from S−1m (α). So we can apply Lemma 5.4.1 to the continued

fraction [bm+1, bm+2, · · · ] to see that S−1m (α) = bm+1 − 1 and bm+2 = bm+3 = · · · = 2, or else

S−1m (α) = bm+1 + 1 and bm+2 = bm+3 = · · · = −2.

It remains to prove that if [b0, b1, . . . ] has the same tail as [2, 2, . . . ] or [−2,−2, . . . ], then α

is rational. Suppose then that bm+2 = bm+3 = · · · = 2, for some position m. Then

α = [b0, b1, . . . ] = Sm+1([2, 2, . . . ]) = Sm+1(1),

so α is rational, and similarly we can see that α is rational if bm+2 = bm+3 = · · · = −2.

The following example shows the representation on the Farey tessellation of a continued

fraction which converges to zero.

Example 5.4.2. Consider the continued fraction [0,−1, 1, 2, 2, 2, 2, 2, . . .]. We calculate the first

6 convergents in the following table, then in Figure 5.4.1 show the corresponding path on the

Farey tessellation, which we see converges very slowly to zero.



CHAPTER 5. THE CONVERGENCE OF INTEGER CONTINUED FRACTIONS 91

n bn pn qn vn

0 0 0 1 0

1 −1 −1 −1 1

2 1 −1 −2 1/2

3 2 −1 −3 1/3

4 2 −1 −4 1/4

5 2 −1 −5 1/5

0 1
2

1
3

1
4

1
5

1

Figure 5.4.1: The path on the Farey tessellation of [0,−1, 1, 2, 2, 2, 2, 2, . . .].

5.5 Convergence if the key position increases to infinity

In this section we prove part (i) of Theorem 1.1.4. First we gather several more elementary

results. In these results we use the usual notation sn(z) = bn − 1/z and Sn = s0 ◦ s1 ◦ · · · ◦ sn,

for n = 0, 1, . . . , associated to the continued fraction [b0, b1, . . . ].

Lemma 5.5.1. Suppose that the finite continued fraction [b0, b1, . . . , bm], where |bi| > 2 for

i = 1, 2, . . . ,m, has as value the reduced rational c/d. Then m < d.

Proof. From equation (2.8.3), if Sn(z) = (cnz − cn−1)/(dnz − dn−1), dn = bndn−1 − dn−2 for

n = 1, 2, . . . ,m, where d0 = 1 and d−1 = 0. So

|dn| = |bndn−1 − dn−2| > 2|dn−1| − |dn−2|,
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and therefore |dn| − |dn−1| > |dn−1| − |dn−2|. Since |d0| − |d−1| = 1, it follows that

|dm| = (|dm| − |dm−1|) + (|dm−1| − |dm−2|) + · · ·+ (|d0| − |d−1|) > m.

But cm/dm = c/d, so |dm| = d, and the result follows.

The following lemma describes how the convergents of a continued fraction are modified under

an application of the function Φ.

Lemma 5.5.2. Let [b0, b1, . . . ] and [b′0, b
′
1, . . . ] be continued fractions with convergents 〈v0, v1, . . . 〉

and 〈v′0, v′1, . . . 〉, respectively, and suppose that [b′0, b
′
1, . . . ] = Φ([b0, b1, . . . ]). Let m be the first

position at which a coefficient equal to 0, 1 or −1 appears in the sequence b1, b2, . . . (assuming

there is one). Then

〈v′0, v′1, . . . 〉 =


〈v0, v1, . . . , vm−2, vm+1, . . . 〉, if bm = 0,

〈v0, v1, . . . , vm−2, vm, . . . 〉, if bm = ±1.

In the case m = 1 this formula should be interpreted to say that 〈v′0, v′1, . . . 〉 is equal to

〈v2, v3, . . . 〉 when bm = 0 and 〈v′0, v′1, . . . 〉 is equal to 〈v1, v2, . . . 〉 when bm = ±1.

Proof. We use the usual notation sn(z) = bn − 1/z, Sn = s0 ◦ s1 ◦ · · · ◦ sn and vn = Sn(∞), for

n = 0, 1, . . . ; also s′n(z) = b′n − 1/z, S′n = s′0 ◦ s′1 ◦ · · · ◦ s′n and v′n = S′n(∞), for n = 0, 1, . . . .

First consider the case when bm = 0. Then s′n(z) = sn(z), for n = 0, 1, . . . ,m − 2, so

v′n = S′n(∞) = Sn(∞) = vn. Now, sm(z) = −1/z, so sm−1 ◦ sm(z) = bm−1 + z. Hence

sm−1 ◦ sm ◦ sm+1(z) = bm−1 + bm+1 − 1/z = s′m−1(z).

Also, s′n(z) = sn+2(z), for n > m. Hence, for n > m− 1, we have

v′n = S′n(∞) = Sn+2(∞) = vn+2.

Now suppose that bm = 1 (the case bm = −1 is similar). As in the previous case, s′n(z) = sn(z),
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for n = 0, 1, . . . ,m− 2, so v′n = S′n(∞) = Sn(∞) = vn. This time sm(z) = 1− 1/z, so

sm−1 ◦ sm(z) = bm−1 − 1− 1

z − 1
and sm−1 ◦ sm ◦ sm+1(z) = bm−1 − 1− 1

bm+1 − 1/z − 1

Now b′m−1 = bm−1 − 1, and b′m = bm+1 − 1, so

s′m−1 ◦ s′m(z) = bm−1 − 1− 1

bm+1 − 1− 1/z
= sm−1 ◦ sm ◦ sm+1(z)

Also, s′n(z) = sn+1(z), for n > m+ 1. Hence, for n > m− 1, we have

v′n = S′n(∞) = Sn+1(∞) = vn+1.

For the remainder of this section we will use the following notation associated to a continued

fraction [b0, b1, . . . ]. As usual, the sequence of convergents of [b0, b1, . . . ] is denoted by 〈v0, v1, . . . 〉.

We define [b
(n)
0 , b

(n)
1 , . . . ] = Φn([b0, b1, . . . ]), and we let 〈v(n)0 , v

(n)
1 , . . . 〉 be the associated sequence

of convergents. Then p(n) is the first position at which a 0, 1 or −1 appears in [b
(n)
0 , b

(n)
1 , . . . ],

and p = lim inf p(n). By the definition of Φ we can see that, for 0 6 i < p − 1 (where possibly

p =∞), each of the sequences b
(0)
i , b

(1)
i , . . . is eventually constant, with value b∗i , say. We denote

the sequence of convergents of [b∗0, b
∗
1, . . . , b

∗
p−2] by 〈v∗0 , v∗1 , . . . , v∗p−2〉. Of course, if p = ∞, then

[b∗0, b
∗
1, . . . ] is an infinite continued fraction with an infinite sequence of convergents 〈v∗0 , v∗1 , . . . 〉.

