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ABSTRACT 15 

Satellite cells (SC) and ribosomes are key determinants of the skeletal muscle adaptive response. 16 
Both are thought to increase acutely after resistance exercise and chronically with resistance training. 17 
However, the acute SC and ribosome exercise response with prior aerobic conditioning is unknown. 18 
Fourteen young men and women underwent 6 weeks of single-legged aerobic conditioning followed 19 
by an acute bout of 300 eccentric contractions on each leg. Muscle biopsies were taken from the 20 
vastus lateralis of the aerobically conditioned (AC) and the control (CTL) legs before (Pre), 24 (24h) 21 
and 48 (48h) hours post-contractions. Pre-eccentric contractions, 45S pre-rRNA and 5.8S ITS 22 
expression were lower in the AC leg compared to the CTL leg. SC content (PAX7+ cells/100 fibres) 23 
in type I and mixed fibres showed a main effect of condition, where values were greater in the AC 24 
leg compared to the CTL. A main effect of condition for Pax7 and MyoD1 mRNA expression was 25 
observed where expression was greater in the AC leg compared to the CTL. AC had greater RNA 26 
concentration and mRNA expression of Ubf  and Tif-1a  compared to CTL. Only the AC leg 27 
increased (Pre-24h) 45S pre-rRNA, 5.8S ITS  and 28S ITS following eccentric contractions. We 28 
discovered that aerobic conditioning increased type-I SC abundance, and the acute increase in 29 
ribosome content following eccentric contractions.  30 

 31 
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1 INTRODUCTION 32 

In humans, eccentric contractions lead to skeletal muscle damage resulting in the subsequent 33 
activation of cellular processes to support repair (1, 2). Muscle-specific stem cells, commonly 34 
referred to as satellite cells (SC) are particularly important for skeletal muscle repair (3–5). Following 35 
various stimuli, such as exercise or damage-inducing eccentric contractions, SC are activated, 36 
proliferate and either fuse to existing myofibres to support repair and remodelling or return to 37 
quiescence to replenish the SC pool (4–7).  38 

We have previously reported that young individuals with greater skeletal muscle capillarization 39 
showed an augmented SC expansion/activation following a single bout of eccentric contractions, 40 
resulting in an accelerated recovery of muscle function (8). Therefore, aerobic conditioning (a well-41 
known stimulus to induce skeletal muscle capillarization) preceding an acute damaging stimulus may 42 
heighten the SC response and support muscle adaptation and repair (9, 10).  43 

Ribosomes play a key role in protein translation (11–13) and recent work in rodents has 44 
demonstrated that SC may supply certain ribosomal proteins to muscle fibres to support adaptation 45 
(14). Following an acute bout of resistance exercise, ribosome content increases to support the 46 
synthesis of proteins involved in cellular remodeling (15–18) and muscle contractions (19–21). 47 
Increases in ribosome content likely precede muscle protein synthesis, which is stimulated following 48 
aerobic (22, 23) and resistance exercise (24, 25). Additionally, damage-inducing eccentric 49 
contractions increases the expression of genes associated with the regulation of muscle protein 50 
synthesis (2). Although ribosomes are essential for regulating protein translation, changes in 51 
ribosome content following an acute bout of eccentric contractions have been measured in rodents 52 
(26, 27) but not in humans.  53 

The purpose of this study was to determine the impact of aerobic conditioning on the acute SC and 54 
ribosome response to eccentric contractions. We hypothesized that ribosome content would increase 55 
following acute eccentric contractions and that aerobic conditioning would augment both the SC and 56 
ribosome response to eccentric damage. 57 

2 MATERIALS AND METHODS 58 

2.1 Ethics Approval 59 

Participants were informed about the nature and risks of the study and gave written consent prior to 60 
enrollment. This study was approved by the Hamilton Health Sciences Integrated Research Ethics 61 
Board (HiREB #3885) and conformed to the guidelines outlined in the Declaration of Helsinki. 62 

