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Thecontribution tobalanceof spinal and transcortical processes including the long-

latency reflex iswell known. The control of balance has beenmodelled previously as

a continuous, state feedback controller representing, long-latency reflexes.

However, the contribution of slower, variable delay processes has not been

quantified. Compared with fixed delay processes (spinal, transcortical), we

hypothesize that variable delay processes provide the largest contribution to

balance and are sensitive to historical context as well as current states. Twenty-

two healthy participants used amyoelectric control signal from their leg muscles to

maintain balance of their own body while strapped to an actuated, inverted

pendulum. We study the myoelectric control signal (u) in relation to the

independent disturbance (d) comprising paired, discrete perturbations of varying

inter-stimulus-interval (ISI). We fit the closed loop response, u from d, using one

linear and two non-linear non-parametric (many parameter) models. Model M1

(ARX) is a generalized, high-order linear-time-invariant (LTI) processwithfixeddelay.

Model M1 is equivalent to any parametric, closed-loop, continuous, linear-time-

invariant (LTI), state feedback model. Model M2, a single non-linear process (fixed

delay, time-varying amplitude), adds an optimized response amplitude to each

stimulus. Model M3, two non-linear processes (one fixed delay, one variable delay,

each of time-varying amplitude), add a second process of optimized delay and

optimized response amplitude to each stimulus. At short ISI, themyoelectric control

signals deviated systematically both from the fixed delay LTI process (M1), and also

from the fixed delay, time-varying amplitude process (M2) and not from the two-

process model (M3). Analysis of M3 (all fixed delay and variable delay response

amplitudes) showed the variable (compared with fixed) delay process 1) made the

largest contribution to the response, 2) exhibited refractoriness (increased delay

related to short ISI) and 3) was sensitive to stimulus history (stimulus direction

2 relative to stimulus 1). For this whole-body balance task and for these impulsive

stimuli, non-linear processes at variable delay are central to control of balance.

Comparedwith fixed delay processes (spinal, transcortical), variable delay processes

provided the largest contribution to balance andwere sensitive to historical context

as well as current states.
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Introduction

Sensorimotor control, including regulation of balance,

combines feedback from multiple reflex and voluntary neural

processes (Brooks, 1986). Spinal, transcortical, and additional

indirect central loops through the basal ganglia and cerebellum

allow modulation of muscle activity in the lower limb at latencies

of 50–80 ms (spinal), 90–120 ms, (transcortical) and up to

500 ms or more (variable delay central loops) (Brooks, 1986;

Caligiore et al., 2017; Crevecoeur and Kurtzer, 2018). The most

reflexive processes (spinal, transcortical) we call “fixed latency”

because they are characterized by small variation in latency

limited to tens of milliseconds (Brooks, 1986). The more

voluntary processes we call “variable delay” because they are

characterized by large variation in latency of hundreds of

milliseconds (Brooks, 1986; Loram et al., 2014). The flow of

information around central sub-cortical loops (e.g., cortex, basal

ganglia/cerebellum, thalamus, cortex) allows variable time to

resolve multiple complex inputs before selecting a motor

response from the cortical sensory input (Cohen and Frank,

2009; Frank, 2011; Shine, 2021).We propose that “variable delay”

processes provide a substantial contribution to real-time balance

and represent a sequential process of threshold triggered

responses with variable latency similar to sub-movements

observed in manual control (Loram et al., 2014; Loram et al.,

2015a).

The “fixed delay” balance responses of the lower limb are

dominated by the fastest transcortical component at 90–120 ms,

named as long-latency reflex (Safavynia and Ting, 2013a). These

transcortical responses can be modulated in amplitude according

to intention, the current state of the body, and by multimodal

proprioceptive, vestibular, cutaneous and visual sensory input

(Pruszynski and Scott, 2012). While the amplitude of this long-

latency transcortical reflex can be modulated, online modulation

of response direction (positive/negative) relative to stimulus

direction requires processes of even longer latency (Brooks,

1986; Day and Lyon, 2000; Loram et al., 2011; Loram et al., 2014).

Until recently, the control of balance has been conceptualized

and modelled most successfully as time delayed, continuous,

linear-time-invariant (LTI), state feedback representing long-

latency reflexes (van der Kooij and de Vlugt, 2007; Kiemel

et al., 2011; van der Kooij and Peterka, 2011; Safavynia and

Ting, 2013b). For both upper and lower limbs, the long-latency

reflex includes spinal and transcortical components summing

linearly, and represents a feedback control process achieving task

level goals rather than simple triggered reactions (Pruszynski

et al., 2011). Referencing continuous linear reconstructions of

muscle EMG signals from whole body center of mass (CoM)

position, velocity and acceleration during perturbations to

balance, using a best fit delay compatible with the long-

latency reflex (Safavynia and Ting, 2013a; Safavynia and Ting,

2013b), it has been argued that long-latency reflexes reflect a

continuous state feedback controller rather than an intermittent

or direct controller (Crevecoeur and Kurtzer, 2018). For the

upper limb, evidence from paired perturbations at inter-

stimulus-intervals (ISI) of 35, 60 and 110 ms, ruled out

refractoriness (delays related to ISI) at these ISI and

supported the idea that long-latency reflexes implement

continuous action of controllers with fixed function (Kurtzer,

2019). However, a recent analysis using high quality disturbance-

balance data, showed a standard, time delayed, continuous,

linear-time-invariant (LTI), state-estimation, state feedback

model structure with added noise could not replicate

concurrently the linear response, the remnant and observed

time delays (Loram et al., 2022). The remnant remaining after

subtraction of the linear response comprises 70–80% of the

control signal, so most of the control signal is not generated

by linear processes (Loram et al., 2022). This previous data,

which sets a current benchmark representing whole body balance

control, required a state-predictor (108 ± 40 ms) to reproduce the

observed time delays concurrently with the linear response and

remnant (Loram et al., 2022). Furthermore, the most

comprehensive fit was achieved by a non-linear intermittent,

rather than linear continuous, predictive control model (Loram

et al., 2022). These previous results support the hypothesis that

balance is non-linear and involves processes beyond long-latency

reflex control.

For the upper limb, the concept of sequential, intermittent

predictive control has substantial support (Fishbach et al., 2007;

Houk et al., 2007; van de Kamp et al., 2013; Loram et al., 2014;

Zenzeri et al., 2014; Morgan et al., 2021). Previous studies have

decomposed upper limb reaching movements and sustained

manual control into sub-movements (Milner, 1992; Rohrer

and Hogan, 2003; Fishbach et al., 2007; Goble and Brown,

2007; van de Kamp et al., 2013). Specifically visually guided

manual tracking shows observable sub-movements and variable

stimulus-response delays of up to 500 ms or more (van de Kamp

et al., 2013). These variable delays have been associated with

event triggered intermittent control (Loram et al., 2015a; Gollee

et al., 2017), and with refractoriness related to sequential

processes selecting responses from multiple possibilities (Dux

et al., 2006; Levy et al., 2006; Loram et al., 2014). While variable

delay regulation of upper limb visuomotor control is accepted

(Pruszynski et al., 2008; Manning et al., 2012; Battaglia-Mayer

et al., 2015), regulation of whole body human balance, as above, is

interpreted most typically as a continuous linear process using a

single delay defined by the fastest transcortical response times

(van der Kooij and de Vlugt, 2007; Welch and Ting, 2009;

Safavynia and Ting, 2013a; Safavynia and Ting, 2013b;

Crevecoeur and Kurtzer, 2018).

The literature on human balance is incomplete because the

contribution of variable delay processes (voluntary response) has

not been quantified. This later portion of the balance response is

very substantial (c.f. “plateau region” and beyond in Figure 6 of

(Welch and Ting, 2009)). The latency of this later portion means

it can receive contributions from variable delay cerebella-basal
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ganglia-thalamic loops (Cohen and Frank, 2009; Frank, 2011;

Shine, 2021), which is relevant because these central structures

are implicated in neurological disorders of balance including

Parkinson’s and cerebella ataxia.

Here we study whole body balance with the same task

and apparatus reported previously to acquire data setting

current benchmark quality (Loram et al., 2022). Participants

use their natural senses and an integrated myoelectric

control from their own leg muscles to control movement

of their own body while strapped to an actuated, single

segment robot (Figure 1). We use paired, discrete force

perturbations d of variable ISI (0.15, 0.25, 0.35, 0.55,

0.85, 1.45, 2.45, 4.05 s), each producing a well-defined

response u (Figure 1).

Our hypothesis is that balance is defined mainly by variable

delay processes and that fixed delay processes (long-latency

reflex) are a preliminary, incompletely formed part to the

main response.

Typically, model-based hypothesis testing of the closed-loop

balance control system (“System”, Figure 1) follows two stages.

Stage 1 is a non-parametric (many parameter) analysis with

minimal preconceptions to capture as fully as possible the control

response u coherent with the perturbation d and its remnant.

