

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following

terms and conditions of use:

This work is protected by copyright and other intellectual property rights, which are

retained by the thesis author, unless otherwise stated.

A copy can be downloaded for personal non-commercial research or study, without

prior permission or charge.

This thesis cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the author.

The content must not be changed in any way or sold commercially in any format or

medium without the formal permission of the author.

When referring to this work, full bibliographic details including the author, title,

awarding institution and date of the thesis must be given.

Shader Optimization and Specialization

Lewis Crawford
T

H
E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Doctor of Philosophy

Institute of Computing Systems Architecture

School of Informatics

University of Edinburgh

2022

Abstract

In the field of real-time graphics for computer games, performance has a significant ef-

fect on the player’s enjoyment and immersion. Graphics processing units (GPUs) are

hardware accelerators that run small parallelized shader programs to speed up com-

putationally expensive rendering calculations. This thesis examines optimizing shader

programs and explores ways in which data patterns on both the CPU and GPU can be

analyzed to automatically speed up rendering in games.

Initially, the effect of traditional compiler optimizations on shader source-code

was explored. Techniques such as loop unrolling or arithmetic reassociation provided

speed-ups on several devices, but different GPU hardware responded differently to

each set of optimizations. Analyzing execution traces from numerous popular PC

games revealed that much of the data passed from CPU-based API calls to GPU-based

shaders is either unused, or remains constant. A system was developed to capture this

constant data and fold it into the shaders’ source-code. Re-running the game’s render-

ing code using these specialized shader variants resulted in performance improvements

in several commercial games without impacting their visual quality.

iii

Lay Summary

Video games are like flip-books. Every few milliseconds, a new picture appears on the

screen, which gives the illusion of fluid motion. The faster these images can be drawn

to the screen, the smoother the game looks and feels to play. With the graphical fidelity

of games increasing, the complexity of the calculations required to draw these virtual

worlds to the screen is also increasing.

The aim of this thesis’s research is to find ways to automatically improve the per-

formance of graphics calculations, to ensure that even games with complex graphics

can continue to run smoothly. Modern video games all make use of specialized hard-

ware known as a graphics processing unit (GPU), which is able to run small graph-

ics programs known as shaders very quickly. This research explores several different

techniques for optimizing these shader programs, so that they can run efficiently on

different GPUs made by different companies.

Several ideas for optimizing these shaders are explored here. Firstly, the effect

of different transformations performed on shader code is measured on different GPUs.

Then, snippets of gameplay from various real-world games are examined to see whether

there are any patterns in the data being fed to the shaders which can be exploited to

make them run faster. By exploring these ideas, the aim is to motivate the building of

tools that game developers can use to automatically improve the performance of their

increasingly complex games with little manual intervention.

iv

Acknowledgements

I would like to thank my supervisor, Professor Michael O’Boyle, for his patience and

invaluable guidance throughout this project. I would also like to thank my parents for

their support, and for proof-reading the final draft of this thesis. Finally, I would like

to thank Erin for helping me through it all.

v

Declaration

I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

• A Cross-platform Evaluation of Graphics Shader Compiler Optimization (Lewis

Crawford, Mike O’Boyle - IEEE International Symposium on Performance Anal-

ysis of Systems and Software 2018)

• Specialization Opportunities in Graphical Workloads (Lewis Crawford, Mike

O’Boyle - International Conference on Parallel Architecture and Compilation

Techniques (PACT) 2019)

(Lewis Crawford)

vi

Table of Contents

1 Introduction 1

1.1 Performance in Games . 1

1.2 The Problem Domain . 2

1.3 Research Contributions . 3

1.4 Thesis Structure . 4

2 Background 7

2.1 Introduction . 7

2.2 3D Graphics Basics . 8

2.2.1 Triangles . 8

2.2.2 Textures . 9

2.2.3 Shaders . 12

2.3 Graphics APIs . 14

2.3.1 The Purpose of Graphics APIs 14

2.3.2 Modern Graphics APIs . 15

2.3.3 Trends Towards Lower-Level APIs 16

2.3.4 Shader Languages . 17

2.3.5 Choosing OpenGL . 18

2.4 Game Engines . 18

2.4.1 The Role of an Engine . 19

2.4.2 Game Engine Development 19

2.5 Programmable Pipeline Overview 21

2.5.1 Evolution of the Programmable Shader Pipeline 22

2.5.2 Modern Pipeline Layout . 23

2.6 Transferring Data to the GPU . 30

2.6.1 OpenGL Buffers . 30

2.6.2 Uniforms . 31

vii

2.6.3 Uniform Buffers . 33

2.6.4 Shader Storage Buffers . 33

2.6.5 Textures . 34

2.7 Summary . 35

3 Related Work 37

3.1 Introduction . 37

3.2 Evolution of Programmable Shaders 37

3.2.1 Early Shader Conceptualization 37

3.2.2 Early Rendering Hardware 38

3.2.3 Multi-Pass Shading . 39

3.2.4 Programmable Shaders on GPUs 39

3.2.5 GPGPU Programming Emerges 40

3.2.6 New Shader Types . 40

3.3 Shader Simplification . 41

3.3.1 Level of Detail . 42

3.3.2 Shader Level of Detail . 42

3.3.3 Surface Signal Approximation 43

3.3.4 Altering Computation Rates 43

3.4 Value-based Optimizations . 44

3.4.1 Constant Propagation and Folding 45

3.4.2 Branch Prediction . 45

3.4.3 Value Prediction . 46

3.4.4 Run-time Specialization and JIT Compilation 47

3.4.5 Value Profiling . 50

3.4.6 Value-Based Optimizations for GPUs 51

3.5 Energy Efficiency in Mobile Games 52

3.5.1 CPU DVFS for Software Rendering 52

3.5.2 The Allure of Quake II . 53

3.5.3 Closed-Source Workloads on GPUs 54

3.5.4 DVFs for CPU, GPU, and Memory 55

3.5.5 Dynamically Varying Frame Rates 56

3.5.6 Avoiding Overdraw . 57

3.5.7 Variable Floating-point Precision 57

3.6 GPU Debugging and Profiling . 58

viii

3.6.1 Current Industry Tools . 58

3.6.2 GPU Debugger Research . 59

3.6.3 GPU Profiling & Performance Estimation Research 60

3.7 Summary . 60

4 Compiler Optimizations for Individual Shaders 63
4.1 Introduction . 63

4.2 Motivating Example . 64

4.3 Example Optimizations . 66

4.3.1 LunarGlass Optimization Framework 66

4.3.2 Additional Unsafe Optimizations 67

4.3.3 Artefacts . 69

4.4 Benchmark Characteristics . 71

4.4.1 Benchmarks within GFXBench 4.0 71

4.4.2 Extracting Shaders . 74

4.4.3 Deduplicating Shaders . 75

4.4.4 Shader Characteristics . 76

4.5 Timing Tools and Experimental Setup 80

4.5.1 Shader Execution Enviroment 80

4.5.2 Vertex Shader Generation 82

4.5.3 Hardware . 85

4.6 Timing Results . 86

4.6.1 Overall Performance . 86

4.6.2 Best Static Flags . 86

4.6.3 Per-shader Results . 87

4.6.4 Per-Flag Results . 89

4.6.5 Summary . 93

4.7 Conclusion . 93

5 Analysis of Potential Optimizations Within Shader Pipelines 95
5.1 Introduction . 95

5.2 Motivating Example . 96

5.3 Example Optimizations . 97

5.3.1 Dead . 99

5.3.2 Movable . 100

5.3.3 Constant . 101

ix

5.3.4 Constant Foldable . 101

5.4 Techniques for Detecting Potential Optimizations 102

5.4.1 Dead Code/Data Analysis 102

5.4.2 Movable & Constant Code Detection 103

5.4.3 Dynamic Trace Analysis . 104

5.5 Benchmark Games . 105

5.6 Static Analysis Results . 107

5.6.1 Static Dead Code and Data 107

5.6.2 Statically Movable Code . 110

5.7 Oracle Study on Constant Input Data 112

5.7.1 Constant Uniforms . 112

5.7.2 Constant Inputs . 114

5.7.3 Constant Textures . 116

5.7.4 Oracle Study Summary . 117

5.8 Trace Analysis Results . 118

5.8.1 Constant Uniform Values . 118

5.8.2 Redundant Uniform Updates 118

5.9 Timing Tests . 120

5.10 Conclusion . 122

6 Optimizations Within Full Execution Traces 125

6.1 Introduction . 125

6.2 Benchmark Games . 126

6.2.1 Selecting Games . 126

6.2.2 Capturing Traces . 130

6.3 Tools Developed . 133

6.3.1 Overview . 133

6.3.2 Tracking Shaders and Programs 135

6.3.3 Tracking Uniform Data . 140

6.3.4 Tracking UBOs . 143

6.3.5 Creating Specialized Shaders 144

6.4 Timing Techniques . 147

6.4.1 Full-trace timings . 148

6.4.2 Repeated Frame Timings . 152

6.5 Performance Results on Whole Execution Traces 153

x

6.5.1 Constant Data . 154

6.5.2 Timing Results . 155

6.6 Conclusion . 163

7 Conclusion 165
7.1 Summary . 165

7.2 Critical Evaluation . 167

7.3 Directions for Future Work . 169

Bibliography 171

xi

Chapter 1

Introduction

1.1 Performance in Games

Real-time graphics is a field with strict performance requirements. Graphical appli-

cations such as games work similarly to flip-books – a series of still images (frames)

are displayed quickly to give the illusion of motion. The faster the frames are drawn

(rendered), the smoother the motion appears.

For PC games, rendering with at least 60 frames-per-second (FPS) is considered

standard, especially when quick reaction-times are required[1][2], so games must up-

date and render their entire simulated world within 16ms. Emerging applications such

as virtual reality require 90FPS, and high-end gaming monitors allow games to render

at 120 or even 144 FPS if the PC hardware can keep up.

With such tight timing requirements, significant developer effort is necessary to

optimize performance across a wide variety of PC, mobile, or console hardware. Tools

to aid or automate portions of this optimization process would be valuable, as even

shaving off fractions of a millisecond may allow the game to hit the target frame rate

without requiring additional significant developer efforts.

Despite graphics being a burgeoning industry projected to be worth $215 billion

by 2024[3], performance optimizations within computer graphics systems receive rela-

tively little academic attention. Many papers exist exploring new graphics algorithms,

GPU architecture improvements, or optimizations for general-purpose compute ap-

plications, but work exploring systems-level optimizations tends to focus purely on

energy-efficiency, rather than run time. This thesis examines a variety of real-world

games and graphics benchmarks, to quantify and explore the opportunities for creating

systems to aid in automatically improving the run-time performance of games.

1

2 Chapter 1. Introduction

1.2 The Problem Domain

The Graphics Processing Unit (GPU) is a specialized piece of highly parallel hardware

designed to accelerate rendering in games. It is programmed using pipelines of small

single-program multiple-data (SPMD) graphics kernels called shaders. Thousands of

instances of these SPMD shaders can run in parallel on different input data (e.g. one

per pixel) before passing their output to the next stage of shaders in the pipeline, and

eventually outputting pixel colours to the screen. To set up these shader pipelines and

control the GPU, games use a hardware-agnostic graphics API such as OpenGL[4].

Different hardware-specific implementations of these graphics APIs are supplied by

GPU vendors within their drivers.

GPU drivers are filled with performance-boosting heuristics. GPU vendors often

patch drivers shortly after major big-budget game releases with game-specific opti-

mizations. One of the goals for newer lower-level graphics APIs like Vulkan[5] and

DirectX 12[6] is to provide developers with more fine-grained and explicit control of

the GPU. This aims to enable developers to create their own highly tuned application-

specific optimizations, rather than requiring GPU vendors to build fast-paths through

their drivers for each major game release.

Low-level APIs offer lower overheads, increased parallelism, more predictable

cross-platform behavior, and finer-grained control at the expense of removing many

driver heuristics. However, developers have access to application-specific knowledge

that provides optimization opportunities beyond those possible within the GPU driver.

The GPU driver must compile shader code within tight time-constraints, as shaders

may be dynamically compiled in the middle of a running game. Pausing too long in

a compilation stage may cause annoying stuttering and hitching in the game’s previ-

ously smooth frame rate. Even if games attempt to avoid these sudden stalls during

the gameplay by batching shader compilation during a single loading stage, the GPU

driver may need to compile and link hundreds of shader pipelines quickly to avoid

frustratingly long loading times for users.

If shader optimizations were performed by developers ahead of time during an of-

fline build-process, they may be able to perform operations that requires significant

time and resources to apply. Iterative compilation is one such optimization technique

explored within this thesis, which is well outside the scope of the strict real-time re-

quirements of shader compilers in graphics drivers. Analysis of these offline shader

optimizations is contained within Chapter 4.

1.3. Research Contributions 3

As well as having additional time to perform long-running optimization techniques,

additional game-specific information can be exploited at this early offline stage too.

Such knowledge may be gleaned by static analysis of shader source code, or by exam-

ining execution traces of games to exploit data-flow patterns within them. It has been

shown that over 99% rendering data is reused between frames[7], but is impractically

large to keep in cache. This thesis explores how game-specific knowledge can help

drive automated specialization and optimization techniques.

1.3 Research Contributions

This research explores several optimization techniques suitable for improving games’

real-time rendering performance as part of an automated offline process. Performance

analysis and workload characterization are also performed for twenty five real-world

commercial games, as well as the well-known GFXBench graphics benchmark[8].

In Chapter 4, the efficacy of several traditional compiler optimizations, such as loop

unrolling and arithmetic reassociation, is explored by applying them to the source-code

of shaders. Using iterative compilation to determine the optimal sets of compiler op-

timization passes on different GPU hardware, speed-ups of 4-13% can be achieved on

some complex fragment shaders[9] from GFXBench. This work builds on an existing

open-source shader optimization tool[10], and extends it to include further optimiza-

tion passes such as unsafe floating-point arithmetic re-ordering.

Subsequent work in Chapter 5 extends the scope of these fragment shader opti-

mizations to explore whole shader pipelines, and code-motion opportunities between

the GPU and CPU, or between different shader pipeline stages[11]. Extensive static

analysis is performed on shader source-code from eight commercial games, as well as

analysis of data patterns in execution traces recorded from them.

Techniques for extracting shaders from these games are explored, and techniques

are presented for quantifying what proportion of shader code and data are unused,

movable, or constant-foldable. An oracle study also explores how the proportion of

specializable code changes based on knowing data from different input sources to be

constant at run-time.

Execution traces are analysed by extending an open-source trace tool[12]. This

analysis explores what proportions of values passed from the CPU to GPU remain con-

stant throughout a game’s lifetime, and how many updates to this data are redundant.

The results of these techniques determine that many games have significant amounts

4 Chapter 1. Introduction

of data that is either unused or remains constant at runtime, which can be used for

aggressive shader specialization (as shown in Chapter 6). Exploiting this data can lead

to an automatic ∼ 5% improvement in rendering entire frames of numerous games

with no visual degradation or accuracy trade-offs (judged by manually inspecting the

output images before and after the optimization, and finding no visually perceptible

differences).

As well as the above analysis and optimization tools described above, this research

also involved the creation of several timing and microbenchmarking tools for mea-

suring the performance improvements of the above techniques. These tools explored

timing individual fragment shaders, individual shader pipelines, and fully rendered

frames extracted from execution traces.

1.4 Thesis Structure

Below is a brief guide to the contents of the subsequent chapters.

Chapter 2: Background Real-time graphics is a vast field, whose explanation is

beyond the scope of this document, and is better suited to a textbook[13]. However, a

basic understanding of typical graphics pipelines, and the role of shader within them

is necessary to understand the optimizations performed in subsequent chapters. This

background section aims to provide the reader with sufficient details about shader-

based rendering pipelines on GPUs, graphics APIs, and the ecosystems around them.

No rendering techniques or algorithms are explored here, but the general concepts

of 3D triangle-based models, 2D textures, and shader program pipelines will all be

explained.

Chapter 3: Related Work Although few systems-level papers directly in the field of

optimizing games’ run-time performance exist, work on optimizing energy efficiency

in games features many similar techniques. This chapter explains the evolution of the

programmable shader pipeline, and summarizes work from adjacent fields of optimiz-

ing game power consumption, and shader simplification techniques.

Chapter 4: Compiler Optimizations for Individual Shaders In this chapter, indi-

vidual fragment shaders are extracted from the GFXBench 4.0 benchmark suite[8], and

1.4. Thesis Structure 5

undergo a series of source-to-source compiler optimizations. Using iterative compila-

tion, the best set of optimizations are selected for different shaders on different GPU

hardware, and the merits of different compiler optimizations are discussed.

Chapter 5: Analysis of Potential Optimizations Within Shader Pipelines Ex-

tending the previous chapter’s work beyond individual fragment shaders, this chapter

examines shader pipelines extracted from execution traces of real games. Numerous

static analysis passes are introduced to quantify shader specialization opportunities. An

extensive oracle study also explores how these specialization opportunities increase if

run-time analysis can determine a shader’s inputs from various sources to be constant.

Dataflow patterns within game execution traces are also examined for eight games.

Chapter 6: Optimizations Within Full Execution Traces Motivated by the previous

chapter’s data analysis, tools for analysing and modifying execution traces from 17

commercial games are developed. Constant data is folded into the source-code of all

shaders in the trace, and the performance for rendering entire frames is measured,

resulting in speed ups for several games.

Chapter 7: Conclusion The findings of the prior three chapters are summarized,

and potential future directions of research are discussed.

Chapter 2

Background

2.1 Introduction

The field of real-time graphics combines aspects of science, art, and technology. A

rendering engineer must interpret findings from optics and photo-chemistry about light

and its interactions with the environment, as well as its perceptual interpretation as

visible colours. Using this knowledge, they must come up with clever abstractions and

simplifications that allow 3D virtual worlds to be conveniently authored by artists, and

efficiently simulated by computer hardware. To achieve the smooth frame-rate of 60

frames per second (FPS) that is viewed as standard within the PC gaming market, the

entire world must be simulated and drawn to the screen (rendered) within 16ms.

New rendering techniques are constantly being developed that make real-time graph-

ics applications such as computer-games more beautiful, more physically accurate,

easier for artists to iterate on, or improve their performance on current hardware. At

the same time, the hardware in graphics processing units (GPUs) is also evolving to

allow game developers to run these graphics algorithms more quickly, more flexibly,

or more power-efficiently. Standardized graphics APIs act as an intermediary between

the ever-shifting hardware from different GPU vendors, and the developers creating

games that need the hardware to accelerate their graphics algorithms.

Although the specific algorithms, hardware, and APIs are always changing, mod-

ern 3D graphics rendering can generally be thought of as 3D models passing through a

pipeline of highly data-parallel calculations, which result in a 2D grid of colours being

sent to the screen. The purpose of the GPU is to accelerate these data-parallel calcu-

lations, and efficiently pass data between different stages in this rendering pipeline.

As time has gone on, more pipeline stages have been added, and the types of calcu-

7

8 Chapter 2. Background

lations possible at each pipeline stage have become more flexible. This flexibility has

allowed for the emergence of general-purpose GPU computations (GPGPU), which

allows other non-graphics calculations to benefit from the same data-parallel accelera-

tion hardware. Many computer games also utilize this GPGPU capability for parts of

their rendering calculations that do not fit into the traditional pipeline model.

This chapter outlines the basics of the 3D graphics pipeline. However, it will not

cover any specific rendering algorithms or techniques, as these form a vast rapidly

evolving field that could fill several textbooks[13]. Instead, the focus here is on the

main pipeline stages used in graphics calculations irrespective of the specific algo-

rithms being implemented. The way that data flows between pipeline stages, and be-

tween the CPU and GPU, will also be covered.

2.2 3D Graphics Basics

This section describes the basic shape of the 3D rendering problem, and outlines the

parallel pipeline model that most real-time graphics applications use to solve it quickly

on the GPU. The aim is to introduce how 3D worlds are typically represented, and how

shader programs on the GPU are used to render them.

2.2.1 Triangles

Rendering is the process of taking the representation of a 3D virtual world, and trans-

forming it into a 2D grid of coloured pixels. Although there are many ways a 3D

world can be represented, real-time rendering applications almost invariably describe

the world’s geometry as a set of 3D meshes made up of triangles (see Figure 2.1).

Triangle meshes can be used as simple approximations to describe arbitrarily complex

shapes. A 2D billboard can be made up of 2 triangles, or a flat cuboid wall requires

only 12 triangles, but a highly detailed model of a game’s protagonist may contain

tens-of-thousands of minuscule triangles to carefully capture the precise curvature of

their facial shape or equipment when viewed close to the in-game camera.

Triangles provide a very simple primitive that can be used to approximately de-

scribe much more complex geometry, and they have numerous benefits. Triangles are

guaranteed to be convex, which is a useful property during the rasterization process.

Rasterization is where the surface of the triangle that will appear on screen is filled

in with pixels. Values calculated at the 3 vertices of a triangle can also be smoothly

2.2. 3D Graphics Basics 9

(a) Cuboid (b) Monkey

Figure 2.1: Examples of how many triangles can be used to form arbitrarily complex

meshes of different shapes.

blended across every point of the triangle’s surface using linear interpolation, meaning

many calculations only need to occur once per vertex, rather than once per pixel within

the triangle’s surface.

2.2.2 Textures

As well as using triangle meshes to describe 3D models, another common resource

used within games is textures. These textures are often 2D images which can be

wrapped around the surface of a 3D mesh similar to applying wrapping paper to a

complex-shaped present. They can be used to provide additional surface details to the

model without having to add in numerous extra triangles to the mesh.

A texture’s image data may be thought of as a 2D array of pixel colours stored as

red-green-blue (RGB) floating-point colours. However, textures need not hold only a

simple colour value, and can be used to represent surface normals1, shadows, heights to

displace waves, maps of areas affected by wind, snow, blood, or footprints, or physical

properties about how the surface emits or reflects light. 2D textures are the most com-

mon use case, but it is also possible to use 1D textures for look-up tables or histograms,

and 3D textures for volumetric effects like light-rays, fog, smoke, or fire.

The way a 2D texture gets wrapped around a 3D triangle mesh is described by

1Normals are vectors orthogonal to a surface that describe which direction it faces. Ubiquitous
within graphics, they help determine the angle light hits a surface for reflection or refraction.

10 Chapter 2. Background

(a) Unwrapped Texture (b) Applied Texture

Figure 2.2: Unwrapped texture examples

UV-mapping. Each point on the 2D texture grid can be mapped to 2 coordinates, (U,

V). These are floating point numbers between 0.0 and 1.0, representing the horizontal

and vertical components of the texture grid. 3D modelling software packages have

methods for unwrapping all the triangles of a 3D mesh and mapping them to 2D UV

coordinates on a flattened texture map (see Figure 2.2). The algorithms used to per-

form this unwrapping try to balance several different concerns, such as ensuring larger

triangles in the mesh are mapped to larger areas of the 2D texture to increase their

pixel-density[14].

It is also often desirable to have adjacent triangles in the 3D model be adjacent to

each other in the flattened mesh. This makes it easier for artists to visualize which

parts of the model’s texture they are editing, and allows a smoother blend between the

colour values between adjacent triangles. If a model is unwrapped poorly, it is possible

for noticeable artefacts to occur such as visible UV-seams where triangles adjacent on

the 3D mesh had jarringly different colours in the unwrapped version, or when the

background colour of the texture bleeds onto the model instead of the artist’s intended

colour. Numerous different UV unwrapping algorithms exist, many of which allow

for manual interventions by artists to choose good splitting points and make the seams

easier to hide. No matter which algorithm is used, however, the end result is a set of

floating point UV-values between 0.0 and 1.0 for each vertex of each triangle.

Conceptually, textures are quite similar to 2D arrays, but they are accessed using

floating-point UV coordinates between 0.0 and 1.0 as indices, as shown in Figure 2.3.

2.2. 3D Graphics Basics 11

Figure 2.3: UV coordinates use floating point numbers between 0.0 and 1.0 to index

into a texture image

These floating-point indices can address more precise positions than the coarse discrete

integer grid indexing used in traditional 2D arrays. This precise sub-pixel indexing

allows hardware-accelerated filtering algorithms to smoothly blend the resulting colour

values of neighbouring pixels. Examples of different texture filtering methods are

shown in Figure 2.4. GPUs typically have portions of memory and cache-hierarchies

specifically for performing texture look-ups, and dedicate significant proportions of

their on-chip area to specialized hardware to fetch, decompress, and filter the texture

values quickly.

(a) Nearest Neighbour Filtering (b) Bilinear Filtering

Figure 2.4: Examples of sampling 16x16 pixel texture to across a 1024x1024 screen

with different filter algorithms. Nearest neighbour filtering produces crisp pixel bound-

aries, and is good for preserving low resolution pixel art. Bilinear filtering produces

smoother results, and is better for rendering more realistic higher resolution textures.

12 Chapter 2. Background

2.2.3 Shaders

In addition to the 3D triangle meshes used to describe a scene’s geometry, and the 2D

textures describing surface colours and properties, the final main element in graphics

applications is the GPU shader programs. These shaders are often small pieces of

code, no more than a few hundred lines long, and are used to calculate each triangle’s

position on screen, and each pixel’s final colour.

Shaders may be written directly by technical artists to describe precise visual ef-

fects. They may also be written by rendering engineers as part of a multi-pass rendering

pipeline, with tunable parameters exposed for artists to customize. Shaders can also be

auto-generated, either by cross-compiling from shaders from different languages, or as

a target for a higher-level language, or even a node-based material description system.

Shaders run in parallel at different stages of a pipeline, which consists of up to five

different stages, the two most important of which are the vertex and fragment shaders.

The pipeline’s shape, and other optional shader stages are discussed in Section 2.5.

Vertex Shaders

Vertex shaders run once for every vertex in a 3D triangle mesh. As with all shaders,

they may perform arbitrary calculations, but vertex shaders’ primary purpose is to

determine where the input vertex from the 3D model should appear within the viewport

of the camera. The position and orientation of both the object being rendered and the

camera can be provided to the shader, and it can usually calculate the resulting viewing

position using some simple matrix multiplication.

More complex per-vertex calculations may also occur, such as skeleton-based ani-

mation, or some form of height, bump, or displacement mapping to offset the model’s

vertices for effects like waves, mountainous terrain, lava bubbles, or noisy ripples. Fig-

ure 2.5 shows an example vertex shader performing height-map-based displacement.

As well as the position data, the vertex shader can also output other information

such as texture UV coordinates, normals, or colours associated with a particular vertex.

Each vertex’s results can be calculated independently, so vertex shaders run in parallel

for every vertex of a mesh. As there may be thousands of triangles in a mesh, this

makes vertex shading a highly data-parallel operation perfect for GPU acceleration.

2.2. 3D Graphics Basics 13

(a) Flat grid of vertices (b) Noise texture

(c) Texture applied as heightmap to grid by vertex shader

Figure 2.5: Example of vertex shader transforming a flat grid of vertices into randomized

terrain using a Perlin noise texture as a heightmap

Fragment Shaders

Fragment shaders are the final stage in the programmable graphics pipeline. They run

in parallel once for every visible pixel on the surface of each triangle, and output the

final colour to display at that point on the surface. Values calculated in the vertex

shader for each vertex get linearly interpolated across the triangle’s surface, and fed in

as inputs to the fragment shader. This means that any surface normals or texture UV

coordinates outputted from the vertex shader gets blended together with the triangle’s

other corners, allowing a smooth transition of values across the triangle’s surface even

if it contains many pixels.

Fragment shaders may perform complex physically-based lighting calculations to

achieve realistic effects, or may opt for more cartoon-style colouring techniques like

cell-shading depending on the art-style of the game, and the processing power of the

target hardware it is running on. An example fragment shader using a simple phong-

14 Chapter 2. Background

lighting[15] algorithm to shade a spherical mesh’s surface is shown in Figure 2.6.

As well as determining the pixel colours or properties for individual 3D models

being rendered, fragment shaders may also be used for various full-screen effects such

as motion-blur[16][17], colour-mapping[18], or screen-space ambient occlusion[19].

They provide a flexible and efficient way of calculating per-pixel colours in parallel

using arbitrary lighting algorithms.

(a) Sphere mesh (b) Shaded sphere

Figure 2.6: A spherical triangle mesh before and after a simple phong-lighting fragment

shader has been applied to select its pixel colours

2.3 Graphics APIs

This section explores the role graphics APIs play within the graphics ecosystem. OpenGL

terminology will be used throughout this thesis, as it is a cross-platform API utilized

by all the Linux and Android-compatible software examined as benchmarks in sub-

sequent chapters. However, the broad concepts are the same across all the modern

graphics APIs described in Section 2.3.

2.3.1 The Purpose of Graphics APIs

Applications such as computer games that make heavy use of real-time graphics are

often large and complex pieces of code. Games targeting individual consoles such as

the Nintendo Switch or PS5 may be able to heavily specialize their code to optimize

performance on the target hardware. However, most console games target multiple

2.3. Graphics APIs 15

different consoles, so have to adapt to several different hardware configurations of

varying capabilities. For PC or mobile games, thousands of hardware configurations

exist with GPUs from numerous vendors (in 2015, there were over 24,000 distinct

android devices[20]). Unified graphics APIs exist to allow real-time graphics code to

be portable between different GPUs from different vendors.

The spectrum of GPU hardware that graphics APIs must account for is quite var-

ied. Vendors such as NVIDIA and AMD ship discrete GPUs that are separate devices

containing their own on-board memory, and are controlled via the PCIe bus. Many

Intel CPUs contain embedded GPUs built directly into the CPU chip. Mobile devices

using GPUs from ARM, Qualcomm, or Imagination also feature embedded GPUs that

can make use of a shared memory-pool and caching system with the CPU. Discrete

GPUs are generally much higher performance than the smaller embedded GPUs, but

are more power-hungry as a result.

Even within devices of the same form-factor from the same vendor, GPUs may

vary drastically in terms of the internal instruction-set they use, the number of phys-

ical shader/compute execution cores, and the size and types of caches and memory

available. Graphics APIs must abstract over all these differences to make developing

portable rendering software tractable, while still exposing enough hardware differences

to allow some degree of platform-specific performance optimization.

2.3.2 Modern Graphics APIs

Graphics APIs are designed as an interface between rendering applications and the

GPU hardware. They are implemented partly within the operating system, and partly

within the GPU drivers. Vulkan [5], OpenGL[4], and its mobile counterpart OpenGL

ES[21], are open-standard cross-platform graphics APIs. They are specified by the

Khronos Group[22], which contains members from all GPU vendors, as well as various

large game developers and software companies[23].

Microsoft’s own DirectX graphics APIs[24] are only available on Windows ma-

chines. However, as Windows covers the vast majority of the PC-gaming market-

share[25][26], DirectX is often used as the de-facto API for games that do not need

to be cross-platform. Apple formerly used OpenGL and OpenGL ES for all its de-

vices, but has recently deprecated them[27] in favour of its new Metal API[28]. A map

of current graphics API compatibility on different operating systems is portrayed in

Table 2.1.

16 Chapter 2. Background

API Windows Linux Mac OSX iOS Android

OpenGL ! ! ! - -

OpenGL ES - - - ! !

DirectX 11 ! - - - -

DirectX 12 ! - - - -

Metal - - ! ! -

Vulkan ! ! - - !

Table 2.1: Compatibility of different operating systems with different graphics APIs.

2.3.3 Trends Towards Lower-Level APIs

Historically, OpenGL and DirectX were designed as interfaces to GPUs with fixed-

function hardware, and have evolved gradually to adapt to the more flexible pro-

grammable shader pipelines available today (see Section 2.5). These older APIs aimed

to abstract away many complicated aspects of GPU programming from application de-

velopers. Such abstractions included assuming a single-threaded application, heavily

validating inputs, and leaving the exact timings of command execution and GPU mem-

ory synchronization be decided by GPU drivers. This simplified many complexities for

application developers, and allowed GPU vendors flexibility in implementing how and

when commands and data would be submitted to their GPUs.

However, these abstractions had several downsides, such as making it difficult for

developers to reason about and optimize their games’ performance. Only having a

single thread to interface with the GPU via API calls that often incurred unnecessary

validation overheads meant that the CPU rendering thread often became a performance

bottleneck, leaving the GPU underutilized.

Recently, the games industry has been increasingly favouring lower-level graphics

APIs providing better parallelism and more explicit control of the target hardware[29][30].

Microsoft’s DirectX 12 API[6], Apple’s Metal API[28], and the Khronos Group’s

cross-platform Vulkan[5] API all aim at solving the performance and parallelism defi-

ciencies of OpenGL and DirectX 11, and provide game-developers more fine-grained

control of the GPU.

2.3. Graphics APIs 17

2.3.4 Shader Languages

Every graphics API consists of a set of CPU-side functions called by the host ap-

plication, and a method of writing shaders to run on the GPU, typically using a C-

like language. Microsoft DirectX shaders are written in HLSL (High Level Shad-

ing Language)[31], and are compiled down to DXBC byte-code[32] for DirectX 11.

For DirectX 12, they are compiled into DXIL[33], an LLVM-like intermediate repre-

sentation (IR)[34]. Metal uses the Metal Shading Language[28], which is based on

C++14[35], and is also compiled into an LLVM-like IR. A summary of the shader

languages compatible with each API is shown in Table 2.2.

API GLSL HLSL SPIR-V Metal SL

OpenGL ! - (4.6 Onwards) -

OpenGL ES ! - - -

DirectX 11 - (Via DXBC) - -

DirectX 12 - (Via DXIL) - -

Metal - - - (Via LLVM IR)

Vulkan (Via SPIR-V) (Via SPIR-V) ! -

Table 2.2: Compatibility of graphics APIs with different shading languages and interme-

diate representations (IRs)

OpenGL and Vulkan shaders are usually written in GLSL (OpenGL Shading Lan-

guage) [36], but HLSL[31] can also be used in Vulkan. Vulkan shaders are compiled

into SPIR-V[37], a high-level IR. OpenGL applications typically use the GLSL source-

code directly as an input, and all shader compilation occurs within the OpenGL driver.

In version 4.6[4], OpenGL also accepts SPIR-V shaders, but most games still provide

the GLSL source strings directly. This feature of OpenGL allows the shader source

code to be intercepted and extracted from the games used as benchmarks in subse-

quent chapters.

Because Microsoft Windows accounts for over 96% of the PC gaming market

share[26], it is common for shaders to be written using HLSL for DirectX, and then

cross-compiled into GLSL to run on OpenGL-based platforms. As a result, many of

the shaders extracted from OpenGL-based games throughout this thesis had already

undergone some degree of automated transformation.

18 Chapter 2. Background

2.3.5 Choosing OpenGL

OpenGL was selected as the API to examine within this thesis for several reasons.

Firstly, it is compatible with all desktop platforms. On mobile platforms, shaders re-

quire only minor transformations to conform to OpenGL ES. This enables a wider

variety of hardware and software options when benchmarking shader optimizations.

Another benefit of OpenGL is the fact it provides shader source-code directly to

the API, rather than using a pre-compiled bytecode or IR. This allows the source-code

to be intercepted and extracted from closed-source games for analysis throughout this

thesis. The fact that GLSL shaders are often the subject of automatic cross-compilation

from HLSL[38][39][40] also means that optimizations discovered here could be added

to these pre-existing transformation pipelines.

Although some newly released PC titles use Vulkan for cross-compatibility with

Linux and other platforms now, transitioning to a new graphics API requires major

engineering commitment[41][42][43][44][45], so OpenGL is still in use. There is also

a vast library of OpenGL-based games already on the market, which far outnumber the

few recently released Vulkan-based titles. As such, OpenGL-based benchmark timings

will be representative of the majority of games for years to come.

Vulkan’s tools ecosystem is still rapidly evolving[46], whereas OpenGL already

has many well-established tools built around it[47][48]. Execution tracing[12] and

shader compilation[10] tools were used extensively throughout this research, and the

pre-existing open-source tools for these tasks for OpenGL provided a useful starting

point.

OpenGL was selected for its wide cross-compatibility, the availability of tools and

benchmark games, and the potential applicability of optimizations to its shaders. How-

ever, both OpenGL and Vulkan generally use GLSL shaders, and the core concepts of

the graphics pipeline remain the same no matter which API is in use, so the findings

here should still be generally applicable across all APIs.

2.4 Game Engines

This section provides a rough overview of the purpose of game engines within typical

game software. This background information will help explain why different games

using the same engine may have similar shader code despite having drastically different

art-styles, and why automated cross-compilation of shaders between different graphics

2.4. Game Engines 19

APIs is a common occurrence[38][39][40].

2.4.1 The Role of an Engine

Game engines are middleware that allows many complicated technical details about

different platforms and graphics APIs to be abstracted away from the specifics of

individual games[49]. They provide a set of core systems and libraries that handle

common tasks such as simulating physics[50][51], playing audio[52], and rendering

graphics[13][53] to the screen. The same underlying engine technology may be re-used

across numerous different games with drastically different gameplay and art-styles.

Another goal in many engines is cross-platform compatibility. As games evolved

from small assembly-language programs for custom arcade-machines, and began to

run across a wider range of PCs and consoles, the use of engines became increasingly

necessary[54]. If a game has to run on mobile, consoles, and multiple PC operating

systems, rewriting the entire rendering system for different graphics APIs would re-

quire significant developer effort. To avoid this, game engines provide an internal ren-

dering abstraction layer with a unified interface to multiple graphics APIs[55][56][41].

This enables artists to develop a coherent look for games across all platforms, with

only the rendering engineers implementing the engine needing to account for platform-

specific aspects.

2.4.2 Game Engine Development

Many larger development studios build their own in-house game engines that they

can re-use between different titles they release[57], often with some degree of engine

upgrades between each game. Some developers also licence their game engines to

other studios, or sell them as the primary product they produce[58][59]. This results in

an ecosystem where many smaller companies use the same core rendering technologies

from popular commercial game engines, whereas larger companies develop custom

engines[60].

Unity

The Unity engine[59] accounts for over 50% of the game engine market share, with

3 billion apps created in Unity downloaded every month[61]. As with many popular

commercial engines, it is available for free with several optional upgrade tiers[62].

20 Chapter 2. Background

Figure 2.7: The Unity engine’s integrated development environment

Alongside the engine compatible with numerous PC, mobile, and console targets,

Unity also provides a complete integrated development environment, as shown in Fig-

ure 2.7. This contains numerous visual tools for building games by placing 3D objects

in levels and using scripting languages to customize their behavior. They also of-

fer an online store store for buying and selling pre-made art assets, levels, scripts, or

tools[63]. Unity’s comprehensive features, robust visual editors, and variety of pre-

made content make it simple for developers to create games with minimal program-

ming experience, making it a popular choice among independent developers and larger

studios alike[60].

Unity’s rendering engine offers many advanced graphical features straight out of

the box, and is flexible across a range of 3D and 2D art-styles. On Linux, Unity uses

OpenGL, or Vulkan in more recent versions. Its GLSL shaders are automatically cross-

compiled from HLSL ones written for the DirectX path in its rendering system[64].

Unreal

The nearest competitor to Unity is the Unreal Engine[58] by Epic Games[60]. Like

Unity, Unreal offers extensive visual editors (see Figure 2.8), an online asset store[65],

powerful cross-platform rendering capabilities, and initial free entry for developers[66].

In addition to licensing the Unreal Engine, Epic Games uses it for their own games such

as Fortnite, which has over 400 million registered players[67].

2.5. Programmable Pipeline Overview 21

Figure 2.8: Unreal Engine’s integrated development environment

Other Engines

Valve’s Source engine is used by several popular games, as well as Valve’s own first-

party series such as Counter Strike, Half Life, and Portal[68]. For 2D games, Game

Maker Studio by YoYo games[69], and RPGMaker by Kadokawa[70] are often choices

for smaller independent developers. Several open-source game engines are also avail-

able [71][72][73], although they are usually less feature-rich than the market leaders

Unity and Unreal.

Summary

Game engines are a core part of the graphics ecosystem, and it is uncommon for de-

velopers use graphics APIs directly unless they are implementing an engine. Large

commercial engines like Unity and Unreal dominate the market, but larger developers

also frequently develop their own in-house engines. When selecting different games

as benchmarks in Section 5.5 and Section 6.2, it was important to include games from

a variety of different engines, while ensuring the most popular engines were repre-

sented.

2.5 Programmable Pipeline Overview

This section explains the different stages of the GPU graphics pipeline. It also outlines

how data is passed between these stages, and from the CPU to the GPU, which will

help explain the different analysis passes performed in subsequent chapters.

22 Chapter 2. Background

2.5.1 Evolution of the Programmable Shader Pipeline

Originally, GPUs were limited to fixed-function data processing, performing only a

few hardware-accelerated functions such as vertex transformations, lighting effects,

texture filtering, or colour-blending[74]. The special-purpose hardware made these

operations fast, but provided limited flexibility for different algorithms and artistic

choices.

Despite the limited scope of the early fixed-function GPU pipelines, some games

managed to utilize this hardware over multiple different rendering passes2 into inter-

mediate buffers to perform complex custom lighting effects[75] (see Subsection 3.2.3

for more details).

Over time, GPUs became increasingly programmable, with newer OpenGL ver-

sions introducing developer-written graphics shaders that would execute arbitrary code

on the GPU[76]. Programmable vertex and fragment shader stages emerged to al-

low developers to write arbitrary code to manipulate vertex positions and pixel output

colour values, alongside a few remaining hardware-accelerated fixed-function opera-

tions such as rasterization and depth-buffer testing. The emergence of programmable

shaders is covered in more detail in Section 3.2.

As GPUs became more capable of generalized computation, their design became

suitable for solving other non-graphics-related problems, giving rise to general-purpose

GPU computing (GPGPU)[77]. Several other developer-programmable shader stages

were also added in the form of tessellation[78] and geometry shaders[79]. Compute

shaders were introduced to allow general purpose GPU computations to run seamlessly

alongside graphics pipelines[80], often running at the start of a game’s frame before

the graphics pipeline is ready to render. These are common for accelerating physics

simulations like cloth[81], fluid[82], smoke, or other particle systems[83]. Recently,

ray-tracing using an alternative shader pipeline has also been gaining popularity[84].

Originally, GPUs were designed with separate hardware units for vertex and frag-

ment shaders[85]. However, these were replaced by numerous homogeneous shader/-

compute execution cores capable of handling the increasing variety of arbitrary com-

putations and shader types available on GPUs[86]. These shader cores run code in

parallel in a series of ”warps” where multiple computations occur in lock-step on dif-

ferent input data, and all calculations use a shared set of registers, caches etc on that

2A rendering pass is one full execution of the graphics pipeline. Instead of outputting directly to the
screen, pixel colours can be stored as a texture and read from in subsequent iterations of the rendering
pipeline i.e. multiple passes.

2.5. Programmable Pipeline Overview 23

core[87].

In general, GPU performance is increased when the number of threads in each

warp is maximized, as more calculations can occur in parallel. Contention for limited

resources such as registers can limit the number of threads per warp, therefore reduc-

ing occupancy and causing slow-downs. However, some scenarios may benefit from

reduced occupancy, for instance memory-heavy shaders that would quickly overflow

the cache and suffer expensive cache misses if too many threads were scheduled at

once[88]. These optimization trade-offs are often counter-intuitive, making it difficult

to profile and predict the right decisions in advance.

2.5.2 Modern Pipeline Layout

This section describes all the pipeline steps required to transform the data and shaders

loaded by the CPU into a fully rendered set of pixels on the GPU. This process in-

cludes both the fixed-function steps, and all five potential programmable shader stages.

Figure 2.9 shows a simplified diagram of the pipeline featuring only the compulsory

vertex and fragment shader stages. Precise implementation details of each stage dif-

fer between GPU vendors, but the high-level overview of each stage presented here

remains the same across all OpenGL-compatible GPUs.

Vertex

Shader

Fragment

Shader

Parallel shaders per vertex Parallel shaders per pixel

Vertex Buffer

Uniforms
1 0 0

0 1 0

0 0 1



Textures

OpenGL API

Application

GPU Driver

Inputs from

Vertex Buffer

Inputs from

Vertex-Fragement

Interface

Pixels

rendered

to Screen

Draw Call

Starts

Pipeline

Texture data for both shader stages

Uniform data for both shader stagesCPU GPU

Figure 2.9: Simplified graphics pipeline. The CPU submits draw calls, and the GPU

loads triangles from the vertex buffer for vertex shaders to process in parallel. Fragment

shaders receive the results, then calculate pixel colours in parallel to render on screen.

24 Chapter 2. Background

2.5.2.1 Buffers and Shaders Set Up

When games first load, shader code must be read from disk and compiled via the GPU

driver. It is also possible to cache compiled shader results to speed up subsequent

loading times[89]. 3D model data, 2D texture data, and other relevant buffers are then

filled in, and flagged to be transferred to the GPU. It is common for much of the shader

compilation and data loading to occur when the game is first launched, and subsequent

specific art assets to be loaded in batches when the player enters a new level.

Some games also stream assets to the GPU progressively as players advance to

avoid lengthy loading screens[90]. If data or shaders required for rendering are not

available, the graphics pipeline may stall momentarily. This causes visible stutter-

ing and unresponsiveness, which can be frustrating to players expecting a smooth

frame-rate throughout[91]. To avoid this stuttering, it is common for most assets to

be loaded in a batch at the start of levels to ensure all data is available on the GPU

before rendering[92].

2.5.2.2 Draw Call Submission

Once the initial data is loaded, the core game loop is entered and objects are rendered

to the screen in a series of frames[93]. In each frame, individual objects or scenes get

submitted to the GPU using draw calls. These graphics API function calls indicate that

a set of buffers should be rendered using the current shader program and settings.

Newer APIs like Vulkan provide fine-grained control over when draw calls are sent

to the GPU by explicitly recording them into command buffers and then manually sub-

mitting them for execution. In OpenGL however, command buffers are implicitly filled

by the OpenGL driver, and internal heuristics determine when they are executed[94].

This simplifies initial development, but can make performance unpredictable and hard

to tune, resulting in the current trend towards lower level explicit APIs.

Draw calls are often computationally expensive operations, so it is common to

batch static models that use the same shader together into a single combined draw-

call[95]. Context-switching between different shader programs to draw objects with

different materials can also incur overheads, so draw calls are sometimes grouped to

render objects using the same shaders together. Switching framebuffer targets, vertex

buffer formats, and various other state variables can also incur overheads[96], so the

order in which draw calls for different objects is submitted can often heavily impact

performance.

2.5. Programmable Pipeline Overview 25

If objects in a scene occlude each other, many fragment shader calculations can be

omitted. As such, it is often advisable to render objects front to back with respects

to the current camera position. However, this must be balanced to avoid context-

switching overheads between different shader pipelines too, so ordering draw calls[97],

and batching them for efficient dispatch[98] to the GPU are key areas for performance

optimizations within many game engines.

Vertex Buffer
Idx X Y Col

0 -1.0 +1.0

1 +1.0 +1.0

2 -1.0 -1.0

3 +1.0 -1.0

Index
Buffer

0

1

3

3

2

0

+ =

Assembled Quad

Figure 2.10: A square made up of 2 triangles represented by a vertex buffer storing

each point’s coordinate and colour data, and an index buffer describing the vertices’

order. Triangles are assembled clockwise in the order 0,1,3, then 3,2,0. Note that

indices 0 and 3 are shared between triangles, but reuse the same vertex buffer entry.

2.5.2.3 Input Assembly

Data describing the vertices for all the triangles in a 3D model must be assembled

from various buffers into the correct format for vertex shaders to process. Triangles

are commonly represented using two separate buffers: an index buffer, and a vertex

buffer[99]. The vertex buffer holds data associated with each vertex within the model.

This per-vertex data usually consists of a 3D position in the model’s reference frame,

and may include texture UV-coordinates, surface normals, and colour hints for that

vertex.