2.2 Participants 63 

Baseline participant characteristics have previously been described by (28) and are summarized in 64 
Table 1.  65 

2.3 Study design 66 

Participants underwent 6 weeks of single-legged aerobic conditioning on a randomized leg 67 
(Aerobically Conditioned, “AC”) where the other acted as a non-conditioned control (CTL) (28). 68 
Participants underwent resting (Pre) skeletal muscle biopsies from the vastus lateralis of both the AC 69 
and CTL legs according to Tarnopolsky et al., (2011) at least 1 week following the last AC bout. 70 
Participants then underwent 300 isokinetic, eccentric contractions of the quadriceps muscles at 180 71 
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degrees/second using a Biodex dynamometer (Biodex-System 4, Biodex Medical Systems, Shirley, 72 
NY, USA) with each leg, a protocol used frequently in our laboratory to elicit skeletal muscle 73 
damage (8, 30–32). Participants returned to the laboratory 24 and 48 hours following eccentric 74 
contractions and underwent biopsies from both the CTL and AC legs. Samples were either mounted 75 
in OCT and frozen in pre-cooled isopentane or frozen in liquid nitrogen and stored at –80°C.  76 

2.4 Immunohistochemical analyses 77 

Immunofluorescent staining for fibre-specific SC content (PAX7+ cells) and activation status 78 
(quiescent PAX7+/MYOD-, activated PAX7+/MYOD+, differentiating PAX7-/MYOD+) are described 79 
previously (8, 33–36) and expressed per 100 fibres. All staining procedures were verified for 80 
specificity using negative controls for primary (primary only) and secondary (secondary only) 81 
antibodies. For quantification, PAX7 (anti-PAX7 Mouse, DHSB, neat; Alexa Fluor 594 goat anti-82 
mouse, 1:500) and/or MYOD (anti-MYOD 5.8A Mouse, DAKO, 1:100; goat anti-mouse biotin, 83 
1:200, and streptavidin 488, 1:200) was overlayed with DAPI (Sigma-Aldrich, 1:20000) and 84 
examined with laminin (anti-Laminin Rabbit, Abcam ab11575, 1:500; Alexa Fluor 647 goat anti-85 
rabbit 1:500) or wheat germ agglutinin (Wheat Germ Agglutinin, Invitrogen W32466, 1:200) to 86 
determine the appropriate SC location, myosin heavy chain I (anti-MHCI Mouse, DHSB A4.951, 87 
neat; Alexa Fluor 488 goat anti-mouse, 1:500) and II (anti-MHCII Rabbit, Abcam ab51263, 1:1000; 88 
Alexa Fluor 647 goat anti-rabbit, 1:500) to determine fibre type-specific associations and expressed 89 
per 100 fibres. Images were taken on a Nikon Eclipse Ti Microscope (Nikon Instruments, USA) with 90 
a high-resolution Photometrics CoolSNAP HQ2 fluorescent camera (Nikon Instruments, Melville, 91 
NY, USA) at a 20X objective. Analyses were performed in a blinded fashion. 92 

2.5 RNA isolation and reverse transcription 93 

RNA was isolated from muscle homogenate using the TRIzol® and reverse-transcribed using the 94 
High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems™, cat. #4368814) according 95 
to the manufacturer’s protocol and stored at -20°C until subsequent analysis. Samples from 3 96 
participants were excluded due to low RNA concentration yield (see Table 1).  97 

