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Abstract

This thesis makes the case for managing computer networks with data-
driven methods—automated statistical inference and control based on meas-
urement data and runtime observations—and argues for their tight integ-
ration with programmable dataplane hardware to make management de-
cisions faster and from more precise data. Optimisation, defence, and meas-
urement of networked infrastructure are each challenging tasks in their
own right, which are currently dominated by the use of hand-crafted heur-
istic methods. These become harder to reason about and deploy as net-
works scale in rates and number of forwarding elements, but their design re-
quires expert knowledge and care around unexpected protocol interactions.
This makes tailored, per-deployment or -workload solutions infeasible to
develop. Recent advances in machine learning offer capable function ap-
proximation and closed-loop control which suit many of these tasks. New,
programmable dataplane hardware enables more agility in the network—
runtime reprogrammability, precise traffic measurement, and low latency
on-path processing. The synthesis of these two developments allows com-
plex decisions to be made on previously unusable state, and made quicker
by offloading inference to the network.

To justify this argument, I advance the state of the art in data-driven de-
fence of networks, novel dataplane-friendly online reinforcement learning
algorithms, and in-network data reduction to allow classification of switch-
scale data. Each requires co-design aware of the network, and of the failure
modes of systems and carried traffic. Tomake online learning possible in the
dataplane, I use fixed-point arithmetic and modify classical (non-neural) ap-
proaches to take advantage of the SmartNIC compute model and make use
of rich device-local state. I show that data-driven solutions still require great
care to correctly design, but with the right domain expertise they can im-
prove on pathological cases in DDoS defence, such as protecting legitimate
UDP traffic. In-network aggregation to histograms is shown to enable accur-
ate classification from fine temporal effects, and allows hosts to scale such
classification to far larger flow counts and traffic volume. Moving reinforce-
ment learning to the dataplane is shown to offer substantial benefits to state-
action latency and online learning throughput versus host machines; allow-
ing policies to react faster to fine-grained network events. The dataplane
environment is key in making reactive online learning feasible—to port fur-
ther algorithms and learnt functions, I collate and analyse the strengths of
current and future hardware designs, as well as individual algorithms.



I’m astounded whenever I finish something. Astounded and dis-
tressed. My perfectionist instinct should inhibit me from finishing;
it should inhibit me from even beginning. But I get distracted and
start doing something. What I achieve is not the product of an act
of will but of my will’s surrender. I begin because I don’t have the
strength to think; I finish because I don’t have the courage to quit.
This book is my cowardice.

—Fernando Pessoa, The Book of Disquiet (p. 156)
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Chapter 1

Introduction

Computer networks are complex, yet critical infrastructure. The Internet of
today is a prime example. From its birth as ARPANET (Heart et al., 1970),
interlinking the computer networks of self-governing research institutions,
it has scaled to connect together billions of devices over chains of smaller
networks owned by totally separate entities. This growth has come at a cost;
large-scale networks are beset with layers upon layers of interlocking and
overlaid systems divided amongst endpoint hosts and operators of the net-
work fabric. The isolated, resilient design of all these layers is a strength in
itself as these layers can, in theory, be replaced. Yet owing to this complex-
ity, keeping the ‘Internet machinery’ well-oiled and performant is a difficult
task.

As these networks have grown larger and faster over the last half-century,
they have become more flexible to do just this. Early design choices such as
routing algorithms had been bonded to fixed-function hardware. To escape
these shackles, the community sought through the early 2000s to separate
the high-level forwarding behaviour of network packets (the control plane)
from the hardware dataplane, giving rise to Software-Defined Networking
(SDN). This is a research success that has meaningfully impacted the design,
adaptability, performance, and fault-tolerance of production networks. For
instance, the ability to make routing decisions per-flow has enabled Traffic
Engineering (TE) that formerly required complex workarounds. What this
did not solve was inflexible dataplane behaviour; switches still supported a
fixed set of actions applied to a fixed set of protocols known ahead-of-time,
with limited shared state for measurement purposes. Many packet actions—
security functions and the like—were and are implemented as Application-
Specific Integrated Circuits (ASICs) inside middleboxes to process traffic at
line rate. Infamously, these add yet more inflexibility by relying on (pos-
sibly incorrect) handling of known protocols. Making up for this shortfall
in malleability by implementing these tasks in host machines causes sig-
nificant, orders-of-magnitude reductions in packet throughput and added
latency. Between fixed-function dataplanes and commodity hosts, there is
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1 Deployed circa 1999, 2006,
and 2016 respectively.

no way to balance performance and arbitrary programmability. While it is
one thing to argue around performance and ossification, what of new func-
tionality? To observe incorrect (yet transient) paths followed by packets,
or to inspect and aggregate queue state and nanosecond-level timestamps
to detect recent issues such as microbursts both require packet modification
and access to state which past switches simply do not allow.

Many other aspects of networks are run by heuristicmethods: each complex,
hand-tuned, and operating on limited information. Their responses must be
both approximately correct and computationally cheap to scale reasonably.
To make the point clear, consider Congestion Control Algorithms (CCAs).
CCAs underpin the majority of Internet traffic’s ability to dynamically scale
send rates up or down—in the absence of actual network state, they must
in effect reverse-engineer optimal actions by following a proxy metric such
as delay or packet losses. While this is impressive, one can’t help but ask
if better information about the network itself could allow more useful de-
cision making. What also happens, then, as networks change? Experience
has shown that we simply iterate, from NewReno (Gurtov et al., 2012) to
Cubic (Rhee et al., 2018) to BBR (Cardwell et al., 2016)1 in long-fat networks.
But even after years of design and tuning, these are easy to get subtly or
fatally wrong; initial actively-deployed BBR versions were notably unfair
to other flows (Ware et al., 2019). The takeaway is that it’s infeasible to de-
velop and hand-tune strategies per workload, per topology, and per protocol
distribution. Should we not be able to automatically infer tailored mechan-
isms or parameters, robust to changes and evolution, from local perform-
ance and global management data—a data-driven solution? CCAs are but
one case where we should ask ourselves these questions. Consider general
optimisation of network protocols and infrastructure, or protection against
the abuse of network resources such as Distributed Denial of Service (DDoS)
attacks, or even the above dataplane measurement—equally strong candid-
ates to consider whether data-driven logic and network cooperation can lead
to meaningful improvement.

While these aims are lofty, the last decade has seen surprising and rapid
kinds of change, first of all in the design and introduction of programmable
switching hardware andNetwork Interface Cards (NICs). Programmable Data-
plane (PDP) switch hardware was originally designed to evolve past the
fixed action sets of SDN at line rate, using a limited compute model rather
than aiming for full programmability on par with host Central Processing
Units (CPUs). Indeed, the turnaround from the original ReconfigurableMatch
Tables (RMT) proposal (Bosshart et al., 2013) to full-scale switches based on
Intel’s Tofino 2 (Intel, 2022) and Nokia’s FP5 (Nokia, 2021), aggregating 12.8–
14.4 Tbit/s, in a scant few years is remarkable. Diversifying the field further,
the legacy of older Network Processing Units (NPUs) has led to SmartNICs,
offering more expressive and capable compute at a smaller scale such as
via Intel’s infrastructure processing units (Intel, 2021b). As it happens, these
tools have not only enabled greater control and adaptability of networks
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but also powerful schemes to measure them, a new environment to execute
program logic, and tighter cooperation with end hosts. What’s fascinating
is that these ideas and use cases are not entirely novel, reflecting an un-
dercurrent present since the active networking movement (Tennenhouse &
Wetherall, 1996). Instead, both classes of efficient hardware have revealed
the value of offloading and in-network compute—moving all or part of an ap-
plication’s logic to the network fabric to accelerate it further, in spite of its
different compute capabilities versus a typical CPU. Moreover, these new
classes of hardware are fully reprogrammable at runtime, allowing line-rate
services to be easily installed, upgraded, and replaced.

The second substantial change of the last decade is the meteoric rise of Ma-
chine Learning (ML) and Reinforcement Learning (RL) through high-profile,
breakaway successes in difficult domains such as classification (K. He et al.,
2016) and game playing (Berner et al., 2019; Silver et al., 2017). These ap-
proaches learn a function tomap input data (like the statistics of amonitored
flow) to output labels or actions, repeatedly transforming it according to
complex learnt statistical properties, with the aim that a learnt function ex-
tends well from seen to unseen data. This, too, is the revival of an older line
of research—statistical and connectionist ideas which have been extended
and empowered by powerful, specialised compute resources like commod-
ity Graphics Processing Units (GPUs). What this offers us is the necessary
toolkit for Data-Driven Networking (DDN)—the automatic tuning that net-
works cry out for—allowing the development of better generalised solutions
to network problems, or even policies specifically tailored to the needs of a
deployment environment. RL methods in particular have a unique affinity
for closed-loop control tasks. These policies are iteratively learnt by taking
an action—deliberately exploring supposedly suboptimal choices from time
to time—before observing the controlled system’s state some time later and
using a measured reward score to improve the policy itself in its own feed-
back loop. We have, at last, the tools to learn complex decision boundaries
and effective control in spite of the very non-trivial (and often surprisingly
involved) system dynamics of computer networks. The beauty is that, even
as our networks evolve, we should be able to learn adjustments and correc-
tions to account for new protocols, behaviours, and topology changes by
learning from (always-available) performance and Quality of Service (QoS)
metrics.

Handling this evolution—particularly at local scales—requires also that we
can learn these properties online. Pre-trained models to solve a task or im-
plement some control mechanism such as a CCA are likely to be trained in
a ‘one size fits all’ manner from a vast amount of data. This works well in
the general case, of course; functions are often trained to handle the most
common scenarios and behave well in response. In reality, a characteristic
of our deployment environment might not have been included in training;
either a useful property like a network’s structure, or a problem dynamic
like the local protocol distribution. In the event of either this scenario or
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some gradual change in the underlying problem, it is reasonable to tailor an
existing policy to suit our current needs. Alternatively, we might aim to pre-
vent performance degradation arising from complex dynamics we don’t yet
know how to model but can see in live networks, needing us to train from
scratch. Online learning techniques, such as RL and federated versions of
unsupervised and semi-supervised algorithms, allow us to adaptively train
policies to consider local tailoring and global evolution. Standard supervised
ML approaches, on the other hand, require significant caveats to achieve
similar tailoring; labelling data is expensive (either by hand or by construct-
ing and running relevant simulations), datasets are too large to transport,
and training datasets may have privacy or ownership concerns attached. RL
in particular avoids this by using incremental performance metrics which
should be easily observable at runtime. However, online learning adds con-
crete difficulties beyond simple ML inference. Even complex functions like
Deep Neural Networks (DNNs) can be made efficient on weaker hardware
using specialised representations or data formats, but their training relies
on holding high volumes of data in memory, alongside costly procedures
for computing the gradient estimates needed to update them.

While these developments enable (online) DDN and network programmabil-
ity, it is at their intersection that the field of networking is truly on the cusp
of something promising. For instance, PDP hardware and the integrated net-
work measurement it enables expose new sources of data and state, such as
port and queue occupancies, or precise and accurate flow telemetry. In the
case of flows, DDN processes can then act based on such data rather than
sampled metrics, potentially offering more accurate classification for uses
like QoS assignment. In the network at large, they may act on a network-
wide picture of device statewhichwould have otherwise been unavailable. Al-
though this data is evidently toomuch for any one host machine to process—
particularly per-packet events at a switch’s aggregate 𝒪 (Tbit/s)—the en-
hanced programmability allows PDP devices to pick up the slack by acting
on it in situ. The first way we could achieve this is by aggregating and redu-
cing data in PDP hardware to make it feasible to export (at lower volumes
and rates), or to apply early statistical processing to ease the workload on
processmachines. The second is bymovingML and RL logic directly into PDP
hardware. DDN decisions may then be instantly factored into the routing
and processing of typical dataplaneMatch-Action Tables (MATs), at minimal
latency cost. In concert with online learning techniques such as RL, we may
also tailor this behaviour to suit the deployment device or location—either
by tweaking a known-good base policy, or learning from scratch. However,
programming in-network services has its own challenges: the hardware of-
fers restricted instruction sets, program lengths, data types, Functional Units
(FUs) for capabilities like floating-point support, and memory. Each limits
the kinds of processing we aim to perform, but nowhere is this felt more
keenly than the mismatch between the needs of ML algorithms and cap-
abilities of network hardware. This grows greater still with our desire for
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online learning in the PDP context, which requires us to compute and rep-
resent incremental and optimal changes to a learned policy. While this logic
could also be pushed to host machines, there are significant drawbacks in
decision latency and throughput. This thesis explores and chronicles how
these approaches benefit the network and one another, as well as the chal-
lenges introduced by the limited capabilities of a PDP environment. To that
end, I show through the community’s advances and my own additions to
the state of the art how these approaches can offer meaningful benefit to
network operators, as well as how we might enable both online and offline
learning in the PDP networks of tomorrow.

1.1 Thesis statement

This thesis asserts that:

Data-driven networking—enhancing networks with ML—and
dataplane programmability are key tools in aiding the control
and measurement of future networks (s0). Data-driven meth-
ods such as reinforcement learning can lead to improved per-
formance in network optimisation and control problems, such
as DDoS prevention (s1). In-network compute can make data-
driven networking more efficient, effective, and responsive—
enabling online learning to tailor policies to their deployment
environment (s2). Finally, dataplane programmability will al-
low the precise measurement and data aggregation that can
enable fine-grained data-driven analyses to scale to high flow
rates or large networks (s3). Applied together, programmable
data-driven networks can improve computer network opera-
tion beyond the sum of these parts.

While claims s0–1 fall in line with expected uses of these new technolo-
gies, the others require some extra explanation to unpack. Claim s2 may be
somewhat surprising, if we think only of the massive 𝒪 (MiB–GiB) models
which dominate classification, control, and language tasks. By considering
changes to algorithms and numerical formats, smaller models can be ex-
ecuted in the limited resources of PDP hardware. The architecture of these
devices is specialised around processing high rates of packet events—by par-
allelism or pipelining—which can allow line-rate operation of models trans-
formed as above. If such decisions can be made at the same time and location
as input data arrive, then the network can (re-)act faster. This also affords us
more time to compute gradients and the like without impacting per-packet
behaviour, making online learning feasible. Claim s3 arises due to the scale
and volume of data which PDP hardware can produce. Consider a single
100Gbit/s port on a switch, operating at line rate with a mean packet size of
500 B, from which we want to make some DDN decision based on PDP-only
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state such as ns-level timestamps and queue occupancies. On average, this
produces 25Mpps events per-port, which is difficult for a single machine to
handle—let alone when it must perform per-packet inference. PDP hard-
ware thus has an important role to play in digesting and summarising its
newly available metrics for host machines.

1.2 Contributions

Grouped according to the claims (s0–3) in the thesis statement:

• A thorough summary of the literature on modern, programmable com-
puter networks (including recent hardware trends) (chapter 2), and of
machine learning techniques suitable for their control (chapter 3). This
includes the history of a spectrum of tools developed to optimise data-
plane processing—both automatically and by bespoke design. Not just
howML benefits networks, but how creative PDP-enhanced network-
ing can benefit ML use cases (s0,2).

• A novel synthesis of best practices, design decisions, and environmental
tradeoffs to consider in the design of ML-led system control (section 3.1.6,
s1).

• An improved RL-based DDoS prevention scheme (chapter 4, s1). This
builds on two protocol-agnostic, flow-granularity RL agent designs
(Instant and Guarded action models), alongside algorithmic modific-
ations to Sarsa to enable better concurrent learning from many in-
progress RL trajectories, and reward functions tailored to detecting
the negative impacts of amplification DDoS and Link-Flooding Attacks
(LFAs). This is supported by a quantitative investigation of suitable
flow features for attack traffic detection via RL, deadline-aware ac-
tion planning and state fusion to shield agents from being overloaded,
and a concrete architecture and design of a Virtual Network Function
(VNF)- and SDN-based installation of this anti-DDoS solution. To
assess this work, I introduce procedures and trace data for model-
ling and generating traffic similar to modern Opus-based Voice over
Internet Protocol (VoIP) flows. This is then used in an empirical eval-
uation of these models against the prior state-of-the-art in RL-based
DDoS mitigation and a non-ML algorithm tailored towards LFAs.

• OPaL—the first implementation of in-network, online RL (chapter 5, s2).
This includes an analysis of why RL in PDP hardware is needed and
best-placed to interact with the network, made feasible by classical
RL methods and quantisation. In support, I design an RL interaction
model based on path-adjacent compute to protect carried traffic, of-
fer an analysis of suitable data formats for online DDN in resource-
constrained hardware. A new proof is given that 1-step temporal-
difference RL algorithms admit a parallelisable, map-reduce formwith
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tile-coded policies, culminating in ParSa—a wait-free, parallel, online
RL algorithm to accelerate tile-coded policy inference and updates.
This allows a design space exploration of parallel RL strategies tailored
to provide eithermaximumoffline throughput, or optimal state-action
latencies and online throughput, as well as work allocation algorithms
and communication tailored to SmartNIC devices with an explicitly
tiered memory model. OPaL is evaluated in-depth—how it affects car-
ried dataplane traffic, performs in latency and throughput under dif-
ferent policy sizes (simple and complex state), and improves on host
machines. Finally, I describe how OPaL would integrate with state-
of-the-art PDP applications to perform fully in-NIC, fast, automated
DDoS mitigation.

• Seiðr histograms for aggregation of precise flow telemetry (chapter 6, s3).
This is a flexible dataplane-assisted architecture and algorithm com-
patible with the Portable Switch Architecture (PSA) that allows data
aggregation in the form of histograms. The use of histograms is sup-
ported by ameasurement study of Inter-Arrival Time (IAT)microstruc-
ture between Transmission Control Protocol (TCP) CCA variants, and
analysis which establishes the algorithmic cause for these differences.
Using ML methods, I present a high-accuracy method for using the
Seiðr procedure to track IATs with nanosecond-accurate timing to tell
apart timer-based (e.g., BBR) and cwnd-based TCP CCAs using host
machines. Its effectiveness is shown by an extensive evaluation of
TCP congestion control classification using IAT histograms in differ-
ent ML models, as well as analysis of Seiðr’s scalability compression
ratio relative to input sequence length.

A contribution I can’t claim to offer, but hope sincerely to have done, is to
collect together enough of the literature and intuition on DDN and PDPs
to serve as a comfortable introduction to a newer researcher in the field.
The topic of DDN in particular has blossomed during the course of my PhD
education—and scarcely existed at the scale it does today when this work
was first undertaken in 2017. Making the case for its relevance and best prac-
tices has become much easier over the last few years alone in light of this.
I’m fortunate that the work of many others tackles the same problems as I
do, which I think lends credence to the thesis statement (s0 in particular)—in
a sense, this work contributes one set of case studies among many. I hope
that this thesis can be the book I would have wanted to read (and use) as a
starting point when I was setting out on this research venture.

1.3 Thesis outline and structure

Broadly speaking, this thesis is presented in two halves. The first offers
in-depth background on both the fields of DDN and PDP:
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Chapter 2 describes the evolution of computer networks fromfixed-function
devices towards increased programmability in both the control plane
and dataplane—critically examining early research directions in con-
trast with modern successes. It then describes how modern data-
planes improve or allow new networked applications—namely, off-
loading and in-network compute.

Chapter 3 provides an introduction to the new field of data-driven network-
ing by critically reviewing the design of many recent ML solutions to
network problems and relevant function approximation and learning
methods. This includes data formats needed to run ML techniques in
resource-constrained environments, and concludes with some discus-
sion on the limitations and security context of ML.

The second half presents novel, concrete use cases which each demonstrate
a part of the thesis statement (as discussed above):

Chapter 4 investigates using multi-agent RL to automatically learn the fea-
tures of attack traffic online. I explore agent designs informed by past
RL approaches (and their failures) relative to the realities of Internet
traffic, while discussing the threat landscape of volumetric DDoS at-
tacks. State spaces in particular are experimentally justified to find
‘per-feature’ value. A system architecture as part of a larger VNF sys-
tem is shown, followed by evaluation of efficacy on different traffic
classes and scenarios.

Chapter 5 takes to task the goal of enabling in-network, online RL for the
first-time. I present an exploration of the design space around the
interaction mechanisms, compute models, algorithm modifications,
and data structures needed for PDP devices. This high-level design
is named OPaL. It then presents significant implementation detail for
OPaL on Netronome Flow Processor (NFP) SmartNIC hardware, fol-
lowed by performance evaluation to show its improvements in state-
action latency and to assert that its impact on traffic is minimal.

Chapter 6 examines how in-network data reduction to histograms can make
complex, non-latency-sensitive ML decisions on host machines scal-
able. I motivate their use with a measurement study on CCA detec-
tion from per-flow ns-level timestamps, before evaluating their gen-
eral scalability and effectiveness in the target use case.

The thesis then concludes by summarising its main takeaways, offering clos-
ing thoughts on these fields, and outlines future work specific to the above
use cases (chapter 7).

Additional, supplementary details follow:
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Appendix A describes the methodology and results of a small-scale study on
the distribution of protocols in CAIDA trace data, to establish a rough
estimate of congestion-unaware traffic’s presence in Internet Service
Provider (ISP) networks.

Appendix B provides additional detail on the measurement process used to
collect trace data for simulating VoIP-like traffic, as well as the soft-
ware architecture for packet generation.

Appendix C expands on architectural details for theNFP family of SmartNICs
to offer some additional context for OPaL’s design constraints.

Appendix D contains packet header and protocol descriptions for OPaL’s in-
band control protocol.
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Chapter 2

Programmable Computer
Networks

Computer networks serve the important function of allowing any two ma-
chines to communicate with one another, typically via individual messages
known as packets (i.e., a packet-switched network). Naturally, reality is
much more complex than this broad statement would otherwise let on; the
local routing fabric in a modern network comprises specialised (though
commonplace) hardware for correctly routing these packets through arbit-
rary topologies of links and switches at ever-increasing data rates. This
grows more complicated still when we consider the task of internetworking
between such networks, where we must route packets on higher-level lo-
gically structured addresses between different domains of control accord-
ing to fairly complex policies and relationships. At the inception of these
technologies, computer scientists of the day wisely decided that the sole
duty of the network itself should be the correct routing of individual pack-
ets. Their view was that application-level logic should be executed solely at
endpoint machines; their definition extended, of course, to even include de-
sirable (and some would say indispensable) transport-level properties such
as error checking and stream reliability. This is known as the end-to-end
principle (Saltzer et al., 1984). This position arose partly due to the logical
complexity of all the tasks pushed onto the network at this time, as well as
the need to ensure optimal forwarding performance while microprocessors
were still relatively nascent, but was instrumental in ensuring that the net-
work itself remained extensible. A consistent, pared down feature set was
ensured while offering a good degree of freedom for the development and
deployment of higher-level protocols.

Decades have passed since then, and to a large extent the zeitgeist has shif-
ted on just how capable our networks should be—in both the research com-
munity and operators of large-scale networks. Consider the case where
an operator has a fully converged network built entirely on fixed-function
hardware, but wishes to use some program to inspect the behaviour, state,
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and characteristics of some flow between two local machines. The problem
is that these devices offer no means of modifying or influencing routing
state, being highly-optimised switching devices that understand a selection
of routing algorithms built into their internal circuitry. For the longest time,
altering the network’s routing behaviour in this instance—even for a single
override—required not only physically altering and rewiring the network,
but also would require additional hardware. SDN was a key development
in enabling this fine-grained routing over traffic at various layers in the pro-
tocol stack, allowing operators to offer per-flow or per-class routing for im-
proved performance—TE—or even application-aware load balancers at the
switch level. Initial forays into SDN were built on exploiting a separate con-
trol plane to install MATs and rules on target switches—mapping fields of
predefined protocols to predefined actions—leaving truly complex decisions
to one or more controller machines. These developments have been pushed
even further as the runtime capabilities of supporting devices have evolved
into what we might now consider truly Programmable Dataplanes (PDPs).
A wide variety of ASIC-based switches, SmartNICs, and other accelerators
now offer an environment for expressing and executing truly arbitrary net-
work logic, protocol parsers, and action definitions.

Despite all this, our general-purpose Internet remains much the same from
an endpoint perspective—performance and reliability improvements aside.
Yet this increase in capabilities has revealed new strands of research in more
specialised networks such as data centres, where in-controller processing
would have allowed the network fabric to cooperate with its hosted applic-
ations but presented an obvious computational bottleneck. In-network com-
pute is enabled by such bespoke routing environments when combined with
the above advances in programmability, and is founded on the growing idea
that in-path network elements such as switches, NICs, and middleboxes can
(and should) host complex logic to accelerate applications, participate in
flow control, or to aid in network management.

This chapter begins by motivating and describing initial attempts at data-
plane programmability in the ’90s (primarily active networking), how control-
plane programmability and SDN arose in their wake, and the reasons be-
hind these movements’ respective failures and successes (section 2.1). Sec-
tion 2.2 introduces modern, programmable dataplanes by tracing efforts par-
allel to the development of SDN for improving the performance of host-
based packet processing, such as VNFs, before leading into the emergence
of specialised PDP hardware from legacy SDN and NPUs. This is followed
by commentary on the ways that the original active networking movement
differs from modern PDPs (and context behind the latter’s successful adop-
tion), as well as a selection of open challenges and proposals in PDP pro-
gramming languages and hardware designs. Section 2.3 then explains the
rationale behind offloading service logic to PDP hardware and into host net-
work stacks, while describing recent research on using these capabilities
to automatically accelerate existing dataplane programs. Finally, to further
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1 Authors of this period
might be horrified to dis-
cover that the IETF’s median
time to standard publication
has more than doubled since
2000 (McQuistin et al., 2021).
This is not, however, what
we understand as ossification
in today’s Internet, which I’ll
discuss shortly.

motivate in-network compute I describe point solutions which take advant-
age of the execution environment and more granular view of network data
to improve measurement and operation (section 2.4).

2.1 From fixed-function to software-defined

For historical value, and to provide some context on the design and archi-
tectural decisions of modern programmable network stacks (section 2.2), it
is important to consider early developments and advances which laid the
groundwork for the PDP ecosystem as we know it. This includes the ill-
fated active networking movement, leading into the development of control
plane programmability via SDN.

Initially, network fabrics were fixed-function, supporting only the routing
algorithms provided by permanent ASICs integrated with their silicon, and
offering transit only for protocols considered at their construction. How-
ever, from the Internet’s origin as ARPAnet through today, programmability
of networks has increased over time to simplify the management, use, and
adaptability of network infrastructure (Feamster et al., 2014). Programmab-
ility in computer networks tends to be categorised into two distinct forms.
Control plane programmability focuses on the routing of packets, making
it easier to alter, update, and tailor the forwarding behaviour of a network
at run time, and at many levels of granularity. Dataplane programmabil-
ity focusses instead on introducing additional logic into the network to be
executed by the forwarding elements such as routers—stateless or stateful
transformations of packet streams, traffic measurement, and so on. We ex-
amine first active networks, one of the earliest movements to enable network
packet processing at the infrastructure level.

2.1.1 Active networking

In response to the expanding scale andwidespread reach of the Internet (and
computer networks in general), researchers in the early-to-mid ’90s increas-
ingly desired the tools to extend, innovate, and research routing and trans-
port protocols. Tomaintain and safeguard interoperability over the Internet,
the Internet Engineering Task Force (IETF) formed to maintain and oversee
the development of Internet protocols for all levels of the networking stack.
The weight of full IETF standardisation was seen bymany researchers of the
period as a lengthy process, which they believed to be the cause of network
ossification—the Internet becoming inflexible to the design and deployment
of new protocols.1

Active networking was researchers’ response: a family of clean-slate pro-
posals built around enabling switches to perform arbitrary computations
on carried packets, and for the network to share resources such as com-
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2 PlanetLab also had a
wider effect on distributed
systems research. Sadly, it
was shutdown in May of
2020 (Peterson, 2020).

pute and memory with users and applications (Calvert, 2006; Tennenhouse
& Wetherall, 1996). This is a more communistic, cooperative view of the
role of the network—that it should provide and manage advanced services
as a sort of common good beyond raw forwarding capacity and function-
ality, more than simply ‘best-effort’. This would enable not only new pro-
tocols empowered by the cooperation of the routing fabric, its proponents
argued, but would also simplify network management and measurement; it
was in no uncertain terms a radical departure for its time, standing in stark
opposition to the simplicity demanded by the end-to-end protocol. Active
networks planned to enable caching and Content Delivery Network (CDN)-
like behaviour, stream compression, network management, and enhanced
telemetry. Similarly, they could transparently improve data transfer with
in-path compression or error correction via protocol boosters (Feldmeier et
al., 1998).

Surveys of today divide the ideas of this movement into two main streams
of research (Feamster et al., 2014):

Capsules, which consisted of compact programs bundledwith network pack-
ets; either at a per-packet level, or installed on a per-flow basis during
the handshake process.

Programmable switches, which allowed arbitrary programs to be installed by
system administrators to their own infrastructure for dataplane pro-
cessing.

These are two key tools rather than opposing schools—and works we’ll ex-
amine from the tail end of the active networks movement feature a high
degree of interplay between both ideas. It must be said that in the absence
of specialist supporting hardware, the vast majority of works in this field
relied entirely upon execution of high-level code via commodity host ma-
chines. User Datagram Protocol (UDP) tunnelling and overlay networks like
PlanetLab2 (Chun et al., 2003) were necessary to do so; the former model-
ling a cooperative multi-Autonomous System (AS) Internet in a testbed set-
ting, and the latter providing hosts with CPU and memory slices across the
world in a ticketed, quid-pro-quo manner.

Innovations in capsules ANTS (Wetherall, 2002; Wetherall et al., 1998) cap-
tured the stereotypical active networking idea of ‘arbitrary user programs’
carried by each packet. A capsule contains one or more program IDs in
each header’s packet, to be inspected by an ANTS runtime at on-path act-
ive nodes. Capsules include dataplane programming and routing logic, kept
immutable between flows. An active node checks its local cache for program
code matching a capsule’s IDs, which may be pre-installed by an adminis-
trator (out-of-band); on a cache miss, the code is requested from the last
active node (in-band). Programs for a given ID are verified and signed ex-
ternally by some trusted organisation e.g., the IETF, but their use is still
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controlled by the user or endpoint application. ANTS relied on the transfer
of Java code: extensions such as PAN (Nygren et al., 1999) investigated the
use of raw unsafe x86 assembly for performant in-kernel use.

Smart packets (Schwartz et al., 2000) examined dataplane programming from
the perspective of measurement and control. Intended as a means for man-
agement centres to install packet programs on managed nodes, one or more
initialisation packets would be sent across the network between a source
and destination—each containing a single complete program and all relevant
authentication certificates. Any nodes along the path—including endpoints—
would be free to install or pass on logic as required. Programs were limited,
stateless, compact programs executed in a Virtual Machine (VM) for all car-
ried packets, with dedicated intrinsics for accessing state from the Manage-
ment Information Base (MIB); packets could trigger MIB events, or modify
a packet to include per-path telemetry supporting passive and active meas-
urement use cases. Hosts and switches were expected to enforce limits on
execution time and dynamic memory use to keep the scheme feasible at
scale.

NetScript (da Silva et al., 2001) allowed for the definition of active network
programs as a dynamic (i.e., potentially branching) dataflow graph of smal-
ler programs—boxes. Such boxes may be recursively defined. Crucially, its
main advantage over the similar Click (Morris et al., 1999) is that any box
can be a remote node (another machine, or a specialised hardware/ASIC
implementation), which makes this a remarkably prescient combination of
control plane and dataplane programmability. Dataplane program defini-
tion and selection is left entirely to network operators in this abstraction,
rather than allowing tenants’ code.

Switch programmability Though conceptually purer uses of programmable
switches are rare in this movement, their use is often implicitly assumed
to be necessary in any real, performant active network. The SwitchWare
project (Alexander, Arbaugh, Hicks et al., 1998), while very much a capsule-
based proposal, primarily suggested a base of SANE-backed switches (Alex-
ander, Arbaugh, Keromytis & Smith, 1998) which would implement a fixed,
performant set of ‘active extensions’ analogous to Operating System (OS) sy-
scalls. Ahead-of-time fixed subprograms like these were key here to achieve
performance and security—mainly by limiting capsule program capabilit-
ies and allowing delegation to ASIC accelerated operations in performance-
critical scenarios.

From a more practical perspective, Wolf and Turner (2001) examine the
design requirements of a programmable switch in contrast with emerging
NPUs of the time. They propose a System on a Chip (SoC) design built
around a large array of general-purpose Reduced Instruction Set Computer
(RISC) CPUs, each having their own cache and memory. A first stage ASIC
would route packets to an output port over a shared interconnect, where
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3 Curiously, this design
more closely matches
modern SmartNIC devices,
while today’s programmable
switches favour ASIC
designs. We’ll return to this
point in section 2.2.2.

4 This shares many con-
ceptual similarities to Ex-
tended Berkeley Packet Filter
(eBPF), a RISC register ma-
chine, which now plays a key
role in network compute off-
load andOS kernel extensibil-
ity. I introduce eBPF in detail
during section 2.3.1. The VM
abstraction, using intrinsics
and maps to communicate
with the environment, en-
sures security while the lan-
guage’s simplicity allows im-
plementation in the network
fabric.

these CPUs would either count as their own port or be attached to a phys-
ical egress and conditionally used.3 The use of complete RISC CPUs is quite
deliberate: early NPUs such as the Intel IXP1200 (Intel, 2001) and Lucent’s
Fast Packet Processor (Agere Systems, 2001) had unusual instruction sets
suited to stateless processing of headers (George & Blume, 2003), limiting
their general expressiveness. A fuller Instruction Set Architecture (ISA) was
recognised as being necessary for more capable, general, useful, and state-
ful dataplane programming; particularly of the kind envisioned by active
networking.

Returning to smart packets, we see a similarly earnest attempt to reconcile
capsule networks with a reasonable programming framework (as opposed
to its peers’ focus on high-level languages). Aiming to be more amenable to
switches they propose Spanner, a compact Complex Instruction Set Computer
(CISC) assembly language for a stack-based VM with primitives to access
the MIB, compiled to from their own higher-level language. Spanner was
designed to be reasonably implemented on hosts and routers, but explicitly
trades performance for compactness; focussing on small, self-contained, se-
cure programs.4 The executing switch or host enforces memory and exe-
cution limits at runtime, but single-packet 𝒪(1 KiB) programs simplify de-
ployment logic. Naturally, this excludes stateful boosters of the type we’ve
examined, but is well-suited to the measurement andmanagement use cases
its authors intended.

Failings and drawbacks Sadly, the active networking paradigm failed to
properly fledge, at least in its first iteration. It might be argued that the
‘communistic’ network view played a key part in this downfall—that the
tangled web of ASes between any two nodes should freely offer compute
resources to the benefit hosts. This comes down to a simple question of eco-
nomics: who pays whom for providing these services? It’s easy to reason
about this in campus or internal networks (the organisation provides active
capabilities as part of its own remit), or if we require that only our ISP of-
fers these capabilities (hosts pay for them explicitly). Extending this notion
to the wider Internet becomes more challenging. Assigning responsibility
for administrative, technical, and security issues among all the organisa-
tions between two endpoints is a daunting prospect, to say the least. When
modifying packets in a protocol booster-like model, it becomes difficult to
communicate where boundaries of support start and end to enable truly
transparent behaviour. In a setup like the PlanetLab overlay network the
incentives for providing these capabilities in such a distributed way are ob-
vious: all the users are researchers in need of distributed compute. Each
benefits from donating compute and network slices in their own infrastruc-
ture to receive resources in kind.

The problem here is also one of aggregation. At the Internet core such as in
Internet eXchange Points (IXPs), transit bandwidth demands are the sum of
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all connected ASes, amplifying compute demands and scale concerns. From
another angle, suppose that all functions benefit the network and hosts alike,
as in the case of an in-band TCP compressor. Here, files can be transmit-
ted between end hosts quicker and the bandwidth impact on the switching
fabric is reduced. If hosts benefit and have the resources to implement this
functionality it is inevitable that at some point they will do so (pushing logic
to the network edge), at which point network operators are able to put their
own resources into faster or higher-capacity passive infrastructure with a
vastly reduced attack surface compared to an active solution. On the upside,
this also preserves the end-to-end principle.

Active network capabilities do in many senses limit how networks can be-
nefit their users (or at least make some innovations substantially harder).
Consider flow migration, potentially as part of a wider TE strategy, or path
aggregation to increase bisectional bandwidth or provide redundancy to pro-
tect from link failures. Administrators must not only handle routing and
design of such capabilities, but they must also ensure that active network
programs on any flow’s path are mirrored or migrated to the new path. In
the event of a complete or partial node failure, this may not be trivially pos-
sible. Even when retrieving programs from the last hop, failover may be
needed for a live high-bandwidth flow, requiring costly per-flow buffering
at a node until capsule program setup is complete.

The capabilities of programmable switch hardware were, to some extent,
overshadowed by the community’s focus on the more intoxicating idea of
capsule networking. Naturally, the overwhelming majority of these plat-
formswere prototyped on hostmachines, which limited forwarding and pro-
cessing performance far below that of even early Ethernet. The repeated em-
phasis on high-level prototypes reduced the focus on the sorts of low-level,
capable languages a performant system would require—proposals were in-
stead marred by in-vogue high-level VM-based languages such as Java and
Caml, which did their credibility little good. This likely also added to in-
dustry scepticism—one gets the sense of a paradigm driven by research
trends instead of limiting its own boundaries to produce something truly
capable and scalable.

2.1.2 Software-defined networking

In parallel, a good many researchers saw a need to innovate (and fight stag-
nation in) the space of what we now understand as control plane program-
mability: the ability to deploy and develop new routing protocols, provide
bespoke routing for individual packets, flows and applications, and to adapt
to changes in the network itself. While likely starting out from the same per-
spective as active networking—enabling new capabilities and development,
and network evolution—as years have gone by greater network capacities,
usage demands and a need for far greater reliability have introduced chal-
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lenges manyfold. Greater capacities, particularly in bisection bandwidth,
typically mean more routers and switches for network admins to manage,
but also in terms of additional cabling for link redundancy and aggregation—
neither of which play well with older spanning tree protocols. Traffic En-
gineering (TE)—making effective use of this capacity and providing differ-
ent traffic classes with optimal forwarding—has similarly become more and
more important over time. The problem is that classical routing protocols
such as Open Shortest Path First (OSPF) and Routing Information Protocol
(RIP) are designed for distributed autonomy, offering no support for direct
routing rule insertion by administrators. Early TE approaches were thus
built on a shaky foundation of hacks and tricks, exploiting routing protocol
behaviour to achieve the desired high-level outcomes (Feamster et al., 2014).
Naturally, such workarounds become untenable and impossible to reason
about at scale—particularly as failures and misconfigurations creep in and
become harder to find and diagnose. Effective though these early meth-
ods were, they remained hamstrung by the tightly coupled control and data
planes of the network hardware of that era. The reality and urgency of
this problem space has led to the true separation of forwarding elements
(the dataplane) from the logical control elements which inform and orches-
trate their routing behaviour (the control plane). With the advent of the
control plane, Software-Defined Networking (SDN) arose too—the use of ar-
bitrary machines and logic to define the forwarding behaviour of each and
every network element (Feamster et al., 2014; Nunes et al., 2014). As we
shall discuss, this has brought forth a well-developed and successful bevy
of innovations in network control and design.

Development of the control plane This line of work began in earnest with
the open signalling movement (Campbell et al., 1999) in Asynchronous Trans-
fer Mode (ATM) networks, circa 1995. Open signalling aimed to standard-
ise the Application Programming Interfaces (APIs) and protocols for passing
routing data to its relevant handler (and rules to line-cards) in an era where
these elements were still tightly bonded in commercial routing hardware.
Tempest (van der Merwe et al., 1998) marked its zenith, using these capabil-
ities in tandemwith specific functions of these now-obsolete ATMnetworks
to define a ‘network control architecture’ which would oversee correct for-
warding policies and resource allocation. Its primary focus, however, was in
providing independent virtual network slices—switchlets—to users of multi-
tenant networks on demand, allowing these users to pass in their own con-
trol programs written for host execution in Java, for instance. Control plane
traffic from control elements to the dataplane was carried in-band at this
time (i.e., using the same fabric as tenants’ datagrams).

These ideas were refined into a standard for hardware elements on a shared
bus via ForCES (Yang et al., 2004); stripped, of course, of the more vision-
ary aspects such as network slicing, arbitrary control code, and wider re-
source management. Primarily, this was focussed on registration of control
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5 It’s worth noting that this
proposal was intended only
for campus networks, hence
its obvious scalability limits
don’t bite quite as badly as
they might in, say, an IXP
or data centre. In particu-
lar, it must upcall to the con-
troller for every new address,
and maintain an exact match
rule for every live flow due
to the lack of longest-prefix
matches.
6 In-text, this is again
referred to as ossification:
here arising from the closed
nature of routing hardware
coupled with the perform-
ance needs of realistic
traffic.

plane elements, including key provisions for extensibility and discoverab-
ility to announce additional protocols and offer redundancy. The move to
physically remote control elements was proposed by SoftRouter (Lakshman
et al., 2004), such that forwarding and control elements would communic-
ate with one another in-band over the same network they define (after a
simple spanning-tree bootstrap phase) using custom discoverability proto-
cols. This allowed its authors to experiment with reducing the number of
control elements in a network, from which they observed faster conver-
gence of protocols such as OSPF. Hardware capabilities did not at this point
allow this level of control, and as such host-based kernel dataplane routers
like XORP (Handley et al., 2003) and simulators such as ns (Bajaj et al., 1999)
reigned in research at this time.

Most of the above work focusses on the intra-domain case—routing within
an AS. RCP (Caesar et al., 2005; Feamster et al., 2004) was instead motivated
by how inter-domain routing between ASes might benefit from the sorts
of centralised control we now associate with SDN. The problem in this in-
stance is that edge routers must understand and implement Border Gateway
Protocol (BGP), each having their own arcane policies to achieve the inten-
ded network behaviour with respect to quirks of the protocol, their own
hardware, and the routes forwarded by neighbouring ASes. Their solution
was to centralise this logic into one (or a few) host machines, providing a
drop-in solution which could act on all gathered BGP information to pro-
duce optimal decisions with better scaling characteristics, reduce adminis-
trative overhead and fragility, and which opened the door to later extension
if neighbour ASes also deployed RCP.

With the growing need for TE and TrafficOptimisation (TO) at various layers
of the Internet infrastructure, we begin to see a drive for wider coordination
in the intra-domain case. PCE (Vasseur et al., 2006) is one of the first serious
attempts to formalise a network architecture where the control plane can
calculate and install bespoke paths at the flow level, given any set of con-
straints. Naturally, this requires far greater coordination of the individual
forwarding behaviour of switches, preferably combined with Multiprotocol
Label Switching (MPLS). Ethane (Casado et al., 2007) pushed this notion of
complete network control further; a dedicated controller overseeing the for-
warding rules and paths installed at an entire network of ‘dumb’ switches,
containing only an action table of exact matches. Their goal was not one of
performant TE, however, but of policy—complete control over interactions
between named entities and their classes, with all flow misses being dir-
ected to the controller.5 The controller then authenticates, authorises and
orchestrates all host-to-host connections according to a given policy.

The arrival of OpenFlow (McKeown et al., 2008) marked a watershed mo-
ment in SDN, iterating on Ethane’s key ideas to remove notions of authentic-
ation, focussing more on the network itself. Motivated to lower the barrier
of entry for experimentation and research in the routing domain,6 Open-
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Flow decided to change tack compared with XORP and its contemporaries
by targeting real hardware (and by tailoring its design to capabilities of com-
modity devices of the day). OpenFlow kept Ethane’s MAT abstraction, as
switches of that era stored flow tables internally, and required support for
few actions: forward packets on a port, drop packets, encapsulate and send
a packet to a designated controller, or defer to the switch’s underlying for-
warding logic. Each OpenFlow switch then maintains a dedicated, secure
connection to at least one controller, though may receive rules from any
number of them. This was set apart from its earlier competitors and pro-
genitors by its drive for easy compatibility with commodity hardware, for
instance by providing their own open source OpenWRT firmware. What
it then codified was an open, consistent manner for software to configure
the routing behaviour of real hardware at the whim of operators, going so
far as to suggest that high-performance dataplane programmability might
be enabled via steering to NetFPGA devices elsewhere in the network—
eliminating virtualisation. The supported capabilities and reach have expan-
ded somewhat since its initial, academic, limited introduction. Indeed, while
we now understand that OpenFlow has incredible value in the operation and
management of large networks, the vision embodied by the original work
is in fact much closer to the ‘switchlet’ model of Tempest where individuals
request transit for traffic between their machines, carrying their own ex-
perimental protocols or enacting novel policies. The specification has thus
evolved over time to include features more useful and tailored to complex
networks and costlier hardware: conditional support for more expressive ac-
tions and matching capabilities, including additional tables, groups, egress
processing, and packet header modification (Open Networking Foundation,
2015).

An ongoing legacy The remarkable thing about the field of SDN, particu-
larly compared to active networks, is that it’s still here. Moreso than that,
it plays a large role in modern networks of hypergiant scale. We’ll discuss
a case study shortly. Why has control plane programmability proven to be
so much more effective and attractive to operators in practice?

Principally, it is because control plane programming is easier to get right—in
the sense of processing speed and volume. Routing information, link states,
and topology changes collectively arrive at a far slower rate than packets, or
even simply carried flows. An OpenFlow controller is under no obligation
or need to, say, react to millions of routing changes per second while adding
only microseconds of latency, because the routing environment varies at a
rate which is well suited to the processing capabilities of commodity hosts.

Secondly, the wide reach of open-source software for developing, deploying,
and testing SDN concepts and ideas has helped these ideas gain traction in
both the research community and in real-world deployment. Network OSes
and controllers such as NOX (Gude et al., 2008), Onix (Koponen et al., 2010),
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7 Particular issues demand-
ing custom routing and ad-
ministration include the vast
amount of multipath com-
plexity at this scale, heavy
per-link state, and poten-
tial performance gains from
network homogeneity that
general-purpose routing al-
gorithms might fail to cap-
ture.

ONOS (Open Networking Foundation, 2021), OpenDaylight (OpenDaylight
Project, 2021), and Ryu (Ryu SDN Framework Community, 2017) provide
moderately easy interfaces for programmers to implement their own con-
trollers. Network emulators such as mininet (Lantz et al., 2010) allow re-
searchers to define and operate virtual networks built entirely of OpenFlow-
capable switches on their own machines using host programs and stand-
ard sockets to generate and use carried traffic, enabling easy prototyping.
High-performance software switches such as Open vSwitch (OVS) (Pfaff et
al., 2015) offer first-class support for OpenFlow and no small number of ex-
tensions, and are instrumental in data centre virtualisation (Tu et al., 2021).

Finally, the movement capitalised on existing hardware and its own capabil-
ities, rather than calling for a radical wave of enhancements or brand new,
expensive capabilities. Providing a higher-level abstraction to manage the
infrastructure which networks already contained ensured the adoption and
current success of SDN.

One well-documented, well-published, and arguably ongoing case study of
this paradigm in action at scale is the wave of high-impact papers produced
by Google. Google’s Jupiter data centre network design (Singh et al., 2015)
was developed concurrently with most of the works outlined above, where
these techniques have been instrumental in managing the explosive uptick
in switch hardware demanded by their larger Clos topologies.7 Addition-
ally, SDN techniques have helped to manage phased integration of this new
network. In Wide Area Network (WAN) topologies, B4 (Jain et al., 2013) has
made direct use of OpenFlow for TE, to maximise link utilisation and of-
fer resilience (aided by the fact that Google own the WAN endpoints). The
architecture evolved fairly cleanly over the following 5 years, coping with
100 × bandwidth increases and more stringent reliability bounds (Hong et
al., 2018). Espresso (Yap et al., 2017) extends this to inter-domain peering
arrangements with the Internet and BGP session management, finally real-
ising the vision of RCP 13 years on. Nowadays, their data centre and WAN
networks are managed by a single higher-level microservice SDN architec-
ture, Orion (Ferguson et al., 2021).

2.2 Modern programmable dataplanes

In parallel with SDN’s development, dataplane programmability has become
more commonplace and performant—primarily through a mixture of novel
hardware architectures and more developed software stacks on host ma-
chines. These tools offer a useful mixture of capabilities, performance char-
acteristics, and drawbacks to consider. To better understand how best to
use these tools in service of DDN—for building full systems built on device-
local state (chapter 6) or the primitives for inference and online learning
(chapter 5)—this section details current hardware and software dataplane
architectures and their predecessors. This also gives us cause to examine
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8 Barring some very obvious
throwback works such as
Tiny Packet Programs (Jeyak-
umar et al., 2014)—which
have directly influenced
new in-network telemetry
schemes like those we cover
in section 2.4.1.

the wider context of these recent PDP developments, and why they have
succeeded as compared with past research forays.

While active network research may have dried up in the last 20 years,8

interest in dataplane processing has remained strong. Network operators
have, in fact, always had a need for complex packet processing to measure,
protect, and enhance their own networks—rather than to provide the sort of
communal good that active networks promised. To offer some examples:

• Firewalls are a necessity for filtering unauthorised traffic at stub ASes,
but require line-rate lookups versus large allow- and block-lists across
varied protocols. Similarly, Network Address Translation (NAT) boxes
play an important role for ISP networks.

• Protocol enhancements and TE solutions, such as WAN optimisers
and application-layer load balancers, which need to be able to inspect
and/or modify traffic based on (possibly complex) transport-layer and
application-layer semantics.

• Security functions, such as Intrusion Detection Systems (IDSes) and
DDoS traffic scrubbing solutions. These can require complex, state-
ful logic (such as regular expression matching and transparent data-
gram reassembly) that makes them challenging to implement while
maintaining high performance—particularly when we consider that
the DDoS use case demands that we keep upwith a high ingress traffic
volume.

At scale, the performance challenges involved in per-packet and per-flow
processing for these functions becomes difficult to reconcile with the per-
formance limitations of host machines. The obvious solution is to fall back
to silicon in pursuit of performance, and as a result the market has long
included so-called middleboxes—bespoke ASIC devices designed to perform
one or more pre-defined dataplane functions at line rate.

An obvious trade-off has been made here: runtime programmability has
been sacrificed for performance. What is less obvious is that another, hid-
den, cost has been introduced owing to the fallibility of engineers—our fi-
nal source of network ossification. While effective at their designed tasks,
middleboxes are infamous for relying on the observed behaviour of net-
work traffic rather than the behaviours actually decreed in the relevant IETF
standards and specifications. As a result, they have become a barrier to the
wider deployment and introduction of protocols in the Internet. Stream Con-
trol Transmission Protocol (SCTP) (Stewart, 2007) is one recent example of an
approved protocol whose deployment has been hobbled by the prevalence of
middleboxes that expect only a limited suite of layer-4 protocols (Xin, 2021).
Under the same considerations, the QUIC transport protocol (Langley et al.,
2017) must be tunnelled over UDP, even though its Internet-wide deploy-
ment is backed by the weight of hypergiant provider Google.
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These devices also introduce operational and logistical challenges around
their configuration and installation within the network. Although SDN-
based steering has to some extent obviated the need to physically rewire
middleboxes’ cablingwhen they need to be reconfigured, they do still present
challenges beyond the above network fragility. Specialised middleboxes
are expensive, demand rack space and introduce their own power and cool-
ing demands, making deployment harder to scale out as network traffic de-
mands increase. They are failure-prone, require specialist knowledge to op-
erate, and are vulnerable to vendor lock-in (Sherry et al., 2012). Moreover,
their fixed nature makes them difficult to modify, upgrade, and fix; a sunk
cost which cannot be recouped or repurposed as network function require-
ments change or evolve.

The result of these drawbacks is that a constant desire has remained to in-
troduce and capitalise on true dataplane programmability. The pursuit of
this goal can be divided quite neatly into two streams. The first carries
on from the use of virtualisation—already common in active networking
research before the introduction of a true programmable dataplane fabric—
towards more flexible deployment through Network Functions Virtualisation
(NFV) and VNFs. The second stream instead follows from asking how we
might make switching and forwarding hardware itself more programmable,
keeping in mind the tight form-factor and performance bounds required of
high-speed commercial network hardware.

2.2.1 Virtualisation and commodity machines

Commodity CPUs are already arbitrarily programmable, yet their dataplane
performance has always been at odds with ever-improving Ethernet stand-
ards. In turn, researchers have asked: how can we alleviate the existing
performance bottlenecks in host dataplanes? How can we take further ad-
vantage of the flexibility of host machines to allow for multitenancy, or
make runtime reconfiguration even easier by leaning into the ubiquity of
host compute? Backed by SDN and by innovations in VM and container
research from the systems community, VNFs and similar frameworks have
filled a comfortable niche for moderately performant host dataplane pro-
gramming.

NFV and VNFs envisioned that Network Functions (NFs) should be imple-
mented as commodity software programs running within VMs, allowing
not only the above increases in asset reuse and programmability but also
enabling hardware hetereogeneity, portability of developed functions, and
resilience (Chiosi et al., 2012). Casting dataplane programming in this light
has its fair share of advantages. Administrators can always scale horizont-
ally to meet traffic processing demands by acquiring more commodity host
machines, and the dataplane functions themselves are easy for typical soft-
ware engineers to program—no proprietary languages or hardware details
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9 Containers are a form of
OS-level virtualisation, with
a history reaching back to
FreeBSD Jails (Kamp & Wat-
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as fast container-container
network communication on
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need to be involved. Bespoke development is not required either; VMs may
easily run openly available, widely used IDS software like Snort (Roesch,
1999; Snort Team, 2017) or Zeek (Paxson, 1998; The Zeek Project, 2020) with
minimal effort. Moreover, VNF setup requires on the order of minutes or
less, and VNF execution can be dynamically stopped, restarted, or moved
around; capitalising on the strengths of virtualisation (Cziva et al., 2015;
Martins et al., 2014). The VM model then allows for easy multi-tenancy and
resource sharing, governed by a hypervisor à la Xen (Barham et al., 2003) or
KVM (Kivity et al., 2007).

Naturally, widespread adoption of container frameworks9 has percolated
into the design of VNF deployment strategies. Container VNF solutions,
such as GNF (Cziva & Pezaros, 2017; Cziva et al., 2015), have taken advant-
age of containers’ lightweight virtualisation to offer marked improvements
in traffic processing latency and throughput over their priors. Their recon-
figurability, combined with clever use of network resources empowered
by SDN, has also opened the door for orchestration research which max-
imises VNF performance subject to environmental limits. VNFs and the
steering between them may be optimised ahead-of-time (or live) to protect
users’ application latency or QoS, by Integer Linear Programming (ILP) mod-
els (Cziva et al., 2018), heuristics (Iordache-Şică et al., 2021), or data-driven
methods (Riera et al., 2016).

While the above works relate mainly to the higher-level composition and
interconnection of network functions, a long lineage of works drawn from
Click (Morris et al., 1999) have instead focussed on how to build these packet
programs from smaller chunks for efficient processing and easier develop-
ment. Click itself views the dataplane as a configurable graph of intercon-
nected, predefined building blocks which are then composed into a single,
pipelined program. ClickOS (Martins et al., 2014) introduces a micro-OS
designed only to run Click programs as part of a Xen hypervisor stack,
achieving substantial packet rate and spool-up time improvements, while
Fastclick (Barbette et al., 2015) innovates in performance by porting Click on
Linux hosts to use Intel’sData Plane Development Kit (DPDK).ClickNF (Gallo
& Laufer, 2018) then introduces support for higher-level stateful protocols
such as the TCP stack, enabling Hypertext Transfer Protocol (HTTP) caches
and proxies as network functions. NetBricks (Panda et al., 2016) maintains
the directed graph model and DPDK support, however it takes user-written
functions rather than pre-specified blocks, and relies upon the Rust (The
Rust Team, 2022) language compiler to enforce isolation of memory and
packet data accesses. OpenBox (Bremler-Barr et al., 2016) makes use of
a similar framework of smaller configurable processing blocks, though its
main focus lies in fusing NF components in larger chains across several ma-
chines. When functions are co-hosted on any machine, OpenBox merges
their processing graphs to deduplicate more expensive operations (redu-
cing processing latency) while allowing some degree of metadata transfer
between hardware-optimised functions and commodity hosts.
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10 TEEs allow secure execu-
tion of code on a target ma-
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ing encrypted memory pages
accessible only to the CPU.
Platforms such as Intel SGX
also include provisions for
binary and machine attesta-
tion.

11 Following up the fates
of these providers paints an
interesting picture of mono-
polisation by traditional net-
work vendors: consider for
instance Sandburst’s acquis-
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Tech, 2006), or EZchip’s ac-
quisition by Mellanox (Co-
hen, 2015).

Wehave also seen specialisation of these frameworks to account for security
at varied levels, due to the importance of security functions such as IDSes
and the proliferation of VNF chains deployed to remote cloud compute. For
instance, VNF operation must be protected from other VNFs and the host
machine it runs on (which may be compromised), as must packet data and
proprietary VNF source code. SafeBricks (Poddar et al., 2018) extends Net-
Bricks to take advantage of Trusted Execution Environments (TEEs).10 This
executes as a single binary in the TEE, with another thread running in user-
land to operate DPDK as a dedicated packet relay due to the prohibitive
cost of swaps in or out of the trusted enclave. Such swaps cause substantial
delay via complete cache flushes and re-encryption. AuditBox adds verified
routing protocols to this framework (G. Liu et al., 2021), enabling packet
routing between enclaved VNF chains on separate machines—ensuring also
that packet paths are obeyed, and that the network is not altering or re-
ordering packets. Additionally, this allows path auditing in a way which is
invisible to VNFs and the network. However, this latter solution achieves
only half the packet forwarding goodput of NetBricks in exchange for these
additional guarantees.

2.2.2 Specialised hardware

Although host-run functions have indeed improved, their performance still
trails unacceptably behind ASICs—traffic volume can be accounted for up to
a limit by horizontal scaling, but this becomes more difficult to operate than
a single bump-in the wire solution, or may be impossible at larger port dens-
ities. Programmable network hardware, beginning with early NPUs and cul-
minating in today’s SmartNICs and programmable ASIC-backed switches,
innovates by introducing runtime reconfigurable compute to these devices.

NIC programmability NPUs, dedicated network cards including general-
purpose processors for arbitrary packet processing, first arrived around the
year 2000 as we’ve discussed in section 2.1.1, with commercial designs such
as the Intel IXP1200 (Intel, 2001). These presented an early middleground
between fixed-function (though performant) ASICs and commodity host
(virtualised) packet processing, offering line-rate performance at a smaller
form and fanout factor (i.e., 1 or 2 ports). By 2008, their architectural space
was dominated by multiprocessor SoC-type designs offered by a good many
vendors (Giladi, 2008, p. 306).11 Yet at this time there was still a high degree
of microarchitectural diversity between vendors (Keutzer et al., 2002; Shah
& Keutzer, 2002)—pipelined versus symmetric core designs, Very Long In-
struction Word (VLIW) and superscalar alongside one-way designs, and the
presence or absence of use case-specific FUs and coprocessors. Some ar-
chitectural constants include a large, shared register file to enable zero-cost
context switches andmask I/O latencies, and non-trivial programmingmod-
els. These devices fell behind ASICs in deployment and use for the longest
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12 Mellanox NICs in particu-
lar use standard ARM cores,
while Netronome’s offerings
use a proprietary ISA with
full C language compatibil-
ity.

time due to the speed and low fabrication cost of chips—even if their design
was costly (Giladi, 2008, p. 308)—twinned with the need for deep expertise
needed to program such NPUs.

SmartNICs present the logical evolution of this low port-density form factor,
offering line-rate packet processing for modern Ethernet (10–100Gbit/s).
What sets them apart is that SmartNICs optionally function as a NIC compat-
ible with common OSes—supporting for instance the standard offloads such
as checksumming and segmentation. Modern day SmartNICs such as the
NVIDIA/Mellanox BlueField (NVIDIA, 2021b) and Netronome Agilio (Net-
ronome, 2021) series trace their lineage back to these NPUs, to some ex-
tent realising the architecture which some authors thought programmable
switches might adopt (Wolf & Turner, 2001). That is to say, large numbers
of weaker general-purpose RISC CPUs which can route to one another or
an output Medium Access Control (MAC) via a shared interconnect, with
ample coprocessors (for, e.g., cryptography) and resources for accelerated
packet processing like Ternary Content-Addressable Memory (TCAM). This
contrasts the network-specific ISAs used in their predecessors,12 while act-
ing as a usable NIC for the host machine in addition to their bump-in-the-
wire capabilities. Packet throughput requirements are met by sheer paral-
lelism in these devices—Netronome’s NFP-6480 contains 112 cores acting
in a non-pipelined way (appendix C)—but such NPU-type SmartNICs often
impose greater latency on carried packets due to architectural overhead.

Field-Programmable Gate Arrays (FPGAs) have become more capable over
time, and now present a reasonable way to achieve ASIC-like performance
(high throughput and low latency) and runtime reconfigurability without
fabrication. The advent of the openly available NetFPGA (Lockwood et
al., 2007) design as a platform for network processing research and teach-
ing has been a key driver here, such that the SmartNIC market also in-
cludes FPGA-backed NICs such as the Xilinx Alveo (Xilinx, 2021a). Simil-
arly, other vendors have produced open NIC designs, such as AMD/Xilinx’s
OpenNIC (Xilinx, 2021b) platform. NetFPGA processing speeds are also
continuously improved in tandem with line rate: see NetFPGA-SUME (Zil-
berman et al., 2014) at 40Gbit/s, and NetFPGA-PLUS (Tokusashi, 2021) at
100Gbit/s.

Switch programmability Let us turn now to programmable switches, not-
ing that the path they have taken is altogether different from whatWolf and
Turner proposed some 21 years ago. It is readily apparent that the designs
we seen in modern SmartNICs would be broadly incompatible with high
port densities (i.e., 56 ports) as the sum traffic bandwidth rises to 1–2 Tbit/s
and beyond. Operating and connecting together hundreds or thousands of
general purpose cores requires vast amounts of power and cooling, to say
nothing of the engineering challenge of designing an efficient interconnect
for all these FUs. We quickly reach a point at which ASICs are the only



2.2. Modern programmable dataplanes 27

means to achieve some manner of programmability; we must instead ask
how much freedom to give programmers, and then architect around this re-
stricted programmability.

Serious contenders began to reach the market in 2013, such as Intel’s Flex-
Pipe (Intel NetworkingDivision, 2017) and Cavium’sXPliant (Cavium, 2017).
However, due to its publication and later impact we will leave these aside in
favour of RMT (Bosshart et al., 2013). RMT’s motivation followed on from
the design and limitations of OpenFlow, asking not only how MATs could
be made faster in hardware but also how a new architecture might dynam-
ically allow for novel protocols and encapsulations such as VXLAN. To do
this, the switch must offer runtime reconfiguration of field definitions and
locations, the shapes of MATs, actions themselves, and control over output
queue selection and disciplines. The RMT model divides the switch into
ingress and egress pipelines with a queue and buffer management element
between them, with an array of configurable TCAM-backed parsers to op-
erate on the inbound packets in each pipeline. Pipelines are subdivided into
32 stages, each having 200 action units that act in parallel on the packet
header vector using a VLIW instruction chosen by a MAT lookup. Because
of this, each stage can perform a single operation per field, though the con-
trol plane can make use of the large number of action units to perform spec-
ulative execution and divide and split logical stages between parts of the
physical pipeline. This design sees wide adoption today. Barefoot—now
Intel—Tofino switches use a switching core built on this architecture, the
Protocol Independent Switch Architecture (PISA) (Barefoot, 2017).