Stage 2 tests parametric (minimal parameter) control models to

fit the non-parametric description of coherent perturbation

response and remnant (Pintelon and Schoukens, 2001; van

der Kooij and de Vlugt, 2007; Gollee et al., 2012; Gollee et al.,

2017; Loram et al., 2022). In this study, we focus entirely on non-

parametric analysis to capture as fully as possible the response u

to perturbation d. In this study we treat the closed loop balance

system as a “black box”. Some studies seek to identify processes

within the system such as the feedback pathway between whole

body mover position y and control signal u (Kiemel et al., 2011;

Engelhart et al., 2015). However, to test our hypotheses there is

no need to identify transfer functions within the black box

system.

FIGURE 1
Balance task and response to impulse perturbations. (A) Participants, strapped to a one degree of freedom device with second order dynamics
of upright standing, used visual-haptic-vestibular feedback and myoelectric control signals from the calf and tibialis anterior muscles to maintain
balance for 250s. In this study the second order dynamics were set to bemarginally stable: these setting ensured closed loop sway resembled natural
postural sway most closely. (B) An input disturbance of discrete impulses (d) was applied and participants were asked to maintain balance (ISI:
inter-stimuli interval between impulses; ARP: approximate recovery period; d: disturbance; y: load position; u: myoelectric control signal). (C)
Representative disturbance (black upper), control signal (grey, upper), board angle, board velocity and board acceleration v time (s). Net myoelectric
control signal responds to the discrete impulses.
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Our sequence of questions and hypothesis testing is

presented in Figure 2.

Initially (Figure 2, 1st question), we test whether the

perturbation-response data (d, u) (Figure 3A,B blue lines) are

consistent with a linear-time-invariant (LTI) process (Figure 3A

black line), or whether at low ISI there are systematic deviations

from linearity. We construct a generalized linear-time-invariant

(LTI) model to represent the prevailing ideas of balance (van der

Kooij and de Vlugt, 2007; Kiemel et al., 2011; van der Kooij and

Peterka, 2011; Safavynia and Ting, 2013a; Safavynia and Ting,

2013b; Crevecoeur and Kurtzer, 2018; Kurtzer, 2019). Model M1

(high order ARX) is a single LTI process with fixed delay Δ̂ . We

emphasize that ARX, a linear black-box input-output model, is

an equivalent model to a linear state-space model (Phan and

FIGURE 2
Flowchart to test our hypothesis (H): a single (reflexive) pathway provides the minor contribution to balance. Qu 1) Does the experimental
control signal u deviate significantly from a LTI process (M1) at short ISI? (Figures 4, 5). Qu 2) Does time varying amplitude (M2) or a second variable
delay, variable amplitude process (M3) account for non-linear behavior of the control signal u at short ISI? (Figure 6). Qu 3) Does the fixed delay
process provide the largest contribution to the balance response? We calculated the cumulative amplitude v time of all discrete fixed and
variable delay responses from model M3 (Figures 7, 8). Qu 4) Is the response to stimuli independent of ISI? We test the cumulative amplitude v time
response for effect of ISI (Figures 9–11).
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FIGURE 3
Models M1-3 (A). Experimental control signal u and model (M1-3) simulated control signals. (B). Disturbance d (blue) and model disturbance da
(black) for model M1. (C). Disturbance d (blue) and model disturbance da = da1 (yellow) for model M2. (D). Disturbance d (blue) and model
disturbance da = da1 + da2 (green)for model M3. Right column. Cumulative size of model simuli versus latency. Rows A-B show experimental
stimulus (blue), M1 model stimulus (black), M2 model stimulus (yellow) and M3 stimulus (green)). Message: Non-linearity is modelled by
reforming and optimizing the disturbance sequence applied to an ARX model structure. Detail: An ARX model is a general representation of a linear
system with historical states stimulated by a disturbance and stimulated by random noise. The ARX model can be thought of as system such as a bell

(Continued )
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FIGURE 4
Representative timing and composition of responses to discrete impulses. All panels show: Representative experimental myoelectric control
signal (u) (blue solid line), Impulse Stimuli (thin dotted blue lines), Single process, LTIModel M1 (dashed black) Single processmodelM2 including fixed
delay and variable amplitudemodel (yellow dashed), Two processmodel M3 allowing a fixed delay response and a variable delay response, each with
variable amplitude (green dashed). Note. The measured delay includes a precise “Trigno” delay of 48 ms to the output of EMG. Themyoelectric
response was produced in the muscle 48 ms earlier than the instant recorded. Message: At short ISI, the experimental control signal shows
substantial departure from the LTI (M1) behavior. E.g., panel A, see vertical arrow, the experimental response deviatesmarkedly from LTI in a direction
defined by stimulus 1 and not stimulus 2. This experimental non-linearity is captured by the two-process model M3, but not by the single process
model M2. At all ISI, the initial onset at ~0.16s is well represented by the LTI (M1) and single process model (M2). At all ISI, a second onset is visible at
~0.3 ± 0.1 s.

FIGURE 3 (Continued)
that responds in a characteristic manner by ringing and humming in response to impulsive taps and to noise. Model M1 uses the highest possible
order ARXmodel (equal order numerator, denominator polynomials) selected by the AIC criterion to prevent overfitting. The ARXmodel is coupled to
the experimental disturbance (B blue) using a constant delay and constant amplitude. Thus, each stimulus is represented by a model stimulus of
constant delay and constant size (B black). This model M1 is linear and time-invariant. Model M2 reduces the order of the ARX model to a
maximum of 4 and changes the coupling with the disturbance. Model M2 replaces each data stimulus (C blue) with a model stimulus of variable
amplitude (C yellow). The size of the yellow impulse in C is individual for each stimulus. For M2, non-linearity lies in the concept that the gain of the
response (A yellow) can vary stimulus by stimulus. Model M3 limits also the order of the ARX model to a maximum of 4 and uses many parameters to
model the coupling between disturbance and ARX. Model M3 replaces each data stimulus (D blue) with a model doublet (D green) representing a
fixed delay “reflex” and later variable delay “voluntary” stimulus. The size is optimised for each stimulus of each doublet. The delay is optimised for the
second stimulus in each doublet. For this model, the non-linear concept is that each real stimulus evokes two discrete responses from the motor
system. This concept is general: it could represent two parallel pathways i.e., a direct pathway with fixed delay and an indirect pathway with variable
delay. The concept could also represent a single pathway with serial, event triggered responses following an initial response at fixed delay. From a
temporal sequence of stimuli, the cumulative size shows for each time step t themean size s(t) of all n stimuli si occurring at latency less than timestep
t where s(t) � ∑n

i�1
si
n. Stimulus amplitude si is in units normalised to the size of the experimental stimulus. The cumulative size for experimental stimulus

is zero for t < 0 s and unity for t ≥ 0 s (right column). The cumulative size for model M1 is zero below, and unity above, the fixed delay (right column).
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FIGURE 5
Comparison of experimental control signal u with LTI prediction. Left: Experimental myoelectric control signal (u) for Bi direction (blue) and Uni
directional (red) paired stimuli. Single process, LTI Model M1 (dashed black). Impulse Stimuli (rectangular lines). All signals averaged over all cases for
each subject, and then averaged over all subjects. N.B. For all positive first stimuli, all signals reversed to align to negative first stimulus and positive
first response. Right: Time varying F statistic relative to unity threshold (F/F* at alpha 0.05) for Bidirectional (blue) and Uni directional (red) paired
stimuli. (1-d SPM, repeatedmeasures Anova, n = 22). Impulse Stimuli (rectangular dotted lines), Message: At short ISI, the experimental control signal
shows substantial departure from LTI (M1) behavior.
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Lngman, 1996). An ARX model contains historical system states

and can be transformed into an equivalent state-space model and

vice versa, with no loss of information (Supplementary Figure

S1). This generalized model M1 is equivalent in principle to any

time delayed, continuous, linear feedback controller including

one with or without a state estimator and including one with or

FIGURE 6
Comparison of experimental control signal u withmodels M1-3. Left: Experimental myoelectric control signal (u) for Bidirectional (blue) and Uni
directional (red) paired stimuli. Single process, LTI Model M1 (black dashed). Single process varying amplitude model M2 (yellow dashed). Two
process (fixed and variable delay) model M3 (green dotted). Impulse Stimuli (rectangular lines). All signals averaged over all cases for each subject, and
then averaged over all subjects. N.B. For all positive first stimuli, all signals reversed to align to negative first stimulus and positive first response.
Right: Time varying F statistic relative to unity threshold (F/F* at alpha 0.05) for all ISI intervals. Uni directional (rows 1–3) and Bidirectional pairs (rows
4–6). (1-d SPM, repeated measures Anova, n = 22). Impulse Stimuli (rectangular lines), Message: At short ISI, the two-process model M3 reproduces
the experimental control signal u most closely.
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without a state predictor (Ljung, 1999; Pintelon and Schoukens,

2001; Gawthrop et al., 2009). Model M1 simulates an

experimental control signal from the independent stimulus d.