2.6 Quantitative real-time PCR (RT-qPCR) 98 

RT-qPCR reactions were run using 10 ng cDNA in a QuantStudio™ 5 – 384-Well Block (Applied 99 
Biosystems, Thermo Fisher Scientific) RT qPCR machine. Primer sequences (5’-3’ forward, reverse; 100 
concentration) for Gapdh (CCACCCATGGCAAATTC, TGGGATTTCCATTGATGACAA; 15 101 
µM), Cyclin D1 (GCTGCGAAGTGGAAACCATC, CCTCCTTCTGCACACATTTGAA; 15 µM), 102 
Ubf (CCTGGGGAAGCAGTGGTCTC, CCCTCCTCACTGATGTTCAGC; 10 µM), Tif-1a 103 
(GTTCGGTTTGGTGGAACTGTG, TCTGGTCATCCTTTATGTCTGG; 10 µM), Polr-1b 104 
(GCTACTGGGAATCTGCGTTCT, CAGCGGAAATGGGAGAGGTA; 10 µM), 5.8S rRNA 105 
(ACTCTTAGCGGTGGATCACTC, GACGCTCAGACAGGCGTAG; 10 µM), 18S rRNA 106 
(TGGCTCAGCGTGTGCCTAC, ACAAAGGGCAGGGACTTAATC; 10 µM), 28S rRNA 107 
(ACCTGGCGCTAAACCATTC, GTGTCGAGGGCTGACTTTC; 10 µM), 5.8S ITS 108 
(TCGCCAAATCGACCTCGTAC, AGCTGCGTTCTTCATCGACG; 10 µM), 18S ETS 109 
(GCCCGTCCTCGCGAGGC, TGCATGGCTTAATCTTTGAGAC; 15 µM) and 28S ITS 110 
(CGGCGCGATTCCGTCCGT, GTTCACTCGCCGTTACTGAG; 10 µM) and assays for Gapdh 111 
(ThermoFisher, Hs00187842_m), Pax7 (ThermoFisher, Hs00242962_m1), MyoD1 (ThermoFisher, 112 
Hs00159528_m1), Myf5 (ThermoFisher, Hs00929416_g1), c-Myc (ThermoFisher, Hs00153408_m), 113 
45S pre-rRNA (Qiagen, ID PPH82089A-200) and 5S rRNA (ThermoFisher, Hs03682751_gH) were 114 
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used. Reactions for individual primers and the 45S pre-rRNA assay were run with RT2 Sybr Green 115 
qPCR Master Mix (Qiagen, #330500) and all other assays using Taqman™ Fast Advanced Master 116 
Mix (ThermoFisher, #4444556). The housekeeping gene (Gapdh) expression was not impacted by 117 
the intervention. Samples were normalized to Gapdh (ΔCt; either respective SYBR or Taqman™ 118 
Gapdh) and to Pre eccentric contractions in the CTL leg (ΔΔCt).  119 

2.7 Statistical analyses 120 

Jamovi 1.6.23 was used to run statistical analyses. Outliers were determined using means ± 2 x 121 
standard deviation (SD) and removed from analyses. Trend analyses for missing and removed data 122 
were used for participants with 1 or less missing data point. A paired t-test was used to determine the 123 
change (Δ) in VO2 peak between CTL and AC following aerobic conditioning. An independent t-test 124 
was used to compare the Total and RNA group characteristics. SC content and activation and gene 125 
expression data were analyzed using a two-way repeated measure analysis of variance with factors of 126 
time (Pre, 24h and 48h) and condition (CTL and AC), where Tukey’s Honest Significant Difference 127 
Test was used to analyze multiple post-hoc comparisons.  128 

All data are expressed as means ± standard deviation (SD). 129 

3 RESULTS 130 

3.1 Participant characteristics 131 

Due to tissue availability, only 11 participants (n=6 males, n=5 females) were included in the gene 132 
expression analyses compared to 14 (n=8 males, n=6 females) in the immunohistochemical analyses 133 
(Table 1). Both the “Total (n=14)” and “Gene expression analyses (n=11)” groups had a similar age 134 
(21 ± 2 years), BMI (n=14, 25.4 ± 4.7; n=11, 25.8 ± 5.2 kg/m2) and ΔVO2 peak (n=14, 3.9 ± 3.6; 135 
n=11, 3.7 ± 3.0 mL/min/kg) from pre-AC to post-AC (p>0.05).  136 