The question which then remained was how the control plane, and engin-
eers in general, should actually program these advanced classes of switch-
ing hardware to exploit these new features. Protocol-oblivious forwarding (H.
Song, 2013) was an early proposal in this regardwhich failed to gain substan-
tial traction; a single ‘flow instruction set’ would act as a common compile-
time target to govern protocol parsing logic and action implementations,
while even allowing in-band modification of MAT entries by actions. In
retrospect, its main failing is that it overlooked how ergonomic, high-level
programming should be carried out while also advocating a hardware re-
design not entirely backed by a sensible implementation. P4 (Bosshart et al.,
2014) is a language which instead targets the design of a dataplane—its table
layouts, actions, and parser design—from a high, user-friendly level. Users
program parsers as a Finite State Machine (FSM), while table and action sets
are structured as imperative programs based on the classes of match offered
by a target switch. Switches are supported by defining their architecture
in headers and implementing a new backend for the compiler, p4c. Actions
have access to metadata (per-packet state) and registers (shared dataplane
state), where the latter is analogous to OpenFlow’s counters. P4 supports
many target dataplanes today:

• Programmable switches, through either vendor-provided backends
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Figure 2.1: Pipeline stages and forwarding paths of the P4 PSA. User
programmable blocks are coloured in orange, where MAT blocks com-
prise the ‘Ingress’ and ‘Egress’ stages. While an RMT-like action model
is common, the PSA abstracts over how actions should be implemented
in any target dataplane. Instead, it specifically determines the high-level
structure of ingress and egress processing—as two separate parse-MAT-
deparse pipelines—and how packets may be moved and cloned between
these pipelines. For instance, a packet may only be cloned at the begin-
ning of the egress pipeline, and may only repeat processing by returning to
the start of ingress. Due to this structure, some packet processing or aggreg-
ation programs may only be expressed using workarounds.

13 P4 and eBPF each have se-
mantics the other cannot ex-
press, which are given in de-
tail in the referenced docu-
mentation, so this translation
is less than perfect for map-
ping some P4 dataplanes to
relevant offloads.

such as the Tofino Native Architecture or shared targets such as the
PSA (The P4.org Architecture Working Group, 2021)—a higher-level
abstraction over Barefoot’s PISA. Figure 2.1 demonstrates the PSA in
particular.

• eBPF (P4c Maintainers, 2017) targets (kernel-level, userland and off-
loads),13

• SmartNICs, via vendor-specific compiler additions,

• NetFPGA cards, via the P4→NetFPGA pipeline (Ibanez, Brebner et al.,
2019),

• Software switches such as bmv2 (Bas, 2016), PISCES (Shahbaz et al.,
2016) built on OVS, and themore performant T4P4S (Vörös et al., 2018)
which compiles to C code with a DPDK backend.

Any device intrinsics or capabilities which cannot be expressed in P4may be
called out to using extern directives. Generating compatible control plane
protocols and APIs is then handled by P4Runtime (The P4.org API Working
Group, 2021), restoring the hardware-agnostic control central to OpenFlow.

8 years on, P4 has apparently been a runaway success in much the same
vein as OpenFlow, and enjoys use in production networks (Tian et al., 2021)
while also enabling efficient and production-ready implementations of next-
generation Internet designs such as SCION (de Ruiter & Schutijser, 2021).
These technologies, including SmartNICs, are also seeing use in national
research and education networks—for control and network design such as
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Géant’s RARE project (Meyer, 2020), and for fine-grained network telemetry
and future P4 processing in ESnet6 (Guok et al., 2021; Mah et al., 2020).

A more important effect of having arbitrary control over actions and manip-
ulation of shared state is that, although limited, the set of programs we can
express has grown significantly. Although we’ll discuss this in more depth
in section 2.3, this enables true in-network compute—per-packet processing,
e.g., in telemetry use cases like PINT (Basat et al., 2020) at rates and volumes
hitherto impossible for hosts to achieve. Moreover, this enables application
acceleration and other new developments with none of the costs of host
execution.

2.2.3 The return of active networking?

The reader may well be thinking that research community has cycled back
around to active networking in a new guise, and in many senses it has.
While less popular at the time, the programmable switch model we have
now latched onto did in fact arise as part of this prior movement. The
remarkable observation is that if we follow the retelling of Feamster et al.
(2014), active networking’s decline was written in large part by its lack of
a “killer app”. Of course, its main use cases at the time were touted as en-
abling cacheing and CDN-like behaviour, content processing, network man-
agement, and fine-grained telemetry. These are strikingly similar to the use
cases which have driven the recent upsurge of PDP applications, and in fact
see real use in production edge networks (Tian et al., 2021). Modern meas-
urement schemes like In-band Network Telemetry (INT) (The P4.org Applica-
tions Working Group, 2020)—covered in section 2.4.1—have returned to the
model of injecting per-packet actions into the packet headers themselves.

Wetherall and Tennenhouse (2019) also recognise this resurgence, and re-
affirm the main drivers of SDN—economics of a malleable software layer
exploiting affordable commodity hardware (where talented software engin-
eers are easily deployed), and virtualisation as a tool for introducing more
capability into the network. What they don’t really discuss are the concrete
reasons for why the field appears to have successfully taken off this time,
while it foundered before. So, what changed? My personal interpretation
and opinion is that this arises from several angles:

• Virtualisation introduced the capability to install novel and reconfig-
urable packet processing to networks, but modern deployments and
the constant need to ‘scale up’ have emphasised that performance
truly is a necessity. This doesn’t only hark back to the logical cost
involved in moving packets around the software or OS stack in a ma-
chine (added latency), but also via the falloff of Moore’s law (G. E.
Moore, 1965) and Dennard scaling (Dennard et al., 1974). Although
host capabilities have always fallen behind line-rate, they are falling
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14 Of course, dedicated sil-
icon always offers a perform-
ance edge over an arbitrary
computer, at the cost of flex-
ibility. The design, fabrica-
tion, and engineering costs
are high enough that this
has only ever really been jus-
tified in common use-cases
(e.g., firewalls and IDSes) or
where there really is a busi-
ness case as with modern hy-
pergiant providers.

even further back due to the constant, inexorable increase in Ether-
net data rates.14 ‘Line-rate’ has increased from its initial 10Mbit/s
to 1Gbit/s (Frazier, 1998), to 100Gbit/s (D’Ambrosia, 2010), with on-
going work to standardise 400Gbit/s links. When we consider that
Ethernet frame sizes have in the same period expanded on some de-
ployments from 1560 B to 9000 B ‘jumbo’ frames, it is plainly visible
that per-packet processing deadlines simply cannot be met by com-
modity hosts on smaller packets.

• The unforeseen capabilities, reach and business needs of hypergiant
network operators such as Google and Meta, pushing the boundaries
of scalability (Gigis et al., 2021), have also played a key role. Cru-
cially, their business needs include not only the administration of
such large networks but also rely on accelerating cloud computework-
loads, large-scale ML model training and inference, and distributed
computation within their datacentre networks. As we’ll cover in sec-
tion 2.3, in-network compute allows specific optimisations for these
tasks: for instance gradient aggregation in-network, or CCAs man-
aged co-operatively by the routing infrastructure. In single-owner
environments such as these, all aspects of distributed computation
can be controlled and optimised, so such hyper-converged infrastruc-
ture is not only possible but necessary from an economic standpoint—
particularly when in-network compute becomes the only available
road to greater performance. While such companies have the cap-
ability and precedent to develop their own hardware—e.g., network-
connected accelerators likeMicrosoftBrainWave (Fowers et al., 2018)—
these organisations already had an abundance of engineers familiar
with SDN who were poised to make great use of the joint flexibility
and performance offered by PDPs.

Alternatively, wemight argue that it is the control plane innovations of SDN
that made this possible in the first place; beforehand, the design schism
of capsules versus programmable switches was indeed an open question
(onemight say between ‘pragmatic’ and ‘interesting’ approaches to the task).
The field’s re-evolution of programmable switches (and now NICs) offers a
healthy does of pragmatism, ensuring that today’s model is performant—but
it is almost entirely focussed on allowing runtime reconfigurable specificity
over which packets are fed to a pre-set menu of dataplane programs, as
opposed to totally arbitrary packet-level programs.

Yet the model of in-network compute we have converged on remains rad-
ically different from early estimates, even though it may feel like the com-
munity is simply retreading the concept of ‘programmable switches’. Con-
sider the motivation behind SmartPackets:

There are places, however, where Moore’s Law is winning. One
place is network management and monitoring. The average
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device is not generating, processing, or receiving drastically
more network management traffic than it was a year or two
ago. We can hope, therefore, that there is more per-device pro-
cessing power available for network management than there
was in the past.

(Schwartz et al., 2000, p. 68)

At that time too, Moore’s lawwas insufficient to allow per-packet processing
at cutting-edge Ethernet speeds (before its falloff really came to pass). As
such, the only time that full, general-purpose compute could be deployed
in this context was when the infrastructure had already aggregated or re-
duced the data frequency in some way. The authors here make two key,
and arguably fatal, assumptions. The first hinges on a perceived status quo:
that management and telemetry data would andmust remain low-frequency
(e.g., flow-level, link-level, or sampled measurements). Section 2.3 shows
that for many applications this cannot be the case, as per-packet processing
and telemetry are essential in accelerating distinct use cases and diagnosing
insidious network faults and behaviours such as microbursts. The second is
that the compute model itself should be equivalent to host machines, able
to express any packet processing programs an engineer might dream of.
We see this in other programmable switch proposals of the era (Wolf &
Turner, 2001), but time has shown that NPU-like SmartNICs of today can
only achieve this for one or two ports—let alone the full fanout of a rack-
mounted switch. The first key difference lies in how, at scale, we must
make use of advanced (though highly programmable) ASICs rather than full-
fledged CPUs. While the design of SmartNICs allows us to dispel the first
assumption and enables exciting new use cases, in the switch form factor
we have come to accept constrained, yet still capable, programmability to
meet line-rate processing. The other key difference between the modern
PDP ecosystem and active networks is that the scope of deployment has
narrowed considerably. While early proponents dreamed of a fully particip-
ative network, inclusive of end-hosts’ in-network programs, PDP devices
must be programmed ahead-of-time and managed by an attached control-
ler machine—both for performance and for management of the associated
control-plane machinery such as MAT structure. In turn, deployment of in-
network compute has become far more insular, and effectively bound to the
AS level.

2.2.4 Frontiers in programmable networks

Commercial developments along the same lines as this modern PDP hard-
ware are proceeding apace as network bandwidth demands grow larger. In-
tel’s Tofino 2 (Intel, 2022) represents the latest product in the lineage of RMT
hardware, offering 12.8 Tbit/s with support for 400Gbit/s Ethernet. Nokia’s
FP5 (Nokia, 2021) similarly promises full programmability for high-density
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switching and routing at 800Gbit/s Ethernet, while Intel’s infrastructure pro-
cessing units (Intel, 2021b) present a combined FPGA- and Xeon-based series
of SmartNICs for accelerating datacentre applications. However, there is
still concerted research effort in further developing the tooling used to pro-
gram these devices and in how future hardware designs might evolve to
incorporate new models of packet processing.

Language design At present, P4 and the PSA are restrictive in the sense
that the only events which can drive user-provided code are packet arrivals
and departures. Event-driven languages have been suggested (Ibanez, An-
tichi et al., 2019), built on the need for timer, link state, and queue state
events to enable useful applications. Workarounds in P4 exist to emulate
these capabilities, such as queue size estimation and costly packet recircu-
lations, but these inflate the amount of state needed by applications or in-
cur their own runtime penalities. The authors explicitly incorporate these
events into the pipeline model and modify the P4 language to support their
processing by additional logical pipelines; however, this demands hardware
support in non-NetFPGA environments. Lucid (Sonchack et al., 2021) builds
a new, high-level language which expresses many of these capabilities by
compiling down to the P4-PSA architecture. In particular, it allows for event
handlers to be triggered between devices while enabling more flexible con-
trol and modification of shared datastructures behind reliability measures
like fast reroute.

The P4 language is currently incompatible with heterogeneous hardware to
some extent; written dataplane programs are typically tied to a particular
switch model, for instance V1Model, PSA, NetFPGA SUME, or the Tofino
Native Architecture. Network architects typically procure hardware from
several manufacturers to prevent vendor lock-in, but the P4 model for each
device has its own metadata types, hardware constraints, and quirks which
developers must be aware of. While architectures such as the PSA are more
general and should, in principle, support several target switches, it is often
preferable to use a switch’s own architecture for performance or optimisa-
tion reasons. As a result it is currently tedious to write and maintain a uni-
fied dataplane that is provably uniform across different packet processing
devices. 𝜇P4 (Soni et al., 2020) extends the P4 compiler to decompose parser
and action code into independent subprograms which may be composed to-
gether in a more simple manner by programmers. This simplifies porting
behaviours between different switch models—particularly in separating out
(and integrating) complex interactions and dependencies between parser,
deparser and action code stages. Lyra (Gao et al., 2020) is a language for
running switch programs e.g., P4 and Broadcom’s NPL (NPL, 2019), across
heterogeneous switch hardware, while also handling placement constraints.
Lyra expresses the entire network dataplane using the ‘one big switch’ ab-
straction, and compiles from its own higher-level language to an Interme-
diate Representation (IR) and then to P4 or NPL. Compilation is combined
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with topology information about the target network, as well as placement
constraints, to generate an optimal embedding in the network using a Satis-
fiability Modulo Theories (SMT) solver.

As is the case when programming host machines, verifying that a dataplane
program behaves correctly—both within a single switch and the wider data-
plane with regards to code and MAT contents—presents its own set of chal-
lenges. In particular, fully programmable dataplanes enable new classes
of bugs such as header malformations which existing network verification
tools are not designed to handle. This is complicated further still by the fact
that a P4 program’s operation is determined also by the control plane and
the contents of its MATs. P4-NoD (McKeown et al., 2016) is an earlier solu-
tion to the problem, translating invariants into Datalog for verification by
older tooling while modelling correctly emitted packets via pairwise ‘packet
acceptance’ constraints between switches. p4v (J. Liu et al., 2018) combines
guarantees about the bounds of control plane values with expected output
invariants to detect counter-example packets using an SMT solver. bf4 (Du-
mitrescu et al., 2020) endeavours to make the annotation task considerably
easier for programmers, again relying on SMT solvers to also produce con-
trol plane rule filters and candidate bug fixes. Aquila (Tian et al., 2021)
achieves a similar class of SMT-solver based verification, using a new lan-
guage which makes it easier to express dataplane invariants across one or
more switches. Aquila further innovates by using SMT counterexamples to
localise likely locations and fixes for bugs, as well as developing numerous
domain-specific optimisations to generated logical formulae.

Hardware design While the pipelined model of the PSA is undeniably ef-
fective, it can be restrictive for many classes of dataplane program; for in-
stance cases where processing is based on more than raw packet events, or
where more complex dataflow is required between functions. PANIC (Steph-
ens et al., 2018) offers one solution by placing a routing fabric between dis-
tinct packet and data processing elements in a SmartNIC. These compute
elements (mixed RMTs, FPGA blocks and accelerators) are connected in a
tiled architecture, each containing a router to direct packets to their inten-
ded internal destination. Such a designwould enable general, asynchronous,
and novel compute in SmartNICs and switches, for instance offering con-
sistent and easy to use communication between workers versus hard-coded
Microengine (ME) relationships or ordering dependencies between subpro-
grams across pipelines.

In multitenant environments such as data centres or cloud compute pro-
viders, clients may wish to take advantage of PDP hardware if it is present—
between pairs of virtual servers, for instance. Recalling the single pipeline
design of the PSA, it’s clear that this is a difficult resource sharing problem
between MATs, pipeline width and stages, and per-packet metadata storage.
Moreover, ensuring that applications cannot interfere with one another’s



34 Chapter 2. Programmable Computer Networks

performance guarantees, state, or the forwarding behaviour of all packets is
non-trivial (i.e., a malicious table might force infinite packet recirculation)—
particularly when tables or logic might be reused between user pipelines
to save such resources. Alternative architectures have been presented to
make this task simpler. The above PANIC has been revised and recast as
a solution to this multitenancy problem (Lin et al., 2020), losing much of
the flexibility of its initial iteration to accelerate this use case. (Multiten-
ant) PANIC now uses a single ingress RMT pipeline to tag packets with
all hops of their intended offload chain, while compute units (ASICs and
RISC-V CPUs) pass packets between one another using an all-to-all direct
crossbar. Higher-level rate limits are controlled by a programmable Push-
In First-Out (PIFO) scheduler (Sivaraman, Subramanian et al., 2016) to en-
force QoS around shared offload blocks. However, relying on only the in-
gress RMT to determine such routes leads to potentially inflexible packet
processing chains. MTPSA (Stoyanov & Zilberman, 2020) instead extends
the PSA to place client code into a set of inner ‘user’ pipelines between
the egress parser and MATs. Each runs its own code, and applies Unix’s
read-write-execute privilege model to resources, fields, tables and externs
to limit per-program access capabilities. The standard ingress and egress
pipelines are designated as ‘super-users’, who determine the user pipeline
to execute and are responsible for higher-level forwarding. This approach
is rather coarse-grained, and prohibits reuse of tables (increasing per-user
resource costs). In addition, restricting pipeline placement to egress-only
limits program expressibility—operations such as changing the output port
are illegal for user code.

While P4 registers enable useful stateful programming, concurrent access
semantics and pipeline ordering restrictions can make some applications
difficult to express. Equally, their implementation in any platform relies on
platform-specific externs according to the PSA, and as such their semantics
and correct operation will vary on a target by target basis. Architectures
such as Banzai (Sivaraman, Cheung et al., 2016) and its accompanying C-
like language Domino compile to MATs internally from restricted packet
transactions. They differ from RMT by having each action unit (or atom)
additionally contain a memory unit for shared state, which only it may ac-
cess (rather than the global, shared registers of P4). Atoms contain a variety
of Arithmetic Logic Unit (ALU) blocks to enable 1-cycle updates and reads
on branches as required for safe concurrent state processing. Domino’s re-
strictions are close to those of eBPF programs, with the extra limitation that
only one entry may be accessed per array; the compiler is responsible for
building and allocating MATs and concurrently sequencing all transactions.
This explicit focus on 1–2 cycle logic blocks allows Banzai to guarantee
line-rate execution. FlowBlaze (Pontarelli et al., 2019) targets instead per-
flow state for L2–L4 traffic, mixing MAT blocks with custom extended FSM
units. These extended FSMs store variables, can read and modify global re-
gisters, and use MATs to look up simple state transition functions based on
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fields of all accessible state. States are stored on a per-flow basis, allocated
from a hardware-backed hash table. While MATs and FSM blocks may be
interposed freely to express more varied programs, true flexibility is only
possible at present when these blocks may be easily replaced (i.e., in an
FPGA environment). This flexibility has a sharp downside; the variable and
state model forces pipeline stalls to clear up hazards around concurrent FSM
state accesses, leading to packet drops and sub-line-rate packet processing
for some dataplane functions.

AlthoughML can bemade feasible in PDP hardware as I show in section 2.4.4,
achieving more complex or higher-precision inference at line rate can only
be enabled by dedicated architectural support. Taurus (Swamy et al., 2020;
2022) is a proposal to add compute and memory units to the PSA as part of a
map-reduce block specifically designed to optimise per-packetML inference.
The proposal has the ingress RMT pipeline now perform feature extraction
from packet header data among its standard duties. In particular, it demon-
strates that efficient line-rate inference can work using a Coarse-Grained
Reconfigurable Array (CGRA) of map-reduce units between the ingress and
egress pipelines—implementing Neural Networks (NNs), Long Short-Term
Memory (LSTM) networks, or Support Vector Machines (SVMs) which pro-
cess every packet header vector. This CGRA implements a large grid of
replicated fixed-point compute and memory units, allowing higher through-
put by what the authors describe as ‘spatial Single Instruction Multiple Data
(SIMD)’. This achieves line-rate throughput while reducing latencies from
the 𝒪 (ms) CPU and GPU inference to 𝒪 (102 ns), dependent on the target
application. In turn, the outputs of any classifiers in this block become avail-
able to later pipeline stages, which are able to act upon packets accordingly.
Training ML models online using Taurus requires that input packets are
sampled alongside local signals such as per-flow QoS metrics to be direc-
ted towards a cooperating host machine in the control plane, and cannot be
performed unassisted (i.e., purely on-device).

Access to the host programming stack and its full feature set remains an at-
tractive prospect, even subject to the costs discussed throughout section 2.3.
NIC-CPU co-designs present a more exotic solution to the latter problem,
deeply integrating these two elements together in stark contrast to the typ-
ical ‘peripheral’ view of the NIC. Primarily motivated by optimising around
the growing prevalence of µs-level Remote Procedure Calls (RPCs) in data
centres, NeBuLa (Sutherland et al., 2020) eliminates the PCI Express (PCIe)
interconnect between the NIC and CPU, placing received packets directly
into the L1 cache of a target CPU core. This relies mainly upon exclusively
using a connectionless RPC transport which enforces fail-fast behaviour for
requests which will miss their deadline, allowing shared buffers for all con-
nections to be shrunk to fit into L3 cache. The integration of NIC-to-core
steering with the L3 cache then allows correct routing to the relevant L1
cache slot for the target CPU core. Base packet forwarding times are thus
reduced below 100 ns. nanoPU (Ibanez et al., 2021) takes this concept fur-
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15 These classes of service
tend to have enough geo-
graphical replication that the
network function and the
target server are reasonably
close to one another, for
instance in proximity to a
shared IXP. As such, users’
paths to both nodes are likely
to be similar, the last few
hops excepted.

ther to serve packets directly into the register file of a target core using
a thread-safe interface, reducing packet handover times to a minimal 69 ns
Round-Trip Time (RTT) (17 ns excluding MAC). To enable this, custom trans-
port protocol logic is implemented in hardware, and packets are classified
and further modified at line rate with the aid of PSA ingress and egress
pipelines.

While the P4 PSA is a compilation target supported on many SmartNICs,
in many ways it is a suboptimal model as it ignores the constraints and
strengths of NIC hardware compared to RMT switches. The Portable NIC
Architecture (The P4 Language Consortium, 2021), which is in the process
of being codified, offers first-class support for such devices, using instead a
single pipeline aided by externs for host↔NIC processing. This is expected
to feature a message processing block for programmable segmentation and
coalescing etc., as expected by host OSes and their drivers. Most notably,
this includes device-local updates and additions to table state, packet mir-
roring, and table row expiry events. To date, device-local updates have been
implemented as part of T4P4S to explore some of the design-space around
concurrent table access and modifications (Simon et al., 2021). However,
this capability is not guaranteed for all similar devices. Netronome NFP
NIC tables are reliant on the optimised DCFL (Taylor & Turner, 2005) data
format, potentially still limiting the capability for rule installation to control
plane devices.

2.3 Offloading and in-network compute

As we’ve explored in sections 2.1 and 2.2, modern networks now have a
large variety of tools to enable traffic and packet processing, including hosts,
programmable switches, SmartNIC devices, andmiddleboxes—all in tandem
with control plane programmability. This diverse set of devices also means
that market silicon now offers a wide variety in performance characterist-
ics such as latency and throughput, connectivity, price points, and degrees
of programmability. Accordingly, network architects must also consider
how best to integrate NFs backed by these capabilities into their networks.
Consider fig. 2.2: to minimise extra latency costs imposed on carried traffic
as well as control plane complexity, we want to minimise the amount of
traffic steering required. In the worst case, traffic may need to be routed
to another organisation to make use of high-volume services like DDoS
traffic scrubbing, CDNs, or PDP capabilities exposed by cloud compute15

(fig. 2.2a). Steering within ASes as in fig. 2.2b is a necessity to enable VNF
chaining between host machines in a way which is reliably reconfigurable,
but this naturally increases routing and processing latency as well as band-
width demands in the AS in question. The only way to eliminate steering
costs completely is to place dataplane programs on-path (fig. 2.2c)—but this
has key drawbacks. If we place commodity hosts in-line like this, then they
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AS 1

AS 2

AS 3

Shortest path Taken path

(a) Off-path.

AS 1

AS 2

AS 3

(b) On-AS-path (steering).

(c) On-path (direct).

Figure 2.2: To introduce packet processing to the network, engineers must
make a conscious decision about where such processing may be installed,
and if needed how traffic can be steered there—this leads to spectrum of
how on-path processing may be. The main sizes and types of redirections
are shown here: (a) having to redirect to another network for packet pro-
cessing, (b) internally rerouting and steering packets to reach one or more
processing machines (e.g., in VNF scenarios), and (c) placing processing dir-
ectly in-path. Generally speaking, smaller path deviations have a smaller
latency impact. Paths and AS relationships here are purely for demonstra-
tion, and may be longer in practice (similarly, case (b) may occur entirely
within a single data centre AS). Appliances performing packet processing
are coloured in orange-red.

will be unable to meet line-rate demands in faster networks; we have also
given up the flexible reconfiguration and horizontal scalability that steering
bought us. PDP innovations like programmable ASIC-backed switches and
SmartNICs are the best tools for performing processing here, but not every
application can be run in these locations due to the limits of their respective
compute models.

These new, specialised devices are a double-edged sword—making efficient
use of all network resources becomes non-trivial due to device heterogen-
eity in architecture and capabilities. Ideally, we want to maximise the num-
ber of packets which are served by on-path, in-network functions such as in
fig. 2.2c. Even when using consistent programming models like P4, using all
of a device’s capabilities is difficult, requiring hardware-specific expertise,
experience, and microarchitectural knowledge. At the same time, organisa-
tions would prefer to accelerate the code they already have rather than re-
architect solutions from the ground up. Can we then accelerate individual
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parts of a packet processing stack?

Offloading is the process of moving part or all of a packet processing func-
tion elsewhere to improve overall performance—reducing latency or increas-
ing throughput—typically by taking advantage of novel heterogeneous hard-
ware. Originally, this referred to simpler transport-level accelerations that
NICs could perform in hardware which would free up CPU cycles on a host
machine, such as checksum offloads, large send & receive offloads to split or
coalesce larger than Maximum Transmission Unit (MTU)-size packets, and
receive-side scaling. The idea is that the unique capabilities of existing SDN
switches and PDP hardware can be taken advantage of to optimise a tar-
get dataplane, enabling a very generic and useful kind of acceleration. This
extends also to host machines, which have no shortage of technologies for
improving packet processing by shifting user code into the network stack or
skipping the kernel entirely. Such hosts may even use attached SmartNICs
to accelerate applications or transport logic.

For argument’s sake suppose that we want to process packets using a fire-
wall, followed by a primitive statistical or ML model, and followed again
by a Deep Packet Inspection (DPI) block whenever the second stage emits
a warning. Naturally, the simplest deployment is to have all three func-
tions installed on host machines, but this is also the most wasteful. While
I’ll introduce specific examples later, the only function here which would
currently require a host machine would be the final DPI block; even then,
this is only required by a small subset of packets which trip an earlier-stage
alarm. As such, routing all packets through a VNF chain imposes steering
and the higher latency costs of host-based execution upon all packets, to
say nothing of the reduced throughput per box. A more optimal solution
is to install the firewall rules into the TCAM-backed MATs of commodity
switches, which can perform these checks at line-rate, and to offload the
statistical logic into similarly on-path programmable switches or NICs at a
lower arithmetic precision. In this case we have a hardware-accelerated fast
path without any unneeded steering, while only packets which need to fall
back to a more capable or accurate computation environment take the (less
likely) slow path.

The key problem is that automatically offloading arbitrary functions is an
open research challenge. Different devices expose different programming
models and languages, and have unique capabilities and limitations; addi-
tional or missing FUs, code store size limits, bespoke threading models, and
other resources. PDP devices have additional constraints on reconfigura-
tion: firmware installation can take from seconds to minutes, limiting a
chain’s pliability as nodes cease to function for extended periods of time
without ample provisioning to handle transition states. Individual func-
tions are also tricky to interconnect (i.e., passing variable state between NF
stages), to compute the ideal layout of in the network, and to provision in
even single tenant scenarios.
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16 While host offloading
frameworks have come a
long way, there are data
transfer costs which cannot
be elided which we’ll discuss
in the sequel.

In-network compute is a concept connected to offloading, exploring novel
applications which can be enabled or made scalable entirely through PDP
hardware. Rather than moving subprograms and arbitrary logical snippets
down the stack, in-network compute seeks to move dedicated, complex,
or involved applications onto PDP hardware, asking how to take advant-
age of intrinsic capabilities of dataplane devices. Such research demands
more careful exploration in algorithms and data formats, pushing the lim-
its of what programs may be expressed in restricted environments such as
P4. What makes this an exciting area of study is that in-network applic-
ations are often defined by a tangled net of benefits and costs. Suppose in
fig. 2.2c the two endpoint machines first check or update state using another
service (e.g., a key-value store) before communicating with one another.
By moving this service completely into the PDP infrastructure, entire RTTs
worth of communication delay can be eliminated. In data centre networks,
where RTTs are already 𝒪 (µs), simply placing a host in-line would undo
most of this latency reduction16 while being unable to meet rack-scale fan-
out. This becomes key when dealing with RPC workloads common to such
data centres, where completions and RTTs are on an 𝒪 (µs) timescale them-
selves (Barroso et al., 2017; Kalia et al., 2019; Sutherland et al., 2020). Fur-
ther example services may also aggregate data frommany sources to allow a
single host to process it, or apply per-packet ML inference at line rate; when
end-hosts and the network fabric are all jointly owned, there is great scope
for tighter network-application integration and what it might enable. Not-
ably, handcrafted in-network services such as ML inference might replace
entire blocks in an NF chain, better supporting VNF offloading by making
clever use of the underlying hardware. The costs incurred by such services
are also interesting. In-network ML must sacrifice accuracy—the lack of
Floating-Point Units (FPUs) in network hardware forces implementers to em-
ploy fixed-point arithmetic or other data formats. Not all programs may be
moved down to PDP hardware unaltered.

We’ll cover here technologies in use for host offloading, such as eXpress
Data Path (XDP), as well as the rationale and costs of host processing (sec-
tion 2.3.1). Through section 2.3.2, I’ll cover recent works making use of host
offloading techniques and PDP hardware to provide automatic acceleration
and for dataplane programs. This expands on the raw tooling introduced
throughout section 2.2 with a higher level of abstraction, and allows us to
better understand how we can push general program logic on-path (as part
of a full data and telemetry processing pipeline). It provides us also with
some insight into the limitations of bespoke designs and automatic offload-
ing. In-network compute’s use cases will be left until the sequel (section 2.4).

2.3.1 Host offloading technologies

Commodity host machines are designed in such a way that packet pro-
cessing often incurs higher latency than using an ASIC positioned at the
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Figure 2.3: A simplified view of the physical packet path on host machines,
shown in blue. Moving packets between the NIC and CPU is more involved
than simple steering, as packets must be moved across the PCIe bus and
DMA’d into host memory. The host CPU is made aware of packet arrivals
by either Interrupt Requests (IRQs) or polling ring buffers in memory which
the NIC writes into. This introduces additional latency, even when the net-
working stack supports direct insertion into the CPU cache. Note that this
figure leaves aside Non-Uniform Memory Access (NUMA) constraints and
costs arising from having several CPUs.

17 The conventional net-
work stack does not poll
for packets. While this
would reduce any additional
delays associated with the
interrupt model, running a
device driver in a busy loop
is not generally considered
feasible or acceptable. This
model does drive specialist
frameworks like DPDK,
which we’ll cover, but this
requires care and significant
changes in userland code.

same point in the network. Consider fig. 2.3, which shows the physical in-
terconnect between a NIC and CPU. Network connectivity is a peripheral
function, and so NICs are connected over the PCIe bus. To be processed by
host machines, the NICmust move packet data across the PCIe bus byDirect
Memory Access (DMA) into Random Access Memory (RAM), where the host
CPU(s) can make use of this data—this may be accelerated by copying the
data also into L3 cache in the same step, via functionality like Intel DDIO (In-
tel, 2017). While PCIe offers extraordinary bandwidth (63.015GB/s in PCIe
5.0), moving data across the bus adds 𝒪 (µs) of latency. Quoting figures
from Neugebauer et al. (2018), 64–1500 B packets spend 0.8–1.8 µs solely in
PCIe, comprising 90.6–77.2 % of the total one-way delay (0.883–2.331 µs)—
dwarfing the latency contribution of the NIC. These physical costs cannot
be removed with standard NICs: the host CPU must have the packet body
entirely resident in its own memory to act upon it.

Most of the impact on traffic processing originates also from logical costs
due to the OS’s device and network stack management. Figure 2.4 lays out
some of these stages in the Linux environment. Primarily, the OS kernel is
notified that packet DMAs have completed via IRQs, at which point a ker-
nel thread is awoken and the device driver is called to transfer the packet
contents into a Socket Buffer (SKB) usable by the stack.17 Awaking a thread
does not guarantee that it will be instantly ready to serve the packet, adding
latency, while readying packet SKBs adds additional per-packet overheads
which harm receive-side latency and throughput. The Linux network stack
itself must then inspect SKBs to handle decapsulation, transport logic such
as TCP andCCAmanagement, and connection handling—among other func-
tions related in more much detail by existing work (Cai et al., 2021). Finally,
the packet is served over a socket to a (possibly sleeping) userland thread,
who may require a context switch before the received data may be finally
used—again, another source of processing latency.

Interestingly, these additional hardware and software costs are analogous to
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Figure 2.4: The logical packet processing stack on host machines, and how
the DPDK and XDP frameworks interface with it and user code. Rounded,
filled boxes represent user code. Offload frameworks are useful because
they either allow OS kernel code to be bypassed altogether (DPDK), or for
packet modification and transmission to be pushed further down the stack
(XDP). Offloaded eBPF user code may typically pass packets to the network
stack after some amount of processing, send packets directly back to the NIC
for transmission, or pass packets to user code using a zero-copy mechanism
such as AF_XDP. Crucially, all these mechanisms excise various amounts of
processing or imprecise waiting for interrupts, reducing latencies and in-
creasing packet processing throughput. More details on the logical portion
of the stack are presented by Cai et al. (2021).

route-level steering on a smaller scale. Amore specialised packet processing
stack might be one way to remove many of the software costs, but such a
clean-slate propositionwould lock packet processing programs out of access
to software reliant on typical OS functionality. Host offloading frameworks
aim instead to reduce this steering as far as possible with support from the
OS or hardware; either by eliminating much of the logical packet processing
invoked by the OS kernel, or moving user code to an earlier point in the
stack. Returning to fig. 2.4, we now focus on the user-programmable blocks.
In the best case, SmartNIC hardware allows user code to be moved onto the
NIC completely, removing PCIe bus transfer latency as packet processing
no longer needs to touch the CPU. Of course SmartNICs are typically less
capable than hosts (in clock speeds and included FUs), and for that reason
we’ll briefly discuss kernel bypass methods such as DPDK and offloads en-
abled by eBPF. As before, offloaded user code may be some or all of a larger
program, potentially divided into fast and slow paths according to whether
host compute is needed.

Early optimised network stacks Although less relevant in today’s landscape,
we’ll discuss here some older frameworks offering varying degrees of net-
work stack bypass for completeness. PF_RING (Deri, 2004) was motivated by
changes in the kernel to prevent IRQ livelock at high speeds, which helped
but were insufficient to achieve line rate processing at the receiver. It cre-
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ated a kernel-user ring buffer per socket, where received packets are copied
into all ring buffers with remaining space allocated to the NIC, bypassing
the network stack. Netmap (Rizzo, 2012) made use of shared kernel and user
memory over ring buffers to place userland code between the NIC driver and
the host networking stack for a given interface. I.e., a packet bound from the
NIC to the network stack would traverse kernel→user→kernel. It offered
specific innovations in copy elimination, batching of syscalls, and effective
preallocation of packet buffers and metadata versus SKB-based packet buf-
fer management. Specifically, netmap’s rings contain memory descriptors
which point into a shared buffer, as compared with PF_RING’s explicit byte
buffers (which must be copied into).

Kernel bypass In constrast to the above, Intel’s Data Plane Development
Kit (DPDK) (DPDK Project, 2022; The Linux Foundation, 2020) bypasses the
kernel entirely, by running NIC drivers in userland. NICs are run via poll-
mode drivers in DPDK’s environment abstraction layer, which manages core
mappings to receive and transmit queues, memory allocation and device op-
eration. User programs interface with the abstraction layer to receive pack-
ets using a poll-only model, which results of course in consistently high
(or maxed out) CPU utilisation. In exchange for this trade-off, programs
designed to receive and process packets from DPDK entirely bypass the ker-
nel, greatly reducing per-packet overhead. Since packets must be received
from DPDK’s abstraction layer, user programs must be rewritten to account
for the poll-based semantic model and vastly different buffer lifetime se-
mantics versus the traditional stack—e.g., correct handling and disposing of
ring buffer descriptors. This can be worked around to some extent by effi-
cient user-space library kernel OS implementations of the traditional Linux
networking stack (Thalheim et al., 2021).

eBPF and XDP The Extended Berkeley Packet Filter (eBPF) (Fleming, 2017)
is a register-based RISC VM and assembly language. Owing to its simple
and easily-implemented design, eBPF is used today for moving packet pro-
grams early into the kernel, instrumenting standard kernel functions using
tracepoints, and offloading. eBPF is derived from the earlier BSD Packet Fil-
ter (McCanne & Jacobson, 1993), which was a two-register VM designed to
allow user-written programs to be safely executed at the kernel level—in this
case, to prevent unnecessary packet copies for unwanted traffic or packet
contents in monitoring applications like tcpdump. ‘Arbitrary, sandboxed
user code in the kernel’ was certainly an idea with potential, and in light
of its wider uptake eBPF was modified to become more capable and closer
in architecture to modern CPUs: for instance ten 64 bit registers, atomic
instructions, maps, and function call opcodes to make use of functions ex-
posed by the kernel.

Today the VM abstraction enables fast and safe execution of such programs
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18 This can present a bot-
tleneck for the amount of
code offloaded to this stage
in NICs without support for
several receive queues—the
XDP hook must meet strict
timing constraints. 1 Gbit/s
integrated NICs present this
problem, in my experience.

by Just-in-Time (JIT) compilation and verification, and is now well-suited
for offloading to SmartNICs and similar devices. Making this more access-
ible, industry-standard compilers support eBPF as a compile target from
languages such as C and Rust. In the Linux OS kernel, eBPF programs may
be triggered by hooks for instrumenting its operation via kprobes and trace-
points—a program specifies its type with respect to its intended hook, from
which the kernel knows which functions an eBPF program may call (ef-
fectively enforcing an API). Programs are accepted if and only if they are
loop-free, terminate, have bounded size, and simulated bounds checks on
array accesses are well-defined. Larger programs may be constructed by
building chains of tail calls between these smaller eBPF blocks. Userland
and eBPF programs communicate using maps, which are a generic abstrac-
tion around containers such as arrays, hash tables, and longest-prefix match
tables which may be concurrently read and modified by user and kernel
code.

Linux’s eXpress Data Path (XDP) (Høiland-Jørgensen et al., 2018) uses eBPF
to place user-specified code into the packet processing path. Naturally,
these programs undergo the same verification and JIT compilation as tradi-
tional eBPF hook programs, and run one instance per NIC receive queue.18

XDP hook programs have a slightly more privileged role, and are called
before the network stack for each packet arriving on an interface to determ-
ine its ultimate fate. For instance, packets may be modified and immediately
transmitted back on the wire, dropped, passed on to the remainder of the
host networking stack, or redirected to another XDP program or user-land
socket. Consider once more fig. 2.4. If driver support is offered, offloaded
codemay be run before any SKBmanagement or creationwith zeromemory
copies (Native). Otherwise, the program runs after SKB creation (Generic),
but before any part of the remainder of the networking stack. Note that
packets may be served entirely in the XDP hook by making use of maps,
packet modification, and the XDP_TX immediate transmit action, minimising
latencies as far as possible in an IRQ-based system. Moreover, XDP is flex-
ible enough to fit into a wide variety of packet processing stacks.

This is accompanied by the AF_XDP (Corbet, 2018) socket family, which may
circumvent the remainder of the network stack by sending the packet dir-
ectly to user code from an XDP hook. As a notable application, the main
packet path of the OVS software switch has been migrated to AF_XDP due
to its performance and ease of injecting user code into the kernel stack (Tu
et al., 2021). The file descriptors of these sockets are placed in an eBPF map,
enabling faster packet processing by reducing the time delta between the
fast and slow packet paths. User and kernel code share a set of ring buffers,
queues, and a large block of preallocated UMEM to pass packet-sized buffers
between another in response to completions and demand, a mechanism that
is outwardly similar to netmap. While map sizes are fixed at compile time,
sockets have a many-to-one relationship with the actual hook program, en-
abling per-core or per-application service of packets to make better use of
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cache coherence. AF_XDP sockets support both poll- and IRQ-mode at the
user level.

Experimentally demonstrating latency benefits We can illustrate the relat-
ive performance of these frameworks against one another (and the tradi-
tional AF_PACKET) using a simple microbenchmark. We can measure ap-
proximately how much time each ‘cut’ into the kernel saves by connecting
two identical machines together over a single link (using NIC hardwarewith
support for these technologies). One machine generates and timestamps
traffic, while the other performs a MAC swap function using the intended
framework to return packets to the first machine to measure sampled RTTs.

To do so, the two commodity host machines (Src and Swap) were set up
using an Intel Core i7-4790 (4 × 3.6 GHz), 16 GiB RAM (DDR3, 1866MHz),
an Intel X710 40GbE NIC, running Ubuntu 21.10 (5.13.0-30-generic). The
hardware lacks support for direct cache access functions like Intel DDIO,
and clock scaling was disabled for predictable measurement. The machines
were connected over a 40Gbit/s direct copper cable using a single Rx/Tx
queue on Swap. Traffic was generated on Src using Pktgen-DPDK (Wiles,
2021) to generate 64 B packets at 1 Gbit/s, timing 20 000 packets per frame-
work using the included uniform latency sampler. Swap was configured in
four ways, using DPDK’s testpmd application for receipt and forwarding:

DPDK testpmd was set to swap MAC addresses and forward packets, using
the X710 NIC’s i40e poll-mode driver.

Native XDP A custom eBPF program set to swap packet MAC addresses and
always return XDP_TX was manually installed.

AF_XDP testpmd was set only to forward packets, using the XDP poll-mode
driver with a custom eBPF program to swap MAC addresses before
redirecting to the first supplied XDP socket. This driver makes use of
polling support for AF_XDP sockets.

AF_PACKET testpmd was set to swap MAC addresses and forward packets,
using the AF_PACKET poll-mode driver.

eBPF programswerewritten in Rust (version 1.59.0) using an in-development
version of the redbpf framework. Note that in the AF_XDP case the choice
to perform MAC swapping in the XDP hook (rather than userland) is de-
liberate, to measure the time taken to reach user code after service by the
offloaded eBPF program.

Figure 2.5 shows a clear performance hierarchy between the offload and by-
pass frameworks: DPDK has a 11 401 ns lower median RTT than offloaded
eBPF code, which in turn is 2167 ns lower than AF_XDP. Distributions of
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Figure 2.5: A microbenchmark of bypass and offload frameworks’ effects
on packet RTTs. In line with our expectations from the amount of pro-
cessing removed by each framework according to fig. 2.4, DPDK adds the
lowest base latency, followed byNative XDP and AF_XDP. All of these achieve
significantly better forwarding latencies than naïve use of AF_PACKET.

latencies fall within a tight bound of 3–5 µs, with Native XDP’s RTTs ap-
pearing less varied than AF_XDP—it’s difficult to make any conclusive ob-
servations here due to variability in the send and receive stacks of both
machines. The inclusion of AF_PACKET is, to some extent, a strawman. It
does however demonstrate quite succinctly the absolute worst-case beha-
viour of not making use of kernel or stack bypass technologies for generic
packet processing—order-of-magnitude worse latencies and tail behaviour.
It’s worthwhile to remind ourselves that XDP hook code can run along-
side the standard Linux networking stack, benefiting applications without
needing to reconsider and rewrite their socket handling code. Additionally,
by swapping testpmd for a Rust-based receive stack and reading from the
AF_XDP socket (using blocking I/O rather than polling), early measurements
saw a 39–50 µs gap between eBPF and userland code.

2.3.2 Frameworks for automatic offloading

One of the strengths of the above offload technologies is that their architects
are keen to see them achieve widespread adoption, and as such they tend
to be well-integrated with existing technical stacks. For instance, eBPF has
been offered as a codegen target for both the LLVM andGCC compiler suites
since 2015 and 2019 respectively (Edge, 2020; Larabel, 2015), enabling code
written in popular high-level languages like C or Rust to be compiled to
this level. This presents an interesting research challenge: adapting these
developments towards lower-level fragments of such programs intelligently,
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19 SmartNICs do not have
such limitations, so this
is mainly a consideration
for PSA switches or more
general deployment. Such
access is still limited to
externs, and may need to
retrieve packet data from
larger, slower blocks of
RAM.

such that offloading can improve performance with little input from the
programmer. I provide here a brief overview of the higher- and lower-level
tooling developed by the research community to either lower the barrier
for adoption (and easily migrate existing NF solutions), or to improve on
the potential performance benefits.

Host-to-SmartNIC Floem (Phothilimthana et al., 2018) presents a Domain-
Specific Language (DSL) in Python for Click-like dataflow programming to
be offloaded, specifying a processing graph of logical blocks which compiles
to C code for hosts and target NICs. Users specify which parts of the pro-
cessing graph execute on each offload device, making this a useful (but not
necessarily optimal) tool for investigating offloading strategies. Per-packet
metadata is user-specified, but the compiler can infer which state must cross
CPU-to-NIC boundaries with the aid of annotations. Individual blocks (and
the centralised queue handling) require user implementation in C for each
target device class.

iPipe (M. Liu et al., 2019) runs C language programs on SmartNICs and
hosts according to whether traffic is at risk of suffering from SmartNIC re-
source contention. Although iPipe aims to maximise the amount of traffic
served by the SmartNIC, processing is dynamically ‘unoffloaded’ back to the
host machine if the SmartNIC’s monitored load is too great (i.e., if packet
latencies increase). In contrast to Floem, iPipe uses an actor programming
model to allow for more dynamic control flow between program blocks;
this runtime ‘unoffloading’ and migration occurs at actor-level granularity.
iPipe assumes identical language support between the host and offload tar-
get. While C language support is common, identical semantics aren’t guar-
anteed depending on how tailored the target SmartNIC requires code to be.
The design is effective enough to protect underlying traffic while achieving
improved latency and throughput bounds over a similar DPDK dataplane.

Gallium (K. Zhang et al., 2020) converts C++ Click programs to automatic-
ally leverage PDP resources between several segments—pre- and post-host
offloaded P4 segments, sandwiching a single host C++ program. This model
gives greater flexibility than C-based offloading by enabling program divi-
sion between, say, a Tofino switch and its attached controller CPU, how-
ever this imposes greater restrictions on what logic may be offloaded. Gal-
lium uses LLVM IR to determine read-write dependencies between vari-
ables and basic-blocks of the packet processing chain’s control flow graph,
and account for PDP hardware’s capabilities around packet reads (i.e., PDP
datapaths typically can’t access packet bodies past∼300 B).19 By annotating
these blocks based on their ordering requirements and offload capability, as
well as limiting metadata movement to under 100 B, they generate the de-
sired program splits by maximising the IR instructions moved into P4 code—
ideally identifying fast paths if there exist cases where the host part can be
elided. This approach successfully achieved higher throughput and lower
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latency than a purely host-based FastClick solution for trojan detection. The
main drawback is that Gallium requires some annotation to translate Click
primitives intoMATs as well as read or write dependencies on function para-
meters, otherwise the conversion to P4 minimises the additional work per
target device.

eBPF in the network As a solution to OpenFlow’s limited action set, BP-
Fabric (Jouët & Pezaros, 2017) proposed that eBPF programs should be used
in place of explicit MAT definitions. eBPF was seen as well-suited here be-
cause of its simple semantics and restrictions which kept it non-Turing com-
plete; thus, having bounded execution times suitable for real-time packet
processing. Its authors keep most of the OpenFlow machinery intact—the
device-controller relationship specifically—but instead install one eBPF pro-
gram per device, encoding its entire view of the dataplane. MAT layouts and
program needs are included in the ELF metadata of supplied eBPF programs,
and the return value of such a program is the desired output port (including
special OpenFlow-style ports to forward packets to the controller). Such
programs would be compiled to from a constrained, high-level, C-like lan-
guage with the typical eBPF restrictions on loops, with a device-local loader
playing the role of the Linux kernel’s verifier. The proposal contains one
particularly forward-thinking aspect—eBPF maps would be mutable from
within the target device, enabling and accounting for switch- or NIC-local
updates to table state without the aid of a controller. It did not, however,
solve the problem of how SmartNICs or other target devices should actually
implement the required eBPF execution engines.

hXDP (Brunella et al., 2020) designs a dedicated CPU on FPGA hardware
tailored for eBPF program execution on network traffic. Given that hXDP
is tailored towards running unported XDP programs, this coprocessor is
augmented with dedicated support for helper functions and memory for
maps. Their model iteratively runs an expanded eBPF ISA rather than con-
verting programs into a complete pipelined circuit to offer faster redesign
and reinstall times: complete circuit planning takes a long time, while JIT
compiling an eBPF program into their new ISA is relatively quick. Addi-
tionally, their compiler tracks functional dependencies to encode the pro-
gram in VLIW form to maximise hardware parallelism, while also applying
network-specific optimisations. This dedicated design outperforms hosts
and NFP SmartNICs in latency, but typically exhibits worse throughput due
to its slower single core.

eBPF in hosts Preliminary work has been proposed on automatically split-
ting eBPF programs between an XDP part and userland part (Shahinfar et
al., 2021). This approach considers both horizontal splits, i.e., subdividing
code into eBPF chunks using tail-calls, and vertical user↔kernel splits of
code. This appears to have promise for increasing application throughput,
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although optimal splitting points vary based on the use case.

Morpheus (Miano et al., 2022) offers a more sophisticated form of JIT compil-
ation for eBPF and DPDK programs—using lightweight sketch-based meas-
urement to drive profile-guided optimisation and recompilation on a regu-
lar time interval. This produces compiled bytecode tailored to the observed
traffic distribution, twinned with inlining of tables into fast and slow paths
dependent on MAT contents. While most of this optimisation is provided
as-standard when working with profiled LLVM IR, Morpheus provides com-
piler plugins to account for key features such asMAT logic andmatch classes.
eBPF programs use guard mechanisms to fall back to deoptimised program
code as required (MAT or profile changes), while userland code is broken
into smaller optimised chunks that are be atomically updated via a trampo-
line function. Morpheus achieves substantial latency and throughput im-
provements on larger dataplane programs such as Katran (Facebook Incub-
ator, 2020), in spite of the additional overhead of adaptive trace monitoring.

FPGAs and the wider network ClickNP (B. Li et al., 2016) presents an ap-
proach for migrating entire Click processing graphs to NetFPGA devices.
While tools to convert C programs into the required VHDL specifications
exist, the authors find that they lead to suboptimal code in area and Look-up
Table (LUT) usage. As is standard in Click-like approaches, functions are
written as directed graphs of predefined Click-like blocks, in this case each
specifically written in a hardware description language to achieve lower
FPGA resource utilisation.

Metron (Katsikas et al., 2018) builds on OpenBox to break VNF chains into
stateless and stateful logic: stateless processing is offloaded to the network
via the ONOS controller (making use of heterogeneous OpenFlow and P4
hardware), while function chains are dynamically allocated one per core.
Crucially, the performance of these stateful functions is maximised by using
the weakMAT programmability of modern NICs to control core steering dy-
namically (and consistently) according to load and to balance traffic across
replicated functions. Chains are allocated in the network using a combina-
tion of topology and current load information (preferring local processing).

Flightplan (Sultana et al., 2021) splits a P4 program into subchunks, placed
and routed between heterogeneous PDP hardware along a path—FPGAs,
hosts, servers, NPUs, and ASICs—for pipelining (i.e., performance) or re-
dundancy. Flightplan’s compiler breaks its input dataplane’s IR into blocks
according to user annotations in the supplied P4 code. Further user-given
annotations denote manual implementations of specific externs, to enable
device-specific acceleration of key functions such as compression or error
correction. Their disaggregation procedure inserts logic before and after
splits to handle metadata and state passing. These blocks are statically ana-
lysed to extract the data dependencies between sub-functions, which are
then composed into a chain over the routing infrastructure.
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2.4 In-network compute use cases

To make the value of PDPs and in-network compute clearer, I present here
a selection of specific applications that have been improved or enabled out-
right by these new capabilities. These include advances in networkmonitor-
ing and telemetry, application acceleration by in-network services, and how
the network may allow improved or more dynamic transport and routing.
Finally, as it is of particular importance to this thesis and the overall goal
of DDN, we shall examine in close detail ML-related use cases. It must be
said that the works shown here are indicative, rather then exhaustive; bene-
fiting the system designs in chapters 4–6 by demonstrating the new kinds
of network data and state we can use as (on-path) inputs to DDN systems.
Interested readers should also examine dedicated surveys such as that of
Kfoury et al. (2021).

2.4.1 Network monitoring

Traffic monitoring solutions built on non-PDP fabrics can be imprecise or
limited. Routers typically provide sampled data such as sFlow, Netflow, or
IPFIX, alongwith imprecise timing at the µs andms-level (Aitken et al., 2013;
Claise, 2004). While this offers useful insight at the aggregate or per-flow
level, fine temporal or transient dynamics are lost, such as queue states or
per-packet arrival timestamps which might help identify bursty flows or the
culprits of microbursts on the network. Precision is not the sole culprit here,
µs-level per-packet data simply has too much volume in both raw bytes and
packets to meaningfully export beyond the device. PDP fabrics offer here
new ways to gather, aggregate, and process per-packet, -device, and -port
state in-situ.

Sonata (Gupta et al., 2018) splits dataflow queries on packet streams between
PDP hardware and Apache Spark-based collector host machines. These
dataflow queries are described in the usual functional style (maps, filters,
etc.)—Sonata aims to maximise processing and data reduction performed by
the dataplane to ease the burden on stream processing host machines. This
includes ILP-based dynamic query refinement to filter out unneeded pack-
ets as early as possible. Snappy (X. Chen et al., 2018) detects microbursts—
transient spikes in queue occupancy leading to packet loss—by maintaining
sketches to estimate the queue occupancy of long flows. The input data,
packet arrival and departure events, are naturally too numerous to track
externally, numbering in the millions or billions of packets per second at
switch scale. Long flows dominating output port queues are determined as
the root cause of these events, and such heavy-hitter flows may be marked,
dropped, re-routed, or rate-limited as required. Dapper (Ghasemi et al., 2017)
implements in-depth, per-flow analysis of TCP traffic in pure P4. When re-
quired, Dapper follows lightweight measurement of per-flow byte counts
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and timestamping with more in-depth estimation of congestion and receive
window sizes, host reaction times, and latencies to determine whether the
sender, network, or receiver is the true bottleneck (without inspecting state
on either end-host machine).

A particularly noteworthy family of measurement techniques associated
with PDPs is In-band Network Telemetry (INT) (The P4.org Applications
Working Group, 2020). INT allows for network state—including formerly
inaccessible state such as egress queue/buffer occupancies and traversed
paths—to be collected and reported without control plane intervention. To
do so, packets contain header fields marking ‘telemetry instructions’ to be
executed by participating devices along their path. Typically, requested
measurement data is appended to (or written into a dedicated space in)
an INT header attached to the packet, piggybacking onto existing traffic,
thus keeping packet arrival rates fairly constant. INT sinks then strip this
auxiliary data from packets, collect it, and report it to the control plane;
enabling finer-grained measurement of network state in routes as well as
network-assisted CCAs and load balancing schemes. To some extent, this
is a specialisation of tiny packet programs (Jeyakumar et al., 2014), which
aimed to enable the same end goals and applications by taking a somewhat
‘active networking’-like tack—including simple load and push instructions
for switch values inside every packet. Instead, INT focusses on collecting
pre-defined metadata such as node and port IDs, buffer states, and link util-
isations. These fine-grained measurements can be added per-hop, also en-
abling packet paths to be traced without contacting the control plane as
required by NetSight’s postcarding (Handigol et al., 2014). At the same time,
these collected measurements allow operators to build a full-network pic-
ture of per-hop latencies, utilisations, and buffer states. While powerful,
INT is expensive to deploy. Although extra per-packet overhead can be
bounded for some operations, INT’s typical hop-by-hop recording causes a
linear growth in packet sizes according to path length. NetworkMTUs limit
the amount of per-packet state which can be added for larger packets. To
combat these difficulties, PINT (Basat et al., 2020) introduces aggregation
and approximation mechanisms to bound per-query values below a certain
budget of bits. Most notably, per-hop data collection is uniformly randomly
divided over a packet’s path, combined with numerical approximations and
the use of sketches for per-flow state on switches themselves. INT-label (E.
Song et al., 2021) aims to reduce redundant measurements and curtail ad-
verse effects on flows by attaching a labelling interval to every port, which
can be adaptively altered to account for losses. This includes a probabilistic
component such that packets with INT labels are more likely to receive and
carry additional metadata (shielding most packets from the costs of INT).
LightGuardian (Y. Zhao et al., 2021) reduces the impact of exporting per-
flow sketches by dividing them into sketchlets over several packets, to be
reconstructed by INT sink nodes.

PDP hardware also offers a toolkit for the diagnosis and mitigation of more
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specific network problems. By using INT-like switch tracking, Unroller (Ku-
cera et al., 2020) detects persistent routing loops. Unlike INT, Unroller tracks
only the minimum ID seen by a packet, periodically overriding this at geo-
metrically increasing intervals. To detect DDoS attack victims in pure P4,
INDDoS (Ding et al., 2021) uses count-min sketches to estimate the num-
ber of flows inbound for a given server. Jaqen (Z. Liu et al., 2021) offers a
framework for PDP-augmented ISP networks to detect and mitigate many
volumetric, amplification, and semantic DDoS attacks (though not LFAs).
To gather state, it maintains sketches of source/destination Internet Protocol
(IP) addresses and ports alongside counters, as well as useful primitives
like native stateless P4 implementations of SYN cookie functions and ap-
proximate Bloom filter allow- and block-lists. State is polled by the con-
trol plane, which interprets sketches to perform higher-level logic (e.g., ob-
serving thresholds, significant changes) and installs detection and mitiga-
tion functions using a heuristic algorithm to ensure sufficient coverage.

2.4.2 Service acceleration and offloading

Distributed data structures, such as key-value stores, are a foundational part
of many data centre applications for process coordination and concurrency
control. NetChain (Jin et al., 2018) and FLAIR (Takruri et al., 2020) offer P4-
based implementations of distributed key-value stores, routing and serving
requests and updates subject to a chain replication protocol for reliability,
achieving an order-of-magnitude latency improvement for reads and writes.
NetChain in particular uses a mixture of MATs and registers to accelerate
index lookups and store data respectively, though both eliminate steering
costs and host stack costs. As another example, distributed hash tables like
No-hop (Hügerich et al., 2021) see improved lookup times from route caching
enabled by the PDP ecosystem.

Other advances built on PDP infrastructure have made it easier for net-
work administrators to scale their infrastructure up to account for additional
hosts, handling the associated routing, load balancing, and subscription at
lower cost than prior methods. Facebook’s open-source Katran L4 load bal-
ancer (Facebook Incubator, 2020; Shirokov & Dasineni, 2018) makes use of
XDP to co-exist on existing service nodes, offer low-disruption updates, and
presents lower latency than userland solutions. No performance numbers
are shared, though it is reportedly used aggressively in production. Chee-
tah (Barbette et al., 2020) implements consistent load balancing for arbitrary
functions at switch scale on Tofino hardware, where it achieves strong tail
performance guarantees for flows even during active churn. An intriguing
use of PDP hardware that has been presented is how it may allow packet sub-
scriptions (Jepsen et al., 2020)—networks may offer an accelerated, Apache
Kafka-style publish-subscribe architecture. This includes higher-level tool-
ing to synthesise a complex, content-driven dataplane at runtime (including
broadcast, replication and routing).
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There have also been key advances in using PDP hardware for stream pro-
cessing and fusion to accelerate management and monitoring as well as
application-level use-cases—including some realisation of the earlier discus-
sion on protocol boosters. DAIET (Sapio et al., 2017) proposes performing
the aggregate step of partition-aggregate workloads (i.e., MapReduce) by or-
ganising workers and programmable switches into processing trees. Hypo-
lite et al. (2020) investigate how to make good use of (NPU-type) SmartNIC
parallelism to perform DPI and payload matching tasks through DeepMatch.
Bymaking good use of the NFP’s parallelism andmemorymodels, they offer
fast, flow reorder-aware processing by the Aho-Corasick algorithm. Bolt (S.
Wang et al., 2021) then implements Aho-Corasick on Tofino switches using
MATs—however, this requires full recirculations to extract a fixed size byte
slice per pass. To reduce traffic impact on infrastructure while freeing host
resources, ZipLine (Vaucher et al., 2020) uses packet checksum functionality
on Tofino switches to implement transparent traffic compression.

2.4.3 Transports, protocols, and routing

Making better use of networks through TE, more sophisticated CCAs, and
more adaptive routing is a challenging but worthwhile endeavour. PDP
hardware allows us to place more complex decisions and new algorithms at
a lower level, where they can take advantage of the fine-grained or complex
state and measurements that in-network compute gives us access to (sec-
tion 2.4.1). Our ideal aims are that flows would converge to their optimal
fair-share of bandwidth faster (and with greater accuracy), better respond
to congestion and incast events, or more dynamically make use of network
capacity. Moreover, it allows us to consider new schemes for doing so as
networked use cases change or evolve over the years to come. We’ll con-
sider here some ways in which PDP hardware makes the management and
operation of networks faster or more resilient bymeasurement, cooperation,
or novel algorithms.