For all ISI’s we compare the experimental control signal u with a

model simulated version (Figures 4, 5). To test systematic

deviation of the experimental response u from the LTI model

M1 simulated response, we use a validated statistical analysis for

computing the time varying F statistic (1-d SPM, (Pataky, 2012))

(Figure 5). We test whether the experimental control signal u

shows significant, systematic deviation from linearity at low ISI.

Second (Figure 2, Qu’s. 2, 3), we model (non-parametrically)

two non-linearities for their potential to represent and explain

any systematic deviation from continuous LTI behavior at

short ISI.

Model M2, a single non-linear process (fixed delay Δ̂ , time-

varying amplitude), implements the physiologically supported

idea that gain of the long-latency reflex can vary according to task

level goal, intention and whole body state (Pruszynski and Scott,

2012). Model M2 adds to model M1 an individual amplitude

parameter for each stimulus. Each stimulus is applied at fixed

delay Δ̂ , same as model M1. Optimization of each amplitude

gives an estimate of the response amplitude to each stimulus

(Figures 3A,C yellow).

Model M3, two non-linear processes (one fixed delay Δ̂ ,

one variable delay Δ, each of time-varying amplitude),

implements the physiologically plausible idea that a second

process contributes to the balance response at a variable

latency later than the transcortical delay (Marsden et al.,

1981; Marsden et al., 1983). Model M3 adds to model

M2 an additional stimulus with an individual amplitude

parameter and individual delay for each stimulus.

Optimization of each delay and amplitude gives an estimate

of the response amplitude and delay to each stimulus for the

second process (Figures 3A,D green).

FIGURE 7
Distributions of RT1 (first column) and RT2 (second column) for models M1-3. Each subplot shows the number of cases (y-axis) for each RT
value within the physiological range (x-axis). Row 1: fixed delay Δ̂ for models M1 (Δ̂) and M2 (Δ̂). Row 2: variable delay Δ from two process model M3
(Δ̂LL,Δ). Row 3: fixed delay Δ̂ and variable delaysΔ frommodelM3 (Δ̂LL,Δ) in the same histogram. Row4: integrated delay averaging each delaywith a
weight equal to its size from model M3 (Δ̂LL, Δ). Message: A two process model shows the response time is much longer than revealed by a
single process model.
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Using the same time-varying statistical analysis (1-d SPM)

we investigated systematic deviation from the experimental

control signal u, at all ISI. The objective of models M1-3 is to

capture without systematic error the experimental response for

all ISI (Figures 4–6).

Using model, M3, which captures the response u at all

ISI, we investigated the cumulative temporal distribution of

discrete balance responses and hence the contribution of

fixed delay and variable delay components to the

experimental response (Figures 7, 8). Using time varying

statistical analysis (1-d SPM) we studied the effect of

stimulus order (1 v 2), stimulus direction (Uni v

Bidirectional) and ISI (0.15, 0.25, 0.35, 0.55, 0.85, 1.45,

2.45, 4.05s) on the cumulative amplitude v time of

discrete responses of both processes from model M3

(Figures 8, 9). These analyses provide new evidence of

the strength and function of the slower contributions to

the balance response.

Materials and methods

Ethical approval

The experiments reported in this study were approved by

the Academic Ethics Committee of the Faculty of Science and

Engineering, Manchester Metropolitan University (Ethos

Ref. 0,567) and conform to the Declaration of Helsinki.

Participants gave written, informed consent to the

experiment which was performed in the Research Centre

for Musculoskeletal Science & Sports Medicine at

Manchester Metropolitan University. Participants in videos

gave consent for publication.

Balance task

This apparatus and task have been reported previously

in detail and provides balance control data defining a

current benchmark for quality (Cherif et al., 2020; Loram

et al., 2022). In brief, participants stood with their feet on a

stable base and used their own muscles and their own

natural senses to maintain balance of their own body

while strapped rigidly to a one degree of freedom

actuated device, named Whole Body Mover (WBM)

(Figure 1, Supplementary Videos S1, S2). This approach

allows precise measurement of the disturbance d, the

control signal u and system output (position), and also

provides a known external system, and a known

neuromuscular system converting EMG into force. In

natural standing the control signal for a multi-segment

system is hard to define, the neuromuscular and

FIGURE 8
Cumulative contribution at each latency. Cumulative size of the response from all processes M1. Combining all participants, and all trials from
each participant, panels show cumulative size of fixed delay responses curves at latency (0–1 s). (A): cumulative absolute size for stim1 (blue) and
stim2 (red) relative to the stimulus size. (B): cumulative absolute size for Uni (red) and Bi (blue) directional pairs; stim1 (dotted), and stim2 (solid).
Cumulative size of the response from all processes M3. Combining all participants, and all trials from each participant, panels show cumulative
size of fixed delay and variable delay. (C): cumulative size (% of trial value at 1s, all cases normalized per trial) vs. latency. Boxplots for each latency
show all trials. The red dots are median values between trials. Red crosses are outliers. Horizontal and vertical dotted black lines respectively indicate
50% total cumulative size and the corresponding latency (185 ms). (D): cumulative coefficient of variation (%) vs. latency. (E): cumulative absolute size
for stim1 (blue) and stim2 (red) relative to the stimulus size. (F): cumulative absolute size for Uni (red) and Bi (blue) directional pairs; stim1 (dotted), and
stim2 (solid). Panels A–B, D-F show average of all participants, where each participant is an average of all their cases. Message: Strength of response
and function differ between fixed and variable delay processes.
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mechanical system are also hard to define precisely, and

system output (whole body CoM) is difficult to measure

precisely. In natural balance, separation of neuromotor

from passive contributions to the control signal is imprecise.

The WBM is composed of a vertical board rotating around a

joint collinear with the ankles, connected to a direct drive linear

actuator at approximately 1 m above the axis of rotation. As

published previously (Cherif et al., 2020; Loram et al., 2022), the

control signal u applied as net torque to the WBM was generated

by a myoelectric interface sampling plantar flexion and dorsi-

flexion action of both calf (soleus + gastrocnemius medialis) and

tibialis anterior muscles (see Supplementary Appendix A1 for

detail). The EMG system (Trigno, Delsys Inc., Boston,

United States) imposed a precise digital delay of 48 ms to all

EMG signals. The 2nd order dynamics of the WBM were set to

ensure the closed loop system replicates the temporal dynamics,

sway distribution of natural postural balance (Loram et al., 2022).

The WBM becomes the body of the participant to be controlled

with their postural leg muscles. The sensory feedback, the motor

action the ownership of self-movement and distribution of sway

size and speed ensure the task feels natural and very similar to

postural balance ((Loram et al., 2022) and Supplementary

Video S2).

Participants and experimental protocol

Twenty-two healthy participants (7 F + 15 M, 35 ± 11 years)

took part in the experiment. Participants were prepared for the

myoelectric interface. Participants were then given a short

familiarization with the task without using perturbations for

approximately 5 min which was sufficient to feel comfortable

FIGURE 9
Effect of Inter stimuli interval and direction on cumulative size response from model M3 at each latency. First column (stim1), second column
(stim2). Rows 1 and 2: Cumulative response size for each ISI (colors in the bottom right legend) relative to the stimulus size. Row 1 (A, E): Bidirectional
pairs. Row 2 (B, F): Uni directional pairs. Row 3 (C, G): SPMTime varying (F/F* at alpha 0.05): Effect of ISIs at each latency. Bi (Red) and Uni (blue). Row4
(D, H): SPM Time varying (F/F* at alpha 0.05): Effect of paired direction (Bi v Uni). Colors show ISIs. Rows 3–4: Horizontal dotted line shows
F/F* = 1 (threshold required for significance difference at alpha = 0.05). Message: Non-linearity: triggered reactions or refractoriness is revealed by
significant effect of ISI.
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with the task. Then additional force stimuli were provided

(Figures 1B,C): participants were told that every now and

then, the WBM would gently push them forwards or

backwards and were instructed to keep the WBM within

apparatus limits (±10°) which exceeded typical unperturbed

sway by an order of Magnitude. Each participant performed

5 trials of 250 s duration.

Experimental design and statistical
analysis

Stimulus Design: We chose a discrete stimulus d that would

evoke a clear balance response in the myoelectric control signal u

(Figure 1C). Each individual stimulus was an impulse of constant

force lasting 50 ms evoking a distinct acceleration and following a

physiological delay a myoelectric response (Figure 1C). The

sequence of impulse stimuli was designed to test variability in

delay and size of the response, and the effect of inter-stimulus-

interval (ISI). For each trial, 32 pairs of impulses were selected

randomly from a set of eight levels of ISI (0.15, 0.25, 0.35, 0.55,

0.8, 1.4, 2.5, 4 s), with all four stimulus direction combinations for

each level (forward-forward, forward-backward, backward-

forward, backward-backward) (Figure 4). Following each

paired stimulus, there was uniform distribution of random

recovery periods ranging 4–6 s.