3.2 Satellite cell content 137 

A significant time effect was observed for type-I (p=0.000232), type-II (p<0.0001), and mixed fibre 138 
(p<0.0001) SC content.  139 

A significant effect of condition was observed for type-I SC content (Figure 1D; Pax7+ cells) where 140 
the AC leg was greater than the CTL leg (p=0.0184) and tended to have greater mixed-fibre SC 141 
content (Figure 1F; p=0.0546). 142 

A significant time x condition interaction was observed for type-II SC content (Figure 1E; 143 
p=0.00228), where the CTL leg significantly increased type-II-specific SC content from Pre to 24h 144 
(p=0.00702) and 48h (p=0.00616) post-eccentric contractions. The AC leg increased from Pre to 48h 145 
(p=0.00319) but was not different at 24h (p>0.05).  146 

No time x condition interactions were observed for type-I or mixed-fibre SC content (p>0.05).  147 

3.3 Myogenic gene expression 148 

A significant effect of time was observed for Pax7 (p=0.0105), MyoD1 (p<0.0001) and Myf5 149 
(p=0.00217) mRNA expression.  150 
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A significant effect of condition was observed for Pax7 mRNA expression (Figure 1G; fold-change), 151 
where the AC leg was greater than the CTL (p=0.00419) and tended to have greater MyoD1 (Figure 152 
1H; p=0.0952) but not Myf5 (Figure 1I; p>0.05) mRNA expression. No time x condition interactions 153 
were observed (p>0.05).  154 

3.4 Satellite cell activation status 155 

A significant effect of time was observed for type-I activated (PAX7+/MYOD+; p=0.00489), type-II 156 
quiescent (PAX7+/MYOD-; p=0.0220) and type-II activated (p=0.00256) SC content. 157 

A significant effect of condition was observed for type-I quiescent SC content (Figure 2G) where the 158 
AC leg was greater than the CTL leg (p=0.00427). No differences were observed for activated or 159 
differentiating SC content between legs (p>0.05). No time x condition interactions were observed 160 
(p>0.05). 161 

3.5 [RNA] 162 

A significant effect of condition was observed for [RNA] (Figure 3A; ng/mg muscle) where the AC 163 
leg was greater than the CTL leg (p=0.00982). 164 

3.6 Ribosomal biogenesis regulators 165 

A significant effect of time was observed for c-Myc (Figure 3B; p=0.0134), Tif-1a (Figure 3E; 166 
p<0.0001) and Polr-1b (Figure 3F; p<0.0001) mRNA expression. 167 

C-Myc mRNA expression (fold change) tended to increase from Pre (1.12 ± 1.07) to 48h post-168 
damage (3.31 ± 1.81) in the AC leg (p=0.0733) (Figure 3B).  169 

Significant effects of condition were observed for Ubf (Figure 3D; p=0.0489) and Tif-1a (Figure 3E; 170 
p=0.00436) mRNA expression where the AC leg was greater than the CTL leg. No effects of 171 
condition were observed for Cyclin D1 (Figure 3C) or Polr-1b (Figure 3F) mRNA expression 172 
(p>0.05). No time x condition interactions were observed (p>0.05).  173 

3.7 Ribosomal RNAs 174 

A significant effect of time (p=0.00392) and time x condition interaction (p=0.0117) was observed 175 
for 45S pre-rRNA expression (Figure 3H). The AC leg tended to increase 45S pre-rRNA expression 176 
from Pre to 24h post-eccentric contractions (p=0.0825), where the CTL leg had significantly greater 177 
45S pre-rRNA expression Pre eccentric contractions compared to the AC leg (p=0.00297) and 178 
decreased at 24h (p<0.0001).  179 

No effects of time, condition or time x condition interactions were observed for 5S rRNA (Figure 180 
3G), 5.8S rRNA (Figure 3I), 18S rRNA (Figure 3J) or 28S rRNA (Figure 3K) expression (p>0.05). 181 