Whereas the position of various vertices on the path after several iterations of Φ seems obvious

intuitively, the more rigorous treatment which follows is necessary for a proof of Theorem 1.1.4.

Consider a particular convergent vk of [b0, b1, . . . ]. We define inductively a sequence E(k)

of non-negative integers e(0)(k), e(1)(k), . . . , chosen such that the vertex at position e(n)(k) of

〈v(n)0 , v
(n)
1 , . . . 〉 is vk. The sequence E(k) may be finite or infinite.

Firstly, as vk is at position k in 〈v0, v1, . . . 〉, e(0)(k) = k.

Now suppose that e(0)(k), e(1)(k), . . . , e(n)(k) have all been defined, for some non-negative

integer n. Let m = p(n), the position of the first coefficient (ignoring b
(n)
0 ) equal to 0, 1 or −1 in

[b
(n)
0 , b

(n)
1 , . . . ].
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If b
(n)
m = 0, and e(n)(k) equals m− 1 or m, then the sequence E(k) terminates at e(n)(k).

If b
(n)
m = ±1, and e(n)(k) = m − 1, then, again, the sequence E(k) terminates at e(n)(k).

Otherwise, we define

e(n+1)(k) =


e(n)(k), if e(n)(k) 6 m− 2,

e(n)(k)− 2, if e(n)(k) > m and b
(n)
m = 0,

e(n)(k)− 1, if e(n)(k) > m− 1 and b
(n)
m = ±1.

This ensures that the e(n+1)(k)th vertex of 〈v(n+1)
0 , v

(n+1)
1 , . . . 〉 is equal to the e(n)(k)th vertex of

the path 〈v(n)0 , v
(n)
1 , . . . 〉.

The resulting sequence E = e(0)(k), e(1)(k), . . . is decreasing, though not necessarily strictly

decreasing; if it is infinite, then it must therefore eventually be constant. We record two further

properties in the following lemmas. We write N0 for the set {0, 1, 2, . . . }.

Lemma 5.5.3. If k < l, then e(n)(k) < e(n)(l), for all n ∈ N0 for which both expressions exist.

Proof. We proceed by induction. As e(0)(k) = k and e(0)(l) = l, e(0)(k) < e(0)(l). Assume that

e(i)(k) < e(i)(l) for all non-negative integers i ≤ n. Then if e(n)(k) < m− 1 and e(n)(l) < m− 1,

e(n+1)(k) < e(n+1)(l). Suppose that bm = 0. If e(n)(l) = m− 1 or e(n)(l) = m, the sequence E(l)

terminates at e(n)(l). If e(n)(l) > m − 1, then e(n)(l) > e(n)(k) + 2, so e(n+1)(k) < e(n+1)(l). If

e(k)(m) = m−1 or e(n)(k) = m, the sequence E(k) terminates at e(n)(k). If e(n)(k) > m, we also

have e(n)(l) > m, and e(n+1)(k) < e(n+1)(l). A similar proof applies to the case bm = ±1.

Lemma 5.5.4. Let n, r ∈ N0. Then there exists a unique integer k ∈ N0 with e(n)(k) = r.

Proof. We prove by induction on n that for any r ∈ N0 there exists k ∈ N0 with e(n)(k) = r. For

n = 0, we can choose k = r, because e(0)(r) = r. Suppose next that the induction statement is
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true for all non-negative integers up to and including n. Let m = p(n). Given r ∈ N0, we define

s =


r, if r 6 m− 2,

r + 2, if r > m− 1 and b
(n)
m = 0,

r + 1, if r > m− 1 and b
(n)
m = ±1.

We can choose k ∈ N0 such that e(n)(k) = s. Then e(n+1)(k) = r for each of the three cases used

to define s. This completes the inductive proof. For uniqueness, we observe that if k < l then

e(n)(k) < e(n)(l), so e(n)(k) and e(n)(l) cannot both equal r.

Lemma 5.5.5. Suppose that p(n) →∞. Then for any extended rational v there are only finitely

many convergents vk equal to v.

Proof. We write v as a reduced rational c/d. Choose a positive integer R such that if n > R,

then p(n) > d+ 2. It follows that

[b
(n)
0 , b

(n)
1 , . . . , b

(n)
d ] = [b∗0, b

∗
1, . . . , b

∗
d],

for n > R. From Lemma 5.5.4 there is a non-negative integer S such that e(R)(S) = d. Then

e(R)(S) 6 p(n) − 2, so e(n)(S) 6 p(n) − 2, for n > R, and it follows from the definition of the

sequence e(0)(S), e(1)(S), . . . that e(n)(S) = d, for all n > R.

Let us assume that k > S and vk = v. We will establish a contradiction, thereby proving

that only finitely many convergents are equal to v.

Suppose for the moment that the sequence e(0)(k), e(1)(k), . . . is infinite, so it is eventually

constant, with value m, say. Choose any sufficiently large integer n > R for which e(n)(k) = m

and p(n) > m. Since k > S, it follows that e(n)(k) > e(n)(S), so m > d. Now, from the definition

of e(0)(k), e(1)(k), . . . , we know that the vertex at position m = e(n)(k) of 〈v(n)0 , v
(n)
1 , . . . 〉 is equal

to vk; that is, v
(n)
m = vk = v = c/d. However, this contradicts Lemma 5.5.1, because |b(n)i | > 2,

for i = 1, 2, . . . ,m (since p(n) > m), and m > d.

Suppose instead that e(0)(k), e(1)(k), . . . is of finite length, and that the final term is e(n)(k).
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Since k > S, it follows that e(n)(k) > e(n)(S) = d.

Let m = p(n). Because the final term of the sequence e(0)(k), e(1)(k), . . . is e(n)(k), we see

from the definition of that sequence that either b
(n)
m = 0 and e(n)(k) equals m − 1 or m, or

b
(n)
m = ±1 and e(n)(k) = m− 1. So, in all cases m > d.

Suppose that b
(n)
m = 0. If e(n)(k) = m − 1, [b

(n)
0 , b

(n)
1 , . . . , b

(n)
m−1] has value v

(n)
m−1 = vk = v,

which contradicts Lemma 5.5.1, because |b(n)i | > 2, for i = 1, 2, . . . ,m− 1 (since p(n) = m), and

m > d. And if e(n)(k) = m, [b
(n)
0 , b

(n)
1 , . . . , b

(n)
m−2] has value v

(n)
m−2 = v

(n)
m = vk = v, which again

contradicts Lemma 5.5.1, because |b(n)i | > 2, for i = 1, 2, . . . ,m− 2 (since p(n) = m), and m > d.

We obtain a similar contradiction when b
(n)
m = ±1.

It follows that there are no integers k > S with vk = v. Hence there are only finitely many

convergents equal to v.

Lemma 5.5.6. Suppose that p(n) →∞. Then the sequence of convergents of the limit continued

fraction [b∗0, b
∗
1, . . . ] is a subsequence of the sequence of convergents of [b0, b1, . . . , bn].