Multipath networks are commonly used to achieve high bisection band-
width between hosts, but require specialised schemes like Equal-Cost Multi-
Path routing (ECMP) to balance load across their fabric. PDP hardware is
configurable enough to allow the development and deployment of new rout-
ing protocols which are more dynamic, fairer, and uniform; ideally, with
less control plane interaction. HULA routing (Katta et al., 2016) provides
a P4-based solution targeting data centre networks, using periodic broad-
cast probes sent in-band to update every switch’s estimate of its best path
to every other destination. Contra (Hsu et al., 2020) extends this with a
custom policy language to encode constraints and more involved routing
criteria (i.e., to support arbitrary topologies): probes also obey these rules
in the reverse path. Both approaches achieve substantial improvements to
fairness above ECMP, and scale well by tracking only a single cost per des-
tination.
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Active Queue Management (AQM) allows for flow and packet priorities to be
expressed for their egress from a switch, enabling shaping or TE to ensure
optimal QoS or Quality of Experience (QoE)—for instance, prioritising the
packets of short flows (minimising the risk they are dropped by a full buf-
fer) to minimise relative Flow-Completion Times (FCTs). PIFO (Sivaraman,
Subramanian et al., 2016) queues allow for individual packet priorities and
dispatch times to be determined by the ingress pipeline of a PDP switch’s
MATs—offering almost arbitrary programmability—but require this dedic-
ated hardware primitive. PIEO (Shrivastav, 2019) queues extend their ex-
pressiveness further by allowing arbitrary elements to be dequeued, also.
However, the reality is that commodity P4-based switches aren’t yet suitable
for enabling many of the AQM disciplines developed by the research com-
munity. Kunze et al. (2021) find that AQM solutions must be co-designed for
the target environment, for instance pipeline and register access constraints
make it impossible to express some algorithms. Implementation of AQM
schemes like PIE (Pan et al., 2017) is found to require numerous tradeoffs,
with meaningful performance costs in each case.

CCAs play a key role in ensuring that congestion-aware transport protocols
are able to make use of their maximal fair share of bandwidth in the net-
work. Original and state-of-the-art CCAs in use on the wider Internet, such
as TCP BBR (Cardwell et al., 2016), operate on minimal information transfer
between hosts or endpoints, and are often reliant on congestion signals from
the network like packet losses and changes to RTTs. This is a necessity to
minimise the network costs of transferring state, to co-exist with heterogen-
eous CCAs, and to isolate their logic from the network itself to preventwider
ossification. This has significant drawbacks. Advanced, control-theoretic
CCAs like the PCC family of CCAs (Dong et al., 2015; 2018) or Copa (Arun &
Balakrishnan, 2018) are computationally expensive compared to their fore-
bears. Having more, high-quality information also prevents fairness issues
which may arise from needing to rely on carefully tuned responses to oth-
erwise opaque signals from the network, such as BBRv1’s noted unfairness
with other TCP traffic (Ware et al., 2019). Even older SDNs show the value of
high-quality, global information—consider OTCP (Jouët et al., 2016), which
calculates optimal pairwise TCP parameters by using OpenFlow and its
supporting protocols to actively measure static network characteristics like
latencies and link bandwidths. PDP infrastructure can go further still, and
offers new ways to offload CCA logic or to augment it with assistance from
the network. Data centre networks are best placed for this—NDP (Handley
et al., 2017) is a receiver-driven CCAwhere P4 switches truncate packet pay-
loads when buffers are at risk of exhaustion, while senders choose network
routes for fairer load balancing. Header-only packets are prioritised, provid-
ing a dedicated fast path for control packets and effective congestion signals.
HPCC (Y. Li, Miao et al., 2019) instead uses the INT techniques discussed
above to expose path characteristics and loads to a connection’s sender. ACK
messages carry their packet’s INT data; the sender adjusts its target rate per-
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ACK (minor) and per-window (major). As this specifically accelerates remote
DMA, endpoints require FPGA-enabled NICs. To enable offload of arbitrary
CCA logic, Arashloo et al. (2020) present Tonic as a framework for express-
ing the transport logic (what data segments are sent at what times) while
handling connection and buffer management. These may be modified via
small user-programmable blocks containing ALUs with access to per-flow
state. The remainder of their framework handles (de)packetisation, packet
transmission for many waiting flows, and DMA handling.

2.4.4 Machine learning

PDP hardware and in-network compute give us the capabilities to perform
packet and flow classification (inference) at line rate, and to accelerate data
centre-scale training of ML models for both DDN and other domains. As
we’ll examine throughout chapter 3, ML techniquesmake it possible to learn
and act upon complex patterns or relationships in network data to perform
all manner of management and optimisation tasks more effectively. While I
cover specific implications of data formats and training algorithms later (sec-
tions 3.3 and 3.4), the gist is that machine learning inference and training
are generally dependent on floating point data (as training gradients are real-
valued), peripheral accelerators like GPUs or Tensor Processing Units (TPUs),
and are computationally complex. Host machines are, then, in many ways
the best-suited location for ML training and inference at scale, but these
come at the cost of network and PCIe costs to reach the host’s CPU, and
then further data transfer costs over PCIe to the GPU. Inference at the host
thus presents real tradeoffs: either choose throughput by batching queries
and new data for the GPU, or choose consistent (tail) latencies by using the
CPU. This becomes all the more interesting and challenging when we con-
sider the additional classes and finer granularity of measurement data ex-
posed by PDP hardware, such as those discussed earlier in section 2.4.1. Of
course, use case depending, this raw data is produced at volumes and rates
far too high to meaningfully move across the network. Host machines can’t
handle raw packet-per-second demands at this scale, let alone when every
packet must undergo some ML algorithm. Per-packet inference (i.e., for se-
curity, QoS, or TE classification) is thus untenable in this framework. Ideally
we would process this in PDP devices, but this is at odds with their resource-
limited nature—limited ALU capabilities, a definite lack of floating-point
hardware, and small amounts (𝒪 (KiB–MiB)) of high-speed memory. This
leaves us with a difficult dilemma. In-network ML research aims to solve
this (preferably at line-rate) by focussing on the modifications needed to
install inference techniques onto PDP hardware—tailoring algorithms and
data formats to the target device.

Inference IIsy (Xiong & Zilberman, 2019) investigates per-packet infer-
ence using pre-trained classical ML models on programmable switch hard-
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ware, as well as methods for cheaply updating models at runtime through
the control plane. In particular they use custom parsers as a feature extrac-
tion mechanism, and convert parameters and inference logic into MATs to
implement these models using pure P4. This guarantees their compatibility
with the vast majority of PDP devices in deployment. These include mul-
tiple implementations of SVMs, decision trees, Naïve Bayes, and K-means
classifiers, executing but not training on these devices. In particular, they in-
vestigate the best use of tables in these scenarios—per-feature, per-class and
per-cluster—noting that all cases exhibit different impact from quantisation
and processing length (in recirculations).

NNs require more specific considerations due to their variable structure, but
their implementation in PDP hardware is an important topic due to their ubi-
quity in ML and DDN research. Langlet (2019) has shown the viability of
NN inference using 64 bit quantisation on NFP SmartNICs, but this can ob-
serve high (∼500 µs) inference latency on line rate traffic for larger inputs.
This compute model has the main downside, however, of being unsuited to
RMT or PSA switches. Binarised Neural Networks (BNNs) have been shown
to be a promising data format for PDP hardware; not least because they
are computationally efficient, but because they admit ready conversion to
MATs, and are thus suitable for deployment on all P4 devices. BaNaNa SPLIT
shows how these BNNs, installed in NICs, can as a partial offload mechan-
ism (Sanvito et al., 2018); DNN inference is often carried out on the CPU to
remove latencies imposed by GPU batching and transfer, but they show that
the fully-connected layers of such networks can be accelerated further by
NICs subject to some accuracy loss. N2Net (Siracusano & Bifulco, 2018) and
N3IC (Siracusano et al., 2020) examine, collectively, different ways of run-
ning BNNs among SmartNICs, P4 implementations, and FPGAs to achieve
line-rate, in-path, per-packet inference of classes for use by later tables or
packet tagging.

Taurus, examined earlier in section 2.2.4, allows for implementation of the
inference mechanisms above closer to line-rate without needing to substan-
tially alter input and policy data formats. At fabrication time, Taurus may
be configured to use the required fixed-point depth. Other specialised hard-
ware includes BrainWave (Fowers et al., 2018)—an NPU designed solely for
parallelised SIMD NN inference—which reduces batching by 32 × compared
to GPU acceleration. However, inference still requires 𝒪(ms) in represent-
ative use cases (Duarte et al., 2019). Neither, however, allows for on-device
training; Taurus instead sends sampled data to the controller, while similar
provisions could apply to a BrainWave installation.

Training On ML training, most research on how PDP hardware may be
applied falls into the optimisation of distributed ML training via in-network
aggregation. The main use case here involves many nodes in a network ex-
changing gradient vectors to be combined with a shared model—however,
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latency-optimal schemes based on central Parameter Servers (PSes) have
strongly synchronised inbound traffic which causes high, bursty losses and
significant bandwidth consumption near the traffic destination. Aggregat-
ing these gradients is simply vector addition, which any interim node may
perform to reduce the upstream traffic burden. PDP hardware provides a
sound basis for the kinds creative co-design needed to ensure optimal train-
ing behaviour here, making better use of the network and improving fi-
nal training times and performance. At a high-level, iSwitch (Y. Li, Liu
et al., 2019) uses the plasticity of FPGA devices to implement a dedicated
floating-point adder and gradient storage; gradient packets are signalled
to the dataplane using a reserved pool 2 Differentiated Services Code Point
(DSCP) (Baker et al., 1998) value, triggering their aggregation (and eventual
retransmission to the PS). Solutions targeting general PDP switches—e.g.,
ATP (Lao et al., 2021) and SwitchML (Sapio et al., 2021)—instead must rely
on fixed-point data formats to enable this in these environments. Unfortu-
nately, to the best of my knowledge true on-device model training for PDP
ML or RL hasn’t yet been examined beyond the work I present in chapter 5.

2.5 Summary

I have described the history of programmable networks from their initial
forays to-date, including what is now a rich tapestry of software-defined
routing and bespoke programmable devices mixed with heavily-optimised
host machines. We’ve examined how advances in dataplane programmab-
ility enable application performance to be meaningfully improved—lower
latencies and higher throughputs—by taking clever advantage of PDP hard-
ware. In particular, this covers the importance of moving high-performance
services to the right execution environment—offloading. Most crucially, con-
sidering in-network compute from the outset enables a plethora of ways to
meaningfully improve the management of today’s networks.

My concluding thought is that PDP and its use cases present a vibrant, ongo-
ing line of research—particularly when we consider how it can be combined
with DDN. It offers today a source of raw device data which we would have
never been able to feasibly use or export, as well as the necessary tools to
perform complex data analysis at line-rate and switches’ scale. At the same
time it provides ways of helping host machines scale further via aggrega-
tion, and a promising location to perform complex, data-driven logic and
reaction. I am of the opinion, however, that it is still a field in its adoles-
cence. The hardware solutions and designs which have arisen and entered
widespread market adoption (e.g., RMT→Tofino) are impressive, powerful
and capable—but they are the first wave of fully programmable devices at
this scale and this form-factor, and we should expect even more innovation
in hardware and languages as the field evolves. This may well take the form
of incoming heterogeneity, as device manufacturers produce PDP devices



2.5. Summary 57

tailored to different use cases in much the same vein as Taurus. Projects
like BrainWave reiterate that network hypergiants already hold the means
and motivation to do just this.
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1 This affects how we design
such heuristics even on com-
modity hosts—for instance,
kernel-space CCAs (i.e., as
part of the TCP stack) are
unable to use floating point
arithmetic.

2 Alternatively titled self-
driving networks.

Chapter 3

Data-driven Networking

Many aspects of modern networks, such as CCAs, thresholds for differen-
tiating services, and flow classification rely heavily upon hand-tuned heur-
istics. As in section 2.4, there is still vast scope to improve on communica-
tion latency and throughput, or to avoid and work around deleterious traffic
patterns (such as incast communication). As a result, research into CCAs,
network designs, and routing procedures is very much ongoing. Crucially,
as these operations lie at the core of network operation their solutions tend
towards extremely efficient heuristic methods; they must be evaluated per-
packet or react as quickly as possible to state change. Unlike the approaches
empowered by the programmability explored through chapter 2, the norm
is that most deployment environments have no access to such tools, and
thus have reduced scope for co-design ormeasuring network properties that
would make their design simpler. Designing new methods for network op-
timisation then requires deep insight into any problem, its edge cases, and
the hardware & performance characteristics of the target environment.1

Suppose that, as network administrators or protocol designers, we have ac-
cess to a reasonable amount of information about the machines, network
segments or ASes under our control—measurements, observations, and stat-
istics taken at run-time, from simulation, or by modelling. A natural ques-
tion to ask, then, is whether we can use this data to enhance and improve
the operation and use of our network automatically. Thinking further still,
we might wonder whether we can outperform the general (yet useful) heur-
istics which are widely deployed and researched, allowing us to tailor net-
work behaviour according to its environment and traffic patterns. These
questions are the founding principles of Data-Driven Networking (DDN)2, a
recent field of research focussed on the automatic control and optimisation
of network systems, which has sprung forth due to recent advances in ML
and RL (Feamster & Rexford, 2018; Kellerer et al., 2019).

The ideas and goals of automated network control have always existed and
evolved in one form or another, particularly as computational inference and
learning have grownmore powerful. Primarily, these ideas have propagated
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3 There are other intersec-
tions between networked
systems and data-driven
techniques which I omit
here but deserve a cursory
mention: advancements
in Federated Learning (FL)
and distributed ML training,
which show how computer
networks can aid the wider
ML field.

in their early forms via position papers offering a ‘vision of things to come’.
This was first famously formalised as the knowledge plane (Clark et al., 2003),
in contrast to the data and control planes. This proposal captures not only
the above concepts of automation as a means for network control, but also
for collaborative or commercial sharing of information between end-hosts,
transit ASes, and organisations to build up a global picture of the needs of
the network. In truth, over the past 19 years we have moved no closer to
such a unified substrate, though automated inference based on the data we
do have is richly researched. A later attempt to combine this with SDN as
Knowledge-defined networking (Mestres et al., 2016) takes key steps in clari-
fying the field, through concrete problems and promisingML developments,
but effectively curtails the scale of knowledge sharing. DDN itself is named
and defined by Jiang et al. (2017), who again expand the scope for optimisa-
tion beyond network control to include end-points; towards application and
transport layer optimisation for hosts and servers, as well as control of the
underlying fabric.

Starting out with the aim of emphasising and motivating the value of DDN,
I discuss and introduce some of the recent developments and applications
of ML and RL techniques in computer networking (section 3.1), before then
moving onto to explain the ‘building blocks’ underlying these approaches.
Specifically, I introduce relevant function approximations (section 3.2), tech-
niques to learn these representations including RL (section 3.3), and repres-
entations for different target devices (section 3.4).3 Section 3.5 discusses
additional challenges inherent to DDN, while section 3.6 then presents an
overview of the security perspective surrounding current ML and DDN ap-
proaches. Although this context and its challenges are rapidly evolving, an
understanding of security issues is key to offering a complete picture of the
viability of DDN and the care which must be taken in its research. Sadly, full
examination and further development lies beyond the scope of this thesis—it
is, in fact, a thesis-worthy topic in its own right (Papernot, 2018).

3.1 Use cases

To give a clear (if somewhat informal) introduction to what different pro-
cessing techniques can offer, I present a selection of DDN use cases. The
aims of this section are threefold: to offer a rough intuition of the capabilit-
ies of state-of-the-art ML/RL techniques, to present the breadth of optimisa-
tion and control problems in DDN, and to describe the sorts of interaction
model and co-design required to meet performance guarantees. In the case
of RL-based works, I devote extra space towards highlighting the state space
(𝒮 ), action space (𝒜 if discrete, 𝒜ℝ if continuous), and reward source (ℛ).
If live-control approaches are evaluated using network traces instead of a
live environment or suitable simulation, I mark them with a ‘†’—this does
not invalidate those authors’ findings, but should invite a hint of scepticism
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based on the discussions of section 3.5. Mirroring some of the problems
introduced through chapter 2, I present a brief critical survey of solutions
offered by DDN: networkmanagement and optimisation, including classific-
ation and TO; transport- and link-level protocol design, primarily of CCAs;
security and verification; client- and server-side multimedia optimisation;
and resource placement and job scheduling.

The main implication for this thesis is that many network control or optim-
isation problems can generally be cast as Markov Decision Processes (MDPs)
(or otherwise fit into the DDN mould) very effectively. However, there are
decidedly right ways to go about their design, and it is these insights which
this section extracts and collates. Readers anxious to see these design ele-
ments and takeaways common to this broad spectrum of applications might
skip to section 3.1.6. These findings directly feed into design of systems
throughout chapters 4–6 concerning how they interact with network data
in a scalable way, how problems are formulated to account for inference
costs, and how we can use in- or out-of-path compute to its fullest. How-
ever, the critical analysis of theMarl RL DDoSmitigation strategy (as part of
section 3.1.3) is notable for identifying key flaws in its evaluation and design
which directly feed into the motivation and formulation of chapter 4.

3.1.1 Network management

Routing and traffic optimisation As discussed earlier, routing is the task
of moving packets of network data from their source to their destination,
ideally without losing any in transit and as quickly as possible. We can con-
sider this from two perspectives: moving a packet towards the ASwhere the
destination is located using logical boundary information (inter-AS routing),
and moving packets over the physical infrastructure within an AS (intra-AS
routing). As inter-AS routing requires consistent protocols and negotiation
between organisations, intra-AS routing offers more scope for optimisation
and innovation. The usual term for such processes is TO/TE, aiming to min-
imise congestion and increase client QoS (Elwalid et al., 2002).

Valadarsky et al. (2017) show howRL can be used to route traffic bymapping
the last 𝑘 demand matrices (𝒮 ) into a set of edge weights (𝒜ℝ). The calcu-
lated weights are used to compute probabilistic forwarding strategies based
on classical hop-by-hop routing, which then allow predicted congestion to
be computed for the following demand matrix (ℛ). This is striking work be-
cause it presents an environment where RL categorically beats supervised
learning—where predicting a set of actions to take is more effective than
predicting the next state and then computing an optimal assignment—and is
able to outperform the non-ML oblivious routing (Azar et al., 2003) for some
problem models. There are several key takeaways from this work: their
exploratory designs show that system performance and learning rate rely
heavily upon output model size, emphasising the need for a minimal repres-
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4 Even though a smaller
model size is arguably less ex-
pressive, the fact that there
are fewer parameters to learn
can be instrumental in con-
verging to a more effective
solution more quickly.

5 Smaller flows are priorit-
ised, as they are assumed to
be more deadline sensitive or
to suffer higher relative FCTs
in the event of losses.

entation of actions/predictions made;4 policy execution occurs outside the
packet path, and so learns feasibly online; and that usingDDNoutputs as the
input for a well-defined algorithm can offer more interpretability and trust
in an optimised system. A drawback worth discussion is their NN architec-
ture’s input and output dimensions depend on the network under control
(𝑘 ⋅ |𝑉 |2 → |𝐸|), and so learnt policies are not portable even under simple
alterations like runtime switch and link additions. Memory cost, compute
time, and parameter count would equally scale poorly in larger networks.

AuTO (L. Chen et al., 2018) examines several TO problems in greater depth,
explicitly aiming to optimise datacentres of over 10 000 servers via Deep
Reinforcement Learning (DRL). This presents a key problem: inference us-
ing their architecture has a ∼100ms latency, which is rather at odds with
the long-tailed distribution of datacentre traffic—namely, that shorter mice
flows greatly outnumber longer elephant flows (Pan et al., 2003). The main
consequence is that trying to take per-flow actions in such low-RTT envir-
onments causes decisions to either apply late into the flow lifecycle or miss
their target entirely, unless they can be reliably taken in less than a mil-
lisecond. The posed solution uses two agents concurrently, for mice and
elephant flows respectively. sRLA produces a set of flow size thresholds for
simple queue priority assignment for mice flows5 (𝒜ℝ), using the 5-tuple,
FCT, and size of each completed flow (𝒮 ) to optimise the ratio of aver-
age per-packet queue times (ℛ). Flows in all but the last priority class are
routed using ECMP. lRLA then makes bespoke decisions for the remaining
elephant flows which—with high probability—will continue long enough to
be meaningfully benefited. For all live and completed flows, it uses the 5-
tuple with the current priority (if live) or the FCT and size (if complete) (𝒮 )
to choose the flow’s priority, rate, and route as an XPath ID (S. Hu et al.,
2016) (𝒜 × 𝒜ℝ). This is conditioned on the ratio of average throughputs
between two timesteps (ℛ). The main design feature of interest to us is this
agent separation; that an RL agent can be used to control a time-sensitive
system by generating a compact set of parameters for another, more effi-
cient algorithm. However, the reliance on XPath route numbers as an ac-
tion ties the lRLA policy to the network it was learnt in, preventing shared
training in spite of the fixed-size architecture.

SmartEntry† (J. Zhang et al., 2020) uses an alternate formulation of TE to
selectively route traffic at key switches based on its destination. This differs
from Valadarsky et al. by using the REINFORCE RL algorithm with Convolu-
tional Neural Networks (CNNs) to choose a set of location-destination pairs
to install route changes (𝒜 ) from the current traffic matrix (𝒮 ). For these
nodes, an ILP model calculates an optimal probabilistic forwarding policy
among their neighbours, whose maximum utilisation is used as a loss func-
tion (ℛ). Although this outperforms (weighted) ECMP, this has much the
same scale and transfer issues as Valadarsky et al. (|𝑉 |2 → |𝑉 ||𝑉 − 1|)—in
ISP networks this is to some extent acceptable, given that |𝑉 | ≤ 49 in rep-
resentative trace data. The key concern is that the runtime cost of the ILP
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formulation isn’t documented, which can have a severe impact on stability
if traffic matrices change quickly.6

Inter-AS routing in the modern Internet is fairly fixed, operating according
to the fixed principles of the BGP suite. However, mapping operator in-
tent into effective, bug-free route announcements presents some scope for
optimisation. DeepBGP (Bahnasy et al., 2020) uses Evolution Strategies (ES)
and Graph Neural Networks (GNNs) to generate prefix announcements for
AS pairs (𝒜 ) from an input matrix of reachability preferences (𝒮 ). Each pro-
posed solution is then graded on the number of routing constraints upheld
(ℛ)—training continues until a solution is found meeting all constraints.
There are, of course, caveats to solving what is fundamentally a Constraint
Satisfaction Problem (CSP) in this manner. SMT solvers produce outputs
faster than DeepBGP takes to train, and it is unclear whether any transfer-
able properties of an input instance are learnt even though raw inference
time is faster.7 As with other CSPs, non-exhaustive solvers are unable to
assert whether the input problem is unsatisfiable (and if so, whether the
number of constraints that have been met is maximal).

Flow/packet classification Identifying the type of traffic carried in a flow
is a key part of ensuring QoS/QoE guarantees, traffic optimisation, and net-
work security. However, the realities of Internet traffic require that classi-
fication is fast, contrary to the inference costs typical to DNNs. One stream
of packet classification approaches assumes we begin with a full set of enu-
merated rules (∼105–106) and matching priorities, making scalable lookup
(i.e., significantly faster than 𝒪 (𝑛)) a key challenge.

NeuroCuts (Liang et al., 2019) successfully applies DRL to this task. This is,
interestingly, quite different from most RL applications in that it builds a
decision-tree classifier from input rules. To handle the variable size of gener-
ated trees, for each non-terminal node the agent uses the min/max bounds
of all its inputs (𝒮 ) to choose both a dimension and cutting/partition point
(𝒜 ). These are fixed-size subproblems, giving a generalised and transfer-
able policy. The set of classifier rules to encode is never passed in as state,
only being exposed indirectly via node termination and a tradeoff score
between subtree size and depth computed at completion (ℛ). Construc-
ted models have the benefit of being interpretable and fully deterministic.
The most clever part of this work is that it keeps the slow DRL work out
of the critical path (a necessity for fast, line-rate traffic classification), while
learning environment-specific behaviour. DRL is not directly suited to high-
rate, low-throughput classification (nor is RL suited to classification versus
ML), making this strategy particularly useful. NeuvoMatch (Rashelbach et
al., 2020) uses several trees composed of small NNs to store lookup inform-
ation in a more compact way. This effective compression offers improved
latency and throughput on x86 hosts as the entirety of each model now fits
into cache memory. Rules not captured by these NN trees are looked up us-
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ing a decision-tree or other standard packet classifier. This does present a
large tradeoff against the above: simpler decision trees can be used natively
in TCAMs or admit conversions to MAT structures, meaning that Nuevo-
Match cannot be trivially ported to network hardware.

In the case that we lack a priori knowledge of labelling rules (but do have
labelled training data), it becomes straightforward to train and apply ML for
classification. Historically, packet bodies have been useful in this task as a
variation of DPI investigated using, e.g., 𝑛-gram models (Yun et al., 2016)
and segmented packets (R. Li et al., 2018) as inputs to LSTMs or Gated Re-
current Units (GRUs). This is no longer the case in the wild; a key issue
nowadays is that encryption of traffic is fairly ubiquitous due to the pro-
liferation of application-level security (HTTPS), secure transports (QUIC)
and Virtual Private Networks (VPNs)—all of which severely limit the input
data we can glean from packets.8 Using headers alone, there have been
successes on common datasets using Naïve Bayes (A. W. Moore & Zuev,
2005), Bayesian NNs (Auld et al., 2007), CNNs (Lotfollahi et al., 2020), and
self-attention mechanisms (G. Xie et al., 2020). What is often not masked,
however, are application-level timing characteristics of this traffic such as
patterns of up/down rates, interarrival times, and statistics gathered over
traffic bursts. This additional information makes the task tractable on e.g.,
𝑘-Nearest Neighbours (𝑘NN) and decision tree classifiers (Draper-Gil et al.,
2016), or LSTMs and CNNs (Aceto et al., 2019). This extends towards passive
CCA identification: for window-based algorithms, CNNs have been used to
estimate the cwnd parameter and observe its reaction to loss events (Hagos
et al., 2018), and modern CCAs are handled using both CNNs and LSTMs
in DeePCCI (Sander et al., 2019). There are significant issues with these
approaches in practice, in spite of their impressive performance. Inference
times on one state-of-the-art design (G. Xie et al., 2020) are 180 µs when ac-
celerated using GPU offload, suggesting that throughput and latency guar-
antees of modern ASes can’t be met without aggressive sampling. Some of
these input features are also difficult to collect in-network without traffic
mirroring and analysis at hosts—which already handle packets at a rate far
lower than line-rate network hardware (Gupta et al., 2018). This is particu-
larly relevant for encrypted traffic, as temporal features are often some of
its only exposed characteristics.

Performance analysis Bayesian optimisation using Gaussian processes has
seen some successes in identifying unexpected performance “hotspots” in
OVS throughNetBOA (Zerwas et al., 2019), and cloud instance configuration
via CherryPick (Alipourfard et al., 2017). This mirrors its successes in ML
hyperparameter optimisation (Feurer et al., 2015; Hutter et al., 2011), as this
family of techniques is effective at minimising a cost function using limited
data (i.e., when there’s a high monetary or compute cost to acquire each
sample). For optimisation tasks their use is straightforward, but it must be
noted that hotspot identification still requires operator knowledge.9



3.1. Use cases 65

10 The DDoS mitigation use
case I develop and describe
in chapter 4 uses a sim-
ilar trick, though this arises
due to delayed reaction times
in the environment rather
than inference cost. See sec-
tion 4.4.6.

11 This NN architecture, ma-
nipulating input state for fur-
ther action and value met-
works, is often known as a
two-headed network. This al-
lows end-to-end training of
a feature extraction network
and downstream NNs (in this
case, the actor and critic net-
works). Training of the actor
and critic component net-
works jointly improves the
base feature extractor.

3.1.2 Protocol optimisation and design

Congestion control As introduced earlier in section 2.4.3 (and as a motiv-
ating example in chapter 1), the design of effective CCAs very much re-
mains an open topic. The degree of diversity in networks, from long-fat
Internet-style networks to dense low-RTT data centres, in buffering and
forwarding behaviours of different path segments, and the unforeseen in-
teractions between disparate CCA mechanisms, presents a huge problem
space to work in. Incorrect assumptions can have knock-on effects in not
just overall performance, but in fairness of longer-lived flows to other traffic,
or in catastrophic increases to the FCTs of short flows. As a result, auto-
mated CCA learning is a particularly attractive prospect; more so when we
recall the dominance of congestion-aware traffic in the wider Internet (ap-
pendix A).

MVFST-RL (Sivakumar et al., 2019) uses DRL to manage window-based con-
gestion control in QUIC. An agent then controls the congestion window
size; incrementing, decrementing, halving, doubling, or keeping its value
(𝒜 ) to optimise throughput and latency (ℛ). In contrast with many prior
RL works, their RL agent takes actions asynchronously by coalescing state
updates over time, between action choices.10 Input states are comprised of
RTT statistics, byte transmission and receive counts and loss information,
combined with the last 5 actions (𝒮 ). By applying fully-connected NNs fol-
lowed by an LSTM for policy approximation, this work is competitive with
the state-of-the-art due to LSTMs’ particular suitability for identifying long-
term relations in time-series data. Their work raises again the primary draw-
back of applying DNNs in latency sensitive applications like CCA design:
they observe up to 30ms action computation time, and have only trained
agents via parallel simulation, requiring vast amounts of training data.

DRL-CC (Z. Xu et al., 2019) examines how one RL agent can jointly optimise
Multipath TCP (MPTCP) subflows and TCP flows. MPTCP differs from tradi-
tional transports by allowing data segments in a single logical connection to
be sent over several interfaces, who have their own per-subflow congestion
control in addition to shared coordination. The state of any (sub)flow is its
rate, goodput, RTT statistics, and congestion window size. DRL-CC passes
all current states into an LSTM to obtain a fixed-size representation for all
flows, which is then combined with the overall state for a target flow (𝒮 ).11

Using actor-critic methods, an NN produces a vector of congestion window
deltas for all the target flow’s subflows (𝒜ℝ), conditioned on the sum of log-
goodputs of live flows (ℛ). Inference latency is kept to a moderate 0.5ms
using the CPU, and performance is comparable to classical MPTCP CCAs
on lossy networks—where a high packet loss of 0.5–4 % can be justified by
the focus of MPTCP on cellular networks.

The PCC family of CCAs (Dong et al., 2015; 2018), Copa (Arun & Balakrish-
nan, 2018), and theirMPTCP variantMPCC (Gilad et al., 2020) offer a control-
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theoretic perspective on effective congestion control, improving on heur-
istic methods. These approaches combine flow throughput, loss, latency
and goodput for each (sub)flow into a single utility score, choosing target
rates which maximise this score via simple gradient ascent. Although this
branch of research doesn’t learn any function approximation, the fact that
operational modes and behaviours are all well-defined allows for conver-
gence to be proven under typical network conditions.

Aurora (Jay et al., 2019) then modifies rate selection in the PCC framework
to use a simple NN trained via RL. It computes multiplicative increases or
decreases to a flow’s send rate (𝒜ℝ) given an 𝑚-long history of latency stat-
istics and loss rates (𝒮 ). The agent then acts to maximise packet-per-second
rate, penalising latency and packet loss (ℛ). By keeping the explicit opera-
tional modes of the PCC family, the policies it learns from offline training
effectively generalise to unseen network characteristics and designs. How-
ever, this formulation was later shown to be unfair to other CCAs (Abbasloo
et al., 2020).

Orca (Abbasloo et al., 2020) eschews the “clean-slate” approach common
thus far, using a classical CCA (TCP Cubic) as its basis. This decision is
empirically and strongly motivated; doing so greatly simplifies the learning
task for an RL agent (improving the learnt policy) and reduces CPU andGPU
utilisation in deployment.12 Orca tracks 𝑚-long histories of a flow’s current
(and best) throughput and RTT information alongside its loss rate and con-
gestion window (𝒮 ). Using an actor-critic algorithm, Orca chooses some
𝛼 ∈ (−2, 2) every 20ms, multiplying the congestion window by 2𝛼 (𝒜ℝ), and
allows the baseline classical CCA to otherwise act as normal. Each flow acts
to improve the current ratio between its current power and the best estim-
ate of the Gail-Kleinrock optimal operating point (Gail & Kleinrock, 1981;
Kleinrock, 1978)—with some tradeoffs to minimise loss and allow small RTT
variance (ℛ). While this naturally requires higher resource use than a heur-
istic method such as Cubic or BBRv2, this strategy reduces resource costs
beyond even the control-theoretic PCC family of CCAs (with better, fairer
operation). Reducing the length of time between DRL actions predictably
increases resource demands, but leads to better flow performance, allowing
a runtime trade-off to be made.

Media access control An exciting, perhaps unexpected, network environ-
ment is within CPUs themselves—a network on a chip—for coordination in
multi-threaded programs and ensuring cache coherency inmany-core archi-
tectures. This design class is necessitated by the limitations of a shared bus
at high core counts. Core-to-core communication is either packet-switched
using local routers (incurring latency costs) or wireless (potentially lead-
ing to collisions). NeuMAC (Jog et al., 2021) approaches optimal wireless
transmission via DRL. Monte Carlo RL training of a small NN occurs offline
from simulation, using complete execution traces. In deployment, an agent
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is quantised to 8 bit fixed-precision values on low-latency Static Random-
Access Memory (SRAM).13 Each core has a dedicated transmission timeslot,
while the agent chooses a list of per-core probabilities every 10 µs to allow
transmissions outside this window (𝒜ℝ), which are halved on a collision. An
agent passively listens to broadcast signals, observing the successful trans-
missions per core and the total number of collisions observed (𝒮 ), minim-
ising the cycles spent running a program to completion (ℛ). Interestingly,
this shows that small, pre-trained, quantised NNs can be placed into core
hardware control loops at low latency (512 ns) and low power draw with
bespoke integration of NNs into hardware.

3.1.3 Security, defence, and verification

Network and computer defence ML and other statistical approaches would
seem like a natural fit for the problem of network defence, and have been
long-awaited in hope that they might aid automated anomaly detection and
the derivation of attack signatures (Bhuyan et al., 2014). Barring some recent
exceptions, DDN approaches have languished. In 2010, Sommer and Paxson
identified the ‘failure to launch’ of ML-based anomaly detection systems—a
distinct lack of real-world system deployments (Sommer & Paxson, 2010).
To quite a large extent, this still holds true today. They posited that their
use is made difficult due to significant operational differences from standard
ML tasks, including: the high cost of errors and extraordinarily low toler-
ance for false positives inherent to network intrusion detection (Axelsson,
1999); a general lack of recent, openly available (and high-quality) training
data; and diversity of network traffic across varying timescales combined
with significant burstiness (Leland et al., 1995). Above the aggregate level,
the constant deployment of new services and protocols means that traffic is
non-stationary and displays an evolving notion of normality (section 4.1.2).
Learning is made harder still by the challenges encountered with unlabelled
(often partial) data. Moreover, known-poor datasets such as the problematic
‘DARPA99’ dataset (MIT Lincoln Labs, 2018; Sommer & Paxson, 2010; Taval-
laee et al., 2009) and its derivatives such as KDDCup99 or NSL-KDD have
yet to be excised from works appearing even today.

Marl (Malialis & Kudenko, 2013; 2015) examines the automated detection
and mitigation of DDoS attacks using the Sarsa RL algorithm. As a multia-
gent system, Marl agents are distributed at the edges of a network and adapt-
ively learn a policy to control trafficwithout explicit communication or shar-
ing of policy updates. Agents reside at the AS’s ingress points, and choose
a packet drop probability for all inbound flows from the discrete choices
𝑎 ∈ {0.0, 0.1, ..., 0.9} (𝒜 ) according to load measurements along their route
to a protected server (𝒮 ). They create a tree overlay topology, subdivided
into teams which each receive a separate reward measurement. This aids
credit assignment by not punishing teams who contribute little to the total
incoming bandwidth. Agents are punished when the network is overloaded
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and their team contributes more than its fair share of traffic, otherwise they
receive the proportion of legitimate traffic observed at the team leader (ℛ).
Applying filtering actions indiscriminately to all flows carried by a switch
means that legitimate traffic is easily caught in the crossfire, indirectly harm-
ing harmless flows. Although their results appear competitive, their simu-
lation environment uses only congestion-unaware UDP traffic, counter to
the realities of Internet traffic as discussed in section 4.1.2 and appendix A.
Congestion-aware protocols dominate in many networks; incorrectly ap-
plying a packet drop action imposes greater pushback (Mahajan et al., 2002)
on these legitimate flows than it would on attack traffic. For congestion-
aware traffic, this is non-negligible; when packet loss occurs with probab-
ility 𝑝 ≠ 0, the Mathis equation (Mathis et al., 1997) states that TCP band-
width is proportional to 1/√𝑝, while modern TCP Cubic is proportional
to 1/𝑝0.75 (Rhee et al., 2018). Congestion-unaware, Constant Bitrate (CBR)
traffic then occupies bandwidth proportional to 1 − 𝑝, and in section 4.1
we will show from the literature that volumetric DDoS attack traffic mainly
falls into this category. Furthermore, the static overlay topology does not
account for the defence of load-balanced or multipath networks, and the re-
ward function relies on either a priori knowledge of traffic or an accurate
heuristic. These weaknesses are shownmore concretely throughout section
section 4.4.5, and motivate the design of the Instant and Guarded RL agents
throughout chapter 4.

Other ML techniques have been applied to DDoS detection in the context of
SDNs. Braga et al. (2010) have shown that self-organising maps (an unsuper-
vised, NN-based approach) can act as effective classifiers from flow statistics
given ample captures of both normal and attack behaviour. Athena (Lee et
al., 2017) improves on this through a more generalised (albeit heavyweight)
SDN framework for intrusion detection, showing the use of k-means clus-
tering to detect individual attack flows. However, their comparison against
modern algorithmic DDoS defence techniques such as SPIFFY (Kang et al.,
2016b) lacks any quantitative evidence.

Most modern malware makes use of evasion techniques or alters its beha-
viour to appear more benign in the presence of dynamic analysis, such that
understanding it (particularly when self-modifying code is used) becomes
more difficult for security analysts.14 TAMALES makes use of this principle
to great effect (Copty et al., 2018); where most analysis tools aim to mimic
a real OS as closely as possible, their “extreme abstraction” relies upon de-
viating from specifications and expected behaviour to induce anomalous
behaviours. Using random forest classifiers (Breiman, 2001), they combine
static program features with dynamic behaviours observed from buggy OS
emulation. The most interesting (and general) feature of this design is that
more expensive features and analyses are added to the classifier over time
while the output classification remains ambiguous.

Qin et al. (2020) attempt to combine the distributed training offered by FL
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with the recent advances in BNN use in the dataplane (section 3.4) for attack
traffic detection. P4-capable edge switches or NICs host a BNN computed
from a local (full-precision) model trained on a co-hosted machine, which
communicates model updates to and from a central parameter server as is
common in FL. Their work supports the hypotheses that BNNs achieve suffi-
cient accuracy on existing IDS datasets and that overall model convergence
makes FL suitable for this type of data. However, this work neither men-
tions nor considers the central limitation of FL; that edge models need some
local means of generating labels for new data.15 As a result, it’s not clear
whether FL is even a suitable choice for this task, and so this remains far
from a feasible system. However, it is only tested on BMV2 (thus it’s un-
clear how suitable this is for a line-rate system) and relies on in-band table
alterations which are only possible in future architectures like the Portable
NIC Architecture (section 2.2.4).

Verification P4rl (Shukla et al., 2019) applies DRL to the guided fuzzing of
complete P4 dataplanes. Fuzzing (as opposed to static analysis) allows for
the detection of bugs that lie outside of the P4 language itself, e.g., through
interactions with the control plane or in hardware-specific behaviour. The
key drawback of fuzzing without some manner of guidance, however, is
the colossal size of the input value state space. Beginning with a set of in-
variants extracted from their p4q DSL, P4rl iteratively modifies the header
bytes of an output packet, starting from an initially valid state (𝒮 ). The RL
agent then chooses a field and value pair (choosing either random values or
boundary values known from p4q) (𝒜 ), conditioned on whether that packet
violated any given invariant (ℛ). This notably reduces the number of pack-
ets needed to trigger any bugs versus a random baseline, but it is not shown
whether this reduces the wall-clock time needed to output such a packet.

DeepMPLS (Geyer & Schmid, 2019) applies GNNs towards network verific-
ation in the face of link failures for MPLS routed networks. MPLS is com-
monly used in ISP networks (Vanaubel et al., 2015), and has comprehensive
(though slow) tools for discovering routing violations given complex pre-
dicates (Jensen et al., 2018). Given that GNNs can be applied to variable-
size input graphs, this allows for a useful model to be trained over many
instances. This offers two orders-of-magnitude speedup over conventional
solvers, with the main caveat that outputs are only 80–90 % likely to be valid,
while an algorithmic solution is correct by construction.

3.1.4 Multimedia

ABR video selection Streaming video is a common use case in the modern
Internet. Here, users typically want to receive the highest quality video
they can, while minimising any noticeable quality changes and the amount
of time spent rebuffering, which are their core QoE metrics. Servers allow
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clients to control this via Adaptive Bitrate (ABR) selection, splitting videos
into many fixed-length chunks (of 4–10 s) served via HTTP Live Stream-
ing (HLS) (Pantos & May, 2017) or Dynamic Adaptive Streaming over HTTP
(DASH) (The Moving Picture Experts Group, 2021). However, chunk selec-
tion is delegated to the client using heuristic approaches such as MPC (Yin
et al., 2015). An exciting question to consider is whether data-drivenmetrics
can do better still.

Pensieve (Mao et al., 2017) applies DRL to client-side observations of network
state and video performance metrics for effective optimisation of bitrate se-
lection in multimedia streaming. Throughputs and download times for the
last 𝑘 chunks are combined with current chunk and buffer length statist-
ics (𝒮 ) to choose the next chunk’s quality from the standard list (masking
any illegal choices) (𝒜 ). Pensieve acts to maximise an aggregate QoE score,
maximising quality16, while penalising bitrate changes and the time spent
rebuffering (ℛ). To reconcile the costs of DRL inference with the limited
resources of mobile devices, Pensieve is server-hosted and periodically quer-
ied by clients (though it remains effective even under ∼100ms RTT).

Stick (T. Huang et al., 2020) trains smaller RL CNNs to provide the target buf-
fer occupancy allocated for heuristic, buffer-based chunk selection methods
(𝒜ℝ). This reduces runtime execution costs and retains the interpretable
behaviour of traditional ABR strategies. Stick uses the same input as Pen-
sieve, adding in the current reward (𝒮 ), optimising the (linear) QoE score
discussed above (ℛ). To further reduce inference costs, a very small CNN is
used to estimate whether the current state is likely to cause a large change
in the buffer’s target occupancy. Overall, this leads to slightly better client
QoE and offers far lower execution costs, completely removing the impact
of server RTT as all rate selection can be managed on-device.

PERM (Guan et al., 2020) considers this problem over MPTCP connections,
via DRL on standard feed-forward NNs. Modifying Pensieve’s state to use
per-port throughputs over 𝑘 timesteps (𝒮 ), PERM chooses both the next
chunk’s bitrate and traffic splitting proportions over registered links (𝒜 ×
𝒜ℝ). By optimising the linear QoE score with added per-link cost penalities
(ℛ), they reduce the use of high-cost links (e.g., 4G). However, their evalu-
ation is unclear in how only the underlying video QoE is affected when link
costs are disregarded.

Server- and network-driven QoE enhancements LiveNAS (J. Kim et al., 2020)
extends recent work on offline ML-driven video upscaling towards live con-
tent.17 Themain value in doing so is that ML can be applied to both increase
user QoE and reduce upstream bandwidth requirements in livestreaming
(i.e., in the event that a popular streamer is limited by their own network).
This requires a server-sideDNN to be trained for each user fromhigh-quality
data they are typically unable to upload. LiveNAS solves this training prob-
lem by having each sender also encode their stream at a higher quality level
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than their connection can support. Small high-quality patches with max-
imal error versus a bilinear upscale are included alongside the lower-quality
stream, acting as valuable ground truth for the model to learn from at mod-
erate bandwidth cost. This offers strong QoE improvements, low deviation
from the true input video, and can in principle cut the bandwidth require-
ments for high-profile streamers.

Mangla et al. (2020) use several ML techniques to investigate whether ISP or
other transit networks are able to estimate video session QoE using cheaper
input state such as Transport Layer Security (TLS) session lifetimes and flow-
level measurements. For instance, the detection of low QoE scores would
allow cellular networks to provision greater bandwidth or prioritisation to
multimedia flowswhich require it. Thesemethods aremost effective at split-
ting low- and high-QoE flows (with a high degree of confusion in middling
flows), suggesting that they could be used as a stage-1 metric to enable more
expensive per-packet analysis.

Alohamora (Kansal et al., 2021) uses DRL to generate HTTP/2 asset push and
preload policies to reduce page load times over limited networks or on con-
strained devices. The approach trains offline using LSTMs by grouping page
families into clusters, and inferring policies at runtime as needed. Link capa-
city and RTT statistics, client CPU capacity, and the target page’s resource
dependency graph (𝒮 ) are used to output a sequence of push/preload item
and prerequisite pairs until an end-token or illegal state is output (𝒜 ). Alo-
hamora optimises the relative QoE change according to cheap and accur-
ate simulations, with explicit bonuses added whenever a better incumbent
policy is produced (ℛ). While considerably more effective than past works
on policy generation, the ablation studies shown by the authors indicate
a strong dependency on device-specific state (especially the CPU speed of
each client). Inference is cheap compared to page load times, around 11–
40ms, offering strong QoE improvements when all input data are known.

3.1.5 Resource placement and management

Job scheduling DeepRM (Mao et al., 2016) is one of the first works on simple
DRL-based job scheduling among resource-constrained CPUs, aiming to
minimise the average job slowdown. What is particularly notable about
this work is that it employs intelligent sampling and monitoring while tak-
ing multiple actions per timestep. In particular, it maps pixel images of
current resource use and the costs of the next 𝑘 jobs (𝒮 ) into a discrete set
of job choices to schedule and a null action (𝒜 ). The timestep is advanced
on either an illegal or null action, giving an agent a negative reward for all
incomplete (arrived) tasks (ℛ).

In reality, scheduling of (data-parallel) jobs is far harder; these are often
expressed as a Directed Acyclic Graph (DAG) of subtasks with interconnec-
ted data dependencies. Decima (Mao et al., 2019) applies GNN-based DRL
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to completely control job scheduling as part of Apache Spark. To minim-
ise the average Job Completion Time (JCT) (ℛ), Decima chooses the next
job stage to schedule and the number of workers to be spawned (𝒜 ) in re-
sponse to any scheduler events, until all jobs are assigned or executors are
busy. Agents use the output embeddings of nested GNNs, processing per-
task and executor statistics into job- and system-level summaries (𝒮 ). To
make training feasible18, episodes are modified to end early in initial train-
ing phases. Equally, in any scenario job arrival times are perturbed (main-
taining arrival order) to prevent excessive punishment due to bursty arrivals.
By using smaller NNs at each stage, each decision can be made in around
15ms.

Distributed ML model training is a variation on this problem, typically hav-
ing high bandwidth costs and JCTs which exist in a trade-off with final
model accuracy. MLFS (H. Wang et al., 2020) cleverly operates by start-
ing with a heuristic approach to gather samples for DRL training—initially
prioritising jobs with faster JCTs or expected accuracy improvements (i.e.,
fresh training jobs). The agent chooses a set of task-to-executor pairs (𝒜 )
using the full set of task resource demands and parameters alongside ex-
ecutor utilisation (𝒮 ). Agents act to minimise average JCTs and bandwidth,
and maximise average accuracy, accuracy goals met, and the number of
jobs completed before their deadline (ℛ). The RL model is used in place
of the heuristic after its policy successfully converges, and simple statistical
methods are used to terminate jobs whenever overfitting appears to begin.
However, MLFS’s execution costs aren’t specified, and it remains unclear
how it handles (what appear to be) variable-size inputs and outputs.

Some works choose to focus on the simpler (though important) task of para-
meter optimisation for existing schedulers. The degree of parallelism offers
one such ‘knob’ to tweak in data-parallel job allocation, however it is not one
which universally leads to performance gains when increased. In partition-
aggregate workloads, coordination overheads dominate if a task is divided
between too many workers—ReLoca (Z. Hu et al., 2020) successfully trains
DNNs to predict job completion from a given worker count and DAG statist-
ics, using a novel sampling method to concentrate training around optimal
choices. In the case of independent jobs (e.g., replicated services), Autopi-
lot (Rzadca et al., 2020) optimises vertical scaling (the CPU and RAM limits
allocated for a task) and the number of workers to minimise user spend
versus heuristics. In the former case, an ensemble of simple optimisers (dif-
fering by cost model) is used to provide an interpretable suggestion, in the
latter case a user-specified strategy is applied to minimise resource use.

Cache management Caching of Internet resources (e.g., webpages or video)
is commonly employed by CDNs to serve content to users in a way which
minimises latency as well as offering load-balancing for content providers.
RL-Cache (Kirilin et al., 2020) offers a cache admission policy learnt through
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19 Somewhat curiously, the
authors choose to quantise
these measures into fixed
bins; effectively using a one-
hot encoding of bin hits for
each statistic as the input.

20 Agents are prohibited
from removing capacity, aid-
ing learning by making it im-
possible to regress into an il-
legal state.

DRL such that the hit rate is maximised. When a resource is requested,
RL-Cache chooses to admit or remove that item from the cache (𝒜 ) based
on that object’s size, recency and frequency statistics (𝒮 ).19 The reward is
simply 1 or 0 (hit or miss) per-object in the next batch, divided amongst the
previous 𝑘 decisions (ℛ). Although it is effective after the authors reduce
the runtime cost by performing inference only on cache misses, batching is
required to meet any reasonable level of throughput. This comes at a cost
of latency; a totalled 65ms for a batch of size 1024, which is comparable to
client-server RTTs in the best case (and with tail latencies left unspecified).

MacoCache (F. Wang et al., 2020) examines a more targeted form of resource
caching at cellular base stations via multi-agent DRL to minimise latency
and bandwidth demands in mobile edge networks (ℛ). Agents estimate a
cache probability for every video file, choosing the top 𝑘 entries (𝒜ℝ) based
on per-item demand rates and cache status (𝒮 ). Agents don’t share inform-
ation directly, but do receive a portion of their neighbours’ rewards and use
neighbours’ policies and cache state as further inputs to account for their
impact on the overall system.

System and network planning In network planning, ILPs are often used for
short- and long-term bring-up of fibre placements and IP route provision-
ing. NeuroPlan (Zhu et al., 2021) uses DRL to suggest a better starting point
and prune the ILP search space for this problem, greatly reducing runtimes
(typically 3–4 d) in hypergiant networks. The variable size and structure
of networks make graph convolution a natural fit, learning to optimise the
normalised cost of any new bandwidth provisioned (ℛ) through actor-critic
methods. Given the line graph transformation (Harary & Norman, 1960) of
the network with IP route capacities as edge labels (𝒮 ), the agent chooses
both a link and the number of discrete capacity units to add (𝒜 ).20 Training
is accelerated by stopping each episode once either the constraints are met
or too many steps have elapsed, and the final link weights are used as new
maxima for each ILP variable—this state-space pruning accelerates the ILP
by 7–14 × while achieving similar total costs.

Chip floorplanning, the process of placing and interconnecting FUs for fab-
rication, can equally be considered as a resource placement, routing, and
networking problem. Mirhoseini et al. (2021) show that DRL can success-
fully learn to output compliant designs in around 6 h of datacentre training,
compared to months of human iteration. Using Edge-GNNs to process hy-
pergraphs of macros, standard cells, and their interconnections, an RL agent
places macros onto a masked 128 × 128 grid (𝒜 ), from large to small. The
feature extraction part of the network processes the complete hypergraph,
the dimensions of each macro node, required connections, and associated
metadata as inputs for the policy network and value network (𝒮 ). An agent
receives a single reward at the end of an episode: a negativeweighted sum of
wirelength, congestion and density (ℛ). Effective and fast, this technique
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21 In many cases, it should
be stated that batching does
increase the throughput bey-
ond the reciprocal of these
times, at the cost of high
latency and still higher tail
latency.

has been put into action in the design of forthcoming tensor accelerator
hardware.A more generally useful insight of their work is that completed
placements are easy to estimate a reward for; as such, learning the feature
extraction network can be bootstrapped as a supervised, offline problem.

3.1.6 Takeaways for effective data-driven networking

Although we’ve covered a vast, varied collection of problem domains, this
selection shows how the tools developed by the ML community can be of
great use in the design, optimisation, and control of modern networks. A
shared insight is that many of these tasks can be effectively represented (dir-
ectly, or otherwise) as MDPs, making RL techniques an excellent addition to
a network operator’s toolkit. Similarly for ML methods, many tasks can be
reduced to classification or regression to optimise over a set of parameters.
Most importantly for our domain however, these tasks present a broad set
of hard and soft deadline demands. Each influences not only where our con-
trol logic can run in the network, but the forms of function approximation
which are suitable. This is paramount as we move closer to per-packet or
per-flow handling, directly shaping any agent’s interactionmodel or control
loop.

Effective MDP designs rely on a mixture of in-depth problem knowledge
and an acquired general intuition. While this is not something that can be
easily condensed, the above use cases have given us common insights into:

• how to design for and around deadline sensitivity,

• accounting for a choice of function approximation relative to these con-
straints (and where we wish to deploy and train agents),

• the scaling and transferability that are introduced by fixed-size repres-
entations (or techniques such as GNNs),

• accelerating training and ensuring higher-level system reliability.

Deadline sensitivity A consistent feature of almost all online works presen-
ted here is that complex function approximators, particularly DNNs, have
inference costs on the order of 1–50ms based on model complexity.21 This
has knock-on implications not only on what processing can be performed,
but also onwhat parts of the problem space engineers are likely to consider—
observe that many of the above use cases either respond tomoderately infre-
quent events, optimise client-side behaviour, or perform high-level design
tasks outside of the day-to-day operation of the network. To see why this
is the case, consider that servers and data centre infrastructure must for-
ward and handle thousands of flows per second, and millions of packets per
second. As a result, synchronous in-pipeline packet inference increases the
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22 This does not presuppose
that all processing happens
in a single stage, just that the
timing of each stage meets
this constraint. Recall that
pipelined microprocessor ar-
chitectures allow a designer
to meet throughput demands
in exchange for latency.

risk of drops or stalled packet transmissions, or delayed response to changes
in flow characteristics (possibly followed by reduced QoS or QoE).

We can make the relative impact of these costs more concrete through an
example. Suppose that we wished to move inference further down the stack,
either to reduce processing latencies, or to work with fine-grained state
which is simply too numerous to export elsewhere. As Ethernet moves bey-
ond 40Gbit/s and 100Gbit/s, packet processing deadlines grow tighter in
tandem; an input stream of 64 B packets demands that a packet be output
every 12.8 ns to maintain 40Gbit/s line-rate. On Netronome SmartNICs for
instance, which have 312 P4 pipelines (each as an NPU context), this gives
a worst-case 3.99 µs processing deadline for each packet. Of course, this is
simpler in reality as real-world traffic patterns tend to comprise a mixture of
packet sizes larger than this. And yet, architectures having fewer pipelines
are more unforgiving in this sense—the P4→NetFPGA framework (Ibanez,
Brebner et al., 2019) has just a single processing pipeline, so timing viola-
tions have a higher impact than on an NPU.22

The most clever strategies we’ve considered work around this limitation by
using inference or learning methods to produce the structures, models, or
parameters for a more efficient algorithm or heuristic to use. For instance,
generating TCAM-optimised matching structures, or outputting only a list
of boundary points for degrading a flow’s priority by simple comparison—
both enabling direct installation to PDP hardware. This agent class still
allows for adaptive or environment-specific training beyond what human
optimisation can offer, while keeping such execution costs out of the packet
path. Ensuring that decisions are taken with reduced frequency and out of
the critical data path is the simplest way to minimise the negative impact
of inference costs. In contrast, per-packet or per-flow inference is almost
entirely restricted to end-hosts, who have lower flow counts than servers
and reduced traffic for consideration (∼10–300Mbit/s in typical home net-
works).

Alternatively, we can make tailored decisions more tractable by narrowing
the set of items a system examines in the first instance. Cheap initial ana-
lyses (or even simple heuristics) can be used to filter down the set of in-
puts, identifying the flows, users, or subsystems needing fine-grained op-
timisation (such as flows which are likely to persist beyond DNN inference
latency). On a similar note, this principle can be extended towards input
data itself; data-driven methods can be used to go beyond cheaper statistics
and trigger more expensive analyses in response to ambiguity at decision
time.

Choice of function approximation There have been great advances in ac-
celerating NNs, particularly through the forms of quantisation discussed in
section 3.4. In fact, BNNs allow not only for these models to run in program-
mable switches and NICs, but for per-packet inference to meet the timing
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constraints described above. Yet these environments still lack the compute
capability to perform backpropagation under these constraints (to update
the model in-situ), and to store batches of execution traces (to learn in a
stable way). As a result, at present we can deploy a trained (DNN-based) RL
agent directly in PDP hardware—but we can only train for this environment
using simulations or offline training data. As we shall see later, an answer
to this limitation is that we rethink our approach, and use an altogether
simpler model or means of function approximation (chapter 5).

Scalability and transferability Most function approximators cannot trivi-
ally handle variable-size state, often requiring that such problems are broken
down into fixed-size chunks. In the RL case, we’ve seen that this often in-
volves selecting actions for subtasks within the same timestep—which, of
course, introduces further design issues such as which ordering to use to
act on subtasks and whether to split reward allocation between concurrent
decisions. Tailoring an agent’s architecture to the structure of an individual
problem instance can sidestep these issues, and is arguably quite suitable in
cases which are CSP-like (i.e., iteratively acting to solve a single NP-Hard
task). This simplification comes at a cost; requiring full episodic training to
arrive at a solution each time, and preventing generalised training between
problem instances.

There are substantial benefits to keeping a model’s overall architecture (in-
cluding input and output dimensions) at a fixed size which justify the addi-
tional iteration and designwork. Using a consistent architecture allows for a
model to be trained over many instances and shared between deployments.
This is key in not only substantially reducing inference time (as training
is no longer required per instance), but also typically improves model ac-
curacy (by learning general features of the underlying problem itself) and
allows distributed training in both the federated and parallel sense.

Recent approaches such asGNNs and LSTMs can offer a solution for variable-
size problem instances, depending once again on the task of interest. Both
allow for the handling of variable length collections of fixed-size elements.
GNNs excel at capturing and modelling the relationships between objects.
LSTMs, however, are suited to sequences with an explicit temporal compon-
ent (i.e., they are sensitive to the input order of samples), making themmore
effective for mitigating partial observability or a non-Markov problem using
state histories as an input.

Training and reliability Using a conventional heuristic or algorithm to aug-
ment DDN can benefit an agent in several ways:

• Relying on a heuristic method for steady-state operationwhilst taking
infrequent RL or ML actions can greatly cut runtime CPU and GPU
costs, while also providing more reliable or interpretable behaviour.
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This is particularly true when actions are new choices for the control
parameters of such algorithms.

• If used as a complete replacement during the initial stages of training,
then heuristics provide high-quality (and representative) execution
traces compared to a random initial policy.

• A heuristic replacement in the early stages of training exactlymatches
‘normal’ behaviour until the policy stabilises, making such systems
more suitable for from-scratch training in real networks.

Commonly, many of the approaches we’ve examined need to deviate from
the typical RL formulation to make learning feasible in the face of more dif-
ficult environmental behaviour. Consider how many of the above domains
must act asynchronously, replay existing traces under slightly varied con-
ditions, take multiple logical actions per physical timestep, or combine and
coalesce inbound state whilst policy computations are ongoing. While these
changes are rarely justified in the analytical sense, in practice they tend to
hold empirical benefit (bearing the caveat that such task-specific modifica-
tions may impede learning in another task).

DNNs, particularly as used by actor-critic DRL algorithms, often employ
two-headed networks—sharing a feature extraction component between the
policy and value networks. Training of these shared layers can be quite
effectively bootstrapped offline if, for instance, it is easy to both generate
representative state vectors and estimate the reward value (or some other
metric) that can be derived.

Although this final point is obvious in many senses, as in many other dis-
ciplines we should prefer the simplest, most parsimonious representation
which solves a target problem. Even though larger models (i.e., in para-
meter count) are theoretically more expressive, this impacts runtime costs
(in RAM/CPU) and can significantly increase the duration of training needed
to achieve convergence.

3.2 Function approximation

The main goal of ML methods is to learn the function between a set of in-
puts and a set of outputs, for instance mapping histories of flow statistics
into classifications in DDN. In most cases, we have some body of training
data—input-output pairs (supervised), inputs alone (unsupervised), or state-
action-reward trajectories (RL)—and require that such a learnt function gen-
eralises well to unseen inputs, has reasonable accuracy, and is not especially
costly to compute. Of course, given that we lack a priori knowledge of the
function’s true structure or it may lack a closed-form expression, we must
use some learnable approximation. Such a learnt function is then defined by
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a fixed structure (e.g., an NN’s architecture) and a parameter set 𝜽, which
is typically a collection of real numbers. Of particular importance is that
the function approximations presented here (and in general) are differenti-
able with respect to their parameters, which allows for 𝜽 to be trained as we
discuss through section 3.3.

Considering the deployment environment we’re mainly interested in—PDP
hardware—making the right choice of algorithm and the used data format
(section 3.4) is crucial. For instance, more complex functions (deeper NNs)
have highermodel capacity, and are capable of learning more complex trans-
formations, but often have a higher cost to use in inference: in either the
number of required parameters, or the amount of arithmetic operations
needed to produce an output. Accordingly, they can be less well suited for
PDP execution. This also correlates with the cost of computing the gradient
we’d use to move 𝜽 to a more optimal set of values—in NNs this is more
expensive than inference alone, while with simpler linear schemes like tile
coding the gradient is acquired for free during the forward pass. Model capa-
city, inference cost, and learning cost thenweigh against the finite resources
of PDP hardware. We must then consider several function approximations
according to how we want to integrate the ML component of a larger DDN
system: online or offline, and in-NIC/PDP or on commodity hardware.

I discuss here some forms of function approximation which are pertinent
to this thesis, and to DDN and ML/RL in general. I introduce and explain
linear tile coding, a simple and rather interpretable scheme which appears
throughout more classical RL research, as well as providing an overview
of common variations on NNs. While tile coding has been superseded in
modern RL works by DNNs, I use it as the main function approximation
scheme in chapter 4 for its computational simplicity in both inference and
training. Crucially, it plays a key role in the design of OPaL in chapter 5,
where it underpins the task of bringing RL to PDP NICs due to their partic-
ular constraints. NNs are presented due to their widespread adoption and
hence deep relevance to DDN on the whole. Covering their basics also arms
us with knowledge of their hardware and software needs for inference and
learning—and thus, their suitability to online and offline learning in PDP
hardware. In addition, they are used for flow classification in chapter 6 to
make good use of the data reduction provided by in-network histograms.