3.8 Internal and external transcribed spacer regions 182 

Significant effects of time (p=0.00145, p=0.00173) and time x condition interactions (p=000530, 183 
p=0.000507) were observed for 5.8S ITS (Figure 3L) and 28S ITS (Figure 3N) expression, 184 
respectively. The AC leg significantly increased 5.8S ITS expression from Pre to 24h (p=0.0347), 185 
then decreased from 24h to 48h (p=0.0412). The CTL leg tended to have greater 5.8S ITS expression 186 
Pre eccentric contractions compared to the AC leg (p=0.0571). The AC leg significantly increased 187 
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28S ITS expression from Pre to 24h (p=0.0151), then decreased from 24h to 48h (p=0.0418). No 188 
effects of time, condition or time x condition interactions were observed for 18S ETS expression 189 
(Figure 3M; p>0.05). 190 

4 DISCUSSION/CONCLUSIONS 191 

We report that the type-I fibre-associated SC content, and that the acute increase in ribosome content 192 
were greater following acute eccentric contractions preceded by AC compared to the CTL. 193 
Nonetheless, no differences between conditions were observed for SC activation, differentiation, or 194 
type-II-associated SC expansion. This study is the first to characterize the acute SC and ribosome 195 
response with AC and to determine the impact of eccentric contractions on the change in ribosome 196 
content in humans.  197 

We have previously demonstrated that individuals with greater skeletal muscle capillarization have a 198 
greater SC response to damage-inducing exercise (8) suggesting that muscle capillarization may be a 199 
key factor governing SC function. In addition, studies in both humans (33, 34) and mice (37, 38) 200 
have demonstrated that aerobic conditioning alters SC dynamics to break quiescence and increase the 201 
number of activated SC at rest (humans) and following a damaging stimulus (mice). Work in middle-202 
aged women has also demonstrated that endurance training is able to alter the acute SC response to a 203 
bout of resistance exercise (40). The participants in the present study experienced an increase in VO2 204 
peak and skeletal muscle capillarization following single-legged AC (28) which was associated with 205 
an augmented type-I SC content, further supporting the notion that training status and specifically 206 
capillary content can impact SC function.  207 

The muscle damaging protocol that we used in the current study has been used on numerous 208 
occasions by our group (8, 30, 31, 35) and others (1, 2, 39). We report an effect of condition for a 209 
greater type-I-specific Pax7+ and quiescent SC content in the AC leg compared to the CTL. As total 210 
type-I Pax7+ cells appear similar between legs before eccentric contractions, this may indicate that 211 
type-I SC were primed to respond to stimuli as aerobic conditioning primarily targets type-I fibres 212 
(40). This finding is consistent with the AC leg having greater mRNA expression of Pax7 and 213 
tending to have a greater mRNA expression of MyoD1, but in contrast with a previous study in which 214 
middle-aged women completed 12 weeks of aerobic training and an increase in type-I SC content 215 
was reported (41). However, it is important to note that there were differences in both study 216 
populations (young men and women compared to middle-aged women) and an increase in type-I 217 
fibre CSA following the aerobic stimulus was reported in middle-aged women which may explain the 218 
increase in type-I associated SC content. Another study in sedentary middle-aged individuals that 219 
completed 12 weeks of aerobic conditioning also reported an increase in type-I SC content, however 220 
this was also accompanied by an increase in type-I fibre CSA (42). While the participants in our 221 
study did not increase type-I CSA following aerobic conditioning (28), previous work by our lab has 222 
demonstrated an increase in activated SC following aerobic conditioning which may act as an 223 
anticipatory response for future stimuli (34). 224 

Although type-I and mixed-fibre-specific SC content was greater in the AC leg compared to the CTL, 225 
only type-II-specific SC content increased following eccentric contractions. Both the AC and CTL 226 
legs increased type-II SC content to a similar extent, however the CTL leg increased total PAX7+ 227 
cells at 24h, whereas the AC leg showed delayed PAX7+ cell accumulation, peaking at 48h. The 228 
number of activated (PAX7+/MYOD+) SC increased in both type-I and -II fibres following eccentric 229 
contractions with no difference between conditions. Therefore, AC augmented  type-I-specific SC 230 
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content and appeared to delay the acute increase in type-II SC content, but did not appear to influence 231 
the type-I or -II activation or differentiation status.  232 