Proof. With the usual notation, the lemma says that 〈v∗0 , v∗1 , . . . 〉 is a subsequence of 〈v0, v1, . . . 〉.

To see why this is so, choose any non-negative integer r, and let N be a positive integer for which

p(n) > r + 2, for n > N . Then v
(n)
r = v∗r , for n > N , because r 6 p(n) − 2. By Lemma 5.5.4

there is a nonnegative integer kr with e(N)(kr) = r; and in fact e(n)(kr) = r, for n > N , because

r 6 p(n) − 2. Hence v∗r = v
(n)
r = vkr , by definition of e(0)(kr), e

(1)(kr), . . . .

Now, we know that if kr < ks, then e(n)(kr) < e(n)(ks). Hence k0 < k1 < · · · . It follows that

〈v∗0 , v∗1 , . . . 〉 is a subsequence of 〈v0, v1, . . . 〉.

We can now prove the first part of Theorem 1.1.4.

Proof of Theorem 1.1.4(i). Part (i) of Theorem 1.1.4 assumes that p(n) → ∞. In this case we

see from Lemma 5.5.5 that the sequence of convergents 〈v0, v1, . . . 〉 does not return to any vertex

infinitely often. Hence, by Theorem 5.2.6, the continued fraction converges to some value α.

Now, by Lemma 5.5.6, the sequence of convergents of [b∗0, b
∗
1, . . . ] is a subsequence of that of

[b0, b1, . . . ]. The former continued fraction certainly converges – by Theorem 5.2.1 – so it must
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converge to α. Moreover, Theorem 5.2.1 tells us that α is rational if [b∗0, b
∗
1, . . . ] has the same tail

as [2, 2, . . . ] or [−2,−2, . . . ], and otherwise it is irrational, as required.

The following example shows a continued fraction for which p(n) →∞ as n→∞, with a tail

different to [2, 2, 2, 2, 2, . . .]. It converges to an irrational number.

Example 5.5.7. Consider the continued fraction

[0, 2,−2,−1,−2, 2, 1,−1, 1, 2,−2,−1, 1,−1, 1, 2,−2,−1, 1,−1, 1,−1,−2, 2, . . .]

The following table shows the result of applying Φ 10 times:

n p(n) b1
(n) b2

(n) b3
(n) b4

(n) b5
(n) b6

(n) b7
(n) b8

(n) b9
(n) . . .

0 3 2 −2 −1 −2 2 1 −1 1 2 · · ·

1 2 2 −1 −1 2 1 −1 1 2 −2 · · ·

2 2 3 0 2 1 −1 1 2 −2 −1 · · ·

3 2 5 1 −1 1 2 −2 −1 1 −1 · · ·

4 3 4 −2 1 2 −2 −1 1 −1 1 · · ·

5 3 4 −3 1 −2 −1 1 −1 1 2 · · ·

6 4 4 −4 −3 −1 1 −1 1 2 −2 · · · .

7 5 4 −4 −2 2 −1 1 2 −2 −1 · · ·

8 8 4 −4 −2 3 2 2 −2 −1 1 · · ·

9 7 4 −4 −2 3 2 2 −1 2 −1 · · ·

10 8 4 −4 −2 3 2 3 3 −1 1 · · ·

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

It is clear from this table (and straightforward to prove assuming that the pattern for the

coefficients continues) that p(n) → ∞ as n → ∞. The first 7 convergents are given in the

following table:
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m bm pm qm vm

1 0

0 0 0 1 0

1 2 −1 2 −0.5

2 −2 2 −5 −0.4

3 −1 −1 3 −0.3

4 −2 0 −1 0

5 2 1 −5 −0.2

6 1 1 −4 −0.25

7 −1 −2 9

We show the original path and that after the first 3 applications of the algorithm in Figure 5.5.1.

− 1
2 − 1

2− 2
5 − 2

5− 1
3 − 1

3− 1
5 − 1

5
00

∞ ∞
Φ2(γ) Φ3(γ)

− 1
2 − 1

2− 2
5 − 2

5− 1
3 − 1

3− 1
5 − 1

5
00

γ Φ(γ)∞ ∞

Figure 5.5.1: The paths γ, Φ(γ),Φ2(γ) and Φ3(γ) from Example 5.5.7.
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5.6 Convergence if the key position is bounded

The second part of Theorem 1.1.4 will be proved after two preliminary lemmas.

Lemma 5.6.1. Consider a continued fraction [b0, b1, . . . ] with |bi| > 2, for i = 1, 2, . . . , n. Let

〈v0, v1, . . . 〉 be the corresponding sequence of convergents. If 1 6 k 6 n, then

|vn − vk−1| 6
1

|bk| − 1
.

This inequality remains true if 1 6 k < n and |bi| > 2, for i = 1, 2, . . . , n− 1, but bn = 0.

Proof. By applying a translation we can assume that b0 = 0 (so v0 = 0). Now define

tm(z) = −1/(bm + z) and Tm = t1 ◦ t2 ◦ · · · ◦ tm, for m = 1, 2, . . . , as we did in proving

Lemma 5.4.1. Let T0 denote the identity transformation. Recall that (Tm(0)) is the sequence

of convergents of [b0, b1, . . . ], and tm([−1, 1]) ⊂ [−1, 1] for m = 1, 2, . . . , n. Observe also that

|t′m(z)| = 1/|bm + z|2 6 1, for z ∈ [−1, 1] and 1 6 m 6 n. Applying the chain rule, we see that

|T ′m(z)| = |t′1(z1)||t′2(z2)| · · · |t′m(zm)| 6 1,

for z ∈ [−1, 1] and 1 6 m 6 n, where zi = ti+1 ◦ ti+2 ◦ · · · ◦ tm(z) (and zm = z).

Next, we have vk = Tk(0), for k = 1, 2, . . . , n. Observe that tk+1 ◦ tk+2 ◦ · · · ◦ tn(0) ∈ [−1, 1].

Hence

vn ∈ Tk([−1, 1]) = Tk−1([tk(−1), tk(1)]).

Suppose that bk > 0 (the case bk < 0 is similar). Then tk(1) = −1/(bk + 1) < 0, so

vn ∈ Tk−1([tk(−1), 0]).

Therefore vn = Tk−1(un), for some point un in [tk(−1), 0]. Now,

|tk(−1)− 0| =
∣∣∣∣ −1

bk − 1

∣∣∣∣ =
1

|bk| − 1
.
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Hence

|vn − vk−1| = |Tk−1(un)− Tk−1(0)| = |T ′k−1(ck)||un − 0|,

for some real number ck between un and 0. The required inequality follows, since |T ′k−1(ck)| 6 1

and |un − 0| 6 1/(|bk| − 1).

It remains to prove the final part of the lemma, in which bn = 0. In this case, vn = vn−2, so

the lemma continues to hold if k 6 n− 2. And clearly it also holds if k = n− 1.