Vertex data is carefully packed and aligned by storing numbers at varying levels

of floating point precision, or using normalized integer representations depending on

what each value represents[100]. By carefully packing this data, it can be cached

and loaded efficiently, and also the overall memory footprint can be minimized while

attempting to avoid loss of perceptual quality in the rendered image[101].

26 Chapter 2. Background

The index buffer describes the order in which different vertices should be assem-

bled into triangles to form the overall mesh. In a closed mesh, vertex data is often

reused between multiple triangles where they intersect. Separating the vertex and in-

dex buffers allows a single integer index to be repeated, rather than storing multiple

copies of each vertex’s full data entry, as seen in Figure 2.10.

The order in which indices are read in and interpreted as triangles depends on

various API settings, and it is often possible to read triangles as a fan, strip, or list,

depending on how the index buffer is packed[102]. Vertex buffer data can also be

ordered to allow it to be read in an efficient order using the index buffer by placing

data for nearby vertices close together in memory[103]. The input assembly stage

reads both the index buffer and vertex buffer, and presents the data to the subsequent

vertex shading stage for processing. It retains information about which vertices belong

together so that results can be blended across each triangle’s surface.

2.5.2.4 Vertex Shader

Vertex shaders take data from each of the triangles’ vertices and process them in par-

allel. The primary purpose of most vertex shaders is to transform the vertex’s 3D

coordinates from model space to camera space[104]. This is usually done by multi-

plying the position and surface normal by a 4x4 transformation matrix containing a

representation of the model’s position and orientation within the 3D world[105]. This

matrix can be updated each frame based on user input, and then multiplied by the static

position data within the vertex buffer to simulate the object’s motion. This approach

means that only a single matrix needs updated each frame, rather than transforming

and re-uploading all the position data in the vertex buffer whenever the object moves.

The same principle also applies for more complex skeletal animation techniques.

The vertex buffer stores information about which vertices are affected by which virtual

”bones”. The vertex shader then calculates where each point should be moved based

on the position and orientation of the model’s virtual skeleton[106][107]. This skeletal

animation data can be stored in a separate significantly smaller buffer, thus minimizing

the amount of data transferred to the GPU for each frame of animation. Vertex shaders

can also offset positions using height or bump maps for effects such as explosions,

ocean waves, or terrain (as shown in Figure 2.5).

After processing each vertex’s data, all the vertex shader’s outputs are then inter-

polated across the surface of each triangle. This interpolation also includes perspective

corrections to make the output appear more visually correct within the 3D space of

2.5. Programmable Pipeline Overview 27

the camera frustum[108]. In addition to values transformed or calculated by the ver-

tex shader (e.g. positions or surface normals), values loaded unaltered from the vertex

buffer (e.g. texture UVs or surface colours) may also be submitted for interpolation.

This ensures all samples across the triangle’s surface in subsequent stages are smoothly

blended between the different values at each of the three vertices.

2.5.2.5 Tessellation Shaders

Tessellation[78] is an optional stage in the graphics pipeline, which many smaller

games, especially those targeted at lower-end hardware and mobile devices tend to

omit. Tessellation is the process of splitting existing triangle geometry into a larger

number of smaller triangles, as shown in Figure 2.11. The benefit of this, is that

smoother or more detailed surfaces can be generated from a smaller set of explic-

itly defined triangles. As real geometry is generated, these extra details can show up in

silhouettes, and can also be displaced by bump or normal maps.

(a) Triangle (b) OL=4,1,6 IL=3 (c) OL=4,1,6 IL=4 (d) OL=4,1,6 IL=5

Figure 2.11: A triangle undergoing tessellation with various combinations of outer level

(OL) and inner level (IL) edges.

Tessellation shaders run in two parallel shader stages - control, and evaluation[109].

These shaders determine the points at which to split the current triangle. This splitting

can be performed efficiently in parallel using special-purpose hardware. Calculations

within tessellation shaders often have to be more careful about floating point precision.

Different shader invocations with vertex data in different orders must produce identi-

cal results to maintain a watertight mesh without miniature cracks appearing between

generated triangles[110].

Tessellation shaders are one of the few areas within the graphics pipeline where

exact floating point values generated will have significant effects on the outputs. How-

ever, they are seldom used within Linux-compatible games, so optimizing them is

28 Chapter 2. Background

beyond the scope of this thesis. Avoiding the tighter constraints of tessellation shaders

enables additional unsafe floating point optimizations to be explored, as most other

pipeline stages are more lenient about precision.

2.5.2.6 Geometry Shader

Geometry shaders[79] are another optional stage in the graphics pipeline. As with tes-

sellation shaders, they are usually omitted, especially on Linux and mobile devices, so

will not be extensively explored within this thesis. A geometry shader’s purpose is to

generate additional primitives, which may be points, lines, triangles, quads, or poly-

gons. This is useful in scenarios such as turning individual points in a particle system

(e.g. smoke, fire, sparks) into billboard quads that can be textured[111]. Other appli-

cations can include adding detail to surfaces via decals[112], or generating a cube-map

in a single rendering pass by duplicating and projecting geometry onto each face[113].

Despite these various uses, geometry shaders are rarely in practice, and multi-pass al-

gorithms, general-purpose compute shaders, or other stages in the graphics pipeline

are often used for these techniques instead.

2.5.2.7 Clipping and Rasterization

After the final geometry’s position has been calculated by either the vertex shader or

the optional tessellation and geometry shaders, the next step is to determine which

parts will be visible on screen. In OpenGL, the clip-space for all visible objects is rep-

resented as a cube from -1.0 to +1.0 in each axis[114]. Triangles projected fully outside

this clip space can be discarded from further processing. Some triangles can also be

eliminated using back-face culling, which removes triangles that are facing away from

the screen. Triangles partially within the clip-space cube must be split into smaller sub-

primitives at the clipping boundaries before further processing. Any remaining trian-

gles within the clip-space cube are projected into screen-space for rasterization[104].

Rasterization is the process of filling in all visible triangles with pixels[115], as

shown in Figure 2.12. Pixels generated by the rasterization hardware are sampled by

fragment shaders, which determine their colour using the linearly interpolated vertex

shader results at that point on the surface. Both clipping and rasterization can be han-

dled by specialized hardware, and occur automatically as part of the graphics pipeline

with no programmable shader intervention.

2.5. Programmable Pipeline Overview 29

Figure 2.12: Rasterization selects which pixels in each triangle must be filled in.

2.5.2.8 Pre-Fragment Operations

Once their final positions have been decided, some pixels may be eliminated to avoid

calculating their final colours entirely, thus speeding up the fragment shading stage.

One pixel culling method is to remove those that occur behind pixels calculated by

previous fragment shader invocations. To do this, a technique called depth-buffering is

commonly used[116] [117]. Here, a buffer records the clip-space Z coordinate for all

pixels, and is gradually filled by all draw calls in a frame[118]. This Z-buffer can be

checked to see whether pixel values have already been calculated closer to the screen

by comparing the current and previous depth values. If the current depth value is

closer to screen, the fragment shader can proceed to overwrite that pixel. Otherwise,

the colour value is safe to avoid computing entirely, unless the fragment shader itself

re-calculates the pixel’s depth. The depth buffer is cleared between each frame, and

provides an efficient way of avoiding wasteful fragment shader invocations. Another

way to eliminate fragment calculations is using stencil buffers[119], which provide a

boolean mask describing which areas to render on the screen. Using both depth and

stencil buffers where possible can provide significant performance boosts.

2.5.2.9 Fragment Shader

Once the rasterizer has determined the final pixel positions to sample, and discarded

all unnecessary ones, fragment shaders run in parallel to emit the final output colour

at each position. As with other shader stages, fragment shaders may perform arbitrary

calculations. These usually involve lighting calculations and sampling from textures at

the UV coordinates passed in from the vertex shader. In multi-pass rendering, the final

30 Chapter 2. Background

output results may not represent colours directly, and can encode other information

such as material IDs or surface normals[120]. The final results are outputted into a

frame buffer, which may be used as a texture for future rendering passes, or transferred

directly to the screen.

2.5.2.10 Post-Fragment Operations and Colour Blending

Once the fragment shader invocations have occurred, the outputted colour values are

written into a frame buffer. For opaque objects, new colours may simply overwrite

the old values. However, transparent objects require colour values to be read from the

frame buffer and blended in a weighted mixture with the newly calculated colours[121].

This may occur as part of the fragment shader, or in a fixed-function step. Once the

final colours have been sampled using fragment shaders and blended, then the output

buffer can be sent to the screen.

2.6 Transferring Data to the GPU

Now that the programmable graphics pipeline’s various stages have been explained,

this section will cover the main ways in which data can be passed from the CPU into

the GPU’s shaders. Some of these mechanisms have already been mentioned, such

as textures (see Subsection 2.2.2), vertex buffers, and index buffers[99] (see Subsub-

section 2.5.2.3). This section introduces the concepts of uniforms[122] and uniform

buffers[123], which are the focus for many optimization opportunities used in future

chapters, especially Chapter 6. Typical techniques for manipulating this data within

the OpenGL API will also be explained.

2.6.1 OpenGL Buffers

The OpenGL API utilizes buffers, which represent an arbitrary block of data and its

associated metadata. This includes information such as whether the buffer is read-only,

or hints about its size, alignment, usage, or synchronization, which can enable various

optimization heuristics within the OpenGL driver[124].

OpenGL is a heavily state-based API, and uses the concept of ”binding” a buffer to

a specific ”slot”. Depending on what type of slot the buffer is bound to, the data within

it can be reused in different ways. Buffers can be written into using API calls that

either discard and replace the entire contents, or overwrite only partial subsections. It is

2.6. Transferring Data to the GPU 31

CPU
Set location 3

in program P to:

(0.5 0.6 0.7 1.0)

Locations

0: projMat

3: colour

4: tex

Program P
uniform mat3 projMat;

uniform vec4 colour;

uniform sampler2D tex;
...

Figure 2.13: Assigning a value to a uniform. The shader compiler determines a ”loca-

tion” for each variable, and a CPU API call assigns values to that location.

also possible to memory-map buffers to regions of the main CPU-accessible memory,

and write into them using traditional C++ memory modification methods. Memory-

mapped regions can be set up to synchronize in different ways so that changes to the

CPU-side memory are reflected into the GPU-side memory implicitly by the driver.

On embedded GPUs, the CPU and GPU may even share the same memory region

directly[125].

A buffer’s contents can be associated with various different purposes depending on

what sort of ”slot” it is bound too. These uses include vertex and index buffers, and

coloured pixels in texture images[126]. Buffers may also represent regions of memory

to be written into by shaders, and eventually read from by the CPU after the contents

have been synchronized. Although it is possible to bind a single buffer to multiple

different types of targets (e.g. textures, index, or uniform buffers), it is uncommon in

practice, and can interfere with the driver’s optimization heuristics. More commonly,

buffers are created for a single purpose, and then maintain that purpose throughout

their lifetime.

2.6.2 Uniforms

Shaders run in a series of parallel invocations executing the same code on different

input data (e.g. different vertices of a model’s triangles, or different pixels of the

final image). However, some data may remain the same across all invocations, such

as the global transformation matrix determining the model’s position and orientation

within the virtual world, or various settings about lights, skeletal positions, or material

properties. Data that remains constant throughout all shader invocations in a single

draw-call is referred to as ”uniform” data[122].

Uniform data is typically frequently updated, and far smaller in size than the per-

vertex data stored in the vertex buffer. Some uniforms, such as the camera position

32 Chapter 2. Background

may update once per frame, and some data such as individual model position matri-

ces may be updated once per draw call. As uniforms are constant across all shader

invocations in a single pipeline pass, they can be loaded into a small fast cache during

execution[127]. However, as they are updated frequently, they may incur data transfer

and synchronization costs every time they are updated for a new draw call.

Traditional OpenGL programs represent individual uniform variables as having a

single ”location” determined by the shader compiler. CPU-side API calls can assign

data to each variable using this location as an identifier, as illustrated in Figure 2.13.

This fine-grained uniform addressing can help minimize the amount of data transferred

if only small subsets of locations require updating. This also enables dead-code elimi-

nation to elide unused uniform data by not assigning them locations[128].

If many uniforms need updated at once, however, sending numerous API calls to

update small portions of GPU-side data can incur significant overheads. To avoid this,

some games use large arrays of floating-point vectors to represent all their uniforms,

and then update them in single batch to avoid repeated individual updates.

Uniform data is uniquely associated with a single programmable shader pipeline.

Each pipeline must store all uniform data associated with it. This may be inefficient in

cases where data could be re-used between multiple shader pipelines, for instance the

camera position, or various scene-level lighting settings. Uniform buffers can provide

a solution to this problem, as described below.

CPU
Fill buffer B with:

01010101...

Bind buffer B to

binding point 2

Assign block 0

to binding point 2

for program P

Binding

Points

0

1

2

3
...

Block Indices

0: objUBO

1: worldUBO

Program P
uniform objUBO {
vec4 colour;

...

};
uniform worldUBO {
mat3 projMat;

...

};
...

Figure 2.14: Binding a uniform buffer object (UBO). Data is written to a buffer, and

bound to a global CPU-side UBO ”binding point”. The shader defines a block of vari-

ables, that is assigned an index by the compiler. The CPU matches per-program block

indices with global UBO binding points, so the GPU can read the bound buffer’s data.

2.6. Transferring Data to the GPU 33

2.6.3 Uniform Buffers

Uniform buffer objects (UBOs)[123] are a more modern addition to OpenGL. They

can store larger amounts of uniform data, and improve data sharing between shader

pipelines. UBOs can be filled and updated using the general buffer techniques[124]

described in Subsection 2.6.1, and can then be bound to different compiler-determined

slots within a shader. UBO data must be packed and padded in such a way that the

shader code reading it can interpret it as variables. These variables must correspond

to the interface in the shader for that particular UBO binding point[129]. The shader

code indexes into the buffer using structured variable names, and the GPU must load

data from the memory region corresponding to the buffer bound at that UBO index, as

shown in Figure 2.14.

Shader pipelines may have multiple UBOs bound to them. For instance, one UBO

might represent global per-frame state such as camera positions and scene lighting,

and may be bound to many pipelines. Another smaller buffer might also be attached

containing per-object data unique to a single pipeline. Instead of loading new uniform

data between each draw call, UBO binding indices can be updated to point to different

buffers already loaded on the GPU. This allows data transfers to be efficiently batched,

minimizing how often they occur. The improved data sharing capabilities of UBOs can

also aid caching behaviours and minimize the overall memory footprint.

UBOs provide data to shaders via the buffer update API[124], rather than the

location-based per-pipeline uniform variables[122] described above in Subsection 2.6.2.

Despite this, the general concepts of UBOs and traditional uniforms remain largely

similar despite their different implementations.

2.6.4 Shader Storage Buffers

Shader storage buffer objects (SSBOs)[130] are another method for transferring data

between the CPU and GPU, offering larger buffer sizes than UBOs. SSBOs can also

be written into by shaders, unlike UBOs, which are read-only. These properties make

SSBOs more flexible but harder to efficiently cache than the more specialized UBOs.

They are bound to shader pipelines and accessed with similar method to UBOs de-

scribed in Subsection 2.6.3. SSBOs are used less commonly in games than UBOs, and

as they are not read-only, the data analysis within this thesis focuses entirely on UBOs

and traditional uniforms.

34 Chapter 2. Background

2.6.5 Textures

Texture data can be filled in using the OpenGL buffer interface[124] described in Sub-

section 2.6.1. However, textures must also provide additional metadata such as pixel

colour encoding, compression, filtering, and tiling settings[131]. Texture data is mostly

static and transferred to the GPU in advance. A small number of dynamically updated

textures may also be used for physics or visual effects such as wind, footsteps, snowfall

etc. [132]. These may be either re-uploaded to the GPU each frame, or written into by

compute shaders or the graphics pipeline.

To determine which texture buffer to read from, shaders define a set of ”sam-

pler” variables[133]. Samplers are integer uniforms representing the index of a tex-

ture ”slot”. Shaders provide this sampler ID to texture functions, which read colours

from the buffer bound to that slot. Calls to texture also require UV coordinates to

determine where to sample within the texture buffer, as explained in Subsection 2.2.2.

On the CPU-side, buffers are bound to texture slots, as illustrated in Figure 2.15.

Texture slots are global OpenGL state accessible to all programs. The texture slot’s

index is assigned to sampler uniforms within the shaders using the method described

in Subsection 2.6.2. The buffer bound to the corresponding texture slot when a draw

call is submitted will then be read from by the shader.

As explained in Subsubsection 2.5.2.2, draw calls may be stored in command

buffers and dispatched to the GPU in batches. To allow for this, a snapshot of the

globally bound texture buffers may need to be recorded alongside draw calls to ensure

the OpenGL execution model appears as a single deterministic thread.

Although samplers[133] are uniform variables, they cannot be stored within UBOs.

Instead, they must use the traditional per-shader-pipeline model of setting uniform

values[122] described in Subsection 2.6.2. Some games, including some benchmarks

used in Chapter 6, use UBOs for all uniform values except texture samplers. It is

common for sampler ids to be set once per shader pipeline. Different texture buffers

can then be bound to the same slot ids for different draw calls.

2.7. Summary 35

CPU
Set texture T to:

Bind texture T to

texture slot 2

Assign slot 2

to location 4

for program P

Texture

Slots

0

1

2

3
...

Locations

0: projMat

3: colour

4: tex

Program P
uniform mat3 projMat;

uniform vec4 colour;

uniform sampler2D tex;
...

Figure 2.15: Assigning a texture sampler as a uniform. A texture is stored in a buffer

and bound to a global texture slot. A location-based sampler uniform variable (see

Figure 2.13) determines which texture slot to read from when a draw call is issued.

Sampler IDs cannot be stored in UBOs, and must use traditional uniforms.

2.7 Summary

This chapter introduced the concept of the 3D graphics pipeline and the ecosystem

around it. Below is a summary of key topics that will be used in subsequent chapters.

Standardized graphics APIs enable cross-compatibility with hardware from differ-

ent GPU vendors. Although OpenGL[4] is used throughout this thesis, most concepts

are applicable to all modern graphics APIs. These details are often abstracted away by

game engines, which can be re-used for many different games.

The graphics pipeline transforms triangle-based 3D models into a set of coloured

pixels. Games are rendered as a series of frames, each of which consists of multiple

draw calls. When a game first loads, CPU-side OpenGL calls initialize state and trans-

fer data to the GPU. Draw calls trigger a pipeline of small GPU-based shader programs

(written in GLSL[36]) to execute on the current set of buffers.

The most common shaders in the graphics pipeline are vertex and fragment shaders.

Vertex shaders read the 3D model’s triangle from the vertex buffer. They execute in

parallel once per vertex and calculate their position on the screen. Fragment shaders

run in parallel roughly once every pixel in the final output image, and compute their

colour. 2D texture images can be sampled to aid in computing the colours of the 3D

model’s surface.

Uniform variables[122] are data that remains constant across all parallel invoca-

36 Chapter 2. Background

tions of a shader, e.g the model’s position or lighting effects. Uniforms are frequently

updated between game frames, or between different draw calls. Uniform buffer ob-

jects (UBOs)[123] can upload uniform data in batches, as opposed to the traditional

per-variable approach to uniforms. Samplers are a special type of uniform representing

the index of a texture that can be read from.

Chapter 3

Related Work

3.1 Introduction

The aim of this chapter is to contextualize this thesis by providing overviews of several

research fields adjacent to this work. It begins with a history of programmable shaders

in Section 3.2, which explains the evolution of vertex/fragment shader pipeline at the

core of this research. Section 3.3 then explores various techniques for simplifying

shader code, most of which require trading visual quality for improved performance.

In Section 3.4, a class of optimizations is introduced which utilize knowledge of the

values that variables will take, typically through some form of run-time analysis. Sec-

tion 3.5 describes the history of optimizing games for low power usage, and the work-

load characterization approaches involved. Finally, Section 3.6 covers various tools

and approaches that can be used for debugging and profiling GPU programs.

3.2 Evolution of Programmable Shaders

The modern graphics pipeline and its programmable shader stages described in Chap-

ter 2 has been remained largely unchanged throughout the last decade, but emerged

from a large body of work experimenting with different conceptualizations of how

rendering systems should work, and how programmers should be able to modify them.

3.2.1 Early Shader Conceptualization

Whitted et al. developed a scanline-based rasterization system that determined the

colours to render various surfaces using small ”shader” programs implementing dif-

37

38 Chapter 3. Related Work

ferent lighting algorithms [134] [135]. Cook suggested the concept of ”shade trees”

[136], which could describe shading, lighting, texturing, and atmospheric effects in a

node-based fashion that could easily be combined and re-used to tweak the appear-

ances of different objects and scenes. Abram et al. built a GUI-based implementation

of Cook’s shader trees to show the utility of being able to create libraries of combined

shader sub-trees for various graphical effects [137].

In Perlin’s image synthesizer paper, he suggests a language for a ”pixel stream

editor”, which can be applied over multiple passes to alter the appearance of the output

image, and create complex realistic effects using procedural noise functions to mimic

marble, water, clouds etc. [138]. These can be seen as somewhat analogous to modern

fragment shaders.

In 1990, Hanrahan et al. built on many of Cook and Perlin’s ideas in the creation of

the Renderman shading language [139]. This was implemented as part of a CPU-based

ray-tracing framework, and allowed great flexibility in lighting and shading effects.

3.2.2 Early Rendering Hardware

To this point, much of this work on shading systems was being performed on stan-

dard CPUs, and was not able to achieve speeds capable of real-time rendering. Other

researchers were exploring specialized hardware architectures to exploit the inherent

parallelism pervasive in many graphics problems, such as the GSP-NVS [140], the

Pixel-planes 4 [141] [142] and 5 [143][144], and the Pixelflow system [145]. These

systems were capable of performing various fixed-function shading operations such

as Gourard [146] or Phong shading[15] [147], as well as various levels of texture-

mapping capabilities.

Despite the impressive rendering speeds of the hardware-accelerated rendering ar-

chitectures above, several researchers noted that there would be great utility in allowing

programmable shaders to be part of these pipelines. Rhoades et al. suggested a low-

level language to support procedural texturing[148] within the Pixel-planes 5 system.

Lastra et al. [149] suggest a method for incorporating a modified version of the high-

level Renderman shading into the Pixelflow architecture [145], enabling much more

flexibility in the types of custom shading algorithms available.

By 1997, the Pixelflow system was finally completed [150], and they chose to use

a variant of the OpenGL API[151] as its interface. OpenGL was used by games and

other real-time graphics systems at the time, but had no support for programmable

3.2. Evolution of Programmable Shaders 39

shaders, instead specifying a fixed shading and lighting model. Olano et al. describe

how they implemented support for fully user-programmable shading [152] in the mod-

ified Renderman shading language suggested by Lastra et al., and how the OpenGL

API could be extended to support programmable shader stages too[153]. This sys-

tem demonstrated that complex real-time rendering systems with fully programmable

shaders were able to run at 30FPS by using highly parallel hardware.

3.2.3 Multi-Pass Shading

An alternative approach to programmable shading in OpenGL was to use the existing

OpenGL API function calls as a target for a compiler, rather than adding new fea-

tures via an extension. Peercy et al. demonstrated this technique [154], treating the

OpenGL as a general SIMD computer, and compiling both the Renderman shading

language, and their own high-level Interactive Shading Language (ISL) into a series of

OpenGL API calls over multiple rendering passes. This research built upon prior works

demonstrating how complex rendering results could be approximated using multiple

passes[155] [156] through the limited fixed-function graphics pipeline in real-time,

allowing them to take advantage of more common graphics acceleration hardware.

Similar multi-pass shading techniques in OpenGL were demonstrated by the scripting

language used in Quake 3 by id Software as well[75].

3.2.4 Programmable Shaders on GPUs

In 2001, NVIDIA presented a paper on the programmable vertex units they had added

to their GeForce 3 GPUs[157]. These early programmable vertex units used a low

level assembly-like language with many constraints, such as the inability to perform

branching instructions, but provided an initial basis for bridging the gap between the

old fixed-function shading process, and newer more flexible programmable shading.

Guided by this work from NVIDIA, low-level GPU programability for both vertex and

fragment shaders[158] was added to Microsoft’s DirectX 8 API, and to OpenGL via

the use of extensions.

Proudfoot et al. developed a higher level programming language based on the

Renderman shading language[159] (later referred to as the Stanford Real Time Shading

Language - RTSL), which allowed shaders to be written at a much higher level that

could then be compiled down[160] into the more assembly-like language available at

the time.

40 Chapter 3. Related Work

Mark et al. developed a C-like language called Cg[161] which aimed to be cross-

compatible between OpenGL and DirectX, and add features such as branching that

were emerging in newer DirectX 9 compatible hardware. Cg became the basis of

HLSL, the High Level Shading Language used for DirectX 9.0, and OpenGL devel-

oped their own high-level language known as GLSL when it transitioned to OpenGL

2.0.

More detailed information about the state of programmable shading in this era can

be found in Ecker’s paper on ”Programmable Graphics Pipeline Architecture”[162] or

in the course-notes on ”Real-time shading” from SIGGRAPH 2004 [163].

3.2.5 GPGPU Programming Emerges

Since this period, the high-level structure of hardware-accelerated programmable shader

pipelines has not changed drastically. The programmable vertex and fragment shader

remain at the core of most modern graphics pipelines, and the hardware running these

stages has become more and more flexible.

Researchers took note of the increasingly flexible hardware-accelerated parallel

programming model designed for shaders, and adapted it for arbitrary data-parallel

computations via systems such as Scout[164], Brook[77], CGiS[165][166], Glift[167],

and Accelerator[168]. This body of work formed the basis for subsequent popu-

lar general-purpose GPU computing (GPGPU) APIs such as CUDA [169] [170] and

OpenCL [171] [172].

With the increasing flexibility of programmable shaders, and the rising interest in

GPGPU applications, GPU architectures began to transition away from separate vertex

and fragment shader hardware units in favour of a unified shader architecture[86][85].

In a unified architecture, the same generic shader core is used for both vertex and frag-

ment calculations (or GPGPU code), meaning more unified cores can be packed into

the same area that was previously split between vertex and fragment cores, allowing

for increased parallelism.

3.2.6 New Shader Types

Unified shader architectures also allowed additional stages to be added to the graph-

ics pipeline, such as tessellation and geometry shaders as described in Section 2.5.

Graphics APIs also introduced aspects of GPGPU programability via compute shaders,

which operated outside the traditional graphics pipeline, but could share data with it.

3.3. Shader Simplification 41

This allowed certain elements of games such as physics or particle systems to be of-

floaded from the CPU to the GPU. Recently, NVIDIA have also proposed an alterna-

tive to the traditional vertex-fragment shader model using mesh shaders[173], which

provides similar flexibility to compute shaders, but have the ability to output triangles

directly to the rasterization hardware.

There has also been significant interest in hardware-accelerated raytracing pipelines,

such as NVIDIA’s RTX[174] introduced in their Turing architecture[175], and AMD’s

RDNA2 architecture[176]. Raytracing support is being added to both the DirectX

12 API[177] and Vulkan[178], replacing the vertex/fragment shader pipeline with ray

generation, intersection, any-hit, closest hit, miss, and callable shaders.

This brings the story of programmable shaders full-circle. Shaders were initially

developed in the 80s to add flexibility to offline raytracing systems, but now decades

later, main-stream consumer-level graphics hardware has reached the point that ray-

tracing shaders can run in real-time, allowing interactive computer games access to

global illumination techniques previously available only in offline renderers for films.

Currently, hardware-accelerated raytracing is only available in cutting edge higher-

end GPUs, and few games outside the high-budget AAA releases from larger studios

are taking advantage of it. As such, it is unlikely that the programmable vertex/frag-

ment pipeline, that has survived for almost two decades now, will become obsolete any

time soon. Even if raytracing shaders become more commonplace, it is likely that they

will only form a subset of the rendering system used, as traditional vertex/fragment

shaders are better suited to many aspects of rendering.

This thesis focuses entirely on games with programmable vertex and fragment

shaders, which form the vast majority of recent games. The techniques applied here

are likely to be applicable to other types of shaders too, but the performance character-

istics of other pipelines such as mesh shaders or raytracing are likely to be somewhat

different, and could be an interesting angle for future work if these novel pipelines

become more prevalent in the future.

3.3 Shader Simplification

Graphics is an interesting domain, as the outputs do not need to be mathematically

accurate as long as the results appear passably similar to the human eye. As a re-

sult, various different techniques for radically simplifying, optimizing, or approximat-

ing shader programs have been explored. Chapter 4 examines the effects of several

42 Chapter 3. Related Work

unsafe floating-point arithmetic reassociation techniques[9], which usually result in

visually imperceptible differences. This thesis’s second main focus is shader special-

ization, a concept which has been explored by researchers since before the modern

programmable GPU graphics pipeline came into being[179]. This section considers

work on even more drastic simplification techniques for shader code, which trade vi-

sual fidelity and correctness for increased execution speed.

3.3.1 Level of Detail

In 3D graphics applications, objects far away from the viewer’s camera appear much

smaller on screen, so subtle changes to the actual details of these objects are impos-

sible to notice. This allows for a performance vs accuracy trade-off in the ”Level of

Detail” (LoD) the object is displayed in. It is standard practice within the games in-

dustry to use radically simplified 3D models with far fewer triangles to represent far

away objects[180][181], and also to use lower resolution textures to apply to their

surfaces[182]. There are often several transitional levels of detail that can be transi-

tioned between as an object gets closer to the camera, and the flaws in the less detailed

version become more noticeable.

3.3.2 Shader Level of Detail

Researchers have explored many automated shader simplification systems designed

to generate different variants of shaders for different levels of detail. In early work,

Olano et al. propose a system for generating different shade LoDs by splitting code

into blocks, and simplifying the code by omitting, mathematically approximating, or

substituting some blocks for simpler alternatives of known lighting calculations. They

also suggest methods of removing texture look-ups, or combining multiple look-ups

into a single one from a combined texture, as part of an automated shader LoD gen-

eration system[183]. Simmons et al. suggest techniques for smoothly transitioning

between different shader LoDs on a per-pixel basis, and provide a prototype imple-

mentation in a very early form of OpenGL programmable shaders[184]. The aim of

this per-pixel smooth transition is to avoid jarring pop-in artefacts when the object gets

closer to the viewer and suddenly switches to a new LoD.

Pellacini suggests generating shader LoDs by iteratively applying simplification re-

write rules to an abstract syntax tree[185] from the high-level Cg shading language[161].

The correct simplification to choose at each stage is selected by measuring the visual

3.3. Shader Simplification 43

error that each rule-based substitution causes on a test image. Sitthi-Amorn et al. ex-

tended these simplification ideas by using genetic programming and GPU-accelerated

testing to explore a wider range of possible shader code transformations[186]. More

recently, iteratively applied re-write rules have also been explored for simplifying

physically-based material shaders written in high-level declarative languages[187].

Cho et al. [188] and Piao et al.[189], used tracing tools to examine the effect of

altering various OpenGL settings on mobile games. They primarily focus on altering

OpenGL parameters, such as render buffer precision and texture filtering modes, but

also experiment with shader simplifications, such as replacing occurrences of xy with

either x1 or x0. They then explore the effects of these simplifications in terms of a

performance-accuracy trade-off with varying levels of detail.

3.3.3 Surface Signal Approximation

Wang et al. explored a different approach to shader simplification that went beyond

the scope of prior simplifications on single fragment shaders[190]. They moved many

per-pixel calculations to prior stages in the graphics pipeline, and used surface sig-

nal approximation to represent fragment shader calculations using high-order polyno-

mial basis functions, which are sampled by smaller patches generated by tessellation

shaders, rather than on the previous per-pixel basis. These approximations can be pre-

computed and cached to avoid run-time calculations, which is similar to other work on

caching of partial graphics calculations, and re-projecting them in subsequent frames

to avoid repeatedly recalculating all the results[191] [192].

3.3.4 Altering Computation Rates

He et al. build upon prior simplification work by examining ideas around calculation

rate reduction[193]. This essentially means moving certain calculations to prior stages

in the graphics pipeline, such as moving per-pixel calculations into the vertex shader in-

stead, as there are typically fewer vertices than pixels. They also suggest moving code

from the GPU to the CPU, so that it happens on a per-draw call, or a per-frame basis,

rather than on more granular levels. By using approximate common sub-expression

elimination, and extensive error caching and estimation techniques, they are able to

generate simplified shaders rapidly, along with transitional shaders blending between

different LoDs to avoid pop-in artefacts.

Later, He et al. introduce Spire[194], a system for writing and compiling shaders

44 Chapter 3. Related Work

designed for flexibly moving calculations between different rates, and experimenting

with different optimizations and performance accuracy trade-offs in shaders, either

manually or via iterative compilation. Yuan et al. take many of the ideas around shader

simplification, and introduce heuristics such as clustering similar shaders to reduce the

time required traversing the search-space of possible shader simplifications to the point

that it can occur as part of a real-time rendering application, rather than as a separate

offline phase[195].

The main ideas from the shader simplification literature explored within this the-

sis are those focused around code motion between different stages of the pipeline to

reduce their computation rate. Chapter 5 shows that some of these rate-reduction op-

timizations are possible within pre-existing shaders, even without having to simplify

them, and that constant-folding using data from run-time traces enables even more of

the code to be moved between different pipeline stages, or from the CPU to the GPU

too.

3.4 Value-based Optimizations

One core idea this thesis seeks to explore is the use of values known at run-time to

improve the speed of graphics shaders. Constant-folding using static values has been a

standard compiler optimization for decades (see Subsection 3.4.1), but the use of data

known only at run-time has been the focus of many research areas. Hardware-based

branch prediction, used to determine whether control-flow branches will be taken at

run-time, is one such research area (see Subsection 3.4.2). The use of hardware mech-

anisms to predict values loaded from memory is also explored in Subsection 3.4.3.

Software-based techniques for exploiting run-time values have also been heavily

researched. These may involve either the use of just-in-time (JIT) compilers to dy-

namically generate machine code during run-time, or dynamic binary translation tools

to modify pre-compiled code. Subsection 3.4.4 explores these fields, and explains the

impact the LLVM compiler framework had on these areas. Another compiler-based

approach is to use value profiling, as explained in Subsection 3.4.5, to help optimize

code during the initial compilation phase by building in fast-paths for common values.

Finally, Subsection 3.4.6 covers recent applications of these value-based optimization

techniques to GPU programs.

3.4. Value-based Optimizations 45

3.4.1 Constant Propagation and Folding

The ideas of constant-propagation and constant-folding using variables known at compile-

time have been well-known for over 50 years of compiler optimization research [196]

[197] [198]. These remain standard techniques for any optimizing compiler[199]

[200]. Further work extended the scope of constant-propagation from a local per-

function optimization to a global inter-procedural operation[201][202][203][204], with

further extensions to allow constant-propagation within parallel programs[205][206].

Although the shaders explored within this thesis are executed in parallel, they are writ-

ten as small single-function programs representing the operation of a single thread, so

local intra-function constant-propagation and folding are sufficient for this use-case.

3.4.2 Branch Prediction

Constant-propagation and folding require data to be constant at compile-time, whereas

many other techniques seek to optimize based on data values known at run-time. One

of the most well-known applications of run-time value prediction is the use of hardware

branch prediction. In 1972, Riseman et al. noted that instruction-level parallelism

was severely hampered by the presence of conditional branch instructions[207]. With

perfect scheduling knowledge for their program, and an infinitely deep execution stack,

a parallelism ratio of 51:1 was possible. However, if restricted to bypass no more than

2 conditional branches, this was ratio reduced to 4:1.

Some of the simplest forms of branch prediction used in early machines relied on

statically made prediction policies. In the IBM System 360[208], conditional branches

were assumed to always fall through, unless a specific ”loop mode” was established

by a short backwards conditional branch. The IBM System 370[209] speculatively

executed instructions used opcode-based branch prediction, noting that branches with

some opcodes tended to be taken more than others. Other machines used dynamic

history-based prediction techniques, such as the MU5[210], which used an associa-

tive memory to record whether the next instruction word to fetch was in or out of

sequence. In 1981, Smith summarised and evaluated several such branch prediction

techniques[211]. He also suggested using hashed addresses in random access memory

to avoid the need for associative memories, using small counts of the number of times

branches were taken, rather than single-bit histories, and using hierarchies of different

branch prediction techniques to improve the overall accuracy.

Since these early implementations, there have been decades of advancement in

46 Chapter 3. Related Work

branch prediction strategies[212]. Instead of simply recording individual branches’ lo-

cal histories, many techniques seek to take advantage of correlation between branches

[213][214], such as two-level[215] and perceptron-based[216] branch-predictors. Chen

et al. [217] likened the branch prediction problem to partial pattern matching (PPM)

techniques used in data compression[218], leading to several PPM-like branch pre-

dictors [219][220]. TAGE[221] is perhaps the most well-known PPM-like branch

predictor, and uses geometric history length[222] to exploit both recent branch cor-

relations, and those that occurred far earlier in the program’s history. Despite being

one of the most accurate standalone branch-prediction strategies[223], TAGE can be

improved even further by adding side-predictors for difficult to predict scenarios such

as loop termination [224] and branches with a small statistical bias not correlated with

its history path [225]. Hybrid branch predictors can also improve accuracy by us-

ing multiple solo branch predictors such as TAGE, and combining their results using

strategies such as selection[226], fusion[227], or prophet-critic models[228]. With the

recent Meltdown[229] and Spectre[230] exploits, branch prediction research has had

to cover not only improved accuracy, energy efficiency, and area on chip, but also aim

to minimize security vulnerabilities, so continues to be an active area of research.

3.4.3 Value Prediction

In addition to predicting whether a program’s branches are taken or not, it is also pos-

sible to use prediction techniques for other values. Noting that programs frequently re-

calculate the same values repeatedly, Harbison proposed a Tree Machine[231] architec-

ture using a value cache to perform common-sub-expression elimination[199] at run-

time using hardware, rather than as part of an offline compiler optimization. Richard-

son built upon these ideas by introducing the concept of trivial calculations, and using

a results cache[232]. Lipasti et al. introduce the concept of value locality[233] - the

probability that calculations will output the same values during repeated executions.

They use this property to speculatively execute load instructions, thereby exceeding

the dataflow limit[234] by avoiding pipeline flushes and lengthy waits for memory load

instructions to complete whenever the value is mispredicted. Gabbay et al. [235][236]

extended Lipasti’s ”last-value” predictors by adding an additional stride field to their

prediction tables to improve their accuracy for certain cases.

In their work on content-aware register files, Gonzales et al.[237] identify the con-

cept of ”partial value locality”, where some portions of a value’s underlying binary

3.4. Value-based Optimizations 47

representation are the same even if other portions differ. The work on load value ap-

proximation by San Miguel et al.[238] introduces the concept of ”approximate value

locality”, where values are considered similar if they are arithmetically close, even if

their binary representations differ drastically. These relaxed concepts of value locality

offer new avenues for optimizations based on value prediction and value profiling (see

Subsection 3.4.5).

Since this early value prediction work, many other applications of value prediction

have been explored, including for GPUs [239] [240] [241] [242][243]. Mittal provides

an extensive overview of these advances in value prediction technology[244], but notes

that most techniques are experimental and have only been evaluated using simulators,

with very few achieving physical hardware implementations to explore real-world re-

sults.

3.4.4 Run-time Specialization and JIT Compilation

Just-in-time (JIT) compilation[245] is another field which takes advantage of run-time

state for program optimization. One of the earliest implementations of a JIT compiler

was in Hansen’s 1974 PhD research[246], where he experimented with an incremental

approach to program optimization for FORTRAN[247]. Code segments were dynam-

ically recompiled with increasing levels of optimizations whenever each section was

executed, enabling frequently used segments of code to become highly optimized with-

out spending unnecessary effort on portions which were only executed once. A similar

ethos is still used in modern JIT compilers.

3.4.4.1 Binary Size Reduction

Another early use-case for JIT compilation was to reduce file-size and memory foot-

prints of executables by mixing pre-compiled and interpretable code[248][249]. The

interpretable sections could be compiled at run-time, and then simply thrown away

after execution[250]. Franz et al. suggested the use of ”slim binaries”[251] for the

Oberon[252] language, where compressed abstract syntax trees of programs were dis-

tributed instead of larger target-specific pre-compiled binary files. These slim binaries

were compiled when the program was loaded, and could undergo continuous optimiza-

tion throughout the the program’s lifetime as its run-time state changed[253][254][255].

48 Chapter 3. Related Work

3.4.4.2 JIT for Dynamic Languages

Early dynamically-typed languages such as APL[256][257], Smalltalk[258][259], and

Self[260][261][262] benefited from JIT compilation to improve their performance,

as their dynamic type systems meant many static optimizations were not possible.

Using JIT compilation to generate optimized native code for ”hot” portions of the

code instead of running each line through an interpreter or virtual machine (VM)

can speed up execution in many scenarios. This is also true for more modern lan-

guages using interpreters or VMs such as Java[263][264] [265], Python[266][267],

and Javascript[268][269][270].

3.4.4.3 Run-time Code Specialization for Compiled Languages

Although JIT compilation is often used to mitigate slow-downs in dynamically typed

and interpreted languages, run-time specialization has also been explored for strongly-

typed statically compiled languages such as C. In the Synthesis Kernel[271], Massalin

et al. used run-time code specialization to improve performance of many aspects of

the Unix kernel[272]. Pu et al. later extended these specialization ideas to a real-world

filesystem[273] using various partial-evaluation techniques[274].

Keppel et al.[275][276] showed how value-specific optimization (VSO) could be

used to speed up programs which contained loops over data that seldom changed, such

as the bitblt function used to send bitmaps to the screen as a series of scanlines

in early rendering systems[277][278]. Anderson [279] developed the C-Mix com-

piler for partially evaluating C code, and showed its applicability to ray-traced ren-

dering applications[280]. Glück et al. built on earlier work on partial evaluation for

Fortran[281] and demonstrated its benefits for various mathematical algorithms such

as fast Fourier transforms and solving partial differential equations[282][283].

Consel et al. [284][285][286] built upon these previous approaches, as well as

Knoblock et al.’s work on data specialization[287], and aimed to develop a more gen-

eralized system for automatically generating templates for specializable portions of the

C code. This culminated in the Tempo[288][289] system, which was built on top of

the popular gcc compiler[290]. Tempo was designed for optimizing systems applica-

tions such as Linux signal-handling, the Berkeley Packet filter[291], and networking

systems such as the Sun remote procedure call (RPC) protocol [292].

Tempo was designed to automatically generate specialized programs from raw C

code, unlike several other projects operating using custom annotation formats or lan-

3.4. Value-based Optimizations 49

guage dialects. ‘C [293] (pronounced Tick C) is a superset of C with additional op-

erators for manually specifying which portions of code should be generated at run

time. It’s custom compiler, tcc[294] was built on the lcc compiler[295][296], which

was designed by AT&T Bell Laboratories and Princeton University to be a C com-

piler with a shared front-end able to be retargeted to multiple different target-specific

back-ends. DyC[297] [298] also used annotations to supplement C code with informa-

tion about dynamically compilable sections. It was implemented using the Multiflow

compiler[299], which aimed to use trace scheduling to maximize instruction-level par-

allelism in C and Fortran code. The Fabius compiler[300][301] used similar techniques

but applied them to a subset of standard ML[302], which demonstrated the applicabil-

ity of these approaches to functional languages.

3.4.4.4 The Dawn of LLVM

In 2004, Lattner and Adve’s paper titled ”LLVM: A Compilation Framework for Life-

long Program Analysis & Transformation” drastically altered the landscape of com-

piler research. Born from Lattner’s Masters[303] and PhD work[304], the LLVM

project offered a powerful machine-independent SSA-based intermediate representa-

tion (IR) well-suited for implementing many optimizations. Its highly modular de-

sign enabled the same optimizations to be used across different language front-ends

and generate code for many target-specific back-ends. Its promise of ”Lifelong Pro-

gram Analysis & Transformation” makes it suitable for optimizations during compila-

tion, linking, installation, run-time, and during idle-time between program executions.

Much of modern compiler research uses LLVM as a starting point, instead of the wide

array of custom research compilers present in earlier works. LLVM is also heavily

used in many areas of industry.

Some recent work on using LLVM for run-time value-based specialization is BinOpt

by Engelke et al.[305], which translates portions pre-compiled binary executables into

LLVM IR to specialize on the fly. BinOpt uses the Rellume[306] library to rapidly lift

x86-64 directly into LLVM IR. It improves on their prior work on DBrew[307] and

DBrew-LLVM[308] by removing many of the instruction coverage limitations caused

by indirect branching. Numerous other JIT-based techniques for C and C++ based

on LLVM have also been developed such as Cling[309], LambdaJIT[310], Kahuna

[311][312], atJIT[313], and ClangJIT [314].

50 Chapter 3. Related Work

3.4.5 Value Profiling

An area of research that complements both the value prediction (see Subsection 3.4.3),

and JIT compilation (see Subsection 3.4.4) is the field of value profiling. In Keppel’s

thesis on run-time code generation[315], he notes that values which seldom change

throughout a program’s execution make for good ”candidate variables” for value-

specific optimizations. Autrey et al.[316] refer to these as ”glacial variables”, and

propose a static analysis pass based on the ideas of staging transformations [317] to

determine the ”glacialness” of variables. Calder noted that value profiling was use-

ful for both hardware value prediction and run-time code generation, and proposed a

convergent run-time profiling technique to top N values of variables to detect ”semi-

invariant” values[318][319]. Gabbay et al.[320] suggest using value profiling results

from simulated executions to allow the compiler to augment instructions with informa-

tion about whether ”last-value” or ”stride”-based hardware value predictors are most

suitable for each variable.

Muth et al. generalize the approach from profiling value to profiling whole ex-

pressions, and show that using profile-guided specialization at link-time can provide

significant speed-ups[321]. Chung et al. showed that similar ideas can also be used to

improve a program’s energy efficiency[322]. Watterson et al. [323] determined that

the ∼30x profiling overhead of Calder’s initial value profiling approach[319] could

be reduced by an order of magnitude using goal-directed value profiling. By esti-

mating which variables would be likely to generate profitable optimizations if their

values were ”semi-invariant”, and ignoring all others, the number of variables requir-

ing instrumentation could be drastically reduced. Moseley et al. further reduce the

profiling overhead of value prediction by periodically forking a shadow process to be

instrumented in parallel, rather than injecting instrumentation into the main executing

process [324].

Khan et al. demonstrate a technique for deep value profiling [325] allows for pro-

gram specialization without drastic binary size increases. Oh et al. use a variant of

value profiling to aggressively specialize input-pased loops[326]. Henry et al. [327]

implemented a method for directly instrumenting pre-compiled executables with value-

profiling using the MADRAS binary patching tool[328] [329] as part of the MAQAO

suite. REDSPY[330] is another tool developed for value profiling, which expands

value locality to include approximately equal floating-point numbers, enabling addi-

tional optimizations to be made for HPC applications where minor accuracy trade-offs

3.4. Value-based Optimizations 51

are acceptable.

3.4.6 Value-Based Optimizations for GPUs

Building on the concepts of ”approximate” and ”partial” value locality developed for

value prediction (see Subsection 3.4.3), Wong et al. noted that the values computed by

different threads in a warp are often approximately equal[331]. This approximate intra-

warp value locality can be exploited to save energy by executing a single representative

thread, rather than calculating exact results for all threads of the full warp. Collange et

al.[332] also utilized intra-warp value locality, noting that values in CUDA programs

were frequently the same for all values in the warp (”uniform”), or differed from each

other by a constant stride (”affine” e.g. 2,4,6,8), which was common for calculating

addresses of loads. They suggested fine-grained clock-gating techniques to minimize

power consumption when these patterns were detected.