3.2.1 Linear Tile Coding

Tile coding (Sutton & Barto, 2018, pp. 217–221) is a form of feature repres-
entation which converts input state 𝑠 into a sparse boolean feature vector
x(𝑠). A tile-coded representation defines a collection of tile sets—each a 𝑑-
dimensional subset of input state. Each tile set then comprises a set of tilings,
overlapping 𝑑-dimensional grids with different offsets. Overall, this may be
combined with an always-on bias tile, which is a global estimate that can
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23 It should be noted that
the more RL-specific x(𝑠, 𝑎)—
i.e., approximating the value
of a state-action pair—is vir-
tually interchangeable with
this representation. We can
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all actions together, as they
are typically all required in
value-based RL—if specific
tiles are needed to derive the
theory or update the repres-
entation, we just assign a tile
to each action after evaluat-
ing x(𝑠).

contain a reasonable starting point for unlearnt parts of the state space. To
compute an output value, input state is checked against every tile to identify
which grid cell is activated (or hit)—each tile hit corresponds to an entry of
x(𝑠) which is set to 1. As each tiling admits exactly 1 hit, x(𝑠) is a sparse
boolean vector of fixed Hamming weight (i.e., equal to the total number of
tilings). The parameter vector 𝜽 then assigns a value to each tile, allowing
us to compute the output 𝑓tile(𝑠, 𝜽):

𝑓tile(𝑠, 𝜽) = 𝜽⊤ x(𝑠) (3.1)

As all values of x(𝑠) are boolean, this is equivalent to simply summing the
values attached to each hit tile. Moreover, the parameter gradient (∇𝜽 ) at
any point is computed during the forward pass:

∇𝜽𝑓tile(𝑠, 𝜽) = x(𝑠) (3.2)

As a result, RL policy updates are simple to perform—i.e., no extra work is
required to compute a policy gradient—so long as it is feasible to cache x(𝑠),
then online updates may be made fairly cheaply, perhaps suiting SmartNICs
or similar devices.

Algorithm 1 describes the basic procedure for a single tiling. Generally,
tile sets cover overlapping areas by varying the maxima and minima of the
tiling to model offsets applied to a fixed-size grid. The number of tiles in
any one tiling is easy to know, as we only need to take the product of all
entries of tiles_on_dim—or return 1 for a bias tiling—and global starting in-
dices into 𝜽 can be precached for each tiling. Figure 3.5a then demonstrates
the process for a 2-dimensional state space in an RL context, i.e., defining
the state-action value q̂(𝑠, 𝑎, 𝜽) = 𝑓tile(𝑠, 𝜽)[𝑎].23 It should be apparent that
the numbers of tiling sets and the degree of subdivision along each dimen-
sion allow a designer to control feature resolution and generalisation. To
capture combinatorial effects or represent an input on multiple scales we
may combine codings by concatenating individual feature vectors. For in-
stance, different tiling sets may choose the same dimensions with different
tile widths, or consider each feature both separately and combined with
some covariant property.

In an RL context, as in figs. 3.5b and 3.6, this coding strategy is well op-
timised for discrete actions. This allows a particularly efficient vectorised
implementation of the policy and update rules by storing a vector of action
values for each tile. Summing the weight vectors from all activated tiles as
described, this requires |𝒜 |(𝑛tilings − 1) floating point additions per decision
for an action set𝒜 . In particular, hit tiles are amenable to representation as
an array of indices, 𝑠list. This means that we need only perform 𝑛tilings+2 ad-
ditions and 2 multiplications per model update when combined with Sarsa
(section 3.3.3):

𝜽𝑡+1[𝑖][𝑎𝑡 ] = 𝜽𝑡 [𝑖][𝑎𝑡 ] + 𝛼𝛿𝑡 , ∀𝑖 ∈ 𝑠list. (3.3)
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Algorithm 1: Tile coding, for a single uniform grid tiling.
input :A state vector and tiling. Each tiling has a list of dimension

indices (dims), minimum and maximum values for each
dimension (mins, maxes), and a count of tiles for each
(tiles_on_dim). These lists are empty for a bias tiling.

output :The index of the tile hit within this tiling.

1 fn TileCode state, tiling
2 let scale: u64 = 1;
3 let local_tile: u64 = 0;
4 forall (i, dim_idx) in tiling.dims.enumerate() do
5 let min: f64 = tiling.mins[i];
6 let max: f64 = tiling.maxes[i];
7 let n_tiles: u64 = tiling.tiles_on_dim[i];
8 let width: f64 = (max−min) / n_tiles;

9 let local_hit: u64 = state[dim_idx].clamp(min, max) / width;
10 let scaled_hit: u64 = local_hit.max(n_tiles−1) × scale;
11 local_tile ← local_tile + scaled_hit;
12 width_product ← width_product × n_tiles;

13 return local_tile;

If desired we may define a state space with an arbitrary number of tiles per
dimension (higher-resolution, lower generalisation), yet having constant-
size state vectors and constant action computation cost scaling in 𝒪(𝑛tilings).
Beyond this, we need not store action values for tiles which have not yet
been visited, conserving memory. A caveat of tile coding remains, in that
the value of 𝛼 must be reduced according to the number of tilings to prevent
divergence at the expense of slower learning (𝛼 ← 𝛼/𝑛tilings).

In the wider PDP context, the basic tile coding algorithm is simple enough
that it is a worthwhile candidate for representing policies in some classes
of PDP hardware, as I investigate in chapter 5. In particular, the fact that
gradients are acquired during inference might be used to make online learn-
ing in resource-constrained PDP environments more feasible by saving on
valuable compute. A downside is that we store one model parameter per
tile, which can scale poorly to larger models—in exchange, we use no non-
linear operations. Although I don’t examine it in this thesis, it should be
possible to implement or even accelerate their forward pass using MATs by
mapping ‘stripes’ of tiles in each dimension to a range match—although it’s
unlikely that we could extract any online learning capability in RMT-like
architectures.

3.2.2 Neural Networks

Neural Networks (NNs) map an input vector to an output vector via a math-
ematical graph of neurons. Each neuron takes a weighted sum over a set of
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Figure 3.2: NNs arrange neurons into layers, which allows all activations
in each layer to be calculated by a single affine transformation followed
by an elementwise application of some non-linear function 𝑓 . I.e., in this
fully-connected network a𝑖 = map (𝑓 ,W𝑖a𝑖−1 + b𝑖). By doing so, they can
take advantage of commodity GPUs (which excel at linear algebra) or more
specialised TPUs.

𝑎0

𝑎1

𝑎2

𝑎3

𝑧

a

w 𝑏

+𝑤0 × 𝑎0+𝑤1 × 𝑎1

+𝑤 3×
𝑎 3+𝑤2 × 𝑎2

Figure 3.1: A single neuron
in an NN takes a weighted
sum over its vector of in-
puts a (according to w) and
its own bias 𝑏, and produces
an output using some non-
linear 𝑓 . Thus, it produces
an output 𝑧 = 𝑓 (𝑏 + a ⋅ w),
where w and 𝑏 are trainable
per neuron.

inputs plus its own bias value, and uses this as the input to a non-linear
function, producing a single output value (fig. 3.1). This non-linear (or
piecewise-linear) function, e.g., (leaky) ReLU (Maas et al., 2013; Nair & Hin-
ton, 2010), tanh, or the sigmoid function expresses the idea of a sufficiently
large input ‘activating’ the neuron, and prevents chains of neurons from
being expressed as a single linear transformation (allowing greater model
capacity). As in fig. 3.2, this graph of neurons then progresses from trans-
formations to the output layer, towards processing of the outputs of interme-
diate neurons (hidden layers), before terminating in a final vector of output
values. The parameter set 𝜽 is then the concatenation of all edge weights
and biases which describe the network. This compute graph can contain
other, non-neuron operations so long as they are differentiable: it is typical
that in classifiers or RL systems the last layer of neurons goes through a
softmax function to be converted into a valid probability distribution. Cru-
cially, any individual neuron is differentiable in 𝜽, and by applying the chain
rule over the full graph we can compute the entire NN’s parameter gradient
through the backpropagation algorithm (Goodfellow et al., 2016, pp. 197–
217). This includes a forward pass as in inference, coupled with a more
expensive (by a factor of ∼2 × ) backward pass. Some input data, such as
images or fixed-length time-series sequences, often contain clear structural
features that must be exploited to learn a function. Convolutional Neural
Networks (CNNs) (LeCun, 1989) capture these dynamics between adjacent
values in a layer by learning a convolution filter.

Variable-size input data can also be handled by NNs. Graph Neural Networks
(GNNs) (Kipf & Welling, 2017) attach state to each vertex of an input graph,
which are all processed by the same NN architecture and weights. Each ver-
tex’s weight is then modified by a message-passing-like model: a transform
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is applied over the aggregate of a node’s intermediate vector and those of
all its neighbours, producing a final embedding vector for each node. Fur-
ther modifications, e.g., Edge-GNNs (Mirhoseini et al., 2021), exist to include
edge labels in the formulation or offer alternate aggregation strategies. In
the case of variable length sequences of data (i.e., an obvious time-series use
case such as audio transcoding), Recurrent Neural Networks (RNNs) (Rumel-
hart et al., 1986) capture temporal properties of the input. The main way
in which they differ is that they feed neuron state from the previous input
into the calculation being applied to the current datum, similar to an infin-
ite impulse response filter. Long Short-Term Memory (LSTM) (Hochreiter &
Schmidhuber, 1997) units include extra gates to control how hidden state
is held between timesteps element-wise (input, output and forget gates),
whose parameters are also trainable. Gated Recurrent Units (GRUs) (Cho
et al., 2014) remove the output gate (passing on only the hidden state), and
as a result are competitive with fewer weights to learn.

Returning again to the PDP context, NNs are useful because they have both
a high model capacity and are quite compactly represented by all paramet-
ers in 𝜽—they encode a transformation of input data rather than a look-up
table. They can thus require less memory to store a policy than tiles might
need, at the same count of input dimensions. However, not only is their
gradient computation more expensive than the forward pass, their training
requires many passes (or epochs) over a large training corpus which should
be held at or near the agent under training—likely ruling out their use in on-
line learning in PDP hardware. They can be well-represented in RMT hard-
ware and SmartNICs (section 2.4.4), depending on data format (section 3.4),
but at the extremes of making inference quick we lose the ability to even
modify the policy incrementally. It should be obvious that more complex
methods outlined here (GNNs, LSTMs, RNNs) are more broadly unsuitable
due to their iterative compute models, outside of the specialised architec-
tures we’ve discussed earlier in section 2.2.4. Similarly, they are generally
understood to be more costly still to train, again ruling out online learning
in PDP hardware.

3.3 Learning an approximation

Having introduced function approximation schemes of relevance to this
thesis (and the most prominent in DDN at present), we now turn our at-
tention to how these approximators are trained in practice. Due to its relev-
ance in DNN and DRL, this comprises a brief discussion of gradient descent
techniques and stochastic optimisers, followed by a more in-depth introduc-
tion to and overview of the field of RL. This allows us to comment on these
methods’ (and key variations’) suitability to network control problems and
different execution environments (primarily PDP hardware) as required by
chapter 5. Tying these back to the realities of DDN, many of these tech-
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24 In the definition of 𝐽 ,
we naturally expand occur-
rences of ̂𝒚 in terms of 𝑓 , and
thus 𝜽. Additionally, 𝐽 may
be defined over any subset
(or all) of the training set 𝑿 .

niques and advances are likely feasible in a PDP context with small data-
sets and no minibatches, such as Stochastic Gradient Descent (SGD) and its
variants, but their use is left to future work. Finally, this allows us to con-
sider various problems in deployment and system design where we must
expand or diverge from baseline algorithms—(a)synchrony, exploration, and
dynamic learning—as needed by applications (chapters 4 and 6) or PDP co-
designed algorithms (chapter 5).

We can begin by assuming that our approximate function is backed by some
parameter vector 𝜽, such that ̂𝒚 = 𝑓 (𝒙 | 𝜽)—an input vector 𝒙 produces some
output ̂𝒚, and ideally after training ̂𝒚 ≂ 𝒚 across all input 𝒙 . For all intents
and purposes, we can understand 𝜽 as a large block of real numbers residing
in RAM, and that we update this block over time. We may not have access
to a ground-truth 𝒚 (i.e., in the RL case), but we generally assume that there
does exist a best-fitting or optimal output. In case we do have the true 𝒚
values, we may refer to the complete set of training inputs and ground-truth
outputs as 𝑿 . Crucially, we require that 𝑓 is differentiable with respect to
𝜽: if we define some scalar performance metric 𝐽 which assesses the quality
of an output ̂𝒚, then ∇𝜽𝐽 offers a direction in 𝜽.24 This output gradient
is simply a vector which represents the direction in parameter-space which
would have the largest increase in the value of 𝐽 if followed. The approaches
presented in section 3.2 are differentiable as required.

3.3.1 Gradient descent

Most supervised ML problems are defined in terms of a loss function 𝐿, such
that differences between our output ̂𝒚 and 𝒚 values are penalised. Some ex-
amples in use today include the mean absolute and mean squared errors (ℓ1
and ℓ2 loss) in regression tasks, or (categorical) cross-entropy loss in classi-
fication. Naturally, these are differentiable, but as we aim to minimise loss
we then subtract the gradient from 𝜽; this concept underlies gradient descent.
Gradient descent is the iterative process of optimising our parameter vector
𝜽, using all input data and labels 𝑿 at each iteration:

𝜽𝑡+1 = 𝜽𝑡 − 𝛼∇𝜽𝑡𝐿 (𝑿 | 𝜽𝑡) (3.4)

Every iteration, we move the parameter vector a small step in the direc-
tion which would optimise its overall performance; this is the learning rate
hyperparameter 𝛼 ∈ (0, 1). However, re-evaluating the loss function over
all input data becomes intractable in the case that either the function is ex-
pensive to compute on a moderately-sized dataset, or the dataset itself is
monstrously large. Both are often the case in DNN training. It is for this
reason that SGD and related algorithms are typically employed inMLmodel
training, particularly for DNNs. SGD modifies the above formula such that
individual, randomly chosen samples (or larger minibatches) are used as the
input for the loss function rather than the entire dataset. This only approx-
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Figure 3.3: A toy example
showing how the delayed re-
wards which an RL agent
learns to maximise. Con-
sider a traveller journeying
towards a castle in the south,
with 𝑅 being some aggreg-
ate of food, water and rest.
Learning only to optimise im-
mediate rewards attached to
actions would lead our trav-
eller to choose an overall
worse path—going thirsty in
the desert!

imates the loss gradient at 𝜽 on the input data, but in practice this is key for
the training of modern ML techniques—𝛼 may be reduced over time and the
dataset reshuffled as necessary until convergence.

While SGD provides the theoretical underpinning for more efficient ML
training, in practice the difficulty of choosing 𝛼 with regard to different para-
meter sensitivity has led to more adaptive methods. These also introduce
the notion of per-parameter learning rates. AdaGrad (Duchi et al., 2011)
gives each parameter its own learning rate 𝛼 , divided by the square root
of the sum of squared gradient values (i.e., large derivatives in a parameter
lead to a greater reduction in learning rate). RMSProp (Tieleman & Hinton,
2012) converts this accumulation into an exponentially-weighted moving
average, better handling the non-convex loss behaviour seen in DNN train-
ing. Adam (Kingma & Ba, 2014) includes momentum terms (to carry a gen-
eral direction in gradient across several steps) and additional bias correction,
giving advantages in the early stages of training.

It should be noted that the above discussion is a very cursory treatment
of the subject, primarily intended to contrast the in-depth discussion of RL
methods in the remainder of the section. Similarly, learning-centric modi-
fications to loss functions such as regularisation terms or function-specific
regularisation strategies (to mitigate overfitting) are also out of scope. For
more details, readers should refer to more specialised texts such as Bottou
et al. (2018) and Goodfellow et al. (2016).

3.3.2 Reinforcement learning

When we aim to optimise for decisions and estimations in classification,
clustering, and regression, it suffices to apply gradient descent and similar
optimisers to minimise this loss function alone. How might things differ
whenwewant to design some agent—an actor who sees and acts on a system
for many timesteps—to interact with the world? Consider a toy example in
fig. 3.3: an oracle with global knowledge knows that a hypothetical traveller
would best be served by going through the swamp, even if it appears the
worse of two choices. Yet if we applied simple input classification to choose
our path at each turn, we would always act poorly without some way of
propagating knowledge of later choices’ value. It becomes more complex
to collect training data once we realise that our actions move the world
forward and change it (thus we may not be able to rewind a simulation to
explore alternative choices), and that we might need to explore apparently
suboptimal choices for some time to be better off in the long-term.

Reinforcement Learning (RL) algorithms are methods of training such an
agent to choose an optimal sequence of actions in pursuit of a given task (Sut-
ton & Barto, 2018), and neatly encode these training- and run-time notions
of exploration and exploitation. An agent is typically defined by its policy
𝜋 , which chooses an action in response to an input state. These powerful
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25 Setting 𝛾 = 0 defines a
‘myopic’ agent, where no in-
termediate loss of reward is
allowed. Choosing 𝛾 = 1
will prioritise future rewards,
with no concern over how
long it may take to achieve
those rewards. This hyper-
parameter features in many
RL algorithms; in practice,
we choose values closer to 1.

techniques effectively use a reward metric to learn a state-action mapping
without any explicit model of the system they’re learning to control—even
when reward signals are sparse or come with some delay after an initial
choice as fig. 3.3 exemplifies.

To achieve the goals described above, we first make the assumption that the
task we’re attempting to solve is structured as anMDP. In anMDP, we break
the world or target problem down into a set of states (𝒮 ), actions (𝒜 ), and
reward measurements (ℝ). To relate this to computer networks, an example
state space would be a vector of buffer occupancies in a switch, an action
space would be the priority to assign some new flow which has arrived,
and the reward might be the proportion of finished flows which achieved
comfortably low FCTs. We then consider our sequence of interactions in
discrete timesteps—at the present time 𝑡 , an agent observes 𝑠𝑡 ∈ 𝒮 , chooses
some 𝑎𝑡 ∈ 𝒜 , and then observes their change in the world as a new state
𝑠𝑡+1 ∈ 𝒮 and a reward measure 𝑟𝑡+1 ∈ ℝ. As required, we can qualify these
further, e.g., the set of actions we can take from a state 𝑠 may be limited to
𝐴𝑠 ⊆ 𝒜 . Acting optimally then consists of maximising the sum of rewards
over some time horizon. This is captured up to an infinite horizon by the
concept of the expected discounted return:

𝔼[
∞
∑
𝑡=0

𝛾 𝑡𝑅𝑡] (3.5)

where the discount 𝛾 ∈ [0, 1] controls how “forward-planning” an agent
may be25, always choosing 𝑎𝑡 ∼ 𝜋 (𝑎𝑡 | 𝑠𝑡 , 𝜽𝑡). While dense, this formalism
essentially captures and describes the performance of our agent over all
possible run-lengths from all starting states (i.e., over all episodes), and in
general this is what RL algorithms are designed to maximise.

MDPs assume that there are stationary, well-defined (though stochastic)
transitions between these states. For any 𝑠, 𝑠′ ∈ 𝒮 , 𝑎 ∈ 𝐴𝑠 , anMDP is defined
by a state transition function, Pa (𝑠, 𝑠′)which returns the probability that we
will land in 𝑠′ after taking action 𝑎 in state 𝑠, and a function returning the
expected reward Ra (𝑠, 𝑠′) for each valid transition. If we have all this inform-
ation, then we can apply the Bellman equation (Bellman, 1957), a dynamic
programming algorithm, to solve for an optimal policy. This allows us to
assign a value 𝑣𝜋 (𝑠) to each state (the expected return over all choices in the
current state), and 𝑞𝜋 (𝑠, 𝑎) to each action, and then choose maximal-value
actions at each timestep. In real-world scenarios however, we usually lack
this knowledge; this either requires involved modelling, or is rendered in-
tractable by a continuous or combinatorially large state space.

Like most ML methods, modern RL algorithms use gradient information to
update the parameters used to approximate a function. How RL differs is
that it aims to learn an optimal policy without any knowledge of the MDP
apart from its state and action space—model-free. Knowledge of the traject-
ories followed by agents (i.e., state-action-reward tuples at all timesteps) is
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26 Note the policy 𝜋 does not
require any knowledge of re-
wards, except when training.
This allows for RL agents
to be trained using simu-
lated systems or data, and
then deployed in an environ-
ment where they cannot ac-
cess this knowledge due to
sampling cost. If these meas-
ures are present in deploy-
ment, then RL can learn on-
line.

𝛾 q̂(⋅)

𝛾2 q̂(⋅)

Figure 3.4: A simplified
view of how action values
propagate back through vis-
ited states: because a state’s
value includes some portion
𝛾 of its children’s values, at
convergence it includes 𝛾 2 of
its grandchildren, and so on.
A limitation of the single-
step family is that they must
visit the same transitions sev-
eral times for earlier states to
learn about their successors.

then used to compute target values and adjustments for the parameter set 𝜽
for any function approximator. By requiring that our policy approximation
𝜋 (𝑎 | 𝑠, 𝜽) is differentiable, RL works in tandem with any of the function
approximation approaches described in section 3.2.26

3.3.3 Demonstrating RL: Sarsa

While many RL algorithms have been developed (each of which making
quite different choices on how to apply trajectory data), it is likely most
helpful to start with a concrete point in the design space before listing their
full variety. Doubly so here, as this particular algorithm—single-step, semi-
gradient Sarsa (Sutton & Barto, 2018, pp. 217–221)—underpins chapters 4
and 5. The Sarsa algorithm considers only one transition at a time: a pair
of states 𝑠𝑡 , 𝑠𝑡+1, their accompanying actions 𝑎𝑡 , 𝑎𝑡+1, and the reward 𝑟𝑡+1 ac-
companying 𝑠𝑡+1. This is why it is defined as single-step, and as such it does
not require a completed trajectory for learning.

As Sarsa is a value-based method, an agent operates by defining an approx-
imate value function q̂(𝑠, 𝑎, 𝜽) to each action 𝑎 it can take from 𝑠, typically
choosing the action with the highest value. Note that q̂(⋅) is completely ar-
bitrary, and may be any differentiable approximator. We can then update 𝜽
over time as follows:

𝛿𝑡 = 𝑟𝑡+1 + 𝛾 q̂(𝑠𝑡+1, 𝑎𝑡+1, 𝜽𝑡) − q̂(𝑠𝑡 , 𝑎𝑡 , 𝜽𝑡), (3.6a)

𝜽𝑡+1 = 𝜽𝑡 + 𝛼𝛿𝑡∇q̂(𝑠𝑡 , 𝑎𝑡 , 𝜽𝑡), (3.6b)

where 𝛿𝑡 is known as the Temporal-Difference (TD) error. 𝛼 ∈ (0, 1) defines
the learning rate (governing the policy stability), with 𝛾 defined as in the
MDP formulation.

In essence, at each timestep the policy parameters (𝜽) are increased along the
gradient (∇q̂(⋅)) using a fixed learning rate (𝛼) and a computed adjustment
(𝛿𝑡 ). This adjustment is equal to the difference between the chosen action 𝑎’s
value in state 𝑠 and the reward received (𝑟𝑡+1 − q̂(𝑠𝑡 , 𝑎𝑡 , 𝜽)), plus some part of
the next action’s value (𝛾 q̂(𝑠𝑡+1, 𝑎𝑡+1, 𝜽)). Naturally, as state transitions are
visited and revisited during training, the value of later choices can propagate
down the tree of states, as shown by fig. 3.4. To see how this combines with
a simple linear function approximation, consider figs. 3.5 and 3.6.

3.3.4 The RL algorithm design space

While the above introduction to Sarsa is a clear way to intuit the key ideas
underpinning RL, it is a very specific point within a remarkable design space.
For context, other algorithms may employ separate state-value approxima-
tions, use the entirety of an agent’s trace, or be tailored to characteristics of
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(b) Value Estimation and Action Selection

Figure 3.5: An example of tile coding for 2-dimensional state and 4 actions,
using 2 tilings, 3 tiles per dimension, and a bias tile. All components of 𝑠
are clamped to [0, 1]. For simplicity, I denote 𝒙(𝑠, ⋅) as a list of indices and
represent the values of all actions at each tile with a vector. (a) The state 𝑠
activates the bias tile and exactly one tile in each tiling. (b) The action values
of active tiles are summed to produce the current value estimate for each
action available in 𝑠—for this state, local knowledge ensures that action 4 is
chosen by the greedy policy despite typically being a poor choice elsewhere.
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Figure 3.6: The update step for fig. 3.5, given an observed TD error 𝛿𝑡 =
−0.2 (indicating a lower observed reward than the expected long-term value
of 0.7) and 𝛼 = 0.5. Action 4’s value is thus reduced in the tiles associated
with state 𝑠, but remains the most likely choice; the negative 𝛿𝑡 may have
arisen from noise in the reward signal. For illustrative purposes, I choose
an unrealistically high 𝛼 (typically, 𝛼 ≤ 0.05 is a more reasonable choice).
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27 This is the case in the
ParSa algorithm introduced
in chapter 5, where recom-
puting the gradient is faster.
We only require one gradient
measure per update still—in
an 𝑛-step method, this is the
gradient for the state-action
pair 𝑛 steps ago.

the policy approximator (e.g., how neural networks benefit from batching).
Algorithms tend to differ in some key ways:

Trace length. Single-step methods like the above can be generalised to 𝑛-step
methods by including further discounted reward measurements (at in-
creased runtime memory cost), as in A3C (Mnih et al., 2016). Monte
Carlo methods such as REINFORCE (Williams, 1992) carry this to its
logical extreme, updating every transition in a trace using the known
return for an episode. This solves the issue of ‘repeat visits’ hin-
ted at in fig. 3.4, at the cost of storing entire trajectories. Moreover,
these can be tricky to delineate into clear episodes in some online
tasks. Consider also eligibility trace methods such as TD(𝜆) (Tesauro,
1995), which propagate value backwards through the MDP by includ-
ing some portion 𝜆 ∈ [0, 1] of the last timestep’s gradient alongside
the current (i.e., having some decaying part of every prior state’s gradi-
ent).

The role of values in a policy. Sarsa (andmany other algorithms) follow a value-
based approach: the role of the function approximator is to compute
and learn the value for each action, and then action selection chooses
based on these values. This design, however, prevents continuous
control (i.e., 𝑎𝑡 ∈ ℝ). The dominating paradigm of late has been
policy gradient methods, which impose no requirement on the policy’s
output format—given that a differentiable performance metric in 𝜽 is
known. This allows easier expression of many system designs, such
as having mixed real-valued and discrete action components. The de-
velopment ofDPG (Silver et al., 2014) has been a key driver in ensuring
their suitability for continuous problems. Actor-critic algorithms are
a considerable subset of this which also learn separate a value estim-
ate for the current state to provide this performance measure. Going
further still, direct policy search approaches such as those inspired by
or using ES eschew gradient computation to apply randomised modi-
fications directly to the policy.

While the high-level conceptual directions and differences between these
algorithms are interesting, we should return to what they imply for on-
line deployment in PDP hardware. Additional trace length means that we
must dedicate extra runtimememory per trace for either state-action-reward
tuples and values—high-speed memory of course being in short supply in
this environment. However, even if we don’t cache gradient values them-
selves27 the computational cost does not substantially increase beyond in-
cluding additional discounted value pairs, meaning that there may be an ac-
ceptable tradeoff here. Policy gradient methods like actor-critic algorithms
may prove trickier even with discrete actions, as they require additional
compute and storage to maintain two or more parameter sets which may
overlap or be disjoint. ES methods (Chrabaszcz et al., 2018; Salimans et al.,
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2017) may instead be a comfortable fit for policies with fewer parameters.
By adding a small amount of random noise over 𝜽 and aggregating success-
ful policies, these algorithms are devoid of any gradient computation and
admit efficient communication schemes.

3.3.5 RL use considerations

Exploration vs. exploitation in practice Consider again the dilemma presen-
ted in fig. 3.3: discovery of an optimal policy relies on either global know-
ledge, or exploration of a suboptimal portion of the state-space. RL agents
are typically initialised with either zeroed or random policy parameters, but
we cannot expect that for larger state spaces this produces meaningful ex-
ploration. It may well be the case that following the current optimal policy
up to some uncertain state and then exploring can provided targeted and
useful samples, whereas randomised parameters are something more akin
to a random walk for all timesteps spent in early episodes.

To encourage exploration in discrete action spaces, we typically introduce
some randomness into action selection. 𝜖-greedy methods pick another ac-
tion at randomwith probability 𝜖—typically annealing the value of 𝜖 towards
zero over some number of timesteps or training episodes. Meanwhile, the
simplest way to achieve this in many NNs is to use the outputs of a soft-
max (Luce, 1959) layer as a probability distribution over actions, particu-
larly if starting from randomly initialised parameters. Boltzmann and Max-
Boltzmann action selection (Wiering, 1999, p. 73) constitute variations of
these schemes which control the concentration of action probabilities. Act-
ive estimation of the degree of exploration has also attracted healthy degrees
of interest (particularlywith regard to evolving or non-stationary problems):
VDBE (Tokic, 2010; Tokic & Palm, 2011) uses changes in the TD error to con-
trol 𝜖 over time, while Tokic and Palm (2012) train a continuous NN-backed
agent to control exploration parameters.

In the case of continuous RL action spaces, an initial consensus in the wake
of the DDPG algorithm (Lillicrap et al., 2016) was to make use of Ornstein-
Uhlenbeck processes (Uhlenbeck & Ornstein, 1930) to directly inject noise
in the action space. However, more recent ablation studies have shown that
this offers no tangible benefits over Gaussian noise (Barth-Maron et al., 2018;
Fujimoto et al., 2018).

RL in asynchronous data-driven networking Automatic, adaptive control re-
quires accurate, recent state to make optimal decisions and to act in a timely
manner. Action execution, computation and training have real costs, which
have been shown to negatively affect the performance of asynchronous RL
systems (Travnik et al., 2018). Hence, DDN applications are profoundly af-
fected, as they must often reckon with inference times which are significant
compared to the systems they control. As it stands, state measurement and
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policy execution require additional hardware and infrastructure, increasing
delays and costing rack-space in the data centres or networks where we aim
to deploy DDN.

There remains some degree of divergence between the theory and imple-
mentation of RL agents when it comes to accounting for the above costs.
Consider fig. 3.7: the traditional formulation of an MDP assumes that an
agent receives a new view of the world’s state at fixed time intervals, and
then decides upon and executes an action instantly. The reality is that state
information takes time to traverse the network, service times are offset by
how quickly hosts respond to interrupts and deserialise requests, and action
preference lists are often computed via expensive policy approximations.
Action installation also incurs costs in fields such as network administration,
initially to contact the controller and then for those actions to be installed
via the control plane.

These delays (and variance thereof) add noise to the state-action mapping
being learnt, which has a potent reduction to learning rate and final accur-
acy, even for simple grid world tasks according to Travnik et al. (2018). They
in turn show that reordering algorithmic steps can reduce these costs for on-
line single-step algorithms, but that reducing this further requires detailed
agent-environment co-design. Achieving this often requires that state meas-
urements are combined or coalesced (K. A. Simpson, Rogers & Pezaros, 2020;
Sivakumar et al., 2019) while expensive computations are ongoing. For in-
stance, ‘stopping the world’ in the algorithmic sense causes significant per-
formance degradation, as inference takes up to 30ms for Sivakumar et al., or
any time-sensitive control problems. In the PDP case, this can be important
for a wide variety of reasons; we might be interested in capturing statistics
of a controlled system over longer timescales, or we might need to explicitly
rate limit requests at switch-scale or line-rate to prevent an agent (and its
parent NIC or switch) from being overloaded.

3.4 Numerical representations for embedded ML

ML training and inference work in the domain of real numbers, and thus re-
quire a suitable data format for representation of weights, gradients, and val-
ues. To consider how to perform inference and learning in different classes
of PDP hardware, and thus enable online RL as in chapter 5, we must weigh
up the impacts and hardware requirements of suitable data formats.

Floating-point arithmetic is the canonical data format for this purpose, and
allows commodity machines and accelerators to approximate real numbers
using a fixed-size representation, dividing available bits among a sign, expo-
nent, and mantissa. This captures several important properties, principally
dynamic range (as the exponent describes the magnitude of a number). For
instance, 32 bit floating-point numbers (FP32) use 1 bit, 8 bit and 23 bit to
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Figure 3.7: One issue which arises when we aim to introduce RL into tem-
porally fine-grained environments is that the MDP formulation can fail to
capture how state drifts during computation. Input states may take some
time to acquire and transmit to an agent over the network (𝑡1), the function
approximator itself has an associated computational cost for inference (𝑡2),
and enacting said action can involve network latency and expensive table
preprocessing in the case of hardware P4 implementations (𝑡3). As a result,
the system actually undergoes the transition (𝑆′, 𝐴) → (𝑆″), introducing
noise or variance into the value function being learnt.

28 This leaves aside the per-
formance gains offered by
SIMD vectorisation, which is
a trickier topic.

store each component, which is sometimes known as a 1-8-23 representa-
tion.

However, there are concrete reasons to consider other data formats, particu-
larly on more resource-constrained environments. Quantisation and altern-
ative data formats have been suggested to make ML inference feasible on
resource- and power-limited platforms, work around hardware constraints,
or compute faster and more efficiently. Although individual floating-point
operations, as compared to integers, have effectively equal latency and re-
ciprocal throughput on modern x86 hardware (Fog, 2021)28, FPUs still re-
quire additional chip area and power. Naturally, chip designers don’t want
to fabricate or plan around unnecessary FUs: for instance, (programmable)
network hardware and ASICs require only basic integer arithmetic. This is
not the only reason to be interested in alternative data formats; by reducing
the size of any individual number from 32 bit to 16 bit or 8 bit, we reduce the
size of parameter sets and input vectors by two to four times. This reduces
the range of numbers we can express (in both magnitude and precision), but
can reduce inference latency and memory cost for the benefit of both com-
modity machines and dedicated accelerators. Luckily, the task of bringing
ML models to resource-constrained environments without these capabilit-
ies is well-studied, and in general the effect on accuracy is small in spite of
the introduced quantisation noise.

To deploy ML models to PDP hardware, the question of what data format
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to use is one we must ask ourselves. Simply put, this is a necessity due to
the general (and expected!) lack of floating-point support in PDP hardware
of all sizes. What might be less obvious is that we have different needs de-
pending on whether the main task we’re interested in is inference—i.e., per-
packet classification to detect attack traffic—or in-situ learning of a function
or policy (such as adapting a learnt AQM scheme to account for a new traffic
class). The speedup and memory savings we can gain from any choice are
dependent on the target environment (e.g., between PDP switches, NPUs, or
host machines), as is our ability to compute andmanipulate policy gradients.
We consider here the value and use of many fixed-point, floating-point, and
binarised representations for online and offline ML in different execution
environments across the network.

3.4.1 Floating-point

Floating-point formats are the de facto way to represent real numbers, but
for the reasons discussed above cannot be included in most PDP use cases.
However, they may be readily used on host machines (i.e., in longer-term
control plane inference tasks), in some environments such as FPGAs where
we can deliberately include the needed FPUs, or dedicated accelerators such
as BrainWave (Fowers et al., 2018). Finally, they are most obviously suited
to the actual task of learning a function—their dynamic range trivially al-
lows us to represent input values and capture small gradient values in each
parameter.

While there are standardised floating-point forms designed to target mobile
and weaker hardware, such as half-precision (FP16, 16 bit, 1-5-10) and mini-
float (FP8, 8 bit, 1-4-3), these fail to be effective in some ML use cases. At
the same time, a key factor in FPU chip cost is the size of the mantissa—
which has been observed to have a quadratic scaling effect on area in TPU
development (S. Wang & Kanwar, 2019). Accordingly, allocating more bits
to the exponent can allow for more cores and FUs in the same area, or re-
duce power draw. bfloat16 (S. Wang & Kanwar, 2019) is a 16 bit format
employed in Google TPUs (S. Xie et al., 2018) and modern Intel Xeon server
CPUs (Intel, 2021a) among other devices. It matches the dynamic range of
32 bit floats (1-8-7), better expressing the smaller end of the dynamic range
(e.g., for gradients) while having identical failure modes (subnormal num-
bers, edge cases) to FP32. hfp8 (Sun et al., 2019), as an 8 bit format, uses
different layouts for the forward (1-4-3) and backward (1-5-2) passes, apply-
ing a downward bias of 4 to the exponent in both cases. This allows better
expression of small values in general, and even smaller values during gradi-
ent computation, at an extra 5 % hardware area cost to support both formats.
While this is a fairly indicative summary of high-profile floating-point vari-
ants today, it must be said that there are more formats beyond the scope of
this introduction (Mach et al., 2020).
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3.4.2 Fixed-point and binary

While the above techniques are promising and effective, deployment on en-
vironments such as PDP hardware requires further ingenuity. Fixed-point
arithmetic is an approach which makes it possible to represent real num-
bers as integers, losing dynamic range as a consequence. The 𝑄𝑚.𝑛 format
expresses a real number using an 𝑚 bit integer part alongside an 𝑛 bit frac-
tional part, which allows us to evaluate and update policies using only in-
teger arithmetic on 𝑘 = 1 + 𝑚 + 𝑛 bit numbers, assuming the presence of a
sign bit. For instance, the 8 bit number 0b0010_1000 in 𝑄3.4 represents the
real number 2.5—we can view this as two separate parts (2 + 8 × 2−4), or as
one whole in the fractional base (40 × 2−4). In practice, the entirety of the
number is stored as a two’s complement number in place of a sign bit, and
base conversion (i.e., changing 𝑛) requires only bitshifts. When 𝑘 is known,
we can simply refer to the representation as 𝑄𝑛. The most useful part of
this scheme is that integer addition and subtraction are unchanged for two
𝑄 numbers, and conversion of a normal integer requires an 𝑛 bit left shift.
Multiplication and division by a normal integer can be performed using the
standard ALU operations, while 𝑄 numbers need an additional bitshift (pre-
& post-op base correction) and temporary expansion into a 2𝑘 bit register.

Although these tradeoffs seem to predispose fixed-point towards only target
environments without FPUs, it has still enjoyed application in inference and
training. In particular, Courbariaux et al. (2015) were able to train Maxout
networks without substantial error with 𝑘 at 19 bit, or 11 bit using dynamic
scaling (𝑚 = 5). In distributed training, fixed-point arithmetic is useful as
an intermediate representation for in-NIC gradient aggregation (Lao et al.,
2021; Sapio et al., 2021). Scaling down NNs to INT8 requires careful calib-
ration (Migacz, 2017), binning the activations per layer in an FP32 network
to choose optimal saturation thresholds. Training INT8 DNNs directly on
mobile and Internet of Things (IoT) devices has become more possible (Zhou
et al., 2021), though this still requires floating point hardware to compute
simple compensation terms aftermoving all tensor operations to fixed-point.
To some extent, these can also enable in-NIC DNN inference (Langlet, 2019),
and have been used to great effect in the earlier-described Taurus (Swamy
et al., 2020; 2022) architecture for in-network ML (sections 2.2.4 and 2.4.4).

Binary representations are used to great effect in Binarised Neural Networks
(BNNs) (Hubara et al., 2016; M. Kim & Smaragdis, 2016; Miyashita et al.,
2016; Rastegari et al., 2016); by using 0 to represent to −1, and 1 to rep-
resent +1, we may replace Hadamard product operations between tensors
with Xnor operations, and when combined with Popcnt instructions we
can easily compute the dot product between vectors. This offers bit-parallel
execution compatible with almost all ALUs, including PDP hardware. This
enables in-NIC execution of NNs: either offloading small portions of fully-
connected layers to accelerate inference (Sanvito et al., 2018) or to enable
line-rate packet processing in P4-capable PDP hardware (Siracusano & Bi-
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fulco, 2018; Siracusano et al., 2020). This is achieved by converting the
trained model into MATs—as such, their execution is accelerated by data-
plane specific primitives such as TCAM.While there is vested interest in run-
ning these complex function approximators in NICs and switches, they are
at present trained on commodity x86 machines using real-valued weights
and gradients clamped to [−1, 1] (i.e., using tanh). While very effective (and
portable) in inference, we cannot represent gradients or partial adjustments
of learnt parameters. As such, online training with binarised formats re-
mains out of reach, in spite of their in-NIC suitability.

3.5 Challenges

Leaving security aside for now, there remain key issues in the training and
design of DDN-backed systems which wemust consider in the evaluation of
DDN solutions like those in chapters 4 and 6. I briefly discuss several high-
level challenges in the applicability of DDN, and initial in-roads to their
solution: issues inherent to data collection and simulation in representative
environments; the seeming lack of generality of ML and RL models in the
systems domain; and the interpretation and verification of trained function
approximators, particularly when given control over such critical infrastruc-
ture as the Internet.

3.5.1 Input data and simulation

A key issue in DDN is that training from trace data is inherently fraught
with risk. Consider that traces contain fixed sequences of states, and it
should be apparent that through their use we cannot model or learn how
the controlled system acts in response to change. Traces include the tacit
assumption that the model will not change in response to the input, either
due to an unforeseen operational mode, or because the users of the system
actively change their behaviour. Even given these difficulties, why do some
studies still attempt to learn network control in this manner? Network oper-
ators are, broadly speaking, unwilling to apply untested and unverified ML
or RL models towards production networks; not only because they aim to
prevent misconfiguration or collapse, but to uphold contractually enforced
Service-Level Agreements (SLAs). Overcoming this requires the design and
implementation of accurate simulations, which aremarred by complex inter-
actions between and across levels of the (ever-evolving) networking stack,
particularly at Internet scale (Floyd & Paxson, 2001). Consider a task such
as video stream ABR selection: a simulation must consider at the minimum
client-side and server-side behaviour (resources, contention, and demand),
transport-layer protocol dynamics (handshakes, failure modes, CCAs), and
path characteristics (including load balancers) to name but a few. These
concerns are neither new nor limited to the field of DDN:
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Here you can see the problem clearly. It is not that simulations
are not essential these days, and will be in the near future, but
rather it is necessary for the current crop of people, who have
had very little experience with reality, to realize they need to
know enough so the simulations include all essential details.
How will you convince yourself you have not made a mistake
somewhere in the vast amount of detail? ... The relevant accur-
acy and reliability of simulations are a serious problem.

(Hamming, 1997, p. 248)

The main difficulty arises from the fact that it takes not only expert know-
ledge to model these dynamics but to consider them, and while most of these
details can be abstracted over it is harder to determine those which will not
lead to further surprises in deployment.

Taking advantage of trace data in a more principled way requires insights
from off-policy RL, such as the use of doubly robust estimators (Bartulovic et
al., 2017) or contextual bandits (Lécuyer et al., 2017). These include the deriv-
ation or learning of reward models, and importance or inverse-propensity
sampling. Even so, in the case of doubly robust estimators Bartulovic et
al. explain that these may be invalidated by hard-to-model or highly non-
linear assumptions. In addition, different policies will invoke different state
distributions, and these approaches are incompatible to some extent with
non-Markovian problems or non-stationarity.

While it might be easier to cynically connect this goal to the initial wave of
dataset-driven ML algorithm applications papers, trace data can be correctly
handled. For instance, using RL to solve static problem instances derived
or cast similarly to NP-Hard optimisation problems does not require simu-
lation or ongoing interaction with a ‘real’ environment. Although it can be
difficult to know ahead of time, it’s worth considering whether the problem
is adversarial in some way; an ongoing control problem is altogether dif-
ferent from an offline optimisation task. It’s unlikely that in an optimised
chip floorplanning task, for instance, that target programs will immediately
start acting differently—compare this to a network where our actions imme-
diately induce varied modes in CCAs.

3.5.2 Generality

Aswe can see throughout section 3.1, DDNmethods are applicable to a wide
variety of problems. However, to claim that these use cases require in-depth
agent-environment co-design is a generous understatement—particularly
applications of RL, which require very careful consideration to construct
a sensible MDP formulation. State and action space definitions have po-
tent effects, are inherently problem-specific, and require domain expertise
to define and iterate on.
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29 Generally, the varied para-
meter which must be optim-
ised is some form of compute
allocation, e.g., the number
of servers or executors given
to a task set.

Recent research aims to investigate whether more general approaches are
feasible, by using ML inference to convert input vectors and decisions into
a performance metric (Fu et al., 2021)—effectively as a black-box form of
‘what-if’ analysis. Ideally, there would be no case-specific design elements
beyond the chosen input features, offering accurate performance prediction
would function for many separate applications. Looking at scheduling, plan-
ning, and placement tasks29, they find that inbuilt optimisations add irredu-
cible variance to the learning problem, even when the task is made as simple
as possible. Non-deterministic behaviour (i.e., stochastic load balancing) is
for instance an obvious source of noise, but threshold-based behaviours also
cause significant discontinuities. Even after diagnosis of these noise sources
(negating the desired ease-of-use), input-sensitive tasks still require probab-
ilistic ML methods, which can be harder to reason about or act on.

3.5.3 Interpretability and verification

For all the effort, time and expertise required to craft them, algorithmic or
heuristic solutions to network problems have a key advantage over data-
drivenmethods. Because they are so well-specified, it is reasonable for a net-
work operator or expert who has observed some unintended behaviour to
derive the root cause, and possibly formulate a fix for the issue. In contrast,
ML and DDN models’ behaviour is governed almost entirely by an opaque
set of parameters (𝜽, which can contain 103–109 real numbers), whichmakes
it harder to understand what aspects of input data are being acted on and
prioritised. As a side effect, tweaking a model to correct, modify, or improve
behaviour is also rendered difficult or impossible. Interpretability captures
whether a human can reasonably understand why an input or scenario in-
vokes an output or set of behaviours. Verifiability describes our ability to
prove that a DDN or heuristic solution upholds key properties through, e.g.,
modelling or closed-form analysis.

Interpretability in general ML has attracted attention as a research goal in
its own right. Many classical ML approaches such as SVMs or decision trees
offer sensible rule sets or decision boundaries (Molnar, 2021; Molnar et al.,
2020), yet NN-based function approximation presents very particular chal-
lenges. These comprise repeated high-dimensional linear transforms of in-
put data (e.g., by matrices containing thousands of values), interposed with
non-linear activation functions. CNNs and LSTMs complicate this logic fur-
ther by introducing learnt convolution filters and temporal relationships,
respectively. On some data classes such as images, it is possible to visual-
ise learnt feature activations (Olah et al., 2017), which typically manifest as
shapes or patterns that make some degree of sense to a human observer.
Network state spaces, however, are far less intuitive, so feature activations
in NNs are less obviously meaningful and still fail to allow configurability.
Tools such as LIME (Ribeiro et al., 2016) can reveal the relative importance of
each feature in such cases, but it can still require in-depth testing to realise
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30 I discuss verification as
an approach towards ad-
versarial example resistance
in section 3.6.

that (let alone why) an agent never chooses some actions in spite of their
optimality (Dethise et al., 2019). A DDN-specific remedy is to use teacher-
student methods to convert (non-recurrent) NNs into simpler models (Meng
et al., 2020). In particular, ‘local’ decision-making systems (CCAs, ABR
selection, TO/TE) are converted into decision trees after applying branch
pruning algorithms to keep the model compact enough to be understood.
For global decisions (job scheduling, routing, VNF placement) they produce
hypergraphs which express which decisions are critical in an optimal solu-
tion. In addition to reducing latency and making it clear what sequence of
decisions is responsible for an output, this exposes any ‘missing classes’ in
the input and output spaces quite visibly. In response, administrators may
add additional training data or modify the decision tree themselves. Un-
fortunately, the hypergraph representation fails to explain or simplify the
logic behind a given decision set (as opposed to the highest-value members
of that set), but can allow model co-design, i.e., important features can be
allowed to skip several NN layers (having a more direct effect on output).

Verification has a broad set of meanings in ML research, from investigating
security properties (i.e., adversarial robustness30) to more global guarantees
of input and output properties. One promising line of work in this area ap-
plies SMT solvers to smaller DNNs for, e.g., safety and liveness constraints
on inputs (Katz et al., 2017; 2019). These verification techniques are power-
ful in that they can guarantee a desired property is upheld (or produce a dis-
tinct counterexample where it is not), although recalling that SMT solution
is NP-Hard, this comes at a high execution cost. Luckily, most DDN use
cases considered by this thesis apply small-to-moderately sized networks,
to which such verification is well-suited—moreover, latency and through-
put demands incentivise the use of smaller NNs. Extending this towards RL
is trickier, given that we must now verify that properties hold over state tra-
jectories of arbitrary length. In addition, the onus now falls on system oper-
ators to design suitable state transition functions (i.e., accurate system simu-
lations) to model how a system evolves in response to an action. With these
primitives, some degree of DRL verification is possible via bounded model
checking (Eliyahu et al., 2021; Kazak et al., 2019) (checking run-lengths of
𝑛 states from a set of initial states), and 𝑘-induction (Amir et al., 2021). In
addition to the need to define state transition dynamics using only linear
functions, these works also impose strict limits on policy non-determinism
and activation functions which can be used.

It’s worth noting that, as with several approaches examined in section 3.1, a
hybrid approach can be useful in reducing the impact of both these concerns.
By augmenting an algorithmic or heuristic approach with DDN to compute
optimal parameter choices, it can be far more reasonable in practice to un-
derstand how a system on the whole will behave. Equally, it becomes easier
to bound such choices within a safe range as needed.
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3.6 Security

ML models introduce particular security issues in their training, use, and
howwe expose them or their decisions to users. Recall that, in general, their
operation is entirely governed by their parameter set 𝜽, and that we currently
face great difficulty in understanding exactly what transformations or logic
they encode. What additional concerns might arise from this? The most
obvious challenge is that an attacker might construct input samples which
appear to a human to have one label, but produce a strong response in a
DDN model for another label. We call such inputs adversarial examples or
evasion attacks. Changing focus, the idea of online or active learning (Settles,
2010) can seem like a powerful capability to have in the administration of
a network for saving operator time. In introducing this, we now need to
ask how an attacker might aim to covertly modify our model’s behaviour,
either to change the label for a handful of samples (e.g., ensure a malware
sample always evades inspection), adjust the entire decision surface (e.g., to
incur a Denial of Service (DoS) or performance degradation by incorrectly
handling all flows), or to encode an input pattern which always triggers a
given output. These behaviours fall under the umbrella of poisoning attacks.
In tandem, we must also ask whether attackers are able to reverse engineer
our model parameters from queries or environmental observation, and the
privacy implications of a parameter vector 𝜽 being leaked or extracted—data
extraction attacks. These classes of attack, interestingly, mostlymirror those
that have historically threatened classifiers in the security domain (Barreno
et al., 2006).

I introduce in this section the techniques and procedures for undertaking
these classes of attack, in addition to defences and present suggestions on
how and why they work. It must be stated that the attack and defence sur-
face of ML models is very much subject to the same game of cat-and-mouse
as any other security domain, e.g., malware or DDoS design and detection.
This field in particular moves very quickly due to the larger reach and im-
pact of DNNs in society as a whole, motivating constant scrutiny by the
security community. As a result, any defences listed are certain to have
been invalidated by the time this thesis is read; I hope this section at least
provides an illustration of the classes of input, output and model transforms
that have held some promise.

3.6.1 Evasion attacks and adversarial examples

Adversarial examples are input datawhich have been subtlymodified to trick
a machine learning model into producing an incorrect output (Papernot,
McDaniel, Jha et al., 2016; Papernot et al., 2018). This problem has been
known to security experts for a much longer time under the moniker of eva-
sion attacks (Barreno et al., 2006). The context for these evasions includes
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31 These specific metrics are
theHamming metric ℓ0 (num-
ber of altered elements in
x), Manhattan metric ℓ1, Eu-
clidean metric ℓ2, and the
Chebyshev metric ℓ∞ (the
largest change to any ele-
ment).

cases as simple as spam filter avoidance, and as complex as self-modifying
and virtualisation-aware malware (Copty et al., 2018). The term does not
purely cover ML-based approaches in this context, though there are similar-
ities in the sense that the transformed output must maintain a key property
(i.e., it remains a functioning malware payload).

For instance, assume we have in input vector x with a ground truth label
𝑤 that the classifier correctly outputs. An attacker wishes to add some per-
turbation 𝜹 such that the adversarial example x + 𝜹 produces a new out-
put 𝑤 ′ from a classifier but still appears to belong to 𝑤 according to a hu-
man observer. They may require that 𝑤 ′ is a specific label, or simply that
𝑤 ≠ 𝑤 ′. These attacks typically assume a white-box attacker (i.e., one who
has direct read access to the ML model’s parameters), who is able to use
their knowledge of 𝜽 to compute this 𝜹 . The data extraction techniques
discussed shortly (section 3.6.3) offer more concrete tools for mounting a
black-box evasion attack. Typically, this is then formalised as an optimisa-
tion problem in terms of the underlying model, which can be solved via a
stochastic optimiser like Adam (Kingma & Ba, 2014). To ensure that these
alterations are subtle enough to be unnoticeable to a human operator, the
constraint to be minimised is some distance metric in ℓ{0,1,2,...,∞}31 between
the altered data and its original. For instance, in a pixel image a bounded ℓ0
limits the number of pixels that may be changed, while ℓ2 limits the overall
strength of noise added. These adversarial examples typically occur very
close to the decision hyperplane; applying too much noise can either acci-
dentally ‘push’ the data into a classification the attacker did not desire, or
it may become humanly perceptible. Since their inception (Szegedy et al.,
2013), they have been shown to generalise between models and input vec-
tors (Goodfellow et al., 2014). In the image domain, they have been made
transform-resilient (Kurakin et al., 2016), to transfer to textural information
on 3D-printed objects (Athalye et al., 2017), and to persist through projec-
tion onto surfaces (Gnanasambandam et al., 2021).

A more recent formalisation and strengthening of attacks based on raw in-
put data was recently presented by Carlini and Wagner (2017). Around the
time of publication, distillation (Papernot, McDaniel, Wu et al., 2016) was
proposed as a form of hardening for neural networks expected to perform
in adversarial settings where evasion attacks might be common. This work
reveals that existing approaches for generating adversarial examplesweren’t
strong enough and, accordingly, approaches like defensive distillation are
shown to be ineffective. Some future works refer to the methods they pro-
pose as CW-ℓ{0,2,∞} attacks. Their attacks exceed existing work based on
these three well-understood metrics by a more in-depth analysis of the con-
struction of cost functions, a reworked box constraint built around tanh(⋅)
(as in HDR image tone mapping), and a more nuanced treatment of the ef-
fects of discretisation error. By introducing a confidence factor 𝜅, they are
able to explicitly design attacks which are transferable between one classi-
fier and its distilled form, or a network derived from the original by black
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32 Image and audio pro-
cessing are something of an
exception to this, where the
feature space is the problem
space. As a result, most ad-
versarial ML research targets
these domains for simplicity.

box inference.

In practice, inputs to ML classifiers are often heavily pre-processed or un-
dergo some statistical transformation; either to achieve a fixed-size and com-
pact representation or to increase accuracy. In this sense we can refer to the
‘true’ inputs as belonging to the problem space, while the transformed input
given to the DNN/ML classifier belongs to the feature space.32 A malware
detector would not, for instance, take an executable’s binary as its input,
and would instead process behavioural features extracted by static and dy-
namic analysis tools. Of course, the transforms to determine these features
are non-invertible and often non-differentiable. Perturbed inputs also need
to maintain functionality (in, e.g., malware), and when combined with input
validity checks this makes it difficult to create adversarial examples. A re-
cent frontier on enabling such attacks is a framework for expressing input
validity and transformation constraints (Pierazzi et al., 2020); if feature trans-
formations are approximately differentiable then they may be used directly,
otherwise falling back on genetic algorithms and Monte Carlo tree search.

DRL algorithms are equally vulnerable to this class of attacks, despite the
fact that their stochastic nature greatly influences the trajectories gathered
during training. The meaning of an attacker manipulating the environment
is, again, problem space dependent, and most work focusses to some extent
on reducing agent performance rather than invoking specific actions. S. H.
Huang et al. (2017) have shown that this vulnerability to adversarial inputs
extends between RL algorithms in white-box settings, while perturbations
acquired in a black-box setting on the same NN architecture require greater
error bounds to invoke the same loss of reward. An alternative strategy is to
directly modify the PPO algorithm, training agents to choose actions with
the highest likelihood of making another victim agent perform suboptim-
ally (Wu et al., 2021)—i.e., through this adversarial agent’s effect on shared
environment state via valid actions.

Defences While there is a great deal of churn in what defences will still
be considered ‘valid’ at any time, there are concrete guidelines on the eval-
uation of defences (Carlini et al., 2019) to aid in their development (particu-
larly as earlier attempts at defence were not always considered as rigorously
as they should be). For instance, an earlier proposed (though now defeated)
defence was defensive distillation (Papernot, McDaniel, Wu et al., 2016). Or-
dinarily, distillation (Hinton et al., 2015) takes the softmax probability scores
output by a given model, and applies these as the soft labels to be learnt
by a more compact NN architecture. For early evasion attacks, it sufficed
to perform this without changing the target model’s structure (selecting a
higher softmax temperature) such that smoother decision boundaries would
be learnt, though this was invalidated by the above CW attacks.

Adversarial training methods have borne some degree of interest. These ap-
proaches integrate generated evasion attacks into the training set in some
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way; either by explicitly adding generated adversarial examples into the
dataset alongside their true labels (Ilyas et al., 2017), or by the direct inclu-
sion of the attack generationmethod in the loss function (Madry et al., 2018).
However, they exhibit some vulnerability to universal black-box attacks and
as such should not be used as the sole defence (Tramèr et al., 2018).

In ensemble classification, if many of the individual classifiers disagree then
this can represent a high degree of uncertainty about the observed data.
Smutz and Stavrou (2016) realise that this can act as a powerful indicator
of an evasion attack in progress, and propose mutual agreement analysis
as a defence on top of the PDFrate (PDF malware) and Drebin (Android
executables) malware detection systems. Both of these platforms had well-
established adversarial attacks (Maiorca et al., 2013; Srndic & Laskov, 2014),
built around the constraint that core exploit functionality must be preserved
(i.e., problem-space constraints). When an insufficient amount of the con-
stituent classifiers return the same result, the result returned is that the
sample is ‘uncertain’—suggesting either a new class of data or evidence of
attempted evasion. The approach naturally suits ensemble methods such as
random forests, but an extension to SVMs is proposed. Moreover, the addi-
tion of the ‘uncertain’ classification acts as a useful metric for continuous
training and evolution.

Ensembles of classifications around one data point, rather than classifiers
(i.e., without changing the classifier) have also been considered. Adversarial
examples typically occur very close to the decision hyperplane; applying too
much noise can either accidentally ‘push’ the data into a classification the at-
tacker did not desire, or it may become humanly perceptible. This principle
is exploited by Cao and Gong (2017), who propose ensemble classification of
potentially adversarial data by sampling from the local hypercube—region-
based classification, rather than standard point-based classification. This
draws from the observation that most of the volume of the surrounding
hypercube lies within the true class region, even for adversarial examples,
with the size of this noise chosen to minimise accuracy loss. To learn the
true class of an example, we must then choose the class which admits the
largest volume of overlap with the sample region: we may approximate
this by drawing samples uniformly from this hypercube (e.g., 10 000 points),
and observing the output histogram of labels. Nowadays this ties in heav-
ily to the concept of certified defence (Raghunathan et al., 2018) and prov-
able robustness (H. Zhang et al., 2020), which effectively guarantee through
training that no perturbation with norm |𝜹| ≤ 𝜖 can alter the output label.
PixelDP (Lécuyer et al., 2019) connects this notion to differential privacy
schemes’ formalisation, observing that adding analytically-derived random-
ness within the model can provide certified robustness. This noise may be
injected at a hidden layer (i.e., the extracted latent representation), ormay be
applied directly to the input by training an auto-encoder to generate a noise
vector whichwouldmap to bounded-strength noise at the target depth. Out-
put classifications are then the expectation of NN softmax outputs computed
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over around 300 draws (42 × runtime overhead), with some additional fine-
tuning during training to account for noisier inputs. As noise strength in-
creases, overall robustness improves while clean performance degrades.

Recent work suggests that neuron coverage (the pattern of neuron activa-
tions throughout an NN triggered by an input) exhibits significant differ-
ences between benign and adversarial inputs (Sperl et al., 2020). To per-
form evasion attack detection, they train a model as normal and generate
a perturbation from each input to every other label, measuring the neuron
activations for every standard and adversarial input. They then train a fully-
connected network to detect adversarial patterns of activation. This works
reasonably well, though in a white-box setting this is still attackable at the
cost of more visible input noise.

Fully convolutional neural networks, particularly as applied to images, are
vulnerable to adversarial ‘patches’ applied to sub-sections or regions of the
input vector. Robust masking (Xiang et al., 2021) tackles this by reducing the
size of CNN receptive fields (via ensemble methods or smaller convolution
kernels). This forces adversarially triggered features to contribute larger
activations than in the undefended case, making their presence detectable.
However, this adds a non-negligible clean accuracy cost and adds 10–50 %
execution time (large–small NNs).

Tramèr et al. (2020) suggest an inherent balancing act between sensitivity
and invariance-based attacks—in that defence against one creates a vulner-
ability against the other. Sensitivity attacks are what we usually consider
in this family (a small change which doesn’t impact the input’s true label),
while invariance attacks use a change which would alter the true label but
is performed in such a way that the model still outputs the old label. The
defence in question would be against attacks within some ℓ𝑝 norm ball (i.e.,
similar pixel/state similarity)—with the findings suggesting that a ‘robust’
neural network is even more sensitive than an undefended one.

3.6.2 Poisoning attacks

Poisoning attacks are undertaken by an attacker who wants to permanently
alter the behaviour of a system which is still training in some way. The
key intuition is that an attacker wishes to either choose data points used
in training or modify gradient and parameter vectors to affect the model’s
decision boundaries in some way. For instance, they might aim to subtly
adjustmodel parameters such that a single (chosen)malware sample escapes
detection, or to effectively create a DoS by reducing the function of decision-
making RL agents. It is crucial to note that this does not require white-
box access—control over a handful of input samples may be sufficient, as
are any collaborative (e.g., FL) or online-learning systems like RL or active
learning (Settles, 2010). Semi-supervised approaches are also vulnerable due
to their inclusion of a large unchecked and unlabelled dataset (Carlini, 2021).
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In this case, an attacker can construct a path in feature space from a labelled
point towards a target value (comprising at most 0.1–1 % of the dataset).

Clean-label poison attacks (Aghakhani et al., 2020) combine the insights of
DNN adversarial examples to force a classifier to misbehave on a target in-
stance, while all training data appears correct to a human observer. Per-
turbed data points are selected, forming a convex hull around the target
point in feature space. This causes the target to be mapped to the same
class as the hull, though it can take around 3 h to launch a successful attack.

Trojan and backdoor attacks are a stronger and recent variant of model pois-
oning (X. Chen et al., 2017). They differ from their precursors in that an
attacker aims to keep the victimmodel’s performance unchanged for all typ-
ical inputs, while an input of their choice maps to their desired output. An
attacker may also have a model learn a ‘trigger’ in the input (i.e., a relative
sequence of state values, or a pair of glasses in an image) which immedi-
ately produces their desired label if it is present. These attacks are possible
in black-box scenarios with little effort: consider that X. Chen et al. are able
to achieve both classes of attack in 5–50 injected training samples (versus a
training set of size 600 000) without awareness of either the model or train-
ing data. White-box scenarios can make these learnt triggers less obvious
to an analyst, by including additional terms in the loss function to penalise
caseswhere their feature activations are easy to discriminate from benign in-
puts (Tan & Shokri, 2020). Concrete attacks have also been proposed, which
target FL (Bagdasaryan et al., 2020) and GNNs (Xi et al., 2021).

Defences Earlier work on centroid-distance anomaly detection (Kloft &
Laskov, 2010) indicated that online learning systems which assume station-
ary normality require an exponential amount of poison samples with re-
spect to how far the mean must move. If non-stationarity is modelled via a
bounded memory of points then an attacker requires only a linear amount
of samples if they control a sufficient fraction of the network throughput.
However, this analysis has limited applicability to modern function approx-
imation which encodes far more complex decision surface behaviour, par-
ticularly when bounded memories are not kept.