Lemma 5.6.2. Suppose that p(n) 6→ ∞. Then it follows that only a finite number of the sequences

e(0)(k), e(1)(k), . . . , for k ∈ N0, are of infinite length.

Proof. Let p = lim inf p(n). Suppose that the sequence e(0)(k), e(1)(k), . . . is of infinite length for

some positive integer k. Choose a positive integer N such that, for n > N , all terms e(n)(k) of

the sequence are equal to some value e.

Now suppose, in order to reach a contradiction, that e > p. Choose an integer n > N for which

p(n) = p. Then b
(n)
p is 0, 1 or −1, and we see from the definition of the sequence e(0)(k), e(1)(k), . . .

that e(n+1)(k) < e(n)(k). This is the contradiction we need, since e(n+1)(k) = e(n)(k) = e.

It follows, then, that e 6 p. But for each nonnegative integer e 6 p there is a unique integer

k such that e(n)(k) → e as n → ∞. Hence there are only finitely many infinite sequences

e(0)(k), e(1)(k), . . . , for k ∈ N0.

We now prove the second part of Theorem 1.1.4.

Proof of Theorem 1.1.4(ii). We assume that p(n) 6→ ∞. Let p = lim inf p(n).

Suppose that q(n) 6→ ∞. Since p = lim inf p(n), we can find a positive integer N such that

[b
(n)
0 , b

(n)
1 , . . . , b

(n)
p−2] = [b∗0, b

∗
1, . . . , b

∗
p−2],

for n > N . Observe that the sequence b
(1)
p−1, b

(2)
p−1, . . . does not stabilise on a fixed value. And

recall that q(n) = |b(n)p−1|, by definition.
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Now let m1,m2, . . . be the complete list of positive integers n greater than N , written in

increasing order, for which p(n) = p. That is, m1,m2, . . . are the positive integers n > N , in

order, for which b
(n)
p is 0, 1 or −1.

The sequence b
(n)
p−1, for n = N + 1, N + 2, . . . , can only change value when n is equal to one

of m1,m2, . . . . Since q(n) 6→ ∞, we can find a subsequence n1, n2, . . . of m1,m2, . . . for which

every term b
(ni)
p−1 is equal to some fixed integer b, where |b| > 2. And by restricting to a further

subsequence, we can assume that all the terms b
(ni)
p are equal to precisely one of 0, 1 or −1.

Observe that v
(ni)
p−1 = u and v

(ni)
p = v, for i = 1, 2, . . . , where u and v are two fixed adjacent

vertices of F . Let ri and si be non-negative integers for which e(ni)(ri) = p−1 and e(ni)(si) = p,

in which case vri = u and vsi = v. Now, the sequence e(0)(ri), e
(1)(ri), . . . has length exactly

ni+1; the final term is e(ni)(ri) = p−1 because b
(ni)
p is 0, 1 or −1. It follows that all the integers

ri are distinct from one another, so there are infinitely many of them. With similar reasoning

we can see that the collection of integers si is infinite too.

We deduce that the sequence (vn) is equal to u for infinitely many indices n, and likewise it

is equal to v for infinitely many indices n. It follows that (vn) diverges, so [b1, b2, . . . ] diverges.

Suppose now that q(n) → ∞. As before, we choose a positive integer N for which p(n) > p,

for n > N , so

[b
(n)
0 , b

(n)
1 , . . . , b

(n)
p−2] = [b∗0, b

∗
1, . . . , b

∗
p−2].

Next, by Lemma 5.6.2, we can choose a positive integer M such that, for k > M , the sequence

e(0)(k), e(1)(k), . . . is of finite length. Let us also choose M > 2N + (p− 1).

Let k >M . By definition of the sequence e(0)(k), e(1)(k), . . . , we can see that

k − e(n)(k) = (k − e(1)(k)) + (e(1)(k)− e(2)(k)) + · · ·+ (e(n−1)(k)− e(n)(k)) 6 2n.

Suppose, in order to reach a contradiction, that e(n)(k) < p − 1, for some positive integer n.

Then k− (p− 1) < 2n, and since M > 2N + (p− 1) and k >M , we have that n > N . However,

if e(n)(k) 6 p − 2 6 p(n) − 2, then e(n+1)(k) = e(n)(k), so the sequence e(0)(k), e(1)(k), . . . is

infinite. This is the required contradiction. Therefore e(n)(k) > p− 1 for k >M and n ∈ N0.
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Next, for each integer k > N , define rk to be the positive integer such that e(rk)(k) is the

last term of the sequence e(0)(k), e(1)(k), . . . . Let n ∈ N and m = p(n). Then rk = n if and only

if either bm = 0 and e(n)(k) equals m − 1 or m, or bm = ±1 and e(n)(k) = m − 1. Hence there

are at most two values of k for which rk = n. Consequently, we deduce that rk →∞ as k →∞.

The vertex at position e(rk)(k) of 〈v(rk)0 , v
(rk)
1 , . . . 〉 is equal to vk, so we can apply Lemma 5.6.1

to the continued fraction [b
(rk)
0 , b

(rk)
1 , . . . ] to see that

|vk − v(rk)p−2 | 6
1

|b(rk)p−1| − 1
=

1

q(rk) − 1
.

Observe that v
(rk)
p−2 = v∗p−2, for sufficiently large values of k. Since rk →∞ as k →∞, and hence

q(rk) →∞ as k →∞, we see that vk → v∗p−2 as k →∞. Therefore [b0, b1, . . . ] converges to the

extended rational v∗p−2.

The following two examples give two continued fractions for which p(n) 6→ ∞. In the first, we

have q(n) →∞ and the continued fraction converges, in the second, q(n) 6→ ∞, and the continued

fraction does not converge.

Example 5.6.3. Consider the continued fraction [0,−1, 0,−1, 0,−1, 0, . . .]. Applying Φ gives:

n p(n) b1
(n) b2

(n) b3
(n) b4

(n) b5
(n) b6

(n) b7
(n) b8

(n) b9
(n) . . .

0 2 −1 0 −1 0 −1 0 −1 0 −1 · · ·

1 2 −2 0 −1 0 −1 0 −1 0 −1 · · ·

2 2 −3 0 −1 0 −1 0 −1 0 −1 · · ·

3 2 −4 0 −1 0 −1 0 −1 0 −1 · · ·

4 2 −5 0 −1 0 −1 0 −1 0 −1 · · ·

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

We see that q(n) = b
(n)
1 → −∞. The first 8 convergents are given in the following table.
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m bm pm qm vm

1 0

0 0 0 1 0

1 −1 −1 −1 1

2 0 0 −1 0

3 −1 1 2 1/2

4 0 0 1 0

5 −1 −1 −3 1/3

6 0 0 −1 0

7 −1 1 4 1/4

We show the original path and that after the first 3 applications of the algorithm in Figure 5.6.1.