Recently, several papers have been published exploiting the prevalence of zero val-

ues in graphics content. Zeroploit by Rangan et al.[333] takes advantage of the fact

that operands of multiplications or logical ANDs instructions in shaders are frequently

zero at run-time. They achieve a 35.8% improvement on average on selected indi-

vidual shader pipelines, resulting in a 2.8% average improvement in frame-rate across

several popular DirectX games and benchmarks on an NVIDIA GeForce RTX 2080

GPU. They use run-time value profiling based on Calder et al.’s original value-profiling

work[318], but with a probabilistic least-frequently used approach to evicting values

rather than periodically jettisoning half of the value profiling table. To simplify the

transformations applied to the shader, value profiling instrumentation is injected at the

IR level (called DXBC), instead of the low-level machine instructions used in other

GPU value profilers[334][335].

Using the value profiling results, Zeroploit uses a cost-benefit heuristic to select

shaders with significant portions of zero values as specialization candidates. Key ”ver-

sioning” variables are selected to guard fast and slow paths depending on whether the

value is zero or not at run-time. To generate the fast path, the zero value is propa-

gated forward to the results of the multiplication or logical AND operation. It is also

propagated backwards to eliminate the calculations of the other operand, which is no

longer needed for this calculation with zero. Leobas et al. identified this type transfor-

mation as belonging to the class of ”semiring optimizations” [336]. Shader bytecode

specialized with this technique can then be injected back into the application at run-

52 Chapter 3. Related Work

time. Stephenson et al. extended this work to automatically select candidate shaders

and versioning variables for Zeroploit by developing the PGZ tool[337] (formerly AZP

[338]), which achieved similar performance benefits. Optimizations based on zero val-

ues are also applicable in other fields of GPU computation, such as for convolutions in

deep neural networks[339].

3.5 Energy Efficiency in Mobile Games

The focus of this thesis is on improving the run-time speed of games, rather than op-

timizing for energy efficiency, but there are often overlaps between these objectives.

Removing redundant calculations, for example, may speed up an application, and also

reduce the energy it requires. Certain performance-vs-accuracy trade-offs also fall

into this category of improving both speed and energy efficiency, at the cost of visual

fidelity. Power consumption of video games, especially on battery-powered mobile

devices, has a large and varied body of academic work. Many of these papers also in-

clude detailed workload characterisations, some of which use similar tooling to those

used within this thesis. This section will explain the history of system-level approaches

GPU power optimization, and various workload characterisations techniques that have

evolved.

3.5.1 CPU DVFS for Software Rendering

In 2006, several researchers suggested that computer games would be a good candidate

for DVFS (dynamic voltage and frequency scaling) . This is where the voltage and

frequency of a processor are scaled up or down on the fly to reduce energy consumption

during low-intensity periods, but provide sufficient resources to carry out calculations

rapidly during high-intensity periods. DVFS had previously been successfully applied

to video decoding [340] [341] [342] [343], as these workloads were computationally

expensive, and had high variability. Researchers noted that video games had even

higher variability, with some frames requiring orders of magnitude more work to render

than others [344] [345].

Mochocki et al. suggest history-based performance prediction, basing the current

frame’s predicted performance on the previous recorded requirements within a certain

window[346]. They also suggest an alternative approach using recorded signatures

based on OpenGL ES state such as the number of triangles, and average triangle area

3.5. Energy Efficiency in Mobile Games 53

in each frame to predict power requirements of previous frames[347]. Gu et al. sug-

gested that game-specific state such as the number and type of objects being rendered

could estimate the rasterization workload of each frame, which acted as a good proxy

for power and performance requirements [348]. In later work they demonstrated that

DVFS using each frame’s game state to estimate power consumption generally out-

performed purely history-based techniques in terms of consistently meeting the target

frame-rate, while still saving significant portions of system energy [349]. They also

found success with control-theoretic techniques using a PID controller to scale pro-

cessor voltage between frames [350], and in a hybrid approach combining both a PID

controller, and a game-state-based prediction model[351]. Zhang et al. proposed a

hierarchical approach using high-level game state, such as the current level, in-game

story events, or scene changes to make higher-level power management decisions in

addition to the PID and game-state based approaches at lower levels of the hierarchy.

[352]. Wang et al. suggest a least-mean-squares linear predictor as a simpler and more

generalized approach for estimating frame workloads, which sometimes outperforms

PID controllers in gameplay scenarios where theirs gain parameters were not manually

tuned to perform well in [353].

3.5.2 The Allure of Quake II

Much of the early research above focused on games using ”software rendering”, where

the graphics calculations occurred on the CPU, as hardware acceleration via the GPU

was not common for power-constrained mobile devices at the time. Many of the papers

above used Quake II, a 1997 game by id Software, as a benchmark, as it was one of

the few popular games whose source-code was readily available. This open-source na-

ture made it popular among researchers, not just for power-management benchmarks,

but for many other fields such as guiding GPU hardware architecture decisions [354],

distributed systems architectures [355] [356], and artificial intelligence [357] [358]

[359]. Quake II also contained the built-in capability to record and replay gameplay

sequences, which made it appealing as a repeatable benchmarking tool, and precluded

the need for external tracing application software of the type used throughout this the-

sis. However, as GPUs became increasingly common in consumer-level mobile de-

vices, the CPU-based software rendering engine from Quake II became steadily less

representative of modern gaming workloads over a decade after its release. As such,

researchers had to find ways of implementing power-management schemes on games

54 Chapter 3. Related Work

that were no longer open-source, and made use of both the CPU and GPU.

3.5.3 Closed-Source Workloads on GPUs

Some researchers such as Vatjus-Anttila et al. sought to overcome the lack of available

game source-code by writing their own open-source rendering engine [360]. They

used this to develop a mathematical model for predicting power consumption based on

parameters such as the number of 3D model batches, number of triangles, and number

of texels being addressed, and verified this via a fly-through scene of a virtual city.

However, in order to gather these software metrics for power-estimation in real-time

on real workloads, researchers had to find ways of gathering these sorts of metrics

without source-code access.

Dietrich et al. sought to overcome the limitations caused by lack of game source-

code access by instrumenting the Android operating system to intercept API calls in-

dicating frame boundaries, and used time-stamps injected around each of these calls to

implement a simple history-based DVFS scheme [361]. In later work, they used DLL-

injection on Windows-based PC games to intercept graphics API calls (in this case

DirectX 9) to enable workload characterization of more modern closed-source games

[362]. This is a similar technique to the apitrace[12] tool used throughout this thesis.

Their analysis showed that in Quake II, rendering accounted for ∼ 90% of the CPU

workload, whereas more modern games using hardware acceleration offloaded most

of this computational complexity to the GPU, allowing more CPU time for more com-

plex AI and physics simulations. They found that hardware-accelerated rendering ex-

perienced more inter-frame performance variability, and suggested an auto-regressive

moving average technique for predicting frame workloads to avoid over-fitting prob-

lems and extensive manual parameter tuning found in prior PID-based techniques. Ma

et al. found that on mobile game workloads, the GPU geometry processing stage of

the pipeline was the main bottleneck, but around 30% of the frame time was spent on

CPU-side game-logic such as path-finding[363].

Sun et al. showed that mobile games demonstrated high correlation between the

number of textures being bound in each frame and the overall frame workload[364].

This is because reading and filtering large amounts of high-resolution textures was one

of the more expensive operations, and more textures also correlated with more objects

on screen, and more triangle area being rasterized. Using a low-overhead OpenGL

ES wrapper to count the number of textures being bound each frame, they could use

3.5. Energy Efficiency in Mobile Games 55

this metric to govern DVFS models in a lower overhead and more accurate way than

many prior workload prediction-based methods, and were able to save larger amounts

of power in rapidly changing scenes. Dietrich et al. use textures in a different way,

inferring gameplay state by comparing hashes of texture contents to infer whether tex-

tures being rendered in the current frame may indicate whether the game is in a high-

interactivity gameplay scene, or a low-interactivity screen such as an options menu or

level-select screen where the framerate and power consumption can be drastically re-

duced without impacting the user’s experience [365] [366]. Cheng et al. use a similar

DVFS scheme based on game-state detection, but instead use the number of memory

allocations and textures being bound in each frame to infer whether the user is in a

loading screen, low-interaction menu, or high-interactivity menu [367]. Mohammadi

et al.[368] use apitrace[12] to intercept API calls, and estimate frame times based on

the number of inputs to each pipeline stage.

3.5.4 DVFs for CPU, GPU, and Memory

Despite the shift towards using games with GPU-based rendering, the above work

generally focuses on CPU-based DVFS. Pathania et al. introduce a scheme for gov-

erning both the CPU and GPU’s voltage and frequency together in an integrated man-

ner [369]. Park performed extensive workload characterization and developed various

micro-benchmarks to motivate further work on DVFS taking into account the inter-

actions between CPU, GPU, and shared memory system found on integrated mobile

graphics chips[370]. Pathania et al. built upon their prior work by developing models

to predict the performance interplay between CPU, GPU, and memory on a variety

of mobile workloads, and use this model to guide a DVFS scheme to avoid power

wastage[371]. Hsieh et al. also built co-operative CPU-GPU DVFS systems taking

into account the impacts of their shared memory system [372].

The move to GPU-based rendering rather than CPU-based software rendering al-

lowed for even more diverse power management opportunities [373] . You et al. sug-

gest a software-based DVFS scheme separate from the GPU driver to allow operating

systems or applications to dynamically adapt embedded GPUs’ voltage and frequency

in a manner independent of specific GPU manufacturers [374].

Tile-based architectures allowed for more granular power management options

than the previous full-chip once per-frame schemes. Individual tile histories could

be used to predict future workloads for sub-sections of each frame, allowing DVFS

56 Chapter 3. Related Work

schemes to throttle voltage and frequency on all but the most complex tiles of the

frame being rendered [375].

The pipeline-based nature of graphics applications meant that shader cores could

be selectively shut down during low-intensity pipeline stages to save energy if the

workload bottlenecks could be effectively predicted [376]. In later work, they suggest

additional power-gating strategies to shut down fixed-function geometry stages, and

other non-shader units when pipeline stalls are detected [377].

3.5.5 Dynamically Varying Frame Rates

In addition to scaling the voltage of frequency of processors during different game

states, another potential angle to achieve power savings is to scale the game’s resolution

or frame-rate dynamically based on factors such as the device’s battery level, or the

distance between the user and the screen [378]. Yan et al. suggest that frame-rates can

be scaled down during ”idle” periods of game-play when a certain period of time has

elapsed without any user interaction events occurring [379].

Arnau et al. analyzed texture usage in mobile games, and found that 62% of all

memory accesses were texture look-ups, and that 96% of texture data loaded in each

frame was re-loaded again in the subsequent frame[380]. However, so much texture

data is accessed each frame, that the look-ups cannot be efficiently cached between

frames, as the re-use distance is so large. They propose rendering two frames in parallel

to allow texture data to be shared between them. This trades application responsiveness

for improved memory bandwidth utilization (and therefore energy efficiency), as the

CPU-side game-state updates based on user inputs are inherently sequential, so the

data for the two frames rendered in parallel is always slightly out of date.

In subsequent work, Arnau et al. also noted significant redundancy in fragment

shader calculations, with around 40% of their calculation results being repeated on

subsequent frames[381]. They suggest using hardware to augment their parallel frame-

rendering technique with a hardware memoization scheme to record and re-use frag-

ment shader results to improve energy efficiency. Keramidas et al. extend this scheme

using a ”clumsy value cache” which allows partial matches in the memoization table

by reducing the precision of the input parameters [382]. Most relevant to this thesis

is their analysis of how varying floating point precision of various fragment shader

instructions impacts the image’s visual quality, where they find that values used as

indices into textures are far more sensitive to precision reduction than many other cal-

3.5. Energy Efficiency in Mobile Games 57

culations.

3.5.6 Avoiding Overdraw

In addition to their work on variable frame rates, Yan et al. also identified significant

power wastage due to large amounts of overdraw occurring in mobile games[379].

Overdraw is when the same pixel is rendered multiple different times, with later re-

sults invalidating the prior pixel colour results computed earlier in the frame. The

performance impact of unnecessary overdraw was well-known[383], and minimizing

the overheads of overdraw was one of the benefits of the now-prevelant tile-based ar-

chitectures used in mobile GPUs [384]. Prior work had estimated overdraw for mobile

3D games to be around 2-3X [385], but Yan et al. showed that many popular mobile

games, especially 2D games vastly exceeded this estimate to an average of 15.5x (and

up to 157.9x in some cases). Many of these games were ignoring well-established

game optimization techniques such as sorting and rendering objects front-to-back, or

performing a depth pre-pass[386], both of which would allow early depth-buffer test-

ing to reject many pixels early using the well-known Z-buffer algorithm[116] [117]

baked into all modern hardware. A potential hardware-based solution to this problem

was presented by de Lucas et al., in which they attempt to enforce visibility rendering

order (front-to-back) by using results from depth-tests in previous frames to predict the

relative order to render objects in the current frame [387].

3.5.7 Variable Floating-point Precision

Another development prevalent around mobile GPUs is the concept of variable floating-

point precision. Hao et al. showed that many common lighting and vertex transfor-

mation calculations can be performed as reduced fixed-point precision calculations,

with very little visual difference from the full floating-point calculations [388]. These

reduced-precision vertex calculations can efficiently exploit SIMD data-paths [389].

Reduced precision texture look-ups can also provide power-savings [390]. Akely et al.

explored the bounds to which 3D position data could have its precision reduced while

avoiding artefacts known as ”z-fighting” (where insufficiently precise depth informa-

tion is stored for non-overlapping objects, such that they appear overlapping and flick-

ering through one another) [391]. Pool et al. applied these ideas to reduced-precision

calculations in arbitrary vertex shaders[392] and fragment shaders [393], leading to

reduced power costs of both calculation and data transmissions [394]. Systems for

58 Chapter 3. Related Work

dynamically selecting precision using fine-grained power-gating were also examined

[395]. Several systems have also been explored to dynamically balance between image

quality and energy consumption at run-time by switching between reduced floating-

point and fixed-point precision levels either per scene [396], per frame [397], or per

program [398].

3.6 GPU Debugging and Profiling

Debugging and profiling GPU programs is a complex task which requires specialized

tools. Some sources of this complexity are the inherently parallel nature of GPU com-

putations, limitations on older hardware around control-flow and interrupts, and the

interaction between closed-source graphics drivers and undocumented hardware archi-

tectures. This section explores many of the current industry standard tools for this, as

well as some of the academic research conducted in this field.

3.6.1 Current Industry Tools

Because each GPU vendor uses their hardware performance counters, in-house ISA,

and driver stack, they often provide custom debugging and profiling tools. Such

tools include NVIDIA’s NSight[399], AMD’s Radeon Developer Tools Suite[400],

Intel’s Graphics Performance Analyzers[401][402], ARM’s Graphics Analyzer[403],

and Qualcomm’s Snapdragon Debugger[404] and Profiler[405].

Operating system vendors also release tools for debugging and profiling graphics

applications, such as Apple’s Metal system trace[406] or frame capture debugging[407]

tools, or Microsoft’s PIX debugger for DirectX 12[408]. Microsoft also released an

OS-level event profiler for GPU programs called GPUView[409][410] to help measure

and visualize events between the CPU and GPU. Valve’s open-source GPUVis[411]

tool provides similar visualization of CPU-GPU interactions within graphics applica-

tions on Linux.

In addition to these OS-level or vendor-specific tools, there are also several pop-

ular open-source tools aiming to aid in debugging graphics applications that focus on

the API-level. Baldur Karlsson’s Renderdoc[412] allows capturing, visualization, and

exploration of all graphics state in a single frame, and allows for step-by-step playback

of individual calls in that frame to view how different buffer contents are affected. It

is compatible with DirectX 11 and 12, OpenGL, OpenGL ES, and Vulkan across a

3.6. GPU Debugging and Profiling 59

variety of operation systems. Renderdoc’s primary focus is to aid in debugging incor-

rect rendering results, but it also contains some limited profiling capabilities to detect

performance hot-spots within captured frames. Other debugging tools, such as José

Fonseca’s apitrace[12], aim to capture and replay whole traces of rendering API calls.

Apitrace allows tracing of OpenGL and older DirectX dialects, whereas newer tools by

LunarG such as vktrace[413] and its successor GFXReconstruct[414] aim to provide

similar tracing support for Vulkan applications.

3.6.2 GPU Debugger Research

In addition to the rapidly-evolving array of industry and open-source developed tools,

graphics profiling and debugging tools have been the focus of numerous explorations

within academia. The utility of using graphical visualizations to debug the behavior

of massively parallel programs was explored in the 1990’s via tools such as IVE[415]

and Prism[416] before the dawn of GPUs. This idea is even more powerful in graphics

applications, where many of the calculations are inherently visual in nature.

In 2005, Duca et al. proposed a relational debugging engine[417], which used

SQL-like queries on graphics state, and could visualize the query results in a vari-

ety of ways. This debugging engine was based on intercepting OpenGL calls within

a cluster-based distributed rendering framework called Chromium[418], and storing

them in a database. In 2007, Strengert et al. proposed a hardware-aware debugger[419]

that would allow data to be retrieved from real GPU hardware using a combination of

OpenGL API-call interception, shader instrumentation, and OpenGL extensions for

accessing shader outputs on the CPU. Sharif et al.’s ”Total recall” debugger[420] used

partial emulation on the CPU to allow developers to easily step through and add break-

points to shaders, as well as adding a technique for tracking and examining the history

of pixel values in intermediate buffers used in multi-pass rendering techniques. Van

Dyk et al.[421] extended the scope of debugging techniques from capturing and vi-

sualizing the current state, to capturing the state’s entire history, and using a custom

query language to compare state at different points in time.

Hou et al.[422] proposed a method for debugging GPGPU programs by instrument-

ing GPU-side kernels with code for suspending themselves and recording their state,

falling back to a CPU-side interrupt handler, and then resuming the kernel’s execution.

This approach allowed the CPU to inspect, record, and visualize the kernel’s interme-

diate state and then appear to seamlessly restart its execution from the current point,

60 Chapter 3. Related Work

even though hardware-based interrupts were not available on GPUs at the time to let

them natively call CPU-side interrupt-handling code.

3.6.3 GPU Profiling & Performance Estimation Research

There has also been significant work on profiling and performance estimation tech-

niques. Wimmer et al. explored the use of heuristic functions to estimate the rendering

time of different 3D scenes[423]. In 2005, Moya et al. developed a GPU simulator

called ATTILA[85], and used its performance results to demonstrate the benefits of a

unified shader architecture, compared to the separate vertex and fragment units present

in GPUs at the time. Bakhoda et al.[424] also used a similar simulator-based approach

to analyse various CUDA workloads with GPGPU-Sim.

Stephenson et al. proposed a compile-time instrumentation tool called SASSI[334]

to inject handlers for various workload characterization and profiling tasks into CUDA

kernels, allowing for larger datasets to be explored without the performance limitations

of running on a simulator. CudaAdvisor by Shen et al.[425] takes a similar approach,

but uses the open-source LLVM framework rather than NVIDIA’s in-house compiler,

and instruments both the CPU-side and GPU-side code. Nvbit by Villa et al. [426]

also offers similar capabilities to SASSI, but uses dynamic binary instrumentation,

which removes the need for source-code access present in compile-time approaches,

and allows kernels JIT-compiled by the driver to be instrumented.

3.7 Summary

The preceding sections have covered a wide range of research, and provided back-

ground on GPU shader programs, tools to analyze them, and compilation techniques

which may be used to simplify and optimize them for both power and performance.

Section 3.2 explained the evolution of programmable shaders from their initial pur-

pose of providing flexibility to CPU-based raytracing systems, to the current GPU-

accelerated programmable vertex and fragment shader pipeline. It also covered the

numerous additional types of shaders, and general-purpose computing programs now

possible on modern programmable GPUs due to their unified shader architecture.

Several approaches to simplifying shader source code were explored in Section 3.3.

These usually took place as part of level-of-detail (LoD) systems, which exploit the

fact that calculation inaccuracies for far away objects are usually imperceivable in the

3.7. Summary 61

realm of graphics.

Section 3.4 covered techniques for optimizing code based on knowing which values

were in use. These included constant-folding of statically known values, hardware-

based branch or value predictors, code specialization based on value profiling, and

run-time techniques such as JIT compilation and dynamic binary translation.

Section 3.5 explained the history of profiling and workload characterization for

graphical applications for the purpose of increasing their energy efficiency. The transi-

tion from open-source CPU-based workloads to closed-source GPU-accelerated work-

loads was discussed, along with how workload profiling tools had to evolve as a re-

sult. Several optimization strategies were also explored, such as reducing overdraw, or

lowering the floating-point precision of calculations to improve both performance and

power-efficiency for trade-offs in visual quality.

Finally, the current state of GPU debugging and profiling tools was covered in

Section 3.6, along with some of the academic work that led to these developments.

This included current GPU-vendor-specific toolsets, along with cross-platform open-

source tools such as apitrace[12] which is used throughout this thesis.

Chapter 4

Compiler Optimizations for Individual

Shaders

4.1 Introduction

This chapter investigates the impact of various traditional compiler optimization tech-

niques on shaders[9]. Using a source-to-source GLSL shader compiler framework

called LunarGlass[10], the impacts of various combinations of different optimizations

were examined on several different mobile and desktop GPUs from different hard-

ware vendors. For some fragment shaders, performance improvements of up to 25%

were achieved, but these results were not universal across all vendors, and some com-

binations also resulted in slow-downs. Using an iterative compilation approach, the

best combinations of optimizations were determined for each shader on each GPU,

demonstrating that the correct sets of optimizations are not universal, and should be

determined carefully on a vendor-to-vendor basis.

Section 4.2 provides a motivating example where a combination of source-level

optimizations provide significant speed-ups. In Section 4.3, the compiler tools and

optimization passes used are discussed in greater detail. The experimental fragment

shader timing tools developed are discussed in Section 4.5, along with a characteriza-

tion of the shaders used as benchmarks. Finally, the results of iteratively compiling

and timing each fragment shader are reported in Section 4.6.

63

64 Chapter 4. Compiler Optimizations for Individual Shaders

4.2 Motivating Example

in vec2 uv; out vec4 fragColor;

uniform sampler2D tex; uniform vec4 ambient;

/*Main Function*/

//9 symmetric weights and texture sampling offsets

const vec4[] weights = vec4[](vec4(0.01), ... , vec4(0.01));

const vec2[] offsets = vec2[](vec2(-0.0083), ... , vec2(0.0083));

float weightTotal = 0.0;

fragColor = vec4(0.0);

for(int i = 0; i < 9; i++){

weightTotal += weights[i][0];

fragColor += 3.0*ambient*weights[i]*texture(tex, uv+offsets[i]);

}

fragColor /= weightTotal;

Listing 4.3: Example shader before optimization

Listing 4.3 illustrates an example fragment shader where source-to-source com-

piler optimizations such as loop unrolling and arithmetic reassociation give perfor-

mance improvements of up to 45% (see Figure 4.1). This simplified example is based

on a GFXBench 4.0[8] fragment shader which repeatedly samples from a 2D image

texture tex at various constant offsets from the coordinates uv (passed in from the

vertex shader). The weighted sum of these samples is written to fragColor as the

final RGBA pixel colour output. Repeated weighted texture sampling code like this is

common for various blur or glow effects in games.

/*Main Function*/

vec4 fc1 = texture(tex,uv+vec2(-0.0083));

...

vec4 fc9 = texture(tex,uv+vec2(0.0083));

vec4 t0 = fc5 * vec4(1.83);

vec4 t1 = (fc4 + fc6) * vec4(0.63);

vec4 t2 = (fc3 + fc7) * vec4(0.42);

vec4 t3 = (fc2 + fc8) * vec4(0.15);

vec4 t4 = (fc1 + fc9) * vec4(0.03);

vec4 sum = t4 + (t3 + (t2 + (t0 + t1)));

vec4 fac = vec4(0.699301) * ambient;

fragColor = sum * fac;

Listing 4.4: Example shader after optimization

This code has many optimization opportunities, as can be seen in Listing 4.4.

4.2. Motivating Example 65

Firstly, it contains an unrollable loop with 9 constant iterations. Once unrolled, the

sum for weightTotal contains only constants, so can be completely evaluated at com-

pile time. The weightTotal can also be inverted before multiplying it by fragColor,

thereby changing 8 additions plus a division into a single multiplication.

Each value summed for fragColor has a common multiple of 3.0*ambient which

can be factorised out, leaving 1 multiplication instead of 9. The constant 3.0 can then

be folded into the weightTotal before multiplying it by fragColor too, resulting in

a single constant factor of 0.699301 to multiply.

Because the weights are symmetric, pairs of texture samples will share weights as

common multiples which can be factorised out too. These factorizations are technically

unsafe to perform, as floating-point arithmetic is not associative. However, for most

use-cases within shaders like this, the visual impacts will not be noticeable, and the

slight reduction in correctness is outweighed by the improved performance.

Another benefit of unrolling the texture-sampling loop is that all the texture sam-

pling calls now use a simple constant offset such as uv+vec2(0.0083), rather than an

offset that is dependent on a loop index such as uv+offsets[i]. This constant offset

can provide benefits such as improved texture pre-fetching or caching, and modify-

ing this in the source code means these benefits are no longer contingent on the GPU

vendors’ compilers unrolling the loop or detecting these constant offsets internally.

Figure 4.1: Performance gains from optimizing example shader on each platform

For this example, optimizations provide large performance impacts, with speed-

ups of 7-28% on desktop, and 35-45% on mobile (see Figure 4.1). This means GPU

vendors’ compilers do not catch every optimization opportunity, and offline compilers

can have a large impact. It also shows that performance impacts can vary drastically

depending on which GPU is used. Some vendors may not perform extensive loop

66 Chapter 4. Compiler Optimizations for Individual Shaders

unrolling to reduce shader compilation times which may lead to noticeable delays.

The use of extensive unsafe floating point arithmetic reassociations is also something

that driver-based optimizations may be unable to do as they must preserve a greater

level of correctness, but can be leveraged by developers via offline source-to-source

compilation if they determine they do not require such strict correctness constraints.

Figure 4.2: Distribution of performance impacts on an ARM GPU when all optimizations

are enabled (positive = speed-up, negative = slow-down). Each bar in the x-axis repre-

sents a different individual shader extracted from GFXBench 4.0 (sorted by impact).

Despite this universal positive impact of optimization on the example shader in

Listing 4.3 on all platforms seen in Figure 4.1, applying these optimizations to all

fragment shaders in the GFX 4.0 benchmark, gives very variable performance results.

In Figure 4.2, ARM’s Mali-T880 gains up to 10% and loses up to 30%. This shows us

improvement is possible in real-world shaders, but a one-size-fits-all approach can do

more harm than good. Smarter techniques to choose when and how to optimize each

shader for each platform are necessary to reap the performance rewards but avoid the

large performance pitfalls.

4.3 Example Optimizations

This section describes the source-to-source optimization techniques explored, and the

tools used to do so.

4.3.1 LunarGlass Optimization Framework

To perform the source-to-source optimizations on GLSL[36] shader code, the Lu-

narGlass framework from LunarG was used. This is a modified version of LLVM

4.3. Example Optimizations 67

3.4[427], with several extensions for GLSL-specific intrinsic functions, optimization

passes, and a GLSL front and back end. The default optimization passes which can be

toggled via command-line flags are described below.

• ADCE - Aggressive dead code elimination.

• Hoist - Flatten conditionals by changing assignments inside ”if” blocks into se-

lect ”select” instructions.

• Unroll - Simple loop unrolling for constant loop indices.

• Coalesce - Change multiple individual vector element insertions into a single

swizzled vector assignment.

• GVN - Global value numbering.

• Reassociate - Reorder integer arithmetic to simplify it (or some floating-point

expressions such as f ×0).

Several other LLVM optimizations were included, such as constant folding, com-

mon sub-expression elimination, and redundant load-store elimination. However, these

passes were not altered within these experiments, as they were not exposed by default

via command-line flags, and some were necessary to canonicalize instructions for fu-

ture optimizations.

After combining these pre-existing passes with some additional passes ones to han-

dle unsafe floating point arithmetic (see below), iterative compilation was used to ex-

plore their impacts. Because only 8 flags were available, it was possible to exhaustively

apply all 256 possible combinations of passes. Many of these resulted in duplicated

source code (see Section 4.4), so measuring the performance impact of all these gener-

ated outputs was tractable in this case. It may be possible to use results from this sort

of exhaustive analysis to guide better flag selection heuristics or machine learning in

future work.

4.3.2 Additional Unsafe Optimizations

In addition to LunarGlass’s default passes, several custom unsafe floating point opti-

mization passes were also implemented. Many of these mimicked parts of the integer

reassociation pass to perform simple arithmetic simplifications such as:

68 Chapter 4. Compiler Optimizations for Individual Shaders

ab+ac−→ a(b+ c)

a+a+a−→ 3a

a+b−a−→ b

Arithmetic operations were also re-ordered to group constants together for better

constant folding and propagation, and to group scalar operations before turning the

results into vectors. This scalar reassociation was designed to minimize unnecessary

registers slots holding temporary vector results, when single scalar registers would

suffice:

f1(f2v)−→ (f1 f2)v

c1(c2v)−→ (c1c2)v

Where f1, f2 are scalar floats, and c1, c2 are constants. This re-ordering also canon-

icalized the sequence in which the operands occurred, which could allow for greater

common-sub-expression elimination opportunities in subsequent passes.

Other identities such as multiplying by 1, or adding 0 were also optimized out, and

division by constant operands was changed into multiplication by the operand’s inverse

(which could be determined at compile time).

f1÷ c1 −→
1
c1
× f1

0.0+ f1 −→ f1

1.0× f1 −→ f1

Sums containing negated pairs of values were also eliminated:

a+b+(−a)−→ b

To ensure the maximum number of these patterns could be detected, a pre-processing

step was run to transform all subtractions into additions of a negated value, and all di-

visions into a multiplication by an inverse:

4.3. Example Optimizations 69

a−b−→ a+(−b)

a÷b−→ a× 1
b

The aim of these additional passes was to explore the impact of unsafe floating

point optimizations which could not be implemented in a conformant GPU driver’s

compiler, but would fit well in an offline optimization framework where the developer

can control when they are used.

4.3.3 Artefacts

Because OpenGL drivers only accepted shaders as GLSL source-code (until the recent

SPIR-V extension was standardized in OpenGL 4.6), source-to-source transformations

were the only option for a cross-platform investigation of shader optimization. How-

ever, this led to artefacts that would not occur in typical human-written GLSL code, and

could sometimes negatively impact the code’s performance. Such artefacts included:

Scalarized Matrix Multiplications

GLSL has primitive types for both vectors and matrices, and humans may write code

such as:

mat4 m1, m2; vec4 v;

mat4 m = m1 * m2;

vec4 res = m * v;

When this is processed in LunarGlass, however, the matrices are divided up into

their individual scalar components, and instead of 2 lines of matrix-vector calculations,

tens of lines worth of scalarized calculations will be generated in LunarGlass’s output

GLSL.

Multiplication of 4× 4 matrices is very common in GLSL, especially for vertex

shaders, so GPU driver compilers are used to handling this use-case. However, com-

pletely scalarizing these calculations in the source code can obfuscate the fact that a

matrix multiplication is taking place. This can affect the order and batching of load-

/store operations for retrieving the matrix’s elements, and reduce performance by ob-

scuring the code’s purpose from the GPU vendor’s compiler.

70 Chapter 4. Compiler Optimizations for Individual Shaders

Unnecessary Vectorization

In LLVM, operands for addition, multiplication etc. must be of the same type. This

means when adding or multiplying a vector, the operands must both be vectors. In

GLSL, the syntax allows you to multiply both vectors and matrices by scalars:

vec4 v;

vec4 res = v * 0.3;

Since LunarGlass is based on LLVM, it has to vectorize these floating point values

before multiplying them, resulting in unnatural output code like:

vec4 v;

vec4 C_vec4p0p3 = vec4(0.3, 0.3, 0.3, 0.3);

vec4 res = v * C_vec4p0p3;

This unnecessarily increases the number of vector constants and vectorization in-

structions, so may affect the amount of registers or constant storage memory for shaders

if the driver’s compiler is unable to detect this case.

Large Basic Blocks

The conditional flattening and loop unrolling passes result in very large basic blocks

in the generated code. This can put pressure on the register allocators in the GPU

vendor’s compiler.

These control flow reduction passes coupled with the massive number of instruc-

tions the scalarized matrix multiplication generates can lead to huge basic blocks with

hundreds of instructions, which may be difficult for compilers to handle well.

Mobile Shaders

In order to run the desktop OpenGL shaders on mobile devices (which use OpenGL

ES[21]), they were first converted into SPIR-V using glslang[428], and SPIR-V Cross[429]

was then used to generate GLES compatible shaders.

GLSLOpenGL −→ LunarGlass−→ GLSLOpenGL −→

glslang−→ SPIR-V −→ SPIRV-Cross−→ GLSLOpenGLES

Having passed through so many compilation tools means the code picked up slight

quirks and artefacts from each one in turn, and was often very different from the orig-

4.4. Benchmark Characteristics 71

inal desktop GLSL shader. As a result, some of the measurements on mobile may be

impacted by artefacts that are not present on desktop.

4.4 Benchmark Characteristics

For the timing experiments, fragment shaders were chosen from GFXBench 4.0, a

graphics hardware benchmarking suite from Kishonti [8]. It was designed as a standard

way to compare the real-time rendering performance of GPUs from different vendors.

The OpenGL version of GFXBench 4.0 contains several 3D animated scenes designed

to use advanced and expensive rendering techniques to test the GPU’s capability under

heavy loads. There are also several lower-level tests to stress specific aspects of the

hardware individually.

Performance on these benchmarks is important to vendors because they are used

to compare against GPUs from competitors. GFXBench 4.0 was chosen here as a

benchmark suite because it is a well-known, self-contained, cross-platform benchmark

that covers a variety of different situations of varying complexity to test out shader

compilation techniques.

This section will describe the various benchmarks within the GFXBench 4.0 suite,

explain how shaders were extracted, and characterise some aspects of the different

shaders’ complexities.

4.4.1 Benchmarks within GFXBench 4.0

The GFXBench 4.0[8] benchmark suite contains several sub-categories of graphics

benchmarks, including battery life and rendering quality tests. However, the two cat-

egories of benchmarks used as performance benchmarks within this chapter are the

high-level tests, which render complex animated scenes, and the low-level tests which

render simpler scenes designed to stress individual aspects of rendering performance.

4.4.1.1 High-Level Tests

The high-level rendering tests all run real-time animated scenes for around a minute,

and aim to use numerous computationally intensive rendering techniques to push the

GPU hardware to its limit. Each test features both an on-screen and off-screen variant.

The on-screen version renders the final image full-screen at the device’s native monitor

resolution, whereas the off-screen version uses a fixed 1080p image resolution. This

72 Chapter 4. Compiler Optimizations for Individual Shaders

(a) Manhattan (b) Manhattan 3.1

(c) Car Chase (d) T-Rex

Figure 4.3: GFXBench 4.0 high-level benchmarks

ensures that rendering performance results can be meaningfully compared between

GPUs no matter what the resolution of the attached screen is. However, both versions

use identical shaders, so only one version of each test is analysed in this chapter.

Manhattan Originally introduced in GFXBench 3.0, the Manhattan benchmark fea-

tures several helicopters patrolling a ruined sci-fi city-scape at night-time, before even-

tually confronting the giant chrome-plated robot that was the cause of this destruction.

The night-time city scene showcases numerous dynamic lighting effects from glowing

billboards, fire, and searchlights, as well as full-screen post-processing effects such as

bloom[430] and depth-of-field[431].

Manhattan 3.1 Enhancing the original Manhattan benchmark, this version replays

roughly the same scene, but with enhanced visual effects, such as dynamically sim-

ulated lightning and electrical effects using compute shaders and indirect draw calls.

This version also uses high dynamic range (HDR) rendering[432] to give an enhanced

contrast between light and dark areas of the scene, and improve effects such as bloom[433].

4.4. Benchmark Characteristics 73

(a) ALU 2 (b) Tessellation

(c) Driver Overhead 2 (d) Texturing

Figure 4.4: GFXBench 4.0 low-level benchmarks

Car Chase New in GXBench 4.0, this benchmark features cinematic shots of a car

chase between two sports cars on a coastal road around a tropical island. It makes

use of newer shader types such as geometry, tessellation, and compute shaders for nu-

merous complex effects. They also make use of physically-based rendering[434][13],

a lighting technique now common in many modern games, as well as numerous post-

processing effects such as screen-space ambient occlusion (SSAO)[19], lens flare[435][436],

and motion blur[16][17].

T-Rex Originally introduced in GFXBench 2.7, this scene features a motor-biker be-

ing chased by a t-rex through dense jungle vegetation. This benchmark targets an

older version of OpenGL than the rest, so does not make use of as many complex

lighting and post-processing techniques, but still features a post-processing motion

blur[16][17] pass, as well as detailed textures and model geometry.

4.4.1.2 Low-Level Tests

GFXBench 4.0’s low-level tests are designed to stress individual aspects of the render-

ing pipeline. As with the high-level tests, both on-screen and off-screen variants of all

74 Chapter 4. Compiler Optimizations for Individual Shaders

four tests are available, but the shaders used within both are identical.

ALU Designed to focus on the fragment shader workload from the Manhattan bench-

mark, this benchmark repeatedly calculates the dynamic lighting for a single scene

with static geometry.

Tessellation Using simple vertex and fragment shaders, this benchmark is designed

to measure the performance of tessellation shaders. It renders some animated knot-

ted tori using Bézier surfaces, which are tessellated in real-time using tessellation

shaders[437].

Driver Overhead This test is designed to measure the CPU-side overhead of the

vendor’s OpenGL driver implementation when running the Manhattan benchmark. It

renders double the amount of geometry from Manhattan, with additional draw calls,

context switches, and state changes to add additional CPU-side load for the driver to

work around.

Texturing This approximates the texturing load of the Manhattan benchmark by us-

ing numerous layers of overlapping textured quads. These textures are designed to

have the same format and compression status as those in Manhattan to isolate and

measure the GPU’s texture look-up performance.

4.4.2 Extracting Shaders

GFXBench 4.0 is a closed-source application. However, OpenGL requires shaders to

be submitted to the API as GLSL souce-code strings, rather than as compiled binary or

intermediary representations like other APIs (see Section 2.3). This means that if ac-

cessing the graphics API calls would allow these shader source strings to be intercepted

and used to test source-to-source optimization tools on.

As the majority of real-world graphics applications are closed-source software, in-

strumenting and extracting information from such applications is an area that many

graphics systems researchers have had to contend with (see Subsection 3.5.3). A com-

mon solution to this problem is to perform some sort of DLL-injection technique to

intercept the OpenGL API library calls, record them for analysis, and then pass them

on to the real API OpenGL API library. A technique similar to this approach is used

4.4. Benchmark Characteristics 75

in subsequent chapters, but for the shader-only analysis performed in this chapter, a

simpler approach suffices.

As GFXBench 4.0 is compatible with Linux, it can run on a device using an open-

source Mesa graphics driver[438]. Mesa graphics drivers have a built-in functionality

for dumping shader source code from any application running on them by setting en-

vironment variable:

MESA_SHADER_DUMP_PATH =./dump/shaders

By setting the above environment variable, and simply running the full GFXBench

4.0 suite, it is possible to extract the source-code for all shaders within it.

4.4.3 Deduplicating Shaders

Some shaders are re-used between the benchmarks, especially the different Manhattan

versions and the low-level benchmarks that are based on subsets of it, so deduplicating

the shaders is useful to avoid over-representing them in subsequent analysis. When

Mesa dumps shaders, it writes them to files named using a hash of the source-string’s

contents, so an initial deduplication pass can be trivially performed by simply rejecting

shaders with duplicate file names. However, this is not always sufficient.

Many of the benchmark’s shaders follow the “übershader” pattern[439], where a

single file containing numerous graphics techniques is customised via preprocessor di-

rectives to enable or disable sections when generating shader instances. As such, some

shaders are identical apart from preprocessor #define statements, forming families

of similar shaders where some optimizations apply frequently because all include the

same code segment, despite being specialized in different ways elsewhere.

Some shaders that differ only in pre-processor directives are functionally identical,

as some of the preprocessor directives are irrelevant to the actual code. To avoid this

from skewing the benchmark shaders, a more complex process was adopted, consisting

of several normalizing transformations before finally deduplicating the shaders.

GLSLGL −→ preprocess−→ glslang−→ SPIR-V −→ SPIRV-Cross−→ GLSLES

The first part of the transformation pipeline involved several preprocessing steps.

These included adding missing version numbers, removing line-continuations, or re-

naming outdated keywords (e.g. the varying keyword becomes in or out from GLSL

1.30 onwards). Khronos’s glslang[428] compiler was then used to transform the shader

76 Chapter 4. Compiler Optimizations for Individual Shaders

into SPIR-V[37], which was then submitted to SPIRV-Cross[429] to convert it into

GLSL for OpenGL ES.

This had several benefits, such as removing all preprocessor directives, as well as

normalizing the formatting and some of the variable names. This meant that many of

the superficially different but functionally identical shaders now had identical source-

code. After a second hash-based deduplication pass, the number of remaining shaders

was drastically reduced (as shown in Table 4.1), which ensured that all shaders being

experimented now genuinely contained different code.

Of the 165 remaining non-duplicate fragment shaders, 10 of these merely return a

constant value, so are uninteresting for compiler optimization experiments. A further

8 shaders do not work with the LunarGlass compilation tool, so are also excluded

from tests. As such, the final benchmarks used throughout this chapter are the 147

fragment shaders extracted from GFXBench 4.0 that are non-duplicates, non-constant,

and function correctly within LunarGlass.

Throughout the rest of this chapter, all experiments are performed on the shaders

remaining after this deduplication step.

Deduplication Fragment Vertex Tessellation Tessellation Geometry Compute

Method Control Evaluation

None 698 675 13 14 2 40

File hash 570 558 13 14 2 40

GLSL ES 165 120 9 9 2 40

Table 4.1: The number of shaders of each type from GFXBench 4.0 after different

deduplication schemes

4.4.4 Shader Characteristics

Graphics shaders are somewhat different in nature from typical CPU code or other

forms of GPGPU code. Here, the nature of the benchmark shaders is examined, in-

cluding their typical complexity, and their susceptibility to the optimization passes.

4.4.4.1 Static Code Size

The number of lines of code shown in Figure 4.5 can be used as a rough proxy for the

shaders’ complexities. As GFXBench makes extensive use of #define and #ifdef

4.4. Benchmark Characteristics 77

Figure 4.5: Lines of code for GFXBench 4.0 fragment shaders (after preprocessing).

Comments, white-space, lone brackets, and uniform/input declarations are ignored in

these counts.

directives to compose its shaders, the code was passed through a C preprocessor to re-

move these macros. Due to the ”übershader”[439] pattern used by many of the shaders,

this preprocessor pass eliminates many unused lines and functions that were included

in the source code but guarded by macros, allowing the number of executable lines in

the real instantiated shader to be measured more accurately. However, not all unused

functions are eliminated by the preprocessor, as it does not perform a semantic-based

dead-code elimination pass, so the ”lines of code” metric is only suitable as a rough

proxy for complexity.

Figure 4.5 shows that the shaders’ line-counts form a rough power-law distribution,

with very few lengthy shaders, and numerous simpler shaders. Unlike typical C-code,

the most complex shaders do not exceed 350 lines, with the most containing fewer than

50, and some containing a mere handful of simple instructions.

When examining the shaders’ source-code, it is clear that this simplicity extends

beyond line-counts. Complex control-flow is uncommon within these shaders, with

few containing any loops. Even branching instructions are limited, with most shaders

containing no more than 2 if statements if any. This simple control flow often leads to

larger basic blocks than would be found in typical CPU-side code. These blocks often

contain long sequences of arithmetic instructions punctuated with texture look-ups.

This is partly due to the types of algorithms typically expressed within shaders, and

partly due to performance concerns, as branching instructions were historically very

78 Chapter 4. Compiler Optimizations for Individual Shaders

costly on older GPUs, especially if they caused divergent behavior between parallel

shader invocations.

4.4.4.2 Dynamic Cycle Count

Figure 4.6: Sum of all cycles spent on Arithmetic, Load/Store, and Texture operations

on the longest execution path (From ARM’s offline shader compiler).

An alternative method of estimating complexity is to use a cycle-count prediction

tool such as ARM’s offline shader compiler[440] for Mali GPUs. This metric has the

benefit of eliding unused function definitions, and measuring only instructions that

are executed. However, the estimated counts here are platform-specific, so may not

generalize to other GPUs, but can still provide a rough proxy for relative shader com-

plexities.

The toolchain described in Subsection 4.4.3, was used to convert the desktop OpenGL

shaders into mobile OpenGL ES shaders compatible with ARM’s static analysis tools.

Due to certain control flow features such as dynamic cycles, some of the 147 bench-

mark shaders have no predicted cycle-counts, but the majority were statically ana-

lyzable. Shaders featuring these more dynamic control flow patterns typically had

high line-counts too, so would likely have higher cycle-counts than many of the other

shaders if measured dynamically.

The estimated ARM cycle counts for the longest execution path in each shader

shown Figure 4.6 feature a less pronounced power-law-like shape than the line-count

metric in Figure 4.5. Both graphs have long tails with a large number of low-complexity

shaders. These simple shaders offer fewer opportunities for compiler optimizations, as

4.4. Benchmark Characteristics 79

there are only a limited number of lines of code to deal with, and therefore a lower

probability of finding instructions that can be optimized. However, there are still a

sufficient number of many-cycle shaders (including those missing from the graph due

to not being statically analyzable), that further optimizations may prove useful.

4.4.4.3 Uniqueness

Figure 4.7: Number of unique shader variants generated from all possible combinations

of LunarGlass and custom passes.

Another complexity metric relevant to the compilation tools used here is the num-

ber of unique variants generated from different combinations of compiler passes. In

LunarGlass, the selected optimizations are toggled on or off via 8 boolean flags, result-

ing in 28 = 256 possible combinations. However, not all optimizations are applicable

to all shaders, or may produce identical results to other combinations. For instance, a

shader with no loops will generate the same optimized code no matter whether loop

unrolling is enabled or disabled.

By iterating through all 256 combinations of optimizations, and then running a

file-hash based deduplication program, the number of unique shader variations can

be quantified. The number of unique variants generated for each shader is shown in

Figure 4.7.

Compared to the 256 possible optimization variants, the number of unique shaders

generated is significantly lower. Few shaders exceed 10 distinct variants, with the high-

est reaching only 48. As explained above, most shaders are very short and simple, with

low control-flow complexity, which accounts for the fact that some of the optimizations

80 Chapter 4. Compiler Optimizations for Individual Shaders

explored do not apply to the majority of the shaders. The few longer shaders with sig-

nificant control-flow, however, make prime candidates for many optimizations, despite

occurring less frequently. The low number of variants for each shader also has the

benefit of making it tractable to exhaustively explore the full search-space via iterative

compilation.

4.5 Timing Tools and Experimental Setup

In order to explore the performance impact of the compiler optimizations in Section 4.3

on the 147 fragment shaders extracted from GFXBench 4.0 (see Section 4.4), a custom

timing tool was created. The timing tool acted as a micro-benchmark isolating each

individual fragment shader’s performance characteristics from the rest of the execution

environment it was extracted from, and thus allowing smaller changes in performance

to be detected without being overshadowed by other computations within its original

scene.