Auror (Shen et al., 2016) attempts to prevent model poisoning in collabor-
ative model training scenarios, and relies upon the observation that gradi-
ent updates submitted by users tend to have a known distribution. By per-
forming 2-means cluster detection on indicative features, users whose up-
dates consistently fall outside of the benign distribution may be detected
and blacklisted.

B.Wang et al. (2019) present a pipeline for detecting, identifying andmitigat-
ing backdoors in pre-trained DNN models. They observe that the existence
of a trigger (mapping into a target class 𝑡) makes it easier to adversarially
perturb all other classes toward 𝑡 as compared to any other target label. Since
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the trigger is shared, it may be reverse-engineered by clustering over all de-
rived perturbation vectors, and thus removed by either model unlearning
techniques or input preprocessing. Februus (Doan et al., 2020) explicitly
pre-processes NN inputs, but observes that past work is limited in accuracy
loss when removing trojan patches. In the image domain, the authors apply
work on CNN interpretability to identify which image regions are respons-
ible for the output class—with trojan regions domineering compared to the
rest of the image content. These pixels are then removed and replaced using
an image inpainting algorithm. Backdoors may also be detected by analys-
ing the NN parameters directly. X. Xu et al. (2021) train a mixture of smaller
‘shadow’ models using the same architecture—both clean and trojaned—and
train a binary classifier to make this distinction in a white-box setting. In
black-box scenarios, they explore the classification of input-output pairs se-
lected to maximise model information, rather than parameter vectors.

3.6.3 Data extraction and privacy

A key consideration of many ML models is that their dense parameter sets
encode an accurate, specialised, andmonetarily expensive logical transform—
even if it can’t be directly humanly interpreted. This expense arises through
the processes required to collect and label input datasets, as well as the vast
compute cost associated with training and hyperparameter optimisation in
energy and hardware procurement. As a result, learnt models themselves
have high monetary value as intellectual property. Model extraction attacks
allow an attacker to either directly steal knowledge of the architecture and
parameter set, or to train a functionally equivalent model using input and
output pairs (analogous to distillation). An attacker typically aims to derive
a newmodel with similar or greater accuracy on the same workloads at min-
imal effort. Furthermore, they make for an excellent precursor to the above
evasion and poisoning attacks as ameans to elevate a black-box adversary to
a white-box one—in such scenarios it is preferable to pursue model fidelity
(i.e., matching correct decisions and mistakes alike).

In general, these attacks are launched through acquiring soft labels (i.e.,
class probabilities) for a representative set of input points from a victim
model (Tramèr et al., 2016), and are also applicable tomoremodels than NNs.
The presence of soft labels essentially provides strong knowledge about the
class and decision boundaries which have been learnt by the victim model,
simplifying the training of a new cloned model. Jagielski et al. (2020) exam-
ine the extraction of high-fidelity models in greater depth, finding that this
distillation-like approach is somewhat limited by non-determinism in the
SGD procedure and random initialisation of 𝜽 (i.e., peak 93 % fidelity). Their
analytic extraction of truly functionally equivalent models based on ReLU
behaviour is limited to 2-layer models at this stage. Exact model theft is
most possible when directly monitoring PCIe bus traffic, i.e., as performed
by a compromised or outright adversarial cloud host provider. Even when
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33 While confidential
models could in theory be
run on the CPU using TEEs,
most capable Intel CPUs
have an enclave memory
limit of around 128MiB.
More recent offerings are
beginning to extend this
into ≥8GiB (Menon, 2021),
though this still limits the
achievable throughput one
can attain versus a dedicated
accelerator.

running application code on TEEs to prevent external inspection, access to
GPUs or TPUs still requires communication over the insecure PCIe bus.33

Although additional PCIe traffic, re-ordering, and batching complicate this
task, by using locally known models as a reference point it is possible to
extract the sent compute kernel in spite of proprietary driver behaviour.

The question of which input data should be used to launch such an attack is
also worth consideration; extracting a model in fewer samples means that
not only can a model be cloned in less time, but in fewer discrete interac-
tions with the victim (lowering the chance of detection). Assuming a similar
(labelled) training set to the target, Y. He et al. (2021) use mutual information
analysis to aid in this process. They reduce the input dataset to learn what
the most valuable points in their own dataset to query from a victim’s model
are. If such labels are not known, semi-supervised learning techniques can
aid in choosing a pared down set of queries (Jagielski et al., 2020). Con-
struction of a viable query dataset with no knowledge of the victim model’s
training distribution is also possible (Truong et al., 2021)—generativemodels
may be used to create input samples whichmaximise disagreement between
the clone and victim models.

The opacity of ML models has raised the question of how much informa-
tion they implicitly contain about the training data they are based upon, i.e.,
whether training data may be extracted or inferred. Membership inference
attacks take a given model and input x, and ask whether x was used in
the training of this model—one of the main risks being that sensitive data
may be inferred using a speculative query. Models can be expected to have
higher confidence about samples they were trained upon; this can be ex-
ploited to train a classifier on input/soft label pairs using smaller ‘shadow’
classifiers (Shokri et al., 2017). While this was originally thought to arise
from overfitting, analysis of language models such as GPT-2 suggests this
is not the case (Carlini et al., 2020). This same analysis is able to propose
and generate prompts to extract such memorized data (including personal
data), however accuracy of generated ‘members’ is limited to around 33.5 %.
Collaborative learning settings are vulnerable to membership inference on
a per-participant level from their gradient updates (Melis et al., 2019), al-
lowing properties of subsets of classes to be detected according to learners’
(non-independent and identically distributed (IID)) training data. Model in-
version attacks focus on extracting information about an input or the space
of inputs which would map to a given output class (Fredrikson et al., 2015),
e.g., extracting the face of an individual from a facial recognition classifier.
These attacks present a real threat in concert with model extraction, for
instance Tramèr et al. (2016) are able to extract images of faces which are
“visually indistinguishable” from the real training data of a facial recogni-
tion classifier. Attribute inference attacks, where an attacker has most of
the information of a member and seeks to derive the remainder, requires a
stronger adversary who can tell apart true inferred members from nearby
data points (B. Z. H. Zhao et al., 2021).
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Defences Given that model extraction attacks are enabled by information
sharing, the simplest defences involve limiting the amount of output in-
formation given by a classifier. For instance, rounding confidence values
and soft labels or outright removing many output probabilities can offer
some degree of defence (Chandrasekaran et al., 2020; Tramèr et al., 2016).
Sampling amodel’s parameters (potentially as part of an ensemble) may also
serve to make the decision boundary harder to learn (Chandrasekaran et al.,
2020). Attacks designed to maximise query information exhibit character-
istic patterns, differing in aggregate information per query versus normal
users. This principle has been applied to detect extraction attacks by mon-
itoring the distribution of information content of input-output pairs (Juuti
et al., 2019; Kesarwani et al., 2018).

Differential privacy (Abadi et al., 2016) is a powerful formalism for bounding
the amount by which any individual training datum can affect the overall
behaviour of the model. Typically, this is achieved by injecting noise with
magnitude below an analytically derived bound to the objective/loss, gradi-
ents, or output vectors. By construction, this prevents model and attribute
inference attacks, while limiting the amount of information which can be
gleaned in collaborative learning settings. However, a more secure privacy
budget is directly at odds with final model accuracy, and relaxations to the
differential privacy formalism invite additional vulnerability to model in-
ference attacks (Jayaraman & Evans, 2019). In addition, recent work on
model unlearning (by dataset sharding and slicing) can be used to truly re-
move training members from the model by partial retraining (Bourtoule et
al., 2021).

3.7 Summary

I have introduced and discussed a wide variety of problems in the network-
ing domain where ML and RL techniques are able to provide tangible im-
provements in performance and resilience of modern networks. We have
also covered the basics of ML techniques and function approximations, as
well as the intuition and MDP formalism underpinning RL algorithms. Fi-
nally, we have examined modern RL algorithms, concessions and design
decisions required to bring RL and ML to network devices, and open chal-
lenges pertinent to DDN.

Unfortunately, the security context around DDN remains an uncomfortably
open question. While not all the attacks presented can immediately gen-
eralise to networks or other problem-space representations, the absence of
research into specific attacks in this field does not inspire confidence. The
interactionmodel of networks does present a useful level of indirection, such
that model extraction and similar approaches are harder to perform. For in-
stance, while exact traffic routing or queueing decisions should enjoy some
degree of isolation from the actual effects they cause on a monitored flow—
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there are many potential hypotheses behind a decrease in maximum flow
performance. Efficacy aside, this casts significant doubt on whether we can
(safely) elevate RL or other online approaches from an interesting research
question towards real-world deployment.
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Chapter 4

DDoS Prevention by Multi-agent
Reinforcement Learning

Network anomaly detection and intrusion detection/prevention are continu-
ally evolving problems, compounded by the partial, non-IID view of data at
each point in the network. Looking ahead to our discussion of DDoS attacks
in section 4.1, attacks and anomalous behaviours evolve, becoming more
sophisticated or employing new vectors to harm a network or system’s con-
fidentiality, integrity, and availability without being detected (Bhuyan et
al., 2014). These attacks and anomalies have measurable consequences and
symptoms which allow a skilled analyst to infer new signatures for detec-
tion by signature-based classifiers, but unseen attacks may only be defended
against after the fact.

We’ve already discussed how ML and DDN were hoped to make this do-
main easier to solve—e.g., automatic detection of attack signatures, reliable
anomaly detection—and the operational limits which have become clear in
section 3.1.3. Consider on one point in particular, namely the availability of
useful training data. In many of these cases, anomalous events still require
human expertise to label and detect; to complicate matters, this effort must
be sustained in the face of network evolution. For certain classes of prob-
lem, e.g., volumetric DDoS attacks, system health corresponds to wider load
and performance metrics which are typically more easily known. It is here
that RL offers another perspective. Recall from chapter 3 that RL agents
operate by following a policy to interact with or control a system, while at
the same time using observed performance metrics and deliberate explora-
tion to dynamically improve this policy. In this way the role of an RL agent
differs from that of a standard classifier, adaptively reacting to threats by
assuming the role of a feedback loop for network optimisation, typically to
safeguard service guarantees. In a sense, this allows us to “overcome” some
of the difficulties of the detection problem by monitoring performance char-
acteristics and consequences in real-time; by looking for (and controlling) the
effect rather than the cause.
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What RL approaches do exist are aimed towards the task of adaptive on-
line DDoS mitigation, and rely upon learning to control probabilistic packet
drop. These have concrete weaknesses compared to the reality of network
traffic. Section 3.1.3 presents my analysis of the existing work for this task—
Marl (Malialis & Kudenko, 2015)—particularly how it fails to account for
congestion-aware traffic (i.e., TCP) and environments with high host dens-
ity per egress point such as ISPs or datacentre networks. As a result, they
achieve poor protection of legitimate traffic due to an overly coarse view
of the network and the dominance of congestion-aware traffic in today’s
networks (section 4.1.2 and appendix A). However, there are limits to how
we should infer these properties given network evolution—we must remain
protocol- and content-agnostic to offer future-proofing against the rollout
of protocols like QUIC.

This chapter considers how online RL can be used to defend networks from
volumetric DDoS attacks, agnostic of the protocols of carried traffic, and
is based upon ‘Per-Host DDoS Mitigation by Direct-Control Reinforcement
Learning’ (K. A. Simpson, Rogers & Pezaros, 2020). I first explain the exist-
ing threat and defence landscape of such attacks (section 4.1), then reiterate
the motivation for RL as a solution (section 4.2), before defining the threat
model for attackers with respect to known DDoS attack methods and the se-
curity context of ML (section 4.3). Section 4.4 then outlines the design and
rationale behind new agent designs built to improve on the failings of past
RL works, by making decisions on a per-flow or per-source basis. This in-
cludes algorithmic modifications to learn from and control many traces sim-
ultaneously, achieve faster convergence by per-tile updates, and to better
learn from individual features. I describe a feature space built on a mixture
of global and local state, reward functions tailored to different attack classes,
and contribute two action models and their risks (Instant andGuarded). The
Guarded model is inspired by past work on algorithmic DDoS prevention, as
an example of how the integration of domain-specific knowledge can lead
to more effective RL agents in shorter timescales. Section 4.5 then describes
how state measurement and installation of actions could be managed in an
SDN deployment. To determine which per-flow features are worth using
for DDoS control and mitigation, I then present qualitative and quantitative
analysis of a large selection of these metrics for different agent designs on
varied protected traffic types (section 4.6). Section 4.7 then details my im-
plementation of reactive simulations of HTTP and VoIP web-server traffic,
designed to test system characteristics that packet trace playback fails to
capture. Sections 4.8 and 4.9 then describe and show empirical performance
measurements of the two new agent designs against existing RL DDoS tech-
niques, and algorithmic works via SPIFFY (Kang et al., 2016b), reuniting two
divergent strands of research and grounding the study of RL-based DDoS
defences. I conclude with some discussion on the significance of the results
and wider security implications of this solution in particular (section 4.10),
and summarise in section 4.11.
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1 A vast array of other,
keenly relevant problems
are briefly explained while
motivating the DDN use
cases presented throughout
section 3.1.

4.1 Distributed denial of service

While computer networks are prone to all manner of operational problems
on account of their gradual, continued construction via many complex inter-
locking systems, we train our focus here on Denial of Service (DoS) and Dis-
tributed Denial of Service (DDoS) attacks.1 DDoS attacks are concentrated
efforts by many hosts to reduce the availability of a service, typically to
inflict financial harm or as an act of vandalism. Attackers achieve this by
either exploiting peculiarities of OS or application behaviour in semantic at-
tacks (e.g., SYN flooding attacks), or overwhelming their target through sheer
volume of requests or inbound packets (volume-based attacks) (Jonker et al.,
2017). Hosts often participate unwillingly, typically having been recruited
into a botnet by malware infection to be orchestrated from elsewhere (Ant-
onakakis et al., 2017).

Why focus on this problem in particular? The primary reason is that its scale
and impact presents a constant threat to any Internet service. Exhausting
all of a server’s resources (or those of the infrastructure providing a path
to it) ensures that it cannot be accessed—causing financial losses, silencing
information sources, or creating downstream service breakages. Some ser-
vices, such as those associated with game hosting, are likely to be targeted
simply for competitive advantage or reputation (Pinho, 2021). Accordingly,
DDoS attacks are often nicknamed an ‘800-pound gorilla’ (Czyz et al., 2014)
on the wider Internet. Their reach is, however, made all that much greater
by the centralisation of many websites and servers to cloud and hypergi-
ant infrastructure. Consider volumetric attacks on Dyn (1.2 Tbit/s), who
at that time hosted key resources for Twitter, Spotify, and Netflix (Hilton,
2016), the web host OVH (1 Tbit/s) (Klaba, 2016), and the Github code host-
ing platform (1.35 Tbit/s) (Kottler, 2018). Amazon’s own services have been
an attractive target on several occasions: S3’s Domain Name System (DNS)
servers were hit by an attack of unknown size in October 2019 which was
unmitigated (McCarthy, 2019), while AWS successfully resisted 2.3 Tbit/s of
traffic mere months later (Lyon, 2020). Even individuals’ blogs such as Kreb-
sOnSecurity (665Gbit/s) (Krebs, 2016) have been high-profile targets. The
more solutions and insight the research community can provide, the better.

The second reason is that DDoS defence scenarios may be a representative
example of the kinds of closed loop control that DDN is exceptionally well-
suited to. Target servers and infrastructure expose useful state such as link
utilisations, queue depths, and service metrics; an influx of attack traffic has
noticeable effects on this state, and taking the ‘right’ control plane actions
(e.g., blackholing specific traffic sources or protocols, filtering out attack
packets) should move the network’s state closer to some degree of normal-
ity. At the same time, DDoS strategies evolve over the course of a single
attack (Kang et al., 2016a), potentially leading to a nuanced (and difficult)
measure→infer→act loop. An ideal, human-designed solution to this con-
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trol loop is made tricky by the complex interplay of attack dynamics with
many existing elements of the network: protocol distribution and behaviour,
application behaviour, and the gradual evolution of benign traffic. For this
reason, I focus on DDoS attacks as a particular use case in this thesis—in
turn, chapter 4 is dedicated to improving automated, data-driven means for
their solution.

Jonker et al. (2017) offer an in-depth analysis and taxonomy of the land-
scape of DoS attacks. They observe that Denial-of-Service is most com-
monly achieved through resource exhaustion—either at the target server or
the infrastructure serving it. Attacks may then be classified on two ortho-
gonal axes: Direct vs. Reflection and Volumetric vs. Semantic.

Direct Attackers send packets directly towards their target. Random IP
spoofing is often used to make blocklisting more difficult, but leaves
evidence of an attack and its characteristics due to backscatter, visible
to network telescopes (D. Moore, 2003; Richter & Berger, 2019).

Reflection Attackers send traffic to a reflector, spoofing the source IP of pack-
ets to match that of the target. The reflector sends replies to the target,
often amplifying them in the process.

Volumetric DoS is achieved by resource exhaustion—CPU or RAM usage at a
target host, or occupying and overflowing transmission buffers along
key traffic routes. These can be service agnostic, but in some cases
rely on buggy behaviour of other software as their main mechanism.

Semantic DoS is achieved by exploiting program logic, for instance to crash
a target application server. These are often tailor-made for a partic-
ular service or its deployment environment, such as teardrop attacks
against a host’s TCP stack.

We’ll focus mainly on volumetric attacks (direct and reflection), as these are
the attack vectors applied in the listed, real-world attacks.

4.1.1 Volumetric attacks

Amplification attacks Amplification attacks abuse network services with
small request bodies and large responses, causing a typically benign service
to forward traffic on an attacker’s behalf by reflection—spoofing the source
IP of requests to that of the intended victim. An attacker requires that their
AS doesn’t prevent IP spoofing at egress. In exchange, they are able to split
their upstream bandwidth across many reflectors to gain higher volumes of
attack traffic from multiple sources without revealing their own IP to the
victim. UDP-based protocols are the typical basis for such attacks, as the
transport is connectionless.
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While DNS is the most well-known vector for amplification, Rossow (2014)
presents an in-depth survey of a wide variety of other vulnerable proto-
cols alongside a rough census of abusable servers. He examines network
services (SNMPv2, Network Time Protocol (NTP), DNS, NetBIOS, SSDP), leg-
acy services (CharGen, QoTD), peer-to-peer networks (BitTorrent, Kad), on-
line games (Steam, Quake 3) and externally abusable botnets (ZAv2, Sality,
Gameover). Scanning for 105 amplifiers of a popular service can be done in
minutes, making NTP particularly dangerous due to its prevalence and high
amplification rate. Furthermore, he notes that DNSSEC can exacerbate the
problem by its addition of large signatures to message payloads.

Kührer et al. (2014) build further upon this census; they find significant
overlap between servers who expose different vulnerable services, connect
these services to OS fingerprints, and use DNS proxies to enumerate the
ASes who allow IP spoofing. They find that many eligible reflectors tend
to lie behind dynamic IP addresses and so undergo significant churn (mean-
ing an attacker must often re-scan every few days/weeks). This is not the
case for certain protocols like NTP, where the server list remains far more
stable. The authors also explore the amplification potential of all TCP-based
services—given that well-known protocols like HTTP cannot be blocked
in most infrastructures, an attacker can abuse retransmissions of the hand-
shake (SYN-ACK) to achieve an amplification factor up to 20 × if the receiver
doesn’t send RST responses.

NTP quickly became the attack vector of choice, according to Czyz et al.
(2014). They find that most vulnerable amplifiers are end-hosts, typically
offering 4 × amplification. At the time of publication, they observed that
NTP amplification attacks had risen in volume by ∼1000 × , though were
slowly declining; 85 % of attacks over 100Gbit/s relied upon NTP reflec-
tion. The decrease, they posit, stems mostly from vulnerable servers be-
ing patched in response to recent bulletins making the risk clear to server
operators. They observe that, after the patch period, many of the remain-
ing vulnerable servers are sparsely distributed (rather, the patched servers
are clustered under IP blocks). This is in line with the (un)cleanliness hypo-
thesis put forth by Collins et al. (2007). Of greatest concern was the presence
of ‘mega-amplifiers’ offering 103–109 × amplification due to the presence
of network loops.

Kührer et al. (2015) investigate the landscape of open recursive DNS resolvers,
one of the major enabling factors for DNS amplification attacks. Many of
these DNS servers run old and vulnerable software, and are very highly
represented (67 %) by consumer routers linked to dynamic IPs.

As of 2017, the distribution of amplification attacks over UDP protocols was
observed to roughly have the pattern NTP>DNS>CharGen. This is in spite
of the evidence put forth by Czyz et al. (2014), which suggested a decline of
NTP-based amplification attacks.
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2 This distinction is not
quite as simple as ‘TCP &
UDP’. Due to middlebox-
driven Internet ossification,
QUIC (Langley et al., 2017)
and SCTP (Stewart, 2007)
are carried over UDP.
Respectively, they are and
can be congestion-aware.
BitTorrent’s µTP (Rossi et al.,
2010) builds on UDP to offer
a lower-latency congestion-
aware transport. Finally,
adversarial replayed TCP
traffic (e.g., SYN floods) is of
course congestion-unaware.

It must be reiterated that new amplification DDoS vectors arise due to soft-
ware bugs and misconfigurations even today. TsuNAME (Moura et al., 2021)
is a recent example, where the presence of recursive DNS dependencies
causes traffic amplification toward authoritative name servers. While this
cannot be directed to an arbitrary target per se, this presents another vul-
nerability in critical infrastructure that administrators must be aware of.

Link-flooding attacks Link-Flooding Attacks (LFAs) or transit-link attacks
are another volumetric DDoS vector which has come to light (Kang et al.,
2013; Studer & Perrig, 2009). In contrast with typical direct and reflection-
based attacks, malicious actors here do not forward traffic directly to their
intended victim. Instead, they use their bandwidth to communicate with
as many legitimate or dummy servers as they can such that the outbound
traffic of all attacking clients aggregates at a common point in the Internet.
This exhausts the resources of a target AS or set of bottleneck links needed
to reach their intended victim, and traffic appears for all intents and pur-
poses as a completely uncorrelated set of source and destination pairs. Since
the traffic only ever aggregates in, e.g., ISP networks, target servers never
see any attack traffic themselves. The need for many source nodes means
that attackers practically require botnets for LFAs to be feasible (Smith &
Schuchard, 2018); however, Internet-of-Things devices and other insecure
machines are often recruited for this purpose via malware like Mirai (Ant-
onakakis et al., 2017).

4.1.2 Contributing factors in the detection problem

Variation in normality Benign traffic is in no way ‘normal’, and is often
composed of a variety of heterogeneous traffic classes acting in different
ways. Protocol families respond differently to both administrator actions
and the presence of attack traffic; mainly, this difference is seen between
congestion-aware and -unaware flows. At a high level, congestion-aware
traffic tends to scale its rate up to its maximum fair share and scales down
in response to congestion signals such as packet losses (e.g., TCP), while con-
gestion unaware traffic ignores these requirements (e.g., most UDP flows).2

Consider probabilistic packet drop at a rate 𝑝 ∈ (0, 1]—pushback (Mahajan et
al., 2002). Loss-ignoring and CBR traffic’s send rate will scale in proportion
to 1 − 𝑝. TCP Reno and the like exhibit greater falloff proportional to 1/√𝑝
courtesy of the Mathis equation (Mathis et al., 1997), with a kinder 1/𝑝0.75
for TCP Cubic (Rhee et al., 2018), inflicting greater collateral damage than
expected onmisclassified but legitimate flows. Even then, congestion-aware
traffic’s precise response depends on CCA design, protocol implementation
details, and the nature of the carried traffic (e.g., bulk transfer vs. RPCs).

Attack traffic may well share a feature with a non-dominant family of pro-
tocols, at which point basing a defence on that mechanism will result in



4.1. Distributed denial of service 115

harming or blocking that legitimate traffic—collateral damage. For instance,
CBR traffic such as VoIP flows are unlikely to respond in a meaningful way
to a change in their bandwidth allocation, short of recording and reporting
packet loss statistics. In contrast, most congestion-aware flows (including
LFA sources) will respond to bandwidth expansion and contraction, with
LFAs having little to no response compared to legitimate traffic (Kang et al.,
2016b).

Finally, the exact proportions of this heterogeneous mixture vary over time
and between AS classes. Consider a point estimate of sorts obtained by
analysing the 2018 CAIDA traces (CAIDA, 2018), shown in appendix A. On
this tap of ISP traffic, congestion-aware traffic makes up at least 73–82 %
of packets; varying over time and the link’s direction. The corollary is that
congestion-unaware trafficmakes up at most 27–18 %—a significant fraction
of collateral damage, if we are careless around our defence and detection
model in the above example. The first figure includes some peak 3.26 % of
QUIC traffic in the Sao Paulo to New York direction. Variability extends also
to the behaviour of flows within a protocol. This presents in some cases
as long-tailed distribution between more numerous, shorter mice flows and
longer elephant flows (Pan et al., 2003). A consequence is that punishing
actions can have a greater relative impact on some flow classes over others
(in this case, packet losses would have the greatest impact on mice FCTs).

Evolution Just as new attacks and attack vectors arise over time, so too
does the rest of the network evolve. New protocols such as QUIC (Langley
et al., 2017) come into use in the Internet at large, and can achieve near-
instantaneous widespread adoption via the backing of hypergiant network
operators. New CCAs such as BBR (Cardwell et al., 2016) are deployed to
improve flow bandwidth utilisation, but lead to observable changes in flow-
level behaviour. At the aggregate level, heavy hitter flows have seen note-
worthy increases in duration and rates over a 13-year time horizon, as has
the mice-elephant balance (Bauer et al., 2021). Detection and mitigation
solutions must be aware of these eventualities to protect legitimate traffic
over longer timescales.

4.1.3 Defences

According to Jonker et al. (2017), the most-used techniques in deployment
are DDoS Protection Services. While typically proprietary in nature, we see
a split between cloud services, in-line systems (i.e., middleboxes) and hybrids
thereof. Cloud services (traffic scrubbers) are known to be most appropri-
ate for handling volumetric attacks and are externally hosted, analysing and
filtering out malicious traffic by having services redirect all inbound com-
munication for processing. The act of redirection is often made cheaper
and feasible by the use of selective BGP advertisement or DNS modifica-



116 Chapter 4. DDoS Prevention by Multi-agent Reinforcement Learning

tion, aided by reverse proxy or generic routing encapsulation. Amongst these,
BGP-based diversion is most effective where many hosts must be protected,
and DNS works most reliably for single-host installations. In-line systems,
hosted within a service’s domain of control, are most useful for handling se-
mantic attacks as these often admit attack signatures (since theymust exploit
a particular bug in the server). Similarly, such attacks tend not to exhibit
long-term characteristics that cloud scrubbers might use to aid detection, as
many of these attacks present themselves as a single packet.

DDN solutions to DDoS attacks have been examined through the literat-
ure, such as Braga et al. (2010), Marl (Malialis & Kudenko, 2013; 2015),
and Athena (Lee et al., 2017). Section 3.1.3 explains these, alongside their
drawbacks and experimental shortcomings, in detail. Marl in particular
has design flaws which are placed under great scrutiny, motivating the im-
proved RL work I develop in the remainder of this chapter.

Rossow (2014)’s suggestions are mostly prophylactic. At the AS-level, IP
spoofing by internal clients must be prevented. Protocol designs should be
hardened with session handling à la QUIC or Datagram TLS at the expense
of latency, enforcing greater symmetry of request and response sizes, and
rate limiting the frequency of per-client responses.

Honeypots such asAmpPot (Krämer et al., 2015) can play a key role in the de-
tection and mitigation of volumetric attacks. Fake amplifier services hosted
by legitimate authorities, which appear to be useful amplifier nodes to mali-
cious actors, may be included in the set of reflector nodes when attacks are
launched. As a result, infrastructure providers can receive early notification
of attack targets and the protocols which must be blackholed.

SPIFFY (Kang et al., 2016b) aims to remedy LFAs by observing how flows
from each source respond to a sudden increase in available bandwidth. Kang
et al. realise that bots participating in an attack are often unable to match
this bandwidth expansion due to having already saturated the capacity of
their outbound links, while legitimate flows typically speed up to match
the new fair-share rate. Due to the class of attacks it is designed to defend
against, SPIFFY is intended to be deployed within ISP networks. However,
they find that computing per-flow routes to offer this expansion is expens-
ive on real networks (14 s in the Cogent topology), and achieve only low
expansion factors which require more rounds of filtering. Finally, by defini-
tion their assumptions cannot extend to CBR traffic (e.g., UDP VoIP traffic),
which as we know from section 4.1.2 and appendix A makes up a sizeable
proportion of network traffic. Only congestion-aware traffic will correctly
alter its behaviour under this action and response model.

Smith and Schuchard (2018) present techniques based on AS-level routing to
tackle both transit-link and flooding-based attacks. This view is taken due
to the perceived cost of per-stream classification and inherent sensitivity
to adversarial examples or crafted input. The approach is creative, relying
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upon BGP fraudulent route reverse poisoning to preserve traffic to a target
AS, but unlike SPIFFY the approach doesn’t actually remove the congestion.
Because of this, traditional flooding-based attacks aren’t fully alleviated.

SENSS (Ramanathan et al., 2018) aims to help hosts and endpoint-servers com-
municate upstream with ISPs. The rationale is that although DDoS traffic
can be filtered at any point along its path, it will impact less of the net-
work if it is filtered close to its source—this observation holds true in all
attack classes (direct, reflection, LFA), which exhibit a tree-like pattern of
traffic. This information currently propagates through human channels,
eventually leading to traffic blackholing being performed by key ASes. The
core idea is that the victims should be given responsibility for intelligence
and decision-making, who pass on their requests to ISPs (alongside ample
payment). They are able to show that this approach functions for multiple
algorithms—including using NAT for true outbound requests as a mechan-
ism for reflector filtering close to the source, similar techniques to others to
“route around” the congestion added by LFAs, and location-based filtering
for signature-free attacks.

S. Simpson et al. (2018) propose theAntidose collaborative solution. ASes ask
one another to install allow- and block-list filters to represent the interests
of their own transit traffic while disallowing known-bad sources and ASes.
Hosts and agents must perform proof-of-work challenges attached to flow
cookies to become eligible for allowlisting (which is verifiable by any other
node)—however, this requires some degree of re-architecting the network
stacks of all hosts.

Some collaborative solutions appear to hinge on the condition that HTTP
and TCP sessions can be reliably held over the saturation zone between
high-priority endpoints. Alternative channels may be possible through elec-
ted proxies or UDP-based mechanisms like DDoS Open Threat Signalling
(DOTS) (Dobbins et al., 2021). DOTS provides an architecture for network
operators to enumerate, discover, and communicate with DDoS mitigation
services, with who they can exchange telemetry information and explicit
mitigation requests.

4.2 Motivation

Moving beyond the overt benefits of choosing RL-based defences for coping
with evolving or ongoing control problems, I believe that there are concrete
reasons for their use here. We have seen that for other domains in particular,
misclassification is a serious problem, which can introduce collateral dam-
age in the context of DDoS prevention. In theory, the feedback-loop-like
model allows us to monitor flows after an action is taken to allow forgive-
ness of mistakenly punished flows. This does rely upon the ability to take
a flow-by-flow view of the state space, but if we can combine knowledge of
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current state with the last applied action, then perhaps a flow which falls
off identically to a legitimate flow can be rescued.

Other studies suggest that there are particularly useful features which make
the task of online DDoS flow identification feasible. Aggregate network load
measures observed at various locations suggest the overall health of a net-
work (Malialis & Kudenko, 2015), for instance high link occupations but
few successful requests reported by a target server might be an indicative
feature. Similarly, the ratio of correspondence between pair flows can sug-
gest asymmetry, and in many cases illegitimacy (Rossow, 2014). Generic
volume-based statistics (counts, counts per duration, average packet sizes)
have seen effectiveness in such as 𝑘NN classifiers trained to detect DDoS
attacks in progress (Lee et al., 2017). Most importantly, there is evidence
showing behavioural changes in response to bandwidth expansion (Kang et
al., 2016b), suggesting similar artefacts might arise after throttling, packet
drop, or other interference.

4.3 Threat model

An attacker’s goal is to minimise the fair-share bandwidth allocation that a
server can give to hosts, and they are expected to act rationally in its pursuit.
Threat actors are external and act intentionally, aren’t expected to be Ad-
vanced Persistent Threats (APTs), and likely range from hacktivists to mod-
erately funded adversaries. We assume that attacks will be volumetric DDoS
attacks with the structure of an amplification attack, and that traffic aggreg-
ates at the target (unlike in a transit-link attack or LFA). The addresses of
the set of unwitting reflector nodes are visible to the target, though any bots
taking part in an attack or the machines those bots control are not revealed
to the target without communication with third-party organisations such as
upstream ISPs. The discovery of any reflector by some defence system does
have a cost to the attacker—there is a particularly large (yet finite) supply
of viable reflector nodes (Rossow, 2014), but the constraints that each has
a large upstream bandwidth and support for high-amplification protocols
narrow this pool.

We do not assume that an attacker has white-box access to an agent’s policy,
or that they will attempt to intelligently modify flow/system state to indir-
ectly control an agent (Carlini & Wagner, 2017; S. H. Huang et al., 2017;
Papernot, McDaniel, Jha et al., 2016; Papernot et al., 2018)—the kinds of
evasion attack considered throughout section 3.6. While they may be able
to perform some degree of reverse engineering by observing the health of
their own legitimate canary flows, “stealing” the policy through observa-
tion (Tramèr et al., 2016), this would require an attacker to indirectly observe
the effects of (probabilistic) actions applied to their traffic—in addition to ef-
fects imposed by other flows competing for resources. Moreover, gaining
feedback on the fate of attack packets is less feasible with connectionless
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traffic, and doubly so when it is generated by an amplifier not under the ad-
versary’s control. Investigating whether perturbations applied to flow state
would persist in volatile network traffic statistics falls also outside of the
scope of this work. The same observation extends to the possibility of pois-
oning attacks (Han et al., 2019). These are APT-level capabilities, whose
exploration presents a rich source for future work.

4.4 Per-flow RL agent designs

Given existing works, my hypothesis here is that the best method for ad-
vancing past the current shortcomings of RL-based DDoS mitigation is to
design agents such that filtering decisions are computed per flow. How-
ever, these alterations must account for computational constraints imposed
by the deployment environment. For instance, the amount of flows passing
over an agent is unbounded for larger networks, potentially inflicting huge
inference and monitoring costs on agents. These require dedicated, careful
handling. I describe and justify my approach, domain-specific algorithmic
improvements, and present two action models, one of which draws on do-
main knowledge introduced by SPIFFY (Kang et al., 2016b).

4.4.1 System design and assumptions

A deployment environment is a network with a set of ingress/egress points
from its domain of control, through which traffic can flow, and a set of pro-
tected destination nodes. These nodes may be services, servers, or in the
case of ASes and transit networks, egress points leading to other networks.
Agents are co-located with each egress switch (i.e., 𝑘 ingress points from
other ASes require 𝑘 agents), all employ the same action model/design, and
control the proportion of upstream packets from each external host to dis-
card. Each destination node 𝑠 has a maximum capacity on its link utilisation,
𝑈𝑠 .
We assume that the deployment environment is a moderately complex SDN-
capable network, because the paradigm offers features which can directly
benefit RL agents acting within its confines. The OpenFlow protocol al-
lows a controller (or other authorised hosts) to install complex actions, for-
warding rules and logic into a switch at runtime. For simplicity at this
stage, all agents or learners run on commodity host machines. Further-
more, networks of this kind more naturally enable the use of NFV, allow-
ing relocation and easy installation of learners—e.g., as examined by Jakaria
et al. (2019). Agents communicate with their co-hosted OpenFlow-enabled
switches—running a modified version of OVS (‘Open vSwitch’, 2018; Pfaff
et al., 2015)—to install probabilistic packet-drop rules.

This system design applies to both software-defined and traditional net-
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3 Note that, depending
on the size of the target
network, this needn’t be a
hardware OpenFlow switch.
Some degree of horizontal
scaling could be achieved
with OVS instances. Simil-
arly, a P4 dataplane device
could fill the same niche,
making the ‘probabilistic
packet drop’ primitive
similarly easy to integrate.

works of arbitrary shape and size. Only the ingress and egress nodes from
a network need to be OpenFlow-enabled, as it is advantageous to perform
filtering as close to a flow’s source as possible.3 In a traditional network,
each agent has exclusive control over its switch’s tables. In a fully software-
defined network, these agents require exclusive control over the first table,
forwarding legitimate packets to subsequent tables managed by the net-
work’s controller. The main difference is that a traditional network needs
this additional hardware, and does not allow an operator to dynamically
determine where the “edge” of their network lies through VNF relocation.

4.4.2 Algorithm

To make decisions cheaply and at low latency, we use semi-gradient Sarsa
with tile coding as described in eq. (3.6) and section 3.2.1, rather than using
neural networks or more complicated function approximators. Exploration
is introduced via 𝜖-greedy action selection, linearly annealing 𝜖 to 0 over
time. Each agent has its own internal parameter vector 𝜽, and agents do not
share their weight vector updates with one another (but may share experi-
ence and traces with one another).

Although the choice of a classical RL method likely brings lower theoretical
performance, there are significant reasons to favour such methods; these
include lower latency decision-making, lower energy usage, reduced model
complexity (and training time), the availability of necessary hardware, and
simpler decision boundaries. This aligns with our goal of quick online learn-
ing, and faster adaptation to aggregate changes in traffic without introdu-
cing dedicated tensor processing hardware to networks. Simpler decision
boundaries reduce the risk of overfitting and unexpected behaviour, and we
expect that the simplicity of tile-based policy computation will also greatly
aid interpretability of anomalous action choices.

When choosing a learning algorithm, I compared against Q-learning as well
as methods based on eligibility traces such as Watkins’s Q(𝜆) (Sutton &
Barto, 2018, pp. 312–314) and Sarsa(𝜆) (Sutton & Barto, 2018, p. 305). Pre-
liminary experiments found that Sarsa offered the best performance and
behaviour.

Action rate I adapt Sarsa to prioritise rapid response to changes in network
state and to visit as many state-to-state transitions as possible for effective
learning. To this end, we allow agents to make many decisions per timestep.
We maintain the last state-action pair associated with each source and des-
tination IP address, and calculate any actions for the flows which still exist.
Finally, we update 𝜽 using each available trace and the reward signal from
the relevant destination. As exploration still occurs for each action, this ap-
proach reduces 𝜖 multiple notches every timestep. In turn, we increase the
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Agent 1
𝑠0
𝑠1

Agent 2

Agent 3

𝑈𝑠0

𝑈𝑠1

Figure 4.1: Global state selection for a flow between an external host and
server 𝑠0 which passes over Agent 1. All nodes in the path taken through the
defended network are filled in blue, and all link load measurements which
are chosen for action computation are indicated with a thick blue line.

annealing window for 𝜖 by a factor of 2.67 so as to preserve exploration over
time, by accounting for the greater volume of decisions being made.

Per-tile updates While the standard formulation of eq. (3.6) updates the
value of all tiles identically (by a scalar 𝛼𝛿𝑡 ), I found it more effective in
this use case to compute a different temporal difference value for each tiling.
While we make use of the sum of all tiles’ action value estimates when mak-
ing decisions, each tiling is updated using only its own contribution, allow-
ing us to set 𝛼 to a higher value without divergence. A crucial observation
is that value updates to each tile can move by different values in different
directions, converging on effective estimates sooner.

Decision narrowings When learning control on the basis of a tile-coded
state space from high-dimensional state, assignment of credit to individual
features for each decision is difficult because all tiles have identical gradi-
ent. To combat this, with probability 𝜖 an agent will mark a flow as being
governed by a subset of the state space for the next 5 decisions. Each agent
chooses actions on that source/destination pair using one element of local
state, the global state, and the bias tile—the latter two are included to strike
a balance between accuracy and correct credit assignment.

4.4.3 Feature space

The improved state space combines elements of global state, network link
load observations as used in past work such as Marl (Malialis & Kudenko,
2015), with per-flow measurements. Each is tile-coded with 8 tilings and 6
tiles per dimension, using the windows described in table 4.1.

Global state is a vector of load values in ℝ4 (Mbit/s) depending upon the
bandwidth measurements regularly received from monitors in the environ-
ment. For any flow, an agent first computes the path it would take through
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4 It’s expected that most
deterministic load balancing
schemes should be trivial for
hosts or controller machines
to compute given up-to-date
topology information. More
dynamic schemes which bal-
ance adaptively on a flow-
let or per-packet model are
somewhat out of scope—this
might be captured by an ex-
pectation in link loads over
all valid paths.

the network. The incoming link utilisations of the first hop, last hop, and
tertiles of the path are then tile-coded together, giving a fixed-size repres-
entation of network characteristics along the traffic path. In the event that
the path from an agent to its destination is shorter than 4 hops, we simply
duplicate the load measurement of a middle hop or the last hop (in order of
preference). Figure 4.1 illustrates the process.

Global state is built in this way to offer compatibility with multipath, multi-
destination networks, offering support for diverse deployments from end-
point servers to transit ASes. Computing the path from agent to destination
is not computationally expensive. Multipath routing is often fast since typ-
ical ECMP algorithms simply hash a packet’s flow key, and are deterministic
to provide consistent QoS to hosts.4

Each one of the per-flow features included in the state vector is described
and analysed throughout section 4.6. Each feature is tiled separately, with
the exception of packet in/out count (per-window and total), mean in/out
packet size, andΔ in/out rate, which are combined with the last action taken.
Rather than having the network push the data to an agent, the agent re-
quests this information about active flows periodically to isolate it from
non-control-plane traffic and to eliminate the risk of resource exhaustion
by excessive requests.

4.4.4 Reward function

Every timestep 𝑡 , each destination node 𝑠 generates a reward signal 𝑅𝑠,𝑡 . As-
sume, for now, that each destination has access to some classification func-
tion 𝑔(⋅) which estimates the volume of legitimate traffic received, and ex-
pects to receive traffic𝑠 . Denoting the upstream, downstream, and combined
loads as load↑𝑡 (𝑠), load↓𝑡 (𝑠), load↕𝑡 (𝑠) at this node:

c𝑠,𝑡 = [max(load↑𝑡 (𝑠), load↓𝑡 (𝑠)) > 𝑈𝑠], (4.1a)

𝑅𝑠,𝑡 = (1 − c𝑠,𝑡 )
𝑔(load−𝑡 (𝑠))

traffic𝑠
− c𝑠,𝑡 , (4.1b)

replacing load−𝑡 (𝑠) in eq. (4.1) with whichever load direction is prioritised
according to the traffic characteristics of the deployment environment. c𝑠,𝑡
represents an ‘overloaded’ condition at destination 𝑠, equalling 1 if either
load for 𝑠 is greater than its capacity. We choose load↑𝑡 (⋅) for defending UDP-
based models and load↓𝑡 (⋅) for HTTP traffic, though load↕𝑡 (⋅) would likely be
the most suitable for general deployment or heterogeneous traffic patterns.
These choices reflect where the bulk of transmitted bytes in each traffic
model is observed—and the lack of this knowledge in the general case.

While the use and definition of 𝑔(⋅) appears nebulous, there are many pos-
sible ways to infer this quantity in practice. End-host servers may use ca-
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nary flows or other active measurements, or employ existing QoE metrics
in the case of VoIP services such as lost packets, reorderings, and jitter.
ASes and transit networks may make use of reports received from down-
stream networks, e.g., over the DOTS protocol (Dobbins et al., 2021). Even
if such heuristics or perfect knowledge aren’t available in deployment, a
sufficiently well-trained agent needs only to greedily follow the policy it
has learnt from training, allowing pre-training by a simulated environment
(with perfect knowledge) to transfer to reality.

If a network is believed to be vulnerable to indirect attacks, such as link-
flooding attacks, we may use the following reward:

𝑅Cross𝑠,𝑡 (𝛽) = 𝛽𝑅𝑠,𝑡 + (1 − 𝛽)min {𝑅𝑠′,𝑡 | 𝑠′ ≠ 𝑠} (4.2)

where the collaboration parameter 𝛽 ∈ [0, 1] models the expected degree of
interference between flows, and 𝑠, 𝑠′ are protected destination nodes in the
network. The key insight underpinning LFAs is that flows can affect a target
without communicating with that target. 𝛽 then acts as a tunable parameter
which can incentivise agents to remove flows which harm overall system
health, by including the performance of the worst-performing destination.
However, such attacks (and the effectiveness of 𝑅Cross𝑠,𝑡 ) are not examined by
this work.

4.4.5 Action space

When monitoring a source-destination pair, an agent uses its state vector
to decide which proportion of that flow’s inbound traffic should be dropped.
This is implemented by installing an action via OpenFlow, instructing its
host switch to drop each relevant packet with probability 𝑝. Although it
invites risks which I describe shortly, agents choose to drop packets rather
than impose traffic limits as it offers a discrete action space without prior
knowledge of traffic characteristics or measurement. Furthermore, we need
not consider burstiness, fairness, or tuning of queue parameters (such as
per-flow bucket sizes) which could limit scalability. I present two models
on how to choose 𝑝: Instant agents which directly choose 𝑝 over a uniform
domain, and Guarded agents which follow a reduced action set controlling
an FSM.

Instant control Each agent directly chooses 𝑝 ∈ {0.0, 0.1, … , 0.9}, giving
a discrete, static action set which cannot completely filter traffic. These
choices ensure that the rate reduction imposed on traffic from a given source
IP may never be permanent or irreversible. Since this model needs no for-
ward planning, I found it best to set the discount factor 𝛾 = 0 (making agents
purely myopic).
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Guarded control The measurements of Kang et al. (2016b) suggest that
bot attack flows cannot scale up to match an increase in available band-
width. I apply their observations within the RL paradigm by constrain-
ing how an agent treats each flow using a simple FSM: we restrict 𝑝 ∈
{0.00, 0.05, 0.25, 0.50, 1.0}. The action set is then simply to maintain, increase,
or decrease 𝑝 for a flow in single steps. We choose these potential values
for 𝑝 to add complete filtering to a steady progression of rate-limiters (25 %
increments for congestion-unaware UDP traffic). The outlier, 𝑝 = 0.05, cor-
responds to roughly a 50 % rate reduction for congestion-aware TCP flows
in our test topology. This uneven spread of choices for 𝑝 allows light and
heavy rate reduction to be applied to both congestion-aware and congestion-
unaware traffic as required.

To enable temporary bandwidth expansion in all deployments, every flow
is initially placed under significant (but still somewhat usable) packet drop
(𝑝 = 0.05); this is chosen above the equivalent for UDP due to TCP’s higher
prevalence. Most importantly, an agent must now choose to punish a flow
multiple times in succession to cause rapid degradation, reducing variance
while allowing an agent to see how a host reacts to structured changes in
the environment.

As each agent now requires the capability to plan ahead, we require a dis-
count factor 𝛾 ≠ 0, allowing the value of future states to influence state-
action value updates. Setting 𝛾 = 0.8 was found to be the most effective
choice for this hyperparameter during exploratory testing.

Risks This mode of action means that each agent is in control of push-
back (Mahajan et al., 2002), and so carries a risk of introducing collateral
damage into the network. Recall from the critical analysis of Marl in sec-
tion 3.1.3 that benign congestion-aware trafficwhich responds to packet loss
as a congestion signal will explicitly slow down further. This is of particular
importance due to the prevalence of TCP and other congestion-aware proto-
cols within the Internet. Analysis of the CAIDA datasets for 2018 (CAIDA,
2018) shows that congestion-aware trafficmakes up at least 73–82 % of pack-
ets, corresponding to 77–84% of data volume (appendix A). The QUIC trans-
port protocol, which has become commonplace, is congestion-aware and
makes up around 2.6–9.1 % of traffic observed on backbone links, depend-
ing on location and typical workload (Rüth et al., 2018). Making the wrong
action choices here will have a greater impact on most legitimate traffic.

Choosing the wrong granularity to apply actions can be similarly disastrous.
The other key weakness of Marl is that actions are applied on a per-switch
basis. This further justifies our focus on per-flow decisions—real-world de-
ployments see many flows pass over any egress point, making such global
actions more likely to inflict collateral damage. We can show analytically
that the intuition that per-flow decisions provide better service to carried
traffic holds in this case. Given the probability that a host is legitimate,
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𝑃𝐺 ∈ [0, 1], it follows that a host will be malicious with probability 𝑃𝐵 =
1−𝑃𝐺 . Defining imperfect service to mean any case where all 𝑛 hosts whose
traffic is carried by a single switch do not share the same classification (i.e.,
a mixture of benign and malicious hosts), then the probability that a switch
is delivering imperfect service is 𝑃𝑀,𝑛 = 1 − (𝑃𝑛𝐺 + 𝑃𝑛𝐵).
Theorem 1. As the host-to-learner ratio 𝑛 increases, it is more likely that a
throttling switch will exhibit imperfect service: ∀𝑛 ∈ ℤ+, 𝑃𝑀,𝑛 ≤ 𝑃𝑀,𝑛+1.

Proof. Base case: 𝑃𝑀,1 = 0, 𝑃𝑀,2 = 1 − 𝑃2𝐺 − 𝑃2𝐵 > 0.
Inductive step: Assume that the theorem holds for 𝑛. Observe that 𝑃𝑛𝐺 ≥ 𝑃𝑛+1𝐺
(resp. 𝑃𝐵). It then follows that:

𝑃𝑛𝐺 + 𝑃𝑛𝐵 ≥ 𝑃𝑛+1𝐺 + 𝑃𝑛+1𝐵
1 − (𝑃𝑛𝐺 + 𝑃𝑛𝐵) ≤ 1 − (𝑃𝑛+1𝐺 + 𝑃𝑛+1𝐵 )

𝑃𝑀,𝑛 ≤ 𝑃𝑀,𝑛+1

Corollary 1.1. Restricting 𝑃𝐺 ∈ (0, 1) so that both 𝑃𝐺 and 𝑃𝐵 are non-zero
ensures strict inequality: 𝑃𝑀,𝑛 < 𝑃𝑀,𝑛+1.

When considering that many hosts have an especially adverse reaction to
ourmainmeans of control, flow-level granularity becomes an obvious choice.

4.4.6 Systems considerations

Acting on an unbounded set of flows in each timestep introduces potential
issues: the inability to respond to unexpected changes in flow state, delayed
service of new flows, and the risk that flow states become outdated. At
their worst, these risks present additional attack surface to an adversary.
To tackle these problems, we make use of Timed Random Sequential (TRS)
updates.

The scheduler begins with a shuffled work list of active flows. When reques-
ted, the scheduler estimates the cost of action inference using past timing
information, and proceeds down the list to send a set of flow 5-tuples to the
core Sarsa logic which can be handled in a set time limit. The scheduler con-
tinues until the list is empty, at which point it is repopulated and reshuffled
with active flows.

Following the observations of L. Chen et al. (2018) concerning short flows,
we maintain a deadline of 1ms—in tests, an agent is typically able to process
around 3 flows in this time. Ideally, deadlines should be tuned based on the
frequency at which statistics arrive. Naturally, an agent must carry work
forward (and coalesce state updates) when host density is 𝑛 > 3 (section 4.8);
this behaviour is not explicitly a property of network size, but relates to the
cost of inference and learning. The amount of processed flows per deadline
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depends on the agent design (required FPU operations, policy size), but also
on the amount of flow telemetry data needing processed—the current imple-
mentation is written in Python, restricting this handling to a single thread.
An implementation in a systems language such as Rust or C++ would allow
faster concurrent processing.

There is a risk that so much work can be queued up that an agent is never
able to act on some attack flows. A solution is to impose an upper bound on
the amount of action inference and policy updates that can be performed
before the work list is regenerated. This removes the guarantee that all
flows will be visited often, but if updates occur regularly then this sampling
may be sufficient to achieve good performance.

4.5 System architecture

To demonstrate how we would measure state throughout the network, co-
alesce it, and act upon flows in an effective way, I present the design of a
system which supports the effective real-world deployment of the above RL
agents. Figure 4.2 displays this, separating system elements which are local
to each agent from those which reside elsewhere in the network. Each agent
here operates as a VNF adjacent to a software-defined switch, to which it
acts as an extra controller for installing install actions, forwarding rules,
and logic into a switch at runtime. Agent VNFs communicate with these
co-hosted switches to install probabilistic packet-drop rules. I describe the
main purpose and operation of each module within an agent’s VNF, and
discuss techniques to make deployment more efficient using existing tech-
nologies.

4.5.1 Core and RL executor

The coremodule is themain loop in an agent’s architecture. At each timestep,
the core receives information about which flows have arrived and should be
acted upon from the TRS Scheduler. The core then retrieves the current and
previous state vector associated with each flow from the Flowstate Database,
passing them into the RL algorithm alongside the last action chosen for that
flow (if available).

The RL algorithm then infers and returns an action. Each action is passed
to the database, which computes and returns a packet drop rate according
to the agent model (Instant/Guarded) while updating flow state. This is then
converted into an OpenFlow message carrying packet drop rules; these are
batched to the agent’s switch using the same groupings produced by the
scheduler. Finally, timing information is passed back into the scheduler to
refine its estimates about how much work should be scheduled in the next
timestep.
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Figure 4.2: VNF and OpenFlow-based system architecture for an RL-driven
DDoSmitigation system. Each edge node of the network runs a single agent,
using an OpenFlow switch to probabilistically filter traffic, with a co-located
host machine used to perform RL inference and learning. Estimators us-
ing, e.g., DOTS information to estimate legitimate traffic communicate with
these edge switches, which also share RL trace data with one another to
learn collaboratively. Most switches in the network need only to report
their load statistics to a shared controller. As this is a common capability,
this architecture can serve a network of mostly legacy switches.
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State space sizes guarantee that an Instant policy remains under 520 KiB,
though the sparse representation admitted by tile-coding typically leads
to far smaller policies of around 17.8 KiB from my experiments. Guarded
policies are 30 % of this size. As described earlier, action updates require
a constant number of floating point operations, and the vast majority of
these operations can be vectorised. Action computation for Guarded agents
is cheaper still, on account of having fewer actions.

4.5.2 Stats API and collectors

Agents require information from the network and one another to be effect-
ive. These agents can act either independently, having no agent-to-agent
communication, or cooperatively. In the latter case agents transfer, when
possible, experience to one another—lists of state-action-state transitions
with associated rewards. It’s noted that a transition may be high-value or
surprising to one agent, while well-known to another, causing each to pro-
duce different policy updates from the same unit of experience. For this
reason I do not transfer policy deltas between agents, causing each to learn
its own policy. Determining which scheme achieves better performance is,
however, left to future work.

Load collectors and estimators periodically push observations to each act-
ive agent VNF. In the current implementation, load statistics are gathered
via VNFs active at each network switch, though we expect that OpenFlow
stats requests, NetFlow or SNMP data may be used to derive these cheaply.
Transferring state to agents and experience sharing can both be made more
efficient through effective use of broadcast addressing in a target network.
Depending on the capabilities of switches in the network, the estimator can
either send benign traffic estimates or parameters for use in a reward func-
tion.

Gathering and transmission of load/flow statistics would be difficult to per-
form quite as often as an emulated environment allows. However, the meas-
urements acquired in such a scenario are likely to be less noisy (by being
collected over longer periods of time), which could aid effective training.

4.5.3 Flowstate database

For each flow 5-tuple, we hold two state vectors containing the features
described in section 4.4.3—the current state, and the state which induced
the last action. To ensure that flow control actions are made with recent
information, we combine state vectors for unvisited flows in the current
work set. State vector combination is done by coalescing and combining
state vectors as described in section 4.4.6. For flows outside of the current
work list, we simply replace or insert the new state vector.
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Figure 4.3: Learnt performance of Instant agents when benign traffic is
UDP-like, using only a single feature as a basis for decisions. Mean IAT,
inbound packet sizes, and global state offer the best predictive performance,
while most features offer marginal advantage over the unprotected baseline.

4.5.4 Agent switches

Agent switches operate a modified version of OVS, implementing an action
which requests that eachmatched packet be droppedwith a certain probabil-
ity. Ideally, this host-based solution would be replaced with a bespoke ASIC
running OpenFlow with this extension. To get around the lack of floating-
point support in many environments, such as PDP environments or OVS’s
kernel datapath, I represent this probability using a 32-bit unsigned integer
(scaling 1.0 to 232 − 1). On commodity hardware without explicit packet
drop support, I believe that a similar effect can be achieved using OpenFlow
meters (at the expense of these being stateful measures).

OpenFlow groups are used to simplify control messages: premade tables
with permitted levels of packet drop. This saves some overhead compared
to using experimenter/extension headers. Flows are automatically given a
group with the default level of packet drop (according to the chosen agent
design), meaning that switches don’t need to refer to a controller or the
agent VNF.

4.6 Rethinking the state space

The main element required by a per-source model is a feature set with
high predictive power, so that behavioural differences are apparent to an
agent. Elaborating on the statistics discussed in section 4.2 which others
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Figure 4.4: Learnt performance of Instant agents when benign traffic is
UDP-like, combining each feature with the last action taken as a basis for
decisions. Compared to fig. 4.3, this combination causes a marked improve-
ment in the packet count and per-window statistics, and leads to a tighter
performance bound for Flow Size.
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Figure 4.5: Learnt performance of Instant agents when benign traffic is
TCP-like, using only a single feature as a basis for decisions. All of the
chosen features can offer a marked improvement over no protection at
all. Global state and Mean IAT still offer the greatest improvement above
baseline, but packet-level statistics are considerably less effective for this
class of traffic.
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Figure 4.6: Learnt performance of Instant agents when benign traffic is
TCP-like, combining each feature with the last action taken as a basis for
decisions. This combination causes a significant improvement in the effect-
iveness of packet-level and per-window statistics.

have shown to be effective, I believe the following features to be useful
(and humanly justifiable), and investigate their use alongside different traffic
types.

Global state This is the vector of load measurements along a flow’s path
introduced in section 4.4.3. These values indicate the overall health of the
network, and crucially are all measurements which an agent has some de-
gree of direct control over—though the inputs of all agents on all flows are
aggregated for later load measurements.

Source IP address While trivial to spoof (and thus of limited use for many
classes of attack), reflectors are themselves legitimate services being abused
by spoofing attackers. As a result, they communicate with attack victims
using their own IP address. In real-world scenarios the addresses of reflector
nodes might exhibit similarity due to network uncleanliness (Collins et al.,
2007), e.g., unhardened services exposed by a single organisation.

Last action taken This encodes an agent’s current belief in the malicious-
ness of a flow. This feature also potentially allows forgiveness, serving as
a reference point for determining whether a source mistakenly marked as
malicious exhibits different falloff behaviour after punishment. It’s import-
ant to note that this feature only makes sense once combined with another
flow feature, and never appears individually tile-coded.
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Flow duration and size Featureswhich describe the length of time a connec-
tion has been active, and the amount of data transferred within that time.
An extraordinarily long flow, having sent a lot of data, could be more likely
to be an amplifier: though most (62 %) waves of amplifier traffic last shorter
than 15min (Krämer et al., 2015), this is considerably longer than the typical
length of an HTTP request/response.

Correspondence ratio The ratio between upstream and downstream traffic
associated with a source IP address. I define this here as:

𝐶𝑋 = min(load↑𝑡 (⋅), load↓𝑡 (⋅))/max(load↑𝑡 (⋅), load↓𝑡 (⋅)),

where a value close to 0 indicates strong asymmetry.

𝜟 Send/receive rate The change in traffic rates caused by the last action.
Behavioural changes induced by bandwidth expansion or reduction are ex-
pected to be most visible here.

Mean inter-arrival time Ameasure of howoften packets arrive at an agent’s
parent switch; low IATs indicate a high number of packets per second, and
can be a possible marker of malicious behaviour. I only make use of the
mean IAT of inbound traffic.

(Per-window) packet count The amount of packets sent to/from a source
over a flow’s lifetime (or the current window of measurement), similar in
use to flow size and mean IAT.

Mean packet size per window Legitimate flows, both congestion-aware and
-unaware, often transmit packets with a distribution of sizes. Attack traffic
is not likely to be so diverse: we might expect solely max-size packets in
the case of amplification attacks, or minimum-size packets in other flooding
attacks.

The exclusion of features such as source/destination ports or protocol num-
bers is a deliberate choice. If QUIC or a similar protocol were to become ubi-
quitous, then these fields would have little to no correlation with the class
of traffic a flow might contain. My aim was to design around this constraint
as a form of future-proofing.

All of the above features, save for global state, are 1-dimensional. For sim-
plicity, here ‘UDP’ refers to congestion-unaware traffic, while ‘TCP’ refers
to congestion-aware flows. Figure 4.3 shows the effectiveness of each fea-
ture for UDP (resp. fig. 4.5 for TCP), on a single-destination topology (sec-
tion 4.8.1) with 𝑛 = 2 hosts per egress point averaged over 10 runs. Figure 4.6
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Table 4.1: Tile coding windows for traffic features.

New Feature (unit) Range

Load (Mbit/s) [0, 𝑈𝑠]
IP [0, 232 − 1]
Last Action (%) [0, 1]
Duration (ms) [0, 2000]
Size (MiB) [0, 10]
Correspondence Ratio [0, 1]
Mean IAT (ms) [0, 10 000]
ΔIn/Out Rate (Mbit/s) [−50, 50]
Packets In/Out [0, 7000]
Packets In/Out Window [0, 2000]
Mean In/Out Packet Size (B) [0, 1560]

demonstrates how feature accuracy varies when tiled alongside last action,
with similar trends observed when applied to UDP traffic (fig. 4.4). The plots
show that different protocols and traffic classes are best defended by differ-
ent features—as such, every feature presented has value in a completemodel.
All features converge to their highest-observed performance within around
4000 timesteps. In general, some of the most effective features are the global
state, mean IAT, mean inbound packet size and Δ rates.

4.7 Traffic modelling

Here, I describe network models built around live testing of reactive TCP
and UDP traffic in an SDN-enabled environment, which is adaptable to ar-
bitrary topologies, with an explicit focus on preserving their real-time dy-
namics in a way that trace-based evaluation cannot. First and foremost, the
goal is to replicate representative load and packet inter-arrival characterist-
ics, and to capture how these characteristics evolve in response to actions.
I introduce these models because we are interested in capturing interact-
ive, correlated back-and-forth exchanges associated with live HTTP traffic;
mainly because of the particular interactions between the application-level
dynamics, congestion awareness at the transport level and the nature of
control signal used.

4.7.1 Network design

We make use of a fully software-defined network, built using OpenFlow-
aware switches in mininet (Mininet Project, 2022) alongside a controller
based on Ryu (Ryu SDN Framework Community, 2017). All internal routers
are primed with knowledge of the shortest path to each internal host, while
new inbound flows register the ‘way back’ for each hop used, to ensure con-
sistent bidirectional traffic conditions for each flow. If several ports offer
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different (equal-length) paths to a destination, a consistent random port is
chosen from the flow-hash by an OpenFlow Group action (in select mode).
If such information is lost, perhaps expiring due to inactivity, it suffices
to forward an outbound packet on a random outbound port, as we assume
that any external IP address is reachable through any of the test network’s
egress ports (i.e., that it is not connected to any stub ASes). The controller
is also responsible for computing how switches respond to ARP requests:
this need arises due to the reliance upon Linux’s networking stack for live
applications, and wouldn’t need to be considered for trace-based evaluation.