The path converges to 0.

0 1
2

1
3

1
4

1
5

1

∞ γ

0 1
2

1
3

1
4

1
5

1

∞ Φ(γ)

0 1
2

1
3

1
4

1
5

1

∞ Φ2(γ)

0 1
2

1
3

1
4

1
5

1

∞ Φ3(γ)

Figure 5.6.1: The paths γ, Φ(γ),Φ2(γ) and Φ3(γ) from Example 5.6.3.
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Example 5.6.4. Consider the continued fraction [0, 1, 2,−1, 1,−1, 1, . . .]. The results of applying

Φ four times are shown below.

n p(n) b1
(n) b2

(n) b3
(n) b4

(n) b5
(n) b6

(n) . . .

0 3 −1 2 1 1 1 1 . . .

1 2 −1 1 0 1 1 1 . . .

2 2 −2 −1 1 1 1 1 . . .

3 3 −1 2 1 1 1 1 . . .

4 2 −1 1 0 1 1 1 . . .

· · · · · · · · · · · · · · · · · · · · · · · ·

The convergents are shown in the following table:

m bm pm qm vm

1 0

0 0 0 1 0

1 −1 −1 −1 1

2 2 −2 −3 2/3

3 1 −1 −2 1/2

4 1 1 1 1

5 1 2 3 2/3

6 1 1 2 1/2

7 1 −1 −1 1

with the paths in Figure 5.6.2.
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0 01
2

1
2

2
3

2
3

1 1

∞ ∞

Φ2(γ)

Φ3(γ)

0 01
2

1
2

2
3

2
3

1 1

∞ ∞
γ

Φ(γ)

Figure 5.6.2: The paths γ, Φ(γ),Φ2(γ) and Φ3(γ) from Example 5.6.4.

We see that the paths Φ3(γ) and Φ4(γ) repeat the paths γ and Φ(γ), and that of Φ5(γ) will

repeat that of Φ2(γ). All these paths have the same two initial convergents, and the paths are

periodic paths through 1/2, 1 and 2/3. So γ goes infinitely often through these three convergents,

and does not converge.



Chapter 6

Further work

Most of the work detailed in previous chapters has been set out in [57] and [63]. In this chapter

we describe other recent work which could be developed further.

6.1 Random walks on Farey maps

Our work on spectra detailed in Chapter 4 was motivated by the theory of random walks on

graphs, and that of families of expander graphs. Here we explore this connection further.

A random walk on a graph is a path which consists of a succession of random steps between

adjacent vertices. At each vertex, there is an equal probability of the next step being to each of

its neighbours.

Let the N vertices of a graph be v1, . . . , vN , and let pi(t) be the probability that the walker

is at vertex vi after t steps. Then we define the probability distribution after t steps as

p(t) = (p1(t), . . . , pN (t))T .

Note that t ∈ N, and that the distribution is an N -dimensional vector. Since the walker must

be at one of the vertices, we have ΣNi=1pi(t) = 1, justifying the use of the word distribution. The

initial distribution of a walk starting at v1 is p(0) = (1, 0, . . . , 0)T . After one step on a regular

106
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graph with vertex valency d the walker is at one of the d neighbours of v1 with probability 1/d,

so that p(1) = 1
dAp(0), where A is the adjacency matrix of the graph. We define the probability

matrix of the graph as P = 1
dA. Then

p(t) = P tp(0).

The distribution in which the probability of the walker being at any vertex is the same,which

is called the uniform distribution, is π = 1
N (1, 1, . . . , 1)T . Suppose that a graph is regular with

vertex valency d, and that the distribution is uniform after t steps. Then, as each row of A

contains exactly d entries equal to 1, after t+ 1 steps the distribution is

p(t+ 1) =
1

N
P (1, 1, . . . , 1)T =

1

dN
A(1, 1, . . . , 1)T = π (6.1.1)

If, for instance, the graph represents an electrical circuit, random walks model the journey

of electrons, after a switch has been turned on, to a light bulb elsewhere in the circuit. For the

light bulb not to flicker, the probability of an electron reaching the bulb should not change with

time (and practical experience tells us that this seems to happen either immediately or after a

short time). A distribution which does not change with time is a stationary distribution. We say

that the probability distribution converges to a stationary distribution σ if, using the l2 norm,

||u|| = (uTu)1/2,

lim
t→∞

||p(t)− σ|| = 0.

From equation (6.1.1), for a regular graph, the uniform distribution π does not change with time,

and so σ = π, and the stationary distribution is the uniform distribution.

Given a small value δ, which we will call the tolerance, the mixing time for a circuit is the

number of steps t needed so that ||p(t) − σ|| < δ. For instance, in case of a light bulb which

has been switched on, if the tolerance δ is the shortest time interval in which the human eye

can detect that a light is flickering, the mixing time, measured in a unit equal to the time taken

by an electron to travel between the vertices or nodes of the circuit, is the time before the light

stops flickering. It is desirable that the mixing time be as small as possible for a given δ. For a
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circuit represented by a regular graph, a well–known classical result relates the mixing time to

the eigenvalue of the graph with the second highest modulus, λ. From [45, Theorem 3.1], for a

random walk on a non–bipartite d-regular graph, if θ is the eigenvalue with the second largest

modulus of the probability matrix of the graph, then after t steps

||p(t)− π|| ≤ |θ|t, (6.1.2)

For a regular graph θ =
λ

d
. From the Perron-Frobenius Theorem (see [22, Section 8.8]) the

highest eigenvalue of the graph is the single eigenvalue λ0 = d, so |θ| < 1, and therefore the

probability distribution converges to the uniform distribution. For the underlying graph of a

Farey map M3(n), using Lemma 4.7.1, we have, in addition, the following theorem, showing

that the mixing time is relatively short.

Theorem 6.1.1. For a given a tolerance δ, the mixing time t for a random walk on the underlying

graph of a Farey map M3(n) can be found, if p1 is the smallest prime dividing n, from

δ ≤ Ct, with C =



1
2 if p1 = 2,

1
3 if p1 = 3

1√
p1

otherwise.

(6.1.3)

We are not aware of this result elsewhere in the literature. It shows that an even value of n

will give the best result for the mixing time.

Example 6.1.2. If n is even, we find the number of steps t after which the probability of a

random walk on the underlying graph ofM3(n) not reaching its stationary distribution is 10−k.

Here δ = 10−k, so, from (6.1.3), −k ≤ −t log10 2, so t ≥ 1

log10 2
k, which gives t ≥ 3.33k.

So, to find the number of steps after which a random walk on the underlying graph ofM3(50)

will be at any vertex with equal probability with 99% confidence, we have k = 2, which gives,

since t ∈ N, t ≥ 7.
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6.2 Continued fractions over Z/nZ

In this section we consider continued fractions with coefficients in Z/nZ and their convergents.