Ribosome al biogenesis increases acutely following resistance exercise to synthesize new ribosome 233 
complexes; however, following resistance training, the acute increase in ribosome content following 234 
a bout of resistance exercise may be blunted (15–18). Aerobic conditioning resulted in greater 235 
expression of several ribosome-related genes. Expression of ribosomal biogenesis regulators 236 
upstream binding factor (Ubf) and transcription intermediary factor 1A (Tif-1a) were greater in the 237 
AC leg. C-Myc, the master regulator of ribosomal biogenesis (43), has previously been demonstrated 238 
to peak at 8 hours and return to baseline 24 hours following an acute bout of exercise (44). In the 239 
current study we report an increase in C-Myc 48 hours post-eccentric contractions in the AC leg. The 240 
differences in this increase could be due to the differences in exercise stimulus, where perhaps a more 241 
damaging stimulus could delay the spike in c-Myc expression. These observations (alongside the 242 
other ribosome biogenesis markers) indicate a greater capacity for the AC leg to increase ribosome 243 
content following eccentric contractions. Ribosomal RNAs did not increase following eccentric 244 
contractions and were similar between conditions, likely due to the high degree of inter-individual 245 
variability previously observed in their expression (44, 45). However, 45S pre-rRNA, 5.8S ITS and 246 
28S ITS increased expression 24h post-eccentric contractions in the AC leg and returned to baseline 247 
after 48h, which aligns with previous work (44). The increase and subsequent decrease in 45S pre-248 
rRNA and ITS expression suggests that ribosome content increases following eccentric contractions 249 
and that the increase is greater in the AC leg.  250 

The impacts of exercise training on the acute changes in ribosome content are not well understood. 251 
The only studies to measure acute changes in ribosome content following resistance training reported 252 
either no change or an increase (15) and no change or a decrease (46) in markers of ribosomal 253 
biogenesis. Our study is the first to measure the change in ribosome content following an acute bout 254 
of exercise (any type) after a period of AC and the first to measure these acute changes beyond the 255 
1h-acute timepoint. It appears that AC augments the acute increase in ribosome content following 256 
eccentric contractions and therefore, suggests that AC may “prime” ribosomes to respond to a novel 257 
stimulus.  258 

We discovered that AC augments type-I and mixed-fibre SC content and the acute increase in 259 
ribosome content following eccentric contractions. The greater SC content and markers of ribosome 260 
biogenesis, and acute increases in ribosome content following eccentric contractions in the AC leg 261 
indicates a more efficient transcription and translational control in exercise-accustomed muscle to 262 
better support repair and adaptation to damaging stimuli. Future work should measure protein 263 
synthesis and specific sub-fractions (i.e. myofibrillar, sarcoplasmic, mitochondrial) in response to 264 
eccentric damage and markers of translational efficiency, another important determinant in protein 265 
synthesis (13, 43).  266 
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 442 

6 TABLE  443 

Table 1: Participant characteristics. 444 

Characteristic Males (n=8) Females (n=6) Overall (n=14) RNA Analyses 
(n=11) 

Age (years) 21.0 ± 1.7 21.0 ± 1.5 21.1 ± 1.6 21.3 ± 1.6 

Body Mass (kg) 82.2 ± 15.5* 60.0 ± 9.4 74.1 ± 17.6 75.2 ± 20.6 

BMI (kg/m2) 27.3 ± 4.8 22.9 ± 2.2 25.4 ± 4.5 25.8 ± 5.2 

VO2 Relative 
(mL/min/kg) 

42.3 ± 6.9 34.8 ± 4.6 39.1 ± 7.1 37.0 ± 5.8 

Independent t-test, *significant difference between males and females (p<0.05). No difference between the “Overall” and 445 
“RNA Analyses” groups. 446 