Estimation of stimulus-response parameters: We fit three

stimulus-response, time-series models (M1, M2, M3) (Figure 3).

Model M1 (ARX) is a single linear-time-invariant (LTI) process

with fixed delay. Model M2, a single non-linear process (fixed

delay, time-varying amplitude), adds an optimized response

amplitude to each stimulus. Model M3, two non-linear

processes (one fixed delay, one variable delay, each of time-

varying amplitude), add a second process of optimized delay and

optimized response amplitude to each stimulus.

Figure 2 shows the sequential testing of Questions 1-4 to test

our hypothesis (H) that the fixed delay pathway provides the

minor contribution to balance.

Testing for significant differences between time varying

signals at each time-step involves multiple tests. Using an

uncorrected ‘F’ statistic at each timestep assumes

independence between time steps and incurs the risk of

declaring significant differences by chance. Applying a

Bonferroni correction for multiple tests assumes no

FIGURE 10
Response times are affected by inter-stimulus interval (ISI). Panels show distribution of size integrated delays from M3 (both processes). Rows:
ISI 0.15—4 s. Column 1 (RT1). Column 2 (RT2). Column 3 (RT1 and RT2 related to stimulus 1 onsets). Blue dotted line represents the onset of the first
stimuli and the red line represents the onset of the second stimuli. Each subplot shows the number of cases (y-axis) for each latency (x-axis). Each
row shows distribution for each ISI (vertical left label 0.15–4 s). Message: RT1 and RT2 distributions are similar at large ISI. At short ISI,
RT2 distribution is longer and flatter.
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independence between timesteps and risks obscuring differences

which are significant. 1-d SPM, which has been validated and

applied currently by ~300 papers (Pataky, 2012), uses random

field theory to compute the degrees of freedom in the timeseries

and thus to normalize appropriately the time varying ‘F’ statistic.

Qu. 1 Does the experimental control signal u deviate

significantly from a LTI process (M1) at short ISI? (Figures 4,

5). We used one dimensional statistical parametric mapping (1-d

SPM) (Pataky, 2012) with repeated measures anova to test the

time varying within participant effect of model (M1 simulation v

experimental) on the ISI windowed control signal u (Figure 5).

Qu. 2. Does time varying amplitude (M2) or a second

variable delay, variable amplitude process (M3) account for

non-linear behavior of the control signal u at short ISI? We

used 1-d SPM (Pataky, 2012) with repeated measures anova to

test the time varying within participant effect of model (M2,

M3 simulation v experimental) on the ISI windowed control

signal u (Figure 6).

Qu. 3 How is response size and function distributed between

fixed and variable delay processes?

Using model M3, we assessed the relative magnitude of

fixed delay and variable delay processes to the observed

response. Model M1 has 62 responses to stimuli of fixed

size and fixed delay. Model M3 optimizes the size of 64 fixed

delay and 64 variable delay responses for each trial. Size is

reported in units relative to the size of stimulus. For each

subject (N = 22), for each ISI (8 levels), for each directional

pairing (Bi or Uni), and for each stimulus (1 or 2), all

responses (fixed delay, variable delay) are collated. For

each category of participant, ISI, directional pairing, and

stimulus number, at each possible latency t in steps of

0.01s up to 1 s, we sum the size of all responses with

TABLE 1 Model statistics.

Model Description Variance %fit Pe %fit N Params

M1 Linear High-Order ARX 0.133 ± 0.1 99.1 ± 0.2 32.6 ± 20

M2 Non-linear Reflex 0.150 ± 0.09 99.1 ± 0.2 71.6 ± 0.5

M3 Non-linear Reflex + Voluntary 0.215 ± 0.1 99.1 ± 0.2 200 ± 0.5

FIGURE 11
Effect of ISI on response latency differs by stimulus direction history (Uni v Bi). Distribution of integrated response times from M3. Row 1. Bi-
directional pairs. Row 2. Unidirectional pairs. Column 1: RT1. Column 2 RT2. All panels: size integrated response time (y-axis) v ISI (x-axis) the ISIs.
Percentiles: white area (interquartile, grey area (1st and 4th quartiles), Dashed line (mode), solid line (median). Given the ~50 ms delay within the
Trigno-EMG system, we showobserved delay left y-axis and physiological latency ofmuscle activation (right y-axis). Message: Large ISI, RT1 and
RT2 are similar for Uni and Bidirectional pairs. At small ISI: RT2 latency increases for ≥50th percentile for Bidirectional pairs at ISI<1.25 s but only for ISI
0.15 for Uni directional pairs.
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latency between 0 s and t and divide by the number of stimuli

(Figure 8). This process generates 704 (22 × 8 × 2 x 2)

empirical curves of cumulative size v latency (Figure 8).

For visualization (e.g., Figure 8), we show the relevant

mean cumulative size curve. For statistical analysis we

used one dimensional statistical parametric mapping

(Pataky, 2012) with repeated measures anova to test the

variation with latency of the within participant effect of

stim (1 v 2) on cumulative size and then to test the within

participant effect of direction (bi v uni) within each stimulus

category (1 or 2) (Figure 8).

Qu. 4 Is the cumulative response independent of ISI? To

investigate the presence of time variant processes and

refractoriness, we test the effect of inter-stimulus-interval (ISI)

on curves of cumulative size v latency (Figure 9) and on response

delay (Figures 10, 11). We used one dimensional statistical

parametric mapping (Pataky, 2012) with repeated measures

anova to test evolution with latency of the within participant

statistical effect of ISI on cumulative size (Figure 9), and then the

within participant effect of direction (Bi v Uni) at each ISI. We

report the distribution of response delays to stimulus 1 and 2

(RT1, RT2). Model M3 estimates 64 single identical value delays

and 64 unconstrained response delays for each trial. For each

stimulus we computed a single integrated delay averaging the

delay of each response with a weight equal to its fractional size. A

linear mixed effects model with fixed factor ISI (8 levels), random

factor ISI, and intercept each grouped by Subject was used to test

the fixed effect of ISI on integrated response delay from model

M3. We used the Satterthwaite approximation to compute

degrees of freedom for the F statistic. A linear mixed effects

model with fixed factor Model (3 levels), random factor Model

and intercept each group by Subject was used to test the effect of

Model on variance accounted for by the model. Variance

accounted for is 100 x (1-normalised root mean square remnant).

Details of time series analysis

Model M1: linear time invariant (LTI) model of the closed-

loop balance system (Figures 3A,B).

For each trial, the independent disturbance d and

myoelectric closed-loop control signal u (Figure 1B) was

used to estimate a time-series model (ARX with minimal

forward one step prediction error, timestep 10 ms,

autoregressive in myoelectric control signal (u) with

exogenous input disturbance d including a dead-time).

M1 uses an ARX structure (A, B polynomials of equal

order q with no delays) A(q)u(t) � B(q)da(t) + e(t) to

model evolution through time t of the experimental

control signal u subject to an analytic model disturbance

input da and random noise of unit variance e. Physiological

delay Δ̂ is represented in the model disturbance input da

constructed by summation of Nstim stimuli presented at

times tistim where da(t) � ∑Nstim
i�1 δ(t − tistim − Δ̂)pR(t)

where Δ̂ is a single fixed delay for the trial, δ is the Dirac

delta function, R is the rectangular function of unit height

and duration 50 ms and p represents convolution (Figure 3).

Using Akaike’s Information Criterion (AIC), the dead-time Δ̂

was selected from range 0.09–0.4s using an 8th order model.

Next, using AIC, the model order (q) was selected limited to a

maximum of 40 to enable a high order LTI model. Next the

model disturbance input da was created by shifting the time of

each sample of disturbance d back by the dead-time Δ̂ and the

dead-time of the ARX model was set to zero (Figure 3B). This

data (da, u) and the zero delay ARX structure was used to

estimate model M1.

This model M1 provides a high order linear-time-invariant

(LTI) reference for the following models M2 and M3 used to

capture non-linear aspects the response (Figures 3A,B).

Non-linear models

The Estimation of models M2 and M3 (below) uses a

variation of the method published previously (Loram et al.,

2012).

Model M2: single process, time varying amplitude

(Figures 3A,C).

M2 uses the same ARX structure as above A(q)u(t) �
B(q)da(t) + e(t) but non-linearity is represented in

optimization of the stimulus sequence da where da � da1(t) �
∑Nstim

i�1 siδ(t − tistim − Δ̂)pR(t) where Δ̂ is the same single fixed

delay as model M1 and si is an adjustable size for each stimulus

(Figure 3C).

Using AIC, a lower order (q) LTI model was selected, limited

to a maximum order of 4 to ensure tractable computation time

for the following procedures and initial coefficients for ARX

model M2 were estimated. Then the size si of each impulse in the

model disturbance da was optimized iteratively to minimize the

forward prediction error of the ARX model M2.