4.7.2 TCP (HTTP) traffic model

To model legitimate TCP traffic, server nodes run an nginx v1.10.3 HTTP
daemon, serving statically generated web pages alongside various large files
and binaries. Benign hosts run a simple libcurl-based application written in
Rust, repeatedly requesting resources from the server. Hosts and clients
both use TCP Cubic (Rhee et al., 2018). Each host’s download rate is lim-
ited to match the maximum bandwidth assigned to it, and requests several
random files known to exist within a website, followed by any dependent
resources for each (stylesheets, images, etc.) as a browser might. On com-
pletion, a host changes its IP address to generate separate statistics per-flow,
while minimising downtime. This presents a balanced distribution of flow
duration and size, with large files included to model elephant flows.

4.7.3 UDP (Opus/VoIP) traffic model

VoIP traffic exhibits very different characteristics to the abovemodel; packet
arrivals are highly periodic due to real-time requirements, flows have a con-
stant bitrate, and do not react substantially to lost packets. Interestingly,
DDoS attack traffic is known to share many of these characteristics, offer-
ing an interesting detection problem. I present a VoIP traffic model based
on Discord (Discord, 2022), a freely-available messaging and VoIP platform
geared toward gaming communities. Discord is a good model for this proto-
type due to its publicly documented API, many open source bot frameworks,
large user base, and due to the lack of models for Opus-encoded traffic. Fur-
ther details on trace measurement and generation are provided through ap-
pendix B.

Hosts send Real-time Transport Protocol (RTP) traffic with Salsa20 encryp-
ted payloads—20ms audio frames at 96 kbit/s. We generate similar traffic
at hosts by replaying anonymised traces gathered in general use and tab-
letop role-playing servers; each trace contains only the size of each audio
payload, entries denoting missed packets, and the duration of silent periods.
We trim these silent periods to amaximum 5 s due to the lengthy talk/silence
bursts introduced by users in RPG servers, and estimate the size of missed
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packets by taking an exponentially-weighted moving average over known
sizes. Hosts punctuate audio frames with a 4-byte keepalive every 5 s. All
traffic passes over a central server which groups hosts into rooms, and is for-
warded to other participants; we do not replicate pre-call Websocket traffic
which would be used for authentication. There is no peer-to-peer traffic—
the server acts as a Traversal Using Relays around NAT (TURN) relay for all
hosts. Each flow occupies an expected 52.4 kbit/s upstream bandwidth. To
match the target upload rate assigned to a host, each runs enough individual
sessions to meet the target data rate.

4.7.4 Attack traffic model

Malicious traffic is generated by use of the hping3 program, generating UDP-
flood traffic targeting random ports. Each instance of hping3was configured
to generate Ethernet MTU-sized packets (1500 B) with a random source and
destination port towards a target server, and configure the output rate 𝑟
(in Mbit/s) by setting the inter-arrival time 𝑡attack = 1500⋅8

𝑟 ⋅106 . This fulfils
certain characteristics of many types of amplification DDoS traffic: it is
congestion-unaware (Rossow, 2014), and packets are larger than the min-
imum frame size and identically-sized. This latter behaviour is seen in the
wild: NTP amplification traffic is fragmented at the application layer into
482 B chunks (Cisco, 2014). This model differs from NTP amplification in
frame size so that inter-arrival times are larger, to keep emulation of the
network feasible at high traffic rates.

4.8 Evaluation

This work is most naturally compared against Marl, introduced by Malialis
and Kudenko (2015), the state-of-the-art in RL-based DDoS prevention. We
are most interested in seeing how their approach contrasts with the new
agent designs across different topologies and workloads. Different network
environments will also impose different levels of host density, where pop-
ular web servers may have orders of magnitude more clients than egress
points from their network—I aim to show how these characteristics affect
performance and learning rate. Marl is known to outperform the AIMD (Yau
et al., 2005) strategy, yet the state of the art has long since moved on. To
paint a more current picture, I compare this work against an effective mod-
ern approach, SPIFFY (Kang et al., 2016b). SPIFFY tests a proportion of
flows by routing them through an alternate path with higher bandwidth,
observing how their speed changes some time later. This comparison lets
us position our new agent designs against the state of the art, observing
that SPIFFY has a similar mode of interaction to RL-based systems (taking
action, observing an effect, and acting once again) and does not rely on pro-
tocol characteristics or signatures. In reimplementing SPIFFY, I make the
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simplifying assumption that a suitable unused path exists (with identical
bandwidth to the server’s link). 10 % of active flows were tested at a time
(according to the authors’ observation that there is a factor of 10 × differ-
ence between the ideal and achieved bandwidth expansion), excluding flows
below 50 kbit/s and requiring a 3 × expansion from legitimate flows, mak-
ing a judgement after 5 s.

To test this, I made use of both traffic models introduced in section 4.7
(Opus and TCP), both topologies discussed below (1-dest vs. Fat-Tree), and
vary the amount of hosts typically communicating over each agent’s in-
gress/egress node. Additionally, these new models were evaluated in multi-
agent mode (separate, no model sharing), and in single-agent mode (single,
zero-cost perfect information sharing). In each case, the algorithm’s per-
formance was averaged over 10 episodes of length 10 000 timesteps (set-
ting each agent’s 𝜽 = 0 between episodes). Host allocations at the begin-
ning of each episode were generated pseudorandomly to ensure fairness
between episodes—a host is malicious with probability P (malicious), and
is benign otherwise. Benign hosts generate traffic according to either sec-
tions 4.7.2 and 4.7.3 depending on the experiment, while malicious hosts
generate traffic as described in section 4.7.4 (both at experiment-dependent
rates).

All experiments were executed on Ubuntu 18.04.2 LTS (GNU/Linux 4.4.3-
040403-generic x86_64), using an Intel Core i7-6700K (4 × 4.2 GHz) which
had 32GiB of RAM.

4.8.1 Single destination

The network is tree-structured, where one server 𝑠 connects through a ded-
icated switch to 𝑘 team leader switches, each connected to ℓ intermediate
switches, which in turn each connect to 𝑚 egress switches. We then have
𝑁hosts = 𝑘ℓ𝑚𝑛. Figure 4.7 demonstrates this. The network topology was
configured using 𝑘 = 2 teams, ℓ = 3 intermediate nodes per team, 𝑚 = 2
agents per intermediate node, and 𝑛 ∈ {2, 4, 8, 16} hosts per learner. This
is a slight simplification of Malialis and Kudenko (2015)’s ‘online’ experi-
ment, choosing fewer teams but remaining as a single server with a fan-out
network.

4.8.2 Multiple destinations

The previous topology allows for direct comparison against the state-of-the-
art, and indeed is illustrative of oneway inwhich attack trafficmight aggreg-
ate in the network. It is hard, however, to argue its relevance to specific
classes of victim or to reason about the interactions it might have with de-
pendent applications. In contrast, the fat-tree topology (Al-Fares et al., 2008)
sees regular use in real-world data centres and scales well horizontally. We
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Figure 4.7: Network topology diagram, showing how the server and its
core switch’s 𝑘 teams are structured, with ℓ intermediate routers per team,
connected to𝑚 agents which eachmoderate 𝑛 hosts beyond a single external
switch. Red nodes are external, and each blue node hosts an agent.

use a 𝑘 = 4 fat-tree, with one pod hosting two servers 𝑠0 and 𝑠1. 𝑛 external
hosts connect through each core switch (where agents are hosted), and com-
municate with 𝑠0, 𝑠1 uniformly randomly. Both servers host identical ser-
vices. We set 𝑛 ∈ {6, 12, 24, 48} hosts per learner (keeping 𝑁hosts identical to
each tier of the single-host topology), and restrict 𝑈𝑠0 = 𝑈𝑠1 = 𝑈𝑠/2.

4.8.3 Parameters

The algorithm parameters were set at 𝛼 = 0.05, linearly annealing 𝜖 =
0.2 → 0 by 𝑡 = 3000 in the case of Marl (8000 actions per agent in the In-
stant/Guarded models).

Benign hosts each occupied 0–1Mbit/s, and hosts were redrawn at each epis-
ode’s start with P(malicious) = 0.4. Malicious hosts each sent 2.5–6Mbit/s
when attacking UDP traffic, though this was increased to 4–7Mbit/s when
using TCP-like traffic (to meaningfully impact benign flows). Given 𝑛 and
P(malicious), we see an expected malicious bandwidth 1.27–1.87 and 2.03–
2.18 × 𝑈𝑠 respectively. For these choices of 𝑛 in both topologies, we ob-
serve 𝑁hosts ∈ {24, 48, 96, 192}, and an expected number of malicious hosts
𝔼 [𝑁attackers] ∈ {9.6, 19.2, 38.4, 76.8}. For the largest choice of 𝑛, we see an
expected total attack traffic 𝔼 [𝑉attack] = 334.05Mbit/s and 422.4Mbit/s for
Opus and HTTP traffic respectively.

𝑈𝑠 was fixed at 𝑁hosts + 2 Mbit/s (to account for burstiness), and each link
had a delay of 10ms. All links had unbounded capacity, save for each server-
switch. These parameters match those of the original study to enable direct
comparison, and many are (to the best of our knowledge) arbitrary, but I
justify the range of 𝑛 as capturing increasing scales of host activity.
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Table 4.2: Average reward for combinations of model, host density and
traffic class with a single destination.

Traffic 𝑛 SPIFFY Marl Instant Guarded

Separate Single Separate Single

OPUS 2 0.043 0.628 0.629 0.448 0.430 0.629
4 0.069 0.538 0.653 0.449 0.308 0.571
8 0.065 0.468 0.533 0.516 0.398 0.507
16 0.053 0.460 0.438 0.452 0.347 0.504

TCP 2 0.799 0.305 0.061 0.068 0.241 0.196
4 0.953 0.359 0.191 0.097 0.278 0.504
8 0.995 0.362 0.376 0.201 0.357 0.605
16 0.999 0.320 0.316 0.302 0.478 0.708

Table 4.3: Average reward for combinations of model, host density and
traffic class with multiple destinations.

Traffic 𝑛 SPIFFY Marl Instant Guarded

Separate Single Separate Single

OPUS 6 0.092 0.382 0.300 0.170 0.307 0.189
12 0.096 0.217 0.322 0.275 0.333 0.235
24 0.125 0.404 0.358 0.296 0.382 0.461
48 0.110 0.430 0.418 0.438 0.427 0.428

TCP 6 0.692 −0.222 0.123 −0.018 0.121 0.116
12 0.896 0.008 0.132 0.008 0.163 0.266
24 0.974 0.063 0.130 0.024 0.337 0.390
48 0.995 0.156 0.219 0.111 0.431 0.499

4.9 Results

We now examine the performance of the two newmodels (Instant, Guarded)
as compared against existing RL work (Marl) and SPIFFY under different
traffic behaviour and topologies, varying the host-to-learner ratio 𝑛 and en-
vironment. Tables 4.2 and 4.3 present the average rewards for all combina-
tions of these factors—providing a rough idea of expected performance, with
the highest-performing model in bold and the best RL-based model under-
lined. Average rewards take into account any portions of time that an agent
allows illegal system states. Several plots augment this, illustrating peak
performance or the amount of time which an agent requires to learn.

4.9.1 Congestion-unaware traffic

In a single-destination network, we observe that Marl’s performance de-
grades as 𝑛 increases. Typically, our Instant agent design achieves the best
performance in multi-agent mode, having lower collateral damage than the
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Figure 4.8: Online performance for Opus benign traffic in a single-
destination network, multi-agent mode. Instant outperforms Marl for 𝑛 ∈
{4, 8} (with higher variance), but performs similarly to Marl at 𝑛 ∈ {2, 16}.
Guarded underperforms compared to the other agent designs in this prob-
lem variant.

current state-of-the-art, but sharply degrades at low 𝑛 when agents share
experience. This trend reverses for the Guarded model, which improves as
𝑛 increases and in single-agent mode—when 𝑛 ≥ 4, the single-agent vari-
ant offers consistent improvement. Figure 4.8 shows the preserved traffic in
multi-agentmode. When defendingmultiple destinations, we see a sharp de-
crease in the effectiveness of all agent designs. The new Instant andGuarded
agent designs become more effective as 𝑛 increases, while Marl’s effective-
ness is roughly constant (aside from the outlier at 𝑛 = 12). Interestingly,
SPIFFY is unable to effectively protect CBR traffic.

4.9.2 Congestion-aware traffic

Table 4.2 shows that Marl offers a low (though fairly consistent) level of
protection for TCP traffic, which the Instant agent offers no substantial im-
provement over. However, Guarded agents offer a remarkable improvement
for this class of traffic, particularly when experience can be shared—offering
a 2.21 × improvement over the state-of-the art during training, which is
made clearer in fig. 4.9. Figure 4.10 shows that this model can protect a
peak 80 % of TCP traffic (2.5 × improvement) after just 100 s, but also that
all of the new models require considerably longer than Marl to learn their
best-achieving policy. We observe that the same trends present themselves
in the multi-destination topology: Guarded remains the best fit for TCP, in
both training modes. Crucially, the rigid tree of learners and teams which
define Marl, along with its lack of action granularity, seem to be a poor fit in
this environment. In both cases, SPIFFY greatly outperforms the RL-based
methods.
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Figure 4.9: Online performance for HTTP benign traffic in a single-
destination network, single-agent mode. Instant and Guarded exhibit sim-
ilar efficacy at 𝑛 = 2, protecting less traffic than Marl. Only Guarded’s
performance rapidly increases with 𝑛, achieving a considerably better me-
dian and lower variance than the other models. The longer tails of outliers
typically indicate the longer training time the new models require—we ob-
serve that Guarded typically has considerably lower variance once it has
converged on a stable policy.
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Figure 4.10: Online performance of standard and single-agent models in
a single-destination network with 𝑛 = 16 hosts per egress point, HTTP
traffic. At this level of host density, Guarded reaches higher peak perform-
ance sooner and is considerably more consistent throughout the episode.
Guarded benefits greatly from information sharing, converging to protect
around 75% of TCP traffic within 100 s. The Instant model converges to
Marl’s level of performance.
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Table 4.4: Average reward versus attack volume.

Factor 𝔼 [𝑉attack] (Mbit/s) Reward

1.5 633.6 0.671
2.0 844.8 0.625
2.5 1056.0 0.620
3.0 1267.2 0.619
3.5 1478.4 0.600

4.9.3 Increased attack volume

To assess the effect of larger volumes of attack traffic, we increase an at-
tacker’s output by various factors, supposing 𝑛 = 16 with HTTP traffic
(Guarded, Single); table 4.4 records the expected rate of attack and average
performance. The initial increase in traffic volume causes the steepest reduc-
tion in performance (due to the increased cost of incorrect action), though
performance levels out as attack traffic increases.

4.9.4 Computational cost

Measurements from each of these experiments indicated that the cost of
computing any action is takes a median 515.94 µs (following the Float res-
ults for Collector in table 5.2), and is typically 80–100 µs per flow during a de-
cision narrowing. This is reassuring when measured alongside the insights
from other work. L. Chen et al. (2018) observe that, ideally, actions must be
computed and taken within 1ms to have a meaningful effect on short flows.
That our starting point falls significantly below this threshold allows us to
safely consider more costly actions or larger state spaces, which would typ-
ically increase the computational cost. This cost is constant and independ-
ent of network size. As discussed in section 4.4.6, we are able to judge 2–3
flows before this deadline, dependent on 𝜖: this is worsened in practice by
serialisation & communication delays, learning logic, and single-threaded
processing in the Python language.

4.10 Discussion

Model performance Of the results presented, Guarded’s unpredictable (of-
ten worse) starting performance is unexpected, given its far smaller action
space. It’s natural to expect that this would make the model easier to learn,
but the additional state required appears to make the task harder, beyond
even the value of choosing a non-zero discount factor—which added forward-
planning to explicitly mitigate this effect. Accordingly, we see that this
design performs best (and exhibits considerably lower variance)when agents
learn from as much knowledge as possible: high 𝑛 and single-agent training.
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To filter incoming traffic from a source, it must decide to degrade inbound
traffic multiple times in a row, reducing the likelihood that a legitimate flow
is punished by accident. My belief is thatGuarded is a considerably stronger
model for these reasons, and its successes offer strong rationale to consider
the best schemes for efficient information sharing. Paradoxically, Instant
generally achieves the best performance for UDP traffic yet actively suf-
fers when trained as a single learner—this may occur due to a roughly even
spread of values between disparate actions, due to shared characteristics
between legitimate and malicious flows.

Although these developments have improved upon Marl in both identified
problem cases, the improvements are not quite on the order we’d expect for
UDP traffic. The most likely explanation is that agents are converging to,
and becoming stuck in, locally optimal (but globally sub-optimal) policies.
The increased state space size makes this a more likely occurrence, as does
the unclear effect of hyperparameters (𝛼 , 𝛾 ) as we scale up the state space. I
suspect that these difficulties may be exacerbated by the competitive nature
of learning that these models embody: agents are learning action values
for multiple features simultaneously, taking many actions at once (making
it harder to observe the true value of each action), and controlling shared
global state. Although this design does take steps to counteract such ef-
fects, these mitigations may not be enough. Moreover, benign UDP traffic
shares many characteristics with attack traffic, suggesting that more train-
ing samples or some unknown feature might aid control, or that it may be
worthwhile to extensively pre-train agents non-competitively on each fea-
ture using individual flows.

Most importantly, I must state that while the models and techniques presen-
ted here are a significant improvement over past RL-based work, this strand
still trails behind existing (exact) DDoS flow detection mechanisms where
TCP traffic is concerned. The ability to better protect VoIP traffic when
compared against one of these approaches is a curious observation, which
suggests that other (exact) protocol-agnostic approaches may carry hidden
assumptions and is a promising direction for future investigation. Similar
traffic makes up a significant fraction of network load today (18–27%). Al-
though this work maps the territory to some extent, there are still more
advancements to be made before RL-based DDoS defence is truly compet-
itive. The benefits at present are, however, substantial. What this offers
above the approaches we discussed earlier are potentially more flexible de-
ployments, low-overhead and fixed-cost decision-making, without requir-
ing active measurement or the network resources and capabilities that the
most effective techniques rely upon. Moreover, our decision making pro-
cesses are entirely agnostic of the protocol or content of traffic, offering
future-proofing against the introduction of new transports.
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Security concerns and vulnerability Can an agent be floodedwith newflows
to reduce their ability to make decisions? One of the risks introduced by our
policy update strategy is that so much work can be queued up that an agent
is never able to act on some attack flows. The natural solution is to impose
an upper bound on the amount of action computations/policy updates that
can be performed before a work list is discarded completely. This removes
the guarantee that all flows will be visited fairly often, but if updates oc-
cur regularly then this random sampling may be sufficient to achieve good
performance.

Can an attack on the controller impact our approach? This question hinges
upon whether the deployment environment is a traditional network or is
fully SDN-enabled—each agent is, in a sense, a controller alongside the net-
work’s controller. In a traditional network, only the agents act as controllers,
but since they periodically request per-flow data no amount of flows gener-
ates more requests or messages to the agent. More work is generated, but
we discuss how to handle this safely above. Accordingly, agents can never
be stalled by request volume: their only remote communication (load meas-
urements) comes from trusted nodes, is highly periodic, and has constant
size. The same logic holds for a fully software-defined network. Recalling
that we do not employ the network’s controller to install filtering rules on
edge switches, an agent’s ability to act is unimpeded. Thus, the control-
ler is made no more vulnerable than in any other SDN. The only necessary
change for such a scenario is that a load measurement which has not been
updated (due to a timeout or missed deadline) should be set at 𝑅𝑡 = −1.

ML algorithms have earned a reputation for eluding human interpretation,
while being vulnerable to evasion and poisoning (sections 3.5 and 3.6). Given
the security risks associated with introducing such techniques, it is natural
to be concerned with the interpretability of the models we have proposed.
With the exception of global state, the tile coding parameters we make use
of ensure that the set of outputs for each feature we add is relatively enu-
merable: for 𝑛 tilings and 𝑐 tiles per dimension there are 𝑛𝑐dim 𝑓 individual
action value vectors per feature 𝑓 (48 for the new features we introduce,
10 368 for global state), though considerably more combinations thereof
(𝑐𝑛⋅dim 𝑓 ). Furthermore, system state which is dependent on many signals
drawn from across a wide network (such as our global state) is difficult to
exert precise control over. These signals’ topological separation, in concert
with their burstiness and unpredictability, may have substantial effects on
an attacker’s capabilities.

Real-world deployment Currently, we assume that switches support an ex-
tension to OpenFlow to enable remotely installable packet-drop rules, either
by running amodified version of OVS on commodity hardware at these loca-
tions or through custom firmware for egress switches. Similar functionality
could be employed by making use of OpenFlow’s meter rules.
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Where overheads are concerned, the state space sizes guarantee that an In-
stant agent’s policy remains under 520 KiB, although in practice our sparse
representation typically leads to far smaller policies: ∼17.8 KiB from these
experiments. Guarded policies are 30 % of this size. As described earlier,
action updates require a constant number of floating point operations. The
vast majority of these operations can be vectorised trivially, if such hard-
ware is present. Beyond this, we require that egress switches are capable
of co-hosting an agent (i.e., through NFV), with the necessary hardware to
support this.

Gathering and transmission of load/flow statistics would be difficult to per-
form as often as an emulated environment allows, without inadvertently
affecting host traffic. However, the measurements acquired in such a scen-
ario are likely to be less noisy (by being collected over longer periods of
time), which could aid training. The main bottlenecks are likely in forward-
ing the load measurements from various aggregation points (which can be
made more efficient through multicast) and in running some estimator g(⋅)
to condition the reward function. We expect that agents will be able to share
policies for all features, which may help to offset the reduced rate of incom-
ing experience. Regardless, it will take longer to achieve enough state-state
transitions to converge on a good policy.

One limit of SDN-capable hardware is that OpenFlow rules occupy 6 × the
space of standard rules—commercial switches only have TCAM space for
2000–20 000 rules (Nguyen et al., 2016). This approach consumes a rule
for each active flow (the host density), and by the end of an experiment
a switch can accrue around 900 rules. While we use a default fallback ac-
tion to maintain connectivity, eviction of high-value decisions which filter
high-bandwidth attackers poses a significant risk. Given that most flows are
small, with the majority of bytes coming from a few “heavy-hitters” (Pan
et al., 2003), it may suffice to only apply RL-based analysis to larger flows.
OpenFlow rules have an importance, controlling which rules may be evicted
by a new entry (preventing entries from evicting those with higher import-
ance). If an agent is to act on all flows, a solution is to assign an importance
of 0 to mice flows, 1 to elephant flows, and 2 to total filtering (leaving agents
to time out and remove elephant flow rules to prevent bloat). Given the high
churn and prevalence of mice flows, eviction here is most likely to affect
flows which are complete. In both cases, extra rules can be made available
by upgrading rules which completely filter a flow into upstream blackholing
as in collaborative approaches (Ramanathan et al., 2018), having the agent
remove this rule once blackholing is active.

4.11 Summary

Through this chapter, we have discussed reinforcement learning and how it
can be used to approach the task of DDoS prevention, lending credence to
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one of the claims in the initial thesis statement: ‘Data-driven methods such
as reinforcement learning can lead to improved performance in network
optimisation and control problems, such as DDoS prevention’ (s1). The key
to doing so was to study the dynamics of the network itself—its behaviours,
and realistic recreations thereof—to detect operational flaws in existing RL
and algorithmic works. In turn, I designed different action models built
upon a shared (and justified) model: making decisions on a per-flow or per-
source basis, and relying upon learnt policies to differentiate congestion-
aware and -unaware flows that methods like SPIFFY ignore.

First, we covered a large problem in modern networks: the ever-present
threat of DDoS attacks—and how Internet traffic characteristics make its
solution more difficult. We identified weaknesses in past remedies offered
by the community, recommending instead an RL agent design which acts
per flow, and have outlined the algorithmic and engineering choices needed
tomake its deployment feasible. Supporting this, we’ve examined the presen-
ted feature space in depth, offering quantitative and qualitative justifica-
tion for each choice, while also expanding the global state in past Marl ap-
proaches to support arbitrary network topologies. Using simpler tile-coded
policies, we have also covered how decision narrowings and per-tile up-
dates allowed faster convergence—and independently developed methods
for coalescing state which have become more common in tasks with long
inference times as the field has bloomed. We have examined the Instant
andGuarded actionmodels, integrating various degrees of domain expertise
with RL agents. To make real-world deployment possible in the face of ob-
viously adversarial inputs, we have seen how it is essential to consider rate
limiting (and probabilistic) strategies like TRS scheduling, and have presen-
ted a VNF- and SDN-backed system architecture. By empirical evaluation,
we’ve seen that these new agent designs advance the state of the art in RL-
based DDoS prevention, withGuarded agents showing the most promise for
future evaluation.

While this adds another positive note to the score of DDN use cases seen
throughout section 3.1, what I must stress is that this chapter emphasises
the value of co-design and true subject-matter expertise. Networks in par-
ticular are complex, and controlled elements respond to an agent’s action in
ways which trace-based evaluation cannot capture—hencemy disdain in the
frontmatter of section 3.1. This builds on the general advice of section 3.1.6:
better modelling, simulation, and understanding of the environment led to
better designs for their control. This foundation is crucial, as it falls to us
to derive the mechanisms of control: state and action spaces, reward func-
tions, interaction and measurement models, and similar aspects of agent or
classifier design. Learnt DDN policies work well at optimising within these
constraints that we set. The final takeaway is that DDN solutions, and how
we evaluate them, must respect the complexity of the network; evolving topo-
logies, natural change and diversity in traffic and protocol distributions, as
well as the mutation of attacks and the wider problem space.
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Chapter 5

In-network Reinforcement
Learning

As we have seen throughout chapter 3, DDN works—in particular, those
based on RL methods—have excellent promise in the control of many as-
pects of the network. However, there are several consistent features in the
designs of the examples seen in the literature. In order to pursue more ef-
fective policies we’ve seen a profusion of DRL approaches, which are com-
putationally intense to train and execute. What this implies for the design
of networks which host or apply DDN solutions is that system administrat-
orsmust provision adequate compute hardware—either in commodity GPUs
and CPUs, or more specialised accelerators—as well as network capacity
sufficient to support the movement of operational data. These present sig-
nificant sources of capital and operational expenditure, in addition to other
challenges such as the space, power, and cooling requirements of such co-
hosted infrastructure.

How might these hardware and deployment constraints affect the opera-
tion of any DDN system, particularly in the case of online learning? Recall-
ing our earlier discussion on asynchronous RL (fig. 3.7), additional latency
in the decision making process adversely affects both training and the ef-
fectiveness of any actions taken. This can arise from moving state and ac-
tions between their source, inference location, and final place of installa-
tion, or may originate from costlier function approximations such as larger
NNs. Dedicated hosts are often required at present due to the prevalence of
these more complex NNs, yet doing so incurs 𝒪(µs) PCIe delays by moving
data between the NIC and CPU/GPU (Neugebauer et al., 2018; Siracusano
et al., 2020). Moreover, achieving reasonable model throughput such that
line-rate inference can be provided requires significant batching on com-
modity hardware, harming median and tail latencies of any inputs. Ded-
icated accelerators such as BrainWave (Fowers et al., 2018) can help some-
what here, and reduce batching (and thus tail latencies) by 32 × compared to
GPU acceleration—yet inference still takes 𝒪(ms) (Duarte et al., 2019). Even
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1 This is an important con-
straint, as state collection
typically demands bytes of
space in the register file
per measured flow. Equi-
valently, if inference isn’t
fast enough to meet timing
at a per-packet rate without
pipeline stalls then this re-
duces performance degrada-
tion on SoC-type NICs.
2 FPGA-based SmartNICs
are an exception, where the
designer may simply include
their own FPU if that they
have sufficient area.

novel DMA techniques such as GPUDirect (NVIDIA, 2021a) halve but do not
eliminate PCIe transfers.

In parallel, the recent advances we’ve examined in PDP hardware and the
P4 ecosystem benefit us in two ways. On one hand they have produced
many novel, openly available fine-grained traffic measurement techniques
that can be installed in our routing infrastructure and controlled with ease.
On the other, their enhanced compute capabilities have been instrumental
in achieving low-latency, line-rate ML inference. From a DDN design per-
spective, these benefits are strongly connected; not only can we eliminate
latency incurred due to batching and steering, but we can also act on per-
packet or per-flow state which might be too costly to transport across the
network. In this sense, PDP hardware allows us to move the entire monit-
oring and analysis stack (including ML inference) into the dataplane itself,
and have it evolve to incorporate new approaches by changing out the set
of tables and associated actions that packets must traverse. In addition, P4’s
control plane makes it easy to select which flows or packets are monitored
in a live network1 and potentially allows control over traffic at the decision
site.

While these state-of-the-art approaches can exploit local, PDP-device-only
state to offer reactive network control, the missing piece of the puzzle is
learning and updating these analyses online without deferring to another
machine in the network. While we have already examined how resource-
constrained devices in general use bespoke data formats to make inference
and learning possible (section 3.4), FPUs are excluded from the designs of all
PDP device classes as they are entirely surplus to traffic processing.2 As a
result the current state of the art, as we have examined it, requires that any
ML model must be completely trained offline before conversion to some
PDP-friendly format, such as BNNs or a chain of MATs. While the ques-
tion of data formats is well-considered, training these models online and in-
network has not been solved from an algorithmic perspective—DNNs and
their like are at odds with this goal as backpropagation is too expensive,
and storage of minibatches and replay buffers runs counter to the limited
memory and resources afforded to network hardware. If we can bring on-
line learning to the dataplane, then we can take advantage of rich, local state
while minimising state-action latencies as in-network ML does, while also
reducing their impact on the learnt policy. This would also make it easier to
train and prototype agent designs which can learn as the network environ-
ment evolves, or enable live training in testbeds and production networks
when there is too little data to model and simulate a problem.

The work presented in this chapter considers how online RL can be made
possible in PDP hardware, and is based upon ‘Online RL in the program-
mable dataplane with OPaL’ (K. A. Simpson & Pezaros, 2021) and ‘Revisiting
the Classics: Online RL in the Programmable Dataplane’ (K. A. Simpson &
Pezaros, 2022). Through section 5.1, I discuss and justify the data formats
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which are necessary to allow both inference and learning in reasonable
timescales on PDP hardware. Additionally, I also investigate how to make
best use of common architectural features of SmartNIC hardware—primarily
their high count of low clock-rate cores—to act and learn at low latency
based on locally acquired state, without affecting packet forwarding per-
formance. By considering efficient, parallelisable function approximation
alongside these data format choices, the novel wait-free ParSa algorithm can
then be described. This complete design is termed OPaL—On Path Learn-
ing. I then present and describe how OPaL is realised on Netronome Smart-
NIC hardware, including the use of platform-specific primitives and more
tailored work allocation strategies (section 5.2). Section 5.3 then evaluates
this implementation in depth: I investigate its throughput and latency char-
acteristics on RL policies of varying sizes, show the resource demands of the
system, and investigate performance as the compute resources allocated to
OPaL are varied. Although this is a fundamentally different task from other
PDP-ML tasks, I compare task execution costs against the state of the art
for similarly sized inputs. Crucially, this includes an investigation of how
cross-traffic carried by a co-hosted P4 dataplane are affected under various
degrees of additional RL load. Having demonstrated its operational char-
acteristics, I then describe how OPaL might integrate with state-of-the-art
PDP applications to implement the RL-based DDoS prevention system de-
scribed in chapter 4 rather than a VNF deployment, and comment on how
operators maymake best use of different OPaL agents within their networks
(section 5.5). Finally, I summarise the findings of this chapter in section 5.6.

5.1 Design

Based on the design principles and problems outlined above, I present my
design for an in-NIC, task-independent, online RL system—OPaL (On Path
Learning). At a high level, OPaL is designed to use the auxiliary compute
exposed by general SmartNIC devices to offer low-latency online learning,
scaling according to available on-chip resources at build time. Its design is
based on meeting the following constraints:

Low state-action latency. RL DDN applications incur 𝒪 (ms) latencies due to
a combination of expensive function approximation, batching, state
steering, and PCIe handoffs. Ideally, to keep pace with packet rates
upwards of 40Gbit/s we require inference or state-action latencies
around 𝒪 (ns) or 𝒪 (µs). This would enable fine-grained operation on
traffic, particularly latency-sensitive control problems. Where pos-
sible, this should correspond to increased throughput to better enable
the processing of line-rate traffic.

Effectively employ parallelism. As discussed in chapter 2, SmartNIC devices
often contain large numbers of slower cores without FPUs. As such,



150 Chapter 5. In-network Reinforcement Learning

3 This consideration has
historically been labelled
as parallel RL (Grounds
& Kudenko, 2007), not to
be confused with the mul-
ticore/parallel algorithms we
are also interested in.

to achieve strong latency or throughput bounds we must employ and
design algorithms which are both computationally cheap (forbidding
DNN backpropagation) and parallelisable. Crucially, this also allows
users to scale up or down their resource costs to dedicate as many or
few cores as needed to meet desired latency or throughput targets.

Use on-device state without stalling packets. In spite of the above performance
goals, at larger policy sizes it becomes more likely that the inference
and update steps of an RL algorithm will violate packet or pipeline
timing constraints. However, we need access to state from the data-
plane to meet our goal of low-latency processing. Thus, an in-NIC RL
agent must interact with but not execute on the main packet path.

Reconfigurable. To simplify deployment as network operators’ needs change,
anOPaL RL agentmust be able to be easily repurposed at runtime—i.e.,
without recompilation and installation of firmware or FPGA designs.
While this includes complete model changes, the most useful aspect
would be the ability to swap between online and offline modes of op-
eration to increase decision throughput. Moreover, we aim to make
use of the control-plane for easier selection of target flows.

Minimise resource use. Due to the resource-constrained nature of PDP hard-
ware, applications and packet pipelines have highly limited TCAM-
accelerated or other high-speed memory (e.g., 𝒪 (KiB)). As such, stor-
ing replay buffers is infeasible, as are RL algorithms which require
such buffers for stable learning. This is amplified when learning a
shared policy from several flows concurrently.3

To meet these constraints, OPaL operates alongside a co-hosted P4 data-
plane in a SmartNIC, running asynchronously with respect to the packet
forwarding path, with its full interaction model given in section 5.1.1. To
achieve both inference and learning I employ fixed-point 𝑄 numbers as the
main data format, and justify this against data formats in other embedded en-
vironments (section 5.1.2). Classical RL algorithms and function approxima-
tion schemes—semi-gradient Sarsa and tile coding (sections 3.2.1 and 3.3.3)—
enable learning under the memory and computational constraints of PDP
hardware. This considers different parallel processing strategies, as well as
the conversion to a wait-free algorithm enabled by using 𝑄 numbers as the
primary data format (section 5.1.3).

Bringing OPaL to PDP switches such as the Tofino would be difficult, if
not impossible as they closely match the P4 PSA, leaving no spare general-
purpose compute units. Taking inspiration from real-time programming,
a potential solution might be to divide RL processing across several pack-
ets (i.e., computing a portion of the preference list each time) until further
work would delay outbound transmission. This would introduce new issues
in concurrent access, work splitting, and altered timescales for learning: we
leave their treatment to future work.
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Figure 5.1: SmartNIC-type PDP devices typically implement a target data-
plane design by mapping the processing pipeline across one or more cores
or FUs. Such devices are well-suited to this; NPUs or SoCs such as NFPs of-
ten have spare cores which aren’t dedicated to running the dataplane, while
spare area on FPGAs may be used to design arbitrary FUs. While additional
compute resources can relax the timing constraints needed to hit line-rate
throughput, to prevent packet stalls as requiredwemustmove long-running
computations (i.e., RL inference and updates) to this auxiliary compute. P4
programs expose device-specific functionality through externs, allowing
any extra compute resources and Inter-Process Communication (IPC) to be
accessed from ingress and egress tables, thus providing asynchronous exe-
cution and fast transmission of P4-extracted state as needed.

5.1.1 Interaction and system model

OPaL is a general, task-independent framework for in-network, online train-
ing and execution of any reinforcement learning agent design using classical
methods. OPaL is agnostic to the meaning of state vectors it receives as in-
puts and the actions it produces, which are employed by other functional
units or the dataplane. However, in-NIC or in-network execution specific-
ally benefits packet-, flow-, and network-level learning, control, and op-
timisation tasks. OPaL meets the above goals by operating as a system
which exists in parallel to a co-hosted P4 dataplane. Figure 5.1 describes and
demonstrates the requisite interaction model; state extraction (i.e., flow tele-
metry collection and processing) occurs in the ingress and egress MATs of
the P4 dataplane. The packet pipeline of a P4 dataplane then communicates
with OPaL via extern plugins using In (state, configuration) messages to re-
configure the agent or request inference, and Out (action) messages which
carry output state-action pairs for the environment to make use of. The
contents of these messages are explained below. To deploy this design, we
require a platform-specific implementation of OPaL itself and the In/Out
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ring interaction mechanisms—exploiting how SmartNIC devices often ex-
pose general-purpose compute. As many of these devices have engineering
and development histories which predate P4, such general compute bey-
ond the P4 PSA’s limits (The P4.org Architecture Working Group, 2021) is
surprisingly common. This then provides path-adjacent, on-chip RL in the
dataplane.

OPaL itself runs on one or more cores of a SmartNIC to convert state meas-
urements of a known size from the environment into a stream of actions us-
ing a stored policy. I discuss how it scales with additional compute as part of
section 5.1.3. These dedicated cores are then responsible for processing re-
quests, computing actions, and updating the underlying policy in real time.
Combined with reward measurements, this policy can then be updated or
trained from scratch entirely on the NIC, acting as a fully online RL agent.
An input state vector always induces an action and, if online learning is de-
sired, updates the policy using either an included reward or one retrieved
from memory according to a key placed alongside the state. This allows for
simultaneous control and learning over independent systems by the same
agent (i.e., optimising several flows with their own reward measures, such
as DDoS mitigation in an AS where each next-hop AS might have their own
health metric). Configuration messages may be provided over either the
data or control-planes, where the P4 control plane may be used to provide
access control over which machines or ports may send such commands.

By executing on spare compute units, this design prevents packet stalling by
moving longer-running compute out of the packet path, and can scale with
coresmade available at compile-time to improve latency and throughput. By
operating as closely as possible to the P4 pipeline, OPaL uses and learns from
per-packet state with minimal added latency (avoiding PCIe transfers and
batching as required), while imposing minimal impact on carried traffic for
both bump-in-the-wire deployments and at end-points. Moreover, the pres-
ence of the P4 dataplane allows easier inclusion of existing P4 traffic meas-
urement and state extraction techniques, such as those covered in chapter 2.

Execution trace handling. To be generally applicable, we require that OPaL
is flexible in how reward values are mapped to input state vectors. Tar-
get applications may aim to control one or many separate trajectories—i.e.,
learning from concurrent traces (Grounds & Kudenko, 2007)—and in the
online case we must have a low-overhead method of retrieving the correct
last state-action-value tuple. Moreover, each may require its own reward
value depending on the nature of the MDP, for instance when optimising
individual flow behaviour rather than joint control to benefit a shared envir-
onment. OPaL thus allows several sources for selecting these values, which
may be configured separately for trace and reward selection:

Shared. A single RL trajectory or reward value is held. The reward value
must be periodically updated using dedicated reward packets.
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Field. A given field of the input state vector is used as the lookup key (e.g.,
in a hash table) for either the trajectory or reward value. For instance,
this may be a packet’s flow hash or source IP. The reward value must
be periodically updated as above.

Raw Field. A given field of the input state vector is used as in Field, but is
not hashed for lookup.

Value. A given field of the input state vector is directly used as the reward
value. The installed policy can use or ignore this field as needed.

Policy constraints. To minimise (and predetermine) the amount of data re-
quired to encode a policy, as well as reduce the computational complexity of
policy inference, tile coded policies are constrained in the following ways.
All tilings are assumed to be uniform rectilinear grids as in algorithm 1,
where each dimension of input state has a single minimum and maximum
assigned. We assume that each dimension is subdivided into the same num-
ber of tiles, and that all tiling sets contain the same number of overlapping
tilings over a given list of dimensions. Each tiling set then covers a list of
dimensions up to a platform-defined size.

Message formats. To provide the needed functionality and runtime config-
uration, OPaL’s In ring receives the following message types.

State messages. These contain only a list of input data values from the en-
vironment, which invokes an inference and/or update cycle.

Reward messages. These contain a single data value, and an optional data
value used as a key to ensure it is mapped to the correct state traject-
ory.

Configuration. These messages contain either top-level parameters (action
counts, dimension counts, hyperparameters), or the dimension list for
each tiling set.

Policy insertion. As network packets have a restricted size, these messages
subdivide a full policy parameter vector, and contain an array of tile
value data alongside an offset into the policy. These may be used to
insert a pretrained policy into an offline agent, or to percolate policy
updates among online learning agents in a network.

OPaL’s Out ring only carries a single message class, which is a state-action
tuple.
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4 Depending on the system
design, (hyper-)parameters
used only in divisions can be
replaced with right bitshifts
if we restrict their allowed
values to negative powers
of 2. This comes at the cost
of system flexibility, and as
such OPaL’s implementation
doesn’t make use of this
possibility.

5.1.2 Data format

To implement online learning such as in RL, we require a data type which al-
lows us to perform numerical computation without an FPU—principally, to
compute the values in action preference lists. Moreover, to achieve online
learning we require a format which is both fast to work with (to minimise
processing latencies), and suited to represent gradients and temporal differ-
ence values, i.e., incremental changes to stored policy weights. Recalling the
discussion in section 3.4, we employ fixed-point arithmetic; it offers both the
versatility needed to be easily reconfigurable, and it maps simply to ALU op-
erations. For instance, only multiplications and additions require additional
bitshifts for base pre-/post-conversion, while additions and subtractions re-
quire no additional overhead.4

From a configurability perspective, the count of fractional bits in a 𝑄 num-
ber can be easily changed at runtime. Naturally, this has no effect on over-
all latency and throughput of fixed-point arithmetic, but is a useful char-
acteristic for being able to deploy different RL agents to the same hard-
ware without invoking more costly firmware or FPGA design installation.
If this is fixed at the same setting for all values used, then we needn’t tag
individual 𝑄 numbers with information about their base, saving memory.
The bit width of the numbers themselves (i.e., 𝑘) may be changed only at
compile time in many cases, particularly as SmartNICs often lack dynamic
memory management in their native non-P4 programming environments.
Lower choices of 𝑘 sacrifice numeric range, but allow policies and data to
occupy less memory—allowing fairer resource use versus other dataplane
programs—and thus occupy less memory bandwidth in data transfers. Al-
ternatively, larger policies may be stored in the same memory bounds (po-
tentially enabling the solution of more complex problems).

The reduced width and precision floating-point data formats we also ex-
amined earlier are not suitable here, in spite of their successes in other em-
bedded domains. First and foremost, these still require specialised FPU im-
plementations. This is naturally at odds with the design and goals of PDP
hardware, and beyond FPGA designs such a data format would be infeas-
ible. Software floating-point emulation has historically required 10–30 ×
more cycles to perform compared to hardware FPUs (Iordache&Tang, 2003),
which is incompatible with our need for low-latency and high-throughput
processing. While the added dynamic range would be useful in this applic-
ation, performance is a primary goal.

PDP hardware excels in applying actions to network packets using MATs,
potentially giving us a high-performance method to install selected actions
within the network. However, directly modifying these match tables from
within the device itself is neither feasible nor safe. On Netronome NFP hard-
ware in particular, rule updates must be applied by the co-hosted control-
ler machine, as tables are reliant on the optimised DCFL (Taylor & Turner,
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2005) data format. In addition to the prohibitive complexity of building
this data structure on-device, its construction requires knowledge of the
entire rule set (and cannot be incrementally updated). I instead suggest in
general that externs or datapath stages which apply RL actions to packets
should maintain a small store of state-action pairs, and periodically send
these back to the controller for batch installation. This ensures that the ma-
jority of installed rules benefit from faster hardware-accelerated lookups,
while preventing installation delay on the newest decisions. Platforms such
as Intel Tofino greatly simplify this, where Tofino Native Architecture in-
trinsics such as Action Profiles/Selects allow a P4 action to be chosen based
on a register value (e.g., an RL action). Future NICs and SmartNICs may
expose support for runtime table modification via the Portable NIC Archi-
tecture (The P4 Language Consortium, 2021) as discussed in section 2.2.4,
but at present these proposals are under constant revision and are far too
nascent to seriously consider.

5.1.3 Algorithm

To enable online in-NIC learning in spite of the computational limits of PDP
hardware, we must return to classical RL methods and models. In partic-
ular, we focus on tile coding with one-step temporal-difference learning
algorithms such as Sarsa, which were discussed and explained earlier (sec-
tion 3.2.1 and section 3.3.3). These functions do not require batches of inputs
to learn in a stable way, negating the memory needed to store experience
replays, and have simple update and inference logic. Moreover, gradient
computation is identical to the forward pass and has no dependency on the
current parameter values 𝜽, potentially allowing hit tiles to be stored to ac-
celerate the next update step. Finally, the choice of single-step algorithms
(as opposed to 𝑛-step or Monte Carlo methods) bounds the amount of per-
trace state required for online learning to just the last state-action pair, safe-
guarding the limited memory of our target devices.

As for how to take advantage of the multicore nature of SmartNICs, there
are two strategies worth considering. Suppose we have 𝑛 cores. The first
strategy is that we simply have each core work independently. For instance,
when dealing with a stream of input state vectors according to OPaL’s in-
teraction model, we may serve each arrived vector to a free core—this core
then tile codes the state against every tiling, produces an output action, and
then updates the policy as required (algorithm 1 and eq. (3.6)). Intuitively,
this produces an 𝑛 × throughput improvement assuming there are no bot-
tlenecks at either the input and output queues or mutual exclusion around
shared data. However, this offers no reduction to the processing time of
any individual element—and so the state-action latency is not reduced as
desired.

To attain the latency improvements we desire, we must consider instead a
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Figure 5.2: Tile-coded function approximation can be considered as a map-
reduce problem during both the inference and update steps. Action pref-
erences are aggregated from disjoint tile queries, where each tile hit con-
tains a list of action values to add to a. Retrieving or updating each tiling
is thus a separate task. As all constituent action preference lists are dis-
joint between tasks, updating hit tiles requires no control over concurrent
accesses—furthermore, it requires no final aggregation step.

second strategy: how several cores may work together to complete an in-
dividual inference or update operation. Consider that tile coding computes
individual hits against a set of tilings to produce a sparse boolean feature
vector, which we’ll denote x, and refer to the set of all its non-zero indices
by 𝐻 . Without loss of generality, suppose we have two tilings 𝑡1 and 𝑡2, with
a number of tiles |𝑡1| and |𝑡2| in each respectively (such that dimx = |𝑡1|+ |𝑡2|).
For notational simplicity, let each entry of an agent’s policy data 𝜽 be a vec-
tor of length 𝐴 (i.e., choosing between 𝐴 discrete actions). A state vector
will produce exactly one hit in each tiling, having indices ℎ1 ∈ [0, |𝑡1|) and
ℎ2 ∈ [|𝑡1|, |𝑡1| + |𝑡2|), without overlap. The final action preference list is given
by eq. (3.1), which we can specialise further:

a = 𝜽⊤x = 𝜽 [ℎ1] + 𝜽 [ℎ2] = ∑
ℎ∈𝐻

𝜽 [ℎ]

As a result, tile coded RL inference may be subdivided into several distinct
computations of tile indices whose results are added together as a final ag-
gregation step. Most of the work in each task arises from computing the
tile index hit by the state vector. Crucially, we have shown that memory re-
gions of each tiling have no overlap with one another by construction. Each
memory address is visited and owned by exactly one task—hence, there is no
concurrent access to policy values—and so no locks are required to protect
each region of the policy. Figure 5.2 demonstrates this process visually.

When updating the policy we need only monitor the number of completed
tasks rather than perform a final aggregation step. To see this, we specialise
Sarsa’s update step (eq. (3.6b)) using our list of hit indices 𝐻 . After centrally
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5 While other datatypes
such as f32 can technically
support atomic operations
on many platforms, outside
of specialised GPU envir-
onments such as CUDA
these incur non-trivial
performance costs due to
cache and register placement
restrictions.

computing a TD value 𝛿𝑡 using x and a subsequent x′, the action 𝑎 invoked
by x, and a learning rate 𝛼 , we update the policy values involved in the
previous decision (using Python slice notation for simplicity):

𝜽 [∶, 𝑎] ∶= 𝜽 [∶, 𝑎] + 𝛼𝛿𝑡x
∴ 𝜽 [ℎ1, 𝑎] ∶= 𝜽 [ℎ1, 𝑎] + 𝛼𝛿𝑡 ,
∴ 𝜽 [ℎ2, 𝑎] ∶= 𝜽 [ℎ2, 𝑎] + 𝛼𝛿𝑡 .

and so on for all ℎ ∈ 𝐻 when we have an arbitrary number of tilings. Thus,
using the above knowledge that concurrent accesses to any parts of the
policy cannot occur, an RL update divides into subtasks without locking
in much the same fashion as inference does.

The aggregation step still risks becoming a bottleneck during inference; if
individual preference lists are passed back as discrete messages, then this re-
quires explicitly iterating over and summing all such lists. While this may
be performed by a dedicated worker thread or core in parallel to the other
disaggregated inference tasks, this involves additional costs in every such
task for memcpy operations into a message buffer. Consider again that OPaL
targets PDP hardware: without a dynamic memory allocator, this buffer has
bounded length and so risks causing head-of-line blocking for all other tasks.
However, encoding our values using a fixed-point representation allows us
to employ atomic instructions to remove the aggregate step, thus producing
a wait-free algorithm. Recall that the aggregation step involves only addi-
tions, that atomic integer fetch-add instructions are commonly offered on
many machine architectures,5 and that fixed-point addition is identical to
integer addition. As a result, the final action preference list may be allocated
once and atomically added to by all workers. Moreover, if extra care is re-
quired to prevent numeric overflows or ensure saturation, then any worker
may locally verify whether the fetched value and summand would cause an
overflow. Alternately, an implementer may simply enforce upper and lower
bounds on each action value to prevent positive or negative overflow.

Parallelising the RL algorithm among processes in this way thus requires
tight coupling between the function approximation and RL update algorithm.
The combination of all of these elements forms the basis of ParSa—parallel
Sarsa (algorithm 2). To match the deployment environment of SmartNIC
devices, ParSa is presented such that each worker thread operates in an in-
finite loop to await and process requests delivered over a message channel
In, and produce a stream of outputs on Out. We first assume that every pro-
cess knows its own index—id—and that a schedule has been precomputed to
divide individual tilings among cores as tasks (line 5). This careful division
is important; an individual tiling may contain several dimensions, and by re-
calling algorithm 1 it is obvious that tilings with a higher dimension count
require more iterations and are thus more expensive to infer. To give some
context on the number of tasks ParSa is expected to perform, a policy sized
to match the agent designs from chapter 4 with one bias tile and 16 sets of
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Algorithm 2: ParSa—Parallel Sarsa

/* Given message passing mechanisms scatter and recv, an
input request stream In, an output action stream Out,
quantised arithmetic functions 𝑄mul and TileCode, and
omitting schedule/config/precache/reward updates. */

/* cfg.𝛼, cfg.𝛾 are hyperparameters affecting the
significance of each update and the degree of
forward-planning, respectively. */

1 enum Par { Act(state), Upd(delta, action, state) };
2 const cfg, policy = /* ... */;
3 let values: [AtomicI32; cfg.n_actions] = {0};
4 let acks: AtomicI32 = 0;
5 Function ParSa id, schedule
6 if id==0 then
7 forall state_pkt in In do
8 Ctl(state_pkt);

9 else
10 while true do
11 Minion(schedule[id − 1], recv());

12 Function Ctl state
13 values, acks = {0}, scatter(Par::Act(state));
14 acquire slot for Out, copy state into slot;
15 await acks == cfg.n_minions;
16 let action = argmax(values);
17 write action into Out slot, enqueue;
18 if cfg.online then
19 let ((l_state, l_act, l_val), found_s) =

cfg.lookup_state_from_key(state);
20 let (reward, found_r) = cfg.lookup_reward_from_key(state);
21 if found_s && found_r then
22 let 𝛿𝑡 = reward + 𝑄mul(cfg.𝛾 , values[action]) − l_val;
23 𝛿𝑡 = 𝑄mul(cfg.𝛼 , 𝛿𝑡 );
24 acks = 0, scatter(Par::Upd(𝛿𝑡 , l_act, l_state));
25 await acks == cfg.n_minions;

26 cfg.store_state(state, action, values[action]);

27 FunctionMinion tasks, msg
28 switch msg do
29 case Par::Act(s) do
30 forall task in tasks do
31 let hit = TileCode(s, task);
32 for i in [0..cfg.n_actions) do
33 values[i].atomic_add(policy[hit][i]);

34 case Par::Upd(𝛿 , a, s) do
35 forall task in tasks do
36 let hit = TileCode(s, task);
37 policy[hit][a] += 𝛿 ;
38 acks.atomic_add(1);
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6 Work stealing or other par-
allelisation strategies are not
suitable choices for work bal-
ancing in tile coded Sarsa for
several reasons. These in-
clude the computational sim-
plicity of individual tasks,
the predictable compute cost
of any such task, and the re-
lative cost of IPC required
to pass cached state between
workers.

7 In principle, the control-
ler thread may also act as
another minion after this
step, between scatter and
recv calls, subject to code
store limits.

8 tilings creates 129 work items. As such, a schedule is required to produce
the most balanced workload between worker threads.6 However, this is a
deployment-specific implementation detail, as in addition to raw task costs
an effective schedulermust account for cache size limits and physical/logical
core differences. I present an allocator tailored to Netronome hardware later
in algorithm 3. A single worker thread, designated as the controller, then re-
ceives and processes state vectors from the environment (lines 6–8), while
the remaining threads—minions—retrieve a broadcast message of type Par
to apply over their prescheduled task set (lines 9–11).

The Ctl procedure directs tasks to minion threads, manages storage of exe-
cution traces, and computes the policy adjustments prescribed by the Sarsa
TD value. Applying the insights of Travnik et al. (2018) to minimise action
latency, an action is computed and sent out into the environment—and only
then is the underlying policy updated. For each input state, the controller
thread zeroes out the shared aggregation space, where values holds the ag-
gregated action preference list and acks contains the count of terminated
minion threads. An Act request is then sent as a broadcast message to all
minion threads using the platform-specific scatter IPC call (line 13). While
the minions produce the action preference list asynchronously, the control
thread then requests an output message slot and prepares it by copying the
state into the acquired buffer (line 14).7 Once every thread has marked its
termination, the values of each action given the input state are located in
values (line 15). The index of the largest value is then taken to be the chosen
action, though this may be trivially modified to account for 𝜖-greedy selec-
tion (line 16), which is then placed into the output message and returned
to the environment (line 17). When online learning is enabled, the control
thread checks for a reward signal and prior state-action-value tuple accord-
ing to the configured trace selection scheme from section 5.1.1 (lines 19–20).
If a match is found, it computes and reduces by 𝛼 the Sarsa TD value 𝛿𝑡
(lines 22–23), before passing this adjustment and the prior state action pair
to the minion threads to perform the update step (lines 24–25). Modification
to other single-step algorithms such as Q-learning would be simple, requir-
ing only changes to the computation of 𝛿𝑡 . The newest state-action-value
tuple is then stored (line 26).

The Minion procedure processes a single request to retrieve and aggregate,
or update, the action values learnt for an input state over some subset of the
policy tilings, tasks. All minion threads cover the complete set of tilings
between themselves. In the case that action inference is requested, the
policy hit index is computed against the input state for each tiling in this
thread’s task list (line 31). As described above, each action value is atom-
ically added to its matching position in the shared preference list values
(lines 32–33). When an update is requested, all tile hit indices are recom-
puted (line 36), and an adjustment 𝛿 is added to the selected action in each
case (line 37). Once all subtasks have been completed, this thread’s comple-
tion is recorded (line 38). While it is apparent that the indices of hit tiles



160 Chapter 5. In-network Reinforcement Learning

may also be locklessly sent back and stored as part of the execution trace—
i.e., by adding an extra value slot per task—the number of subtasks often far
exceeds the count of values in a state vector. As a result, this results in a
larger memcpy in Ctl (the serial portion of ParSa), and as such it is more effi-
cient to recompute hit indices in the update step—though this optimisation
is useful in the case of the first (non-ParSa) parallelisation strategy.

As required, this new algorithm scales with increasing processor counts to
reduce both the inference and update costs incurred by a single state vector.
This lowers the state-action latency and produces a corresponding increase
to throughput. However, the factor of speedup isworse than 𝑛 × , and exhib-
its diminishing returns in terms of core count—for instance due to the cost
of memcpys and arithmetic in the serial logic of Ctl, message passing costs at
the broadcast and receive steps, and any memory fences or reorderings in-
serted by the compiler around atomic arithmetic. This is limited further by
the number of subtasks which can be generated for a given policy. While
ParSa assumes tile-level granularity, it may be modified to compute indi-
vidual actions at the cost of being dominated by significant repetition of
work and IPC overheads. Since these aspects are platform-dependent, this
behaviour can only be shown empirically as in section 5.4.2.

5.2 Implementation

OPaL is implemented as a collection of programs targeting the Netronome
NFP family of SmartNICs, using a mixture of the proprietary Micro-C lan-
guage and P4. As this work’s implementation relies upon a good amount
of platform-specific intrinsics and optimisations, it is necessary to explain
some of theNFP’s basic architectural details. These SoC devices achieve scal-
able packet processing through sheer parallelism. Most of the chip is com-
posed of MEs—physical cores—grouped into islands of 4 or 12 MEs. All 12-
ME islands are used by a default P4 pipeline, while two of the 4-ME islands
are left free for user code. Each ME has 4–8 contexts (hardware threads)
which share a code store. Beyond registers, the platform implements an
explicit memory hierarchy scaling in size, location, and access cost:

LMEM (ME) < CLS (Island) < CTM < IMEM (Chip) < EMEM

Interested readers will find more in-depth detail presented in appendix C.

This section covers how policy data is stored in OPaL to make best use of the
above memory hierarchy (section 5.2.1), and how cores and other resources
are applied to implement both parallelism strategies described above (sec-
tion 5.2.2). I further detail how OPaL implements the In and Out rings on
NFP hardware (section 5.2.3). Through section 5.2.4, I discuss and introduce
the design of efficient work-passing and aggregation mechanisms on NFP
hardware required to enable the ParSa algorithm. Section 5.2.5 describes
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8 CLS is the lowest-latency
memory region which is
practically usable: LMEM is
dedicated mostly to program
state and variables which
spill from the register file,
and cannot be accessed
across ME boundaries.

how OPaL may be configured at compile time and during runtime. Finally,
I detail the scheduler used to partition tile coding tasks between available
worker threads in section 5.2.6.

5.2.1 Policy storage

Taking advantage of the non-uniform memory architecture in NFP hard-
ware, OPaL splits its policy across the CLS, CTM and IMEMmemory regions.
This arises both from necessity, and in the pursuit of runtime performance.

Firstly, policy data is stored densely, as the nature of embedded program-
ming means that all required memory must be statically allocated. As such,
the program must reserve enough memory at compile time to contain any
policy. While this does not rule out sparse storage, this would introduce a
lookup overhead when finding the memory address of each tile’s data (as
well as at-rest storage costs for, e.g., a hash table). The price in memory
has already been paid for storage of a full policy, and so a dense strategy
simplifies lookup by assigning a fixed (and easily computed) array index to
each tiling set.

Secondly, recalling that a worker must retrieve an action preference list for
each tile, we aim to minimise the latency of each memory access as part of
our overall performance goal. Ideally, this would mean placing the entirety
of the policy into CLS, but there is insufficient space to do so.8 Suppose
we’ve chosen 𝑘 = 32 for our fixed-point format, thus each action value oc-
cupies 4 B. Given 𝑎 action values, 𝑑 dimensions in a tiling, 𝑠 tilings in a set,
and 𝑡 tiles per dimension, that tiling then occupies 4𝑎𝑠𝑑 𝑡 B of memory—its
cost scaling exponentially with the count of input dimensions. Consider the
Instant agent design of chapter 4: the largest tiling set chooses 𝑎 = 10, 𝑑 = 4,
𝑠 = 8 and 𝑡 = 6, and thus requires 1280 KiB. This alone exceeds the 64 KiB
of CLS available per island. Worse still, we must include enough space to
store any tiling set below the maximum parameters. If we do not differenti-
ate between tiling sets according to dimension count, then for Instant’s 17
tilings we would require 21.25MiB.

The solution then is to explicitly partition the policy’s storage across these
memory regions according to maximum dimension count; i.e., assigning
tiling sets having 𝑑 ≤ 1 to CLS, 𝑑 ≤ 2 to CTM, and 𝑑 ≤ 4 to IMEM. As
we cannot fit a whole multidimensional policy into CLS, this design instead
maximises the proportion of the policy which is placed into smaller regions.
The above dimension limits are arbitrarily picked to match Instant/Guarded
as before, but can be customised at compile time subject to resource limits.
This increases the proportion of accesses made to lower-latency memory.
Moreover, these memory regions are accessible to all MEs on the same is-
land, and with increased access cost for remote islands.
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Parallels in other platforms This tiered division of policy regions applies
to other device classes as well. For instance, FPGA devices have a similar
hierarchy between LUTs, block RAM, SRAM and Dynamic Random-Access
Memory (DRAM).

5.2.2 Action and update computation

I implement both parallelism strategies described in section 5.1.3, each as a
separate firmware model governing how the compute-heavy parts of these
tasks (action selection, policy updates) are carried out:

Ind (fig. 5.3) Separate threads listen for new states, and each performs its
work sequentially. Computing an action list requires a read lock on
the policy. If an update occurs, the core requests a write lock before
updating, greatly limiting online throughput. Tile lists are stored in
each state trajectory for update computation.

CoOp (fig. 5.4 and algorithm 2) Threads cooperate on processing state vectors,
minimising latency. Minion threads have a fixed list of work items,
while a controller thread sends compute and update commands before
awaiting worker completion. Work items are disjoint, requiring no
policy locks. State vectors are stored in each state trajectory for update
computation.

Both designs interact with the environment using the Multi-Producer/Multi-
Consumer (MPMC) channels described in section 5.2.3. CoOp also employs
carefully optimised communication between workers and runtime enumer-
ation (section 5.2.4).

Each offers a different point of optimisation; if updates are disabled, then
the Ind model can maximise throughput, while the CoOp model is designed
to minimise decision latency and needs no locks to update the policy (in-
creasing online learning throughput). These correspond to only executing a
trained policy and actively (re-)training a policy, respectively. Latency and
throughput, as in many networked systems, have different effects upon RL
agents according to their design and target problem. Higher RL through-
put is a necessity for per-flow or per-packet applications, which can require
high decision-per-second rates even after combining state measurements
received from the environment, such as flow control in DDoS prevention.
Equally, lower latency affords an agent finer-grained control and learning
of a problem, being able to react sooner to new information (e.g., device state
in a routing optimisation problem, or queue depth when trying to enforce
packet pacing).