 

7 FIGURE LEGENDS  447 

Figure 1. SC content and myogenic gene expression. (A) Schematic of the study design. 448 
Representative images of immunofluorescent stains for (B) MHCI, Laminin, MHCII and PAX7 449 
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overlayed, (C) PAX7 and (D) PAX7 and DAPI. The white arrows indicate PAX7+/DAPI+ cells and 450 
the scale bar is 100 μm. SC per 100 fibres for SC located to (E) type-I, (F) type-II and (G) mixed-451 
fibres (n=14). Myogenic genes (H) Pax7 (n=10), (I) MyoD1 (n=10) and (J) Myf5 (n=10) mRNA 452 
expression Pre, 24 and 48 hours following eccentric contractions. All values are individual data 453 
points for the CTL (•) and AC (■) legs, where each colour represents a different participant and is 454 
overlayed on means (middle, horizontal line) ± SD (vertical line). 2-way repeated measures of 455 
variance, *significant effect of time, †significant effect of condition (AC>CTL) ‡significant time x 456 
condition interaction, Φsignificant difference between means (Tukey’s Honest Significant Difference 457 
Test, p<0.05). 458 
 459 
Figure 2. SC activation status. Representative images of immunofluorescent stains for (A) PAX7, 460 
MYOD, MHCII and WGA, and DAPI overlayed, (B) MYOD, (C) MYOD and DAPI, (D) PAX7, 461 
MYOD and DAPI, (E) PAX7, and (F) PAX7 and DAPI. The red arrows indicate PAX7+/MYOD- 462 
cells, yellow arrows indicate PAX7+/MYOD+ cells and green arrows indicate PAX7-/MYOD+ cells, 463 
and the scale bar is 100 μm. Type-I-specific (G) quiescent (PAX7+/MYOD-; n=12), (H) activated 464 
(PAX7+/MYOD+; n=11) and (I) differentiating (PAX7-/MYOD+; n=12) SC. Type-II-specific (J) 465 
quiescent (n=11), (K) activated (n=12) and (L) differentiating (n=11) SC Pre, 24 and 48 hours 466 
following eccentric contractions. All values are individual data points for the CTL (•) and AC (■) 467 
legs, where each colour represents a different participant and is overlayed on means (middle, 468 
horizontal line) ± SD (vertical line). 2-way repeated measures of variance, *significant effect of time, 469 
†significant effect of condition (AC>CTL), Φsignificant difference between means (Tukey’s Honest 470 
Significant Difference Test, p<0.05). 471 
 472 
Figure 3. Markers of ribosomal biogenesis and ribosome content. (A) RNA concentration relative to 473 
muscle wet weight (n=9). Ribosomal biogenesis markers (B) c-Myc (n=9), (C) Cyclin D1 (n=11), (D) 474 
Ubf (n=10), (E) Tif-1a (n=10) and (F) Polr-1b (n=10) mRNA expression, ribosomal RNA markers 475 
(G) 5S rRNA (n=9), (H) 45S pre-rRNA (n=8), (I) 5.8S rRNA (n=10), (J) 18S rRNA (n=11), (K) 28S 476 
rRNA (n=9), (L) 5.8S ITS (n=9), (M) 18S ETS (n=9), (N) 28S ITS (n=9) expression Pre, 24 and 48 477 
hours following eccentric contractions. All values are individual data points for CTL (•) and AC (■), 478 
where each colour represents a different participant and is overlayed on means (middle, horizontal 479 
line) ± SD (vertical line). 2-way repeated measures of variance, *significant effect of time (Pre RT > 480 
Post RT), †significant effect of condition (AC>CTL), ‡significant time x condition interaction, 481 
Φsignificant difference between means (Tukey’s Honest Significant Difference Test, p<0.05). 482 
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Aerobic conditioning resulted in increased type-I SC content and a greater acute increase in 
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