ARX coefficients for the whole trial were estimated afresh at

each evaluation of the forward prediction error using size si. The

impulse sizes were optimized sequentially from last stimulus to

first stimulus (each with scale factor 0–100) until there was no

further improvement. The sequential optimization of 64 sizes

was iterated 5 times. For each trial, this analysis yielded 64 size

parameters representing the size of response to each stimulus,

one delay and one set of 4th order ARX coefficients. Model M2 is

intended to represent function (fixed delay, adjustable

amplitude) of the reflex pathway.

Model M3: two process: fixed delay and variable delay, each

of time varying amplitude (Figures 3A,D).

M3 uses equation A(q)u(t) � B(q)da(t) + e(t) where da �
da1 + da2 such that the fixed delay reflex component is da1(t) �
∑Nstim

i�1 siLLδ(t − tistim − Δ̂LL)pR(t) and the variable delay

component is da2(t) � ∑Nstim
i�1 siVDδ(t − tistim − Δi)pR(t) .
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Fitted parameters include siLL and siVD the adjustable sizes of

the long-latency reflex and variable delay response to each

stimulus and include Δi the adjustable delay for the variable

delay response to each stimulus.

As represented in the equation, each impulse in model

disturbance da was replaced with two impulses each with an

adjustable size (Figure 3D). The time of the first impulse was

fixed at the dead-time of the initial model M1 intended to

represent the reflex deadtimes. The time of the second

impulse was adjustable in the range model M1 deadtime

plus one timestep up to 1 s relative to real stimulus. As

before, using AIC, a lower order (q) LTI model was

selected, limited to a maximum order of 4 to ensure

tractable computation time for the following procedures

and initial coefficients for ARX model M3 were estimated.

The size of each impulse and the time of each variable delay

impulse in the model disturbance was optimized individually

to minimize the forward prediction error of the model M3. As

above, working from last to first stimulus, each stimulus

response (two processes) was optimized sequentially until

there was no further improvement limited to 5 iterations of

the complete trial. This analysis yielded 64 sizes at reflex

latency, and 64 sizes and 64 delays at variable latency. Model

M3 is intended to represent combined function of both reflex

(transcortical) and slower variable delay (voluntary)

components of the response to each stimulus.

Results

This study investigates the closed-loop response of the

balance control signal u to independent, discrete, impulsive

stimuli d (Figure 1). The impulsive force stimuli d produced

experimental accelerations substantially larger and more sudden

than those present during background sway (Figure 1C). These

stimuli d evoked clear, discrete responses in the control signal u

(“Exp response”, Figure 1C). Following the order of questions

shown in Figure 2, using three models (M1, M2, M3) we report

results in Figures 3–11.

Non-parametric model statistics

Models M1 to M3 used increasing numbers of parameters to

incorporate more of the experimental control signal u within the

simulated response to the independent disturbance d and reduce

the remnant (Table 1). Validity is determined by absence of

systematic error between model simulation and experimental

signal at all inter-stimulus-intervals (ISI) (Figures 3, 4). Between

models M1 to M3 there was significant increase in variance

accounted for (Variance %Fit) (F (2, 37.5) = 27.2, p =

0.00000005) with a significant post hoc difference M3—M1

(p < 0.0001, using Bonferroni correction) and no significant

difference M2—M1 (Table 1). The one step ahead prediction

error fit, which includes simulation and remnant within the

prediction was high for all models with no difference between

models M1-3 (Table 1).

For models M1-3, columns show mean ± S.D. for percentage

of the variance accounted for by the model simulated response,

one step ahead prediction error and total number of model

parameters.

Methodological note regarding experimental delays:

Latencies of the human experimental response u (Figure 1C)

are calculated and reported relative to the onset of the virtual

force stimulus d. The experimental delay includes a precise

“Trigno” delay of 48 ms to the output of EMG signals arising

from the EMG system (Trigno, Delsys Inc., Boston,

United States). This 48 ms delay conveniently equals the

physiological delay (49.7 ± 7 ms) between onset of EMG and

onset of force during voluntary (as opposed to electrically

stimulated) contraction (Begovic et al., 2014). Thus, the

physiological latency of muscle activation, i.e., the latency at

which the myographic response was produced is approximately

“50 ms”, earlier than the instant recorded and reported. However,

the observed latency of the experimental control signal u is

correct physiologically for the onset of force generation.

Representative time series (Figure 4) show that responses to

stimuli have a clear first onset followed by discrete secondary

onsets. There is a consistent, distinct first onset to changes in the

myoelectric control signal u at ~160 ms (Figure 4, all panels, solid

blue line). Closer inspection of all panels shows a secondary onset

in response to the first stimulus at 250–400 ms (c.f. inflexion in

solid blue line) giving a second response component of similar or

larger size than the initial component. In panel E (long ISI) a

second component is ambiguous for the first stimulus and clearer

for the second stimulus and in the correct direction for both

stimuli. In panel A (short ISI) the second component (onset

indicated by vertical arrow) is large and crucially in the correct

direction for the first stimulus and incorrect direction for the

second stimulus. In panel D (medium ISI), the second

component is large and in the correct direction for the first

stimulus. In panel B (short ISI), the second component is present

and in the correct direction for the first and second stimuli.

Qu 1. Does the experimental control signal u deviate

significantly from a LTI process (M1) at short ISI?

The LTI model M1 expresses the currently accepted closed-

loop control model of balance represented by continuous, linear

feedback. The LTI model M1 predicts responses at short ISI

(Figures 4A–D) which are a linear superposition of two

independent closed-loop responses such as those observed at

long ISI (Figure 4E). At short ISI, the LTI response to a second

same direction stimulus adds to the first response (Figure 4B).

At short ISI, the LTI response to a second bi-directional

stimulus is reversed and subtracts from the response to

stimulus 1 resulting in a small combined LTI response

(Figure 4A). However, for Figure 4A, the representative
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experimental response to stimulus 2 adds to rather than

subtracts from stimulus 1. The direction of the response at

0.3 s, is determined by the direction of stimulus 1, even though

stimulus 2 occurred at 0.15 s. This representative example at

short ISI illustrates refractoriness, i.e., insensitivity to current

stimuli, (specifically the direction but not the occurrence of

stimulus 2). For these examples (Figure 4), the two-process

model M3, comprising a reflex and a variable delay component,

captures the initial onset well and the whole response better

than both single process models M1 and M2.

Departure from LTI behavior (model M1) at short ISI was

shown systematically by all participants (Figure 5). At long ISI

(≥0.85 s, Figure 5, rows 5–6), the experimental control signal,

is not significantly different from the LTI response (Figure 5

right shows time varying F-statistic). At short ISI (≤0.55 s,
rows 1–4), following a second same direction stimulus (Uni),

the experimental response (red) is significantly larger than the

LTI superposition of independent responses (M1). Non-linear

interference at short ISI (Uni), indicated by the rise in

F-statistic (Figure 5 right column), occurs one reaction

time (~0.16 s) after the second stimulus and shows an

exaggerated response in the direction defined by stimulus 1.

At short ISI (≤0.25 s, rows 1–2), following a second opposite

direction stimulus (Bi), the experimental control signal (blue)

shows a reduced negation of the response to stimulus

1 compared with the LTI prediction (M1). This non-linear

difference from LTI is significant (F-statistic) from 0.1 to 0.2 s

after the second stimulus. Following the initial reduced

negation of response to stimulus 1, the experimental

control signal u, remains larger in magnitude in the

direction required by stimulus 2, than is predicted by the

LTI model M1 for up to 1s after stimulus 2.

Qu. 2.Does time varying amplitude (M2) or a second variable

delay, variable amplitude process (M3) account for non-linear

behavior of the control signal u at short ISI?

Model M2 represents ability of the central nervous system to

vary the gain of reflexes. Model M2 allows discrete temporal

variation of response gain for each stimulus. Model

M3 represents addition of a voluntary response to the reflex

response. Model M3 adds a second process to model M2 allowing

discrete temporal variation of response gain and delay beyond

long latency for each stimulus.

At long ISI (≥0.85 s), all models M1-3 represent the

experimental control signal u without significant difference

(Figure 6): this result is shown by the signals (Figure 6, left

row 5) and by the time varying F-statistic (Figure 6, right all

rows) for ISI (≥0.85 s).
At short ISI (≤0.55 s, Figure 6 left rows 1–4), following a

second same direction stimulus (Uni), the time varying

amplitude model (M2) is similar to the LTI model (Figure 6,

left) and remains significantly different from experiment

(u—M2) (Figure 6, right row 2). However, the two-process

model M3 replicates the experimental response without

significant difference up to 1s post stim 2, excepting only ISI

0.15 s above 0.85 s post stim 2 (Figure 6, right row 3).