In both cases, the configuration data structure holds a cache of adjusted
minima, maxima, tile widths, and shift amounts for each tiling. As this data
resides in nearby CLS, this offers a reliable way to accelerate inference and



5.2. Implementation 163

RwLock

Config

RwLock

Policy

Local
CLS

Local
CTM IMEM

{Rewards, State,
Config, Tile Config,

Policy Data}
(State, Action)

In Ring

RwLock

HashMap<
Key,
(Tiles, Act),
>

RwLock

HashMap<
Key,
Reward,
>

Out Ring

Worker

Worker

Worker

Worker

Worker

Worker

Worker

Worker

Worker

Worker

ME 0
Worker

Worker

Worker

Worker

Worker

Worker

Worker

Worker

Worker

Worker

ME n

EMEM

OPaL
Cores

Other
Cores
/FUs

...

Figure 5.3: The Ind firmware design implements the first parallelism
strategy discussed in section 5.1.3, where each thread independently per-
forms tile coded inference and Sarsa RL updates. Workers each pull com-
mands from (and push actions to) the environment over the In and Out
channels. To maintain consistency between all workers, configuration,
policy data, and state-reward trajectory data must be guarded by read-write
locks. During inference, workers acquire a shared read lock around, e.g.,
policy data. As a result, Ind optimises throughput for an offline agent, but
because policy updates require an exclusive write lock around many para-
meters, only a single worker may perform an RL update at any time.
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Figure 5.4: The CoOp firmware design implements the second parallelism
strategy discussed in section 5.1.3 (ParSa, algorithm 2), where each thread
cooperates on tile coded inference and RL policy updates. A single controller
thread interfaces with the environment over the In and Out channels, and
then delegates RL computation and updates to many minion threads, who
operate on independent subtasks. These messages are moved between MEs
using specialised next-neighbour registers. The first context of each phys-
ical core is responsible for placing this message into shared scratch, notify-
ing the other contexts on its ME, and forwarding the message to remaining
MEs on the island. This design minimises state-action latency, but crucially
maximises online throughput by having no mutually exclusive data access.
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updates in all OPaL threads. Once a CoOp minion receives its task set, it
pre-computes each task’s memory tiling tier, the index of that task’s tiling
set, and internal index in the set of that same task, accelerating lookup of
these parameters from task indices. Ind, when learning online, additionally
caches the full hit tile list as part of the execution trace, as its cost is far
smaller than inference—in CoOp, it is paradoxically cheaper for each worker
to simply repeat the tile coding over its task subset due to the additional
serial work described in section 5.1.3.

Although not covered directly in algorithm 2, adaptation to support 𝜖-greedy
action selection requires an additional consideration for slowly-annealed ep-
silon values. If 𝜖 is reduced by an amount smaller in magnitude than the
current number of fractional bits can represent, then we instead reduce 𝜖 by
the smallest valid amount every 𝑇 decisions.

5.2.3 Agent-environment communication

OPaL usesMPMCmessaging channels to communicate with other elements;
be they P4 programs on the packet path, or other on-chip analysis and con-
trol modules. This allows decisions to be made asynchronously—preventing
packet stalling—and allows many RL agents to be used if desired. The key
insight of this mechanism is that on-chip reward and state signals enjoy
first-class support in the same manner as packets from the P4 dataplane, al-
lowing agents to act on environmental signals from other on-NIC and -chip
asynchronous processes, or the controller itself. As such, OPaL can receive
input from P4 externs or other, dedicated off-path flow state measurement
applications.

This implementation uses platform-specific IPC—EMEM ring buffers—as the
basis for MPMC communication over the In and Out rings. These are NFP-
intrinsic primitives which allow an arbitrary number of listener threads to
await the arrival of any work item using hardware signalling. While this
signalling and delivery is specially hardware-accelerated, this comes at a
cost of strict message body size limits; unfortunately this falls short of the
maximum state-action pair size, let alone arbitrary policy packet payloads.
To work around this, OPaL maintains a freelist of byte slices for both the
In and Out channels, while EMEM ring messages themselves carry lengths
and pointers from the freelist alongside any preliminary P4 parser data. As
PDP hardware lacks dynamic memory allocation, large buffers are allocated
at compile timewithmany fixed-size slices; In’s buffer slots are sized to hold
MTU-size packets, while Out’s slots hold enough bytes to store the largest
possible state-action pair. The OPaL controller with the lowest index locks
each of these lists and populates it using all contained slices, from which
point any other thread in the SmartNIC may lock the structure to request or
return a valid message pointer. This costs a median 126–140 ns communic-
ation time for pointer-sized (4 B) messages depending on the locality of the
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Table 5.1: Median IPC messaging costs on NFP hardware for 4 B pay-
loads, measured over 65 536 trials. Of these, only EMEM rings can be used
between islands, while nearest neighbour registers have strict placement
and access constraints. These one-way delays are measured by halving the
RTT between two cores, or subtracting a return reflector write cost for next-
neighbour registers due to their one-way access limits.

IPC mechanism Cross-island support Cycles Time (ns)

Next-neighbour registers 7 24.0 20.0
Reflector registers 7 72.0 60.0

EMEM rings (same-island) 3 152.0 126.667
EMEM rings (cross-island) 3 168.0 140.0

work producer and consumer, with cross-island messages having the higher
costs (table 5.1). This is comparable to message channels in the Rust and Go
languages on commodity hardware (Tsilias, 2020).

To simplify implementation and to present a consistent API for other data-
plane programs, packet headers are extracted and parsed using the tooling
autogenerated by the P4 pipeline. This allows OPaL to handle configura-
tion packets from the environment (whose protocol is covered later in ap-
pendix D) or elsewhere on-chip through the same mechanisms.

5.2.4 Intra-agent communication

Even with parallel problems such as ParSa, optimising for latency requires
meticulous care in how work is passed out and aggregated. This is truer
still when moving from the moderately fine-grained control of classical RL
(∼1ms) to its logical limit (tens of µs). Ordinarily, the marshalling of re-
quests, responses, and shared data access can incur significant overheads.
On-chip execution and the nature of action preference computation allow
us to use lockless atomic aggregation, removing the overheads of explicit
messaging/packetisation. Moreover, adjacent functional units/cores often
have special-purpose shared registers or share a small fast cache to acceler-
ate communication. These capabilities underlie the design of the broadcast
and aggregate primitives required by Parsa, and which are shown to some
extent by fig. 5.4.

While I describe here how OPaL is optimised to enable the most efficient
division of work, communication, and aggregation, these communication
operations add per-task overheads in both the serial and parallel portions.
Even in wait-free algorithms, this requires a minimum number of workers
to improve upon the latency bounds of a serial approach. I investigate the
exact worker count requirements imposed to break even or improve upon
single-threaded execution in section 5.4.1.



5.2. Implementation 167

9 Recall that -1i8→0i8 is
also 0xffu8→0x00u8. As
we can reasonably expect
individual tile preferences
for each action to oscil-
late between positive and
negative, each sign change
will trigger an unsigned
overflow.

Broadcasting OPaL’s task broadcast implementation exploits the locality
of cores in the NFP. Consider table 5.1: island-local IPC is considerably
cheaper than the more generic methods we use for, e.g., the In and Out
rings. The lowest-latency mechanism here, next-neighbour registers, allow
for extremely quick communication between adjacent MEs, e.g., 0→1→2...,
but their use limits us to a chain-forwarding approach. This remains, how-
ever, a net gain over arbitrary messaging via reflector registers in the ab-
sence of an actual broadcast bus. Consider the situation where 4 MEs are in
use, thus the controller thread must notify 3 minion++ contexts. In a chain
forwarding scenario, MEs 1 and 2 receive commands sooner (𝑡 = 20 ns and
40 ns) than ME 3—and thus, all their contexts may start work sooner. Even
assuming that all reflector writes can be sent in parallel, their use would
enforce that all threads start at 𝑡 = 60 ns. Reflector register IPC does remain
a useful option for skipping ahead into chains of larger than 4 MEs, though
these larger islands may only be used when an administrator is willing to
replace one or more P4 pipelines. Inside of an ME, recall that all contexts
share LMEM and a large register file. As such, work is passed out by copy-
ing the received message into a shared register region and simply notifying
all other local contexts to awaken.

Aggregation Each context writes back to a single shared block of memory
in CLS, performing atomic adds to a shared preference list and acknowledge-
ment counter as required by the Parsa algorithm. The controller thread
checks these whenever it is notified of task completion by a hardware sig-
nal fired after the acknowledgement counter is aggregated. This is essential
for aggregation compared to the use of bounded message buffers, which
caused significant head-of-line blocking in earlier implementations.

It is worth noting that CLS supports only 32 bit and 64 bit atomic arithmetic,
and the native NFP register width is 32 bit. As a result, lower bit depth tile
representations (8 bit and 16 bit) ultimately resolve to 32 bit atomic arith-
metic. Is there a way to take advantage of this to gain additional throughput
for these tile widths? That is, to find a bit-packing strategy which enables
multiple additions to be performed in a single atomic operation as a make-
shift form of SIMD? While this is doable, the main issue is that additions
are performed on signed data in effectively an unsigned way, as the carry
between arbitrary bit pairs cannot be disabled. Unsigned overflows are a
common occurrence when operating on signed data in this manner9: naïve
packing will cause the sign changes of adjacent computations to ‘bleed into’
neighbouring fields. In the non-atomic case a single packing bit suffices
between any pair of values, all of which may be masked out in a single
ALU operation. In the atomic case, 𝑛 bit padding fields allow at most 2𝑛 − 1
additions from separate tasks without clearing. Having 136 tasks and 31
workers we require at least 8 bit padding to elide all atomic clears, or 5 bit
if every addition is followed by a test-clear operation on all padding bits.
Figure 5.5 shows the packing layouts in a 64 bit field which maximise the-
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Figure 5.5: Bit-packing layouts within a big-endian 64 bit integer required
to emulate SIMD addition using atomics. Packing requirements prevent the
ideal 4 × and 8 × throughput gain for 16 bit and 8 bit data we’d expect from
hardware SIMD. These layouts achieve 3 × , 4 × and 5 × ALU throughput,
where the latter i8 layout requires an explicit atomic clear after every addi-
tion. These maximise the count of byte-aligned data, though this cannot be
guaranteed as we require at least log2(workers) bits of internal padding.

oretical throughput—4–5 × for 8 bit and 3 × for 16 bit. Unfortunately, as
related in section 5.3, this adds a consistent 10 % latency overhead to tile
coded inference due to the additional non-atomic ALU operations needed
to pack the input data. This can be useful on other platforms where atomic
operations are much more expensive, or ALU use is cheaper.

Initialisation Any aggregation step requires us to first know the total num-
ber of workers. This can vary under the number of MEs running OPaL, the
number of contexts assigned to each if CLS/CTM usage is required for an-
other application, and because future designs may also introduce workers
on other islands. This allocation of cores or chip area is set ahead of time by a
framework or system administrator, but to enable greater runtime flexibility
OPaL-CoOp agents enumerate themselves at runtime, during initialisation.
To determine this, at startup the controller thread writes its own number of
contexts into the first preference list entry, and passes on a message to its
next neighbour. Each minion++ then adds to this its own number of con-
texts, and forwards the message to the next ME in turn. The last minion++
worker then increments the acknowledgement counter by 1. This count is
then propagated back out to all contexts, acknowledged and awaited (for,
e.g., local workset computation).

Parallels in other platforms On other SoC SmartNICs, we assume that sim-
ilar MPMC communication channels and direct core-to-core messaging are
possible under similar constraints, but note that this could be accelerated
further by a true broadcast primitive. If the platform includes true message
broadcast then implementation is simple. More specialised targets such as
FPGA-based solutions may include an explicit bus between the controller
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and all minion FUs to provide this in the most efficient manner possible. On
NetFPGA, the writeback step canmake use of native-width adders matching
the tile data format, providing hardware SIMD acceleration as required.

5.2.5 Reconfigurability

OPaL allows policy design and learning parameters to be changed at runtime
using at most two control packets. For instance, design changes are useful
at the end of learning (moving from online to offline), or when trying to
train a new policy for another problem from the same vantage point. Para-
meter changes are useful when an online agent must become more (or less)
adaptive to new data (i.e., after detecting a changepoint in traffic). This ex-
tends to policy data, which may be imported from a pre-trained model via
such packets and exported via PCIe to the host machine. Some aspects must
be chosen at compile time; bit depth, parallelism strategy via CoOp/Ind, and
maximum policy, tiling, or state sizes—these govern core operation or pre-
allocated memory. Choosing a bit depth of 16 bit or 8 bit halves/quarters
policy memory costs, allowing more complex problems to be modelled us-
ing more dimensions or fine-grained tiles.

In this implementation, configuration packets are carried over UDP and sig-
nalled to the P4 parser using a reserved pool 2 DSCP (Baker et al., 1998)
value, similarly to Y. Li, Liu et al. (2019). While this mainly automates parser
generation, it also allows for configuration to be received from only trusted
hosts (over the dataplane if needed) via P4 rules. The control packet gener-
ation library and evaluation frameworks which build upon it are written in
Rust.

5.2.6 Work allocation

I use a simple first-fit work placement algorithm, algorithm 3, run in OPaL-
CoOpwhenever a full configuration is installed. This places the largest work
item into the least loaded minion context of the least loadedME, and assigns
an equal number of tasks among all MEs where possible. Each work item
is a separate tiling over a list of dimensions, where it can be reasonably as-
sumed that these items are sorted by dimension count—thus, the reversed
work list places the most computationally expensive tasks first. The approx-
imate cost of any work item according to its dimension count and memory
location was empirically measured offline and fed back into the scheduler—
a mean 5.2 µs, 6.2 µs, 9.7 µs and 11.0 µs for bias (0D), CLS (1D), CTM (≤2D)
and IMEM (≤4D) tilings respectively. Finally, this scheduler weighs the total
cost per core based on the number of minion threads available. This weight-
ing specifically accounts for the controller thread on the first core. To work
around some fairly opaque waking behaviour between contexts on eachME,
I apply a small penalty to minion contexts with a lower internal ID.
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Algorithm 3: Task scheduling for ParSa

/* Assume we have a list ME_CTXS, which contains one entry
for each included ME counting the number of its usable
contexts, totalling N_CTXS. Also, assume we know the
average cost of a task in each memory region, MEM_COSTS.
*/

1 struct Cost { cost, n_items, max_items };
2 Function Schedule work_items
3 let out = vec![vec![]; N_CTXS];
4 let alloc_sz = work_items.len() ÷ N_CTXS;
5 let alloc_spill = work_items.len() % N_CTXS;
6 let me_costs = [Cost { 0, 0, 0 }; ME_CTXS.len()];
7 let ctx_costs = [Cost { 0, 0, alloc_sz }; ME_CTXS.len()];
8 forall ctx in ctx_costs[..alloc_spill] do
9 ctx.max_items += 1;

10 forall ctx in ctx_costs do
11 let penalise_early_ctx = ME_CTXS[me_id(ctx)] -

local_ctx_id(ctx) - 1;
12 me_costs[me_id(ctx)].max_items += ctx.max_items;
13 ctx.cost = penalise_early_ctx;
14 me_costs[me_id(ctx)].cost += ctx.cost;

// Sort MEs by cost / ME_CTXS[me], breaking ties on
largest id.

15 let me_heap = min_heap(me_costs);
// Sort CTXs by cost, breaking ties on smallest id.

16 let ctx_heaps = [min_heap(ctx_costs[first_ctx(me)..ME_CTXS[me]])
for me in 0..ME_CTXS.len()];

17 forall item in work_items.reverse() do
18 let me = find_min(me_heap);
19 let ctx = find_min(ctx_heaps[me]);
20 me.n_items += 1;
21 ctx.n_items += 1;
22 if me.n_items ≥ me.max_items then
23 me_heap.remove(me);
24 else
25 me.cost += MEM_COSTS[item.region];
26 me_heap.rebalance();

27 if ctx.n_items ≥ ctx.max_items then
28 ctx_heaps[me].remove(ctx);
29 else
30 ctx.cost += MEM_COSTS[item.region];
31 ctx_heaps[me].rebalance();

32 out[ctx].push(item);

33 return out



5.3. Evaluation 171

Naturally, for 𝑛 tilings and 𝑚 threads this procedure is 𝒪(𝑛 log𝑚): two
find/update min operations into binary heaps per tiling, storing𝑚/8 and≤ 8
costs respectively. As an implementation detail, given that number of MEs
is small we may replace their minheap with a list to reduce the setup over-
head (i.e., constant terms) in exchange for worse asymptotic scaling. This
also enables us to compare cost𝑖 × ME_CTXs [best] ≤ costbest × ME_CTXs [𝑖]
rather than repeatedly apply fixed-point division.

5.3 Evaluation

To evaluate OPaL fairly, we must investigate its performance characteristics.
Primarily, these include raw latency and throughput statistics, co-existence
with other dataplane programs on the same PDP device, validating my im-
plementation and design choices, and assessing OPaL’s impact on dataplane
traffic. Here, I describe the experimental setup I use to evaluate these cri-
teria. Moreover, I detail each of the individual experiments performed, in-
cluding any defined baselines or more specific technical requirements.

5.3.1 Experimental setup

For traffic generation, and to employ a portfolio of CPUs at different per-
formance points for comparison purposes, I use 3 different machine config-
urations to support the below experiments. These testing machines had the
following hardware, all with 32GiB RAM:

MidServer Intel Xeon Bronze 3204 (6 × 1.9 GHz),

HighServer Intel Xeon Silver 4208 (8 × 2.1 GHz),

Collector Intel Core i7-6700K (4 × 4.2 GHz).

Mid/HighServer are rackmounted server-grade hardware and are represent-
ative for situations where a server administrator aims to include inference
in the packet path as part of a bump-in-the-wire deployment. Both of these
servers ran Ubuntu 18.04.5 LTS (4.15.0-140-generic). Collector accounts for
higher clocked consumer-grade hardware having fewer physical cores, cap-
turing the case of mirrored (out-of-rack) traffic processing. This also enables
the estimation of host performance when directed to a virtualised network
function. Collector ran Ubuntu 18.04.4 LTS (4.15.0-96-generic)

OPaL and its firmwares were evaluated on server blade configurations (Mid-
Server and HighServer), each with a single Netronome Agilio LX 1 × 40GbE
SmartNIC (NFP-6480, 1.2 GHz). Firmwares were built to include a P4 tool-
chain using the default ME, context, and island assignment. Control pro-
grams were built using rustc version 1.52.1. OPaL’s firmware is built to run
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10 Multithreading on NFP
hardware prevents the costs
associatedwith oversubscrip-
tion even though contexts
are not physical cores. Con-
text switches are cooperat-
ive around I/O or voluntary
wait points rather than time
quanta, and the register file
for each is preserved since
the same program code is run
by all contexts on an ME.

its RL logic on a 4-ME island of the NFP-6480, totalling 32 contexts. This
is the largest cluster of cores which is not in use by a P4 pipeline. Versions
of these firmwares using 32 bit, 16 bit and 8 bit arithmetic and registers to
represent tiles, inputs, and values were built. Where feasible, I use these to
test 32 bit, 16 bit and 8 bit quantised arithmetic.

All OPaL timingmeasurements were repeated over 10 000 state packets (pre-
ceded by 1000 warmup packets), retrieving item processing times over PCIe
via the controller machine, from which throughput was derived. Host in-
teger and floating-point performance numbers were acquired using a tile-
coded Sarsa implementation written in numpy—throughput and latencies
weremeasured over 10 trials of 10 s (with 5 s warmup/cooldown times). This
differs from the NFP’s methodology as a consequence of a numpy-based
solution: Python’s multithreading support is questionable at best due to the
global interpreter lock, thus these agents must be run in parallel via separate
processes. This does have some benefits for evaluation in that it also allows
us to investigate the effects of oversubscription on host latencies.10

Policy sizes are set to those of the Instant DDoS control application intro-
duced in chapter 4: 20-dim state vectors, a bias tile and 16 full tiling sets
(7 × 1-dim, 8 × 2-dim, 1 × 4-dim), 8 tilings per set, 6 tiles per dimension, and
10 actions. As a reminder, such input state would contain various aspects of
per-flow state (e.g., IATs, rates) which are combined with other state such as
the last action taken (2-dim tilings) and loads along the ingress-egress path
(4-dim). In CoOp, this creates 129 work items across 31 workers. Although
the more successful Guarded agent design uses 3 actions, I choose a larger
action set here to investigate the performance of more complex agents.

5.3.2 Experiments

Raw inference and learning performance I compare how long it takes for
OPaL to compute actions and update its policy per state vector received, and
report on the observed throughput of both firmware designs against floating
point (numpy-based) implementations of Sarsa on a commodity host ma-
chine. This allows us to demonstrate the performance differences between
the Ind and CoOp configurations, particularly in how Ind’s (and hosts’) re-
quired policy locks impact throughput. We compare online learning per-
formance (input states produce an output, and then update the policy) with
offline (input states only produce an output) in these cases. Online perform-
ance marks the number of decisions that can be made per second (and as-
sociated latency) when training a policy. Offline performance is crucial for
pushing a trained, known-good policy to agents in the network with an
expected higher raw decision throughput. State-action latency is a shared
property of both cases, with the main impact on throughput arising from
the update step.

Building on this, I vary the amount of worker threads to show how OPaL
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11 Obviously this cannot
explore the entire schedule
space of 𝑁! permutations,
but this does give us sens-
ible measures for the expec-
ted schedule cost to meet
and can observe better lower
bounds.

scales to fit available compute resources on a device. This is an import-
ant aspect for (automated) allocation of compute resources in an intelligent
dataplane—particularly when cohabiting with other dataplane programs—
and has effects on ahead-of-time work scheduling which are examined later.
This also demonstrates the number of cores needed to achieve a given latency
or throughput bound on a policy of representative complexity. Moreover,
to demonstrate how these costs vary as policy complexity increases, I vary
the number of total dimensions included in the tiling (i.e., the number of
subtasks included in an inference or update step).

Work allocation I verify that the heuristic, runtime work scheduler de-
scribed by algorithm 3—termed Balanced—makes meaningful use of the ex-
plicit memory hierarchy and cost of each work item. This is compared
against several baselines, all of which allocate n_items𝑗 tasks to everyworker
𝑗 as in algorithm 3:

• A Naïve chunked scheduler, which equally divides tasks among con-
texts. Each worker 𝑗 visited in numerical order takes the first n_items𝑗
free tasks.

• A Random allocation.

• A simpleModular allocator, designed to account for the fact that tasks
with larger indices are typically more costly to execute, thus taking a
relatively even spread of task indices. A worker 𝑗 out of 𝑤 takes 𝑘 =
n_items𝑗 tasks, given by work𝑗 = {𝑗 + 𝑖 × 𝑤 ∣ 𝑖 ∈ [0, 𝑘)}. For instance,
worker 4 of 31 (splitting 129 items) would take tasks 4, 35, 66, 97 and
128.

The Naïve and Modular schedulers have the benefit of being computation-
ally simple—allowing eachworker thread to independently compute its own
allocation without issue. This has some impact on dynamic reconfiguration
of an OPaL agent, namely on the amount of serial and distributed work re-
quired in response to a policy structure change. The Random allocator is
useful for evaluation in that it considers many separate (though unlikely)
schedules, allowing us to determine whether there exists any available im-
provement.11 When measuring schedule effectiveness, ParSa is timed from
the start of Ctl until an action is produced (Action, lines 12–17), the serial
portion of update state management is completed without triggering an up-
date (Update Prep, lines 12–26 given ¬ (found_s ∧ found_r)), and the proced-
ure finishes (Update, lines 12–26 given found_s ∧ found_r). In all measures I
use maximum-size 32 bit policies as described earlier.

End-to-end RL latency I compare the key RL decision-making latencies we
discuss in fig. 3.7 across 3 scenarios: completely in-NIC (OPaL), delegating
RL decisions to a SmartNIC’s controller machine, and using a VNF on the
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same machine for RL inference. To enable this, I combine the raw latency
metrics of this system with accurate PCIe and VNF framework costs offered
by existing work.

Co-existence with the dataplane While varying the rate of full RL updates
performed by OPaL-CoOp (32 bit) from 0–16 000 actions/s, I measure packet
losses and sample latencies of cross traffic forwarded over a P4 pipeline hos-
ted on our SmartNICs. This allows us to quantify whether on-chip (out-
of-path) execution impacts ordinary dataplane behaviour through indirect
means: e.g., EMEM cache evictions or hidden resource contention.

I perform these tests using Pktgen-DPDK (Wiles, 2021), placing an NFP
in MidServer as the device under test and connecting HighServer over a
40Gbit/s direct copper cable as the traffic source via the default NFP firm-
ware. Throughput and loss tests are performed using 7/1 transmit/receive
queues at 100 % send rate for 10 bursts of 30 s, and perform latency tests us-
ing 1/1 transmit/receive queue at 10 % send rate for 200 000 measurements
(sampling at 2000Hz for 10 × 10 s). This provides maximum throughput in
the former case (relying solely on NIC counters for loss counting). In the
latter case, this minimises host resource contention to observe exact latency
measurements, have a high enough sample count to detect subtle (aggreg-
ate) latency effects, and eliminate host receive drops. DPDK was setup us-
ing 4 × 1GiB hugepages. Sent traffic was comprised of fixed-size 64–1518 B
packets (Bradner & McQuaid, 1999). CPU clock scaling was disabled on
HighServer to enable more accurate latency measurement.

Resource requirements Using the maximum policy size defined above, I
investigate how the memory requirements imposed by OPaL vary with the
number of dedicated MEs, over and above a base P4 forwarding plane. I
report resource use for 32 bit Ind and CoOp agents, with hash-tables sized
to 4096 state-action pairs and 16 separate reward values. Firmwares are
compiled to make use of 1 and 4 MEs. This captures the relative cardinality
of network RL traces to rewards, as many input flows will typically map to
one or few reward values (i.e., DDoS attack size estimation per egress-AS,
queue occupancy in the case of AQM per output port).

Deployability By timing agent setup and compile times, I measure the
runtime costs needed for an administrator to repurpose an installed agent
in a live network. These include the costs of changing hyperparameters or
policy structure data, mainly incurred by regenerating caches of paramet-
ers used in tile hit computation. In the case of CoOp, this includes measure-
ments of the cost of policy schedule computation as a function of workers
and tasks. Beyond this, I relate the costs of more complex reconfiguration
in an NFP-based system, including firmware installation times required to
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swap between CoOp and Ind models, in addition to compile costs which
some agent changes may mandate.

Magnitude comparisons against PDP ML While the work in this chapter
presents the first in-NIC RLmethodology, I offer a rough comparison against
existing in-NICML inference—principally BNN-based andMATworks. This
comparison mainly considers inference latency as a function of input data
size between OPaL and each competing approach, keeping in mind the tar-
get environment of each (ASIC, FPGA, or NFP SmartNIC).

5.4 Results and discussion

Investigating the performance of OPaL compared to classical RL techniques
executed on commodity host machines, we see that CoOp offers a 15–21 ×
speedup in median–99.99th state-action latency as well as 9.9 × greater
online learning throughput. Crucially, in-NIC execution offers tight tail
latency bounds compared to host-based approaches. I report on how OPaL
scales as additional device resources are added, noting that both in-NIC
designs outperform commodity hosts using just one core in latency and on-
line throughput. Furthermore, Ind provides higher per-core offline through-
put than host-based approaches, even though our measured hosts exhibit
higher clock speeds. Finally, I show that OPaL has minimal impact on data-
plane cross-traffic carried by its parent device, and that it performs at a
similar level of performance as other PDP ML which are implemented as
MicroC programs.

5.4.1 Raw inference and learning performance

Table 5.2 shows how OPaL compares in latency with a numpy-based RL
policy. CoOp achieves sub-35 µs median latency, with 99th and 99.99th per-
centile latencies less than 1 µs worse using 4 MEs of the NFP-6480. This
corresponds to 15–21 × speedups over a Collector host using floating-point
arithmetic. Importantly, Ind still achieves lower median state-action laten-
cies (2.79 × ) and update times (2.63 × ) than a dedicatedCollector host while
requiring only a single core or dedicated functional unit. Note that the
numpy-based integer results underperform compared to the floating-point
variant—median action latencies are 14.6 % worse, with 7.9 % longer update
times.

Table 5.3 compares OPaL’s throughput against host-based execution. The
worker count was chosen for host machines such that their throughput was
maximised without causing latency degradation. This equalled the amount
of physical cores on each device—moving beyond this (even below the num-
ber of hyper-threads) would hamper tail latencies by an order of magnitude.
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Table 5.2: Latencies and computation times for OPaL versus commodity
hardware hosts. On-device execution is crucial in not only lowering laten-
cies, but in reducing tail latencies. Lower is better, with the best marked in
bold.

Datatype Machine/FW State-Action Latency (µs) State-Update Time (µs)

Median 99th 99.99th Median 99th 99.99th

Float Collector 515.94 606.06 725.03 606.06 636.82 833.99
MidServer 1069.07 1125.1 1508.0 1260.04 1605.99 1719.864

NpInt32 Collector 562.91 668.05 889.06 653.03 715.02 943.9
MidServer 1154.9 1202.11 1595.252 1362.09 1477.0 1836.657

NpInt16 Collector 562.91 647.07 831.13 653.98 782.01 952.01
MidServer 1152.99 1234.05 1607.932 1361.13 1415.97 1811.071

NpInt8 Collector 564.1 645.88 861.008 651.84 739.1 922.012
MidServer 1152.04 1204.97 1602.022 1361.13 1502.99 1818.934

Int32 OPaL-Ind 185.133 185.533 186.213 230.840 231.347 232.227
OPaL-CoOp 34.347 34.520 34.573 62.000 62.440 63.120

Int16 OPaL-Ind 193.427 193.787 194.587 240.333 240.840 241.560
OPaL-CoOp 36.147 36.240 36.280 64.667 65.080 65.973

Int8 OPaL-Ind 194.520 194.840 195.240 241.173 241.707 242.760
OPaL-CoOp 36.227 36.307 36.347 64.333 64.867 65.693

Table 5.3: Action and update throughputs for OPaL versus commodity hard-
ware hosts. Most designs cannot scale online performance with additional
cores. Higher is better, with the best marked in bold.

Datatype Machine/FW Workers Throughput (k actions/s) Throughput/core (k actions/s)

Offline Online Offline Online

Float Collector 4 7.673(49) 1.627(31) 1.918(12) —
MidServer 6 5.584(30) 0.791(12) 0.931(5) —

NpInt32 Collector 4 6.960(131) 1.493(57) 1.740(33) —
MidServer 6 5.176(15) 0.727(8) 0.863(3) —

NpInt16 Collector 4 6.973(116) 1.495(37) 1.743(29) —
MidServer 6 5.182(35) 0.736(10) 0.864(6) —

NpInt8 Collector 4 6.968(101) 1.520(26) 1.742(25) —
MidServer 6 5.190(28) 0.731(16) 0.865(5) —

Int32 OPaL-Ind 32 172.875(229) 4.333(5) 5.402(7) —
OPaL-CoOp 32 29.166(173) 16.141(73) 0.911(5) 0.504(2)

Int16 OPaL-Ind 32 165.437(118) 4.161(4) 5.170(4) —
OPaL-CoOp 32 27.664(36) 15.471(54) 0.865(1) 0.483(2)

Int8 OPaL-Ind 32 164.524(142) 4.147(5) 5.141(4) —
OPaL-CoOp 32 27.631(101) 15.552(68) 0.863(3) 0.486(2)
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Figure 5.6: OPaL’s combined update and inference time as the degree of
parallelism is varied. CoOp’s online learning performance improves with
additional cores, onmax size tasks (129work items). This requires 8workers
to offer greater online throughput than single-threaded in-NIC RL. Sharper
performance increases occur when a new physical core is added (7–8) or the
scheduler works around a bottleneck (13–14).

To make the comparison fair in the context of many-core CPU environ-
ments, I include per-core throughput. Ind achieves 2.82 × higher offline
throughput than commodity Collector hardware in spite of the NFP-6480
having a considerably slower clock speed (0.29 × ). When compounded
with the abundance of such weaker chips, in-NIC RL is able to deliver much
higher throughput. As anticipated, the CoOp strategy is key in achieving
serviceable throughput in an online learning agent, 9.9 × that of a dedic-
ated collector machine, as the write lock around policy updates creates a
bottleneck.

By limiting the available workers in software, I show how CoOp’s policy up-
date time (thus online throughput—fig. 5.6) and state-action latency (fig. 5.7)
scale with available cores. While CoOp always outperforms the host-based
floating point implementations according to the earlier findings, we observe
that there are two distinct crossover points which must be met to overcome
our own Ind; 8 workers for online throughput, and 3workers for state-action
latency. Some artefacts of the hardware environment and design choices
are visible, such as the addition of new physical cores being more signific-
ant than contexts, and the presence of some schedule bottlenecks. Most
importantly however, CoOp’s resource demand is tunable at compile time
to meet the online training rate and action latency required by a task or
environment.

Figures 5.8 and 5.9 show howpolicy complexity affects update cost and state-
action latency respectively, scaling from a bias tile up to the full DDoS policy
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Figure 5.7: OPaL’s state-action latency as the degree of parallelism is varied.
CoOp’s action latencies similarly improve with more cores. This requires 3
workers (4 total contexts) to improve upon the state-action latency of single-
threaded in-NIC RL.

12 Input vectors here all have
20 elements regardless of the
policy design.

size.12 CoOp always produces an action in less time than Ind, but requires
at least one state-based tile to excel in online learning. Note that this is a
trivial case, as using only a bias tile returns a single preference list regardless
of input state.

A key aspect of in-NIC execution is that it allows far tighter bounds on tail
latency compared to host inference. Examining the state-action latencies in
table 5.2, we see that 99.99th percentile latencies exceed themedian by 0.58 %
and 0.66 % for Ind and CoOp, respectively. Similar results were observed for
other bit depths. By contrast, host-based tail latencies are at least 40.53 %
greater even when the parallel worker count is at or below the physical core
count. The cumulative distributions of these are shown in detail by fig. 5.10,
noting how just one additional CPU-intensive task—potentially automated
system updates, scans, or another VNF/traffic processing task—impacts tail
latencies further (Float(Over)).

A noteworthy trend is that 8 bit and 16 bit versions of OPaL consistently un-
derperform compared to 32 bit, except for smaller workloads (seen in the
zoomed portions of figs. 5.8 and 5.9). This occurs even though our imple-
mentation is optimised to read and write policy data in batches (achieving
fewer I/O operations). We see this because the native register width on
the NFP is 32 bit, and so the compiler must emit extra instructions around
arithmetic operations to correctly load and update values. This matches
32 bit becoming dominant in complex workloads: higher dimension tilings
require more arithmetic operations. Most of the I/O comes after this step,
causing ALU use to dominate. This also explains why 32 bit becomes the
best choice at different policy complexities for online (fig. 5.8, 10 dims) and
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Figure 5.8: OPaL’s combined update and inference time as the number of
tiling dimensions is varied. CoOp fully processes updates faster than Ind—
thus has higher online performance—on almost all policy sizes. Lower bit
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Figure 5.9: OPaL’s state-action latency as the number of tiling dimensions
is varied. State-action latency scales with additional work in a similar man-
ner to overall processing time; though 32 bit firmwares become more effect-
ive sooner (at 3 input dimensions, or 17 tasks).
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Figure 5.10: Cumulative state-action latency plots for OPaL and host-based
execution. In-NIC execution offers lower (and more consistent) latencies
than execution on a numpy-based host. 32 bit inference is the lowest-latency
strategy in OPaL.
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offline (fig. 5.9, 3 dims) agents, where hashtable accesses and a memcpy of the
state vector fall into the serial portion of the online algorithm. Smaller bit
depths still give a 2–4 × saving inmemory for policy storage (enablingmore
fine-grained or complex policies), in exchange for slightly worse latency
and throughput. To overcome this, I investigated SIMD-like bit-stuffing of
values into a single word during atomic writeback (as the platform offers
both 32 bit and 64 bit atomic addition) as presented in section 5.2.4. Unfor-
tunately, manipulating tiles into the correct format added 10 % extra over-
head.

5.4.2 Work allocation

Figure 5.11 shows that our heuristic allocator (Balanced, algorithm 3) is key
in achieving consistent sub-35 µs and 65 µs latencies and update times, re-
spectively. The trend is repeated for all bit depths. The constant difference
between Action and Update Prep scales with bit depth, matching storage
and lookup work in the serial portion of ParSa (fig. 5.12). The severe un-
derperformance of the Naïve allocator confirms that work item complexity
is correlated with its index, as batching work in contiguous chunks gives
some workers only high-dimensionality tilings. The minor gap in lower
bound performance between the Random and Balanced allocators suggests
that further optimisations can be made. I expect that closing or exceeding
this gap may require more complex modelling of hardware thread interac-
tions, which lies far beyond the scope of in-NIC scheduling. Some additional
complexity may be tolerated, subject to code store limits—scheduling runs
exactly once per configuration change, so does not impact per-action code.

An interesting aspect of CoOp and ParSa is that adding cores has both di-
minishing returns and key thresholds to pass. Consider fig. 5.13, where
the throughput per worker decreases with cores but occasionally increases
sharply. Later downward ticks (25–29 workers) correspond to plateaus in
throughput. This is a problem stemming from the granularity of work items
(i.e., tilings in ParSa), where our scheduler cannot find a better solution to
a bottleneck until extra cores are allocated. As mentioned in section 5.2.6,
individual state-action computation work items were measured as taking a
mean 5.2 µs, 6.2 µs, 9.7 µs and 11.0 µs for bias, CLS, CTM and IMEM tilings
respectively. Though we have a 4.2 × factor of task oversubscription it is
clear that as the count of worker threads increases, latencies are eventually
bound below by the length of the longest task.

5.4.3 End-to-end RL latency

Referring to fig. 3.7, we take 𝑡2 from table 5.2 for host and in-NIC processing
times, and substitute 𝑡1 + 𝑡3 for the state packet round-trip time to the de-
cision site:
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Figure 5.11: Action and update compute times in a 32 bit CoOp agent under
different work schedulers. TheNaïve andModular schedulers achieveworse
performance than Random’s median value. The Balanced scheduler intro-
duced in algorithm 3 outperforms these and achieves tight latency bounds
while outperforming the expected random schedule. However, there is still
a slight performance gap between the empirically observed minimum cost
and Balanced.
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Figure 5.12: Stage times of OPaL’s Balanced allocator at 8 bit, 16 bit and
32 bit depths. While the core inference and update logic becomes more effi-
cient at higher bit depths, the logic in the post-inference serial portion (i.e.,
Action→Update Prep) becomes marginally less taxing at smaller bit depths.
These serial portions consume 1.653 µs, 1.907 µs and 2.653 µs for 8 bit, 16 bit
and 32 bit respectively.
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Figure 5.13: OPaL-CoOp online throughput per core as the number of
worker threads is varied. Additional threads exhibit diminishing returns
on overall throughput for a given policy size. Note that the spikes of in-
creasing per-core value correspond to the scheduler bottlenecks observed
in fig. 5.6.

13 To reiterate, the median
RTTs were around 19 µs for
DPDK, 30.25 µs for Native
XDP, and 32.5 µs for AF_XDP.

In-NIC. As described in section 5.2.3, EMEM rings have a median one way
delay cross-island of 140 ns, giving a median 34.63 µs end-to-end infer-
ence latency.

Dedicated Collector. Offloads hosted in this manner will employ DPDK to
maximise performance, giving one-way PCIe delays of 0.9–2.3 µs for
network packets (Neugebauer et al., 2018). A UDP packet carrying
20 elements of state in OPaL is 128 B, so costs 1 µs to forward, and
the reply state-action pair is slightly larger. This gives an end-to-end
inference latency of 517.9 µs.

VNF Offload. Cziva and Pezaros (2017) show that lightweight VNF frame-
works like GNF (Cziva & Pezaros, 2017) and ClickOS (Martins et al.,
2014) add 45–55 µs additional RTT latency above PCIe costs, which
remain an estimated 1 µs as above. This gives an end-to-end inference
latency of 572.9 µs.

Using these estimates, in-NIC RL inference offers 14.96 × and 16.54 × spee-
dups in latency over collector and VNF deployments respectively (assuming
no steering cost in either case). The RTTs in our earlier microbenchmark—
fig. 2.5—are slightly more complex to compare against; they include the
MAC times, wire times, and send-side costs of an additional host machine (a
minor form of steering). What is clear, however, is that raw OPaL inference
costs are very similar to those required to reach a host machine via XDP
and its related technologies13 which have sprung up in more recent years.
We also contrast these against DRL policies on network tasks, which can
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take 3ms to compute (Sivakumar et al., 2019)—2 orders of magnitude above
OPaL with identically sized (20-dim) input vectors.

5.4.4 Co-existence with the dataplane

The traffic generation setup met 40Gbit/s for packet sizes ≥256 B. For frame
sizes of 64 B and 128 B, input traffic rates were 17.4 Gbit/s and 32.9 Gbit/s
respectively (33.9Mpps and 32.2Mpps). Passing this traffic over the NFP
device running OPaL, no packet losses were incurred at any rate of RL ac-
tions.

Figure 5.14 shows the effect of RL workloads on the round-trip latencies
of cross traffic. As observed latencies do not obey a normal distribution
(particularly 256 B and 1518 B, which are bimodal), I employ a one-tailed
Mann-Whitney U test to mark statistically significant population increases
in latency (𝑝 < 0.05) with a “+”. In general, statistically significant latency
increases concentrate around smaller packet sizes. All (bar one) of these
affected 99th percentile latencies by under 0.38 % (at most 78 ns). This slight
degradation can be explained by increased pressure on the NFP’s Command
Push-Pull (CPP) bus, which is responsible for handling cross-island accesses
to memory (particularly IMEM/EMEM) and other resources. OPaL places
load on the CPP bus through its In/Out EMEM rings and last-tier policy
accesses. This also explains the sensitivity of 256 B packets to OPaL—the
NFP P4 toolchain segments packets, storing metadata (e.g., MAC prepend)
and the first bytes of a packet in a 256 B CTM block while parking their
payloads in EMEM. 256 B packets overshoot this due to metadata, causing
small I/O accesses at a high rate for packets sized around this cutoff.

The anomalous result is 128 B packets at 3000 RL action/update computa-
tions per second, causing a 222 ns (1.18 %) increase, shown in fig. 5.15. This
is observed through a shift of some packet latencies from the mode towards
the tail, but no other changes in the distribution. In the above context, we
believe that the inbound request rate is weakly synchronised with inbound
packets, causing a higher level of burstiness around accesses to the CPP bus.
I expect that dedicated hardware or FPGA designs can avoid this problem
by having dedicated In/Out access mechanisms for an OPaL agent, which
would of course completely eliminate the possibility of resource contention.

5.4.5 Resource requirements

Table 5.4 shows how OPaL consumes shared memory as it scales to fit a
device’s compute resources, compared with a simple P4 forwarding applic-
ation. As one program is installed per ME, these results represent the min-
imum and maximum resource use on a single island (i.e., without repla-
cing P4 workers). We observe negligible costs on shared EMEM (∼4MiB),
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Figure 5.14: Deviations in 99th percentile cross-traffic RTTs for an OPaL
agent processing 0–16k updates/s. Statistically significant increases in pop-
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Table 5.4: NFP memory cost incurred by OPaL when built to use 1 and 4
MEs (32 bit). CLS and CTM are shared between all programs on the same
island (placing our RL agent on i5), while EMEM and IMEM are shared
between all NFP programs on a NIC.

Firmware EMEM EMEM Cache IMEM i5.CLS i5.CTM
MiB % KiB % KiB % KiB % KiB %

Base P4 6776.67 88.24 268.52 2.91 858.28 10.48 0.00 0.00 0.00 0.00
Ind(1) 6780.21 88.28 2541.08 27.57 1263.28 15.42 24.75 38.67 94.25 36.82
Ind(4) 6780.22 88.28 2545.33 27.62 1263.28 15.42 51.18 79.97 107.00 41.80

CoOp(1) 6779.12 88.27 1773.59 19.24 1263.28 15.42 22.41 35.01 90.00 35.16
CoOp(4) 6779.12 88.27 1769.84 19.20 1263.28 15.42 52.16 81.49 90.00 35.16

incurred due to hashtables for past state and rewards. The most signific-
ant costs arise due to policy data (405 KiB shared IMEM, 90 KiB local CTM,
15 KiB local CLS), which can be halved or quartered using 16 bit and 8 bit
quantisation and remain constant regardless of compute unit usage. This
is a high upfront cost on per-island resources (CLS/CTM)—OPaL leaves re-
sources for other off-path dataplane applications, but is fairest from 3 cores
onwards.

5.4.6 Deployability

Setup of OPaL uses two packet types: setup, which contains learning para-
meters, hyperparameters, and most aspects of a policy, and tiling, which
provides a list of state indices for tiling sets. Instrumentation in OPaL found
that setup and tiling packets take a mean 27.03 µs and 16.69 µs to be pro-
cessed on Ind, allowing an agent to be swapped between online and offline
operation (or repurposed for another task) painlessly. Online/offline swaps
are useful when an agent should cease learning (i.e., when performance has
converged), or if a change in the environment suggests that more training
is needed. Tiling packet processing scales linearly with the number of tiling
sets, due to the needed precaching of tile set boundaries. Online-offline
swaps for CoOp exhibit similar cost, however the need for explicit schedul-
ing means that policy/tiling structure changes (including the first complete
setup) take 422.63 µs for the full-size policy described above. The time taken
for CoOp to schedule its tasks was found to scale with the number of work-
ers (𝑚) and work items (𝑛) as described earlier (section 5.2.6, 𝒪(𝑛 log𝑚)).
Ignoring the trivial solutions, reducing the worker count to 1 costs a mean
238.22 µs, while placing a single task incurs 53.79 µs. Policy data changes
require no additional work in any case, resolving purely to memcpys.

Firmware (re-)installation (i.e., changing from Ind to CoOp, bit depth, or in-
creasing maximum policy sizes) took a mean time of 38.83 s. In the event
that appropriate firmwares are not pre-compiled, compiling and linking
both OPaL and the P4 toolchain took around 35 s, while changing only OPaL
parameters required around 25 s. These results show that OPaL can be easily
adapted and altered by network administrators once in place, and illustrates
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an advantage of SoC-based SmartNICs.

5.4.7 Magnitude comparisons against PDP ML

Full, in-network packet tagging and classification by pre-trained BNNs is
shown by N3IC (Siracusano et al., 2020). N3IC achieves packet inference
in 45 µs on the NFP, and 0.3 µs on NetFPGA for 256 bit inputs. Comparat-
ively, OPaL-CoOp can process an identically-sized input (8-dim) in a median
13.83 µs. This work handles larger inputs (640 bit) at lower latencies (34 µs),
and offers online learning. I expect that a NetFPGA implementation of OPaL
would enjoy a similar factor of speedup. No works investigate the runtime
training of BNN function approximators in-NIC.

Langlet (2019) has shown the viability of NN inference using 64 bit quant-
isation on the NFP, using in-path compute rather than our asynchronous
model. Inference latency on small networks (3 layers, 30 neurons) can be
as high as 500 µs on line rate traffic using 2304 bit inputs, emphasising the
value of path-adjacent compute.

Taurus (Swamy et al., 2020) proposes that efficient line-rate inference can
be achieved using a configurable grid of map-reduce units in the packet
pipeline (implementing e.g., LSTMs and SVMs). On CGRA hardware, they
achieve sub-µs extra latency for inputs of an unclear size. IIsy (Xiong & Zil-
berman, 2019) shows how classical ML inference (SVMs, Naïve Bayes, etc.)
can be converted into match-action tables compatible with any P4 deploy-
ment. They achieve mean 2.62 µs extra in-path latency on NetFPGA (at line
rate in most cases) on 59 bit inputs when illegal values are excluded. As
these approaches are reliant on specialised hardware-accelerated primitives
for inference, an apples-to-apples comparison is difficult. However by con-
sidering the relative performance of N3IC between Netronome and FPGA
implementations it is reasonable to place N3IC (and thus OPaL) in the same
performance band.

5.5 Potential integrations

To show the applicability and use of OPaL, we propose an ideal integration
which would benefit from in-NIC RL; online DDoS attack mitigation. I sup-
port this using other state-of-the-art P4/PDP developments, and discuss how
best to balance the concerns of online training (CoOp agents) with through-
put (Ind agents) in widespread deployment.

5.5.1 In-network DDoS defence

Classical RL can enable real-time, adaptive DDoS mitigation, as I discuss
through chapter 4. The Guarded agent design uses a mixture of global
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network state and local, per-flow state to monitor how flows respond to
bandwidth changes and packet drop—applying the observations made by
SPIFFY (Kang et al., 2016b) (observing howflow behaviour reacts to a change
in rate limits) with more allowance for congestion-unaware protocols. Ac-
tions then move flows up or down in punishment levels according to a finite
state machine.

Why in-NIC? This approach relies on co-hosting traffic measurement and
analysis alongside OpenFlow-compatible switches at the edge nodes of an
AS. However, packet mirroring and moving RL computation to a host (po-
tentially over layers of virtualisation) are all sources of additional, consist-
ent state-action latency. Both traffic statistics collection and data-driven
learning must be executed on such hosts and NFs. Unless running these
stages in a dedicated pipeline (adding further processing latency), resource
contention between these processes will further impact tail latencies. Nat-
urally, this requires high-performance hardware to be stacked at network
egress points, potentially beyond reasonable space, power, or ventilation
constraints. The solution to implement and improve upon this work using
OPaL is to place its RL agents on SmartNICs at AS edge nodes—a bump-in-
the-wire deployment.

Inputs To collate the required inputs and state, let us examine the recent in-
novations of the community. Low-latency, pure-P4 solutions to extract and
record per-flowTCP state directly in the dataplane such as Dapper (Ghasemi
et al., 2017) and Sonata (Gupta et al., 2018) are well-studied. In fact, the
statistics offered by Dapper are a super-set of the local input state values
employed by Guarded agents, offering an opportunity to further improve
their efficacy. I propose placing such monitors in the P4 dataplane, existing
on-chip alongside the OPaL agent. The required global state (load measures
from network paths) must still come from elsewhere in the network; this
is now the element at highest risk of becoming stale, but the least likely to
vary significantly in response to individual actions.

The Guarded design as I present it uses theoretical “ground truth” rewards,
whose correct implementation and designs were left as an open challenge. I
posit that INDDoS (Ding et al., 2021), which uses Count-min Sketches to
estimate DDoS victim cardinality, could be an effective reward function
source—i.e., using the number of detected victims as a loss value.

Integrating OPaL Before each monitoring action, we require that the table
hosting this hybrid solution polls OPaL’s Out ring for any generated ac-
tions. As noted in section 5.1.2, these actions would be placed into a small
hash table and simultaneously exported to the attached controller to be in-
serted as P4 rules in batches. Afterwards, packet ingress timestamps would
be used to emulate the TRS scheduler used by the anti-DDoS agents for
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rate-controlled work, where state vectors would be selected and passed into
OPaL. By design, active flows which are not judged after a configurable time
are discarded to prune the work set and allow new flows to be seen by the
agent. The tight bounds on execution time known a priori make it easy to
calculate the maximum number of decisions which can be made per dead-
line. Reward values would then be separately inserted by a modified IND-
DoS table.

Reducing state-action latency (i.e., with CoOp) is useful for minimising the
noise inherent in learning. However, an agent is limited by the fact that it
can take at least one RTT for meaningful changes to occur in a flow’s beha-
viour (𝒪(ms) in a transit AS or ISP). Accordingly, this use-case benefits most
from an increase in throughput using Ind. In this context, higher through-
put means that network flows are more likely to be judged in every timestep,
even when flow cardinality is high—making it more likely that changes in
flow behaviour will be observed, acted on, and learnt from.

Note that the TRS scheduler is designed to handle large numbers of attack
flows, combining seen state vectors over time while the asynchronous agent
is itself busy. By design, a number of (attack) flows beyond the maximum
throughput simply makes it take longer in expectation for a flow to be re-
assessed. As shown in section 5.3, OPaL far exceeds the throughput of host
offloading. The control plane can then use wildcards or specific matches
to narrow down or expand the set of flows to be controlled dynamically,
though explicit TRS scheduling is still key in such adversarial environments.

5.5.2 Network deployment considerations

The two compute models discussed above, CoOp and Ind, needn’t be ho-
mogeneously deployed in a distributed installation. In a networked deploy-
ment, a subset of OPaL nodes could be CoOp agents, training online, while
most other nodes run Ind designs to meet throughput guarantees. The con-
trol plane would then combine, downsample, and distribute these improved
policies between offline agents. This can be taken further still, using policy
deltas or execution traces to enable out-of-path transfer learning for more
complex models such as NNs.

5.6 Summary

We have seen through this chapter that online RL in PDP hardware is not
only possible, but crucially offers tangible improvements to state-action
latency and online learning throughput. This confirms one of the key asser-
tions in my thesis statement, namely that ‘In-network compute can make
data-driven networking more efficient, effective, and responsive—enabling
online learning to tailor policies to their deployment environment’ (s2). The
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key to doing so was to consider the architectural strengths and weaknesses
of the target environment—in this case, SmartNIC devices—to creatively
choose data formats and algorithms which suit their weaker, FPU-free, re-
source constrained designs rather than the state of the art. We have con-
sidered an off-path executionmodel, which places RL logic in-NIC, and have
explored its essential role in preventing any impact to packet forwarding
performance while enabling access to device-local state. By looking at these
both, in tandem with the high degree of parallelism that SmartNIC devices
engender, the ParSa algorithm was developed, which exploits the nature
of tile-coded function approximation. Moreover, I’ve shown that it sub-
divides into neatly disaggregated tasks and is thus wait-free when combined
with an atomic aggregation mechanism. We have examined two concrete
implementations of OPaL—Ind and CoOp—which apply SmartNICs’ paral-
lelism in different ways to tailor state-action latency or online and offline
throughput according to operators’ needs. These are driven by effective
methods for storing policy data across a non-uniform memory architecture,
efficient internal and external communication, and careful task scheduling.
OPaL was empirically evaluated on a number of benchmarks sized to large
policies, confirming its reduced state-action latency and increased through-
put compared to host-based execution. Observed performance numbers jus-
tified design choices in the scheduler, and validated the off-path execution
model’s ability to protect other cross-traffic carried by the NIC. Moreover,
OPaL’s runtime costs exist on a similar order of magnitude to existing PDP
ML works implemented on the same hardware, indirectly confirming its
validity and suggesting that sub ns execution might be offered by bespoke
FPGA implementations. Finally, we have discussed how OPaL might com-
bine with other state-of-the-art PDP works to realise the anti-DDoS agents
presented in chapter 4 entirely in PDP hardware.
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1 Moving this data outside of
PDP devices naturally occu-
pies its own share of band-
width. To transport it to
a host machine, we must
either scale up the capa-
city of the control plane to
carry telemetry, or move it
in-band via the dataplane
(where it will add a pro-
portional overhead to actual
traffic). In the latter case,
we canmark telemetry traffic
as lower priority, but this
would cause downstream col-
lectors to make decisions on
partial data due to losses (po-
tentially having worse or less
accurate outcomes).

Chapter 6

Scalable Flow Classification

TheML techniqueswe have considered so far are powerful and effective and,
with some amount of work, many can be ported to fit quite neatly into PDP
hardware. Between the existing literature and the novel additions demon-
strated until now, we have a toolkit of models and runtime techniques that
neatly runs the gamut of DDN use cases’ needs. Real-time analysis of oper-
ational Internet, WAN, and data centre traffic using granular, device-local
state is that much more feasible because of their development. This can be
through accurate flow characterisation (or classification), which can drive
intrusion detection, prioritisation of traffic for certain customers, provid-
ing path-diversity, as well as marking the QoS of various users and proto-
cols (Bernaille et al., 2006; Roesch, 1999); some of these use cases are feasible
even with the sampled, imprecise µs and ms-level data of sFlow, Netflow,
and IPFIX (Aitken et al., 2013; Claise, 2004). We have seen through sec-
tion 2.4.1 the sorts of advances in dataplane monitoring which will allow us
to further develop traffic analytics and classifiers, such as precise ns-level
timestamping, INT, and flow-state analysis. For instance, problems such
as microburst detection rely on extremely fine temporal or queue-specific
properties visible only to PDP hardware. The catch is that the volume of per-
packet or -flow data produced by such measurement imposes high packet-
per-second and bandwidth constraints beyond the capabilities of host ma-
chines or even the routing fabric1—we must process it locally in the PDP
environment. Even the most sophisticated software solutions process pack-
ets orders of magnitude slower than current backbone traffic of large op-
erators, making them unusable for large-scale operational analysis (Park &
Ahn, 2017).

Following the logic above (and throughout chapter 3), improvements to
traffic classification and other DDN goals come from two directions: better
data and more advanced ML techniques. While the community has come a
long way in enabling in-network ML—and the in-situ processing that PDP-
generated data can require—these nascent techniques still have their lim-
its. Not all ML models are small enough to be expressed in these devices.
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2 Pronounced “SAY-ther”,
Seiðr (a cord, string, or snare)
is an Old Norse form of
divination magic focussed
on the reading and weaving
of threads to know or alter
fate. The admittedly tenuous
connection is that flows are
these threads to be read.

Equally, some operational tasks rely on detecting spatial or temporal prop-
erties in data which can only be captured by more complex function ap-
proximators like CNNs, RNNs, or LSTMs. Barring the use of experimental
architectures like Taurus (Swamy et al., 2022), we have no mechanism to
express these primitives in the dataplane.

What can be done to bridge this gap? So far we’ve also seen that PDP hard-
ware excels at aggregating and fusing both measurement data and the inter-
mediate results of distributed computations (sections 2.4.1, 2.4.2 and 2.4.4).
It is evident that this line of thinking is what we need to help both the net-
work and end-hosts scalably process telemetry data. This introduces its own
set of challenges. In the case of timing information, we don’t want to lose
too much of the precision of individual measurements. The representation
we choose must also preserve structural or temporal features pertinent to
the traffic classes we detect.

To solve these prior challenges, I present Seiðr2, a dataplane-assisted flow
classification solution. The design philosophy of Seiðr achieves the above
goals: dataplane devices create accurately timestamped, aggregated histo-
gram data structures for later analysis, while a scalable software stack per-
forms more complex ML-based classification on commodity machines. As a
concrete use-case, we look at fine temporal dynamics of TCP CCAs. Under-
standing and classifying them is important for network providers as inad-
equate choices have severe effects on transfer rates, especially in networks
with a high bandwidth-delay product (Cardwell et al., 2016) and in networks
where multiple CCAs are used (Ware et al., 2019). By using accurate conges-
tion control diagnostics, operators will be able to infer sender problems (e.g.,
backlogged or application-limited senders), network inefficiencies (e.g., in-
creased path latency and congestion), as well as receiver issues (e.g., delayed
acknowledgements, small receiver windows) and fairness issues between
delay-based and loss-based algorithms (Ware et al., 2019).

Thework presented in this chapter considers how PDP hardware can reduce
fine-grained inputs and measurements into digests suitable for ML models
running on host machines, and is based upon ‘Seiðr: Dataplane Assisted
Flow Classification Using ML’ (K. A. Simpson, Cziva & Pezaros, 2020). I first
consider and outline approaches and algorithms for generating and emitting
histograms of packet- or flow-level statistics on PSA-compliant dataplanes
(section 6.1). Then, in section 6.2, I examine a use case to which both histo-
grams and precise packet timestamps are well-suited: the identification of
TCP CCAs from the distributions of IATs. This is explained from observa-
tions of raw data and analysis of the BBR algorithm. Section 6.3 examines
the performance, scalability, and effectiveness of the classification use case
on a variety of ML models and Seiðr histograms. Finally, section 6.4 sum-
marises the findings of this chapter.
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Figure 6.1: Seiðr’s integration with a PSA-compatible dataplane, without
the use of digest externs. Seiðr uses a register block to store many his-
tograms, each comprised of a fixed bucket count. The main Seiðr table is
used to select which flows or packets are tracked and used in the histogram
process, allowing runtime control over monitoring via the control plane.
When not using digests to emit telemetry (i.e., for transmission over the
control plane), we must rewrite and modify cloned packets to contain the
histograms—shown in blue.

6.1 Telemetry aggregation in the dataplane

Recalling much of the discussion in section 2.2.2, PDP hardware restricts
the programming models and datatypes we may make use of, such as FPUs
which would otherwise be helpful for the kinds of aggregation and statistics
we’re interested in. Chief among them though is their limited low-latency
memory—𝒪 (101 MB) (Jin et al., 2017). In light of these restrictions, histo-
grams become a natural choice. They are particularly suited for monitoring
distributional characteristics of one or more features, an example of which
will be introduced shortly. Each bucket is encoded as a fixed-size integer,
and assuming we know the data ranges and granularity of traffic features
we’re interested in we can tune maximum bucket counts to fit the desired
flow count into a given memory budget. At lower bits per bucket, we need
only increase the histogram transmission frequency to compensate for nu-
meric overflows. I describe here procedures for their creation and transmis-
sion under variations of the PSA dataplane.

6.1.1 Histogram generation

Although packet timing information is useful in understanding network and
flow behaviour, without volume or packet rate reduction it’s prohibitively
expensive for hosts to handle each packet. Histogramming acts as the ag-
gregation step which makes this class of analysis feasible in high-speed net-
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header seidr_cfg_t {
bit<8> function;
bit<144> payload;

}

header seidr_t {
bit<128> src_ip;
bit<128> dst_ip;
bit<16> src_port;
bit<16> dst_port;
bit<16> eth_type;
bit<BUCKETS * 16> histo;

}

Figure 6.2: P4 headers for Seiðr configuration and histograms.

works. Figure 6.1 demonstrates how Seiðr, installed as an additional table in
any P4 program, records and transmits inter-arrival time histograms. The
format for these histogram packets is outlined in fig. 6.2; bucket counts and
size are fixed at compile time. I choose here to store individual buckets as
u16s, and fix the number of buckets to 100 per histogram as an example (and
in later evaluation). Packets traverse a table which requires 3 actions to be
implemented:

1. config reads any matched packets as a seidr_cfg_t of type SET_{
MIN, MAX, DST, SRC, LEN } by using the P4 parser. These update registers
1–5 in table 6.1, dropping any matched packets.

2. measure calculates the inter-arrival time, update per-flow histograms,
and transmits finished histograms to the correct host. I describe its
operation in algorithm 4.

3. pass ignores packets, and is the default action.

Constructing Seiðr in this manner allows the control plane to install rules
to enable or disable runtime reconfiguration as needed, and to monitor as
many or as few flows as desired (i.e., usingwildcard rules or exact matching).