This timing tool is described in Subsection 4.5.1. Details of how the correspond-

ing vertex shaders were generated for each fragment shader are discussed in Subsec-

tion 4.5.2. Finally, Subsection 4.5.3 explains the hardware used for timing experiments

to give the complete picture of the execution enviroment for the results in Section 4.6.

4.5.1 Shader Execution Enviroment

To accurately time shaders, they were executed in an isolated context. Injecting them

back into GFXBench would cause the performance impact of any single-shader opti-

mizations to be lost in the noise of other shaders and CPU computations. As such, a

custom measurement framework was built to repeatedly render full-screen quads using

the specified fragment shader, and time the execution of each draw-call.

To reduce the overhead of non-fragment shader stages, only full-screen triangles

were drawn. These were clipped to 500*500 pixel quads during rasterization, so only

3 vertex shader calls are required for every 250000 fragment shader invocations. Fig-

ure 4.8 shows how a single triangle can be used to span the full visible screen (from−1

to +1 in both axes), which is a technique which can be used to optimize performance

for any full-screen effect[441]. Performance is gained by invoking the vertex shader

the minimum number of times, avoiding any repeated shading of pixels occurring at

the seams if 2 or more triangles were used to span the screen, and improving data

4.5. Timing Tools and Experimental Setup 81

x

y

−1 0 1 2 3

−3

−2

−1

0

1A

B

C

Figure 4.8: The triangle ABC extends beyond the limits of the screen’s visible area

between −1 and +1, and is cropped down to form a full-screen square

locality for texture look-ups and other data retrieval across the screen[442].

Each frame, 1000 triangles (100 on mobile devices) were drawn, and the draw calls

were timed using queries to GL TIME ELAPSED. Although these queries can be noisy

and introduce profiling overhead, and better vendor-specific instrumentation may be

available, GL TIME ELAPSED provided a simple cross-vendor comparison metric that

was accurate enough for basic performance results. The triangles were drawn back to-

front to ensure that fragment shaders were executed every time, and not elided due to

z-buffer comparisons usually used to avoid such overdraw (see Subsection 3.5.6). The

tests were run for 100 frames, and then repeated 5 times per shader variant. These large

numbers of samples are used to reduce noise from environmental factors, profiling

overhead, and measurement inaccuracies in the timer query API.

As well as the automatically generated minimal vertex shaders described in Sub-

section 4.5.2, the timing tool also initialises all uniform variables and texture bindings

in the target shader. Shader introspection is used to ascertain types and sizes for all

uniform inputs, and assigns them automatically to default values (e.g. 0.5 for floats, or

a colourfully-patterned opaque power-of-two image for texture bindings). This is not

representative of typical shader input, and may circumvent some data-dependent code

82 Chapter 4. Compiler Optimizations for Individual Shaders

paths. More complex techniques such as input fuzzing, or extracting real-world in-

puts from GFXBench via instrumentation may provide better results, but experiments

would take far longer to run due to a combinatorial explosion in input values. As such,

the simple approach of using constant inputs was chosen, as it gives a broad overview

of performance characteristics without the additional implementation complexity and

run-time overhead.

The test harness outputs sequences of draw-call execution times in nanoseconds,

which can be compared to determine whether optimizations improve the code. To do

this, all time-sequences from a particular shader are combined into a single list, sorted,

and then stripped of the top and bottom 5% to remove outliers. Given two sorted lists of

times, the normalized delta between pairs of measurements from each list is then taken

in order to compare peaks with peaks, and troughs with troughs. Taking the mean of

all these normalized deltas gives the percentage speed-up or slow-down for one set of

readings compared to the other, which is displayed in the graphs in Section 4.6.

4.5.2 Vertex Shader Generation

To run a fragment shader, a vertex shader with a matching interface is required. As the

timing harness described in Subsection 4.5.1 operates by rendering full-screen trian-

gles, the vertex shaders from GFXBench are not suitable, as they may distort the tri-

angle’s vertex locations, and could introduce irrelevant overhead. As such, the vertex

shaders for the timing harness are automatically generated to ensure regular full-screen

triangles are generated with minimal overhead, but the interface of the vertex shader is

customized to match the corresponding fragment shader. An example of a generated

vertex shader can be seen in Listing 4.5.

In GLSL, the inputs to a fragment shader may be single-precision floating point

numbers, integers, and vectors or arrays of these[36]. In GFXBench, only floating-

point scalars and vectors are used, so the generation algorithm only considers these

types. First, a simple text-based parser detects the name and type of the input variables

within the fragment shader. Then, when the vertex shader is generated, output vari-

ables of the matching type are inserted and assigned values from several pre-existing

computations. Dynamically computed values are used here to ensure no link-time op-

timization will be able to elide fragment-shader computations associated with these

inputs, which would skew any timing results that would optimize them.

4.5. Timing Tools and Experimental Setup 83

#version 430 core

uniform float tri_depth;

out gl_PerVertex { vec4 gl_Position; };

vec3 colors[3] = vec3[](

vec3(1.0, 0.0, 0.0), // Red

vec3(0.0, 0.0, 1.0), // Blue

vec3(0.0, 1.0, 0.0) // Green

);

//Input variables detected from our target fragment shader

out vec2 out_texcoord0;

out vec3 out_normal;

out vec4 out_prevScPos;

void main() {

vec2 texcoord;

texcoord.x = (gl_VertexID == 2) ? 2.0 : 0.0;

texcoord.y = (gl_VertexID == 1) ? 2.0 : 0.0;

vec4 pos = vec4(texcoord * vec2(2.0, -2.0) + vec2(-1.0, 1.0),

tri_depth , 1.0);

gl_Position = pos;

out_texcoord0 = texcoord;

out_normal = colors[gl_VertexID];

out_prevScPos = pos;

}

Listing 4.5: Example auto-generated vertex shader for a fragment shader requiring

several types of input variables

Each vertex is assigned a unique ID number in the vertex shader invocation, which

is guaranteed to be between 0 and 2 for our 3-vertex triangle. This value can then

be used to produce different values at each vertex, such as its position, colour, or

texture UV coordinates. The values calculated by the example shader in Listing 4.5 are

shown in Table 4.2, which also correspond to the shaded triangle shown in Figure 4.8.

Selecting the UV coordinates to be between 0 and 2 on the extremities of the triangle

in this way ensures that the values will be between 0 and 1 for all the shaded pixels

visible on the screen, and therefore index into the valid region of texture image without

invoking tiling, clamping, or other context-dependent edge-case texturing operations.

As described in Section 2.2, these values calculated at the vertices will be linearly

84 Chapter 4. Compiler Optimizations for Individual Shaders

interpolated across the face of the triangle, which is the cause of the gradient-effect of

the colours in Figure 4.8, which are simply blended between the red, green, and blue

values at the three vertices.

A B C

Vertex ID 0 1 2

Position (x,y) (−1,1) (−1,−3) (3,1)

Texture (u,v) (0,0) (0,2) (2,0)

Colour

Table 4.2: The colour, position, and texture coordinates at each vertex of triangle ABC

in Figure 4.8 as calculated by the vertex shader in Listing 4.5

The vertex x and y positions are generated as shown in Table 4.2, but the z coordi-

nate is assigned using the uniform variable tri depth. This allows the CPU to set a

different depth parameter for each triangle it renders, enabling it to simply order the tri-

angles from back-to-front, ensuring every pixel is overwritten with each draw-call. The

fourth and final coordinate of vec4 gl Position is assigned the constant 1.0, which

is part of a convention ubiquitous within graphics applications[13] known as homoge-

neous coordinates[443], which allows various 3D transformations to be performed via

simple matrix multiplication. As all parts of each vertex’s data are calculated within

the vertex shader, no vertex buffer is required.

The values calculated in Table 4.2 are re-used for all vertex shader outputs to avoid

unnecessary computational overheads. For all vec4 outputs, the vertex’s position is

used. All vec3 outputs receive the RGB colour value, which will be between 0.0 and

1.0 for all coordinates, making it suitable for use as a normal vector as well. All vec2

values are assigned the value of texcoord, ensuring they are between 0.0 and 1.0 for all

pixels within the visible screen region. Floating-point scalars are assigned with the R

value of the RGB colour, and all integer values are assigned with the vertex ID number,

or vectors composed of it.

This scheme for generating default values allows for minimal computational over-

heads, while still ensuring that the computations are dynamic enough not to be constant-

folded into the fragment shader. The values selected here are also likely to be within

the expected ranges for most variables of each type, so will seldom trigger edge-case

behaviours, and tend to execute through typical control-flow paths. Using this scheme,

simple vertex shaders were generated for all 147 fragment shaders from GFXBench

4.5. Timing Tools and Experimental Setup 85

4.0, allowing them to be executed within a controlled benchmarking environment de-

signed to emphasise the performance costs of the fragment shader stage for more ac-

curate measurement.

4.5.3 Hardware

Timing experiments were run on 3 PCs and 2 mobile phones, each with a GPU from a

different hardware vendor.

These devices are referred to throughout this chapter by their GPU vendor com-

pany, but it should be noted that different hardware generations, driver versions, and

operating systems may perform differently even for GPUs from the same vendor.

Desktop

The selected desktop platforms were fitted with identical hardware apart from their

GPUs. Each had 16GB of RAM, an i7-6700K CPU, and Ubuntu 16.10 installed. The

GPUs and drivers chosen for each vendor were as follows:

• NVIDIA - GeForce GTX 1080, with OpenGL 4.5 and NVIDIA proprietry driver

version 375.39

• AMD - RX 480 (8GB), with OpenGL 4.5 and Gallium 0.4 on AMD POLARIS10

(DRM 3.3.0 / 4.8.0-37-generic, LLVM 3.9.1) from Mesa 17.0.0-devel

• Intel - HD Graphics 530 (embedded on the i7-6700K), with OpenGL 4.5 and

Mesa DRI Intel(R) HD Graphics 530 (Skylake GT2) from Mesa 17.0.0-devel

Mobile

GPU timer queries have been available on desktop since 2009 via ARB timer query

[444], and have been integrated into OpenGL since version 3.3 in 2010[445]. How-

ever, they are only available on mobile via the EXT disjoint timer query [446] ex-

tension. As such, the benchmarking phones were selected to support this extension,

allowing the same timing techniques to be used in both mobile and desktop versions.

The mobile hardware selected was an HTC10 (with a Qualcomm GPU), and a

Samsung Galaxy S7 (with an ARM GPU). Both ran Android 7.0, and had the following

GPUs and and CPUs:

86 Chapter 4. Compiler Optimizations for Individual Shaders

• ARM - Mali-T880 MP12 (on Exynos 8890 with quad-code Mongoose CPU and

quad-core Cortex-A53 CPU)

• Qualcomm - Adreno 530 (on Snapdragon 820 with Kryo quad-core CPU)

4.6 Timing Results

This section examines the performance impact of the optimizations from Section 4.3 on

the GFXBench 4.0 fragment shaders (see 4.4) across all target platforms (see 4.5.3).

The effectiveness and applicability of the optimizations is discussed, along with the

performance variability across GPUs.

4.6.1 Overall Performance

Figure 4.9: Average percentage speed-ups across all shaders.

In Figure 4.9, our technique achieves average speed-ups of 1-4% across all shaders.

In contrast, the default LunarGlass transformations give average slow-downs of 0-

0.7%.

For some shaders, optimization leads to more substantial gains. The 30 most im-

proved shaders on each platform (Figure 4.10), show average speed-ups of 4-13%.

Some shaders experience gains as high as 25% (see Figure 4.11).

4.6.2 Best Static Flags

The ”best static” flags in these diagrams are chosen by selecting the flag sequence with

the highest average speed-up per platform for all shaders. These flags are shown in

Table 4.3, and represent the optimal compilation settings to use if you cannot adapt

4.6. Timing Results 87

Figure 4.10: Average speed-up for 30 shaders with the highest average per platform.

Flag

Platform ADCE Coalesce GVN Reassociate Unroll Hoist FP

Reassociate

Div to Mul

Intel - ! - - ! - ! !

AMD - ! - - ! - ! !

NVIDIA - ! - - ! - ! -

ARM - ! ! ! ! ! - -

Qualcomm - ! - - - - ! !

All - ! - - ! - ! !

Table 4.3: Best static flags for each platform: Flags that maximise the average speed-

up across all the benchmark shaders.

on a per-shader basis. This shows that most platforms share similar flag preferences

(ARM being the notable exception).

It is interesting to note that the best flags chosen experimentally are not the flags

enabled by default (apart from for ARM). The default GVN, integer reassociation,

and hoisting passes are detrimental on average despite being enabled by default. The

ADCE pass never changes the output code, so can be safely omitted from the minimal

optimal flag selection. Also, the new unsafe floating point passes generally have a

positive enough impact to be included in the best static set of flags for all platforms

(apart from ARM).

This similarity in optimal flags shows a surprising amount of agreement on which

optimizations are beneficial to most vendors. However, Subsection 4.6.4 indicates that

although vendors share preferences for the presence or absence of optimizations, the

actual performance impact varies.

4.6.3 Per-shader Results

Figure 4.11 shows the performance distributions across all the individual shaders. All

88 Chapter 4. Compiler Optimizations for Individual Shaders

(a) Intel (b) AMD (c) NVIDIA

(d) ARM (e) Qualcomm

Figure 4.11: Percentage speed-up per shader for each platform. Green shows the best

possible performance, red is for default LunarGlass settings, and blue is for the best

static set of flags from Table 4.3

graphs have peaks and troughs on either end of a large near-zero mid-section. This

demonstrates that frequently, optimization has little effect on shaders, but there are

large performance peaks to strive for, and large performance troughs to avoid.

These graphs have large near-zero tails (particularly NVIDIA and Intel), where op-

timizations have little impact. This is due to the relative simplicity of many shaders in

the benchmark suite (see Section 4.4), and the low applicability of many optimizations

(see Figure 4.12).

There are also cases where all optimizations cause slow-downs due to source-to-

source compilation artefacts (see 4.3.3), or instances where loop unrolling and condi-

tional flattening cause huge basic blocks which can strain register allocation code in

the GPU vendor’s compiler.

Despite these negative and near-zero cases, where the optimal strategy is leav-

ing shaders untouched, there are still non-negligible performance gains available for

around 25%.

On AMD, the biggest gains are available from some of the default passes such as

loop unrolling, so the default LunarGlass results are quite close to the optimal speed-

4.6. Timing Results 89

ups.

On platforms such as Qualcomm and Intel, much of the performance boost comes

from the new unsafe floating point reassociation passes, and the default LunarGlass

flags are closer to zero in these situations. This results in a larger blue area on the

graph, because the main performance gains are from enabling these optimizations for

all shaders, so there is less requirement to iteratively tune them.

On ARM and NVIDIA, there are large green areas on the graphs, and small blue

ones (the best-static and default LunarGlass settings are the same on ARM). This in-

dicates that there is more to be gained from better flag selection heuristics on these

platforms, as a single static set of flags does not guarantee significant performance

improvement here.

All the graphs in Figure 4.11 demonstrate that there are both large performance

gains and performance pitfalls of between 10-30%. In many cases, the combination of

boosting the maximum performance with the new custom passes, and eliminating poor

optimizations enables significant improvements over the default LunarGlass results.

4.6.4 Per-Flag Results

Here, each flag’s individual applicability and performance impact on each platform is

examined. Figure 4.12 shows how frequently each flag applies to a shader, and how

often using that flag results in optimal code. Green means it has a positive impact

and denotes the number of times where the flag is frequently in the best performing

codes, red means it has changed the output code while blue denotes the amount of code

unaffected by the transformation

Figure 4.13 shows the performance impacts of each flag when used in isolation.

Due to LunarGlass’s compilation artefacts (see 4.3.3), LunarGlass running with all

optional optimizations disabled is used as a baseline here, rather than the original un-

altered shader. This ensures the individual optimization passes’ impact is measured,

rather than the effect of the code generation artefacts. All the performance violins are

centred close to zero due to all the low complexity shaders where the flags either do not

affect the code (see Figure 4.7), or change the source but do not impact the execution

speed. As such, the extents and general shape of the violins are more interesting to

observe than the mean values.

90 Chapter 4. Compiler Optimizations for Individual Shaders

4.6.4.1 Aggressive Dead Code Elimination (ADCE)

As can be seen from Subfigure 4.12h ADCE in practice never changes the source

output. There is no green region showing it has a positive impact or a red region

showing it has any impact. It should result in exactly zero speed-up in the absence of

noise, and can likely be safely omitted for most real-world shaders. However, this does

not imply that dead code elimination itself has no impact. Trivially dead instructions

get removed regardless of which flags are set, so ADCE’s lack of effect simply means

LLVM’s isTriviallyDead function (plus extensions for GLSL-specific commands

such as discard) are sufficient to remove all the dead code.

4.6.4.2 Global Value Numbering (GVN)

GVN applies mainly to the few more complex shaders with many unique optimization

variants, and generally has negative but near-zero impact. On Intel, its results are very

small, but generally negative. On NVIDIA, its effects are centred around zero, but with

one one example of 5% slowdown dragging its average impact down. Qualcomm, on

the other hand, experiences gains of around 15% in some cases of using this flag, re-

sulting in its average speed-up being positive. Across all platforms, GVN is in optimal

set for less than 50% of the shaders it applies to, so seldom improves code, even in the

few cases where it applies.

4.6.4.3 Reassociate

The integer reassociation pass (Subfigure 4.12c) is rarely applicable, because integers

occur very rarely in GLSL shaders. Most cases where it has any impact are actually

removing unnecessary additions of zero in floating point calculations, rather than op-

timizing integer calculations. This pass produces near-zero impact in most cases, and

makes things worse in a few, especially on NVIDIA where performance dips by 6% in

one case. Integer reassociation almost never occurs in a shader’s optimal set of flags,

largely because its main use cases are eclipsed by the floating point reassociation pass

instead. The low applicability, and chances for slow-down makes this flag one of the

least beneficial in LunarGlass.

4.6.4.4 Floating Point Reassociate

By contrast, the floating point reassociation pass applies to > 50% of shaders, and

frequently occurs in their optimal set of flags (see Subfigure 4.12d). This high applica-

4.6. Timing Results 91

(a) Coalesce (b) Const-Div-to-Mult (c) Reassociate (d) Reassociate2

(e) GVN (f) Hoist (g) Unroll (h) ADCE

Figure 4.12: Fractions of shaders where optimization passes apply, and have positive

impacts. Blue is the total number of shaders. Red is how many the flag has any impact

on the output code for. Green is number where the flag is included for at least half of

the optimal 10% of variants for that shader.

bility gives this pass a wider spread of values. All platforms except ARM agree on its

average positive impact, with peaks of around 5% improvement on desktop platforms,

and peaks of around 25% on Qualcomm. However, its results are not universally pos-

itive, and despite being Qualcomm’s highest performance peak, it is also its lowest

trough at -15%. On ARM, one 20% slow-down drags the average low enough omit

it from ARM’s best static flags. The wide spread of results, and the fact this flag ap-

pears in shaders’ optimal flag sets around 50% of the time, may indicate that although

this pass’s core ideas result in speed-ups, further refinement is needed to reduce slow-

down cases. Dividing this pass into smaller components and using better heuristics

may achieve the performance gains without all the pitfalls.

4.6.4.5 Loop Unrolling

Loop unrolling (Subfigure 4.12g) is seldom applicable (as few shaders contain loops),

but is almost universally positive. On AMD, loop unrolling always improves perfor-

mance, and can result in 35% gains. On ARM, despite some slow-downs, it reaches a

peak of 25%, making it the best flag on ARM as well. On Intel, its effect is near-zero,

with a slightly larger slowdown than speed-up. On NVIDIA, it is also near-zero, but

92 Chapter 4. Compiler Optimizations for Individual Shaders

with a peak of 5% improvement. Qualcomm is the only platform where unrolling is

not included in its best static flags (see Table 4.3), and the 8% drop shown in Subfig-

ure 4.13e may indicate why (although it also achieves gains in some cases too, and

hovers near-zero for the most part). For most shaders, unrolling is one of the optimal

flags on every vendor, and is a high-impact, low applicability transformation.

4.6.4.6 Hoist

The hoist flag (Subfigure 4.12f) applies to around 25% of shaders, but is in the optimal

set for less than half of them. On most platforms, a single pathologically bad case

drags the average down massively. On Intel, it drops 11%, on AMD 7%, on NVIDIA

5%, and on ARM it reaches a massive 35% slowdown. Hoisting sometimes improves

all platforms, but these steep pitfalls indicate it should be used with caution, and good

heuristics for when to apply it would be valuable.

4.6.4.7 Constant Division to Multiplication

Changing constant division to multiplication (see Subfigure 4.12b) is possible in >50%

of shaders, but is only in the optimal set for around half of these. This is likely an op-

timization many vendors perform already, so this flag may have little impact. It might

be a coin-toss whether results are negative or positive (hinted at by its symmetrical

results in Figure 4.13), and could occur in optimal sets because it has a near-zero

impact, so can be toggled on or off safely without slowing down shaders. On Intel

(which has the least measurement noise), its impact is almost zero in all cases. The

results for NVIDA, AMD, and ARM are symmetrical and centred around zero, with

ranges around 4%, 10%, and 10% respectively. However, Qualcomm’s results range

from +25% to −13%. This pass’s wide applicability makes it difficult to tell whether

the graphs show genuine improvements, or merely each platform’s measurement noise

(which the symmetrical results might back up).

4.6.4.8 Coalesce

The coalesce flag applies to almost every shader (see Subfigure 4.12a) because they

frequently insert elements into vectors. Its results span a wide range, with most aver-

ages near-zero, or slightly negative impact (see Qualcomm). However, this is at odds

with its inclusion in the best static flags in Table 4.3, so the largely symmetrical spread

of results may be due to measurement noise again. Occurring in optimal sets for so

4.7. Conclusion 93

(a) Intel (b) AMD (c) NVIDIA

(d) ARM (e) Qualcomm

Figure 4.13: Percentage speed-up from individual flags for each platform

many shaders shows it is frequently favourable to include, although different platforms

have slightly different preferences. NVIDIA prefers it almost always enabled, but on

Qualcomm it is optimal for around 50%, so is less critical.

4.6.5 Summary

Only floating point reassociation, loop unrolling, and hoisting have sufficiently large

impacts to affect shaders in the absence of other passes. Also, as there are few distinct

variants for each shader (see Figure 4.7), the optimal 10% of variants is often only a

single shader, so the optimality in Figure 4.12 may also be somewhat fickle. How-

ever, the larger visible performance trends, and the number of shaders each type of

optimization pass applies to, gives some interesting insight into the nature of graphics

shaders in general, and how frequently different optimization opportunities arise.

4.7 Conclusion

This chapter explored the impact of common compiler optimizations on fragment

shaders across 3 desktop and 2 mobile GPUs. Shaders were extracted from the popu-

94 Chapter 4. Compiler Optimizations for Individual Shaders

lar graphics benchmark GFXBench 4.0[8], and aspects of their complexity and typical

algorithms were characterized. The offline source-to-source compiler LunarGlass[10]

was then used to transform these fragment shaders using different combinations of

optimization techniques. A timing tool was developed to isolate the fragment shader

execution performance by timing the repeated rendering of full-screen triangles. This

tool allowed comparisons between different optimization strategies via iterative com-

pilation, enabling the optimal set of optimization passes to be determined for each

shader.

The work here demonstrates that although shaders undergo vendor-specific com-

pilation, offline source-to-source optimizations can still have significant positive and

negative impacts, which vary across optimizations, benchmarks and platforms.

Chapter 5

Analysis of Potential Optimizations

Within Shader Pipelines

5.1 Introduction

In Chapter 4, the optimizations explored focused on individual fragment shaders ex-

tracted from a single GPU benchmark suite. In this chapter, execution traces are ex-

tracted from commercial PC games, and static analysis of the shaders and the data

flowing into them is performed. This extends the scope of potential optimizations be-

yond individual shader pipeline stages, and explores data flowing between the different

execution stages, and also between the CPU and GPU.

Section 5.2 begins with motivating examples of the different optimizations consid-

ered throughout this chapter, which are explained in more detail in Section 5.3. The

trace analysis and static analysis techniques performed on shaders to detect these op-

timization opportunities are explained in Section 5.4. The games used as benchmarks

are discussed in Section 5.5, with the analysis results on the shaders presented in Sec-

tion 5.6. Analysis of data throughout the whole execution trace given in Section 5.8,

along with some performance results from manually prototyping some of the optimiza-

tions to remove dead data.

The overall aim of the work in this chapter is to explore real-world data from com-

mercial games, detect potential areas for optimizations, and measure how prevalent

these opportunities are. This work is then extended in Chapter 6 with implementations

to exploit and measure the performance benefits of some of the opportunities discov-

ered via the analyses performed in this chapter.

95

96 Chapter 5. Analysis of Potential Optimizations Within Shader Pipelines

5.2 Motivating Example

Figure 5.1: Example vertex + fragment shader pipeline before and after code

specialization. Coloured highlights in the ”before” pipeline show specialization

opportunities. After specialization, these highlight what has changed. transform is

known to be the identity matrix through run-time profiling.

- constant - constant-foldable - movable to CPU

- movable to vertex shader - contains dead elements

This section will demonstrate the different types of specialization and code motion

techniques examined throughout this chapter via the example code in Figure 5.1, which

depicts a simple shader pipeline before and after several specialization and optimiza-

tion techniques were applied. The top two boxes Vert and Frag show the vertex and

fragment shader code before applying any specialization. The arrow between the boxes

denotes that the variable outUV is an output from the vertex shader getting passed as

an input to the fragment shader. The lower two boxes Vert’ and Frag’ refer to the

code after specialization has taken place.

In Vert and Frag, a number of opportunities for specialization are highlighted

with colour-coded boxes. In Vert’ and Frag’ the highlights show the effects of the

specialization. The specialization types examined are as follows:

Constant Uniforms. Consider the upper left hand box Vert and the declara-

tion of transform highlighted in yellow. Run-time profiling has shown that transform

is constant, and is known to be the identity matrix. This means that the declaration can

be removed after specialization as shown in yellow in the lower program Vert’.

Constant-Folding - Knowing that transform is constant and the identity ma-

5.3. Example Optimizations 97

trix lets us avoid the unnecessary matrix-vector multiplication transform * inVert

highlighted in red in Vert. This multiplication is removed after specialization to give

just inVert as highlighted in red in the vertex shader Vert’.

GPU-CPU Code Motion - Calculations using only uniforms can be pre-

computed on CPU. The calculation lightCol * intensity highlighted in green in

the Frag code of Figure 5.1 is an example of this. In the transformed code of in Frag’,

this multiplication is performed on the CPU, and is passed in via the new uniform

lightColTimesIntensity.

Fragment-Vertex Code Motion - Consider the calculation outUV + 0.5

highlighted in blue in the fragment shader Frag. Its value is unaffected by linear

interpolation, so can be moved to the vertex shader Vert’ also shown in blue. This

lets the fragment shader use the raw value of outUV for texture look-ups, potentially

enabling better pre-fetching.

Removing Dead Vector Elements - Considering again the code in Frag, only

3 components of col are used for the fragment shader’s output, highlighted in grey.

Knowing this, the 4th elements of t and lightCol can also be determined to be also

unused. After specialization, all these variables can be changed to vec3s instead, po-

tentially saving registers, uniform buffer space, and texture unit bandwidth as shown

in Frag’.

5.3 Example Optimizations

This section provides more detail about the specialization ideas demonstrated in Sec-

tion 5.2, and explains when they occur and how they might benefit performance. First,

several terms used throughout the chapter will be defined:

Specialization Type: This chapter focuses on the following specialization opportuni-

ties:

• Dead code or data - unused and can be removed

• Movable code - can be transplanted to a different location

• Constant data - knowable at compile time

• Constant-foldable code - computable at compile-time

Code Location: Code can be executed in the following locations:

98 Chapter 5. Analysis of Potential Optimizations Within Shader Pipelines

• CPU - Executed beforehand, and passed to shaders via uniform variables

• Vertex Shader - Executed in parallel on GPU as vertex shaders

• Fragment Shader - Executed in parallel on the GPU as fragment shaders

Data Location: Data can come from the following locations:

• Uniforms; - The same value is passed to all shader instances from the CPU

• Inputs - from a prior pipeline stage. Fragment shaders receive these from

the vertex shader, which receives its inputs from the vertex buffer

• Textures - Read from 2D images

Analysis Type: The following types of analysis are performed:

• Static - examining only shader source-code

• Oracle - an estimated upper bound on specializations

• Dynamic - using online profiling or offline trace analysis to determine data values

Specialization Granularity: Every element of vectors, matrices, and arrays is re-

garded individually. Specializations may be applied to variables of these aggregate

types either:

• Fully - all elements can be specialized

• Partially - only some elements can be specialized, but could be extracted

Now that all the terminology has been defined, the different optimizations will be

discussed in more detail.

5.3. Example Optimizations 99

5.3.1 Dead

Dead code and data elements in shaders can be detected via static source-code analysis

(see Subsection 5.4.1), and provide the following optimization opportunities:

Dead Code: When some elements of an instruction’s output have no impact on the

final result. These may be pruned to reduce calculations, free up registers, or allow

other non-dead elements to occupy their place.

Dead code can be eliminated using only static data. The driver’s shader com-

piler may cull fully dead variables, but pruning partially dead ones is less common.

Element-wise pruning may allow more compact storage e.g. combining two half-dead

vec4s into a single live vec4. However, it must be applied carefully, as it may intro-

duce unnecessary mov instructions or remove useful padding.

Dead Data: Elements in a shader’s uniform, input, or texture interface that are

either never loaded from, or the loaded result is never used. Removing dead data from

a shader’s interface may improve cache usage, and reduce the amount of memory,

communication, interpolation slots, or texture look-ups required.

Eliminating dead data requires more contextual knowledge. Pruning dead uniform

data alters the CPU-GPU interface, and may cause alignment issues, but can reduce

communication and improve caching. Exploiting dead vertex shader inputs also alters

the CPU-GPU interface, but can significantly lower the memory footprint and input

assembly time for meshes.

Eliminating dead fragment shader inputs requires shader linkage knowledge, as

both the vertex and fragment shaders’ interfaces are altered. This can reduce vertex

shader computation and use fewer interpolation slots. Dead texture look-ups can be

culled using only static data. OpenGL drivers perform some of these optimizations

already, such as culling fully dead uniforms, but greater gains are possible by altering

interfaces and exploiting partially dead data.

Most OpenGL drivers will already prune some fully dead uniform data, and al-

low users to query whether uniforms are active before storing data to them. However,

exploiting partially dead data might allow even more compact uniform buffers for re-

duced communication and better caching. Re-packing uniform data requires altering

the CPU-GPU interface, and care must be taken to avoid alignment issues.

The GPU driver’s linker may eliminate some fully dead fragment shader inputs, but

is less likely to exploit partially dead variables. Doing so requires knowledge of which

pairs of vertex and fragment will be linked together, as the interface must be altered on

100 Chapter 5. Analysis of Potential Optimizations Within Shader Pipelines

both ends. Partially dead vertex shader inputs can also be pruned if all shaders using

that vertex buffer are known, and the CPU code can be altered to store the data more

compactly. This may significantly reduce the memory footprint of meshes, and lower

input assembly time.

Fully dead texture loads are culled via dead code elimination, and partially dead

loads can be optimized statically by using GLSL’s swizzle operator on the texture call

to load only some elements. More advanced specializations may involve combining

partially dead textures together, or avoiding loading and binding of dead textures from

the CPU.

5.3.2 Movable

As noted by many prior researchers (see Subsection 3.3.4), performance gains may

be achieved by reducing the rate of certain calculations. Much of that prior work

involved performance-accuracy trade-offs caused by such rate reductions, but there are

also certain calculations that may be moved elsewhere in the graphics pipeline without

incurring additional accuracy trade-offs. Static analysis can be used to detect areas of

shader code which may be transferred to different pipeline stages or to the CPU, which

will typically reduce the rate at which such computations occur.

CPU-Movable: Some code can be moved from GPU shaders to the CPU.

This can shrink the shader’s uniform interface if the pre-computed results are smaller

than the components of the calculation. Pre-computing values on the CPU may also

improve performance if the GPU is the bottleneck. If branch conditions are evaluated

on the CPU, it can select different specialized shader pipelines without GPU branches.

Vertex-Movable: If calculations are unaffected by linear interpolation, they

can be transferred from the fragment to the vertex shader, which is typically invoked

less often as objects usually have fewer vertices than pixels. This can reduce the total

GPU calculations, use fewer vertex-fragment interpolation slots, and eliminate dynam-

ically indexed texture look-ups. This code motion alters the vertex-fragment interface,

and may be detrimental for meshes with many sub-pixel triangles.

Code motion requires knowledge of either the CPU-side code, or the shader pipeline

linkage, as these interfaces must be altered when code is moved. It will not always re-

sult in improved performance, so care should be taken that code movement only occurs

where it will be beneficial. Using dynamic analysis increases the amount of code mo-

tion opportunities beyond those visible using only static data.

5.3. Example Optimizations 101

5.3.3 Constant

Detecting data that is constant at run-time enables further optimizations and special-

izations. In addition to the coloured squares used to label specialization opportunities,

coloured circles are used to represent which type of data is constant:

Uniforms Inputs Textures

Constant Uniforms: Uniforms which always take the same value at run-time.

Uniforms are stored on a per shader-pipeline basis, and are frequently updated, but are

often set to the same value each frame. However, many uniforms remain unchanged

throughout an application’s entire lifetime, especially when viewed on a per-element

basis, so may offer many specialization opportunities.

Constant Inputs: Vertex shader inputs come from the vertex buffer. They are

constant if they have the same value for all vertices in all buffers the pipeline uses

(which is fairly rare). Fragment shader inputs come from vertex shader outputs, which

may be constant at compile-time, or via propagating dynamic data detected at run-time.

Constant Textures: If a texture’s colour channel is the same for every pixel, ele-

ments read from this channel are constant. This is common for fully opaque textures

with constant alpha channels of 1.0. Textures representing a square that is a single

colour are another example where all colour channels are constant.

5.3.4 Constant Foldable

Constant-Foldable: Elements that are compile-time constant or known via prior run-

time analysis can be folded in the compiler to reduce computation. Folding these

constant values into further calculations than those immediately detectable as constant

enables constant data to propagate throughout the entire shader, potentially unlocking

further optimizations of every kind. For vector data that is partially constant, it may

be possible to perform constant folding on only a constant subset of that vector for

any component-wise calculations, and then recombining the resulting elements. Such

partial propagation may not always be desirable, as it may introduce extra data move-

ment instructions, but the positive effects of computation reduction, and any further

optimization steps that are enabled as a knock-on effect may be sufficiently beneficial

that even partial constant propagation may be a desirable option.

102 Chapter 5. Analysis of Potential Optimizations Within Shader Pipelines

5.4 Techniques for Detecting Potential Optimizations

This section describes the analyses used to detect the specialization opportunities ex-

plained in Section 5.3. The resulting static specialization opportunities detected with

these techniques are described in Section 5.6, and the run-time trace analysis of con-

stant uniform data is found in Section 5.8.

5.4.1 Dead Code/Data Analysis

To detect dead elements in the shader code (see Subsection 5.3.1), a backwards-propagating

dataflow analysis can be used. This starts with only final store calls live, and propa-

gates this liveness into every other element used to calculate the existing live ones.

After all the live elements were determined, all others were defined to be dead as can

be seen in Algorithm 1.

Algorithm 1 Dead Element Detection
for all Inst in Instructions do

if Inst is a store, a terminator, or has side-effects then
Set all elements of LivenessInst to Live

Add Inst to WorkList

while WorkList not empty do
Pop Inst from WorkList

for all Op in operands of Inst do
if Inst ∈ { extract, insert, swizzle } then

Set LivenessOp as a permutation of LivenessInst

if Inst is an elementwise operation (e.g. add, multiply) then
LivenessOp←− LivenessInst

if Inst uses all elements of Op (e.g. dot, normalize) then
Set LivenessOp to full

if Any elements of LivenessOp changed then
Add Op to WorkList

All elements not set to Live by now must be Dead

Dead uniform and input data is determined by examining which elements of load

instructions are live, and merging results for any loads from the same address. This let

5.4. Techniques for Detecting Potential Optimizations 103

us see not only which variables were declared but never loaded from, but also which

ones were loaded from but only partially used.

5.4.2 Movable & Constant Code Detection

To statically analyse which code elements were movable to the CPU or the vertex

shader (see Subsection 5.3.2), a forward-propagating dataflow algorithm can be used.

This algorithm also tags which sources different inputs were loaded from, enabling

runtime-constant inputs to be explored via an oracle study in Section 5.7.

Every instruction in each shader is iterated through, and every element of their

return values are tagged one of the following values if applicable:

• U - Loaded from a Uniform

• V - Loaded as Input from a previous shader stage

• T - Loaded from a Texture

• C - Constant

The following rules can then be used to tag data as constant-foldable or movable:

• CC - Constant-foldable

CC = f (C,C)

where CC is the result of an arbitrary function f () whose arguments are all constant.

• UU - Movable from GPU to CPU

UU = f (U,{C|U|CC|UU})
where UU is the result of a function f () whose arguments consist of only uniform,

constant, constant-foldable, or CPU-movable values.

• VV - Movable from fragment to vertex shader

VV ={V|VV}

∗{1|C|U|CC|UU}

+{0|C|U|V|CC|UU|VV}

104 Chapter 5. Analysis of Potential Optimizations Within Shader Pipelines

where the value of VV will be unaltered by linear interpolation between corners of

the triangle, so must be a linear combination of a vertex input and either constants or

uniforms.

All these tags are applied to scalar elements individually, and are permuted when-

ever a vector’s elements are inserted, extracted, or shuffled. This gives a fine-level

analysis, where the same vector may have different elements that are dead, movable,

and constant.

These analysis passes were implemented within LunarGlass[10], an LLVM-based

compiler[427] which handles GLSL[36] shaders, which was also used in Chapter 4.

The custom liveness and movability analysis passes described in Subsection 5.4.1 and

Subsection 5.4.2 were executed after LunarGlass had performed various optimizations

on the source-code such as conditional flattening and loop unrolling. A description of

all the default LunarGlass optimization passes is provided in Subsection 4.3.1. These

passes resulted in code with fewer branches, with most shaders ending up with a single

basic block. This improves the applicability of the per-instruction propagation algo-

rithms described here which do not account for dynamic branching and control-flow

cycles. This also ensures that the specialization opportunities measured here do not

disappear after traditional optimizations such as dead-code-elimination.

5.4.3 Dynamic Trace Analysis

To extract shaders and analyse the run-time behavior of our benchmarks, a modified

version of apitrace[12] was used. Widely used for debugging graphics drivers and

games, apitrace is an open-source tool that injects itself into applications, and traces

all OpenGL API calls. This trace can then be played back and inspected on differ-

ent devices. Because OpenGL drivers require shader source code to be submitted for

compilation, these shaders are recorded as arguments by apitrace. These shaders were

extracted from the trace files, and used for static analysis in Section 5.6. This is similar

to some of the other library-injection based techniques used by other researchers as

described in Subsection 3.5.3, some of which use the same apitrace tool[368].

As well as extracting shaders, custom apitrace passes were also implemented to

analyse which of each shader’s uniform variables were updated, and which remained

constant, as well as which calls to update these values were redundant. This required

tracking which shader source strings were bound to which program objects, and which

locations were assigned to each uniform, and which value was assigned to each uni-

5.5. Benchmark Games 105

form location. By tracking the values of all uniform elements individually, including

individual scalar elements of vector uniforms, it was possible to perform a fine-grained

analysis of which data was constant and which values were repeatedly assigned the

same values in redundant calls. In Chapter 6, the tracking and exploitation of constant

uniform values is the primary focus, so please see Section 6.3 for a detailed description

of the implementation of the tools developed to track this uniform data.

5.5 Benchmark Games

(a) A Bird Story (b) Antichamber (c) Bastion

(d) Broken Age (e) Brütal Legend (f) Cities: Skylines

(g) Costume Quest (h) Counter-Strike: Source

Figure 5.2: Screenshots from the 8 Ubuntu-compatible games selected as benchmarks,

covering a variety of different game-engines and art-styles.

A variety of 2D and 3D Linux-compatible games were used to gauge the behavior

of typical graphics workloads (screenshots in Figure 5.2). The table in Figure 5.3

shows the games used, and their total vertex and fragment shaders to give a rough

idea of their complexity. As explained in Section 2.3, most PC games use only the

Windows-specific DirectX API. As the toolchain developed here uses OpenGL, Linux-

compatible games from before the release of the Vulkan API were selected to ensure

106 Chapter 5. Analysis of Potential Optimizations Within Shader Pipelines

the OpenGL was used within. They represent a cross-section of varying complexity

2D and 3D titles from different engines and games studios.

Antichamber uses the Unreal engine[58], and Cities: Skylines uses Unity[59],

these being the most popular commercial game engines. Counter-Strike: Source uses

Valve’s famous Source engine, which is also available for studios to license. Brütal

Legend and Costume Quest use the in-house Buddha engine, but have different art-

styles. Including both allows us to see whether engines or art-styles have more impact

on shaders’ data patterns. Bastion uses another in-house engine, but with 2D isometric

graphics. A Bird Story uses a modified version of the RPG-Maker, and its simple tile-

based 2D graphics barely utilize shaders. Broken Age is a more complex 2D game in

the open-source Moai engine, using skeletal animations, parallax layers, particles, and

some 3D effects. These games span a wide variety of engines and art-styles of varying

complexities, and are a good cross-section of games available on Linux.

Each game used shaders quite differently. ”A Bird Story”, a simple tile-based 2D

game had 12 different shaders, whereas ”Antichamber”, a minimalistic 3D game using

the heavy-duty Unreal Engine had 3000 shaders.

2D games had a higher percentage of shader instructions as texture look-ups. 3D

games had more instructions in general, and had higher absolute numbers of texture

look-ups, but were proportionally lower than the 2D ones due to the larger amounts of

other more complex lighting calculations.

Short Full Name Engine 2D/3D Vertex Fragment

Name Shaders Shaders

Bird A Bird Story RPG Maker 2D 16 16

Anti Antichamber Unreal 3D 1277 2833

Bast Bastion Custom 2D 7 22

BAge Broken Age Moai 2D 88 70

Brut Brütal Legend Buddha 3D 262 1238

City Cities: Skylines Unity 3D 484 484

CQuest Costume Quest Buddha 3D 150 888

CS:S Counter-Strike: Source Source 3D 3025 503

Figure 5.3: Benchmark games with their abbreviations and numbers of shaders.

5.6. Static Analysis Results 107

5.6 Static Analysis Results

This section presents the results of the shader analysis described in Section 5.4, and

shows how many of the specialization opportunities from Section 5.3 occur in shaders

from typical games. First, static analysis is used to determine that large percentages of

code and data are dead. In Section 5.9, it is shown that removing this dead data can give

up to 6x performance improvements in some cases. Further analysis indicates that there

are small statically available specialization opportunities in shader code, especially in

hoisting conditionals from the GPU to the CPU to avoid branching.

Section 5.7 contains an oracle study to determine the upper bounds of code spe-

cializability if all uniform, input, or texture variables were known constants at compile

time. The results indicate that large code reductions are possible, especially since many

condition variables for branch instructions become constant-foldable.

Based on the results of this oracle study, Section 5.8 examines the actual dynamic

values of uniforms and shows that there is both a large amount of constant values and

redundant update operations.

5.6.1 Static Dead Code and Data

Figure 5.4: % Dead code, and dead uniform and input data. Small portions of code

elements, but sizeable amounts of uniform and input data are dead.

Dead Code

Figure 5.4 shows that up to 13% of all scalar elements across all shaders in a game

can be statically classified as dead code, with 6 / 9% dead on average for vertex/frag-

108 Chapter 5. Analysis of Potential Optimizations Within Shader Pipelines

ment shaders. This means most games have many shaders with a modest amount of

dead code amenable to pruning. This modest amount is not surprising as all fully

dead instructions are already stripped out by a previous compiler pass. This propor-

tion remains consistent between games, indicating that many different shaders have

opportunities for exploiting partially dead vector elements.

Dead Uniform Data

While there is little dead code, there is significant dead data. On average, 21 / 41% of

vertex/fragment uniforms are dead, as shown in Figure 5.4, but there is high variability

among games. Some games’ uniform interfaces are far larger than necessary. Complex

3D games with automatically generated shaders such as Antichamber, which uses the

Unreal Engine[58] can produce pathological cases. Figure 5.5 provides more detail on

a per game basis, and shows that 68 / 97% of Antichamber’s declared vertex/fragment

uniforms are statically dead. The fragment shaders in Counter-Strike: Source also ex-

hibit high proportions of dead uniform data. In contrast, simpler 2D games such as

A Bird Story utilize almost every uniform. Overall, fragment shader uniforms contain

dead data more often than vertex shader uniforms, and their usage varies more be-

tween games. Timing tests in Section 5.9 demonstrate how significant speed-ups can

be achieved by exploiting this dead data.

Figure 5.5: % Dead uniform elements for all individual shaders in each game, exhibiting

wide variability. Simple 2D games have fewer dead elements than larger 3D games

such as Antichamber and Counter Strike: Source.

5.6. Static Analysis Results 109

Figure 5.6: % Dead input elements for all individual shaders in each game. Most vertex

shaders have ∼ 20% dead inputs. Fragment shaders vary more; simple 2D games

show better utilization than complex 3D ones.

Dead Input Data

Input variables are also frequently dead. Figure 5.4 shows that on average, 19% of

inputs from the vertex buffer and 27 % from the vertex-fragment interface are dead.

There is again considerable variation across games as shown in Figure 5.6. Here 26%

of Cities: Skylines vertex inputs and 62% of Antichamber fragment inputs are dead.

This means a significant portion of the vertex buffer could be reduced, lowering the

mesh’s memory footprint and speeding up the vertex input assembly stage before the

pipeline begins.

Inputs from the vertex-fragment interface contain even more dead elements, with

an average of 27%, and up to 62% for Antichamber. If the dead data information were

back-propagated across the vertex-fragment interface, then vertex computations could

be significantly reduced. This could be achieved by modifying the liveness algorithm

in Subsection 5.4.1 to tag all store instructions in a vertex shader with the liveness in-

formation exported from prior liveness analysis of the corresponding fragment shader

in the program pipeline. As well as increasing the proportion of code with partially

dead vector elements to be exploited, this analysis could also shrink the size of the in-

terface to lower the number of vertex-fragment interpolation slots and load instructions

required.

In order to propagate liveness information between shader stages, it is necessary

to determine which vertex and fragment shaders are linked together. Trace analysis

such as that described in Subsection 6.3.2 may be sufficient to determine a unique

110 Chapter 5. Analysis of Potential Optimizations Within Shader Pipelines

shader pair that are bound together. In the case where a vertex shader is reused with

multiple different fragment shaders, the liveness results for all bound fragment shaders

would need to be merged, and the interfaces for all of them would need to be modified.

As such, optimizations propagating liveness information in this way are likely best

suited as internal link-time optimizations within the driver’s compiler, or on a shader

source-code level in rendering engines where unique vertex/fragment shader pairs can

be determined.

To exploit dead vertex buffer-inputs in the vertex shaders, liveness information

needs to be propagated to the CPU-side, as it is the CPU-side OpenGL API calls which

determine the vertex-buffer’s contents. When stripping dead data from a vertex buffer,

care needs to be taken with data alignment, as this can greatly impact the performance

of the input assembly stage and subsequent data loads.

5.6.2 Statically Movable Code

Figure 5.7: % statically movable code for all vertex/fragment shaders - a small percent-

age of all instructions, but many branching could be hoisted to the CPU.