At short ISI (≤0.55 s, Figure 6 left rows 1–4), following a

second opposite direction stimulus (Bi), the time varying

amplitude model (M2) eliminates the significant difference

(u—M2) up to 0.5 s post stim 2 (Figure 6, left) but retains some

significant difference (u—M2) after 0.5 s (Figure 6, right row

5). The two-process model M3 replicates the experimental

response most closely of all models M1-3, with no significant

difference (u—M3) up to 0.6 s for ISI ≤ 0.35 s, and no

significant difference (u—M3) up to 1 s post stim 2 for ISI

0.25 s (Figure 6, right row 6). Reduced but significant

difference (u—M3) remains at 0.6–1 s (ISI 0.15 s), 0.6–0.7 s

(ISI 0.35 s) and 0.35–0.75 s (ISI 0.55 s) post stim 2, with the

experimental control signal u larger than M3 in the direction

required by stimulus 2.

The distribution of fixed and variable
delays

Figure 7 shows that when the timing and size of all

components are included (last row), response delays show a

wide temporal distribution up to 600 ms and beyond and with a

main peak at 170–180 ms. The LTI model M1 and single process

variable amplitude model M2, (Figure 7, 1st row), which both

allow a single delay Δ̂ for each 250s trial, shows a narrow

distribution of delays peaking at 150–160 ms. From the two-

process model M3, the variable delay process Δ shows a wide

distribution up to 1,000 ms with a main peak at 170–180 ms, a

second smaller peak at 450 ms, and a third small peak at ~700 ms

(Figure 7, 2nd row): the fixed delay process not shown is the same

as models M1-2. Reporting both processes, the two-process

model M3 shows a main peak at 180 ms, and an extended

small tail up to 1,000 ms (Figure 7, 3rd row). When both

processes of model M3 are weighted according to their size

and integrated into a single size-weighted integrated delay, the

temporal distribution peaks at 170–180 ms and shows a long tail

up to 1,000 ms (Figure 7, 4th row). Statistical analysis (linear

mixed effect) shows the mean delay differs between models.

Marginal mean delays for RT1 are 152 and 280 ms respectively

for M1 or 2 andM3 (size integrated delay) (F1, 22.1 = 165, p = 1 ×

10–11). For RT2 the corresponding values are 152 and 285 ms

respectively (F1, 21.5 = 269, p = 1 × 10–13). In summary, the

single process fixed delay models M1,2 are not able to reproduce

the size integrated distribution of responses revealed by the two-

process model M3 (Figure 7).

Qu. 3. How is response size and function distributed between

fixed and variable delay processes?

For a linear-time-invariant (LTI) process, discrete, impulsive

stimuli each initiate a temporal response pattern of constant size

irrespective of the current state or history of the system. In the

analysis that follows, we analyze the response of the balance
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system by the distribution through time of the size of inputs given

to the LTI process.

For model M1, representing balance as continuous state

feedback with fixed function i.e., a LTI process, impulsive

stimuli of constant size equal to the actual experimental

stimulus are delivered at a fixed delay Δ̂ with the distribution

over trials shown in Figure 7, row 1. Accumulation through time

of these constant size inputs at fixed delay Δ̂, averaged across all

trials and all subjects gives the cumulative size of response shown

in Figure 8A. Figure 8B shows this cumulative distribution

separately for Uni directional pairs and for Bidirectional pairs

and for each stimulus (RT1 and RT2). As expected, each

distribution overlaps completely and statistical analysis (1-d

SPM) confirms no statistical difference between stimulus

order (RT1 v RT2), or direction of second stimulus (Uni v

Bi). For stimuli of fixed delay, accumulating the response adds

no value to the analysis. However, for responses occurring at

variable delay, accumulating the response allows statistical

analysis at each delay of all preceding contributions. For

model M3, two process, one of variable size at fixed delay

Δ̂ , and one of variable size at variable delay, both provide

input to a LTI process which is constant for the trial. The

temporal distribution of these responses is shown in Figure 7

row 3. Accumulation through time of these variable size

inputs at fixed and variable delay, gives the cumulative size

distribution (Figure 8C), and when averaged across all cases

per subject and then all subjects gives the cumulative size

response shown in Figures 8E,F. From Figure 6, Model

M3 represents the balance response most accurately

including systematic non-linearity not included in Model

M1. The cumulative size response of M3 (Figure 7) shows

the complete balance response differs from the linear model

(Figures 8A,B) and develops substantially at timescales

beyond the fixed (reflex) delay.

Model M3 with two processes, fixed delay (reflex) and

variable delay (voluntary), enables us to investigate the

magnitude and function of each process.

Using both processes from M3, the main strength of the

response arises from the variable delay rather than the fixed delay

processes (Figure 8C). Averaging all participants and

accumulating the size of all fixed and variable delay responses

to both stimuli, the cumulative response size (percentage of value

at 1s) increases from zero at 125 ms, rises rapidly until 150 ms,

reaches 50% at 183 ms, and plateaus above 0.6s (Figure 8C). The

fixed delay process at reflex latency (150–160 ms) lies below

183 ms and thus provide a minority contribution to the overall

response.

The variable delay process is associated with a slight

reduction in variability (Figure 8D). Variation in the response

shown by cumulative coefficient of variation (CoV) is highest at

165 ms (~1.07) and decreases beyond 165 ms to ~1.002 at 0.7 s

(Figure 8B). SPM analysis shows no significant effect on

cumulative CoV of stim (1 v 2), or of direction (Bi v Uni)

within each stim (1 or 2) (SPM{F}<F*α = 0.05 where F*α = 0.05 is

the critical value of F at α = 0.05).

Fixed delay processes are insensitive to whether a stimulus is

first or second, whereas variable delay processes respond

differently to first and second stimuli. For stimulus1 and

stimulus2, each cumulative size distribution overlaps up to

157 ms (SPM{F}<F*α = 0.05) and differs above 157 ms (SPM

{F}>F*α = 0.05) (Figure 8E). Beyond 157 ms, compared with

stimulus1, responses to stimulus2 take longer to accumulate to

the same size (Figure 8E).

Are fixed delay processes or variable delay processes sensitive

to the direction of stimulus 2 relative to stimulus 1? The first

stimulus within stimuli pairs is randomly positive or negative.

For bidirectional pairs, the second impulsive stimulus negates

mechanically the impulsive input provided by the first stimulus.

For unidirectional pairs, the second impulsive stimulus adds

mechanically to the impulsive input provided by the first

stimulus.

Refractoriness. Response to stimulus 1: The fixed and

variable delay response to stimulus 1 is not affected the arrival

of a second stimulus. Following stimulus1, the second stimulus

arrives at various inter-stimulus intervals during the response to

stimulus1. The cumulative size distribution for stimulus 1 shows

no difference between uni and bidirectional pairs (Figure 8F). For

all latencies up to 1s, the uni and bidirectional cumulative size

curves overlap and SPM analysis confirms no significant effect of

direction (Bi v Uni) (SPM{F}<F*α = 0.05).

Response to stimulus 2: The fixed delay process is not

sensitive to the direction of stimulus 2 relative to stimulus 1,

whereas the variable delay response to stimulus 2 varies

depending upon the direction of the preceding stimulus 1. For

responses to stimulus2, the first and second stimulus arrive

before onset of the response to stimulus2. Inspection of

Figure 8F shows the cumulative size response to stimulus2 is

the same for Bi and Uni directional pairs below 174 ms. SPM

analysis confirms significant difference (Bi—Uni) only above

174 ms (SPM{F}>F*α = 0.05).

These results differentiate variable delay from fixed delay

process. The variable delay process contributes most of the

strength and is sensitive to more preceding information than

the fixed delay process.

Qu. 4 Is the cumulative size response independent of ISI?

Inter-stimulus-interval (ISI) has no influence on a LTI

process such as model M1. SPM statistical analysis confirms

no effect of ISI, or direction (Uni v Bi) at any ISI, on the

cumulative size response of M1. These curves are not shown

since they are identical to Figures 8A,B for each ISI and each

directional pair (Uni, Bi). Below, we report the cumulative size

response of model M3 which captures the systematic non-linear

behavior without significant error up to 0.6 s (Figure 6).

We used paired stimuli with eight inter-stimulus-intervals

(ISI), ranging 0.15–4 s, to test for non-linear processes such as

refractoriness and triggered reactions.
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Refractoriness features: For responses to stim1, refractoriness

is the continuation of a response defined by stimulus1 without

modification by the arrival of stimulus2. Modification of the

response to sim1 following stim 2 becomes possible after a

latency given by the ISI plus some physiological delay

(~0.15 s) and would be evidenced by an effect of ISI, and

more specifically by an effect of direction (Uni v Bi) at each

ISI. Triggered reactions: By triggered reactions we mean exciting

by the arrival of stim2, an additional pre-prepared response to

sim1 in the correct direction for stimulus1, irrespective of the

direction of stimulus 2. Triggered reactions are refractory to the

direction of stim2 but not the occurrence of stimulus2.

For responses to stim2, refractoriness, i.e., lack of

responsiveness, is a non-linear suppression or increased delay of

responses to stim2. Refractoriness occurs at short ISIs when

processing of a current stimulus requires completion of a serial

process initiated by responding to a previous stimulus. For stim2,

refractoriness is indicated by a significant effect of ISI. We report

results separately for unidirectional and bidirectional pairs of stimuli.