Recall that the set of Farey fractions modulo n is the set of equivalence classes

F = {(a′, c′) ∈ Z× Z : gcd(a′, c′, n) = 1, (a′, c′) ≡ ±(a, c) (mod n)}.

We write these fractions as [a/c]n, or as the column vector [a c]Tn . The convergents of continued

fractions over Z/nZ can take any value in this set of Farey fractions. We show that they quickly

reach a uniform distribution in that set. We obtain this result by again considering integer

continued fractions as walks on the Farey graph.

Using the notation for members of PSL2(Z/nZ) given in Section 3.2, for any bi ∈ Z/nZ we

define si ∈ PSL2(Z/nZ) as si =

bi −1

1 0


n

, and, for any ordered list b0, b1, . . . , bk of members

of Z/nZ, we define Sk = s0 ◦ s1 ◦ · · · ◦ sk.

Definition 6.2.1. A finite negative continued fraction expression over Z/nZ consists of a finite

ordered set of coefficients in Z/nZ, [bo, b1 . . . , bm], and an ordered pair [p/q]n ∈ F such that

b0 −1

1 0


n

b1 −1

1 0


n

· · ·

bm −1

1 0


n

1

0


n

=

p
q


n

.

For k < m, let pk
qk


n

=

b1 −1

1 0


n

· · ·

bk −1

1 0


n

1

0


n

.

We say that [pk/qk]n is the kth convergent of the continued fraction [b1, . . . , bm].

Theorem 6.2.2. Let v0, v1, . . . , vk be Farey fractions modulo n. Then they are the consecutive

convergents of a negative continued fraction over Z/nZ if and only if 〈∞, v1, . . . , vk〉 is a path on

the Farey map M3(n).

Proof. With the notation we have defined, the proof of Theorem 5.3.1 can be replicated, replacing

∞ by the Farey fraction [1/0]n, 0 by the Farey fraction [0/1]n, and using the definitions we have
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stated above for sn and Sn.

So the members of F are both Farey fractions and vertices ofM3(n). We showed in Chapter 3

that they can be written [a/c]n, with a, c ∈ Z, and gcd(a, c, n) = 1.

The definition of a finite continued fraction over Z/nZ can be extended in the obvious way

to define an infinite continued fraction. From Theorem 6.1.1, using the notation given in the

previous section, we have the following corollary.

Corollary 6.2.3. The set of convergents of a continued fraction over Z/nZ is a finite set V of

vertices of M3(n). Let |V | = N . Then the convergents will reach a stationary distribution in

which the probability of any convergent being a specific member v of V is 1/N . The probability of

the kth convergent being at v differs from 1/N by Ck, where, if p1 is the smallest prime divisor

of n,

C =



1
2 if p1 = 2,

1
3 if p1 = 3

1√
p1

otherwise.

6.3 An expander–type result for Farey maps

The study of expanders deals with families of regular graphs of increasing size with the same

degree d. If the graph represents a communication circuit, a useful measure of its reliability is the

isoperimetric constant, which is a measure of the relative number of cuts to edges of a connected

graph which result in it becoming disconnected. It is formally defined, for a graph X with vertex

set V , as

h(X) = min

{
|E(A,A)|
|A|

: A ⊂ V, |A| ≤ |V |
2

}
,

where A is the complement of A in X, and E(A,A) is the set of edges of X connecting vertices

in A to vertices in A. If the isoperimetric constant of a sequence of graphs does not tend to zero

as the size of the grapsh increases it is possible to use it to construct large reliable networks. A

sequence of d-regular graphs{Xn} is an expander family if there is a positive number ε such that

the isoperimetric constant h(Xk) is greater than ε for all k.
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It is well known that, if λ1(X) is the second largest eigenvalue of X, then d−λ1(X) ≤ 2h(X).

(See for instance [40, Proposition 1.84].) We call d − λ1(X) the spectral gap of the graph,

and the sequence of graphs is an expander family if the spectral gap is bounded below. From

[40, Proposition 3.1] we have

lim inf
n→∞

λ1(Xn) ≥ 2
√
d− 1.

If the graph represents a circuit with a good mixing time, we need the eigenvalue with the

second largest modulus, λ, to be as small as possible, and the Alon-Boppana theorem gives the

further result

lim inf
n→∞

λ(Xn) ≥ 2
√
d− 1.

(See for instance [40, Proposition 3.6] or[46, Proposition 4.2]). So a graph with good communi-

cation properties will have λ ≤ 2
√
d− 1. We call such graphs Ramanujan graphs.

In [4] it is shown that if S ⊂ SL2(Z), and S is Zariski dense in SL2(Z), then the Cayley graphs

of SL2(Z/nZ) with respect to the projection of S in Z/nZ form a family of expanders. It follows

that if S ⊂ PSL2(Z) is Zariski dense in PSL2(Z), then the Cayley graphs of PSL2(Z/nZ) with

respect to the projection of S in Z/nZ form a family of expanders. Now PSL2(Z) is generated

by the set S = {x′, y′}, where x′ =

1 1

0 1

 and y′ =

0 −1

1 0

. S is Zariski dense in PSL2(Z).

The natural projection of {x′, y′} onto Z/nZ is {x, y}, where x =

1 1

0 1


n

and y =

0 −1

1 0


n

.

This proves that the Cayley graphs of PSL2(Z/nZ) with generating set {x, x−1, y} form a family

of expanders.

We use this to obtain a result for Farey maps of different levels. As they are not of equal

degree they do not form an expander family, but they do have similar properties. The following

theorem shows that a circuit which is represented by the underlying graph of a Farey map is

very strongly connected.

Theorem 6.3.1. If the isoperimetric constant of the Farey mapM3(n), is h(M3(n)), then there

is a constant ε independent of n such that h(M3(n)) > εn.
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Proof. The supporting graphs of the family of truncations T (M3(n)) of the maps M3(n) are,

from Theorem 3.6.4, the Cayley graphs of PSL2(Z/nZ). These form a family of expanders, so

that, if X is a subset of vertices of T (M3(n)), we have, for all n,
|E(X,X)|
|X|

> ε for some positive

number ε. Assume that X consists of the union of the sets of n truncation vertices around each

map vertex in some set V of map vertices. The number of map edges incident to a map vertex

is n, and the only edges leaving X are those from some of the n truncation points around each

map vertex. So, |E(X,X)| ≤ |E(V, V )| and therefore we have, since |X| = n|V |,

|E(V, V )|
|V |

≥ n|E(X,X)|
|X|

, so
|E(V, V )|
|V |

> εn, and h(M3(n)) > εn.

We recall that the underlying graphs of Farey maps also have diameter 3, so if they could be

realised as communication networks they would be both fast and secure. This does not, however,

seem to be practical because of the relatively large number of connections needed.

6.4 Generalised regular continued fraction expansions

There have been several studies of generalisations of the regular continued fraction expansions

first introduced by Wallis, Lord Brouncker, and Euler (see for instance [18]). Here we consider

continued fractions of the form

b0 +
a1

b1 +
a2

b2 +
a3

b3 + · · ·

(6.4.1)

with ai, bi ∈ N, and b0 can be zero.