As well as finding dead code elements, static analysis can also determine how much

code is movable to either the CPU, or the vertex shader. Figure 5.7 shows that stat-

ically movable code makes up an even lower percentage of shader instructions than

dead code. On average, 4 / 1% is movable to the CPU for vertex/fragment shaders,

with up to 14% CPU-movable in A Bird Story’s vertex shaders (see Subfigure 5.8a).

An average of 3% (max 4%) is movable from fragment to vertex shaders too. This indi-

cates that statically detecting movable code does little to reduce the overall percentage

5.6. Static Analysis Results 111

of instructions.

(a) Vertex - All instructions (b) Fragment - All instructions

(c) Vertex - Branch/Select (d) Fragment - Branch/Select

Figure 5.8: Percentage of statically specializable shader instructions across all games.

Branches

Although CPU-movable code forms a small overall proportion of shaders, it is signifi-

cantly over-represented in the condition variables for branch and select statements, as

shown in the right-hand part of Figure 5.7. In fragment shaders, an average of 10% of

variables guarding branches or selects can be moved to the CPU, with those in Costume

Quest up to 32% CPU-movable (see Subfigure 5.8d).

For vertex shaders, this is even more pronounced (see Subfigure 5.8c). All condi-

tionals in Brütal Legend’s vertex shaders, and 99% of Costume Quest’s can be moved

to the CPU. However, conditional statements are less common in shaders than typi-

cal CPU code, with the vertex shaders for Bastion, Broken Age, and Counter-Strike:

Source containing none, which results in the high variability in Figure 5.7.

112 Chapter 5. Analysis of Potential Optimizations Within Shader Pipelines

Moving branch conditions from shaders to the CPU might allow fully specialized

pipelines to be selected, thus avoiding GPU branching and removing sections of code.

5.7 Oracle Study on Constant Input Data

If a shader’s inputs were known to be constant at run-time, the amount of specializable

code would increase. Replacing these values with compile-time constants would allow

them to be removed from their respective interfaces in the same way dead data can

be removed, and would provide knock-on benefits from increasing the proportions of

constant-foldable and movable code. This oracle study aims to quantify these effects

by measuring the upper limits of how specializable code becomes if 100% of each

input type was known to be constant.

Figures 5.9 and 5.10 show the increase in all specializable instructions, and in spe-

cializable condition variables in branch and select instructions. The following sections

go into more detail about the effects of constant uniforms, inputs, and textures.

Figure 5.9: Percentage of values that become specializable if all uniforms/inputs/tex-

tures were constants. This causes fewer loads, and increases constant-foldable code.

Much of the vertex shader becomes CPU-movable if vertex-buffer inputs were constant.

5.7.1 Constant Uniforms

Figure 5.9’s left hand column, shows that uniform load instructions make up an av-

erage of 23 / 17% of vertex/fragment shaders, so setting these as constants greatly

reduces loads. Subfigure 5.11a shows that replacing uniform loads with constants ver-

tex shaders in simpler 2D games such as A Bird Story and Broken Age could replace

up to 45% of their code. Fragment shaders experience less variability, with all games’

5.7. Oracle Study on Constant Input Data 113

Figure 5.10: Percentage of branch/select conditions that become specializable if all

uniforms/inputs/textures were constant. Many branches become constant-foldable or

CPU-movable, especially when uniforms are constant.

fragment shaders being reducible by ∼ 15−22% if uniforms were constant (see Sub-

figure 5.11b). Vertex shaders in more complex 3D games have a similar proportion of

code dedicated to loading uniforms as fragment shaders.

There is also a small increase in constant-foldable code – 4 / 1% for average ver-

tex/fragment shaders, and up to 14% in A Bird Story’s vertex shaders (see Subfig-

ure 5.11a). This proportion is relatively small in fragment shaders, with more complex

games allowing generally for slightly more constant foldable-code.

Branches

Despite comprising a small proportion of the overall instruction count, newly constant-

foldable code has a large impact on branch and select instructions, as can be seen in

the left hand column of Figure 5.10. Here, an average of 33 / 10% of conditions can

now be statically determined in vertex/fragment shaders. Subfigure 5.11c shows that

for the vertex shaders in the two Buddha engine games, Brütal Legend and Costume

Quest, 100% of the branches can be determined at compile time, with a further 50% of

the branches in Antichamber’s vertex shaders. This mirrors the proportions of CPU-

movable code in Subfigure 5.8c. A significant proportion of code in fragment shader

branches also becomes constant-foldable if uniforms are constant, especially in the two

Buddha engine games. This has large code reduction possibilities depending on which

branch is statically selected. Subsection 5.8.1 reveals that large portions of uniforms

are constant at run-time, so values close to these oracle results are likely achievable.

114 Chapter 5. Analysis of Potential Optimizations Within Shader Pipelines

(a) Vertex - All instructions (b) Fragment - All instructions

(c) Vertex - Branch/Select (d) Fragment - Branch/Select

Figure 5.11: Percentage of values that become specializable given constant uniforms.

5.7.2 Constant Inputs

Figure 5.12 and the middle column of Figure 5.9 show that constant inputs are rarer

than constant uniforms, but enable a wider range of specializations.

Vertex

If vertex shader inputs are constant, elements can be removed from the vertex buffer

to reduce its memory footprint by an amount proportional to the number of triangles

in the mesh (several thousand for complex models). On average, Vertex shaders’ code

is 16% input load instructions, with up to 40% in Bastion shown in Subfigure 5.12a.

These loads could all be specialized away if they were constant, and would render a

further ∼ 4% constant-foldable. Much of the vertex shader could also be extracted

to the CPU, with 28% becoming CPU-movable on average. Constant vertex buffer

inputs are likely to be rare, as they require all versions of a value to be the same for

5.7. Oracle Study on Constant Input Data 115

(a) Vertex - All instructions (b) Fragment - All instructions

(c) Vertex - Branch/Select (d) Fragment - Branch/Select

Figure 5.12: Percentage of values that become specializable given constant inputs.

all triangles in a mesh. However, in cases where they do occur, they enable many

optimizations.

Fragment

Fragment shader inputs are only constant when data passed out of the vertex shader is

constant, so this occurrence is also rarer than constant uniform data. If this data was

constant, however, fragment shaders would benefit from removing the 13% of instruc-

tion that were input loads, increasing constant-foldability by 4%, and moving 8% of

code to the CPU on average. Removing constant inputs from the vertex-fragment in-

terface would also reduce the amount of linear interpolation required between shader

stages. Subfigure 5.12b shows these values do not vary widely between games, so

link-time optimizations exploiting constant-valued vertex shader outputs to optimize

fragment shaders are likely to give performance benefits in many applications.

116 Chapter 5. Analysis of Potential Optimizations Within Shader Pipelines

Branches

As can be seen in Subfigure 5.12c and Subfigure 5.12d, constant inputs can also have

a significant effect on the condition variables in branch and select instructions. Subfig-

ure 5.8c shows that for several games, vertex shader conditionals are already statically

CPU-movable, so there is less room for improvement using dynamic data. However,

in games such as A Bird Story where this was not the case originally, many branches

become either constant-foldable or CPU-movable if input data is constant. If all ver-

tex buffer inputs were constant, over 70% of conditionals could be constant-folded or

moved to the CPU (100% for most vertex shaders).

Branching in fragment shaders is also heavily impacted by constant input data. An

average of 23% more conditions become constant or constant-foldable, reaching 100%

of conditionals within Broken Age. An average of 18% of fragment shader condition-

als become CPU-movable too, with up to 49% in Brütal Legend. This means around

50% of fragment shader conditions can be specialized, which is a lower percentage

than that of vertex shaders, but may account for more overall, as branches are more

common in fragment shaders.

5.7.3 Constant Textures

(a) Fragment - All instructions (b) Fragment - Branch/Select

Figure 5.13: Percentage of values that become specializable given constant textures.

Textures are only used in a few vertex shaders in Cities: Skylines, so are omitted here.

Consider the final column of Figure 5.9. Here, texture look-ups account for 12%

of fragment shader code on average, which can be omitted if their values are con-

stant. Fragment shaders from simple 2D games such as A Bird Story consist of 30%

5.7. Oracle Study on Constant Input Data 117

texture look-ups, as shown in Subfigure 5.13a. Fully constant textures are rare, but

constant colour channels are not uncommon, and can increase code specializability in

every way. With constant textures, code becomes an average of 6% more constant-

foldable, 9% more CPU-movable, and 4% more movable from fragment to vertex

shaders. This variety of different specialization techniques unlocked by constant tex-

tures have a greater proportional impact on simpler 2D games such as Broken Age,

Bastion, and A Bird Story.

Branches

Constant textures also improve branch specializability as can be seen in Subfigure 5.13b.

10% more conditions become constant-foldable on average, with up to 36% in Bastion.

In A Bird Story, every condition variable could be calculated on the CPU, but this in-

crease is only 14% when averaged across all the games. This has the least impact on

specializing conditionals compared to constant uniform and input data, but still offers

significant potential for branch reduction.

Texture look-ups are seldom used in vertex shaders. Cities: Skylines is the only

game tested that did so, but even then they were so rare that they had a ≤1% impact

on specializability. All significant specialization opportunities that constant textures

provide are contained within fragment shaders.

5.7.4 Oracle Study Summary

Using dynamically constant data can improve code specializability far beyond what

is possible with only static data. Constant input variables provide the most increase

in specialization opportunities, but are the least likely to occur in practice. Constant

textures are more common, and can increase specializable code of each category ex-

amined. However, they only provide benefits to fragment shaders, as textures are rarely

used in vertex shaders. Utilising constant uniform data provides the largest reduction

in load instructions, and can cause large percentages of branch conditions to become

constant-foldable. This is true for both vertex and fragment shaders, and it will be

shown in Section 5.8 that constant uniforms are very common in practice.

118 Chapter 5. Analysis of Potential Optimizations Within Shader Pipelines

5.8 Trace Analysis Results

Based on the previous section’s observations, this section explores to what extent uni-

forms are actually constant in practice, and examines the proportion of redundant API

calls to update them.

5.8.1 Constant Uniform Values

Figure 5.14 shows that an average of 60-90% of uniform variables in each shader

pipeline are constant for almost every game tested. This means there is room in most

games to achieve close to the oracle results for perfect specializability when setting all

uniforms to constant.

Figure 5.14: % uniforms constant at run-time for each game’s shader pipelines. All

games have high proportions of constant uniforms despite their variability

In Figure 5.15, most shaders within each game have at least 50% of their uniforms

constant, so these optimization opportunities are almost ubiquitous among shaders.

This means that real games can achieve large reductions in uniform loading, and large

increases in constant-foldable conditional statements, which allow many branches to

be removed at compile-time if the dynamically constant uniform values are known.

Tools harnessing this constant data for optimizations are explored in Chapter 6.

5.8.2 Redundant Uniform Updates

In Figure 5.14 showed that large percentages of a game’s uniform variables are constant

at run time, and in Figure 5.16 it can be seen that∼ 70−90% of all uniform updates are

5.8. Trace Analysis Results 119

Figure 5.15: % uniforms constant at run-time for each game’s shader pipelines. Games

with fewer shaders such as A Bird Story and Bastion have many constant uniforms for

all pipelines. The majority of every game’s shaders have > 50% constant data.

redundant. This means the CPU-side code calling the update functions in the OpenGL

API is not making use of the constant nature of these values, and is unnecessarily

updating them with the same values many times.

Figure 5.16: % uniform element updates redundant due to setting the same value as

was previously used. For most games, most uniform updates are unnecessary.

For the majority of shader pipelines in each game (except Antichamber), over 70%

of uniform update calls are redundant, as seen in Figure 5.17. This means there are a

large number of redundant OpenGL API calls, which might have a significant perfor-

mance impact in languages such as Java on Android devices, which incurs overhead

120 Chapter 5. Analysis of Potential Optimizations Within Shader Pipelines

Figure 5.17: % uniform element updates redundant for all shader pipelines. In all games

except Antichamber, > 70% of uniform updates for most pipelines are redundant.

for every JNI call. In the worst case, the driver may not catch this redundancy, and

therefore also cause unnecessary CPU-GPU communication.

Uniforms are updated very frequently, sometimes many times per frame, so there

is room for optimization by reducing these frequent redundant update calls. It may

be possible to fully specialize shaders such that all constant values are removed from

the uniform interface, and the remaining dynamically updated uniforms are packed

more tightly together to reduce communication bandwidth and the number of API

calls required to update them. It may even be possible to use this sort of dynamic data

to automatically group frequently-updated uniforms together so that seldom-updated

values can be cached more effectively in a separate block.

5.9 Timing Tests

In order to determine whether some of the specialization opportunities detected would

be able to provide concrete performance improvements, a timing tool was built to

measure speed-ups on shaders before and after transformations. This timing harness

was designed to run individual shader pipelines in an isolated environment to more

accurately measure their performance characteristics without them getting lost in the

noise of having a full rendering trace running.

In Figure 5.5, it can be seen that around 97% of Antichamber’s fragment shader

uniforms are unused, as well as a high percentage of its vertex shader uniforms. Upon

examining these shaders’ source-code, it was discovered that they all declare large

arrays (224-256 elements) of vec4 uniforms, but only tend to use the first 8 or so

5.9. Timing Tests 121

(a) Ubuntu + NVIDIA GTX 1080 (b) Windows 10 + NVIDIA GTX 970

Figure 5.18: Speed-up (X) in mean CPU time per microbenchmark frame when remov-

ing dead uniforms from 60 Antichamber shader pipelines. On a GTX 970 in Windows,

speed-ups were≤ 6.6x, with most∼ 2x. A GTX 1080 on Ubuntu, usually gave 1.2-1.5x.

elements. This means large proportions of the dead uniform data can be removed by

simply re-declaring these arrays using a smaller size (determined by the max array

index used in the source code). Some vertex shaders contain an extra uniform array for

bone transformations used in skeletal animations, which is indexed into via a variable

rather than a constant, so it is not possible to statically determine which elements are

dead, as this would require runtime information on the array indices used in order to

shrink these. However, typical uniform arrays are only ever accessed using constant

indices, so it is simple to determine what the maximum index used is, and truncate the

arrays accordingly.

The first 60 vertex/fragment shader pairs were extracted from a trace of Anticham-

ber, and resized the uniform arrays to remove all trailing dead elements beyond the

maximum index used. This typically meant that 2 arrays per shader pipeline with

around 256 elements were shrunk to around 10 elements each.

The performance impact of shrinking these arrays was measured in a custom timing

harness. This ran a simple rendering loop iterating over 1024 models in a 32*32 grid,

selecting the shader pipeline, vertex attribute bindings, textures, and uniform data to

use for each model, and then rendering them to the screen. Both the CPU and GPU

time were recorded every frame over 100K frames, and the mean of the median 80%

of times was taken to avoid outliers but still capture different phase-change behaviors.

This timing harness is similar in spirit to the isolated timing harness described in

Section 4.5 for fragment shaders, but its scope is expanded to include vertex-fragment

pairs of shaders. Unlike the prior timing tool which drew full-screen triangles with

122 Chapter 5. Analysis of Potential Optimizations Within Shader Pipelines

a fragment shader, the newer timing harness repeatedly rendered a static 3D model

many times on screen to exercise both the vertex and fragment shader stages. As the

model’s position on screen was determined via uniform data in the form of a trans-

formation matrix, the timing microbenchmarks needed to be customized for different

vertex/fragment pairs. This ensured that the position matrix was set correctly for every

vertex/fragment pair, so that the same rendering conditions were maintained for each

timing run. All other uniform values were filled with default values as described in

Section 4.5. Instead of timing the GPU per-draw call execution time, the CPU-side

time was measured per frame to capture any effects of CPU-GPU data transfers that

were reduced by removing the dead data from the shaders.

The speed-ups resulting from removing the dead array elements can be seen in

Figure 5.18, which shows significant performance improvements on two different PCs

with NVIDIA graphics cards. On a Windows 10 PC with a GTX 970, most shaders ran

2x faster, with several around 6x. The speed-ups on an Ubuntu machine with a GTX

1080 were more modest, ranging from 1.2-1.5x.

These microbenchmark results indicate that for some rendering scenarios, pruning

large portions of dead uniform data can have significant performance improvements.

5.10 Conclusion

Throughout this chapter, it has been shown that specializations may be applied to

shaders using static analysis alone, but greater portions of shader code may be special-

ized if dynamic analysis is used to detect values that are constant at run-time. Using

real-world commercial games with a variety of complexities, game engines, and art-

styles, it has been shown that many games have uniform data that is unused (dead),

and that in some scenarios, removing this data leads to noticeable speed-ups. Inputs

from vertex buffers or prior pipeline stages also contain dead data suitable for link-time

optimization, especially if considering individual vector elements.

Through an oracle study, it was shown that detecting constant inputs from textures,

uniforms, the vertex buffer, or prior pipeline stages can allow for many different op-

timizations, as well as removing many data loading instructions. Such optimizations

included constant-folding, and moving code from the GPU to CPU, or from the frag-

ment to the vertex shader (to reduce the rate at which the calculations were performed).

Significant portions of branching instructions were affected by these constant-value

optimizations, especially if they were uniforms.

5.10. Conclusion 123

Significant portions of shader data in the traces of each game analysed was constant

at run-time, meaning that values close to the oracle predictions would be possible in

practice. These constant uniform values also lead to significant redundancy in API calls

being used to update uniforms, highlighting another area of potential improvement. In

Chapter 6, the promising opportunities detected here about constant uniform values are

capitalized on, and measured in the context of full execution traces.

Chapter 6

Optimizations Within Full Execution

Traces

6.1 Introduction

This chapter explores optimizations at the scope of a full execution trace, rather than on

individual shader pipelines. Using the findings from Chapter 5, trace-level optimiza-

tions were implemented to take advantage the large proportion of constant uniform

data detected. The results here cover a wide range of popular games, including those

that utilize uniform buffer objects (UBOs) instead of traditional uniforms (see Subsec-

tion 2.6.3). Instead of timing isolated shaders, whole frames were profiled to more

accurately assess the real-world benefits of these techniques.

One initial optimization explored was to remove all redundant CPU-side uniform

update calls, as these formed significant proportions of uniform updates (see Subsec-

tion 5.8.2). However, removing these calls had a near-negligible effect on perfor-

mance, despite significantly boosting some games’ trace playback speed (see Sub-

section 6.4.1).

Another more successful optimization performed was to collect all constant uni-

form values, and constant-fold them into the source-code of all shaders. The shader

strings submitted to OpenGL were then replaced with these specialized constant-folded

variants, enabling performance increases in several games (see Subsection 6.5.2).

This chapter begins with a discussion of the 17 benchmark games selected based

on their popularity, technical complexity, and variety of game engines and art styles.

Section 6.2 also covers the process used to extract traces from them. Section 6.3 de-

scribes the trace analysis and modification tools developed. It explores the technical

125

126 Chapter 6. Optimizations Within Full Execution Traces

challenges involved in tracking uniform data throughout a trace, exporting it for con-

stant folding, and then matching the modified shader to the correct source-specifying

API call. Section 6.4 explains how to overcome the pitfalls involved in extracting tim-

ing data from replaying traces. These timing techniques are then used to record the

performance measurements reported in Section 6.5, which also covers the percentage

of constant data detected for each new benchmark game.

6.2 Benchmark Games

In this chapter, the number and variety of benchmark games is expanded to ensure that

the initial results from Chapter 5 generalize across various real-world execution exam-

ples. This section aims to introduce this new wider selection of benchmarks, which

are used for all performance measurements in subsequent sections. Subsection 6.2.1

explains how these games were selected, and Subsection 6.2.2 describes the technical

process of capturing execution traces from these games for analysis.

6.2.1 Selecting Games

Steam is the world’s largest PC game retailer, with around 75% of the global market-

share[447]. Of the 233 Linux-compatible Steam games available to me, 17 were se-

lected as benchmarks based on both popularity and technical interest.

Popularity

To determine each game’s popularity, SteamDB[448], an independent game analytics

site, was used. This site provided statistics such as their estimated number of down-

loads over the game’s lifespan (see Figure 6.1), and the peak number of concurrent

players each day (see Figure 6.2). After ranking games according to these numbers to

ensure both popularity and relevancy, the final benchmarks were picked to provide a

variety of engines, art styles, and genres. Compatibility with the analysis tool-chain

was also an important criterion.

6.2. Benchmark Games 127

Figure 6.1: SteamDB’s estimated minimum/maximum downloads (million) per game

Figure 6.2: Peak concurrent players over 24 hours on Jan 08th 2020

Engine Variety

The final selection of games, and their respective engines is shown in Table 6.1. Com-

plex 3D games were favoured over simpler sprite or tile-based 2D games, which are

seldom technically strenuous, so offer fewer opportunities to optimize. As such, only

three popular 2D games were selected. As explained in section 2.4.2, Unity accounts

for over 50% of the game-engine market share, and its cross-platform capabilities make

it a popular choice for Linux-compatible games. To allow for more engine variety, only

4 Unity-based games were selected, each showcasing different genres and art styles.

Aside from the 2 Unreal Engine games, the rest primarily utilize custom-built in-house

game engines from larger studios, which ensures technical variety.

128 Chapter 6. Optimizations Within Full Execution Traces

Game Name Engine/ Developer 2D/ UBOs?

Framework 3D

Terarria XNA Re-Logic 2D -

Middle Earth: Shadow of Mordor LitTech Monolith 3D !

Cities: Skylines Unity Colossal Order 3D -

Rocket League Unreal Psyonix 3D -

Sid Meier’s Civilization VI - Firaxis 3D -

Stardew Valley - ConcernedApe 2D -

Divinity: Original Sin Divinity Larion 3D !

Enhanced Edition Engine Studios

Metro 2033 Redux 4A Engine 4A Games 3D !

Stellaris Clausewitz Paradox 3D -

Surviving Mars - Haemimont 3D !

Euro Truck Simulator 2 Prism3D SCS Software 3D -

Mount & Blade: Warband - TaleWorlds 3D -

Hollow Knight Unity Team Cherry 2D -

Overcooked 2 Unity Ghost Town 3D -

Human Fall Flat Unity No Brakes 3D -

PAYDAY 2 Diesel 2.0 OVERKILL 3D -

XCOM 2 Unreal Firaxis 3D -

Table 6.1: Games used as benchmarks, their game engines, developer name, peak

concurrent players over 24 hours on Jan 08th 2020, and estimated number of owners.

Shader/Pipeline Counts

Figure 6.3 shows the number of vertex and fragment shaders used for rendering in

traces from each game, as well as the number of program pipelines created by link-

ing these shaders together. These statistics provide a rough proxy for technical and

graphical complexity.

Some games have the same number of vertex and fragment shaders as linked pro-

grams. This means that each vertex/fragment shader pair is only ever linked together

into a single unique program pipeline. In games where these counts differ, the same

shaders are re-used between multiple pipeline programs. This may be a single frag-

ment shader used with multiple different vertex shaders, or vice versa, as there is no

6.2. Benchmark Games 129

Figure 6.3: Number of unique shaders and combined shader pipelines.

limit to the number of programs each shader may be linked to.

Whether or not shaders are re-used between different pipelines has implications

when it comes to the constant folding passes later on. Uniforms are associated with

linked pipeline programs, rather than the individual shaders that comprise them. If a

shader is shared between two pipelines with differing sets of constant uniform data, this

shader will need to be split into two different specialized variants - one for each set of

constant uniforms. Adding these additional specialized variants would add complexity

to the implementation, and potentially some performance detriments as well.

Uniform Transfer Method

The final column in Table 6.1 indicates whether or not each game uses uniform buffer

objects (UBOs). UBOs are an alternative method of uploading uniform data in large

batches and re-using the data across multiple pipelines The differences between UBOs

and traditional uniforms are explained more in Section 2.6. As UBOs were not avail-

able within older versions of OpenGL, they are typically only used in newer, more

technically demanding titles. The Unity engine has the capability to use UBOs, but the

traces recorded from the selected Unity games did not utilize them.

130 Chapter 6. Optimizations Within Full Execution Traces

Summary

The information in the above tables shows that the games selected are both popular and

technically diverse, all having at least 0.5 million downloads and thousands of recent

players. They come from a variety of developers and game engines, and are a mix

between 2D and 3D games. The number of shaders and programs in each game varies

drastically, as does their uniform transfer method, which indicates that the benchmarks

cover a variety of technical complexities and implementation techniques. These games

also cover different genres, art styles, levels of graphical realism, and camera angles,

including top-down strategy games, first-person shooters, and 2D side-scrolling plat-

formers, so cover a wide range of graphical styles too.

6.2.2 Capturing Traces

This section describes the procedure for capturing game execution traces, along with

the issues encountered and workarounds developed. For each game, the aim is to cap-

ture a short gameplay trace showcasing the main mechanics and typical levels, scenes,

characters, and visual effects to gather realistic data patterns. These were captured us-

ing apitrace[12], an open-source tool capable of recording OpenGL function calls into

a compressed trace file that can later be replayed or analysed.

Tracing Games with apitrace

The apitrace tool is designed to capture traces from applications by injecting itself as

a replacement for the OpenGL API library. On Linux, it uses LD PRELOAD to override

symbols for each of the system’s OpenGL API functions. It provides a wrapper around

OpenGL, which records each function call before passing it on to the real library to

execute. For simple applications, this can be achieved using the command:

apitrace -o ./outputTrace ./programToTrace

Commercial games are often less simple to trace. Some lack a single easily-

executed file, instead offering a ”splash screen” which opens up first to allow users

to set various options on a simple GUI before the main game opens up. The presence

of splash screens can cause difficulties tracing applications, as apitrace may fail to latch

on to the real game process if it attempts to attach itself to the splash screen’s process

first.

6.2. Benchmark Games 131

The Steam Runtime Environment

Some games also rely on being launched via Steam. Steam is software which allows

users to buy and manage a library of PC games (see Figure 6.4). It accounts for 75%

of the global PC-gaming market-share[447]. Many games are tightly integrated with

Steam services such as multiplayer matchmaking, in-game achievements, or collectible

digital items, and may fail to launch if these service APIs are unavailable.

(a) Store (b) Library

Figure 6.4: The Steam client interface where the majority of PC games are bought and

launched from. Steam accounts for around 75% of the global PC market.

Linux-compatible Steam games often rely on Steam’s common runtime environ-

ment, which provides libraries for graphics, controller support etc. This enables de-

velopers to target specific library versions that are certain to be pre-installed on the

player’s PC. For some games, setting up this run-time environment is sufficient to

launch them outside of the Steam client. In these cases, apitrace can be called in con-

junction with Steam’s environment set-up script:

apitrace -o ./outputTrace "∼/.steam/steam/ubuntu12_32/steam -
runtime/run.sh ./programToTrace"

Some games may require this command to be launched from within the game’s

folder in ∼/.steam/steam/steamapps/common/, as the directories containing the

game’s data files may be defined relative to the directory executing it. Care must also

be taken that the correct 32 or 64-bit version of apitrace is used to match the game

being traced, or else injecting apitrace’s OpenGL wrapper library will fail.

132 Chapter 6. Optimizations Within Full Execution Traces

Steam’s Debugger Interface

Many 64-bit games also can be traced reliably directly via Steam using its built-in

interface for injecting debugger programs as a game launches. The Steam client is

32-bit, so does not interfere with apitrace’s library injection for 64-bit games. Steam

offers a command-line option to supply a DEBUGGER environment variable to initialize

a debug program before running games. An apitrace command can be provided as

a DEBUGGER, and Steam will automatically call it when launching the game with the

correct library paths and Steam capabilities, making it more likely to launch without

crashing.

When tracing via Steam, all Steam processes must be closed before running the

launch command. This ensures that apitrace can hook into the game’s process cor-

rectly. The Steam client can launch games via the command line by using their product

ID, which is publicly available in the URLs of the games’ store pages. For example,

the command to trace Hollow Knight via the Steam client is:

DEBUGGER="./apitrace trace -o ./outputTrace" steam steam://

rungameid /367520

One caveat to this process is that when the Steam client is closed, the recorded trace

becomes corrupted, and crashes any tools that try to read it. To avoid this, the trace

file can be copied to a different location before the client is closed. This problem may

be due to serialization of multiple traces into a single output file, so another possible

workaround is to omit -o ./outputTrace from the command.

Summary

For the 17 benchmark games selected, a combination of the above techniques was

sufficient to extract traces, with Steam’s DEBUGGER interface being the most reliable

method for the majority of games. Several other popular games were initially selected

as benchmark candidates, but either crashed when apitrice attempted to inject itself, or

recorded traces with severely corrupted visuals. DOOM and DOTA, for example, both

use advanced texture compression techniques that apitrace is unable to replay reliably,

so were not included in case these defects affected performance results. However, the

majority of games were able to be traced correctly either via the Steam client, or using

the external environment setup scripts described above.

6.3. Tools Developed 133

6.3 Tools Developed

To determine whether shader specialization using constant uniforms is able to speed

up real-world software, execution traces from numerous games were recorded, anal-

ysed, modified, and timed. This section describes the analysis and modification tools

developed to gather these results.

The open-source apitrace[12] framework was used extensively for capturing and

timing traces, and was also extended to include custom transformation passes. The

LunarGlass[10] offline shader compiler was also extended to modify shaders extracted

from these traces, allowing the constant uniform data to be folded into them. The fol-

lowing sections describe these custom apitrace and LunarGlass passes in more detail,

and various implementation details required to track whether uniform data remains

constant throughout an OpenGL program.

6.3.1 Overview

Figure 6.5 provides a rough outline of the different phases shaders must go through in

this chapter’s experiments. The initial apitrace-based analysis stages require keeping

track of the graphics programs/pipelines created, and source-code for each shader at-

tached to each pipeline. The details of tracking this information throughout a trace are

described in Subsection 6.3.2.

Once shaders and pipelines are tracked, information about their associated uni-

forms can also be recorded throughout the trace. The process for tracking traditional

uniform data is described in Subsection 6.3.3, and the more complex process of track-

ing data stored in uniform buffer objects (UBOs) is described in Subsection 6.3.4.

After the initial analysis passes have determined which uniforms remain constant

throughout the lifetime of the trace, this information is exported and passed on to

LunarGlass-based shader compilation tools to specialize the shaders. Subsection 6.3.5

explains how uniform data recorded from traces can be matched to uniforms within

shader source-code, and then used for extensive constant-folding within the custom

LunarGlass pass. It also describes several additional optimizations made possible when

constant uniform values are known.

Once these specialized shaders have been generated using the information about

constant uniforms, they can then be re-inserted into a the trace file, and the execution

speed can be timed to determine how beneficial this specialization process can be. This

timing and measurement phase of the process is covered in Section 6.4.

134 Chapter 6. Optimizations Within Full Execution Traces

Shaders created

+

V F

Program linked

P V F

Uniform values repeatedly updated

P V F

Uniform Value Const?

tMat (0.1, 0.0, ...) ✓

fvec (1.5, 0.1,, ...) ✗

Export uniform data and shaders

+

Uniform Value Const?

tMat (0.1, 0.0, ...) ✓

fvec (1.5, 0.1, ...) ✗

V F

Generate specialized shaders

V* F*

Inject modified shaders into trace

to measure execution time

1: Analyze

2: Specialize

3: Measure

Figure 6.5: The shader life-cycle is tracked during trace analysis to detect constant

uniforms. Specialized shaders are then generated, re-injected into the trace, and timed.

6.3. Tools Developed 135

6.3.2 Tracking Shaders and Programs

Tracking OpenGL shader and pipeline state forms the backbone of many of this chap-

ter’s apitrace analysis and modification passes. This requires recording not just the

current OpenGL state, but its history as well. Doing so allows constant uniforms to be

detected, and source-strings to be associated with shaders, even after deletion.

Program Objects

One critical piece of OpenGL state is the current ”program”, and the shaders which

comprise it. OpenGL follows a single-threaded design philosophy, so a single active

current program is assigned as global state, which then determines which shaders are

to be used in subsequent draw calls.

In OpenGL terminology, a program is an object that can have several shader objects

attached to it. Once the attached shaders are compiled, the program can be linked

together, and represents a single pipeline. Although some games eschew programs in

favour of separable shader pipelines, the majority still use monolithic program objects.

To simplify the analysis passes, only games with linked programs are considered.

Reusable Object IDs

Most OpenGL objects have a single integer identifier, which represents a unique object

in the current OpenGL state. However, these identifiers do not remain unique through-

out the entire trace lifetime. When a shader is deleted, its ID is marked as available for

reuse, so any subsequently created shaders may be assigned the same ID.

In a real-time OpenGL driver, only the current state is important, so this ID reuse

is not a problem. However, for the analysis passes required in this chapter, each shader

must be uniquely associated with a single shader string. As such, it is necessary to

track a separate globally unique identifier for each shader, in addition to the OpenGL

ID used to refer to it by function calls.

Figure 6.6 demonstrates two fragment shaders reusing the same OpenGL ID after

one is deleted. Separate records are stored with different globally unique IDs, despite

the shared OpenGL ID. Each record contains information such as the shader’s source

string, the number of draw calls it was used with, and whether it has been compiled.

A new record struct is generated for every glCreateShader call irrespective of the

shader’s OpenGL ID, ensuring identifier reuse never causes data to be overwritten.

136 Chapter 6. Optimizations Within Full Execution Traces

ID = Frag 0

openGL ID = 0

compiled = ✓

next = NULL

prev = NULL

num draws = 0

src = "strA"

ID = Frag 1

openGL ID = 0

compiled = ✓

next = NULL

prev = NULL

num draws = 0

src = "strB"

f0 = createShader(FRAG)

shaderSource(f0, "strA")

compileShader(f0)

deleteShader(f0)

f0 = createShader(FRAG)

shaderSource(f0, "strB")

compileShader(f0)

Figure 6.6: Two independently created fragment shaders happen to re-use the same

OpenGL ID after one is deleted. Separate structs are generated when createShader

is called, allowing both versions to be recorded despite the shared OpenGL ID.

Shader Object Lifecycles

This chapter’s analysis passes require shaders to be associated with a single string of

source code. This approach differs from OpenGL’s conception of shader objects, where

multiple source strings may be assigned throughout a shader’s lifespan. The same

shader object may be compiled, attached, and linked into a program, and then detached,

recompiled with new code, and reused in an entirely different program object. In

some games, a shader’s source string may also be overwritten with a small placeholder

value after compilation to free up memory. Figure 6.7 illustrates some of the possible

permutations of events that shaders may undergo, which can complicate tracking.

These scenarios require careful tracking to ensure the correct source string is as-

sociated with each shader record. Tracking the API call that specified each shader

source string is necessary to allow shaders to be replaced with modified variants for

the experiments in Section 6.5.

Tracking Shader Source Strings

To account for the fact that OpenGL shader objects may be given multiple source

strings throughout their lifespan, separate records are generated every time a source

string is specified, even when assigned to the same shader object (see Figure 6.8).

New shader records are created under two scenarios. Firstly, as in Figure 6.6, a

new record is initialized when glCreateShader is called. Initially, the source string

value is NULL, and it can be initialized with a call to glShaderSource.

The second trigger for initializing a new shader record, is when glShaderSource

is called for a shader with a non-NULL source string (as in Figure 6.8). This new

6.3. Tools Developed 137

source compile attach P link P detach P

(a) Common case: shader is compiled before attaching to program P and linking it

source attach P compile link P detach P

(b) Shader may also be compiled after being attached to program P

source compile attach P link P detach P source

(c) Shader may be assigned new dummy source string to free up memory after it is detached

src compile attach P link P detach P attach Q link Q detach Q

(d) Same shader may be detached from P and reattached to a different program Q

src compile attachP linkP detachP src2 compile attachQ linkQ detachQ

(e) Shader object may be provided new source code and compiled again for a new program
6

Figure 6.7: Example shader lifecycles tracked throughout traces. Many combinations of

assigning source strings, compiling, attaching, linking, and detaching must be handled.

record copies the previous shader’s OpenGL ID, but tracks separate values for its

source string, number of draws, and compilation status.

Each record represents a snapshot of the same shader object at a different point in

time, rather than independent shader objects that happen to reuse the same OpenGL ID

as in Figure 6.6. To avoid losing this information, a doubly linked list of shader records

is created with each entry pointing to the next and previous snapshots in history (see

Figure 6.8).

ID = Vert 0

openGL ID = 1

compiled = ✓

next = Vert 1

prev = NULL

num draws = 0

src = "strC"

v1 = createShader(VERT)

shaderSource(v1, "strC")

compileShader(v1)

shaderSource(v1, "strD")

compileShader(v1)

shaderSource(v1, "strE")

ID = Vert 1

openGL ID = 1

compiled = ✓

next = Vert 2

prev = Vert 0

num draws = 0

src = "strD"

ID = Vert 2

openGL ID = 1

compiled = ✗

next = NULL

prev = Vert 1

num draws = 0

src = "strE"

Figure 6.8: A single OpenGL vertex shader object is repeatedly assigned new source

strings and recompiled. A linked list of three separate structs records the history of

every shader source string in case it is ever linked into a program. A new record is

generated when shaderSource is called for shaders with pre-existing source strings.

138 Chapter 6. Optimizations Within Full Execution Traces

Tracking Program Objects

Program objects are more straightforward to track, as although their OpenGL identi-

fiers may be reused, the program objects themselves tend not to be redefined after they

are linked. The games examined here only ever link together program objects once, so

no historical data about previous linkage states is tracked. As such, it is sufficient to

simply generate a new record with a globally unique ID whenever glCreateProgram

is called, similar to the fragment shader example in Figure 6.6. This handles the case

where the same OpenGL ID refers to different program objects after one is deleted,

and the ID number is re-used.

Attaching and Linking Shaders to a Program

The most important state recorded for a program is the list of linked shaders which

comprise it, and the uniform values associated with it. Although programs in the games

examined are only ever linked once, shaders may be attached and detached freely, both

before and after linkage. As such, it is necessary to track not only the shaders linked in

the program, but also those currently attached to it. An example of the state recorded

for a program object is shown in Figure 6.9.

p0=createProgram()

attachShader(p0,f0)

attachShader(p0,v1)

linkProgram(p0)

useProgram(p0)

drawArrays(. . .)

drawArrays(. . .)

ID=Vert2

openGL ID=1

compiled=✗

next=NULL

prev=Vert1

num draws=0

src="strE"

ID = Prog0 openGL ID = 0

uniforms = . . . ubos = . . .

num draws = 2

ID=Frag1

openGL ID=0

compiled=✓

next=NULL

prev=NULL

num draws=2

src="strB"

ID=Vert1

openGL ID=1

compiled=✓

next=Vert2

prev=Vert0

num draws=2

src="strD"

ID=Frag1

openGL ID=0

compiled=✓

next=NULL

prev=NULL

num draws=2

src="strB"

Attached Shaders Linked Shaders

Figure 6.9: A program attaching and linking the shaders from Figure 6.6 and Figure 6.8.

Note that although Vert2, the current version of v1 was attached, the most recent com-

piled version Vert1 is used when the program is linked. Attached and linked shaders

are separate lists, and only linked shaders matter during draw calls or uniform updates.

Linked shaders and attached shaders must be stored in two separate lists. Linked

6.3. Tools Developed 139

shaders are the only important values for all future analysis passes, and are fixed when-

ever glLinkProgram is called. The list of currently attached shaders is transient, and

is only retained to ensure the correct shaders are recorded when the program is linked.

To determine which shaders are linked, it is insufficient to simply copy from the

attached shaders list into the linked shaders list. The shader records in the attached

list all represent snapshots of the shader state at a specific point in time. As such, it is

necessary to traverse their history pointers to find the most recently compiled version.

First, the chain of next pointers is followed until the most recent version is se-

lected. Then, the list is traversed backwards via the prev pointers until a compiled

shader is detected. This allows shader source strings to be tracked, even if the same

object is overwritten and recompiled multiple times. This compiled version of the

shader is placed permanently in the program’s list of linked shaders, and remains un-

altered, even if the shader is detached and recompiled again.

State-Tracking Example

A demonstration of this shader history traversal is shown in Figure 6.9. The vertex

shader v1 was generated using the sequence of instructions in Figure 6.8. As such,

its shader source at the time it was attached to program p0 was the uncompiled string

"strE" (stored in the shader record Vert2). However, when glLinkProgram is called,

the linked list of historical shader states is traversed (shown in Figure 6.8), and the

shader record Vert1 is determined to be the most recent compiled version of vertex

shader v1. As a result, Vert1 is placed in the list of p0’s linked shaders, despite Vert2

being the version that was initially attached.

All per-program state such as uniform and UBO information is associated only

with source strings from linked shaders. Likewise, when the two draw calls are issued

in Figure 6.9, only the num draws counters for the program and linked shaders are

updated. Despite the attached shader Vert2 being a future version of Vert1, only

Vert1’s counter is updated, as these historical snapshots represent different shader

source strings that may be used independently. Many shaders may be compiled and

never used, so this draw call tracking mechanism allows for all unused shaders to be

excluded from analyses such as the graph in Figure 6.3.

140 Chapter 6. Optimizations Within Full Execution Traces

6.3.3 Tracking Uniform Data

The purpose of all the shader and program state recording in Subsection 6.3.2 is to be

able to track uniform data assigned to a program, and then associate it with a shader

source string. Uniforms are always associated with a single program object, and their

values are retained even when the program is not currently active.

Uniform Locations

Uniforms can be assigned to variables within shaders using unique integer ”location”

identifiers determined by the compiler, as explained in Subsection 2.6.2. This enables

optimizations such as eliding locations of uniforms removed by dead code elimination,

or packing data by interleaving uniforms from different shaders from the same pipeline.

Developers must use glGetUniformLocation(progID, name) to query uniform

variable locations before assigning them. Valid uniforms return a positive integer, and

invalid uniforms, such as those elided by the compiler, will return −1. OpenGL traces

record all these location queries, and this chapter’s analysis passes utilize them to infer

the existence of uniforms and determine their names.

Mapping Uniform Locations to Names

All OpenGL functions which assign uniform value must refer to each uniform using

its location. However, in order to specialize the shader’s source code, the name of each

uniform must also be tracked (see Subsection 6.3.5). Textual name strings provide a

unique identifier for variables that is cross-compatible between the apitrace analyses,

and the LunarGlass optimization passes. Tracking the name string value of the name

argument from calls to glGetUniformLocation can generate a map between uniform

names and locations, as shown in Figure 6.10.

Tracking Aggregate Uniforms

Aggregate uniform types such as arrays and matrices are common within OpenGL,

especially those containing multiple vec4 elements. Before UBOs were created, vec4

arrays were commonly used to update large blocks of uniform data in a single call, and

this technique remains common in many engines. As seen in Figure 6.10, arrays and

matrices may span multiple locations, typically one per vec4-sized element.

OpenGL’s specification does not guarantee that consecutive array elements will

be assigned consecutive locations. As such, conformant applications must query the

6.3. Tools Developed 141

Prog0 Uniforms:
Name Loc Idx

tMat 0 0

2 2

fvec 4 0

tex 5 0

0 = getUniformLocation(p0, "tMat")

2 = getUniformLocation(p0, "tMat[2]")

4 = getUniformLocation(p0, "fvec")

5 = getUniformLocation(p0, "tex")

Figure 6.10: Mappings between uniform names and locations generated by tracking

getUniformLocation calls. Note that arrays or matrices may span multiple locations.

location of every individual array index before assigning values to them. In these

cases, simple string parsing of the queried uniform’s name is sufficient to build a map

between sub-indices of named uniforms and their locations.

Unfortunately, not all games conform to this aspect of the OpenGL specification.

Some non-conformant games assume that array indices for vec4 arrays are consec-

utive, and simply query the first index and then extrapolate all subsequent locations.

In these cases, heuristics during value assignment are required to associate previously

unseen uniform locations with the correct variable and index information.

Tracking Constant Uniform Values

To track which uniforms remain constant throughout a trace, their values must be

recorded, along with the number of times they are updated. Uniform updates use

typed functions such as glUniform4fv, which specifies a pointer to (potentially mul-

tiple) floating-point vec4 elements to upload to the specified uniform location. For

every uniform, a list of all currently assigned values is stored. This list has an associ-

ated type and stride based on the function used to update it (e.g. glUniform4fv for

floating-point vec4s, or glUniform2iv for signed integer ivec2s). Using these strides

and the list of per-sub-index uniform locations, a single array of scalar values can be

maintained for every uniform, as shown in Figure 6.11.

To determine whether a uniform remains constant, a set of update counts is tracked

alongside its current value. Whenever the uniform is updated, its current and prior

values are compared, and each element’s update count is increased whenever different

values are assigned. After the entire trace has been analysed, all elements that remained

constant will have an update count of either 0 or 1.

142 Chapter 6. Optimizations Within Full Execution Traces

Prog0 Uniforms:
Name Stride Values Updates

tMat 4 1, 1, 1, 1, 1 1 1 1

0, 0, 0, 0, 0 0 0 0

0, 0, 0, 0, 0 0 0 0

4, 0, 0, 4 1 1 1 1

fvec 3 0.5 0.8 0.9 1 2 2

tex 1 8 1

uniform4iv(0, {1, 1, 1, 1})
uniform4iv(3, {4, 0, 0, 4})
uniform3fv(4, {0.5, 0.6, 0.7})
uniform3fv(4, {0.5, 0.8, 0.9})
uniform1iv(5, {8})

Figure 6.11: Uniform values and their update counts tracked via glUniform. . . calls.

Note the differing per-element update counts for fvec in location 4, and how location 3

is inferred to be an element of tMat despite not being queried in Figure 6.10.

Uniform Tracking Example

Figure 6.11 provides an example of uniform update counts being tracked. The uniform

fvec in location 4 is assigned two different vec3 values, but the first element of both

is 0.5, so this only counts as being updated once. This allows the first element of fvec

to be treated as a constant value of 0.5, and used in fine-grained constant folding, even

though the other vector elements change throughout the trace.

For fully OpenGL-conformant games, Figure 6.10’s location map is sufficient to

assign values to the named uniforms in Figure 6.11. However, some games assume

that vec4 array elements are assigned consecutive uniform locations, and only query

the array’s base location. In Figure 6.11, location 3 is assigned a value, but was never

queried by glGetUniformLocation. To account for this case, updates to previously

unseen locations are assumed to be assigning values to sub-indices of the nearest avail-

able uniform. In this case, the closest uniform whose base location is below 3 is tMat.

Using tMat’s base location of 0, the stride of 4 inferred from the glUniform4fv call,

and assuming consecutive locations for array indices, it is possible to resize tMat’s list

of values. Location 3 is mapped to sub-index 3 of tMat, and values are copied in. All

intermediary indices in the value and update-count arrays are filled with zeroes.

Using these techniques, values and update counts for every scalar element of every

uniform variable can be tracked throughout the lifetime of the trace. Both the final

uniform values and their update counts can then be exported to LunarGlass to allow

it to perform constant-folding on a per-element basis for uniforms with the matching

name (see Subsection 6.3.5).

6.3. Tools Developed 143

6.3.4 Tracking UBOs

Unlike the traditional per-program uniforms described above, Uniform Buffer Objects

can contain arbitrary binary data, and may be read by multiple different programs

(see Subsection 2.6.3 for details). Determining constant values within UBOs for each

program requires tracking two different sets of data - the contents of all buffers, and

the values the program reads from bound buffers during draw calls.

Identifying Buffers

OpenGL buffers use a similar numerical ID scheme to programs and shaders. Only

the values read from these buffers can impact specialization, so the buffer contents can

be treated as transient state. Thus, using OpenGL buffer identifiers is sufficient, and

globally unique IDs or historical snapshots of buffer contents are not required.

OpenGL functions identify buffers using two methods. Firstly, named buffers may

be identified using their OpenGL integer ID. The second method refers to a series

of global ”slots” that buffers may be bound to. Each slot has an enum identifier for

the type of array bound to it, such as GL ARRAY BUFFER for per-vertex attributes or

GL UNIFORM BUFFER for UBOs. Although it is possible for the same buffer to be bound

to multiple different types of slot, the benchmarks examined generally did not reuse

UBOs with different binding types. Both name and slot-based buffer identification

methods may be used interchangeably.