Seiðr’s operation—algorithm 4—is generally rather simple. For now, we will
leave aside lines 5–12 until section 6.1.2. When a flow is to be measured, we
first hash its 5-tuple (ℎ) and determine which flow is currently occupying
slot ℎ (lines 1–3). In the event of hash collision (line 13), we ignore packets
outside of the tracked flow to ensure that data is accurate. As later pro-
cessing and classification directly affect what decisions are made by oper-
ators or automatically taken by a policy (possibly leading to incorrect flow
limits or QoS choices), avoiding corruption and cross-contamination of op-
erational data is paramount. If the slot is unoccupied or belongs to the cur-
rent flow, we compute the IAT and assert ownership over the hash table slot
(lines 14–15). Assuming the computed IAT is within bounds, we compute its
bucket index in this interval and increment that bucket and a global counter
(lines 17–19)—the global counter triggers a packet emission if it exceeds a
known Len (line 20). Finally, we update the flow’s last timestamp (line 22).
To gain collision resistance, Robin Hood (Celis et al., 1985) or Cuckoo (Pagh
& Rodler, 2001) hashing could be used up to a maximum distance in the
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Algorithm 4: Seiðr histogram update and transmission.
Data: 5-tuple, P4 metadata, P4 headers, Registers

1 h ← hash(5-tuple);
2 index ← BUCKETS * h;
3 owner ← HistoOwner[h];
4 if metadata.packet_path = RECIRCULATE then
5 headers.tcp.valid ← false;
6 headers.udp.valid ← true;
7 headers.seidr.valid ← true;
8 copy 5-tuple into headers.seidr;
9 rewrite headers.ip, headers.udp using HistoSrc/Dest;

10 headers.seidr.histo ← HistoData[index..];
11 truncate payload;
12 zero out registers: BucketCount, HistoOwner[h],

HistoData[index..];
13 else if owner = 0 or owner = 5-tuple then
14 HistoOwner[h] ← 5-tuple;
15 iat ← LastTimestamp[h] - metadata.mac_ingress_time;
16 if iat ≥ Min and iat ≤ Max then
17 bucket ← BUCKETS * (iat - Min) / (Max - Min);
18 HistoData[index + bucket] ← HistoData[index + bucket] + 1;
19 BucketCount[h] ← BucketCount[h] + 1;
20 if BucketCount[h] = Len then
21 mark packet for cloning and recirculation;

22 LastTimestamp[h] ← metadata.mac_ingress_time;
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Table 6.1: Seiðr register map and required sizes using an an ℎ-bit hash.

Field Datatype Count

Min u16 1
Max u16 1

Length u16 1
HistoSrc u16 + u128 1
HistoDest u16 + u128 1

BucketCount u16 2ℎ
LastTimestamp u64 2ℎ
HistoOwner 3 * u16 + 2 * u128 2ℎ
HistoData BUCKETS * u16 2ℎ

table, treating a zeroed owner as empty and an illegal source IP address as
a tombstone value.

This design allows runtime configuration of all aspects save for the bucket
count; at runtime, the only way to increase bucket resolution is to examine
a smaller region of IATs. While in theory this could be configured below a
maximum compiled into the firmware, the difficulties introduced by classi-
fication and later data processing make this infeasible. Unless using stream-
capable classifiers such as LSTMs, changing the input size requires retrain-
ing from scratch since new neuron weights must be added and structural
properties of the input data change. Increasing the bucket count requires
new firmware installation, as many dataplane P4 implementations cannot
allocate variable-length stores due to the lack of a dynamic allocator.

As a visual example of dataplane-generated histograms, fig. 6.3 shows the
distribution of inter-arrival times between two TCP congestion control al-
gorithms under otherwise identical conditions. While I cover the underly-
ing causes for these stark differences in more detail later (section 6.2), it
should be clear that there are variations in the distribution of features that
are visible to us as humans quite plainly. It stands to reason that they should
also be visible to a trained ML classifier. While these particular histograms
are taken at the macro level—over the entire lifecycle of a flow—this also
gives us cause to look into shorter measured windows.

6.1.2 Histogram transmission

When targeting the P4-PSA, we have some options in how histograms may
be transmitted from the PDP hardware of interest—either to the control
plane or dataplane. If we choose to emit histogram packets to the control
plane, we may make use of digest externs which are offered by many PSA-
compliant devices (though aren’t strictly required). Practically speaking,
these allow us to pack and emit arbitrary structs which are delivered to
the attached controller CPU over the P4Runtime API.
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Figure 6.3: Example dataplane histograms showing visible differences in
inter-arrival times of selected TCP flavours. These plots examine sub-1ms
dynamics of two separate flows of 1000Mbit/s traffic generated according
to section 6.3.1, over these flows’ entire lifecycles. BBR flows have signific-
antlymore IATsmeasured in the 100–800 µs band, with additional structural
differences outside this region.
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3 We can connect to such
accelerators using a dedic-
ated out-port, or by relying
on the existing routing in-
frastructure if we need more
flexibility.

4 These designs and imple-
mentations again focus on us-
ing Netronome NFP Smart-
NICs, as opposed to Tofino
RMT hardware where such
limits do in fact apply.

Algorithm 4 and fig. 6.1 instead show a more complex case, where we emit
generated histogram packets in-band on the dataplane. The PSA does not
have any explicit mechanisms for generating new dataplane packets. To cir-
cumvent this, any packet which would complete a histogram is tagged for
cloning at the end of the ingress pipeline, and recirculation at egress (line 21).
This truncated copy returns to Seiðr’s table, where we enable the relevant
headers, change L2/3 fields, and write out the histogram contents (lines 5–
12). The P4 deparser outputs the new protocol stack at egress, and transmits
the histogram UDP packet into the network. Although achieved in a some-
what roundabout way, this does have an upside in that it is compatible with
the guaranteed core functions of the PSA. In future, event-driven architec-
ture proposals (Ibanez, Antichi et al., 2019) may allow first-class support for
packet generation.

There are tangible reasons to prefer emitting histograms to the dataplane in
spite of the added complexity and recirculations. Although the data volume
and packet-per-second reductions offered by Seiðr histograms are strong,
the former case pushes the steering of all generated packets onto a single
controller per switch. Intuitively, this is expensive and may very well in-
terfere with regular operation of the control plane. On the other hand, out-
putting histograms over the dataplane allows administrators to make use of
existing ASIC-backed infrastructure to load-balance classifications across
typical host machines. Alternatively, we might forward packets directly
to dedicated, network-connected accelerators like BrainWave (Fowers et al.,
2018) whose outputs then inform control plane operation.3 Both of these
cases spare the control plane of extra load, at modest bandwidth cost due to
the reduction in telemetry volume. Digests of course have their own bene-
fits: in some PSA implementations they may be built in the egress pipeline,
adding flexibility for how Seiðr might be integrated with existing forward-
ing plane designs (rather than forcing its inclusion in the ingress pipeline).

Another design constraint where these two differ is in header-size limits.4

In the case of digests we can assume that a P4 switch is capable of emitting
larger packets: following the specification, switches are free to collate gen-
erated digests together before handing them off to the control plane. For
transit via the dataplane, however, platform-dependent limits will apply to
output packets—particularly as we must use rewritten header fields for this
purpose. This leads to a problem which algorithm 4 does not directly ac-
count for: histogram data may be larger than headers allow for. To fix this,
we must make some high-level modifications to its behaviour. We must
mark in-progress transmissions and emit bitslices from the output histo-
gram split over several egress packets by performing a clone loop, where
each non-terminal histogram packet is cloned and marches the ‘send win-
dow’ forward. Until termination, updates to the histogram’s recorded data
are blocked. A key limitation, however, is that the histogram generation fre-
quency and other parameters must be tuned to prevent traffic amplification
driven by the switch.
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6.1.3 Accurate, precise and high-resolution timestamping

Precise timestamps are critical when detecting temporal properties of flow
behaviour, such as microbursts or inferring flow CCAs. It is especially im-
portant in high speed (100Gbit/s) networks, where there can be as little as
6.7 ns between packets that need to be analysed. With a Linux-based soft-
ware solution (e.g., reading packets from a link with tcpdump), the Linux
kernel can only provide microsecond-level accuracy with precision in the
order of 100 µs (Kundel et al., 2020). DPDK improves on this, increasing
the accuracy to 100 ns in the best case (Primorac et al., 2017). However,
today’s dataplane devices (e.g., Netronome SmartNICs, NetFPGA SUME) al-
low nanosecond-accurate timestamps to be retrieved from the MAC mod-
ules with a precision of 10 ns (Kundel et al., 2020), a timestamp property
Seiðr relies upon.

6.2 TCP congestion control classification

Figure 6.3 suggests that a notable use case for this type of measurement is
detecting TCP flows’ choice of CCA. In a TCP connection, each machine is
free to choose the CCA it uses to send bytes, and thus how it responds to net-
work congestion signals. This choice is entirely local, and so is invisible to
both the other machine and the network. In data centre networks, operators
choose these ahead of time to ensure optimal behaviour, where the envir-
onment makes it easy to consistently deploy this choice across all nodes.
This is not the case in most ASes; in a transit network or large WAN, these
hosts (and thus the CCAs in use) are outside the control of network operat-
ors, which introduces difficulties when CCA interactions lead to unfairness.
Consider the recent (and widespread) introduction of TCP BBR (Cardwell
et al., 2016). BBR is a delay/model-based CCA which converges on a fair
share of bottleneck bandwidth by reducing its rate if the round-trip time
increases, while periodically attempting to increase send rate to account for
path or load changes. However, BBR traffic can consume 40% of link capa-
city when multiplexed with loss-based CCAs, regardless of the number of
competing flows (Ware et al., 2019). When ensuring fair transit to all flows,
this is hardly a desirable outcome; in fact, it’s one which may frustrate cli-
ents or violate SLAs.

A curious property of BBR’s algorithm which sets it apart from other vari-
ants is that packet transmission is timer-based. send(packet), as defined in
the canonical algorithm, asks that on transmission of a packet, the sender
should wait for the estimated time that packet would take to reach the re-
cipient. For instance, at an estimated bottleneck bandwidth of 8Mbit/s, a
1024 kB packet would hold back the next packet in the flow until 976.6 µs
had elapsed. When packet sizes remain similar this causes strongly periodic
behaviour, while mode switches in the BBR algorithm cause these periodic
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bands to shift up or down accordingly. This effect is stronger than in ex-
isting loss- and delay-based algorithms which remain intrinsically tied to
the notion of a congestion window (where release of buffered packets fol-
lows the receipt of ACK messages). As a result, timing behaviour of past
CCAs may be influenced by (the lack of) packet pacing, periodic compon-
ents might be made noisier by jitter along the return path, or the behaviour
of the receiver might add further noise.

This high-level analysis of BBR gives us a strong feature to use as the basis
for classification: the IATs for each packet in a flow. We have two op-
tions for processing this for classification: we may use a compressed, fixed-
size representation such as histograms to capture the aggregate distribu-
tion, or we may attempt to capture structural behaviour by using a variable-
length stream of IATs. Inmany networks, the data and packet rate reduction
offered by the former is required to make this possible. Indeed, as we’ve ex-
amined in greater detail through section 2.4.4, in-switch aggregation has
seen great success in aiding ML for training (Y. Li, Liu et al., 2019). We
make use of the following standard classification algorithms on a fixed-size
representation to attempt to single out the CCA in use:

• 𝑘-Nearest Neighbours (𝑘NN). A simple and well-understood classifier
which assigns labels based on the closest members of the training cor-
pus (i.e., by the ℓ2 metric). They have a linear runtime memory cost
in amount of training data, and no training cost other than loading
all data points. However, they are surprisingly capable of learning
complex decision boundaries on fixed-length inputs.

• Convolutional Neural Networks (CNNs). As discussed in section 3.2.2,
CNNs are a neural network approach which learns convolution ker-
nels to classify fixed-length data, particularly when recognising spa-
tial features. Runtime memory cost is fixed for a given architecture
irrespective of the amount of training data used, with a high training
cost in memory and computation time.

When examining 𝑘NN classifiers, I measured accuracy across choices of
𝑘 ∈ [2, 8]; I found 𝑘 = 2 to be the most effective choice with these input
data using the ℓ2 metric. Our CNN architecture is described in table 6.2,
using ReLu activation and 1 × 1 stride in convolutional layers unless stated
otherwise. Training occurred over 5 epochs using the Adam optimiser with
categorical cross-entropy as a loss metric, and a batch size of 64 histograms
(8 for full sequences due to the smaller data volume). For BBR vs. Cubic,
the complete model consists of 104 898 × 32 bit floating-point parameters
(409.76 KiB), while the full classification task adds a further 130 parameters
(0.51 KiB).
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Table 6.2: CNN architecture for 100-entry histograms.

Layer Nodes/Filters Filter Size Output Dimension

Conv2D 32 3 × 1 98 × 1 × 32
MaxPool — 2 × 1 49 × 1 × 32
Conv2D 64 3 × 1 47 × 1 × 64
MaxPool — 2 × 1 23 × 1 × 64
Conv2D 64 3 × 1 21 × 1 × 64
Flatten — — 1344
Dense 64 — 64

Dense (Softmax) 𝑛classes — 𝑛classes

6.3 Evaluation

The performance of Seiðr is evaluated from several angles. On classification,
we are interested in the accuracy of CCA detection using IAT histograms,
the time taken to train a model, and the required time to classify a flow. In
the 2-class problem, we investigate whether it is possible to separate TCP
BBR from Cubic using IAT histograms as the input data, while in the 4-class
problem we extend this to include Reno and Vegas. I compare this work
against Hagos et al. (2018) in this regard. On deployment, I demonstrate the
bandwidth and memory requirements imposed by Seiðr.

6.3.1 Datasets

We examine synthetic flows modelling bulk data transfer at various speeds,
generated using iPerf3 (Guéant, 2020), and processed using custom P4 firm-
ware for Netronome NFP SmartNICs. Packet captures and IAT streams are
publicly available (ESnet, 2019; K. A. Simpson et al., 2019). For every pair-
wise interaction between TCP BBR, Cubic, Reno, and Vegas, we capture solo
and multiplexed dynamics by running each flow for 3 s, with 2 s of overlap
(i.e., the second flow begins at 𝑡 = 1 s). I observed that the first flow always
completes slow-start before multiplexing begins, and by construction we
have several unimpeded captures for every flavour. The number or volume
of multiplexed flows isn’t expected to substantially alter captured dynamics
(i.e., 3 flows at 300Mbit/s and 2 flows at 200Mbit/s should both have flows
fall to 100Mbit/s). Flows in one capture are generated using the same target
rate in {100, 200, …, 1000}Mbit/s, each uniformly randomly perturbedwithin
±10 %. We also control how this rate limit is applied: wire-limited traffic uses
tc in the Linux kernel to apply rate-limiting, while application-limited traffic
uses iPerf’s built-in mechanisms to control send rate. Application-limited
traffic leads to specific behaviour in BBR and some other flavours, while
wire-limited traffic creates loss events as the rate grows too high (which
can expose additional behaviours in response to such events). 10 such cap-
tures are recorded for each (CCA1,CCA2, speed, limiter) tuple, and generated
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flows are labelled accordingly.

IAT streams are broken down into overlapping sequences of the required
length, before being histogrammed as required into 100 buckets over 0–1ms.
The use of overlapping sequences extends the training and testing sets sig-
nificantly, while ensuring that larger sequences don’t result in a far smaller
training corpus. Cross-validation occurs on a per-flow basis rather than per-
sequence, i.e., sequences from the same flow must only appear in either the
test or training set. This ensures stringent data hygiene, and prevents ad-
jacent sequences from inducing overfitting. All classifier evaluation which
follows uses 4-fold cross-validation. The data is comprised of 4994 flows
(832 in 2-class), or 18–31 million sequences (3.2–5.2 million in 2-class).

6.3.2 Experimental setup

All experiments were executed on a single machine running Ubuntu 18.04.4
LTS (GNU/Linux 4.15.0-96-generic x86_64), using an Intel Core i7-6700K
CPU (4 × 4.2 GHz) which had 32GiB of RAM. CNN training was performed
using Nvidia RTX 2080Ti cards (11GB GDDR6 Video RAM (VRAM)). For the
dataplane, we used multiple Netronome Agilio CX 2 × 40GbE SmartNICs
using 40Gbit/s connections between source and destination hosts.

6.3.3 Classification performance

In the 2-class formulation, we can observe from fig. 6.4 that CNN perform-
ance increases slightly with the length of the input sequence for classify-
ing application-limited traffic. CNN-based detection has a peak F1-score of
0.965 for application-limited traffic, and 0.894 when wire-limited. This in-
crease does not extend towards histograms taken over the entirety of each
flow (Full), which are hampered by having 6 orders ofmagnitude fewer train-
ing samples. While very effective, 𝑘NNs come with significant memory
cost. By design, the entire dataset must be kept in memory: for subflow
histograms of length 500 packets, this equates to 1.5 GiB of training data.
Naturally, this is undesirable for many network deployments, where easy
relocation of inference may be key.

Figure 6.5 shows in the 4-class case that we observe a sharp loss in classifica-
tion accuracy, peaking at (59.5 ± 2.0) % for CNNs and (64.5 ± 1.6) % for 𝑘NNs.
This suggests that IAT histograms don’t generalise as an effective feature
for other TCP flavours. Exploratory work with LSTMs on IAT streams con-
firmed that this persists before aggregation. Likewise, exclusive pairwise
training did not lead to an increase in accuracy. However, fig. 6.6 shows that
timing information remains key in separating BBR from its predecessors to
a high degree of accuracy, confirming our hypothesis that its timer-based
(rather than cwnd-based) design allows for this detection. If this marker
were present between loss- and delay-based variants, then we’d also see
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Figure 6.4: Accuracy of 𝑘NN and CNN classifiers when classifying BBR
and Cubic TCP traffic from IAT histograms, trained over various sequence
lengths. In both subsequences and complete flow histograms, accuracies
are generally high (at least 87 % and 72% respectively). 𝑘NNs outperform
the CNN architecture here, otherwise we generally see that longer sub-
sequences offer some improvement to application-limited accuracy, and
wire-limited Cubic and BBR are harder to tell apart.
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Figure 6.5: Accuracy of 𝑘NN and CNN classifiers when classifying BBR,
Cubic, Reno, and Vegas TCP traffic from IAT histograms, trained and tested
on various sequence lengths. 𝑘NNs again achieve better performance here,
but when handling subflows the entire corpus cannot fit into RAM. We see
instead that wire-limited traffic is easier to classify when all 4 CCAs are ex-
amined: again, this performance increases with histogram sequence length.
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Table 6.3: Training, inference, and runtime memory costs of CNN and 𝑘NN
models.

Family Online 𝑛classes Train Test Memory
(Subflow)

CNN 3 2 43(2)min 49.1(92) µs 409.76 KiB
3 4 243(2)min 50.5(17) µs 410.27 KiB
7 2 1.82(47) s 161.3(39) µs 409.76 KiB
7 4 7.94(50) s 137.7(12) µs 410.27 KiB

𝑘NN 3 2 21.4(12)min 323(69) µs 2.1 GiB
3 4 — — 12.58GiB
7 2 0.200(6) s 54.0(3) µs 332.8 KiB
7 4 2.20(4) s 517.0(50) µs 2.0MiB

high predictive power over Vegas traffic. Breaking down these confusion
matrices by rate limit type sheds still more light. In fig. 6.6a, application-
limited data transfers are almost indistinguishable using thesemetrics (aside
fromVegas), while fig. 6.6b reveals that IATs hold some discriminative power
for wire-limited Cubic traffic. Note that 4-class 𝑘NN experiments on all but
full sequences required excessive memory and classification time, and so
are excluded. While full-sequence 𝑘NNs outperform all examined CNNs on
this task (respective peak F1-scores 0.697 vs. 0.486), these reduce F1BBR from
0.935 to 0.810.

I contrast this work with that of Hagos et al. (2018), who employ CNNs
to predict cwnd size for any flow from its stream of bytes-in-flight measure-
ments. On detection of a loss event themultiplicative decrease 𝛽 is measured
from estimated cwnds, fromwhich the CCAmay be classified. In identifying
TCP BIC, Cubic, and Reno, they achieve 95 % accuracy, which outperforms
Seiðr on cwnd-based CCAs. Yet their approach cannot work for detecting
BBR. BBR is not based upon the notion of a sliding congestion window, so
there is no parameter 𝛽 to infer. Although IAT histograms are suitable for
BBR detection due to the intrinsic properties of its algorithm, we envision
that this approach could be augmented by using a negative BBR classific-
ation to trigger cwnd estimation. Having seen that some predictive power
from IATs is preserved for cwnd-based CCAs, we expect that this will in-
crease the accuracy of a universal classifier. It is important, however, that
this step be taken adaptively; this incurs higher resource requirements for
bytes-in-flight tracking and for efficient handling of potential return-path
asymmetry. Seiðr on its own does not add such overheads or operational
complexity, and does not require a telemetry system to see or detect cwnd
adjustments by the sender.
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Figure 6.6: Confusion matrices for a CNN on the 4-class problem, 2000-
packet length sequences. Brighter entries along the diagonal indicate cor-
rect classifications. BBR remains easy to distinguish regardless of the rate
limit mechanism, while Cubic is slightly more distinct from its cwnd-based
alternatives for wire-limited traffic. CCAs are generally easy to tell apart
in wire-limited traffic—this is sensible, in that most CCA differences will
arise in response to congestion events rather than application behaviour,
and matches the general trends seen in fig. 6.5.
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6.3.4 Training and inference costs

Typical test and training times for these ML classifiers and problem formula-
tions are lsited in table 6.3. Training times for 𝑘NNs include the time taken
to load and process the entire training set, and are incurred every time the
model is started on a new host. CNNs trained for online analysis (flow sub-
sequences) achieve the lowest per-flow inference times, and are increased
during offline analysis due to worse batching and cache behaviour on the
smaller data set. While 𝑘NNs are effective in many cases, I find they are only
computationally viable when offline (i.e., full-flow histograms), as the entire
test data corpus must remain in memory. A single 4-class cross-validation
fold (2000 packets) required 3 days to train and test over the entire dataset,
which was deemed to be outright infeasible. In contrast while online CNNs
take longer to train, they have a considerably lower memory footprint, the
training cost is paid only once, and flows may be classified in real-time with
milliseconds of total observations.

6.3.5 Switch resource usage

The implementation of Seiðr requires an extra table in the ingress pipeline
to update buckets, update configuration, and rewrite packets. If digests are
used rather then clone-based packet rewriting, then this table may be placed
in either ingress or egress. Further code space is required to include a con-
figuration packet parser. Shared configuration data (registers 1–5) requires
42 B per switch, while each flow requires 224 B and 248 B to store buckets,
counters, previous timestamps, and active 5-tuples on IPv4/v6 networks
respectively. On platforms which support hash-table structures, this cost
scales linearly with the number of tracked flows. Otherwise, this requires
pre-allocation of an entry for every possible hash value (e.g., 14–15.5MiB
for a 16 bit hash). This small memory requirement fits histogram generation
to all devices available today.

6.3.6 Quantifying in-network data aggregation

To show data rate reductions, I compute the compression ratio of generated
histograms against various other representationswhich can be used tomove
IATs (or the packets used to compute them) from the dataplane. Although
it is more commonly a metric used for compression algorithms, it is simply:

CompressionRatio = UncompressedSize
CompressedSize

Figure 6.7 demonstrates the reduction in data sent from raw mirrored pack-
ets, to a stream of measured timestamps or IATs, to Seiðr histograms on an
IPv6 network. Timing histograms naturally provide a larger data reduction
as the amount of measured packets increases, while a per-packet IAT or
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Figure 6.7: Compression ratio of 100-bucket histograms and timestamp
streams from raw packets on an IPv6 network. As sequence length in-
creases, histograms provide more of an advantage in compression rate, be-
ing 736.8 × smaller than timestamp streams when analysing 2000-packet
sequences.

telemetry stream offers no reduction in packet rate. Due to this, 100-bucket
histograms cause a greater data reduction than per-packet IATs after just 4
packets in a sequence, and consume 736.8 × less volume for 2000-packet
sequences.

To make this concrete, 100Gbit/s traffic is reduced to 10.01Mbit/s additional
switch traffic for MTU-size packets, and to 1.69Mbit/s for jumbo frames.
IAT streams, by comparison, reduce to 7.38Gbit/s (resp. 1.24 Gbit/s). For a
flow at 100Mbit/s, only 30ms is needed to collect enough packets to make
a classification. Scaling beyond this, packet processing rates are the bottle-
neck. As commodity machines and today’s stream processors have a reason-
able upper bound of ∼1Mpps processing capacity (Gupta et al., 2018), Seiðr
could scale up to 1 Tbit/s MTU-size packet traffic on one machine, which
would correspond to only 333 kpps histogram packets (55.6 kpps if jumbo-
size). Reliably scaling to 10 Tbit/s and beyond requires only that we increase
the histogram sequence length to ≥7000 packets.

6.4 Summary

Through this chapter, we’ve considered how PDP hardware can reduce fine-
grained inputs and measurements into digests suitable for ML models run-
ning on host machines, supporting one of this thesis’s claims: ‘dataplane
programmability will allow the precise measurement and data aggregation
that can enable fine-grained data-driven analyses to scale to high flow rates
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or large networks’ (s3). In particular, I’ve shown PSA-compliant ways to im-
plement in-network data aggregation in the form of histograms, tailored to-
wards tracking ns-precise timestamps. Histograms of per-flow packet IATs
have been presented as the input for variousML algorithms, includingCNNs
and 𝑘NN classifiers. We have seen empirically that Seiðr can successfully
tell apart TCP CCAs, in particular, it identifies BBR from its predecessors
with over 88–96 % accuracy, while only consuming a maximum 15.5MiB of
dataplane memory. We presented the trade-offs between training and infer-
ence times, memory requirements, and accuracy in the context of CNN and
𝑘NN classifiers and shown that Seiðr outperforms prior work by increasing
classification accuracy on novel TCP CCAs, providing the ability to classify
at very high traffic rates. Furthermore, we have identified a key temporal
property of TCP BBR which allows its easy detection among other flows.
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Chapter 7

Conclusion

This thesis has demonstrated how the advanced capabilities of modern PDP
hardware can be used to make online learning—particularly classical RL—
and other DDN use cases feasible in the dataplane. These capabilities move
us closer to automatically inferring complex, tailored dynamics for network
control and optimisation, in place of laboriously hand-tuned heuristics for
the same tasks. Moreover, the network cooperation enabled by PDP hard-
ware allows us to make these decisions on more precise data and to take
more involved actions on packets and flows. In spite of how far this hard-
ware has come, this has required many design caveats—we have examined
various ML and RL primitives alongside the architectures of modern PDP
hardware to pick out the considerations of running in these resource-limited
yet high-speed environments. At the same time, I have also argued the case
for the unity of DDN and dataplane programmability: by mitigating ampli-
fication DDoS attacks using an online multi-agent RL system, and by show-
ing one way in which PDP hardware can support data-driven classifications
for network management. Through these advances and thorough review of
the literature, I have given substantial evidence for the value and viability of
PDP networks empowered by data-driven methods, satisfying claims s0–3.
Recalling the initial thesis statement:

Data-driven networking—enhancing networks with ML—and
dataplane programmability are key tools in aiding the control
and measurement of future networks (s0). Data-driven meth-
ods such as reinforcement learning can lead to improved per-
formance in network optimisation and control problems, such
as DDoS prevention (s1). In-network compute can make data-
driven networking more efficient, effective, and responsive—
enabling online learning to tailor policies to their deployment
environment (s2). Finally, dataplane programmability will al-
low the precise measurement and data aggregation that can
enable fine-grained data-driven analyses to scale to high flow
rates or large networks (s3). Applied together, programmable
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data-driven networks can improve computer network opera-
tion beyond the sum of these parts.

The value of each of these tools on their own for network management (s0)
has been shown mostly by the use cases considered throughout chapters 2
and 3, but is also implicitly shown through the novel techniques presented
in the thesis’s main developments. RL’s value in particular was shown by
its use to learn to mitigate DDoS attacks in an online way (s1). By adapting
classical RL policy formats and algorithm choices to suit the design, thread-
ing model, and FUs of manycore SmartNIC hardware, online in-NIC RL was
made possible. Eliminating PCIe and host stack overheads offered substan-
tial latency benefits, and the parallelised Sarsa algorithm brought higher-
throughput online learning (s2). In-network aggregation of per-packet stat-
istics to histogramsmade the handling of high-rate timestamps feasible, and
enabled a flow classification task with clear operational benefits (s3).

What is far more interesting, however, are the wider takeaways and lessons
learnt in the development of this work, and by collecting together a wide
family of solutions falling under the DDN or PDP umbrella. Each has its
own impact on the design and deployment of the other. Equally, it’s worth
mulling over the horizon of networking capabilities and form factors in the
short and long term.

7.1 The need for co-design

Making use of DDN and PDP-accelerated solutions is, as this thesis has
likely demonstrated, an involved process. In the DDN case, ‘zero-touch’
deployment and development are likely impossible. While we can train suc-
cessful policies, DDN cannot itself derive the mechanisms of control: ac-
tion models, reward functions, and the state which they should operate on.
Learnt policies and parameters operate as well as they can within the frame-
work we give them, and generally succeed at so doing. Yet as we’ve seen
already, by designing DDN solutions without deep, cross-disciplinary hu-
man expertise on the controlled systemwe can easily introduce catastrophic
impact in critical scenarios. This extends even to testing and training envir-
onments; capturing every real interaction is crucial if one has any hope
of generalising to production networks. At the compute scales of interest,
namely small and fast models with lower sample complexity, factoring in
human expertise ahead of time can be useful in accelerating inference and
training as opposed to completely ‘clean-slate’ approaches. There is an ar-
gument to be made about to what degree we should be integrating our own
intuition—biasing models away from potentially better solutions, i.e., that
reward is all you need (Silver et al., 2021)—but we must often perform our
own feature engineering regardless. Temporal properties of state are one
such example: we could make use of LSTMs and similar constructs to cap-
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ture them automatically, but the price paid in complexity is less than appeal-
ing.

Easily taking advantage of PDP hardware requires less thought. Automatic
offload tools are already very promising for (mostly) cutting host machines
out of the packet processing loop, and extracting data and pipeline parallel-
ism when they cannot. I expect this tooling will only improve further. For
novel in-network compute uses or latency-optimal solutions, we should not
expect any automatic wins. More than anywhere else, these demand ded-
icated co-design, deep integration with hardware-specific communication
primitives, and retooling to account for parallelism and heterogeneous com-
pute models. Today’s—and likely tomorrow’s—diversity of device designs
and programming models is a blessing and a curse. It is necessary that we
have such variation to achieve a balance of performance, price, and capabil-
ity across market silicon. The downside is that this lack of unity demands in-
sight and expertise on the devices themselves, rather than a single network-
compute model, but making best use of them is intensely rewarding. This is
no surprise—taking advantage of parallelism alone is difficult (Sutter, 2005),
but is itself necessary nowadays. In combinatorics for instance, automated
fork-join frameworks produced subpar results, necessitating similarly “in-
trusive” co-design to OPaL which “[increased] the amount of code needed
by as much as an order of magnitude” (McCreesh, 2017, p. 214). SmartNICs
and PDP hardware impose a stronger blowup in complexity. The intrusive-
ness extends in our case beyond parallelism: to the memory model, to spe-
cialised capabilities like TCAM-backed MATs, and to missing FUs we might
otherwise have taken for granted such as FPUs. Many of the required data
structure transformations cannot be automatically derived, and the best al-
gorithms for in-network compute take advantage of tightly coupling these
elements together. Weighing these against one another requires real trade-
offs to be consciously made at all levels of our design—one might also argue
that this makes in-network solutions fragile against future hardware. This is
not to say however that we won’t (or shouldn’t) have further developments
here. The ingenuity of engineers, novel PDP architectures, and economic
drivers in data centre-scale applications will see to it that this is a long-lived
wellspring of research. It is simply the case that, as in parallel computing,
there is no free lunch (Sutter, 2005).

7.2 A challenging security context

At present, ML and DNNs have a wide variety of viable attacks at runtime
and during training, which raises questions about whether their use in DDN
is safe—either online or offline. Attacks and defences still appear to be
rapidly iterating against one another, and as such it is not clear that we
should be focussing on integrating specific defences while they appear to
have such a short life-time. I argue that DDN deployment can be safe so
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long as there is a reasonable degree of isolation between a hypothetical at-
tacker (or self-serving client) and the model. The meaning of ‘isolation’ in
this context changes depending on the attacks we want to defend our DDN
system against. For instance, destructive steps in processing, true isolation
as in many resource placement problems (i.e., DDN applied at design-time
of a network or circuit), or aggregation of input data may aid against eva-
sion, poisoning, and adversarial behaviour. The network itself offers some
degree of isolation of many outputs, which might make model stealing and
evasion more difficult. Transient network conditions make flow statistics
noisier, pushing them away from the intended perturbation, while routing
and QoS decisions might only be inferred indirectly with added noise and
delay. In closed loop circumstances, isolation is less clear. This is purely in-
tuitive reasoning—in the longer term, we require further research tailored
to the network problem-space. Future studies should aim to offer a set of
quantitative bounds on how an attacker’s input can affect learnt models in
reasonable scenarios, measured specifically on network tasks. These must
account for the effects of data aggregation, processing, and noise from cross-
traffic—aswell as path characteristics introduced by other ASes and network
segments en-route to a target.

7.3 Future directions

Given that one of the advantages of RL methods is their ability to dynam-
ically learn by trading off exploration and exploitation, precisely how well-
suited they are to handling the evolution of networks is an interesting re-
search question. Handling non-stationary problems is possible, but rarely
recommended, particularly with DNN-based policies. To respond to such
change, we simply need to either scale up gradient contributions, or in-
crease the strength of exploration parameters like 𝜖. Yet we are left with
two key challenges. The first is that we need robust means of detecting
the kinds of problem-space evolution we’re interested in. There are tricky
tuning factors to consider: chief among them are handling seasonality, and
the timescales and magnitudes of evolution worth adapting to. If traffic var-
ies diurnally, for instance, then choosing the wrong timescales would likely
cause an online learner to oscillate between policies—meanwhile, the de-
sired behaviour would be to learn to handle these modes in the same policy.
The techniques discussed in section 3.3.5 may be useful to this end, such as
adaptive exploration, changepoint detection, or signal processing methods
(whose intersection with RL seems as yet unexplored). The second chal-
lenge is that we must understand and model what problem-space evolution
really looks like. While it is known that DDoS attack strategies evolve in
real time (Kang et al., 2016a), to my knowledge no works detail what pat-
terns such evolution might take. In the wider Internet, aggregate changes
in bandwidth and usage are likely easy enough to model (Bauer et al., 2021).
But, barring historic case studies, estimating the effects of new protocols
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and CCAs before their deployment is unlikely to be feasible.

Online RL via OPaL is limited to devices in a SmartNIC or NPU-style form-
factor. This is less than ideal for larger deployments, yet achieving this
level of flexibility at switch scale is unlikely to be possible without heavy
concessions. Register access limits and a fixed number of pipeline stages
would make a purely P4-PDP variant difficult to express, let alone a MAT-
accelerated approach (whichwould be dependent on the controller for policy
updates). As discussed in section 3.2.1, we may be able to use MATs to
perform or accelerate the tile-coding step, but accessing and later updat-
ing action values stored in registers is likely to be incompatible with RMT
designs. A promising avenue here would be to investigate ongoing trans-
fer learning between online OPaL agents and high-throughput offline func-
tion approximators such as BNNs. This might allow, for instance, having a
canonical ‘known good’ policy in the majority of the network installed to
Tofino switches, while a smaller proportion of flows or packets are routed
through actively learning bump-in-the-wire nodes. The control plane is
then responsible for collating their local policy modifications and generat-
ing a set of BNN parameters which expresses the same decision boundaries
as the aggregated tile-coded policy.

While this thesis achieves online RL in PDP hardware, it does so by choos-
ing a function approximation scheme with lower model capacity than more
common alternatives such as NNs. How could we enable online learning for
these more complex approximators? Practically speaking, minibatches and
replay buffers are necessities andwill require storage in high-speedmemory.
This is somewhat counter to the design of PDP hardware, but it wouldn’t be
too onerous a requirement in bespoke designs. Computing gradients them-
selves in a way which is scalable and tailored to the execution model (many
weaker cores or FUs) remains a challenge. We might find value in combin-
ing insights from the field of distributed model-training, such as wait-free
backpropagation, to achieve low-latency forward passes and parallelised up-
dates to the policy when using model-parallel inference. Here though, we
would constrain the scope of such algorithms to a single device, whichmight
enable some shortcuts and further optimisations. This continues to make
use of the many cores or FUs that we might expect on SmartNICs or FPGA
devices—N3IC (Siracusano et al., 2020) offers a model-parallel NFP imple-
mentation of the NN forward pass which might be compatible in theory.
BNNs are not, however, suited for this purpose, given that training requires
incremental real-valued adjustments to the model parameters. As such, on-
line NN training in the PDP would likely mandate at least fixed-point arith-
metic, ruling out the strong performance benefits of BNNs. ES methods
may be an exciting avenue here—devoid of any gradient computation, they
instead add uniform noise over the entire parameter set 𝜽, making it com-
putationally cheaper to train a policy than the use of backpropagation.

Future networks and PDP hardware designs will become only more varied
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and vibrant as time goes on. Hearkening back to my earlier thoughts in
section 2.5, the hardware advances we’ve examined the wider impact of are
only the first wave of truly programmable solutions. I expect that we will
see many more points along the capacity-capability Pareto front—blurring
the lines between compute classes as CPU-NIC co-designs are beginning to
do. Currently, the solution is to mix and match devices as a hybrid SoC
board (as in Intel’s IPUs), but we should hope for a radical shake up in
much the same vein as RMT sooner or later. Perhaps this will tear down
some of the roadblocks which make online (and otherwise in-PDP) ML diffi-
cult today—such as on-device state modification, or even piece-wise replace-
ment of tables and logic (e.g., encoded as smaller P4 or eBPF subprograms).
Beyond hardware-based dataplane programmability, the rearchitecture and
accelerated packet processing stacks we’ve seen from OSes in the last few
years alone bode well for software dataplanes. While there will of course be
iterative improvements to XDP and similar frameworks to make them more
capable, user-friendly, or better exposed to applications, more specialised
kernel and network stack designs will likely arise. After all, the commodity
CPUs which will inevitably be co-hosted with our SmartNICs and FPGAs
will need an accelerated and predictable stack for processing packets and
flows. In time, I expect that while standard (non-PDP) routing hardware
will still make up much of the Internet’s backbone and capacity, if PDP be-
comes lower cost and more energy-efficient then we will see greater prolif-
eration of programmable network infrastructure from the core to the edge.
It may be the case that we’ll never reach the original active networking vis-
ion of a fully cooperative and user-controlled routing fabric—perhaps this
shouldn’t be the case—but I think that this will enable a new kind of evolu-
tion in vendors, ISPs, and host networking stacks. Networking, as a field, is
on the cusp of some truly interesting developments—and I’m excited to see
where it all leads.
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1 This overview might read
rather like a polemic against
said review—this is merely
an attempt to add enough
context tomake an otherwise
dry appendix a tad more en-
tertaining.

2 Depending on daylight sav-
ings time, these endpoints
fall in UTC-{4,5}↔UTC-3 re-
spectively. For most data
points at NYC, this corres-
ponds to 0900–1000 EDT.

Appendix A

Protocol Trends in CAIDA Traces

In an earlier version of the work in chapter 4 which we chose to submit to
the EuroS&P ’19 conference, I backed up my analysis of the shortcomings of
Marl (Malialis & Kudenko, 2015)—i.e., that TCP traffic is both dominant and
negatively impacted—by referencing a study from M. Zhang et al. (2009)
which suggested that TCP traffic was most prevalent in packet and byte
counts for Internet traffic. In addition to other feedbackmostly unactionable
short of working for a hyper-giant/-scaler operator, Reviewer 1 raised the
challenge that:

The statistics borrowed from [M. Zhang et al., 2009] are 10 years
old by now; I imagine that the Internet traffic has changed sig-
nificantly by then due to streaming services and new protocol
developments.

So-challenged—in spite of the fact that streaming video is most often DASH-
based (i.e., carried over HTTP, so TCP) and that prominent new protocols
are themselves congestion-aware (e.g., QUIC)1—I carried out a high-level
analysis of the CAIDA 2018 passive traces dataset (CAIDA, 2018) while the
school’s network infrastructure was otherwise knocked out due to a mal-
ware incursion. Simply put, the aim was to see whether the same observa-
tions held: that congestion-aware traffic outnumbered congestion-unaware
traffic, in either packets or bytes, on a reasonable view of Internet traffic.
Analysis of the these datasets shows that in an Internet backbone link be-
longing to a Tier 1 ISP, congestion-aware traffic makes up at least 73–82 %
of packets, corresponding to 77–84% of data volume.

A.1 Dataset description

The CAIDA 2018 passive traces are a set of anonymised Pcap files captured
over a 1 h period eachmonth from the equinix-nycmonitor (observedMarch–
December from 1300–1400 UTC2), subdivided into 1min traces. Source
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3 This category is not neces-
sarily definitive, and is based
on then-current descriptions
fromGoogle on how Chrome
was initiating QUIC sessions.
These packets aren’t prov-
ably QUIC, but are specu-
lated to be so. CAIDA’s pay-
load stripping removes any
bytes past the UDP header,
making this impossible to
conclusively verify.

and destination IP addresses are anonymised in a prefix-preserving manner.
Captured packets have been stripped of their payload data, and remaining
headers are accompanied by µs-precise timestamps. Traces are captured
over both directions for a monitored Internet backbone link (9953Mbit/s,
Tier 1 ISP) between New York and Sao Paulo: direction A runs from Sao
Paulo to New York, while direction B is the reverse of this. The official
description contains greater detail (CAIDA, 2018).

A.2 Data processing methodology

Traces are examined at a packet-level granularity, and IPv4 and v6 packets
are classified based on their L3/L4 header fields:

TCP Packets with a protocol or next header value of 0x06.

UDP (QUIC) Packets with a protocol or next header value of 0x11, and a
source or destination port of 80 or 443.3

UDP (Non-QUIC) Packets with a protocol or next header value of 0x11 and
any other source and/or destination ports. This includes UDP packets
whose ports had been truncated or removed entirely due to IP options.

Other All other packets, including non-IP traffic.

For each one hour period, I store individual packet counts and payload bytes
for each category in u64s. Category counts from sub-traces in the same
month are summed together, and once totalled I locally store the counts
and proportions of each traffic class (bytes and packets). This is performed
for directions A and B separately (Dir A, Dir B), which are then combined
appropriately (Both).

Categorisation Congestion-aware packets are defined as those who are
either TCP or UDP (QUIC). UDP packets (QUIC and Non-QUIC) are also com-
bined into their own category.

While this analysis ignores other congestion-aware protocols and (cannot
be certain on the proportion of QUIC traffic due to the trace data format),
this allows us to establish a sensible lower bound on their proportion in
the network. Assuming there is no ongoing TCP replay-driven attack in
any trace, we can state that the lower bound on congestion-aware traffic
lies between %(TCP) and %(TCP + QUIC). Similarly, the remainder of these
quantities from 1.0 gives us the range of an upper bound on congestion-
unaware traffic.
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Implementation The above analysis programwas implemented in Rust by
incrementally streaming, unzipping, and parsing Gzipped packet captures
using the reqwest library. Individual trace files are mined from the main dir-
ectory page, which is served as HTML. As network access was the limiting
factor in handling this data, these are processed sequentially and in-memory
due to the large size of each pcap file (totalling 𝒪 (TiB)).

A.3 Results

Figure A.1 shows that congestion-aware traffic makes up at least 73–82% of
packets, corresponding to 77–84 % of data volume when considering both
transit directions. In direction A (Sao Paulo→New York) we can see byte
volumes are far greater (85–92%), while packet counts are roughly symmet-
ric. These trends are effectively replicated for TCP traffic (fig. A.2). The
main takeaway is that in both byte volume and proportion of sent packets,
TCP still routinely makes up the majority of Internet traffic, and both are
higher still for congestion-aware transports.

In the case of UDP traffic including QUIC (fig. A.3), packet counts are again
fairly symmetrical—ranging over 15–26 % when considering the aggregate
of both directions. Although UDP traffic has a lower packet prevalence in
Dir B, it consistently has a higher proportion of seen bytes flowing from
New York→Sao Paulo.

Supposed QUIC packets do not have much prevalence—particularly in Dir B
(fig. A.4). We do observe some spikes in activity in Dir A ranging over July–
September, in 3.6 % of packets and 4.5 % of carried bytes. This falls a little
below other estimates of the protocol’s prevalence; for instance, Rüth et al.
(2018) found that it occupied some 2.6–9.1 % of network traffic across an-
other Tier-1 ISP and an IXP. The time of measurement (early-to-mid morn-
ing at both endpoints) may be a factor here, as QUIC’s main purpose at this
time was for video transit rather than the basis of HTTP/3 (Bishop, 2021).
The main body type—video—does neatly explain why it occupies a larger
share of carried bytes than packets.
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(a) Congestion-aware packets.
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(b) Congestion-aware byte volume.

Figure A.1: Proportional counts and byte volume of congestion-aware
traffic.
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(a) TCP packets.
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(b) TCP byte volume.

Figure A.2: Proportional counts and byte volume of TCP traffic.
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(b) UDP byte volume.

Figure A.3: Proportional counts and byte volume of UDP traffic.
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Figure A.4: Proportional counts and byte volume of UDP (QUIC) traffic.
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Appendix B

Opus VoIP Traffic Capture and
Generation

To provide a realistic model of normal congestion-unaware traffic to prop-
erly evaluate the work in chapter 4, I passively measured VoIP traffic gener-
ated by users of the Discord (Discord, 2022) online chat service to acquire
reasonable traces and then generate appropriately similar traffic. Discord al-
lows text, voice and streaming video conversation between users—the latter
two allow real-time communication over UDP. I am interested here in voice,
which is effectively CBR and congestion-unaware, but is easily accessible by
bot users (unlike video).

VoIP application traffic has interesting characteristics. Client→server flows
contain an audio stream mixed with in-band and out-of-band control traffic.
Audio streams are encoded at a target bitrate (e.g., 96 kbit/s) and divided
into individual packets to provide continuous delivery of traffic—these are
usually relatively large (∼20ms) to reduce packet transport overhead, but
small enough to minimise the impact of packet losses. Due to this real-time
requirement, audio packet arrivals and transmissions are then highly peri-
odic. There are other interesting dynamics, aside from the trivial observa-
tion that flows won’t react substantially to lost packets. In Discord’s archi-
tecture (and I suspect in the general case nowadays to achieve better and
more consistent QoE), all packets are sent to a single TURN server (Reddy
et al., 2020), which relays them between users to ensure connectivity (as op-
posed to, say, peer-to-peer session links). This causes inbound RTP packets
to fan out to all other participants in a call, leading to a moderate amplific-
ation factor.

Sadly, it is insufficient to just encode arbitrary audio at a voice channel’s
supposed bitrate and then divide that into fixed-size packets. The exact
size of each packet depends on the carried content, but tends in the long
term towards CBR for speech or music. Silent frames are, of course, the
smallest to encode (e.g., 5 B for the Opus codec). Smaller signal-dependent
variations aside, since users tend to converse with each other they typically
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1 128 kbit/s, 256 kbit/s and
384 kbit/s are offered to pay-
ing users. This only af-
fects client behaviour: the
TURN server is not stringent
enough to block or re-encode
voice data sent by bots or cus-
tom clients.

speak in bursts of various lengths rather than continuously, and can cease
sending packets during these times to save bandwidth. Obviously, this leads
to burstier traffic than simply taking the expected link occupation over each
user’s stream. Moreover, the duration of individual voice sessions and num-
ber of recipients also play a part in how traffic is fanned out at the TURN
server, and to whom.

From the above, we have quite a few factors which affect both client→server
and server→client behaviour. At the time I was designing the evaluation for
chapter 4, I couldn’t find conclusive studies onVoIP trafficwhichwould be at
all useful in modelling these sorts of dynamics—and still haven’t quite seen
any works which fill the same niche. This appendix describes my method-
ology for capturing and generating somewhat simplified variants of these
flows—i.e., discounting control traffic and shared sessions to minimise out-
of-band coordination.

B.1 Voice session behaviour

Discord’s VoIP sessions target a preset bitrate per voice channel chosen
by that server’s administrators—8–96 kbit/s on free servers1, defaulting to
64 kbit/s. Clients connect by requesting session IDs and keys over the main
WebSocket API, which are used to open anotherWebSocket session for voice
control traffic. This includes negotiating the cryptographic tag scheme, and
receiving an RTP Synchronisation Source (SSRC), URL and port for a UDP
TURN server. Connection then proceeds to make use of WebRTC (web
browser users) or vanilla RTP: in the latter case, explicit NAT hole punching
is performed. This WebSocket session is maintained over the call’s lifetime
to provide information about other users and exchange periodic heartbeat
messages.

Audio is encoded using the Opus codec, split into 20ms RTP (Schulzrinne
et al., 2003) packets at the session’s target bitrate. In practice, these include
RTP extensions to denote (among other functions) hosts’ NTP timestamps
and per-packet loudness. Clients additionally send random 4BUDPkeepalive
values to the TURN server every 5 s, along with RTP Control Protocol (RTCP)
reports generated at the intervals defined in the specification. RTP and
RTCP are multiplexed over the same socket (Perkins & Westerlund, 2010),
while payloads are encrypted using XSalsa20-Poly1305 (Bernstein, 2011; Nir
& Langley, 2018). The method of doing so is not quite adherent to the Se-
cure RTP specification (Carrara et al., 2004)—encryption and placement of
the message authentication code occur using fixed offsets in the parent UDP
packet. When users cease speaking, they will send up to 5 silent frames of
audio before they stop transmitting packets (resuming on the next signific-
ant audio data). Encrypted, multiplexed RTP and RTCP packets from other
users are received on the socket used for earlier NAT hole-punching.
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2 This is in sample units of
the source audio data,

B.2 Capture and storage

Traces were captured using two strategies by a voice bot, Felyne, which
probabilistically played sounds and music from theMonster Hunter series of
games following simple FSMs. In both cases, consent was given by captured
users in a limited set of close-knit servers (general purpose, role-playing,
games-focussed) and all traces are fully anonymised to comply with GDPR.
The first strategy (Version I ) was developed and used for chapter 4, while
the second (Version II ) is used in ongoing measurement.

Version I Traces are captured on a per-user or -SSRC basis, to make genera-
tion simpler than tracking all call dynamics. During a call, for every packet
received from each SSRC I record its RTP timestamp2, sequence number,
and Opus payload size in bytes. Payload sizes do not include RTP exten-
sions or additional bytes required to store message authentication codes or
cryptographic nonces. RTCP packets and RTP extensions are discarded.

When a user disconnects, or the next packet would cause the timestamp to
overflow relative to its first seen value (∼1491.3min for u32s at 960 samples
per packet), the session is finalised and stored. To finalise a trace, packet
metadata is sorted by its timestamp. I then replace each packet with its
payload size, insert ‘Missing’ markers where expected sequence numbers
are not observed, and insert ‘Silent’ duration markers for valid packet gaps
longer than 20ms.

Version II Traces are captured on a per-call basis, and instead record all
RTP and RTCP packet arrivals as a single stream of events timestamped us-
ing the system clock. This model is designed to capture the interactions
between user voice sessions, rather than simply speaking-silent burst mod-
elling. WebSocket events and timestamps are stored and used to detect user
arrivals, departures, and associate multiple SSRCs to individual users in the
event of reconnections. For each arrived RTP packet, I capture its arrival
time, SSRC, sequence number, RTP timestamp, extension data, and the Opus
payload size. Sequence numbers and RTP timestamps are reduced such that
every flow’s counters begin from 0.

For processing, user IDs and SSRCs are converted into opaque identifiers
(i.e., the first seen SSRC is ‘user 0’, and so on). SSRCs and IDs in all ob-
served WebSocket, RTP, and RTCP packets are replaced with these identifi-
ers. Felyne tracks users who have opted in and out according to per-server
configuration (using opt-in ‘roles’ and explicit global opt-outs): any RTP,
RTCP, or speech events from such users are filtered out. Join and discon-
nect events from these users are not removed, so as to correctly preserve
fan-out behaviour of the TURN server for this call A list of all opt-out IDs is
stored to make it clear how accurate a trace is (e.g., making it clear whether
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packet events are present for 6/8 users over the duration). RTP extensions
are kept intact if the type is known to include no personal data (i.e., loud-
ness indicators)—otherwise, extension payloads are zeroedwhile their types
are kept, including those encoded past the one- and two-byte header ex-
tensions (Singer et al., 2017). RTCP packets are sanitised such that NTP
timestamps begin at zero, and SSRCs are anonymised as above.

B.3 Traffic generation

Currently, RTP traffic generation is only supported using Version I traces.
I designed a client and server program for this purpose, implementing a
simplified form of the session behaviour described above—i.e., withoutWeb-
Socket control traffic, sender-to-sender coordination of speaking periods, or
RTCP packets.

The server program receives UDP traffic on a given port, where it reflects
keepalive packets back to their sender and attempts to forward RTP packets
to the other recipients in a ‘room’. Inbound flow 5-tuples plus SSRCs are
assigned to these rooms: each is given a uniformly random capacity from
2–8 participants, and one room-in-progress is held at a time.

Clients randomly draw (without replacement) from the set of all traces, gen-
erating RTP packets every 20ms during speaking phases. Source IP ad-
dresses, ports, and SSRCs are randomly generated, and packet bodies are
filled with pre-generated random bytes. Sent packets include enough ex-
tra bytes on top of the payload to store the Poly1305 message authentica-
tion code (16 B). Additionally, hosts punctuate these RTP frames with a 4 B
keepalive every 5 s. Due to the lengthy talk and silence bursts introduced
by users in tabletop role-playing servers, silent periods are trimmed to a
maximum 5 s. Missed packets are handled by calculating an exponentially-
weighted moving average over the observed payload sizes. This process
continues until the current trace completes and the flow has exceeded a
user-specified minimum time, at which point a new session is begun. Indi-
vidual client flows were found to occupy an expected 52.4 kbit/s upstream
bandwidth.
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Appendix C

Netronome NFP Architectural
Details

Netronome Flow Processor (NFP) SmartNICs are many-core System on a Chip
(SoC) NICs designed for high performance packet processing at up to 40–
100Gbit/s. In concert with other SmartNIC designs, NFP SmartNICs are
designed to allow virtually arbitrary packet processing written in the Mi-
croC language. This appendix goes into greater detail on these particular
SmartNIC devices due to their key role in chapters 5 and 6—primarily be-
cause going into meaningful depth concerning device particulars in those
chapters would dilute their clarity. Specific quantities, particularly around
memory sizes or core counts, refer to the Netronome Agilio LX 1 × 40GbE
SmartNIC (containing the NFP-6480 chipset).

C.1 Execution model

Core layout. The Netronome NFP-6480 offers 112 cores, or Microengines
(MEs), on which arbitrary programs may be run. Cores are clustered into
physical groups, termed islands, each containing 4 or 12 MEs. There are
7 islands of each size. Each ME runs a single code store and operates at
1.2 GHz, and all 12-ME islands are used by a default P4 pipeline. Generally
speaking, MEs are able to communicate with one another and access one an-
other’s memory resources or capabilities. As remote accesses, requests, and
atomic operations are typically mediated by a shared Command Push-Pull
(CPP) bus, the cost of doing so typically scales such that cross-island oper-
ations are more expensive than island-local. Many islands co-host specific
accelerator functions or I/O capabilities, such as the MAC and PCIe bus, a
management ARM processor, local memories, and cryptography accelerator
units.
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1 In some cases, per-context
resource use may be too
great to allow all threads to
operate.

Threading. Threads on each ME are known as contexts, which are a class
of hardware threads. Each ME may choose at compile time to run either 4
or 8 contexts, which then equally divide the register file and LMEM among
themselves.1 As one code store is maintained perME, all of its child contexts
run the same program code though may query the current context number
to enable branching behaviour. Contexts are cooperatively scheduled at
run time, where context switches are triggered by signalled I/O operations
(who must be awaited) or by voluntary yield hints inserted by the program-
mer. Context switches are effectively zero cost: as the register file is divided
among all threads, another thread may instantly progress when the active
thread chooses to sleep. Each core offers 15 separate signals which can be
independently fired for each context, and a thread may await any or all of
a bitset of signals before it resumes execution. These signals may be fired
by other MEs, contexts, or by the memory units in response to a completed
I/O operation.

Programming. NFP devices support a proprietary assembler language, and
a variant of the C programming language termedMicroC. This constitutes C
with some additions, including an explicit memory model tailored towards
this device, signalling and signal datatypes, and agressive inlining capabilit-
ies. P4 programs may be compiled to target the NFP, at which point they are
compiled into a selection of MicroC programs installed across most avail-
able islands. Accordingly, P4 externs resolve to MicroC functions which
are arbitrarily defined and included by the programmer.

C.2 Memory

Table C.1 outlines the primarymemory regions available, organised in terms
of memory cost (where all registers are equal). As above, these register
files are split among all contexts at compile time. Xfer registers are not
usable outside of their purpose as holding space for the source and destin-
ation for I/O operations (and are visible to other MEs and memory units).
Next-neighbour registers allow very fast writes between adjacent MEs in
an island. These allow MEs to communicate in one of two orders: chain
(0→1→2→3), and alternate (0→2→1→3). Note that this communication is
unidirectional and does not form a cycle. Additionally, this functionality
may be disabled on a per-ME basis to provide additional register space.

Memories outside of EMEM are small in line with the typical expectations
surrounding resource-limited environments like PDP hardware. While al-
most all per-island or sharedmemoriesmay be accessed from remote islands,
cross-island accesses are more expensive and are typically avoided. Langlet
(2019, p. 30) relates his own measurements of these costs, save for EMEM
Cache which is allocated and accessed solely—to the best of my knowledge—
by the compiler. My understanding is that EMEM Cache is primarily occu-
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Table C.1: NFP memory hierarchy, locations, and sizes.

Memory Region Location Remote Access Size

Register (GPR) Per-ME 7 2 KiB
Register (Xfer) Per-ME 3 1 KiB In, 1 KiB Out
Register (NN) Per-ME 7 512 B

LMEM Per-ME 7 4 KiB
CLS Per-Island 3 64 KiB
CTM Per-Island 3 256 KiB
IMEM i28, i29 3 4MiB

EMEM Cache i24, i25, i26 3 3MiB
EMEM i24, i25 3 4GiB, 3.5 GiB

pied by Content-Addressable Memory (CAM)-accelerated lookups offered via
the provided hash table primitives.
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Appendix D

OPaL Control Protocol

OPaL’s control protocol is carried within UDP packets. Its presence is sig-
nalled to the P4 control plane by setting the DSCP field of the IP header to
0b000011, though in practice this choice is fairly arbitrary and only serves
to allow for easy detection and filtering in the network without impacting
valid user choices of more common fields such as UDP port number.

Firstly, we choose a fixed-point representation type at compile time, setting
type Tile ∈ {i8, i16, i32}. These and any other numeric types are stored
in big-endian format. To minimise packet size, it is assumed that the sender
is aware of the datatype employed by the target OPaL agent. Any fields
marked with a ⋆ are of type Tile and scale according to sizeof(Tile) (af-
fecting the offset of all subsequent fields). Any fields marked with a ♢ are of
type Tile and are zero-padded to 4 B. Packet diagrams display these layouts
assuming that quantised numbers are 4 B wide.

Configuration. Configuration of OPaL is managed using two classes of
packet: setup (fig. D.1) and tilings (fig. D.3). Setup packets contain a mix-
ture of operational and policy structure parameters. While most of these
fields are self-explanatory, they behave as follows:

F Forces RL update logic to occur if set to 1, even if a valid historic state and
reward pair cannot be found.

N Disables writeout of inferred state-action pairs over the Out ring if set
to 1.

O Enables online learning if set to 1.

shift_amt The number of fractional bits in each fixed-point number.

worker_limit A software limit on active worker threads. A setting of 0 dis-
ables this limit.

n_dims The total number of dimensions expected in state vectors.
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tiles_per_dim The number of tiles which every dimension is subdivided into.

tilings_per_set The number of tilings to offset and stride across each list of
dimensions.

n_actions The number of output actions to select between.

𝜖⋆ The current chance of selecting a randomised action (i.e., 𝜖-greedy action
selection).

𝛼⋆ The learning rate as in eq. (3.6).

𝛾⋆ The discount factor as in eq. (3.6).

𝜖⋆decay amount The amount by which 𝜖 should be decreased every time it is
annealed.

𝜖decay frequency The number of actions to wait before decreasing 𝜖.

state_key The selection method for retrieving historic state-action tuples
mapped to an input state (i.e., execution trajectories).

reward_key The selection method for retrieving the reward value mapped
to an input state.

maxes⋆ The maximum value allowed in a state vector for each input dimen-
sion.

mins⋆ The minimum value allowed in a state vector for each input dimen-
sion.

Of these, state/reward key lookups (fig. D.2) admit 3 types. Keys may be
retrieved as a single shared value, ignoring the location field (type 0). Al-
ternately, they may admit a field of the input state as the key (type 1) retriev-
ing, e.g., rewards[hash(input[location])]. They may directly access the
storage map (type 2) retrieving, e.g., rewards[input[location]]. Finally,
reward values may be accessed as a field in the input vector (type 4), where
location is the index in the state vector to select—this obviously cannot
extend to state lookup. These correspond to Shared, Field, Raw Field, and
Value respectively as covered by section 5.1.1.

Tiling packets are composed of a list of individual tiling instances (fig. D.4),
parsed until the end of the UDP datagram. Each tiling instance contains a
length dim_list_len, a location ∈ [0, 2] (CLS, CTM or IMEM according to
section 5.2.1), and a list of dim_list_len state indices to be used as tiling
dimensions. These instances must be present in location-sorted order, smal-
lest to largest. Additionally, dimension lists’ size must not exceed the limit
for their parent memory region (1, 2, and 4 dims respectively).
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⋮

mins⋆=[Tile; n_dims]

⋮

Figure D.1: OPaL configuration (setup) packet.

0 7 8 31

type location

... location

Figure D.2: OPaL lookup key source layout.

0 7 8 15 16 31

type=0 cfg_type=1 tilings

... tilings (fig. D.4)

Figure D.3: OPaL configuration (tiling) packet.

0 15 16 23 24 31

dim_list_len location dims

... dims=[u16; dim_list_len]

Figure D.4: OPaL tiling instance layout.
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0 7 8 31

type=1 offset

... offset body⋆=[Tile]
... body⋆

Figure D.5: OPaL policy insertion header.
0 7 8 23 24 31

type=2 dim_count body⋆

... body⋆=[Tile; dim_count]

Figure D.6: OPaL state vector packet.

Policy Insertion. Insert packets (fig. D.5) contain an offset—the index of
the first policy value contained in this packet—and are then filled for the
remainder of the datagram with tile values (body). These packets are free
to straddle memory region boundaries, be unaligned with respect to actions
in a tiling, and arrive in any order.

State Vectors. State packets (fig. D.6) are used to pass in state from the
network to OPaL, and simply contain a list of Tiles of size dim_count.

Reward Measurements. Reward packets contain a reward value of type
Tile padded to 4 B. If reward lookups rely on state vector fields to match a
trace (Field or Raw Field) then key is used to store this value in the correct
location.

0 7 8 15 16 23 24 31

type=3 value♢

... value♢ key

... key

Figure D.7: OPaL reward header.
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