Response to Stimulus 1: For responses to stimulus1,

arrival of a second stimulus causes no significant effect of

direction (Bi—Uni) at any ISI (Figure 9A v Figures 9B,D)

(SPM{F}<F*α = 0.05). The response to stimulus 1 is

insensitive to the direction of the second stimulus after

the second stimulus arrives. For bidirectional stimulus

pairs, SPM statistical analysis confirms no effect of ISI at

any latency (Figure 9C) (SPM{F}<F*α = 0.05).

For unidirectional pairs, SPM analysis confirms a

significant effect of ISI beyond 0.417 s (Figure 9C) (SPM

{F}>F*α = 0.05). This effect of ISI on response to stimulus

1 in unidirectional pairs confirms departure from LTI

behavior. The non-linear effect of the arrival of stimulus

2 is to increase the size of response in the direction of

stimulus 1 (and stimulus 2) (Figure 9B).

Response to Stimulus 2: Statistical analysis of

bidirectional pairs confirms a highly significant effect of

ISIs beyond 153 ms peaking at 0.65 s for response to

stimulus2 (SPM{F}>F*α = 0.05) (Figures 9E,G). The non-

linear effect of ISI (at ISI <0.8 s), is to reduce the cumulative

response to stimulus 2 at latencies beyond 153 ms. For

unidirectional pairs, there is no effect of ISI on response

to stimulus2 (Figure 9G) (SPM{F}<F*α = 0.05), though the

tendency is to increased response at short ISI (Figure 9F).

For all ISI ≤0.35 s, the effect of direction (Uni v Bi) is

significant at latency 162–180 ms onwards and for ISI 0.55 s,

the effect of direction is significant at 210–250 ms (SPM{F}

>F*α = 0.05, Figure 9D. The non-linear suppression of

response to stimulus 2 in relation to direction relative to

stimulus 1 (Bi—Uni, Figure 9E v Figure 9F) occurs at short

ISI only (≤0.55 s): this non-linear suppression is evident at

variable delay beyond 160 ms and the effect increases to a

maximum at ~0.6 s (Figure 9H). For ISI beyond 0.55 s there is

no significant effect of direction (Bi-Uni, Figure 9H).

Summary answer to question 4: there is evidence of non-

linearity related to ISI and of refractoriness. Refractoriness is

revealed by insensitivity of ongoing responses to stimulus 1 to the

direction of stimulus 2. Response to stimulus 1 is refractory to the

direction but not the occurrence of the second stimulus (Figures

4A, 9B,D). Refractoriness is revealed by the non-linear

suppression of response to stimulus 2 at short ISI ≤0.55 s and
when stimulus 2 is in the opposite direction to stimulus 1

(Figures 9E,G). A linear-time-invariant response to stimulus

2 would overlap at all ISI and for all directions (Uni v Bi).

The temporal distribution of responses to
independent and interfering stimuli

Using size-weighted integrated delay to summarize the

central latency of the response to stimulus from both

processes of model M3, Figure 10 combines Uni and Bi-

directional pairs and shows the frequency distribution of

responses for all ISIs.

Independent stimuli (long ISI): For stimulus 1 and also for

stimulus 2, responses at ISI ≥1.4 s, show a main peak at

160 ms, small peaks at 300 and 450 ms and low tail above

around 500 ms for the size-weighted integrated delay

(Figure 10, last three rows).

Interfering stimuli (short ISI): As ISI decreases the latency of

the peak response to stim1 and stim 2 remains unchanged for all

ISIs. However, as ISI decreases, responses to stimulus 2 show a

reduction in height of the main peak and increase of cases in the

tail of size integrated RT2 (Figure 10 all rows). For bidirectional

pairs only, statistical analysis (linear mixed effect) confirms a

significant effect of ISI on mean size integrated RT2 (F7, 38.9 =

5.3, p = 0.0003).

Figure 11 shows the distribution of size-integrated delays at

each ISI, separated into bidirectional and unidirectional pairs.

Responses to stim1: As ISI decreases below 0.55 s, the latency of

tail of the distribution reduces (Figure 11).

Responses to stim2: As ISI decreases ISI (≤0.8s
bidirectional, ≤0.25 s unidirectional), the latency of the tail of

the distribution increases. The 50th, 75th and 95th percentiles

show an increased delay of approximately 100 ms as ISI decreases

from long (independent) to short (interfering) for bidirectional

stimuli (Figure 11). For unidirectional stimuli the increase is

smaller (~50 ms) and confined to lower ISI (≤0.25 s
unidirectional). However, the mode integrated delay changes

little if at all at short ISI.

Discussion

We used impulsive stimuli to investigate balance for a task

where participants use myoelectric signals from their leg muscles

to control sway of their whole body (Figure 1).
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Principal findings

This study establishes new evidence regarding non-linear

processes in balance control at short inter-stimulus-

intervals (ISI).

1) While onset of balance response occurs sharply at reflex

latency, the complete response includes visible, subsequent

components beyond the long-latency reflex (Figure 4).

2) The closed loop control signal u shows systematic non-

linearity at short ISI ≤0.55 s (Figure 5).

3) A non-parametric model allowing two non-linear

processes, (one fixed delay one variable delay) reproduces the

non-linear closed-loop response to double stimuli (Figure 6).

4) The main strength of the two-process response comes

from variable delay processes beyond the long-latency reflex

(Figure 8). Sensitivity to direction of stimulus2 relative to

stimulus1 arises at variable delay latencies beyond the long-

latency reflex (Figure 8D).

5) The non-linear balance response shows refractoriness at

ISI ≤0.55 s revealed by:

1) insensitivity of an ongoing response defined by stimulus1 to

the direction of stimulus2 (Figures 3A, 8A,B,D).

2) non-linear excitation by the arrival of stimulus2, of response

to stimulus1 in the direction for stimulus1, (e.g., ISI 0.15 s,

Figures 3A, 8A. These triggered reactions are refractory to the

direction but not the occurrence of stimulus2.

3) non-linear suppression of response to stimulus2 at short ISI

when stimulus 2 is in the opposite direction to stimulus1

(Figures 9E,G,H).

Validity of the modelling strategy

This study models the relationship between independent

disturbance d and experimental control signal u (Figure 1).

In whole body balance, the control signal is part of a feedback

system in which maintenance of balance requires rejection of

the disturbance. Thus the experimental control signal

includes a component related to the disturbance and a

larger remnant (van der Kooij and Peterka, 2011; Loram

et al., 2022). It is believed widely that the balance control

system is linear (van der Kooij and de Vlugt, 2007; Kiemel

et al., 2011; van der Kooij and Peterka, 2011; Safavynia and

Ting, 2013b; Crevecoeur and Kurtzer, 2018; Kurtzer, 2019).

To test the basic assumption of linearity, it is sufficient to

treat the balance system as a “black box” and it is not

necessary to model processes within the system such as

the relationship between body position y and control

signal u (Figure 1) (Engelhart et al., 2015). The

assumption of linearity is tested by the presence or

absence of significant, systematic difference between

model simulation and experimental signal at all ISI. Note

that the ARX model is exactly equivalent to a state-space

model (Phan and Lngman, 1996) (Supplementary Figure S1).

Any linear state-space system representing the states of a

plant and state feedback is transformable into an ARX model

of appropriate order. Furthermore, all linear systems follow

the principle of superposition, namely that the net response

caused by two or more stimuli is the sum of the responses that

would have been caused by each stimulus individually. Any

deviation from this behavior at low ISI is evidence of non-

linearity.

Deviation from linearity: Using AIC criteria to select model

order, the high order linear-time-invariant response to the

independent stimuli is defined by model M1. Non-linearity at

short ISI≤0.55 s is shown unambiguously by systematic

difference between the experimental control signal and the

LTI model M1 (Figure 5). That systematic difference and its

timing is verified using well established methods for statistical

analysis of the time-varying F-statistic (1-d SPM, (Pataky, 2012)).

A clear example of refractoriness at ISI = 0.15 s is shown in

representative data which shows a response excited by

stimulus2 but in the direction defined 300 ms earlier by

stimulus1 (Figure 4A).

Investigation of non-linearity: Models M2 and M3 are

descriptive and capture the experimental control signal with

minimal assumptions. However, models M2 and M3 are

constrained in that their model structure represents prior

empirical evidence demonstrating the existence of reflex and

voluntary processes (Rothwell et al., 1980; Marsden et al., 1981;

Pruszynski and Scott, 2012). These models hypothesize one

process at fixed latency where response amplitude can vary

through time and one later process where response amplitude

and delay can both vary through time. The variable amplitude

fixed delay process represents known ability of the nervous

system to vary gain of the long-latency reflex (Pruszynski and

Scott, 2012). However, while it known that gain of the long-

latency reflex can vary with intention, task and environmental

constraints, variation with ISI has not previously been

demonstrated. The variable amplitude, variable delay process

represents voluntary components which are known to span a

wide range of latencies (Marsden et al., 1981; Marsden et al.,

1983; Brooks, 1986; Pruszynski and Scott, 2012).