Tracking Buffer Contents

Only the buffers’ current state must be tracked, which requires handling several sce-

narios:

• Creating buffers via glCreateBuffers or glGenBuffers

• Binding buffers to the correct buffer slots in global state via glBindBuffer

• Resetting buffer contents via glBufferStorage or glBufferData

• Rewriting subsets of the buffers via glBufferSubData

• Copying between buffers via glCopyBufferSubData

• Clearing buffer contents via glClearBuffer*

144 Chapter 6. Optimizations Within Full Execution Traces

• Memory mapping buffers via glMapBuffer or glMapBufferRange

• Updating memory-mapped regions via fake memcpy calls in the trace

Once the correct buffer has been selected, its binary contents can be tracked by

intercepting all the above buffer update scenarios, and copying, creating, or deleting

various sections of a transient copy of the buffer contents in memory.

Binding Buffer Sub-Ranges

In addition to tracking buffers’ binary contents, it is also necessary to track which

ranges of the buffer have been bound. To specify which UBO contents to upload to the

GPU, a game must bind sections of UBOs to subindices of the global GL UNIFORM BUFFER

binding slot. When a draw call is issued, the bound sub-ranges of the buffer’s contents

can be copied in to a separate array representing all the values a shader has seen for that

particular UBO. The UBOs in a shader’s interface are extracted via a simple text parser

examining the shader source strings, and the GL UNIFORM BUFFER subindices corre-

sponding to each UBO can be tracked by intercepting calls to glGetUniformBlockIndex

and glUniformBlockBinding which may update bindings, or query bindings implic-

itly set by the shader compiler.

Tracking Per-Program UBO Values

Once the correct subrange of buffer contents has been matched to a corresponding

UBO in a shader’s interface, a similar analysis to the traditional uniforms in Subsec-

tion 6.3.3 can be applied. By comparing each byte of the UBO’s current contents to the

newly bound values at the time of the draw call, it is possible to track how often each

byte of UBO data has been updated to a different value. If the byte has been updated 0

or 1 times by the end of the trace, it can be regarded as dynamically constant data. The

results of this analysis are presented in Subsection 6.5.1.

6.3.5 Creating Specialized Shaders

Once the values and update frequencies of all per-program uniforms and UBOs are

tracked, they can then be written to file for subsequent constant-folding operation in

LunarGlass. This section explains how the constant data is folded in, as well as some

additional optimizations implemented to take advantage of common cases.

6.3. Tools Developed 145

6.3.5.1 Matching Uniforms

To fold the correct uniform data into the shader source code, a mechanism is required

to match the flat arrays of uniform values tracked through the traces to the list of LLVM

loads in LunarGlass. LunarGlass represents reading uniform data as load instructions

from global variables in a specific address space. Information such as the uniform’s

name and type is tracked via LLVM metadata. Complex types such as nested structures

would require full traversal of this type tree to associate the correct elements together

during constant folding. However, the benchmarks examined here only needed scalars,

vectors, and arrays, which simplified the implementation.

As explained in Subsection 6.3.3, uniform updates to different locations within

arrays are matched to single base-location. This allows all data for a single uniform

array to be associated with a single variable name, and enables consistent array index

numbering to access it. The LunarGlass constant-folding pass can match the array

variable’s name from the LLVM metadata to the corresponding name exported from

trace, and specify the correct sub-element of the array data using the index provided by

the LLVM getElementPointer instruction. Using variable name strings and flat array

indexing avoids relying on the compiler implementation-defined concept of uniform

locations, allowing unambiguous variable access during constant-folding.

6.3.5.2 Replacing With Constants

Once the correct uniform name and array index are selected, the update frequency of

each loaded element can be checked. If 0 or 1 updates occurred during the course

of the trace, the value is assumed to be constant. For scalars, the entire value can be

trivially replaced with a constant. The only exceptions to this are integers represent-

ing texture samplers, which cannot be assigned constant literals within shader source

code. To avoid this case, it is necessary to examine LunarGlass’s type metadata, and

avoid constant-folding uniforms marked with texture sampling flags. All other con-

stant scalar uniforms can be fully replaced.

The majority of loaded uniforms are vectors. These are often only partially con-

stant, and contain at least one variable element. Opting to only specialize fully constant

vectors could avoid potential performance losses caused by additional move instruc-

tions required to specialize loaded vectors. However, this option would miss out on the

largest portion of constant data, as well as subsequent optimizations possible for spe-

cial cases such as 0s or 1s. To maximize the chance of potential speed-ups, the chosen

146 Chapter 6. Optimizations Within Full Execution Traces

implementation specializes both fully and partially constant vectors in the hope that

the GPU driver’s compiler will reduce performance losses by using inexpensive vector

swizzle operations and loading less unnecessary data.

In LunarGlass’s LLVM IR, partially constant vectors can be handled by loading in

the full vector, extracting any non-constant elements, and inserting them into another

variable constructed from the constant-foldable data. After performing dead code elim-

ination, and translating back into GLSL, the resulting vectors are generally constructed

from swizzled components of the loaded vector.

An example of this per-component specialization is shown below:

vec4 result = uniformVar * otherVar;

If the trace shows every component of uniformVar except y is 0.0, this becomes:

vec4 temp = vec4(0.0, uniformVar.y, 0.0, 0.0);

vec4 result = temp * otherVar;

6.3.5.3 Additional Optimizations

The values 0 and 1 occur frequently within constant uniforms, which enables addi-

tional optimizations to occur on partially constant data. One common example of this

is transformation matrices which only represent scaling and translation, rather than

rotation, so only contain non-zero data in their main diagonal and rightmost column.

Uniforms used as boolean toggles, or floating-point weighting factors also commonly

contain the values 0 or 1 when they are used to enable or disable optional effects.

LunarGlass can only constant-fold fully constant vectors, so additional optimiza-

tions were implemented to take advantage of partially constant data. These cover re-

curring patterns of addition and multiplications with mostly zero vectors.

Multiplication

One optimizable scenario is the multiplication of vectors where all but one of the

elements is zero. In this case, the single non-zero element can be multiplied as a

scalar instead, and used to construct the result vector using constant zeros for the other

elements instead if necessary:

This optimization can be applied to the constant-folding in the previous example:

vec4 temp = vec4(0.0, uniformVar.y, 0.0, 0.0);

vec4 result = temp * otherVar;

6.4. Timing Techniques 147

(0 b 0 0) × (x y z w) (0 y×b 0 0)

Figure 6.12: Compacting multiplication for vector elements with zeros

This can be transformed to use only scalar multiplication and vector construction:

vec4 result = vec4(0.0, uniformVar.y * otherVar , 0.0, 0.0);

Depending on the implementation of the GPU driver’s compiler, this may transform

the loads and multiplications of 2 vec4s into the load and multiplication of 2 scalar

variables, potentially saving cache space, registers, and instructions cycles.

Addition

Another common case involves vector addition. When two vectors are added to-

gether, such that each non-zero element in one vector corresponds to a zero element in

the other, the addition can be replaced with a vector construction as shown below:

(0 y 0 0) + (x 0 z w) (x y z w)

Figure 6.13: Compacting addition for vector elements with zeros

This would transform the following code:

vec4 vecA = vec4(0.0, a.y, 0.0, 0.0);

vec4 vecB = vec4(b.x, 0.0, b.z, b.w);

vec4 result = vecA + vecB;

into the simplified form of a single vector construction using swizzled elements:

vec4 result = vec4(b.x, a.y, b.z, b.w);

6.4 Timing Techniques

This section describes how the execution times of different traces were measured and

compared, and how various measurement problems were overcome. In previous chap-

ters, individual shaders and pipelines were timed in isolation. This chapter, however,

covers mass changes to many shaders at once, so the performance impact is measured

across entire frames from real execution traces.

The traces used here only record OpenGL API calls used for rendering, so do not

fully capture all aspects of a game’s performance. However, rendering is typically

148 Chapter 6. Optimizations Within Full Execution Traces

the most computationally intensive section of any game’s per-frame execution time,

and additional CPU-side calculations generally run in parallel to the main OpenGL

rendering thread. As such, measuring speed-ups on the game’s rendering code provides

a good proxy to the expected performance impact on the game as a whole.

Originally, the timing experiments in this chapter were intended to be measured on

all frames of a full execution trace. However, due to several drawbacks described in

Subsection 6.4.1, repeatedly replaying a smaller number of individual representative

frames was chosen for timing traces instead. This approach, and how it avoids the

problems with full trace replays, is described in Subsection 6.4.2.

All timings in subsequent sections were measured on a 64-bit Linux machine run-

ning Ubuntu 20.04.1 LTS, which had an NVIDIA GTX 970 GPU, an Intel i7 6700K

CPU, 16GB of 2666MHz DDR4 RAM, and a SanDisk Ultra 3D 500GB SSD with read

speeds of up to 560MB/s.

6.4.1 Full-trace timings

The apitrace framework contains several built-in profiling capabilities. However, many

of these capabilities are intended for pinpointing hot-spots within the trace, rather than

producing stable timing results suitable for comparisons between executions. This

section describes several potential measuring methods available within apitrace, the

problems these techniques can introduce, and why the repeated frame timing method

described in Subsection 6.4.2 was chosen to avoid these problems.

Per-Draw-Call GPU Timings

One timing method that apitrace allows is to submit GPU timer queries around every

draw call, which can give a very fine-grained performance analysis of individual shader

pipelines. However, this adds significant profiling overhead, which may eclipse any

measured speed-ups. It may also cause the GPU driver to schedule draw-calls in a

more sequential manner to cope with the large number of GPU timer queries, thus

making the test less representative of typical execution.

Per-Frame CPU Timings

To avoid these overheads, per-frame CPU-side timer queries were used instead of the

per-draw-call GPU-side timers to better measure the overall improvement per-frame.

6.4. Timing Techniques 149

This significantly reduced overheads, as only 2 timer queries were inserted for poten-

tially thousands of other function calls in each frame. Measuring CPU-side time also

avoids altering any scheduling of GPU-side operations by the driver, as no additional

OpenGL instructions for timer queries are introduced. It also aims to capture the per-

formance of the entire rendering system and its interaction with the OpenGL API, and

not just the GPU’s shader execution performance.

Problems with Full Trace Timings

Using apitrace’s built-in per-frame CPU profiler to time entire traces also introduces

problems due to file IO and decompression overheads. As seen in Figure 6.14, the trace

files examined were typically between 1 and 4 GB in size. They are compressed us-

ing snappy[449], a byte-oriented LZ77-type[450] compression algorithm from Google.

Snappy is designed for rapid compression and decompression speeds, rather than opti-

mal output file-sizes. It is fast enough to enable apitrace to record traces at interactive

frame rates, and play them back even faster. However, despite being optimized for

speed, loading in multi-gigabyte trace files and decompressing them on the fly intro-

duces significant overheads. For many OpenGL functions, the CPU time spent loading,

decompressing, and parsing the function call outweighs the time it takes to execute the

function.

Figure 6.14: Size (GB) for each trace recorded from the benchmark games.

False-Positives when Removing Redundant Functions

The file I/O and decompression overheads described above both masked legitimate

performance gains, and incorrectly amplified the impact of other optimizations. False

150 Chapter 6. Optimizations Within Full Execution Traces

positive results were generated using full-trace per-frame CPU timings to measure the

impact of optimizations that removed function calls.

Subsection 5.8.2 determined that in many games, the majority of uniform update

calls are redundant. This also holds true for the games in Section 6.2, such as Euro

Truck Simulator 2, and Mount & Blade: Warband, where redundant calls comprised

76.72% and 86.55% of all uniform updates respectively. Many games also contained

several redundant calls to glUseProgram every frame, which could be elided.

Removing the redundant uniform updates and glUseProgram calls from these

traces provided unexpected speed-ups of 43% and 44% respectively over typical game-

play frames (after all loading and menu screens had occurred). However, these results

were incorrect. Removing these redundant function calls significantly reduced the

traces’ file-sizes, hinting that the performance gains were from reduced I/O and de-

compression overheads rather than from improving the OpenGL rendering speed.

To investigate these spurious speed-ups, another built-in feature of apitrace was

used - repeatedly rendering a trace’s final frame. Unlike during typical trace replays,

the calls from this final frame are decompressed and parsed once, then stored in mem-

ory for all subsequent uses, rather than being repeatedly loaded from disk. This elimi-

nates I/O and decompression overheads at the cost of only measuring times for a single

frame. The fact the same frame is repeatedly rendered also reduces the effects of noisy

data, as a stable average can be produced if it is replayed sufficiently often.

(a) Mount & Blade: Warband (b) Eurotruck Simulator 2

Figure 6.15: Per-frame CPU timings for traces before and after unnecessary uniform up-

dates and glUseProgram calls were removed. Both games’ initial frames show ∼ 44%

speed-ups while loading and decompressing calls on the fly. However, when repeating

the final frame from within memory 1000 times, this difference vanishes.

The timings in Figure 6.15 show that the large performance gains initially visi-

ble from removing redundant calls will completely disappear when replaying the final

6.4. Timing Techniques 151

frame from within memory. These timings were measured after truncating each trace

to ensure their final frames contained gameplay, rather than the original final frame’s

graphics tear-down code. In the initial portion of each graph, the ∼ 44% performance

improvement from removing redundant uniform updates is clear. However, when re-

peating the final frame from memory 1000 times, this performance difference disap-

pears, indicating that the impact of removing the redundant OpenGL calls is negligible.

The difference between the initial frames, and the final repeated frame is∼1.5x-3x,

which demonstrates the significant overhead that I/O and on-the-fly decompression and

parsing has during benchmarking. The initial∼ 44% speed-ups were caused purely by

optimizing trace playback by reducing the number of functions to load and decom-

press, and had minimal impact to the game’s underlying rendering performance.

Legitimate Speed-Ups Overshadowed by Overheads

The I/O and decompression overheads in trace playback not only introduced false-

positive results, but also overshadowed genuine performance improvements. Fig-

ure 6.16 depicts the effect of constant-folding known uniform data into traces from

Hollow Knight. Timing the trace’s first 20,000 frames gives a noisy ∼ 3.6% speed-

up, whereas repeating the game’s 10,000th frame for 10,000 iterations shows a more

stable and visible performance improvement of 5.5%. The gap between full-trace and

repeated-frame timings in Hollow Knight is less pronounced than for Euro Truck Sim-

ulator 2 or Mount & Blade: Warband, but the overhead is still visibly reduced. This

is likely due to Hollow Knight being a simpler 2D game, and thus requiring fewer

OpenGL calls to be loaded from disk each frame.

(a) Execution times for first 20K frames (b) Execution times when 10,000th frame is looped

Figure 6.16: Hollow Knight frame times after constant-folding uniforms. Repeating a

frame produces more stable, lower overhead results with more discernible deltas.

152 Chapter 6. Optimizations Within Full Execution Traces

These findings indicate that timing full traces with apitrace leads to unreliable re-

sults. To mitigate the large artificial overheads and unrealistic performance character-

istics that occur when timing an entire trace as it is read from disk, timings gathered

from single repeated frames are used exclusively as the primary method for timing the

performance impacts of our trace optimizations.

6.4.2 Repeated Frame Timings

Repeatedly timing a single frame eliminates unnecessary I/O and decompression over-

heads, which avoids false-positive performance improvements, and makes real speed-

ups more visible. It also allows more stable results to be extracted from noisy data if

the frame is repeated many times. However, it limits the scope of the measurement to a

single frame of a trace, rather than the entire game-play sequence, so several represen-

tative frames need to be selected to ensure sufficient coverage. This section describes

how traces can be trimmed to select specific final frames, and how different distribu-

tions of timing results can be compared between frames to measure the magnitude of

improvements.

Trimming Traces to Selected Frames

To ensure representative frames were benchmarked, six snapshots of game-play were

manually selected for each game to showcase a wide range of common rendering sce-

narios. Apitrace only allows a trace’s final frame to be repeatedly rendered, so traces

were trimmed to end at the final call of the target frame. To truncate traces, apitrace

provides an interface for trimming up to specific function call ID. It also provides tools

for exporting screenshots of every frame, along with the call ID terminating that frame,

which can be passed in to the trimming tool once a target frame is chosen.

Usually, a game’s first few thousand frames are loading screens or menus where

different save files are selected. They may also have opening cutscenes that are typ-

ically pre-rendered videos rather than dynamically rendered 3D models, so are not

representative of typical in-game real-time rendering workloads. As such, many ini-

tial frames can be ignored. However, all initial frames must be included in the final

trimmed traces to ensure OpenGL is in the correct state for the final repeated frame

several thousand frames later. Once generated, trimmed traces can be replayed using

apitrace’s benchmark setting, which disables optional error-checking calls that might

impact performance. The final frame is looped ten thousand times to generate stable

6.5. Performance Results on Whole Execution Traces 153

results.

Comparing Timing Results

(a) Before/after frame times (b) Sorted frame times

Figure 6.17: Disparate scatterings of frame timings are sorted before comparison to

quantify the effects of optimizations as the normalized percentage delta between them.

Comparing trace timings is often more complicated than simply estimating a me-

dian time for each trace and comparing them directly. Subfigure 6.17a demonstrates

that although repeated frame timings are relatively stable, they often fall into multiple

bands. Some optimizations may affect the distribution of these bands, not just their

central point, so more than just their medians must be compared.

To compare these distributions, frame times are sorted as shown in Subfigure 6.17b

so that the lower and higher bands in each time-series can be compared against one

another. The normalized differences between each point of the two sorted time-series

are calculated after pruning the upper and lower 10% to avoid outliers. These distribu-

tions of normalized percentage deltas are displayed in Figure 6.20’s violin plots, and

all subsequent summary percentages represent the medians of these distributions.

6.5 Performance Results on Whole Execution Traces

This section shows the experimental results of running the benchmark games from

Section 6.2 through the apitrace-based analysis tools and LunarGlass-based constant-

folding passes described in Section 6.3. After re-injecting the constant-folded shader

code back into the benchmark traces, timing techniques from Section 6.4 are used to

profile the altered traces and measure the performance impact of the optimizations.

154 Chapter 6. Optimizations Within Full Execution Traces

6.5.1 Constant Data

Using the tools described in Section 6.3, data for both traditional uniforms, and within

uniform buffers could be tracked, along with the number of updates performed that

altered each element’s value. From this, the proportion of uniform data that remains

constant throughout the entire trace’s execution can be calculated. This technique does

not prove that it is safe to fold these constants into shaders, as all potential game-play

scenarios are not exhaustively enumerated. However, it provides a rough indication of

what proportion of data remains unchanged throughout typical game-play, and would

therefore potentially benefit from shader specialization.

Table 6.2 shows that the traditional uniforms for all benchmark games were at

least 35.2% constant, with many having 60% or higher. Only shaders for programs

that were used for at least one draw call were included within this calculation. Other

shaders that were compiled but never used were omitted to avoid artificially inflating

these numbers. These results reinforce the findings of Section 5.8 by extending them to

a wider range of additional popular games in a variety of different game engines, and

showing similar trends in the proportions of constant data they use. The distributions

of constant uniform data across all shader pipelines in each game shown in Figure 6.18

also follow similar patterns to Section 5.8, with most pipelines having at least 40%

constant uniforms.

Table 6.3 and Figure 6.19 show that the 4 games using UBOs show similarly high

levels of constant data to those using traditional uniforms, with broadly similar dis-

tributions. For most of these games using UBOs, the traditional uniform data used is

over 95% constant. This is because these games use UBOs as their primary delivery

mechanism for uniform data, and only use traditional uniforms for texture sampler slot

indices (see Subsection 2.6.5), as these cannot be stored within UBOs. Texture slot

indices typically remain consistent throughout most of the programs, so this high pro-

portion of constant data is unsurprising. Divinity: Original Sin Enhanced Edition is

the exception to this principle, as it mixes both modes of delivering its uniform data,

so has a lower overall percentage of constant data for its traditional uniforms, as they

are not reserved solely for binding texture samplers.

Overall, these high percentages of constant uniform data indicate the potential for

many shaders to be specialized within all the games examined.

6.5. Performance Results on Whole Execution Traces 155

Game Name Uniform Constant %

Elements Elements Const

Terarria 145 122 84.14

Middle Earth: Shadow of Mordor 1927 1845 95.74

Cities: Skylines 50084 22914 45.75

Rocket League 145782 80763 55.4

Sid Meier’ Civilization VI 50823 24569 48.34

Stardew Valley 21 14 66.67

Divinity: Original Sin Enhanced Edition 8101 5404 67.47

Metro 2033 Redux 777 774 99.61

Stellaris 6510 4183 64.25

Surviving Mars 493 493 100.0

Euro Truck Simulator 2 17167 7626 44.42

Mount & Blade: Warband 13447 8366 62.21

Hollow Knight 1637 1325 80.94

Overcooked 2 10545 7558 71.67

Human Fall Flat 2623 1687 64.32

PAYDAY 2 20642 7266 35.20

XCOM 2 345763 188996 54.66

Table 6.2: % of constant uniform elements in all shaders used in each game.

Game Name UBO Constant %

Bytes Bytes Const

Middle Earth: Shadow of Mordor 1244688 947764 76.14

Divinity: Original Sin Enhanced Edition 48000 27614 57.53

Metro 2033 Redux 441824 169155 38.29

Surviving Mars 290460 159000 54.74

Table 6.3: % of constant uniform buffer bytes in all shaders used in each game.

6.5.2 Timing Results

Due to issues with LunarGlass compatibility, timing results were only gathered for

12 of the 17 benchmark games. Also, to avoid the complexity of creating multiple

specialized sub-variants of shaders depending on which programs they were linked

156 Chapter 6. Optimizations Within Full Execution Traces

Figure 6.18: % of constant uniform elements in all shaders used in each game.

Figure 6.19: % of constant uniform buffer bytes in all shaders used in each game.

to, specialized shader variants were only generated for shaders linked into a single

pipeline. In games where the number of vertex and fragment shaders matches the

number of program pipelines (see section 6.2.1), all shaders can be specialized. For

games where these numbers do not match, only a subset of shaders could be replaced,

but this typically covered over 50% of shaders.

From this subset of 12 games, 6 frames were selected from each to represent typical

game-play scenarios. These frames were repeated 10,000 times during benchmarking,

6.5. Performance Results on Whole Execution Traces 157

and these experiments were repeated 5 times to ensure results were stable, and thermal

or OS scheduling effects could be mitigated during these repeated trials.

The distributions of percentage speed-ups for each frame of each game are pre-

sented in Figure 6.20. Screenshots of the selected frames, along with the median per-

centage speed-up for that frame are displayed on the subsequent 4 pages to provide

context to these speed-ups.

Figure 6.20 shows that most games experienced at least a marginal performance im-

provement. Games using the popular Unity engine (see section 2.4.2) generally fared

well, with one frame from Overcooked 2 reaching an over 25% speed-up, and its other

frames achieving 12%−15% boosts. Figure 6.26 shows that the frame that improved

by 25% included a lightning-flash effect, and a pop-up indicating that the level had

started, so it is likely one of the shaders performing these full-screen effects was sig-

nificantly improved by specialization. Hollow Knight, another Unity game, achieves

around 3%−5% improvement, with the exact improvement varying depending on the

complexity of the scenes (see Figure 6.23). Human Fall Flat experiences 1.5%− 3%

improvements, with simpler, more zoomed-in shots of the character improving more

than wider shots encompassing more of the level’s geometry (see Figure 6.24).

Euro Truck Simulator is a non-Unity game that experiences significant speed-ups,

especially in detailed close-up shots of the truck’s exterior, which was boosted by

almost 10% (see Figure 6.22). Other shots of more typical driving scenarios also expe-

rience ∼ 5%− 6% speed-ups. Mount & Blade: Warband also experiences speed-ups

of ∼ 1%− 3%, with shots containing many close-up characters improving more than

those featuring more empty terrain (see Figure 6.25). Rocket League, an Unreal Engine

game, gains around 1% improvements on most frames (see Figure 6.28). As many of

the shaders were skipped due to LunarGlass incompatibilities or being linked to multi-

ple programs, these results might be higher if all shaders were fully specialized. Stel-

laris also experiences some small speed-ups of ∼ 0.6%, but experiences slow-downs

of similar magnitudes when the screen contains the mostly empty backdrop of a solar

system (see Figure 6.30).

158 Chapter 6. Optimizations Within Full Execution Traces

Figure 6.20: Percentage speed-up for six frames for each game (higher is better).

6.5. Performance Results on Whole Execution Traces 159

(a) Speed-Up: 0.99% (b) Slow-Down: -1.01% (c) Speed-Up: 2.88%

(d) Slow-Down: -0.73% (e) Speed-Up: 2.57% (f) Speed-Up: 3.41%

Figure 6.21: Cities Skylines

(a) Speed-Up: 5.80% (b) Speed-Up: 5.15% (c) Speed-Up: 2.37%

(d) Speed-Up: 5.04% (e) Speed-Up: 5.76% (f) Speed-Up: 9.64%

Figure 6.22: Euro Truck Simulator 2

(a) Speed-Up: 2.66% (b) Speed-Up: 4.47% (c) Speed-Up: 3.72%

(d) Speed-Up: 3.30% (e) Speed-Up: 4.99% (f) Speed-Up: 3.06%

Figure 6.23: Hollow Knight

160 Chapter 6. Optimizations Within Full Execution Traces

(a) Speed-Up: 1.56% (b) Speed-Up: 1.85% (c) Speed-Up: 2.33%

(d) Speed-Up: 2.56% (e) Speed-Up: 2.74% (f) Speed-Up: 2.33%

Figure 6.24: Human Fall Flat

(a) Speed-Up: 1.49% (b) Speed-Up: 2.35% (c) Speed-Up: 1.02%

(d) Speed-Up: 3.02% (e) Speed-Up: 2.52% (f) Speed-Up: 0.73%

Figure 6.25: Mount & Blade Warband

(a) Speed-Up: 13.18% (b) Speed-Up: 12.23% (c) Speed-Up: 14.20%

(d) Speed-Up: 25.48% (e) Speed-Up: 14.56% (f) Speed-Up: 12.86%

Figure 6.26: Overcooked 2

6.5. Performance Results on Whole Execution Traces 161

(a) Speed-Up: 0.17% (b) Speed-Up: 0.29% (c) Speed-Up: 0.59%

(d) Slow-Down: -1.41% (e) Speed-Up: 0.45% (f) Speed-Up: 0.36%

Figure 6.27: Payday 2

(a) Speed-Up: 0.94% (b) Speed-Up: 0.99% (c) Speed-Up: 1.08%

(d) Speed-Up: 1.37% (e) Speed-Up: 1.02% (f) Speed-Up: 1.34%

Figure 6.28: Rocket League

(a) Slow-Down: -1.59% (b) Speed-Up: 0.71% (c) Slow-Down: -2.02%

(d) Slow-Down: -0.59% (e) Slow-Down: -0.94% (f) Speed-Up: 0.53%

Figure 6.29: Stardew Valley

162 Chapter 6. Optimizations Within Full Execution Traces

(a) Slow-Down: -0.54% (b) Speed-Up: 0.57% (c) Speed-Up: 0.44%

(d) Slow-Down: -0.03% (e) Speed-Up: 0.60% (f) Speed-Up: 0.63%

Figure 6.30: Stellaris

(a) Speed-Up: 0.20% (b) Speed-Up: 0.03% (c) Speed-Up: 0.21%

(d) Slow-Down: -0.09% (e) Slow-Down: -0.11% (f) Speed-Up: 0.37%

Figure 6.31: Terraria

(a) Speed-Up: 0.01% (b) Slow-Down: -0.20% (c) Speed-Up: 0.10%

(d) Speed-Up: 0.27% (e) Slow-Down: -0.15% (f) Speed-Up: 0.56%

Figure 6.32: XCOM 2

6.6. Conclusion 163

These results are not universally positive, however. Simpler 2D games such as

Stardew Valley and Terraria generally ran the same or slightly slower, with any re-

ported speed-ups being≤ 0.5% (see Figure 6.29 and Figure 6.31). The shaders and the

uniform data used within these games are so simple that extra move instructions used

to specialize partially constant uniforms, or artefacts of LunarGlass described in Sub-

section 4.3.3 may negatively impact them more than the specializations can improve

them.

In some 3D games such as XCOM2, the performance impact of specializing these

shaders is also largely negligible (see Figure 6.32), with most speed-ups and slow-

downs ≤ 0.5%. In Pay Day 2, minor speed-ups are present for several frames, but a

performance drop of 1.4% occurs when viewing a close-up shot of a wire link fence,

which may require a large alpha-blended texture (see Figure 6.27).

Even among Unity games, improvements are not guaranteed. In Cities Skylines,

close-up zoomed-in scenes of buildings experience slow-downs of ∼ 1%, whereas

zoomed-out scenes encompassing more birds-eye views of the city, which represent

more typical game-play scenarios, demonstrate speed-ups of ∼ 3% (see Figure 6.21).

This demonstrates that even on a game engine where specialization based on constant

uniforms generally provides benefits, there are renderings scenarios that can lead to

performance regressions, so care must be taken to profile these effects.

These timing results show that it is not possible to predict the performance im-

pact of specializing shaders based on the proportion of uniform data that is constant.

The highest percentages of constant data in Subsection 6.5.1 do not correspond to

the largest speed-ups in Figure 6.20. Hollow Knight has 80.94% constant uniforms,

and experiences a smaller speed-up than Euro Truck Simulator 2, which has only has

44.42% constant uniform data. Even within games using the same engine, or differ-

ent types of scenes within the same games, the performance characteristics may vary

drastically depending on the type of content being rendered and the shaders it requires.

6.6 Conclusion

By implementing apitrace trace analysis passes, this chapter re-affirms that large a

portion of uniform data, including UBOs, is constant in a wide variety of popular

commercial games. This constant uniform data was exported to LunarGlass, which

ran a custom constant-folding pass on every shader before they were re-injected back

into their original execution traces to time the performance difference. Using this tech-

164 Chapter 6. Optimizations Within Full Execution Traces

nique, performance gains of up to 25.48% were achieved, with many other frames from

different games experiencing 1%−15% speed-ups, with worst-case-scenarios of only

1.5% slow-downs. Games using the popular Unity engine seemed particularly suscep-

tible to performance improvements from specializing shaders with constant uniform

data.

These results show that constant uniforms are available in the majority of commer-

cial games, and for some of them, exploiting this data as part of a source-to-source

pass can lead to noticeable reductions in rendering time in many frames. However,

as shown in Section 4.6, the results of any source-to-source shader optimization are

not universally positive, so careful implementation and profiling of these techniques is

required to ensure they speed up the game by exploiting constant data, rather than slow

it down due to unwanted compilation artefacts.

Chapter 7

Conclusion

7.1 Summary

This research has explored numerous different techniques for automatically optimizing

shaders in real-time graphics applications like computer games. Workloads from 25

popular commercial Linux-compatible games using the OpenGL graphics API were

used to test these techniques, along with the well-known GFXBench 4.0 graphics

benchmark. These workloads were characterized, subjected to numerous analysis

passes, and used to test the efficacy of different optimizations across real-world games

with a variety of complexities, game engines, and art-styles.

Beginning with an extensive background section in Chapter 2, this thesis intro-

duced the reader to the GPU accelerated graphics pipeline, and the shaders used to

program it. This covered the basic concepts of 3D models made up of triangles, 2D

texture images, and how parallel code running in vertex and fragment shaders deter-

mines how these objects appear on screen. The different methods for passing data

from CPU to GPU, and between shader pipeline stages were also explained to allow

code-motion optimizations and dataflow analysis in later chapters to be understood.

After introducing the reader to the modern programmable graphics pipeline, the

evolution of this pipeline was explained in Chapter 3. This chapter also explored work

in adjacent fields of optimizing shaders for energy efficiency, and various shader sim-

plification techniques that trade rendering accuracy for improved performance.

In Chapter 4, source-to-source optimization of fragment shaders from GFXBench

4.0 was explored. These optimizations were performed using the LLVM-based Lu-

narGlass offline compiler framework, which was extended to include several unsafe

arithmetic optimizations. Iterative compilation was used to explore which optimiza-

165

166 Chapter 7. Conclusion

tion passes were beneficial on a range of mobile and desktop GPUs from different

vendors. Using a custom microbenchmarking tool designed to time small differences

in fragment shader execution, it became clear that these optimization passes could

have significant positive and negative effects on shader performance, and these re-

sults varied between different vendors. Loop unrolling, though seldom applicable to

shaders, provided the most benefit in cases where it did apply. Unsafe floating-point

arithmetic reassociation was widely applicable, and offered many small performance

boosts. Hoisting code out of conditional statements had both positive and negative

effects on code, so careful decisions needed to be made about when to apply it.

The work in Chapter 5 expanded the scope of the previous chapter to explore

full shader pipelines extracted from eight real-world games. Execution traces were

recorded using the open-source apitrace tool, and LunarGlass was further extended to

perform extensive static analysis on the extracted shader source code. This analysis

included the detection of unused input data, constant-foldable code, and areas of code

that could be moved to the CPU, or from the fragment to the vertex shader. Signifi-

cant portions of code in conditionals could be extracted to the CPU, and many games

declared large unused blocks of uniform data. An oracle study showed that these spe-

cializable portions of code could be greatly increased if it was known that certain types

of input data were constant at run-time. By extending apitrace to analyse uniform

input data, it was shown that all games had large percentages of uniform data that re-

mained constant at run-time, so values close to the oracle study are likely achievable in

practice. Timing tests were also performed to demonstrate the potential performance

improvements possible by pruning unused uniform data from shaders in some cases.

Motivated by the prior chapter’s analysis results, the work in Chapter 6 demon-

strates the performance improvements possible from exploiting the large portions of

constant uniform data found in many games. This was achieved by further modifying

apitrace to allow modification of all shaders used, and extending LunarGlass to al-

low constant-folding of uniform values that were detected by prior analysis of runtime

traces. A further 17 games were selected from a wide variety of popular games with

different engines, and these were demonstrated to have similar proportions of constant

data as those examined previously. By exploiting this constant data across all shaders,

the rendering cost of the entire frame could be improved by ∼ 5% for many games

with no degradation to rendering accuracy, with 10− 25% improvements possible in

some cases.

7.2. Critical Evaluation 167

7.2 Critical Evaluation

Although some of the optimization and specialization techniques explored within this

thesis gave promising results, the tools developed here remain as prototypes, and the

analysis of them has several limitations described below.

Optimization Correctness Both the unsafe floating-point arithmetic optimizations

in Subsection 4.3.2 and the folding of constant uniforms into the shader source-code

in Chapter 6 have the potential to introduce slight differences due to altered floating-

point precision. As graphics is a domain in which it is frequently preferable to trade

slight computational inaccuracies in exchange for increased speed, these differences

are likely to be acceptable in practice. When replaying the altered traces in Chapter 6,

any visual differences were identical to the naked eye. However, a more thorough

evaluation of any differences in calculated pixel values would be beneficial before

these approaches are deployed in a real system.

Guaranteeing Data Remains Constant One of the main limitations of the approaches

in Chapter 5 and Chapter 6 for detecting which uniform data remains constant, is that

only a limited number of frames are included in each trace. Although a variety of com-

mon gameplay scenarios are showcased throughout the several thousand frames in the

trace, there is no guarantee that a uniform which is constant throughout the trace will

be constant throughout the entire game.

One approach to mitigate this uncertainty would be to take multiple traces for each

game to increase the coverage of different gameplay scenarios, and then take the in-

tersection of all uniforms which remain constant between them. However, this does

not remove the fundamental problem that it is almost impossible to determine which

uniforms remain constant throughout an entire game, especially without access to the

game’s CPU-side source-code. The tools presented in this research are therefore only

able to present a theoretical upper bound for the potential performance gains possible

if all uniforms are known to be constant.

In their current state, these tools can only help indicate to developers where spe-

cialized variants of shaders would be useful for performance. Areas for future research

may be to try and determine which key variables provide the most benefit to shaders

if they are known to be constant. The initial findings in Subsection 5.6.2 indicate that

calculations involving combinations of only uniform and constant data are commonly

168 Chapter 7. Conclusion

used as branch conditions. This could suggest that a few key uniforms may have

disproportionate effects on the speed of the generated code if they are used to guard

expensive branches, or as loop counters.

If it was determined which constant uniforms were most important, a specialized

shader variant could be generated for the fast-path, and a generalized version could be

used if these uniforms do not match the expected values. This type of system would

require either modifications within the graphics driver, or within a game engine, so was

deemed out of scope for this current research. However, without such an implemen-

tation, it is difficult to quantify whether overheads from this approach would make up

for the potential performance gains demonstrated by this research.

Specialization vs Generalization The introduction of additional specialized shader

variants may introduce overheads in several ways. Firstly, load-times would be in-

creased due to additional shaders being compiled. Secondly, there may be context-

switching overheads if there are multiple changes between the specialized and non-

specialized variant of a shader. Finally, there are CPU-side performance costs for

checking whether the expected set of constant uniforms match the current values within

those variables in order to determine whether the specialized or generalized variant

should be used. The costs of these overheads are difficult to quantify without imple-

menting this system within a real engine or driver. One area of potential future re-

search would be to determine not only which uniform variables are important to know

the constant values of, but also which shaders are the most important to generate these

specialized variants of. This research only provides an upper bound if all constant

uniforms are exploited in all shaders.

Scope Limitations Throughout the 3 main experimental chapters, the scope has been

progressively expanded. From individual fragment shaders from a single benchmark

suite in Chapter 4, to vertex-fragment shader pairs from 8 real games in Chapter 5,

these experiments culminated with timings from multiple full frames across 12 real

games in Chapter 6. Despite Chapter 6’s full-frame timings being representative of

real rendering workloads, they do not capture the effect of the rest of the game’s CPU-

side code during real execution, so still do not perfectly measure the player-visible

impact on performance that these optimizations would have. Additionally, these later

experiments focused on a single desktop GPU on a Linux operating system. Future

work may be possible to show how these results change between different vendors’

7.3. Directions for Future Work 169

GPUs, or between different operating systems, or how different the impact on mobile

vs desktop devices is.

Additional technical limitations also reduced the scope of experiments performed

here. Several games were omitted as potential benchmarks here due to incompatibil-

ities with apitrace. Other games were included in initial analysis of constant unifor-

m/UBO data, but omitted from the final timing results due to incompatibilities with the

LunarGlass-based compiler framework. Constant-folding modifications were only in-

troduced for traditional uniforms, and not UBOs, in part due to these incompatibilities.

This reduced the scope of the experiments, and prevented useful results from being

generated about whether specializing shaders with UBOs produced similar benefits to

those with traditional uniforms.

Another limitation was that the final tools were only able to substitute shaders

which were linked into a single pipeline. Ideally, it should have been possible to gener-

ate different specialized variants of each shader depending on which pipeline program

it was linked into, but these cases were ignored due to technical limitations. This may

mean that some potential performance gains were missed by these experiments due

to them not running on all shaders within the trace. It also prevented analysis of the

trade-offs between using a single generalized shader versus multiple more specialized

variants. Exploring the impacts of splitting shaders into multiple specialized variants,

and specializing shaders based on UBO contents (which Subsection 6.5.1 indicates

have similar portions of constant data to traditional uniforms), would be areas that

future work could expand on.

7.3 Directions for Future Work

The aim of this research is to motivate the development of further tools that will aid

in automatically optimizing the performance of real-time graphics applications. The

performance benefits demonstrated from exploiting constant uniform data shown in

Chapter 6 show that speed-ups are possible using only one of the potential optimization

techniques described in Chapter 5. Further work may seek to extend this performance

analysis to capitalize on the potential of constant texture or vertex-buffer data, and the

code-motion techniques that were applicable in many shaders.

This work focused on OpenGL, so future work into the newer low-level APIs like

Vulkan or DirectX 12 may be interesting avenues of exploration. The new options in

Vulkan for sending data from the CPU to GPU via specialization constants, or push-

170 Chapter 7. Conclusion

constants may open up interesting opportunities. This research exploits only constant

uniform data, but further analysis into moving small frequently updated uniforms to

use push constants, or large blocks of seldom updated uniforms into separate uniform

buffers may be additional areas that would be interesting to explore.

The programmable shaders examined at the heart of this research are part of the tra-

ditional vertex/fragment shader-based rasterization-based graphics pipeline, but newer

options such as mesh shaders and real-time ray-tracing are emerging in modern graph-

ics APIs. Most of the ideas presented in this research would also apply to these

novel shader pipelines, but the dataflow patterns and performance characteristics would

likely differ significantly. Exploring the applicability of the shader optimizations pre-

sented here to these new pipelines would be an intriguing direction for future work.

Perhaps the most practical direction for future work would be the implementation

of these tools in a form that could be easily integrated into an overnight build system.

If the process of extracting traces, performing analysis on them, and subsequently op-

timizing games using the techniques presented here could be fully automated, then the

developer effort required to optimize games’ performance could be reduced, yielding

substantial benefits.

Bibliography

[1] Kajal T Claypool and Mark Claypool. On frame rate and player performance in

first person shooter games. Multimedia systems, 13(1):3–17, 2007.

[2] Benjamin F Janzen and Robert J Teather. Is 60 fps better than 30?: the im-

pact of frame rate and latency on moving target selection. In CHI’14 Extended

Abstracts on Human Factors in Computing Systems, pages 1477–1482. ACM,

2014.

[3] Research Nester. Computer graphics market : Global demand analysis &

opportunity outlook 2024. https://www.researchnester.com/reports/computer-

graphics-market-global-demand-analysis-opportunity-outlook-2024/354.

[4] Mark Segal and Kurt Akeley. The OpenGL Graphics System: A Specification

(Version 4.6). https://www.opengl.org/registry/doc/glspec46.core.pdf, 2019.

[5] The Khronos Vulkan Working Group. Vulkan 1.0 Core API Specification.

https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html, 2016.

[6] Microsoft. Direct3D 12 programming guide. https://msdn.microsoft.com/en-

us/library/windows/desktop/dn899121(v=vs.85).aspx, 2016.

[7] German Ceballos, Andreas Sembrant, Trevor E Carlson, and David Black-

Schaffer. Behind the scenes: Memory analysis of graphical workloads on tile-

based gpus. In Performance Analysis of Systems and Software (ISPASS), 2018

IEEE International Symposium on, pages 1–11. IEEE, 2018.

[8] Kishonti. GFXBench 4.0 - a benchmarking suite for OpenGL shaders. https://

gfxbench.com.

[9] Lewis Crawford and Michael O’Boyle. A cross-platform evaluation of graphics

shader compiler optimization. In Performance Analysis of Systems and Software

(ISPASS), 2018 IEEE International Symposium on, pages 219–228. IEEE, 2018.

171

https://www.researchnester.com/reports/computer-graphics-market-global-demand-analysis-opportunity-outlook-2024/354
https://www.researchnester.com/reports/computer-graphics-market-global-demand-analysis-opportunity-outlook-2024/354
https://www.opengl.org/registry/doc/glspec46.core.pdf
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html
https://msdn.microsoft.com/en-us/library/windows/desktop/dn899121(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dn899121(v=vs.85).aspx
https://gfxbench.com
https://gfxbench.com

172 Bibliography

[10] LunarG. Lunarglass compiler stack. https://lunarg.com/shader-compiler-

technologies/lunarglass/, 2011.

[11] Lewis Crawford and Michael O’Boyle. Specialization opportunities in graphical

workloads. In 2019 28th International Conference on Parallel Architectures and

Compilation Techniques (PACT), pages 272–283. IEEE, 2019.

[12] José Fonseca. apitrace graphics tracing tool. http://apitrace.github.io/, 2008.

[13] Tomas Akenine-Möller, Eric Haines, and Naty Hoffman. Real-time rendering.

CRC Press, 2019.

[14] Kai Hormann, Konrad Polthier, and Alia Sheffer. Mesh parameterization: The-

ory and practice. In ACM SIGGRAPH ASIA 2008 Courses, SIGGRAPH Asia

’08. Association for Computing Machinery, 2008.

[15] Bui Tuong Phong. Illumination for computer generated pictures. Communica-

tions of the ACM, 18(6):311–317, 1975.

[16] Simon Green et al. Stupid OpenGL shader tricks. In Advanced OpenGL Game

Programming Course, Game Developers Conference, 2003.

[17] Fernando Navarro, Francisco J Serón, and Diego Gutierrez. Motion blur ren-

dering: State of the art. In Computer Graphics Forum, volume 30, pages 3–26.

Wiley Online Library, 2011.

[18] Naty Hoffman. Color enhancement for videogames. In SIGGRAPH Color En-

hancement and Rendering in Film and Game Production course, SIGGRAPH

’10. Association for Computing Machinery, 2010.

[19] Louis Bavoil and Miguel Sainz. Screen space ambient occlusion. NVIDIA de-

veloper information: http://developers.nvidia.com, 6, 2008.

[20] Open Signal. Android fragmentation visualized (august 2015). https://cdn.

opensignal.com/public/data/reports/global/data-2015-08/2015 08 frag

mentation report.pdf, 2015.

[21] John Leech. OpenGL ES Version 3.2. https://www.khronos.org/registry/

OpenGL/specs/es/3.2/es spec 3.2.pdf, 2019.

https://lunarg.com/shader-compiler-technologies/lunarglass/
https://lunarg.com/shader-compiler-technologies/lunarglass/
http://apitrace.github.io/
https://cdn.opensignal.com/public/data/reports/global/data-2015-08/2015_08_fragmentation_report.pdf
https://cdn.opensignal.com/public/data/reports/global/data-2015-08/2015_08_fragmentation_report.pdf
https://cdn.opensignal.com/public/data/reports/global/data-2015-08/2015_08_fragmentation_report.pdf
https://www.khronos.org/registry/OpenGL/specs/es/3.2/es_spec_3.2.pdf
https://www.khronos.org/registry/OpenGL/specs/es/3.2/es_spec_3.2.pdf

Bibliography 173

[22] Khronos Group. About the khronos group. https://www.khronos.org/about,

2022.

[23] Khronos Group. Khronos members. https://www.khronos.org/members/list,

2022.

[24] Microsoft. DirectX-Specs. https://microsoft.github.io/DirectX-Specs, 2022.

[25] Axon Samuel. The world’s second-most popular desktop operating system isn’t

macos anymore. https://arstechnica.com/gadgets/2021/02/the-worlds-second-

most-popular-desktop-operating-system-isnt-macos-anymore, 2021.

[26] Valve. Steam hardware & software survey: December 2020. https://web.

archive.org/web/20210116081949/https://store.steampowered.com/hwsurvey.

[27] Ryan Smith. Apple deprecates opengl across all oses. https://www.

anandtech.com/show/12894/apple-deprecates-opengl-across-all-oses, 2018.

[28] Apple. Metal shading language specification version 1.2. https://developer.

apple.com/metal/metal-shading-language-specification.pdf, 2016.

[29] Tom Olson, Neil Trevett, Graham Sellers, John Kessenich, Jesse Barker, Las-

zlo Kishonti, Rys Sommefeldt, Slawek Grajewski, and Daniel Piers. More on

vulkan and SPIR-V: The future of high-performance graphics. In Game devel-

opers conference, 2015.

[30] Pawel Lapinski. Api without secrets: Introduction to vulkan* part 0: Pref-

ace. https://www.intel.com/content/www/us/en/developer/articles/training/api-

without-secrets-introduction-to-vulkan-preface.html, 2016.

[31] Microsoft. High-level shader language (hlsl). https://docs.microsoft.com/en-

us/windows/win32/direct3dhlsl/dx-graphics-hlsl, 2021.