We summarise recent results in the literature, set out recent work we have undertaken with

Ian Short, and consider possibilities for further investigation.

We first list some known results.
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(1) In [42], it is shown that for any sequence of positive integers (an) and any positive x ∈ R,

there exists a finite or infinite sequence of integers (bn) for n ≥ 0 with bi ≥ ai for i ≥ 1,

and b0 = bxc, such that x can be written as (6.4.1).

(2) In [8] it is pointed out that, for any positive x ∈ R, given its regular continued fraction

expansion [b0, b1, . . .], for any N ∈ N, we also have

x = b0 +
N

Nb1 +
N

b2 +
N

Nb3 + · · ·

(6.4.2)

thus showing that for any positive x ∈ R and any N ∈ N there is a generalised continued

fraction expansion with an = N for all n.

(3) In [1] the case an = N is explored further. A form of the Euclidian continued fraction

algorithm is used to allow at each ith iteration the choice of an integer bi such that

xi −N ≤ bi ≤ bxic,

and so to show that, for N ≥ 2, every positive irrational has infinitely many generalised

continued fraction expansions with bn = N . [1] also defines a best expansion, obtained by

putting bi = bxic, and shows that for a best expansion bi ≥ N .

(4) In [9] it is pointed out that the best expansion can be obtained by using the transformation

TN : [0, N ]→ [0, N ] : TN (x) =
N

x
−
⌊
N

x

⌋
, x 6= 0, TN (0) = 0,

which then gives

b1(x) =

⌊
N

x

⌋
; bn(x) =

⌊
N

Tn−1N (x)

⌋
.

(5) In [65] the Seidel-Stern theorem is recalled. It states that the generalised continued fraction



CHAPTER 6. FURTHER WORK 114

given by (6.4.1) converges if and only if

b1 + b2
1

a1
+ b3

a1
a2

+ b4
a2
a1a3

+ b5
a1a3
a2a4

+ b6
a2a4
a1a3a5

+ · · · = +∞.

which is true if (an) is a bounded sequence. Another version of the Euclidean continued

fraction algorithm is then used to find expansions for bn = N , showing that any positive

x ∈ R has infinitely many such expansions.

(6) In [53] a way to find interesting expansions using a computer algorthim is suggested, which

is curently being implemented by the website “Ramanujan’s Machine”.

In joint work with Ian Short, we develop the idea of choice functions for continued fractions intro-

duced by Dani and Nogueira [14] and Dani [13]. They worked with Gaussian integer continued

fractions. Here we focus on integer continued fractions.

Definition 6.4.1. Let (an) be a sequence of positive integers for which

1

a1
+
a1
a2

+
a2
a1a3

+
a1a3
a2a4

+
a2a4
a1a3a5

+ · · · = +∞.

A choice function for (an) is a function β : N× [1,+∞) −→ N for which 0 6 x− βn(x) < an for

all n ∈ N and x ∈ [1,+∞), with equality in the left-hand inequality when x is an integer.

Here we have written βn(x) for β(n, x). A consequence of the inequality x − βn(x) > 0 is

that βn(x) 6 x. Since β is integer valued βn(x) 6 bxc. So, for example, βn(x) = 1 for x ∈ [1, 2).

We now describe our choice continued fraction algorithm, which is similar to Euclid’s algo-

rithm. For convenience we use the language of Möbius transformations.

Definition 6.4.2. Let β be a choice function for a sequence (an). The β-algorithm is the

following algorithm, which from a positive number w > 1 generates a sequence of Möbius trans-

formations tn(x) = bn + an/x, for n = 1, 2, . . . , where bn ∈ N. The sequence may be finite or

infinite. We use the notation Tn = t1 ◦ t2 ◦ · · · ◦ tn.

(1) Define b1 = β1(w) and t1(x) = b1 + a1/x. Stop the algorithm if T−11 (w) = ∞; otherwise

proceed to (2).
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(2) Suppose that t1, t2, . . . , tn−1 have been constructed, where n > 2. Define bn = βn(T−1n−1(w))

and tn(x) = bn + an/x. Stop the algorithm if T−1n (w) =∞; otherwise repeat (2).

Observe that T−1n (w) 6=∞ unless tn is the last transformation in the sequence.

By applying Euclid’s algorithm to a positive number w > 1, we obtain the usual simple or

regular continued fraction expansion of w. In a similar way, when we apply the β-algorithm to

w, we obtain a β-dependent continued fraction expansion of w.

Definition 6.4.3. Given a choice function β for a sequence (an), and w > 1, we define the

β-continued fraction expansion of w to be the continued fraction

b1 +
a1

b2 +
a2

b3 +
a3

b4 + · · ·

,

where bn are the positive integers that result from applying the β-algorithm to w. The continued

fraction may be finite or infinite.

From the Seidel–Stern theorem we know that if the β-continued fraction expansion of w is

infinite, then it converges.

We define integers A0, A1, . . . and B0, B1, . . . by the equations

An anAn−1

Bn anBn−1

 =

b1 a1

1 0


b2 a2

1 0

 · · ·
bn an

1 0

 ,

for n = 1, 2, . . . . In particular, A0 = 1, B0 = 0, A1 = b1, B1 = 1, and otherwise An, Bn ∈ N.

The composition of matrices on the right corresponds to the composition t1 ◦ t2 ◦ · · · ◦ tn. Thus

Tn(x) =
Anx+ anAn−1
Bnx+ anBn−1

, so T−1n (x) = −an
(
Bn−1x−An−1
Bnx−An

)
.

Suppose that the β-expansion of w > 1 is finite. Then T−1n (w) =∞, for some n, so w = Tn(∞)
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and hence w has a finite β-continued fraction expansion. In this case w is rational. However, if

w is rational, then it need not have a finite β-expansion as can be seen from example 6.4.6.

Theorem 6.4.4. Suppose that the β-continued fraction expansion of w > 1 is infinite. Then

that continued fraction converges to w.

Proof. We have Tn(∞) = An/Bn, the nth convergent of the continued fraction. By Theo-

rem 1.1.4, the sequence (An/Bn) converges.

Now bn = βn(T−1n−1(w)), so, by definition, 0 < T−1n−1(w)− bn < an. Hence

T−1n (w) = t−1n (T−1n−1(w)) =
an

T−1n−1(w)− bn
> 1.

Observe that

T−1n (w) = −an
(
Bn−1w −An−1
Bnw −An

)
= −anBn

Bn−1

(
w −An−1/Bn−1
w −An/Bn

)
.

Since −anBn/Bn−1 is always negative, we see that w − An−1/Bn−1 and w − An/Bn differ in

sign. Consequently, w must lie between An−1/Bn−1 and An/Bn. So An/Bn → w as n→∞.