It is expected that increasing the number of parameters will

increase the variance percentage fit of the model. However,

validity is not determined by an increase in fit to experiment

between models M1 and M3. Validity and discrimination

between models lies in ability to reproduce the experimental

control signal u at all ISI without systematic error: this criterion

ruled out models M1 and M2.

Model, M3 represents the dynamics of the closed-loop

balance system by a continuous, linear-time-invariant (LTI)

ARX model. The denominator coefficients of the ARX model

determine the intrinsic system response and the numerator

coefficients filter or color any input provided to the system.
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Non-linear variation in amplitude of the fixed delay response is

modelled by optimizing discretely the amplitude of each stimulus

applied at the fixed delay. Non-linear variation in amplitude and

delay of the second process is modelled by optimizing the

amplitude and timing of a second stimulus applied to the LTI

system after each fixed delay process. Dynamics of the closed

loop response defined by the ARXmodel coefficients are constant

for the whole trial, and the analysis is non-parametric (i.e., many

parameters) because in addition to the ARX coefficients it uses

193 parameters (M3) to describe the sizes and delays at reflex

latency and variable delay. Optimization of stimulus parameters

proceeded sequentially stimulus by stimulus from the last to the

first stimulus.

This model structure M3 represents the generalized idea that

a real sensory stimulus is processed and provides input to a

continuous motor system by two pathways: the first pathway is

the shortest possible transcortical input to the motor system, the

second pathway follows a longer route allowing variable time

before sensory input is resolved into a stimulus to the motor

system. This non-parametric analysis including model M3, is

agnostic regarding any parametric model of balance and

specifically is agnostic as to whether closed loop control of

balance is continuous or intermittent. This non-parametric

analysis describes the non-linearity which any valid

parametric control model should be able to explain.

Statistical analysis of cumulative rather than instantaneous

responses is valid when latency is variable because it tests

strength at each latency of the response arriving from all

preceding latencies. SPM analysis of time-varying significance

(Pataky, 2012) shows the temporal onset of significant difference

and shows how the effect of refractoriness begins at reflex latency

but increases to show a strongest effect within the voluntary

period (Figure 8G).

The physiological validity of refractoriness

Given the 48 ms delay within the Trigno-EMG system, an

observed delay of 150–160 ms from onset of stimulus (Figures

4, 5, row1) represents a latency for muscle activity of

102–112 ms. This latency is consistent with the known

muscle activation delay (90–120 ms) of all muscles in

response to whole-body perturbations (Safavynia and Ting,

2013a). This response is mediated by the fastest possible

transcortical reflex integrating multimodal sensation with

task level goals (Crevecoeur and Kurtzer, 2018) and is

referred to as long-latency reflex (Safavynia and Ting,

2013b). Discrete components following the initial response

are observable as discontinuities in representative data

(Figure 4) at delays ranging beyond 170 ms up to 1,000 ms

(Figure 7, row3): these physiological delays >120 ms for the

lower limb are referred to as voluntary responses (Crevecoeur

and Kurtzer, 2018).

Refractoriness demonstrated in manual control, is known

to occur at short ISIs when processing of a current stimulus

requires completion of a serial process initiated previously

(Loram et al., 2014). Serial processes are associated with

events related to signals crossing thresholds. Neural

processing is inherently threshold based with examples

ranging from excitation of action potentials in individual

neurons to motor decision of one action (Cisek and Kalaska,

2005). Serial processes that could explain refractoriness in

balance include 1) accumulation of prediction error until it

crosses a threshold stimulating intermittent sampling of

sensory input and abrupt change in continuous motor

output (Gawthrop et al., 2011), and 2) a possible temporal

overhead for selection, preparation and action of a different

muscle group (Michalski et al., 2020).

Discussion of the findings considering
other published work

This study complements literature which portrays the long-

latency reflex as the main contributor to human balance

(Pruszynski and Scott, 2012; Safavynia and Ting, 2013b;

Crevecoeur and Kurtzer, 2018; Kurtzer, 2019). We found the

long-latency reflex is just the first of a sequence of events which

also includes later voluntary components, the sum of which

corrects for disturbances (Figures 4, 5). Our observations

concur with work in the upper limb showing the unreliability

and partial efficacy of the long-latency reflex (Marsden et al.,

1981) and showing how the voluntary component compensates

for the limited strength, pulsatile nature and variability of the

long-latency reflex (Marsden et al., 1983). While the directional

action of long-latency reflexes is appropriate for current stimulus

direction, we found the long-latency reflex was not sensitive to

direction of a stimulus in relation to direction of a previous

stimulus (Figure 8F): this insensitivity to historical context

appears to be a new result published here for the first time.

We found the long-latency reflex showed no evidence of altered

delays associated with ISI (Figures 9E,F) which concurs with a

review by (Crevecoeur and Kurtzer, 2018) and with a study by

(Kurtzer, 2019). However, our results suggest that sensitivity of

response amplitude to ISI starts at long latency (Figures 9E–G).

Sensitivity of reflex amplitude to ISI in the upper limb was not

investigated by (Kurtzer, 2019).

Components within the voluntary timescale provided the

largest contribution to response (Figure 7C), reduced coefficient

of variation (Figure 7D), provided sensitivity to context namely

direction of a stimulus in relation to a previous stimulus

(Figure 7F) and showed evidence of suppression of response

related to ISI (Figures 7E, 8, 9). This suppression and delayed

development of response related to ISI is a hallmark of

refractoriness and evidence of serial, threshold related

processing. While extensive literature demonstrates
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refractoriness in manual control (Levy et al., 2006; van de Kamp

et al., 2013; Loram et al., 2014), these results show for the first

time evidence of refractoriness in human balance. The timescale

of refractoriness in balance at ISI≤0.55s is similar to manual

control (van de Kamp et al., 2013). This similar timescale

suggests a common central process may be responsible for

regulating both balance and manual control.

Central structures such as cerebellar-basal ganglia loops

modulate long-latency reflexes (Nashner, 1976) and select

voluntary responses following evaluation of environmental

context (Cisek and Kalaska, 2010; Frank, 2011; Caligiore

et al., 2017). The transcortical long-latency reflex provides

the fastest possible pathway for integrating multimodal

sensation into an integrated whole-body response

(Crevecoeur and Kurtzer, 2018). The long-latency reflex

cannot be delayed, it can only be suppressed or amplified

(Brooks, 1986). Later responses within the voluntary

timescale can be delayed (Tatton and Lee, 1975; Brooks,

1986). Motor expression of a central, serial process

sensitive to ISI would be distributed and can include 1)

suppression of the long-latency reflex and 2) increased

delay and suppression of variable delay processes (Loram

et al., 2014).

Conceptual models of balance control

Continuous sensorimotor feedback of task relevant error

with a delay corresponding to the long-latency reflex provides

a widely supported concept of balance control (Kiemel et al.,

2011; Safavynia and Ting, 2013a; Crevecoeur and Kurtzer, 2018).

However, this concept ignores the temporally structured,

discontinuous character of unaveraged, representative motor

output (Figure 4). Threshold related intermittent control

concurs with basic principles of neural processing and offers a

more ecological-physiological concept of balance control that

recognizes a higher bandwidth of task relevant decision making

(Morasso et al., 2014; Loram et al., 2015b; Morasso et al., 2020).

The systematic non-linearity and refractoriness related to short

ISI (Figures 5, 7–9) provides support for intermittent control of

balance. Consistent withmanual tracking of visual targets (van de

Kamp et al., 2013), the effect of ISI was stronger for bidirectional

than unidirectional stimulus pairs (Figure 10). This effect of ISI

might be related to muscle group selection. For unidirectional

pairs, the muscles used to respond to second stimulus are the

same as for first stimulus. The larger ISI effect on bidirectional

responses might reflect additional time to stop one muscle group

and select a new one (Horstmann, 2003; Michalski et al., 2020).

Alternatively, refractoriness is known to disappear when stimuli

are predictable [Figure 2, (Navas and Stark, 1968),]. If responses

are triggered by prediction error exceeding a threshold, then

when the second stimulus is in the opposite direction to first

(bidirectional), the second stimulus arrival might cancel the

expected perturbative effect of the first stimulus and therefore

the prediction error threshold is exceeded later. Differences

between uni and bidirectional pairs increases support for

intermittent control.

Significance of the work

This study provides new evidence of refractoriness in

human balance and re-balances literature which portrays the

long-latency reflex as the main contributor to balance

control. These results show that voluntary variable delay

processes are central to the regulation of balance. These

variable delay processes depend upon central function

including cerebellar-basal ganglia loops. This new

knowledge is relevant to understand how neurological

conditions including Parkinson’s disease, dystonia and

cerebellar ataxia impair balance.
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