[32] Tim Jones. Parsing direct3d shader bytecode. http://timjones.io/blog/

archive/2015/09/02/parsing-direct3d-shader-bytecode, 2015.

[33] Microsoft. DirectX intermediate language. https://github.com/Microsoft/

DirectXShaderCompiler/blob/main/docs/DXIL.rst, 2022.

[34] LLVM. LLVM language reference manual. https://llvm.org/docs/LangRef.html,

2022.

https://www.khronos.org/about
https://www.khronos.org/members/list
https://microsoft.github.io/DirectX-Specs
https://arstechnica.com/gadgets/2021/02/the-worlds-second-most-popular-desktop-operating-system-isnt-macos-anymore/
https://arstechnica.com/gadgets/2021/02/the-worlds-second-most-popular-desktop-operating-system-isnt-macos-anymore/
https://web.archive.org/web/20210116081949/https://store.steampowered.com/hwsurvey
https://web.archive.org/web/20210116081949/https://store.steampowered.com/hwsurvey
https://www.anandtech.com/show/12894/apple-deprecates-opengl-across-all-oses
https://www.anandtech.com/show/12894/apple-deprecates-opengl-across-all-oses
https://developer.apple.com/metal/metal-shading-language-specification.pdf
https://developer.apple.com/metal/metal-shading-language-specification.pdf
https://www.intel.com/content/www/us/en/developer/articles/training/api-without-secrets-introduction-to-vulkan-preface.html
https://www.intel.com/content/www/us/en/developer/articles/training/api-without-secrets-introduction-to-vulkan-preface.html
https://docs.microsoft.com/en-us/windows/win32/direct3dhlsl/dx-graphics-hlsl
https://docs.microsoft.com/en-us/windows/win32/direct3dhlsl/dx-graphics-hlsl
http://timjones.io/blog/archive/2015/09/02/parsing-direct3d-shader-bytecode
http://timjones.io/blog/archive/2015/09/02/parsing-direct3d-shader-bytecode
https://github.com/Microsoft/DirectXShaderCompiler/blob/main/docs/DXIL.rst
https://github.com/Microsoft/DirectXShaderCompiler/blob/main/docs/DXIL.rst
https://llvm.org/docs/LangRef.html

174 Bibliography

[35] ISO/IEC. Working draft, standard for programming language c++.

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4431.pdf, 2015.

[36] John Kessenich. OpenGL Shading Language 4.50 Specification.

https://www.opengl.org/registry/doc/GLSLangSpec.4.50.pdf, 2016.

[37] John Kessenich, Boaz Ouriel, and Raun Krisch. Spir-v specification version 1.5,

revision 4, unified. https://www.khronos.org/registry/spir-v/specs/unified1/

SPIRV.pdf, 2020.

[38] Aras Pranckevičius. Cross platform shaders in 2014. https://aras-

p.info/blog/2014/03/28/cross-platform-shaders-in-2014, 2014.

[39] Nick Penwarden, Mathias Schott, and Evan Hart. Bringing unreal engine 4 to

OpenGL. In Game developers conference, 2014.

[40] Epic Games. HLSL cross compiler. https://docs.unrealengine.com/4.27/en-US/

ProgrammingAndScripting/Rendering/ShaderDevelopment/HLSLCrossCompiler,

2022.

[41] Rolando Caloca Olivares. ISV experience: Porting unreal engine 4 to vulkan.

In ACM SIGGRAPH 2016 Talks - Khronos 3D Graphics BoF: Vulkan, OpenGL,

OpenGL ES, 2016.

[42] Axel Gneiting. ISV experience: Porting doom to vulkan. In ACM SIGGRAPH

2016 Talks - Khronos 3D Graphics BoF: Vulkan, OpenGL, OpenGL ES, 2016.

[43] Dan Ginsburg. Performance results and lessons from porting source 2 to vulkan.

In Game developers conference - Vulkan Session Part II, 2016.

[44] Hans-Kristian Arntzen and Marius Bjørge. Porting to vulkan. In Khronos

Vulkan DevDay UK - Moving to Vulkan : How to make your 3D graphics more

explicit, 2016.

[45] Adam Sawicki. Porting your engine to vulkan or DX12. In Digital Dragons,

2018.

[46] Khronos Group. Vulkan gpu resources. https://www.vulkan.org/tools, 2022.

[47] Khronos Group. OpenGL debugging tools. https://www.khronos.org/

opengl/wiki/Debugging Tools, 2021.

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4431.pdf
https://www.opengl.org/registry/doc/GLSLangSpec.4.50.pdf
https://www.khronos.org/registry/spir-v/specs/unified1/SPIRV.pdf
https://www.khronos.org/registry/spir-v/specs/unified1/SPIRV.pdf
https://aras-p.info/blog/2014/03/28/cross-platform-shaders-in-2014
https://aras-p.info/blog/2014/03/28/cross-platform-shaders-in-2014
https://docs.unrealengine.com/4.27/en-US/ProgrammingAndScripting/Rendering/ShaderDevelopment/HLSLCrossCompiler
https://docs.unrealengine.com/4.27/en-US/ProgrammingAndScripting/Rendering/ShaderDevelopment/HLSLCrossCompiler
https://www.vulkan.org/tools
https://www.khronos.org/opengl/wiki/Debugging_Tools
https://www.khronos.org/opengl/wiki/Debugging_Tools

Bibliography 175

[48] Khronos Group. OpenGL related toolkits and APIs. https://www.khronos.org/

opengl/wiki/Related toolkits and APIs, 2021.

[49] Jason Gregory. Game engine architecture. AK Peters/CRC Press, 2018.

[50] Ian Millington. Game physics engine development: how to build a robust

commercial-grade physics engine for your game. CRC Press, 2010.

[51] Christer Ericson. Real-time collision detection. Crc Press, 2004.

[52] Guy Somberg. Game Audio Programming: Principles and Practices. CRC

Press, 2017.

[53] Eric Lengyel. Foundations of Game Engine Development: Rendering, vol-

ume 2. Terathon Software LLC., 2019.

[54] Lars Bishop, Dave Eberly, Turner Whitted, Mark Finch, and Michael Shantz.

Designing a pc game engine. IEEE Computer Graphics and Applications,

18(1):46–53, 1998.

[55] Natalya Tatarchuk, Timothy Cooper, and Sebastian Aaltonen. Unity rendering

architecture. In ACM SIGGRAPH 2021 Talks - Rendering Engine Architecture

Conference, 2021.

[56] Michael Vance. Rendering engine architecture at activision. In ACM SIG-

GRAPH 2021 Talks - Rendering Engine Architecture Conference, 2021.

[57] Kim Byung-wook. Why develop in-house game engines? The Korea Herald,

2021.

[58] Unreal engine - a 3d game engine and development environment. https://

www.unrealengine.com, 2017.

[59] Unity - a 3d game engine and development environment. https://unity3d.com,

2017.

[60] Lars Doucet and Anthony Pecorella. Game engines on steam: The defini-

tive breakdown. https://www.gamedeveloper.com/business/game-engines-on-

steam-the-definitive-breakdown, 2021.

[61] Unity. Unity: Our impact by the numbers. https://unity.com/our-company#key-

facts.

https://www.khronos.org/opengl/wiki/Related_toolkits_and_APIs
https://www.khronos.org/opengl/wiki/Related_toolkits_and_APIs
https://www.unrealengine.com
https://www.unrealengine.com
https://unity3d.com
https://www.gamedeveloper.com/business/game-engines-on-steam-the-definitive-breakdown
https://www.gamedeveloper.com/business/game-engines-on-steam-the-definitive-breakdown
https://unity.com/our-company#key-facts
https://unity.com/our-company#key-facts

176 Bibliography

[62] Unity plan comparison. https://store.unity.com/compare-plans, 2022.

[63] Unity asset store. https://assetstore.unity.com, 2022.

[64] Unity shader compilation. https://docs.unity3d.com/Manual/shader-

compilation.html, 2022.

[65] Unreal engine marketplace. https://www.unrealengine.com/marketplace, 2022.

[66] Unreal engine licensing options. https://www.unrealengine.com/license, 2022.

[67] Fortnite usage and revenue statistics (2022). https://www.businessofapps.com/

data/fortnite-statistics, 2022.

[68] Valve. Source engine. https://developer.valvesoftware.com/wiki/Source, 2022.

[69] YoYo Games Ltd. Gamemaker. https://gamemaker.io/en/gamemaker, 2022.

[70] Kadokawa Games. Rpg maker. https://www.rpgmakerweb.com, 2022.

[71] Godot engine. https://godotengine.org, 2022.

[72] OGRE engine. https://www.ogre3d.org, 2022.

[73] LibGDX. https://libgdx.com, 2022.

[74] Chris McClanahan. History and evolution of gpu architecture. A Survey Paper,

9:1–7, 2010.

[75] Paul Jaquays and Brian Hook. Quake 3: Arena shader manual, revision 10.

In Game Developer’s Conference Hardcore Technical Seminar Notes. Miller

Freeman Game Group, 1999.

[76] Mark Segal and Kurt Akeley. The OpenGL Graphics System: A Specifica-

tion (Version 2.0). https://registry.khronos.org/OpenGL/specs/gl/glspec20.pdf,

2004.

[77] Ian Buck, Tim Foley, Daniel Horn, Jeremy Sugerman, Kayvon Fatahalian, Mike

Houston, and Pat Hanrahan. Brook for gpus: stream computing on graphics

hardware. ACM transactions on graphics (TOG), 23(3):777–786, 2004.

[78] Sarah Tariq. D3d11 tessellation. In Game Developers Conference. Session:

Advanced Visual Effects with Direct3D for PC, 2009.

https://store.unity.com/compare-plans
https://assetstore.unity.com
https://docs.unity3d.com/Manual/shader-compilation.html
https://docs.unity3d.com/Manual/shader-compilation.html
https://www.unrealengine.com/marketplace
https://www.unrealengine.com/license
https://www.businessofapps.com/data/fortnite-statistics
https://www.businessofapps.com/data/fortnite-statistics
https://developer.valvesoftware.com/wiki/Source
https://gamemaker.io/en/gamemaker
https://www.rpgmakerweb.com
https://godotengine.org
https://www.ogre3d.org
https://libgdx.com
https://registry.khronos.org/OpenGL/specs/gl/glspec20.pdf

Bibliography 177

[79] Mike Bailey. Glsl geometry shaders. Oregon State University, 2007.

[80] Tianyun Ni. Direct compute: Bring gpu computing to the mainstream. In GPU

technology conference, page 23. sn, 2009.

[81] Hongly Va, Min-Hyung Choi, and Min Hong. Real-time cloth simulation using

compute shader in unity3d for ar/vr contents. Applied Sciences, 11(17):8255,

2021.

[82] Dody Dharma, Cliff Jonathan, A Imam Kistidjantoro, and Afwarman Manaf.

Material point method based fluid simulation on gpu using compute shader. In

2017 International Conference on Advanced Informatics, Concepts, Theory, and

Applications (ICAICTA), pages 1–6. IEEE, 2017.

[83] Gareth Thomas. Compute-based gpu particle systems. In Game Developers

Conference, San Francisco, CA, 2014.

[84] Matthew Rusch, Neil Bickford, and Nuno Subtil. Introduction to vulkan ray

tracing. In Ray Tracing Gems II, pages 213–255. Springer, 2021.

[85] Victor Moya, Carlos Gonzalez, Jordi Roca, Agustin Fernandez, and Roger Es-

pasa. Shader performance analysis on a modern gpu architecture. In 38th Annual

IEEE/ACM International Symposium on Microarchitecture (MICRO’05), pages

10–pp. IEEE, 2005.

[86] Victor Moya, Carlos González, Jordi Roca, Agustı́n Fernández, and Roger Es-

pasa. A single (unified) shader gpu microarchitecture for embedded systems.

In International Conference on High-Performance Embedded Architectures and

Compilers, pages 286–301. Springer, 2005.

[87] John Nickolls and William J Dally. The gpu computing era. IEEE micro,

30(2):56–69, 2010.

[88] Thanh Tuan Dao and Jaejin Lee. An auto-tuner for opencl work-group size on

gpus. IEEE Transactions on Parallel and Distributed Systems, 29(2):283–296,

2017.

[89] Microsoft. D3D12 Shader Cache APIs. https://microsoft.github.io/DirectX-

Specs/d3d/ShaderCache.html, 2022.

https://microsoft.github.io/DirectX-Specs/d3d/ShaderCache.html
https://microsoft.github.io/DirectX-Specs/d3d/ShaderCache.html

178 Bibliography

[90] Xray Halperin, David Santiago, and Abdul Bezrati. Spider-man ig-impostors:

cityscapes and beyond. In SIGGRAPH Asia 2018 Technical Briefs, pages 1–4.

2018.

[91] Cem Cebenoyan. Stuttering in game graphics: Detection and solutions. In

China game developers conference, 2012.

[92] Fabian Giesen. A trip through the graphics pipeline 2011, part 1.

https://fgiesen.wordpress.com/2011/07/01/a-trip-through-the-graphics-

pipeline-2011-part-1, 2011.

[93] Luis Valente, Aura Conci, and Bruno Feijó. Real time game loop models for

single-player computer games. In Proceedings of the IV Brazilian Symposium

on Computer Games and Digital Entertainment, volume 89, page 99. Citeseer,

2005.

[94] Michael Worcester. Command buffers and pipelines. In Khronos Vulkan De-

vDay UK - Moving to Vulkan : How to make your 3D graphics more explicit,

2016.

[95] Matthias Wloka. Batch, batch, batch: What does it really mean. In Game

developers conference, 2003.

[96] Cass Everitt, Tim Foley, John McDonald, and Graham Sellers. Approaching

zero driver overhead in opengl. In Game Developers Conference, San Francisco,

CA, 2014.

[97] Diego Nehab, Joshua Barczak, and Pedro V Sander. Triangle order optimiza-

tion for graphics hardware computation culling. In Proceedings of the 2006

symposium on Interactive 3D graphics and games, pages 207–211, 2006.

[98] Jordy van Dortmont. Optimizing draw call batching using transient data-guided

texture atlases. Master’s thesis, University of Utrecht, 2017.

[99] Microsoft. Rendering from vertex and index buffers (direct3d 9).

https://docs.microsoft.com/en-us/windows/win32/direct3d9/rendering-from-

vertex-and-index-buffers, 2016.

[100] Khronos Group. Opengl vertex specification. https://www.khronos.org/

opengl/wiki/Vertex Specification, 2022.

https://fgiesen.wordpress.com/2011/07/01/a-trip-through-the-graphics-pipeline-2011-part-1
https://fgiesen.wordpress.com/2011/07/01/a-trip-through-the-graphics-pipeline-2011-part-1
https://docs.microsoft.com/en-us/windows/win32/direct3d9/rendering-from-vertex-and-index-buffers
https://docs.microsoft.com/en-us/windows/win32/direct3d9/rendering-from-vertex-and-index-buffers
https://www.khronos.org/opengl/wiki/Vertex_Specification
https://www.khronos.org/opengl/wiki/Vertex_Specification

Bibliography 179

[101] Khronos Group. Vertex specification best practices. https://www.khronos.org/

opengl/wiki/Vertex Specification Best Practices, 2018.

[102] Khronos Group. Triangle primitives. https://www.khronos.org/opengl/wiki/

Primitive#Triangle primitives, 2020.

[103] Bernhard Kerbl, Michael Kenzel, Elena Ivanchenko, Dieter Schmalstieg, and

Markus Steinberger. Revisiting the vertex cache: Understanding and optimizing

vertex processing on the modern gpu. Proceedings of the ACM on Computer

Graphics and Interactive Techniques, 1(2):1–16, 2018.

[104] Dave Shreiner and Edward Angel. Interactive computer graphics: A top-down

approach with shader-based opengl, 2012.

[105] Jules Bloomenthal and Jon Rokne. Homogeneous coordinates. The Visual Com-

puter, 11(1):15–26, 1994.

[106] Ladislav Kavan, Steven Collins, Jiřı́ Žára, and Carol O’Sullivan. Skinning with

dual quaternions. In Proceedings of the 2007 symposium on Interactive 3D

graphics and games, pages 39–46, 2007.

[107] Ladislav Kavan, Steven Collins, Jiřı́ Žára, and Carol O’Sullivan. Geometric

skinning with approximate dual quaternion blending. ACM Transactions on

Graphics (TOG), 27(4):1–23, 2008.

[108] Kok-Lim Low. Perspective-correct interpolation. 2002.

[109] The Khronos Group. OpenGL tessellation. https://www.khronos.org/opengl/

wiki/Tessellation, 2020.

[110] Ignacio Castaño. Watertight tessellation: precise and fma. http://www.

ludicon.com/castano/blog/2010/09/precise, 2010.

[111] Freddy Indra Wiryadi and Raymond Kosala. Particle rendering using geometry

shader. In 2016 1st International Conference on Game, Game Art, and Gamifi-

cation (ICGGAG), pages 1–6. IEEE, 2016.

[112] Johan Andersson and Daniel Johansson. Shadows & decals: D3d10 techniques

in frostbite (gdc’09). In Game developers conference, 2009.

https://www.khronos.org/opengl/wiki/Vertex_Specification_Best_Practices
https://www.khronos.org/opengl/wiki/Vertex_Specification_Best_Practices
https://www.khronos.org/opengl/wiki/Primitive#Triangle_primitives
https://www.khronos.org/opengl/wiki/Primitive#Triangle_primitives
https://www.khronos.org/opengl/wiki/Tessellation
https://www.khronos.org/opengl/wiki/Tessellation
http://www.ludicon.com/castano/blog/2010/09/precise
http://www.ludicon.com/castano/blog/2010/09/precise

180 Bibliography

[113] Kai Lawonn. Computer graphics II - point shadows. https://vis.uni-

jena.de/Lecture/ComputerGraphics2/Lec10 a PointShadows.pdf, 2022.

[114] Joey de Vries. Learn opengl - coordinate systems. https://learnopengl.com/

Getting-started/Coordinate-Systems, 2020.

[115] Fabian Giesen. Triangle rasterization in practice. https://fgiesen.wordpress.com/

2013/02/08/triangle-rasterization-in-practice, 2013.

[116] Wolfgang Straßer. Schnelle Kurven und Flachendarstellung auf graphischen

Sichtgeraten. PhD thesis, Technischen Universität Berlin, 1974.

[117] Edwin Catmull. A subdivision algorithm for computer display of curved sur-

faces. PhD thesis, The University of Utah, 1974.

[118] Eugene Lapidous and Guofang Jiao. Optimal depth buffer for low-cost graphics

hardware. In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS workshop

on Graphics hardware, pages 67–73, 1999.

[119] Microsoft. Stencil buffers. https://docs.microsoft.com/en-us/windows/uwp/

graphics-concepts/stencil-buffers, 2019.

[120] Shawn Hargreaves and Mark Harris. Deferred shading. In Game Developers

Conference, volume 2, page 31, 2004.

[121] The Khronos Group. Opengl blending. https://www.khronos.org/opengl

/wiki/Blending, 2017.

[122] The Khronos Group. OpenGL - uniform (GLSL). https://www.khronos.org/

opengl/wiki/Uniform (GLSL), 2020.

[123] The Khronos Group. OpenGL - uniform buffer object. https://www.

khronos.org/opengl/wiki/Uniform Buffer Object, 2017.

[124] The Khronos Group. OpenGL - buffer object. https://www.khronos.org/

opengl/wiki/Buffer Object, 2021.

[125] Adam Lake. Getting the most from opencl™ 1.2: How to increase

performance by minimizing buffer copies on intel® processor graphics.

https://www.intel.com/content/www/us/en/developer/articles/training/getting-

the-most-from-opencl-12-how-to-increase-performance-by-minimizing-buffer-

copies-on-intel-processor-graphics.html, 2014.

https://vis.uni-jena.de/Lecture/ComputerGraphics2/Lec10_a_PointShadows.pdf
https://vis.uni-jena.de/Lecture/ComputerGraphics2/Lec10_a_PointShadows.pdf
https://learnopengl.com/Getting-started/Coordinate-Systems
https://learnopengl.com/Getting-started/Coordinate-Systems
https://fgiesen.wordpress.com/2013/02/08/triangle-rasterization-in-practice
https://fgiesen.wordpress.com/2013/02/08/triangle-rasterization-in-practice
https://docs.microsoft.com/en-us/windows/uwp/graphics-concepts/stencil-buffers
https://docs.microsoft.com/en-us/windows/uwp/graphics-concepts/stencil-buffers
https://www.khronos.org/opengl/wiki/Blending
https://www.khronos.org/opengl/wiki/Blending
https://www.khronos.org/opengl/wiki/Uniform_(GLSL)
https://www.khronos.org/opengl/wiki/Uniform_(GLSL)
https://www.khronos.org/opengl/wiki/Uniform_Buffer_Object
https://www.khronos.org/opengl/wiki/Uniform_Buffer_Object
https://www.khronos.org/opengl/wiki/Buffer_Object
https://www.khronos.org/opengl/wiki/Buffer_Object
https://www.intel.com/content/www/us/en/developer/articles/training/getting-the-most-from-opencl-12-how-to-increase-performance-by-minimizing-buffer-copies-on-intel-processor-graphics.html
https://www.intel.com/content/www/us/en/developer/articles/training/getting-the-most-from-opencl-12-how-to-increase-performance-by-minimizing-buffer-copies-on-intel-processor-graphics.html
https://www.intel.com/content/www/us/en/developer/articles/training/getting-the-most-from-opencl-12-how-to-increase-performance-by-minimizing-buffer-copies-on-intel-processor-graphics.html

Bibliography 181

[126] The Khronos Group. OpenGL - pixel transfer. https://www.khronos.org/

opengl/wiki/Pixel Transfer, 2020.

[127] RasterGrid. Understanding GPU caches. https://www.rastergrid.com/blog/gpu-

tech/2021/01/understanding-gpu-caches, 2021.

[128] The Khronos Group. Program introspection: Uniforms and blocks. https://www.

khronos.org/opengl/wiki/Program Introspection#Uniforms and blocks, 2020.

[129] The Khronos Group. OpenGL - interface block (GLSL). https://www.

khronos.org/opengl/wiki/Interface Block (GLSL), 2021.

[130] The Khronos Group. OpenGL - shader storage buffer object. https://www.

khronos.org/opengl/wiki/Shader Storage Buffer Object, 2020.

[131] The Khronos Group. OpenGL - texture. https://www.khronos.org/opengl/

wiki/Texture, 2020.

[132] Waylon Brinck, Andrew Maximov, and Yibing Jiang. The technical art of un-

charted 4. In ACM SIGGRAPH 2016 Talks, SIGGRAPH ’16, New York, NY,

USA, 2016. Association for Computing Machinery.

[133] The Khronos Group. OpenGL - sampler (GLSL). https://www.khronos.org/

opengl/wiki/Sampler (GLSL), 2020.

[134] Turner Whitted and David M Weimer. A software test-bed for the development

of 3-d raster graphics systems. In Proceedings of the 8th annual conference on

Computer graphics and interactive techniques, pages 271–277, 1981.

[135] Turner Whitted and David M Weimer. A software testbed for the development of

3d raster graphics systems. ACM Transactions on Graphics (TOG), 1(1):43–58,

1982.

[136] Robert L Cook. Shade trees. ACM Siggraph Computer Graphics, 18(3):223–

231, 1984.

[137] Gregory D Abram and Turner Whitted. Building block shaders. ACM SIG-

GRAPH Computer Graphics, 24(4):283–288, 1990.

[138] Ken Perlin. An image synthesizer. ACM Siggraph Computer Graphics,

19(3):287–296, 1985.

https://www.khronos.org/opengl/wiki/Pixel_Transfer
https://www.khronos.org/opengl/wiki/Pixel_Transfer
https://www.rastergrid.com/blog/gpu-tech/2021/01/understanding-gpu-caches
https://www.rastergrid.com/blog/gpu-tech/2021/01/understanding-gpu-caches
https://www.khronos.org/opengl/wiki/Program_Introspection#Uniforms_and_blocks
https://www.khronos.org/opengl/wiki/Program_Introspection#Uniforms_and_blocks
https://www.khronos.org/opengl/wiki/Interface_Block_(GLSL)
https://www.khronos.org/opengl/wiki/Interface_Block_(GLSL)
https://www.khronos.org/opengl/wiki/Shader_Storage_Buffer_Object
https://www.khronos.org/opengl/wiki/Shader_Storage_Buffer_Object
https://www.khronos.org/opengl/wiki/Texture
https://www.khronos.org/opengl/wiki/Texture
https://www.khronos.org/opengl/wiki/Sampler_(GLSL)
https://www.khronos.org/opengl/wiki/Sampler_(GLSL)

182 Bibliography

[139] Pat Hanrahan and Jim Lawson. A language for shading and lighting calcula-

tions. In Proceedings of the 17th annual conference on Computer graphics and

interactive techniques, pages 289–298, 1990.

[140] Michael Deering, Stephanie Winner, Bic Schediwy, Chris Duffy, and Neil Hunt.

The triangle processor and normal vector shader: a vlsi system for high perfor-

mance graphics. ACM Siggraph computer graphics, 22(4):21–30, 1988.

[141] John Poulton. Pixel-planes: Building a vlsi-based graphics system. In Proc. of

1985 Chapel Hill Conf. on VLSI, pages 35–60, 1985.

[142] John Eyles, John Austin, Henry Fuchs, Trey Greer, and John Poulton. Pixel-

planes 4: A summary. Advances in computer graphics hardware II, pages 1833–

207, 1988.

[143] Henry Fuchs, John Poulton, John Eyles, Trey Greer, Jack Goldfeather, David

Ellsworth, Steve Molnar, Greg Turk, Brice Tebbs, and Laura Israel. Pixel-planes

5: a heterogeneous multiprocessor graphics system using processor-enhanced

memories. ACM Siggraph Computer Graphics, 23(3):79–88, 1989.

[144] Brice Tebbs, Ulrich Neumann, John Eyles, Greg Turk, and David Ellsworth.

Parallel architectures and algorithms for real-time synthesis of high quality im-

ages using deferred shading. Technical report, NORTH CAROLINA UNIV AT

CHAPEL HILL DEPT OF COMPUTER SCIENCE, 1989.

[145] Steven Molnar, John Eyles, and John Poulton. Pixelflow: high-speed rendering

using image composition. In Proceedings of the 19th annual conference on

Computer graphics and interactive techniques, pages 231–240, 1992.

[146] Henri Gouraud. Continuous shading of curved surfaces. IEEE transactions on

computers, 100(6):623–629, 1971.

[147] Gary Bishop and David M Weimer. Fast phong shading. ACM SIGGRAPH

Computer Graphics, 20(4):103–106, 1986.

[148] John Rhoades, Greg Turk, Andrew Bell, Andrei State, Ulrich Neumann, and

Amitabh Varshney. Real-time procedural textures. In Proceedings of the 1992

symposium on Interactive 3D graphics, pages 95–100, 1992.

Bibliography 183

[149] Anselmo Lastra, Steven Molnar, Marc Olano, and Yulan Wang. Real-time pro-

grammable shading. In Proceedings of the 1995 symposium on Interactive 3D

graphics, pages 59–ff, 1995.

[150] John Eyles, Steven Molnar, John Poulton, Trey Greer, Anselmo Lastra, Nick

England, and Lee Westover. Pixelflow: the realization. In Proceedings of the

ACM SIGGRAPH/EUROGRAPHICS workshop on Graphics hardware, pages

57–68, 1997.

[151] CORPORATE OpenGL Architecture ReviewBoard. OpenGL reference man-

ual: the official reference document for OpenGL, release 1. Addison-Wesley

Longman Publishing Co., Inc., 1992.

[152] Marc Olano and Anselmo Lastra. A shading language on graphics hardware:

The pixelflow shading system. In SIGGRAPH, volume 98, pages 159–168,

1998.

[153] Jon Leech. Opengl extensions and restrictions for pixelflow. Technical Re-

port TR98-019, Department of Computer Science, University of North Carolina,

1998.

[154] Mark S Peercy, Marc Olano, John Airey, and P Jeffrey Ungar. Interactive

multi-pass programmable shading. In Proceedings of the 27th annual confer-

ence on Computer graphics and interactive techniques, pages 425–432. ACM

Press/Addison-Wesley Publishing Co., 2000.

[155] Paul J Diefenbach and Norman I Badler. Multi-pass pipeline rendering: Re-

alism for dynamic environments. In Proceedings of the 1997 symposium on

Interactive 3D graphics, pages 59–ff, 1997.

[156] Tom McReynolds, David Blythe, Brad Grantham, and Scott Nelson. Advanced

graphics programming techniques using opengl. Computer Graphics, pages 95–

145, 1998.

[157] Erik Lindholm, Mark J Kilgard, and Henry Moreton. A user-programmable ver-

tex engine. In Proceedings of the 28th annual conference on Computer graphics

and interactive techniques, pages 149–158. ACM, 2001.

[158] Harold Robert Feldman Zatz, Henry P Moreton, and John Erik Lindholm. Pro-

grammable pixel shading architecture, April 20 2004. US Patent 6,724,394.

184 Bibliography

[159] Kekoa Proudfoot, William R Mark, Svetoslav Tzvetkov, and Pat Hanrahan. A

real-time procedural shading system for programmable graphics hardware. In

Proceedings of the 28th annual conference on Computer graphics and interac-

tive techniques, pages 159–170. ACM, 2001.

[160] William R Mark and Kekoa Proudfoot. Compiling to a vliw fragment pipeline.

In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS workshop on Graph-

ics hardware, pages 47–56, 2001.

[161] William R Mark, R Steven Glanville, Kurt Akeley, and Mark J Kilgard. Cg: A

system for programming graphics hardware in a c-like language. ACM Trans-

actions on Graphics (TOG), 22(3):896–907, 2003.

[162] Martin Ecker. Programmable graphics pipeline architectures. XEngine Corpo-

ration, 2002.

[163] Marc Olano, Kurt Akeley, John C Hart, Wolfgang Heidrich, Michael McCool,

Jason L Mitchell, and Randi Rost. Real-time shading. In ACM SIGGRAPH

2004 Course Notes, pages 1–es. 2004.

[164] Patrick S McCormick, Jeff Inman, James P Ahrens, Charles Hansen, and Greg

Roth. Scout: A hardware-accelerated system for quantitatively driven visualiza-

tion and analysis. In IEEE Visualization 2004, pages 171–178. IEEE, 2004.

[165] Nicolas Fritz, Philipp Lucas, and Philipp Slusallek. Cgis, a new language for

data-parallel gpu programming. In VMV, pages 241–248, 2004.

[166] Philipp Lucas, Nicolas Fritz, and Reinhard Wilhelm. The cgis compiler—a tool

demonstration. In International Conference on Compiler Construction, pages

105–108. Springer, 2006.

[167] Aaron Lefohn. Glift: An abstraction for generic, efficient gpu data structures.

In ACM SIGGRAPH 2005 Courses, pages 140–es. 2005.

[168] David Tarditi, Sidd Puri, and Jose Oglesby. Accelerator: using data parallelism

to program gpus for general-purpose uses. ACM SIGPLAN Notices, 41(11):325–

335, 2006.

[169] John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. Scalable parallel

programming with cuda. Queue, 6(2):40–53, 2008.

Bibliography 185

[170] NVIDIA. Nvidia cuda compute unified device architecture programming guide.

2007.

[171] John E Stone, David Gohara, and Guochun Shi. Opencl: A parallel program-

ming standard for heterogeneous computing systems. Computing in science &

engineering, 12(3):66–73, 2010.

[172] Aaftab Munshi. The opencl specification. In 2009 IEEE Hot Chips 21 Sympo-

sium (HCS), pages 1–314. IEEE, 2009.

[173] Christoph Kubisch. Introduction to turing mesh shaders. Nvidia Devblog, 2018.

[174] VV Sanzharov, AI Gorbonosov, VA Frolov, and AG Voloboy. Examination of

the nvidia rtx. In Proceedings of the 29th International Conference on Computer

Graphics and Vision (GraphiCon 2019), volume 2485, page 7, 2019.

[175] John Burgess. Rtx on—the nvidia turing gpu. IEEE Micro, 40(2):36–44, 2020.

[176] Alexander Blake-Davies. Powering next-generation gaming visuals with amd

rdna 2 and directx 12 ultimate. AMD Community Blog, 2020.

[177] Microsoft. Directx raytracing (dxr) functional spec v1.13. 2020.

[178] Daniel Koch. Vulkan ray tracing final specification release. Khronos Blog, 2020.

[179] Brian Guenter, Todd B Knoblock, and Erik Ruf. Specializing shaders. In Pro-

ceedings of the 22nd annual conference on Computer graphics and interactive

techniques, pages 343–350. ACM, 1995.

[180] David Luebke, Martin Reddy, Jonathan D Cohen, Amitabh Varshney, Benjamin

Watson, and Robert Huebner. Level of detail for 3D graphics. Morgan Kauf-

mann, 2003.

[181] Jonathan Cohen, David Luebke, Nathaniel Duca, and Brenden Schubert. Glod:

A geometric level of detail system at the opengl api level. In IEEE Visualization.

Citeseer, 2003.

[182] Lance Williams. Pyramidal parametrics. In Proceedings of the 10th annual

conference on Computer graphics and interactive techniques, pages 1–11, 1983.

186 Bibliography

[183] Marc Olano, Bob Kuehne, and Maryann Simmons. Automatic shader level of

detail. In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS conference

on Graphics hardware, pages 7–14. Eurographics Association, 2003.

[184] Maryann Simmons and Dave Shreiner. Per-pixel smooth shader level of detail.

In ACM SIGGRAPH 2003 Sketches & Applications, pages 1–1. ACM, 2003.

[185] Fabio Pellacini. User-configurable automatic shader simplification. ACM Trans-

actions on Graphics (TOG), 24(3):445–452, 2005.

[186] Pitchaya Sitthi-Amorn, Nicholas Modly, Westley Weimer, and Jason Lawrence.

Genetic programming for shader simplification. ACM Transactions on Graphics

(TOG), 30(6):1–12, 2011.

[187] Lutz Kettner. Fast automatic level of detail for physically-based materials. In

ACM SIGGRAPH 2017 Talks, page 39. ACM, 2017.

[188] Chang-Woo Cho, Chung-Pyo Hong, Jin-Chun Piao, Yeong-Kyu Lim, and Shin-

Dug Kim. Performance optimization of 3d applications by opengl es library

hooking in mobile devices. In 2014 IEEE/ACIS 13th International Conference

on Computer and Information Science (ICIS), pages 471–476. IEEE, 2014.

[189] Jin-Chun Piao, Chang-Woo Cho, Cheong-Ghil Kim, Bernd Burgstaller, and

Shin-Dug Kim. An adaptive lod setting methodology with opengl es library

on mobile devices. In 2014 International Conference on IT Convergence and

Security (ICITCS), pages 1–4. IEEE, 2014.

[190] Rui Wang, Xianjin Yang, Yazhen Yuan, Wei Chen, Kavita Bala, and Hujun

Bao. Automatic shader simplification using surface signal approximation. ACM

Transactions on Graphics (TOG), 33(6):226, 2014.

[191] Diego Nehab, Pedro V Sander, Jason Lawrence, Natalya Tatarchuk, and John R

Isidoro. Accelerating real-time shading with reverse reprojection caching. In

Graphics hardware, volume 41, pages 61–62, 2007.

[192] Pitchaya Sitthi-amorn, Jason Lawrence, Lei Yang, Pedro V Sander, Diego Ne-

hab, and Jiahe Xi. Automated reprojection-based pixel shader optimization. In

ACM SIGGRAPH Asia 2008 papers, pages 1–11. 2008.

Bibliography 187

[193] Yong He, Tim Foley, Natalya Tatarchuk, and Kayvon Fatahalian. A system for

rapid, automatic shader level-of-detail. ACM Transactions on Graphics (TOG),

34(6):187, 2015.

[194] Yong He, Tim Foley, and Kayvon Fatahalian. A system for rapid exploration of

shader optimization choices. ACM Transactions on Graphics (TOG), 35(4):112,

2016.

[195] Yazhen Yuan, Rui Wang, Tianlei Hu, and Hujun Bao. Runtime shader simplifi-

cation via instant search in reduced optimization space. In Computer Graphics

Forum, volume 37, pages 143–154. Wiley Online Library, 2018.

[196] FE Allen. Program optimization, annual review of automatic programming, vol.

5, 1969.

[197] John T Bagwell Jr. Local optimizations. In Proceedings of a symposium on

Compiler optimization, pages 52–66, 1970.

[198] Thomas J. Watson IBM Research Center. Research Division, FE Allen, and

J Cocke. A catalogue of optimizing transformations. 1971.

[199] Alfred V Aho, Ravi Sethi, and Jeffrey D Ullman. Compilers, principles, tech-

niques, and tools. Addison wesley, 7(8):9, 1986.

[200] Keith Cooper and Linda Torczon. Engineering a compiler. Elsevier, 2011.

[201] David Callahan, Keith D Cooper, Ken Kennedy, and Linda Torczon. Interpro-

cedural constant propagation. ACM SIGPLAN Notices, 21(7):152–161, 1986.

[202] Mark N Wegman and F Kenneth Zadeck. Constant propagation with condi-

tional branches. ACM Transactions on Programming Languages and Systems

(TOPLAS), 13(2):181–210, 1991.

[203] Dan Grove and Linda Torczon. Interprocedural constant propagation: A study

of jump function implementation. ACM SIGPLAN Notices, 28(6):90–99, 1993.

[204] Mooly Sagiv, Thomas Reps, and Susan Horwitz. Precise interprocedural

dataflow analysis with applications to constant propagation. Theoretical Com-

puter Science, 167(1-2):131–170, 1996.

188 Bibliography

[205] Jaejin Lee, Samuel P Midkiff, and David A Padua. Concurrent static single

assignment form and constant propagation for explicitly parallel programs. In

International Workshop on Languages and Compilers for Parallel Computing,

pages 114–130. Springer, 1997.

[206] Jens Knoop. Parallel constant propagation. In European Conference on Parallel

Processing, pages 445–455. Springer, 1998.

[207] Edward M Riseman and Caxton C Foster. The inhibition of potential parallelism

by conditional jumps. IEEE Transactions on Computers, 100(12):1405–1411,

1972.

[208] DW Anderson, FJ Sparacio, and Robert M Tomasulo. The ibm system/360

model 91: Machine philosophy and instruction-handling. IBM Journal of Re-

search and Development, 11(1):8–24, 1967.

[209] Ivan Flores. Lookahead control in the ibm system 370 model 165. Computer,

7(11):24–38, 1974.

[210] Roland N Ibbett. The mu5 instruction pipeline. The Computer Journal,

15(1):42–50, 1972.

[211] JE Smith. A study of branch prediction techniques. In Proceedings of the 8th

Annual Symposium on Computer Architecture, pages 135–147, 1981.

[212] Sparsh Mittal. A survey of techniques for dynamic branch prediction. Concur-

rency and Computation: Practice and Experience, 31(1):e4666, 2019.

[213] Shien-Tai Pan, Kimming So, and Joseph T Rahmeh. Improving the accuracy of

dynamic branch prediction using branch correlation. In Proceedings of the fifth

international conference on Architectural support for programming languages

and operating systems, pages 76–84, 1992.

[214] Cliff Young, Nicolas Gloy, and Michael D Smith. A comparative analysis of

schemes for correlated branch prediction. ACM SIGARCH Computer Architec-

ture News, 23(2):276–286, 1995.

[215] Marius Evers, Sanjay J Patel, Robert S Chappell, and Yale N Patt. An anal-

ysis of correlation and predictability: What makes two-level branch predictors

work. In Proceedings of the 25th Annual International Symposium on Computer

Architecture, pages 52–61, 1998.

Bibliography 189

[216] Daniel A Jiménez and Calvin Lin. Dynamic branch prediction with perceptrons.

In Proceedings HPCA Seventh International Symposium on High-Performance

Computer Architecture, pages 197–206. IEEE, 2001.

[217] I-Cheng K Chen, John T Coffey, and Trevor N Mudge. Analysis of branch

prediction via data compression. ACM SIGPLAN Notices, 31(9):128–137, 1996.

[218] John Cleary and Ian Witten. Data compression using adaptive coding and partial

string matching. IEEE transactions on Communications, 32(4):396–402, 1984.

[219] Pierre Michaud. A ppm-like, tag-based branch predictor. Journal of Instruction

Level Parallelism, 7(1):1–10, 2005.

[220] Hongliang Gao and Huiyang Zhou. Pmpm: Prediction by combining multiple

partial matches. Journal of Instruction-Level Parallelism, 9:1–18, 2007.

[221] André Seznec. A case for (partially)-tagged geometric history length predictors.

Journal of InstructionLevel Parallelism, 2006.

[222] André Seznec. Analysis of the o-geometric history length branch predictor.

In 32nd International Symposium on Computer Architecture (ISCA’05), pages

394–405. IEEE, 2005.

[223] André Seznec. A new case for the tage branch predictor. In Proceedings of the

44th Annual IEEE/ACM International Symposium on Microarchitecture, pages

117–127, 2011.

[224] André Seznec. A 256 kbits l-tage branch predictor. Journal of Instruction-Level

Parallelism (JILP) Special Issue: The Second Championship Branch Prediction

Competition (CBP-2), 9:1–6, 2007.

[225] André Seznec. A 64 kbytes isl-tage branch predictor. In JWAC-2: Champi-

onship Branch Prediction, 2011.

[226] Po-Yung Chang, Eric Hao, Tse-Yu Yeh, and Yale Patt. Branch classification:

a new mechanism for improving branch predictor performance. International

Journal of Parallel Programming, 24(2):133–158, 1996.

[227] Gabriel H Loh and Dana S Henry. Predicting conditional branches with fusion-

based hybrid predictors. In Proceedings. International Conference on Parallel

Architectures and Compilation Techniques, pages 165–176. IEEE, 2002.

190 Bibliography

[228] Ayose Falcón, Jared Stark, Alex Ramirez, Konrad Lai, and Mateo Valero.

Prophet/critic hybrid branch prediction. In Proceedings. 31st Annual Inter-

national Symposium on Computer Architecture, 2004., pages 250–261. IEEE,

2004.

[229] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,

Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike Ham-

burg. Meltdown. arXiv preprint arXiv:1801.01207, 2018.

[230] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner

Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, et al.

Spectre attacks: Exploiting speculative execution. In 2019 IEEE Symposium on

Security and Privacy (SP), pages 1–19. IEEE, 2019.

[231] Samuel P Harbison. An architectural alternative to optimizing compilers. ACM

SIGPLAN Notices, 17(4):57–65, 1982.

[232] Stephen E Richardson. Caching function results: Faster arithmetic by avoiding

unnecessary computation. Sun Microsystems Laboratories, 1992.

[233] Mikko H Lipasti, Christopher B Wilkerson, and John Paul Shen. Value locality

and load value prediction. ACM SIGPLAN Notices, 31(9):138–147, 1996.

[234] Mikko H Lipasti and John Paul Shen. Exceeding the dataflow limit via value

prediction. In Proceedings of the 29th Annual IEEE/ACM International Sympo-

sium on Microarchitecture. MICRO 29, pages 226–237. IEEE, 1996.

[235] Freddy Gabbay and Avi Mendelson. Speculative execution based on value pre-

diction. Technical Report 1080, Technion-IIT, Department of Electrical Engi-

neering, 1996.

[236] Freddy Gabbay and Abraham Mendelson. An Experimental and Analytical

Study of Speculative Execution based on Value Prediction. Technion-IIT, De-

partment of Electrical Engineering, 1997.

[237] Rubén González, Adrián Cristal, Daniel Ortega, Alexander Veidenbaum, and

Mateo Valero. A content aware integer register file organization. In Proceedings.

31st Annual International Symposium on Computer Architecture, 2004., pages

314–324. IEEE, 2004.

Bibliography 191

[238] Joshua San Miguel, Mario Badr, and Natalie Enright Jerger. Load value approx-

imation. In 2014 47th Annual IEEE/ACM International Symposium on Microar-

chitecture, pages 127–139. IEEE, 2014.

[239] Shaoshan Liu, Christine Eisenbeis, and Jean-Luc Gaudiot. Speculative execu-

tion on gpu: An exploratory study. In 2010 39th International Conference on

Parallel Processing, pages 453–461. IEEE, 2010.

[240] Shaoshan Liu, Christine Eisenbeis, and Jean-Luc Gaudiot. Value prediction and

speculative execution on gpu. International Journal of Parallel Programming,

39(5):533–552, 2011.

[241] Enqiang Sun and David Kaeli. Aggressive value prediction on a gpu. Interna-

tional Journal of Parallel Programming, 42(1):30–48, 2014.

[242] Haonan Wang, Mohamed Ibrahim, Sparsh Mittal, and Adwait Jog. Address-

stride assisted approximate load value prediction in gpus. In Proceedings of the

ACM International Conference on Supercomputing, pages 184–194, 2019.

[243] Amir Yazdanbakhsh, Gennady Pekhimenko, Hadi Esmaeilzadeh, Onur Mutlu,

and Todd C Mowry. Towards breaking the memory bandwidth wall using ap-

proximate value prediction. In Approximate Circuits, pages 417–441. Springer,

2019.

[244] Sparsh Mittal. A survey of value prediction techniques for leveraging value

locality. Concurrency and computation: practice and experience, 29(21):e4250,

2017.

[245] John Aycock. A brief history of just-in-time. ACM Computing Surveys (CSUR),

35(2):97–113, 2003.

[246] Gilbert J Hansen. Adaptive systems for the dynamic run-time optimization of

programs. Technical report, CARNEGIE-MELLON UNIV PITTSBURGH PA

DEPT OF COMPUTER SCIENCE, 1974.

[247] John W Backus, Robert J Beeber, Sheldon Best, Richard Goldberg, L Mitchell

Haibt, Harlan L Herrick, Robert A Nelson, David Sayre, Peter B Sheridan,

H Stern, et al. The fortran automatic coding system. In Papers presented at

the February 26-28, 1957, western joint computer conference: Techniques for

reliability, pages 188–198, 1957.

192 Bibliography

[248] JL Dawson. Combining interpretive code with machine code. The Computer

Journal, 16(3):216–219, 1973.

[249] RJ Dakin and Peter C Poole. A mixed code approach. The Computer Journal,

16(3):219–222, 1973.

[250] PJ Brown. Throw-away compiling. Software: Practice and Experience,

6(3):423–434, 1976.

[251] Michael Franz and Thomas Kistler. Slim binaries. Communications of the ACM,

40(12):87–94, 1997.

[252] Niklaus Wirth. The programming language oberon. Software: Practice and

Experience, 18(7):661–670, 1988.

[253] Thomas Peter Kistler. Continuous program optimization. University of Califor-

nia, Irvine, 1999.

[254] Thomas Kistler and Michael Franz. Continuous program optimization: Design

and evaluation. IEEE Transactions on Computers, 50(6):549–566, 2001.

[255] Thomas Kistler and Michael Franz. Continuous program optimization: A case

study. ACM Transactions on Programming Languages and Systems (TOPLAS),

25(4):500–548, 2003.

[256] Philip Samuel Abrams. An apl machine. Technical report, Stanford Linear

Accelerator Center, Calif., 1970.

[257] Terrence C Miller. Tentative compilation: A design for an apl compiler. ACM

SIGAPL APL Quote Quad, 9(4-P1):88–95, 1979.

[258] Adele Goldberg and David Robson. Smalltalk-80: the language and its imple-

mentation. Addison-Wesley Longman Publishing Co., Inc., 1983.

[259] L Peter Deutsch and Allan M Schiffman. Efficient implementation of the

smalltalk-80 system. In Proceedings of the 11th ACM SIGACT-SIGPLAN sym-

posium on Principles of programming languages, pages 297–302, 1984.