Example 6.4.5. Choose an = 1 for all n and βn(x) = bxc. Then β is a choice function for (an),

and the algorithm results in the usual regular continued fraction. In fact, if an = 1 for all n,

then we have 0 6 x− βn(x) < 1 for all x, so βn(x) = bxc is the only possible choice function for

the sequence (an).

Example 6.4.6. Choose an = 2 for all n and βn(x) = bxc. Then β is a choice function for (an).

For example, as can be seen from Appendix B, putting w = 3.1 gives

3.1 = 3 +
2

19 +
2

2 + · · ·

,
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and, putting w = 5.684,

5.68 = 5 +
2

2 +
2

2 +
2

16 + · · ·

.

Example 6.4.7. Suppose that (an) is the positive integer sequence 2, 2, 3, 4, 5, . . . . Choose

βn(x) = bxc. Then, applying the β-algorithm to the real number w = e, we obtain the following

β-continued fraction expansion, as shown in Appendix B.

e = 2 +
2

2 +
2

2 +
3

5 + · · ·

.

Example 6.4.8. As shown in Appendix B, putting an = 2 for all n and w =
√

2 we obtain

√
2 = 1 +

2

4 +
2

2 +
2

4 +
2

2 +
2

4 + · · ·

In summary, for any positive real number, we can find generalised continued fraction expan-

sions with numerators which are any sequence of positive integers, and also generalised continued

fraction expansions for which the denominator is any constant positive integer. Using the choice

continued fraction algorithm allows a choice of denominators if the sequence of numerators is

bounded. An outstanding problem is that, as far as we are aware, there is no way of determin-

ing whether any given sequences of numerators and denominators give a convergent continued

fraction expansion.
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Attractive continued fraction expansions such as Lord Brouncker’s for π and the expansion for

e given in Example 6.4.7 have specific sequences for both numerator and denominator. Whereas

a number of these have been found over the past 300 years by various mathematicians, it would

be interesting to have a general method for generating them, and this could result from further

work building on the above results.
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Appendix B

Continued fraction expansions

We give print-outs of the results found for the examples given in Section 6.4 using the choice

algorithm. The notation is that given in Section 6.4.

Example 6.4.6

Putting an = 2 for all n, βn(x) = bxc and w = 3.1 gives:

n T−1n (w) an bn Tn(w) An/Bn
1 20.0 2 3.0 3.64516129032 3.0
2 2.0 2 19.0 3.10471204188 3.10526315789
3 5.62949953421e+13 2 2.0 3.10169491525 3.1
4 9.84615384615 2 5.62949953421e+13 3.1 3.1

The expansion terminates as T−13 (w) =∞.

Putting an = 2 for all n, βn(x) = bxc and w = 5.68 gives:

n T−1n (w) an bn Tn(w) An/Bn
1 2.94117647059 2 5.0 5.35211267606 5.0
2 2.125 2 2.0 5.74626865672 6.0
3 16.0 2 2.0 5.74626865672 5.66666666667
4 5.86406201481e+12 2 16.0 5.67990074442 5.68
5 6.00586510264 2 5.86406201480e+12 5.68 5.68

The expansion terminates as T−14 (w) =∞.
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Example 6.4.7

Putting (an) = (2, 2, 3, 4, 5, . . . ), βn(x) = bxc and w = e gives:

n T−1n (w) an bn Tn(w) An/Bn
1 2.78442238235 2 2.0 2.73575888234 2.0
2 2.5496467783 2 2.0 2.73575888234 3.0
3 5.45805073079 3 2.0 2.76057272385 2.66666666667
4 8.73265717329 4 5.0 2.71617508002 2.72222222222
5 6.82447423201 5 8.0 2.71821355086 2.71794871795
6 7.27736509768 6 6.0 2.71827938403 2.71832358674
7 25.2374940414 7 7.0 2.71828504954 2.71828036462
8 33.6850556433 8 25.0 2.71828182402 2.71828184189
9 13.1376189488 9 33.0 2.71828182829 2.71828182818
10 72.6644120472 10 13.0 2.71828182845 2.71828182846
11 16.5559911905 11 72.0 2.71828182846 2.71828182846
12 21.5830757837 12 16.0 2.71828182846 2.71828182846
13 22.2955580786 13 21.0 2.71828182846 2.71828182846
14 47.3680166907 14 22.0 2.71828182846 2.71828182846
15 40.7590209279 15 47.0 2.71828182846 2.71828182846
16 21.0797876749 16 40.0 2.71828182846 2.71828182846
17 213.065489296 17 21.0 2.71828182846 2.71828182846
18 274.854074861 18 213.0 2.71828182846 2.71828182846
19 22.2462934733 19 274.0 2.71828182846 2.71828182846
20 81.2039382556 20 22.0 2.71828182846 2.71828182846

Example 6.4.8

Putting an = 2, βn(x) = bxc, w =
√

2 gives

n T−1n (w) an bn Tn(w) An/Bn
1 4.828427124746189 2 1.0 2.414213562373095 1.0
2 2.4142135623730985 2 4.0 1.4530818393219729 1.5
3 4.82842712474615 2 2.0 1.4248894475888325 1.4
4 2.414213562373212 2 4.0 1.4153426780554785 1.4166666666666667
5 4.828427124744825 2 2.0 1.414526684006436 1.4137931034482758
6 2.414213562377074 2 4.0 1.4142467875622948 1.4142857142857144
7 4.828427124699808 2 2.0 1.414222778823099 1.4142011834319526
8 2.4142135625082615 2 4.0 1.4142145404201956 1.4142156862745099
9 4.828427123170575 2 2.0 1.414213833679194 1.4142131979695431
10 2.414213566964775 2 4.0 1.4142135911641038 1.4142136248948696
11 4.828427071221649 2 2.0 1.4142135703596002 1.4142135516460548
12 2.41421371835505 2 4.0 1.4142135632206234 1.4142135642135643
13 4.828425306487962 2 2.0 1.4142135626081958 1.4142135620573204
14 2.4142188611775124 2 4.0 1.414213562398044 1.4142135624272734
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The outputs were obtained using the following Python script:

import numpy as np

def alpha(n,x):

return (2*n-1)**2

def beta(n,x):

if n==1:

return 3

if 1<n<5:

return 6

else:

return (x//1)-2*n+5

def poly(n):

if n<5:

return 1

else:

return 2*n-5

def result(i,w):

n=1

x=w

A=1

C=0

B=0

D=1

P=1

a=1

while n<i+1 :

E=C

C=A

F=D

D=B

c=a

a=alpha(n,x)

b=beta(n,x)

p=poly(n)

A=(b*C)+(c*E)

B=(b*D)+(c*F)

T=((x*A)+(a*C))

S=((x*B)+(a*D))

P=p*P/1.0

x=a/(x-b)

print n,"&",x,"&",a,"&",b,"&",T/S,"&",A/B,"\\"

n=n+1