[260] David Ungar and Randall B Smith. Self: The power of simplicity. In Con-

ference proceedings on Object-oriented programming systems, languages and

applications, pages 227–242, 1987.

Bibliography 193

[261] Urs Hölzle. Adaptive optimization for SELF: reconciling high performance with

exploratory programming. PhD thesis, Stanford University, 1994.

[262] Urs Hölzle and David Ungar. Optimizing dynamically-dispatched calls with

run-time type feedback. In Proceedings of the ACM SIGPLAN 1994 conference

on Programming language design and implementation, pages 326–336, 1994.

[263] Timothy Cramer, Richard Friedman, Terrence Miller, David Seberger, Robert

Wilson, and Mario Wolczko. Compiling java just in time. Ieee micro, 17(3):36–

43, 1997.

[264] Thomas Kotzmann, Christian Wimmer, Hanspeter Mössenböck, Thomas Ro-

driguez, Kenneth Russell, and David Cox. Design of the java hotspot™ client

compiler for java 6. ACM Transactions on Architecture and Code Optimization

(TACO), 5(1):1–32, 2008.

[265] Gilles Duboscq, Thomas Würthinger, Lukas Stadler, Christian Wimmer, Doug

Simon, and Hanspeter Mössenböck. An intermediate representation for spec-

ulative optimizations in a dynamic compiler. In Proceedings of the 7th ACM

workshop on Virtual machines and intermediate languages, pages 1–10, 2013.

[266] Armin Rigo. Representation-based just-in-time specialization and the psyco

prototype for python. In Proceedings of the 2004 ACM SIGPLAN symposium

on Partial evaluation and semantics-based program manipulation, pages 15–26,

2004.

[267] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Suc-

cinct non-interactive zero knowledge for a von neumann architecture. In

23rd {USENIX} Security Symposium ({USENIX} Security 14), pages 781–796,

2014.

[268] Mason Chang, Edwin Smith, Rick Reitmaier, Michael Bebenita, Andreas Gal,

Christian Wimmer, Brendan Eich, and Michael Franz. Tracing for web 3.0:

trace compilation for the next generation web applications. In Proceedings of

the 2009 ACM SIGPLAN/SIGOPS international conference on Virtual execution

environments, pages 71–80, 2009.

[269] Jungwoo Ha, Mohammad R Haghighat, Shengnan Cong, and Kathryn S

McKinley. A concurrent trace-based just-in-time compiler for single-threaded

194 Bibliography

javascript. In Workshop on Parallel Execution of Sequential Programs on Multi-

Core Architectures, pages 47–54. Citeseer, 2009.

[270] Brian Hackett and Shu-yu Guo. Fast and precise hybrid type inference for

javascript. ACM SIGPLAN Notices, 47(6):239–250, 2012.

[271] Calton Pu, Henry Massalin, and John Ioannidis. The synthesis kernel. Comput-

ing Systems, 1(1):11–32, 1988.

[272] Henry Massalin and Calton Pu. Threads and input/output in the synthesis kernal.

In Proceedings of the twelfth ACM symposium on Operating systems principles,

pages 191–201, 1989.

[273] Calton Pu, Tito Autrey, Andrew Black, Charles Consel, Crispin Cowan, Jon

Inouye, Lakshmi Kethana, Jonathan Walpole, and Ke Zhang. Optimistic in-

cremental specialization: Streamlining a commercial operating system. In

Proceedings of the fifteenth ACM symposium on Operating systems principles,

pages 314–321, 1995.

[274] Peter Sestoft and Alexandre V. Zamulin. Annotated bibliography on partial

evaluation and mixed computation. New Generation Computing, 6(2&3):309–

354, 1988.

[275] David Keppel, Susan J Eggers, and Robert R Henry. A case for runtime code

generation. Department of Computer Science and Engineering, University of

Washington, 1991.

[276] David Keppel, Susan J Eggers, and Robert R Henry. Evaluating runtime-

compiled value-specific optimizations. Technical Report 93-11-02, Department

of Computer Science and Engineering, University of Washington, 1993.

[277] Rob Pike, Bart Locanthi, and John Reiser. Hardware/software trade-offs for

bitmap graphics on the blit. Software: Practice and Experience, 15(2):131–

151, 1985.

[278] Bart N Locanthi. Fast bitblt () with asm () and cpp. In European UNIX Systems

User Group Conference Proceedings, pages 243–259, 1987.

[279] Lars Ole Andersen. Program analysis and specialization for the C programming

language. PhD thesis, University of Cophenhagen, 1994.

Bibliography 195

[280] Peter Holst Andersen. Partial evaluation applied to ray tracing. In Software

Engineering im Scientific Computing, pages 78–85. Springer, 1996.

[281] Paul Kleinrubatscher, Albert Kriegshaber, Robert Zöchling, and Robert Glück.

Fortran program specialization. ACM SIGPLAN Notices, 30(4):61–70, 1995.

[282] Romana Baier, Robert Glück, and Robert Zöchling. Partial evaluation of nu-

merical programs in fortran. PEPM, 94:119–132, 1994.

[283] Robert Glück, Ryo Nakashige, and Robert Zöchling. Binding-time analysis

applied to mathematical algorithms. In System Modelling and Optimization,

pages 137–146. Springer, 1996.

[284] Charles Consel, Luke Hornof, François Noël, Jacques Noyé, and Nicolae Volan-

schi. A uniform approach for compile-time and run-time specialization. In

Partial Evaluation, pages 54–72. Springer, 1996.

[285] Charles Consel and François Noël. A general approach for run-time specializa-

tion and its application to c. In Proceedings of the 23rd ACM SIGPLAN-SIGACT

symposium on Principles of programming languages, pages 145–156, 1996.

[286] François Noël, Luke Hornof, Charles Consel, and Julia L Lawall. Auto-

matic, template-based run-time specialization: Implementation and experimen-

tal study. In Proceedings of the 1998 International Conference on Computer

Languages (Cat. No. 98CB36225), pages 132–142. IEEE, 1998.

[287] Todd B Knoblock and Erik Ruf. Data specialization. In Proceedings of the ACM

SIGPLAN 1996 conference on Programming language design and implementa-

tion, pages 215–225, 1996.

[288] Charles Consel, Luke Hornof, Renaud Marlet, Gilles Muller, Scott Thibault, E-

N Volanschi, Julia Lawall, and Jacques Noyé. Tempo: Specializing systems ap-

plications and beyond. ACM Computing Surveys (CSUR), 30(3es):19–es, 1998.

[289] Charles Consel, Julia L Lawall, and Anne-Françoise Le Meur. A tour of tempo:

A program specializer for the c language. Science of Computer Programming,

52(1-3):341–370, 2004.

[290] GCC, the GNU Compiler Collection. https://gcc.gnu.org.

https://gcc.gnu.org/

196 Bibliography

[291] Dylan McNamee, Jonathan Walpole, Calton Pu, Crispin Cowan, Charles Krasic,

Ashvin Goel, Perry Wagle, Charles Consel, Gilles Muller, and Renauld Marlet.

Specialization tools and techniques for systematic optimization of system soft-

ware. ACM Transactions on Computer Systems (TOCS), 19(2):217–251, 2001.

[292] Gilles Muller, Renaud Marlet, E-N Volanschi, Charles Consel, Calton Pu, and

Ashvin Goel. Fast, optimized sun rpc using automatic program specialization. In

Proceedings. 18th International Conference on Distributed Computing Systems

(Cat. No. 98CB36183), pages 240–249. IEEE, 1998.

[293] Dawson R Engler, Wilson C Hsieh, and M Frans Kaashoek. C: A language

for high-level, efficient, and machine-independent dynamic code generation. In

Proceedings of the 23rd ACM SIGPLAN-SIGACT symposium on Principles of

programming languages, pages 131–144, 1996.

[294] Massimiliano Poletto, Wilson C Hsieh, Dawson R Engler, and M Frans

Kaashoek. C and tcc: a language and compiler for dynamic code genera-

tion. ACM Transactions on Programming Languages and Systems (TOPLAS),

21(2):324–369, 1999.

[295] Christopher W Fraser and David R Hanson. A code generation interface for ansi

c. Software: Practice and Experience, 21(9):963–988, 1991.

[296] Christopher W Fraser and David R Hanson. A retargetable C compiler: design

and implementation. Addison-Wesley Longman Publishing Co., Inc., 1995.

[297] Brian Grant, Matthai Philipose, Markus Mock, Craig Chambers, and Susan J

Eggers. An evaluation of staged run-time optimizations in dyc. ACM SIGPLAN

Notices, 34(5):293–304, 1999.

[298] Brian Grant, Markus Mock, Matthai Philipose, Craig Chambers, and Susan J

Eggers. Dyc: an expressive annotation-directed dynamic compiler for c. Theo-

retical Computer Science, 248(1-2):147–199, 2000.

[299] P Geoffrey Lowney, Stefan M Freudenberger, Thomas J Karzes, WD Lichten-

stein, Robert P Nix, John S O’donnell, and John C Ruttenberg. The multi-

flow trace scheduling compiler. In Instruction-Level Parallelism, pages 51–142.

Springer, 1993.

Bibliography 197

[300] Mark Leone and Peter Lee. Lightweight run-time code generation. PEPM,

94:97–106, 1994.

[301] Peter Lee and Mark Leone. Optimizing ml with run-time code generation. ACM

SIGPLAN Notices, 31(5):137–148, 1996.

[302] Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard ML.

MIT Press, 1990.

[303] Chris Arthur Lattner. LLVM: An infrastructure for multi-stage optimization.

PhD thesis, University of Illinois at Urbana-Champaign, 2002.

[304] Chris A Lattner. Macroscopic data structure analysis and optimization. PhD

thesis, University of Illinois at Urbana-Champaign, 2005.

[305] Alexis Engelke and Martin Schulz. Robust practical binary optimization at run-

time using llvm. In 2020 IEEE/ACM 6th Workshop on the LLVM Compiler

Infrastructure in HPC (LLVM-HPC) and Workshop on Hierarchical Parallelism

for Exascale Computing (HiPar), pages 56–64. IEEE, 2020.

[306] Alexis Engelke and Martin Schulz. Instrew: Leveraging llvm for high perfor-

mance dynamic binary instrumentation. In Proceedings of the 16th ACM SIG-

PLAN/SIGOPS International Conference on Virtual Execution Environments,

pages 172–184, 2020.

[307] Josef Weidendorfer and Jens Breitbart. The case for binary rewriting at runtime

for efficient implementation of high-level programming models in hpc. In 2016

IEEE International Parallel and Distributed Processing Symposium Workshops

(IPDPSW), pages 376–385. IEEE, 2016.

[308] Alexis Engelke and Josef Weidendorfer. Using llvm for optimized lightweight

binary re-writing at runtime. In 2017 IEEE International Parallel and Dis-

tributed Processing Symposium Workshops (IPDPSW), pages 785–794. IEEE,

2017.

[309] Vasil Vasilev, Ph Canal, Axel Naumann, and Paul Russo. Cling–the new inter-

active interpreter for root 6. In Journal of Physics: Conference Series, volume

396, page 052071. IOP Publishing, 2012.

198 Bibliography

[310] Thibaut Lutz and Vinod Grover. Lambdajit: a dynamic compiler for heteroge-

neous optimizations of stl algorithms. In Proceedings of the 3rd ACM SIGPLAN

Workshop on Functional High-performance Computing, pages 99–108, 2014.

[311] Henri-Pierre Charles and Victor Lomüller. Is dynamic compilation possible for

embedded systems? In Proceedings of the 18th International Workshop on

Software and Compilers for Embedded Systems, pages 80–83, 2015.

[312] Victor Lomüller. Générateur de code multi-temps et optimisation de code multi-

objectifs. PhD thesis, Université de Grenoble, 2014.

[313] Kavon Farvardin, H Finkel, M Kruse, and J Reppy. atjit: A just-in-time auto-

tuning compiler for c++. In LLVM Developer’s Meeting Technical Talk, 2018.

[314] Hal Finkel, David Poliakoff, Jean-Sylvain Camier, and David F Richards.

Clangjit: Enhancing c++ with just-in-time compilation. In 2019 IEEE/ACM

International Workshop on Performance, Portability and Productivity in HPC

(P3HPC), pages 82–95. IEEE, 2019.

[315] David Keppel. Runtime code generation. PhD thesis, University of Washington,

1996.

[316] Tito Autrey and Michael Wolfe. Initial results for glacial variable analysis. In

International Workshop on Languages and Compilers for Parallel Computing,

pages 120–134. Springer, 1996.

[317] Ulrik Jørring and William L Scherlis. Compilers and staging transformations.

In Proceedings of the 13th ACM SIGACT-SIGPLAN symposium on Principles

of programming languages, pages 86–96, 1986.

[318] Brad Calder, Peter Feller, and Alan Eustace. Value profiling. In Proceedings

of 30th Annual International Symposium on Microarchitecture, pages 259–269.

IEEE, 1997.

[319] Brad Calder, Peter Feller, Alan Eustace, et al. Value profiling and optimization.

Journal of Instruction Level Parallelism, 1(1):1–6, 1999.

[320] Freddy Gabbay and Avi Mendelson. Can program profiling support value pre-

diction? In Proceedings of the 30th annual ACM/IEEE international symposium

on Microarchitecture, pages 270–280. IEEE Computer Society, 1997.

Bibliography 199

[321] Robert Muth, Scott Watterson, and Saumya Debray. Code specialization based

on value profiles. In International Static Analysis Symposium, pages 340–359.

Springer, 2000.

[322] Eui-Young Chung, Luca Benini, and Giovanni De Micheli. Energy efficient

source code transformation based on value profiling. In Proc. International

Workshop on Compilers and Operating Systems for Low Power, 2000.

[323] Scott Watterson and Saumya Debray. Goal-directed value profiling. In Interna-

tional Conference on Compiler Construction, pages 319–333. Springer, 2001.

[324] Tipp Moseley, Alex Shye, Vijay Janapa Reddi, Dirk Grunwald, and Ramesh

Peri. Shadow profiling: Hiding instrumentation costs with parallelism. In In-

ternational Symposium on Code Generation and Optimization (CGO’07), pages

198–208. IEEE, 2007.

[325] Minhaj Ahmad Khan. Improving performance through deep value profiling

and specialization with code transformation. Computer Languages, Systems &

Structures, 37(4):193–203, 2011.

[326] Taewook Oh, Hanjun Kim, Nick P Johnson, Jae W Lee, and David I August.

Practical automatic loop specialization. ACM SIGARCH Computer Architecture

News, 41(1):419–430, 2013.

[327] Sylvain Henry, Hugo Bolloré, and Emmanuel Oseret. Towards the generaliza-

tion of value profiling for high-performance application optimization. Technical

report, Exascale Computing Research Laboratory, Campus Teratec, 2015.

[328] Cédric Valensi. A generic approach to the definition of low-level components

for multi-architecture binary analysis. Université de Versailles-St Quentin en

Yvelines, 2014.

[329] Cédric Valensi. Madras: Multi-architecture binary rewriting tool. Technical

report, University of Versailles Saint-Quentin en Yvelines, 2013.

[330] Shasha Wen, Milind Chabbi, and Xu Liu. Redspy: Exploring value locality

in software. In Proceedings of the Twenty-Second International Conference

on Architectural Support for Programming Languages and Operating Systems,

pages 47–61, 2017.

200 Bibliography

[331] Daniel Wong, Nam Sung Kim, and Murali Annavaram. Approximating warps

with intra-warp operand value similarity. In 2016 IEEE International Sympo-

sium on High Performance Computer Architecture (HPCA), pages 176–187.

IEEE, 2016.

[332] Sylvain Collange, David Defour, and Yao Zhang. Dynamic detection of uniform

and affine vectors in gpgpu computations. In European Conference on Parallel

Processing, pages 46–55. Springer, 2009.

[333] Ram Rangan, Mark W Stephenson, Aditya Ukarande, Shyam Murthy, Virat

Agarwal, and Marc Blackstein. Zeroploit: Exploiting zero valued operands in

interactive gaming applications. ACM Transactions on Architecture and Code

Optimization (TACO), 17(3):1–26, 2020.

[334] Mark Stephenson, Siva Kumar Sastry Hari, Yunsup Lee, Eiman Ebrahimi,

Daniel R Johnson, David Nellans, Mike O’Connor, and Stephen W Keckler.

Flexible software profiling of gpu architectures. In 2015 ACM/IEEE 42nd An-

nual International Symposium on Computer Architecture (ISCA), pages 185–

197. IEEE, 2015.

[335] Keren Zhou, Yueming Hao, John Mellor-Crummey, Xiaozhu Meng, and Xu Liu.

Gvprof: a value profiler for gpu-based clusters. In 2020 SC20: International

Conference for High Performance Computing, Networking, Storage and Analy-

sis (SC), pages 1263–1278. IEEE Computer Society, 2020.

[336] Guilherme Vieira Leobas and Fernando Magno Quintão Pereira. Semiring opti-

mizations: dynamic elision of expressions with identity and absorbing elements.

Proceedings of the ACM on Programming Languages, 4(OOPSLA):1–28, 2020.

[337] Mark Stephenson and Ram Rangan. Pgz: automatic zero-value code specializa-

tion. In Proceedings of the 30th ACM SIGPLAN International Conference on

Compiler Construction, pages 36–46, 2021.

[338] Mark W Stephenson and Ram Rangan. Azp: Automatic specialization for zero

values in gaming applications. arXiv preprint arXiv:2011.10550, 2020.

[339] Hyunsun Park, Dongyoung Kim, Junwhan Ahn, and Sungjoo Yoo. Zero and

data reuse-aware fast convolution for deep neural networks on gpu. In Proceed-

ings of the Eleventh IEEE/ACM/IFIP International Conference on Hardware/-

Software Codesign and System Synthesis, pages 1–10, 2016.

Bibliography 201

[340] Kihwan Choi, Karthik Dantu, Wei-Chung Cheng, and Massoud Pedram. Frame-

based dynamic voltage and frequency scaling for a mpeg decoder. In Proceed-

ings of the 2002 IEEE/ACM international conference on Computer-aided de-

sign, pages 732–737, 2002.

[341] Zhijian Lu, John Lach, Mircea Stan, and Kevin Skadron. Reducing multime-

dia decode power using feedback control. In Proceedings 21st International

Conference on Computer Design, pages 489–496. IEEE, 2003.

[342] Christopher J Hughes and Sarita V Adve. A formal approach to frequent energy

adaptations for multimedia applications. ACM SIGARCH Computer Architec-

ture News, 32(2):138, 2004.

[343] Chaeseok Im, Soonhoi Ha, and Huiseok Kim. Dynamic voltage scheduling with

buffers in low-power multimedia applications. ACM Transactions on Embedded

Computing Systems (TECS), 3(4):686–705, 2004.

[344] Gauthier Lafruit, Lode Nachtergaele, Kristof Denolf, and Jan Bormans. 3d

computational graceful degradation. In 2000 IEEE International Symposium on

Circuits and Systems (ISCAS), volume 3, pages 547–550. IEEE, 2000.

[345] Nicolaas Tack, Francisco Morán, Gauthier Lafruit, and Rudy Lauwereins. 3d

graphics rendering time modeling and control for mobile terminals. In Pro-

ceedings of the ninth international conference on 3D Web technology, pages

109–117, 2004.

[346] Bren Mochocki, Kanishka Lahiri, and Srihari Cadambi. Power analysis of mo-

bile 3d graphics. In Proceedings of the Design Automation & Test in Europe

Conference, volume 1, pages 1–6. IEEE, 2006.

[347] Bren C Mochocki, Kanishka Lahiri, Srihari Cadambi, and X Sharon Hu.

Signature-based workload estimation for mobile 3d graphics. In Proceedings

of the 43rd annual design automation conference, pages 592–597, 2006.

[348] Yan Gu, Samarjit Chakraborty, and Wei Tsang Ooi. Games are up for dvfs. In

2006 43rd ACM/IEEE Design Automation Conference, pages 598–603. IEEE,

2006.

202 Bibliography

[349] Yan Gu and Samarjit Chakraborty. Power management of interactive 3d games

using frame structures. In 21st International Conference on VLSI Design (VL-

SID 2008), pages 679–684. IEEE, 2008.

[350] Yan Gu and Samarjit Chakraborty. Control theory-based dvs for interactive 3d

games. In 2008 45th ACM/IEEE Design Automation Conference, pages 740–

745. IEEE, 2008.

[351] Yan Gu and Samarjit Chakraborty. A hybrid dvs scheme for interactive 3d

games. In 2008 IEEE Real-Time and Embedded Technology and Applications

Symposium, pages 3–12. IEEE, 2008.

[352] Da-Jing Zhang-Jian, Chung-Nan Lee, Ing-Jer Huang, and Shiann-Rong Kuang.

Power estimation for interactive 3d game using an efficient hierarchical-based

frame workload prediction. In Proceedings: APSIPA ASC 2009: Asia-Pacific

Signal and Information Processing Association, 2009 Annual Summit and Con-

ference, pages 208–215. Asia-Pacific Signal and Information Processing Asso-

ciation, 2009 Annual . . . , 2009.

[353] Benedikt Dietrich, Swaroop Nunna, Dip Goswami, Samarjit Chakraborty, and

Matthias Gries. Lms-based low-complexity game workload prediction for dvfs.

In 2010 IEEE International Conference on Computer Design, pages 417–424.

IEEE, 2010.

[354] Tulika Mitra and Tzi-cker Chiueh. Dynamic 3d graphics workload character-

ization and the architectural implications. In MICRO-32. Proceedings of the

32nd Annual ACM/IEEE International Symposium on Microarchitecture, pages

62–71. IEEE, 1999.

[355] Glenn Deen, Matthew Hammer, John Bethencourt, Iris Eiron, John Thomas,

and James H Kaufman. Running quake II on a grid. IBM Systems Journal,

45(1):21–44, 2006.

[356] Ashwin R Bharambe, Jeffrey Pang, and Srinivasan Seshan. Colyseus: A dis-

tributed architecture for online multiplayer games. In NSDI, volume 6, pages

12–12, 2006.

[357] John E Laird. Using a computer game to develop advanced ai. Computer,

34(7):70–75, 2001.

Bibliography 203

[358] Christian Bauckhage, Christian Thurau, and Gerhard Sagerer. Learning human-

like opponent behavior for interactive computer games. In Joint Pattern Recog-

nition Symposium, pages 148–155. Springer, 2003.

[359] Tye Hooley, Burt Hunking, Mike Henry, and Atsushi Inoue. Generation of

emotional behavior for non-player characters-development of emobot for quake

II. In PROCEEDINGS OF THE NATIONAL CONFERENCE ON ARTIFICIAL

INTELLIGENCE, pages 954–955. Menlo Park, CA; Cambridge, MA; London;

AAAI Press; MIT Press; 1999, 2004.

[360] Jarkko M Vatjus-Anttila, Timo Koskela, and Seamus Hickey. Power consump-

tion model of a mobile gpu based on rendering complexity. In 2013 Seventh

International Conference on Next Generation Mobile Apps, Services and Tech-

nologies, pages 210–215. IEEE, 2013.

[361] Benedikt Dietrich and Samarjit Chakraborty. Managing power for closed-source

android os games by lightweight graphics instrumentation. In 2012 11th Annual

Workshop on Network and Systems Support for Games (NetGames), pages 1–3.

IEEE, 2012.

[362] Benedikt Dietrich and Samarjit Chakraborty. Lightweight graphics instrumenta-

tion for game state-specific power management in android. Multimedia Systems,

20(5):563–578, 2014.

[363] Xiaohan Ma, Zhigang Deng, Mian Dong, and Lin Zhong. Characterizing the

performance and power consumption of 3d mobile games. Computer, 46(4):76–

82, 2012.

[364] Beilei Sun, Xi Li, Jiachen Song, Zhinan Cheng, Yuan Xu, and Xuehai Zhou.

Texture-directed mobile gpu power management for closed-source games. In

2014 IEEE Intl Conf on High Performance Computing and Communications,

2014 IEEE 6th Intl Symp on Cyberspace Safety and Security, 2014 IEEE 11th

Intl Conf on Embedded Software and Syst (HPCC, CSS, ICESS), pages 348–354.

IEEE, 2014.

[365] Benedikt Dietrich and Samarjit Chakraborty. Power management using game

state detection on android smartphones. In Proceeding of the 11th annual inter-

national conference on Mobile systems, applications, and services, pages 493–

494, 2013.

204 Bibliography

[366] Benedikt Dietrich and Samarjit Chakraborty. Forget the battery, let’s play

games! In 2014 IEEE 12th Symposium on Embedded Systems for Real-time

Multimedia (ESTIMedia), pages 1–8. IEEE, 2014.

[367] Zhinan Cheng, Xi Li, Beilei Sun, Ce Gao, and Jiachen Song. Automatic

frame rate-based dvfs of game. In 2015 IEEE 26th International Conference

on Application-specific Systems, Architectures and Processors (ASAP), pages

158–159. IEEE, 2015.

[368] Iman Soltani Mohammadi, Mohammad Ghanbari, and Mahmoud Reza

Hashemi. Gamorra: An api-level workload model for rasterization-based graph-

ics pipeline architecture. Computers & Graphics, 2022.

[369] Anuj Pathania, Qing Jiao, Alok Prakash, and Tulika Mitra. Integrated cpu-

gpu power management for 3d mobile games. In 2014 51st ACM/EDAC/IEEE

Design Automation Conference (DAC), pages 1–6. IEEE, 2014.

[370] Jurn-Gyu Park, Chen-Ying Hsieh, Nikil Dutt, and Sung-Soo Lim. Quality-aware

mobile graphics workload characterization for energy-efficient dvfs design. In

2014 IEEE 12th symposium on embedded systems for real-time multimedia (ES-

TIMedia), pages 70–79. IEEE, 2014.

[371] Anuj Pathania, Alexandru Eugen Irimiea, Alok Prakash, and Tulika Mitra.

Power-performance modelling of mobile gaming workloads on heterogeneous

mpsocs. In Proceedings of the 52nd Annual Design Automation Conference,

pages 1–6, 2015.

[372] Chen-Ying Hsieh, Jurn-Gyu Park, Nikil Dutt, and Sung-Soo Lim. Memory-

aware cooperative cpu-gpu dvfs governor for mobile games. In 2015 13th

IEEE Symposium on Embedded Systems For Real-time Multimedia (ESTIMe-

dia), pages 1–8. IEEE, 2015.

[373] Sparsh Mittal and Jeffrey S Vetter. A survey of methods for analyzing and

improving gpu energy efficiency. ACM Computing Surveys (CSUR), 47(2):1–

23, 2014.

[374] Daecheol You and K-S Chung. Dynamic voltage and frequency scaling frame-

work for low-power embedded gpus. Electronics letters, 48(21):1333–1334,

2012.

Bibliography 205

[375] BVN Silpa, Gummidipudi Krishnaiah, and Preeti Ranjan Panda. Rank based

dynamic voltage and frequency scaling fortiled graphics processors. In Pro-

ceedings of the eighth IEEE/ACM/IFIP international conference on Hardware/-

software codesign and system synthesis, pages 3–12, 2010.

[376] Po-Han Wang, Yen-Ming Chen, Chia-Lin Yang, and Yu-Jung Cheng. A predic-

tive shutdown technique for gpu shader processors. IEEE Computer Architec-

ture Letters, 8(1):9–12, 2009.

[377] Po-Han Wang, Chia-Lin Yang, Yen-Ming Chen, and Yu-Jung Cheng. Power

gating strategies on gpus. ACM Transactions on Architecture and Code Opti-

mization (TACO), 8(3):1–25, 2011.

[378] Kent W Nixon, Xiang Chen, Hucheng Zhou, Yunxin Liu, and Yiran Chen. Mo-

bile gpu power consumption reduction via dynamic resolution and frame rate

scaling. In 6th Workshop on Power-Aware Computing and Systems (HotPower

14), 2014.

[379] Yu Yan, Songtao He, Yunxin Liu, and Longbo Huang. Optimizing power con-

sumption of mobile games. In Proceedings of the Workshop on Power-Aware

Computing and Systems, pages 21–25, 2015.

[380] Jose-Maria Arnau, Joan-Manuel Parcerisa, and Polychronis Xekalakis. Paral-

lel frame rendering: Trading responsiveness for energy on a mobile gpu. In

Proceedings of the 22nd international conference on Parallel architectures and

compilation techniques, pages 83–92. IEEE, 2013.

[381] Jose-Maria Arnau, Joan-Manuel Parcerisa, and Polychronis Xekalakis. Elim-

inating redundant fragment shader executions on a mobile gpu via hardware

memoization. ACM SIGARCH Computer Architecture News, 42(3):529–540,

2014.

[382] Georgios Keramidas, Chrysa Kokkala, and Iakovos Stamoulis. Clumsy value

cache: An approximate memoization technique for mobile gpu fragment

shaders. In Workshop on Approximate Computing (WAPCO’15), 2015.

[383] Jon McCaffrey. Exploring mobile vs. desktop opengl performance 24. OpenGL

Insights, 337:341, 2012.

206 Bibliography

[384] Iosif Antochi, Ben Juurlink, Stamatis Vassiliadis, and Petri Liuha. Memory

bandwidth requirements of tile-based rendering. In International Workshop on

Embedded Computer Systems, pages 323–332. Springer, 2004.

[385] Thomas J Olson. Hardware 3d graphics acceleration for mobile devices. In 2008

IEEE International Conference on Acoustics, Speech and Signal Processing,

pages 5344–5347. IEEE, 2008.

[386] Eric Haines and Steven Worley. Fast, low memory z-buffering when performing

medium-quality rendering. journal of graphics tools, 1(3):1–5, 1996.

[387] Enrique De Lucas, Pedro Marcuello, Joan-Manuel Parcerisa, and Antonio Gon-

zalez. Visibility rendering order: Improving energy efficiency on mobile gpus

through frame coherence. IEEE Transactions on Parallel and Distributed Sys-

tems, 30(2):473–485, 2018.

[388] Xuejun Hao and Amitabh Varshney. Variable-precision rendering. In Proceed-

ings of the 2001 symposium on Interactive 3D graphics, pages 149–158, 2001.

[389] Ju-Ho Sohn, Ramchan Woo, and Hoi-Jun Yoo. A programmable vertex shader

with fixed-point simd datapath for low power wireless applications. In Pro-

ceedings of the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics

hardware, pages 107–114, 2004.

[390] Jeevan Chittamuru, Wayne Burleson, and Jeongseon Euh. Dynamic wordlength

variation for low-power 3d graphics texture mapping. In 2003 IEEE Work-

shop on Signal Processing Systems (IEEE Cat. No. 03TH8682), pages 251–256.

IEEE, 2003.

[391] Kurt Akeley and Jonathan Su. Minimum triangle separation for correct z-buffer

occlusion. In Graphics Hardware, volume 10, pages 1283900–1283904. New

York, NY, USA, 2006.

[392] Jeff Pool, Anselmo Lastra, and Montek Singh. Energy-precision tradeoffs in

mobile graphics processing units. In 2008 IEEE International Conference on

Computer Design, pages 60–67. IEEE, 2008.

[393] Jeff Pool, Anselmo Lastra, and Montek Singh. Precision selection for energy-

efficient pixel shaders. In Proceedings of the ACM SIGGRAPH Symposium on

High Performance Graphics, pages 159–168, 2011.

Bibliography 207

[394] Jeff Pool. Energy-precision tradeoffs in the graphics pipeline. PhD thesis, Uni-

versity of North Carolina, 2012.

[395] Jeff Pool, Anselmo Lastra, and Montek Singh. Power-gated arithmetic circuits

for energy-precision tradeoffs in mobile graphics processing units. Journal of

Low Power Electronics, 7(2):148–162, 2011.

[396] Slo-Li Chu, Chih-Chieh Hsiao, and Chen-Yu Chen. A dual-mode unified shader

with frame-based dynamic precision adjustment for mobile gpus. In 2011 IFIP

9th International Conference on Embedded and Ubiquitous Computing, pages

158–165. IEEE, 2011.

[397] Chih-Chieh Hsiao, Slo-Li Chu, and Chen-Yu Chen. Energy-aware hybrid preci-

sion selection framework for mobile gpus. Computers & Graphics, 37(5):431–

444, 2013.

[398] Slo-Li Chu, Chih-Chieh Hsiao, and Chen-Yu Chen. Program-based dynamic

precision selection framework with a dual-mode unified shader for mobile gpus.

Computers & Electrical Engineering, 39(7):2183–2196, 2013.

[399] NVIDIA. Nvidia nsight graphics. https://developer.nvidia.com/nsight-graphics.

[400] AMD. Radeon developer tools suite. https://gpuopen.com/tools.

[401] Intel. Intel graphics performance analyzers. https://software.intel.com/content/

www/us/en/develop/tools/graphics-performance-analyzers.html.

[402] Sheng Guo, Philipp Gerasimov, and Bonnie Aona. Practical game performance

analysis using intel graphics performance analyzers. Intel Corporation White

Paper, 2011.

[403] Arm. Arm graphics analyzer. https://developer.arm.com/tools-and-software/

embedded/arm-development-studio/components/graphics-analyzer.

[404] Qualcomm. Snapdragon debugger. https://developer.qualcomm.com/software/

snapdragon-debugger-visual-studio.

[405] Qualcomm. Snapdragon profiler. https://developer.qualcomm.com/software/

snapdragon-profiler.

https://developer.nvidia.com/nsight-graphics
https://gpuopen.com/tools/
https://software.intel.com/content/www/us/en/develop/tools/graphics-performance-analyzers.html
https://software.intel.com/content/www/us/en/develop/tools/graphics-performance-analyzers.html
https://developer.arm.com/tools-and-software/embedded/arm-development-studio/components/graphics-analyzer
https://developer.arm.com/tools-and-software/embedded/arm-development-studio/components/graphics-analyzer
https://developer.qualcomm.com/software/snapdragon-debugger-visual-studio
https://developer.qualcomm.com/software/snapdragon-debugger-visual-studio
https://developer.qualcomm.com/software/snapdragon-profiler
https://developer.qualcomm.com/software/snapdragon-profiler

208 Bibliography

[406] Apple. Using metal system trace in instruments to profile your app.

https://developer.apple.com/documentation/metal/using metal system trace in

instruments to profile your app.

[407] Apple. Frame capture debugging tools. https://developer.apple.com/

documentation/metal/frame capture debugging tools.

[408] Microsoft. Pix - performance tuning and debugging for directx 12 games on

windows. https://devblogs.microsoft.com/pix, 2017.

[409] Matthew Fisher. GPUView. https://graphics.stanford.edu/∼mdfisher/GPUView.html.

[410] Microsoft. Using GPUView. https://docs.microsoft.com/en-us/windows-

hardware/drivers/display/using-gpuview.

[411] Michael Sartain. GPUVis. https://github.com/mikesart/gpuvis, 2017.

[412] Baldur Karlsson. Renderdoc - a stand-alone vulkan, d3d11, d3d12, and opengl

graphics debugging tool. https://renderdoc.org/, 2012.

[413] LunarG. vktrace capture/replay tool. https://github.com/LunarG/vktrace, 2016.

[414] LunarG. GFXReconstruct - tools for the capture and replay of vulkan api calls.

https://github.com/LunarG/gfxreconstruct, 2018.

[415] Mark Friedell, Mark LaPolla, Sandeep Kochhar, Steve Sistare, and Janusz Juda.

Visualizing the behavior of massively parallel programs. In Proceedings of the

1991 ACM/IEEE conference on Supercomputing, pages 472–480, 1991.

[416] Steve Sistare, Don Allen, Rich Bowker, Karen Jourdenais, Josh Simons, and

Rich Title. Data visualization and performance analysis in the prism program-

ming environment. In Proceedings of the IFIP WG 10.3 Workshop on Program-

ming Environments for Parallel Computing, pages 37–52, 1992.

[417] Nathaniel Duca, Krzysztof Niski, Jonathan Bilodeau, Matthew Bolitho, Yuan

Chen, and Jonathan Cohen. A relational debugging engine for the graphics

pipeline. ACM Transactions on Graphics (TOG), 24(3):453–463, 2005.

[418] Greg Humphreys, Mike Houston, Ren Ng, Randall Frank, Sean Ahern, Peter D

Kirchner, and James T Klosowski. Chromium: a stream-processing framework

for interactive rendering on clusters. ACM transactions on graphics (TOG),

21(3):693–702, 2002.

https://developer.apple.com/documentation/metal/using_metal_system_trace_in_instruments_to_profile_your_app
https://developer.apple.com/documentation/metal/using_metal_system_trace_in_instruments_to_profile_your_app
https://developer.apple.com/documentation/metal/frame_capture_debugging_tools
https://developer.apple.com/documentation/metal/frame_capture_debugging_tools
https://devblogs.microsoft.com/pix/
https://graphics.stanford.edu/%7Emdfisher/GPUView.html
https://docs.microsoft.com/en-us/windows-hardware/drivers/display/using-gpuview
https://docs.microsoft.com/en-us/windows-hardware/drivers/display/using-gpuview
https://github.com/mikesart/gpuvis
https://renderdoc.org/
https://github.com/LunarG/vktrace
https://github.com/LunarG/gfxreconstruct

Bibliography 209

[419] Magnus Strengert, Thomas Klein, and Thomas Ertl. A hardware-aware debug-

ger for the opengl shading language. In Graphics Hardware, volume 9, 2007.

[420] Ahmad Sharif and Hsien-Hsin S Lee. Total recall: a debugging framework for

gpus. In Proceedings of the 23rd ACM SIGGRAPH/EUROGRAPHICS sympo-

sium on Graphics hardware, pages 13–20, 2008.

[421] Bryce Van Dyk, Christof Lutteroth, Gerald Weber, and Burkhard Wünsche. Us-

ing opengl state history for graphics debugging. Václav Skala-UNION Agency,

2013.

[422] Qiming Hou, Kun Zhou, and Baining Guo. Debugging gpu stream programs

through automatic dataflow recording and visualization. In ACM SIGGRAPH

Asia 2009 papers, pages 1–11. 2009.

[423] Michael Wimmer and Peter Wonka. Rendering time estimation for real-time

rendering. In Rendering Techniques, pages 118–129, 2003.

[424] Ali Bakhoda, George L Yuan, Wilson WL Fung, Henry Wong, and Tor M

Aamodt. Analyzing cuda workloads using a detailed gpu simulator. In 2009

IEEE International Symposium on Performance Analysis of Systems and Soft-

ware, pages 163–174. IEEE, 2009.

[425] Du Shen, Shuaiwen Leon Song, Ang Li, and Xu Liu. Cudaadvisor: LLVM-

based runtime profiling for modern gpus. In Proceedings of the 2018 Interna-

tional Symposium on Code Generation and Optimization, pages 214–227, 2018.

[426] Oreste Villa, Mark Stephenson, David Nellans, and Stephen W Keckler. Nvbit:

A dynamic binary instrumentation framework for nvidia gpus. In Proceedings

of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture,

pages 372–383, 2019.

[427] Chris Lattner and Vikram Adve. Llvm: A compilation framework for lifelong

program analysis & transformation. In Code Generation and Optimization,

2004. CGO 2004. International Symposium on, pages 75–86. IEEE, 2004.

[428] Khronos Group. glslang - khronos-reference front end for glsl/essl, partial front

end for hlsl, and a spir-v generator. https://github.com/KhronosGroup/glslang.

https://github.com/KhronosGroup/glslang

210 Bibliography

[429] Khronos Group. Spirv-cross - a tool designed for parsing and converting spir-v

to other shader languages. https://github.com/KhronosGroup/SPIRV-Cross.

[430] Greg Spencer, Peter Shirley, Kurt Zimmerman, and Donald P Greenberg.

Physically-based glare effects for digital images. In Proceedings of the 22nd an-

nual conference on Computer graphics and interactive techniques, pages 325–

334, 1995.

[431] Guennadi Riguer, Natalya Tatarchuk, and John Isidoro. Real-time depth of

field simulation. ShaderX2: Shader Programming Tips and Tricks with DirectX,

9:529–556, 2004.

[432] Erik Reinhard, Wolfgang Heidrich, Paul Debevec, Sumanta Pattanaik, Greg

Ward, and Karol Myszkowski. High dynamic range imaging: acquisition, dis-

play, and image-based lighting. Morgan Kaufmann, 2010.

[433] Gary McTaggart, Chris Green, and Jason Mitchell. High dynamic range render-

ing in valve’s source engine. In ACM SIGGRAPH 2006 Courses, pages 7–es.

2006.

[434] Matt Pharr, Wenzel Jakob, and Greg Humphreys. Physically based rendering:

From theory to implementation. Morgan Kaufmann, 2016.

[435] Matthias Hullin, Elmar Eisemann, Hans-Peter Seidel, and Sungkil Lee.

Physically-based real-time lens flare rendering. In ACM SIGGRAPH 2011 pa-

pers, pages 1–10. 2011.

[436] Sungkil Lee and Elmar Eisemann. Practical real-time lens-flare rendering. In

Computer Graphics Forum, volume 32, pages 1–6. Wiley Online Library, 2013.

[437] Henry Moreton. Watertight tessellation using forward differencing. In Proceed-

ings of the ACM SIGGRAPH/EUROGRAPHICS workshop on Graphics hard-

ware, pages 25–32, 2001.

[438] The mesa 3d graphics library. https://www.mesa3d.org/.

[439] Morgan McGuire. The supershader. Shader X4: advanced rendering tech-

niques, pages 485–498, 2005.

[440] ARM. Mali offline compiler. https://developer.arm.com/tools-and-software/

graphics-and-gaming/arm-mobile-studio/components/mali-offline-compiler.

https://github.com/KhronosGroup/SPIRV-Cross
https://www.mesa3d.org/
https://developer.arm.com/tools-and-software/graphics-and-gaming/arm-mobile-studio/components/mali-offline-compiler
https://developer.arm.com/tools-and-software/graphics-and-gaming/arm-mobile-studio/components/mali-offline-compiler

Bibliography 211

[441] Bill Bilodeau. Advanced visual effects with directx 11: Vertex shader tricks -

new ways to use the vertex shader to improve performance. In Game developers

conference, 2014.

[442] Michal Drobot. GCN Execution Patterns in Full Screen Passes. https://

michaldrobot.com/2014/04/01/gcn-execution-patterns-in-full-screen-passes,

2014.

[443] August Ferdinand Möbius. Der barycentrische Calcul, ein Hülfsmittel zur ana-

lytischen Behandlung der Geometrie (etc.). Barth, 1827.

[444] Piers Daniell. ARB timer query - Extension specification. http://developer.

download.nvidia.com/opengl/specs/GL ARB timer query.txt, 2009.

[445] Mark Segal and Kurt Akeley. The opengl graphics system: A specification

(version 3.3 (core profile)). https://www.khronos.org/registry/OpenGL/specs/gl/

glspec33.core.pdf, 2010.

[446] Maurice Ribble. EXT disjoint timer query - Extension specification. https://

www.khronos.org/registry/OpenGL/extensions/EXT/EXT disjoint timer query

.txt, 2013.

[447] Arthur Zuckerman. 75 steam statistics: 2020/2021 facts, market share & data

analysis. https://comparecamp.com/steam-statistics/#TOC1, 2020.

[448] Martin Benjamins and Pavel Djundik. Steam database. https://steamdb.info.

[449] Google. Snappy, a fast compressor/decompressor. https://github.com/

google/snappy.

[450] Jacob Ziv and Abraham Lempel. A universal algorithm for sequential data com-

pression. IEEE Transactions on information theory, 23(3):337–343, 1977.

https://michaldrobot.com/2014/04/01/gcn-execution-patterns-in-full-screen-passes/
https://michaldrobot.com/2014/04/01/gcn-execution-patterns-in-full-screen-passes/
http://developer.download.nvidia.com/opengl/specs/GL_ARB_timer_query.txt
http://developer.download.nvidia.com/opengl/specs/GL_ARB_timer_query.txt
https://www.khronos.org/registry/OpenGL/specs/gl/glspec33.core.pdf
https://www.khronos.org/registry/OpenGL/specs/gl/glspec33.core.pdf
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_disjoint_timer_query.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_disjoint_timer_query.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_disjoint_timer_query.txt
https://comparecamp.com/steam-statistics/#TOC1
https://steamdb.info
https://github.com/google/snappy
https://github.com/google/snappy

	Introduction
	Performance in Games
	The Problem Domain
	Research Contributions
	Thesis Structure

	Background
	Introduction
	3D Graphics Basics
	Triangles
	Textures
	Shaders

	Graphics APIs
	The Purpose of Graphics APIs
	Modern Graphics APIs
	Trends Towards Lower-Level APIs
	Shader Languages
	Choosing OpenGL

	Game Engines
	The Role of an Engine
	Game Engine Development

	Programmable Pipeline Overview
	Evolution of the Programmable Shader Pipeline
	Modern Pipeline Layout

	Transferring Data to the GPU
	OpenGL Buffers
	Uniforms
	Uniform Buffers
	Shader Storage Buffers
	Textures

	Summary

	Related Work
	Introduction
	Evolution of Programmable Shaders
	Early Shader Conceptualization
	Early Rendering Hardware
	Multi-Pass Shading
	Programmable Shaders on GPUs
	GPGPU Programming Emerges
	New Shader Types

	Shader Simplification
	Level of Detail
	Shader Level of Detail
	Surface Signal Approximation
	Altering Computation Rates

	Value-based Optimizations
	Constant Propagation and Folding
	Branch Prediction
	Value Prediction
	Run-time Specialization and JIT Compilation
	Value Profiling
	Value-Based Optimizations for GPUs

	Energy Efficiency in Mobile Games
	CPU DVFS for Software Rendering
	The Allure of Quake II
	Closed-Source Workloads on GPUs
	DVFs for CPU, GPU, and Memory
	Dynamically Varying Frame Rates
	Avoiding Overdraw
	Variable Floating-point Precision

	GPU Debugging and Profiling
	Current Industry Tools
	GPU Debugger Research
	GPU Profiling & Performance Estimation Research

	Summary

	Compiler Optimizations for Individual Shaders
	Introduction
	Motivating Example
	Example Optimizations
	LunarGlass Optimization Framework
	Additional Unsafe Optimizations
	Artefacts

	Benchmark Characteristics
	Benchmarks within GFXBench 4.0
	Extracting Shaders
	Deduplicating Shaders
	Shader Characteristics

	Timing Tools and Experimental Setup
	Shader Execution Enviroment
	Vertex Shader Generation
	Hardware

	Timing Results
	Overall Performance
	Best Static Flags
	Per-shader Results
	Per-Flag Results
	Summary

	Conclusion

	Analysis of Potential Optimizations Within Shader Pipelines
	Introduction
	Motivating Example
	Example Optimizations
	Dead
	Movable
	Constant
	Constant Foldable

	Techniques for Detecting Potential Optimizations
	Dead Code/Data Analysis
	Movable & Constant Code Detection
	Dynamic Trace Analysis

	Benchmark Games
	Static Analysis Results
	Static Dead Code and Data
	Statically Movable Code

	Oracle Study on Constant Input Data
	Constant Uniforms
	Constant Inputs
	Constant Textures
	Oracle Study Summary

	Trace Analysis Results
	Constant Uniform Values
	Redundant Uniform Updates

	Timing Tests
	Conclusion

	Optimizations Within Full Execution Traces
	Introduction
	Benchmark Games
	Selecting Games
	Capturing Traces

	Tools Developed
	Overview
	Tracking Shaders and Programs
	Tracking Uniform Data
	Tracking UBOs
	Creating Specialized Shaders

	Timing Techniques
	Full-trace timings
	Repeated Frame Timings

	Performance Results on Whole Execution Traces
	Constant Data
	Timing Results

	Conclusion

	Conclusion
	Summary
	Critical Evaluation
	Directions for Future Work

	Bibliography

