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Abstract

It has been shown empirically that certain benefits can be gained by
modelling genetic algorithm encoding as a numeral system and imple-
menting mutation as a form of the numeral system’s arithmetic. It is the
aim of this project to strengthen these findings. We will do this in three
stages.

Firstly, by creating meaningful classifications of numeral systems and
formally proving crucial properties such as termination of standardisation
and normalisation.

Secondly, by developing a programming framework centered around
these system classes. The framework is used on strings and can impose
numeral systems on them. This allows the user to write code that can
be run with a selection of systems to see different results. For example,
taking the string ”10” and treating it as binary or decimal depending on
what the user dictates.

Thirdly, by writing a genetic algorithm and using the aforementioned
framework to write an encoding method and mutation function that are
based off of numeral system arithmetic. The mutation function adds a
random unit value to the digit string and mutates the string by utilising
arithmetic overflow.
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1 Introduction
The motivation of this thesis is to shed light on the logical aspect of modelling
search spaces as numeral systems. This will be done through the lens of ge-
netic algorithms. Evolutionary algorithms (EAs) attempt to solve or optimise
a problem over a period of cycles. The process mimics biological evolution
over generations of mating. The algorithm consist of a population of candidate
solutions and by means of some measurement function they select the best can-
didates to breed the new population from. After a perfect solution is found,
or after the cycle limit is reached, the best candidate is returned as the result.
There are different types of evolutionary algorithm such as genetic algorithms
(GAs) and genetic programming (GPs) but they all have the same framework
in common: 1) encoding solutions, 2) selecting solutions, 3) manipulating so-
lutions. A problem can be a great manner of things including and not limited
to solving for x in an equation, designing a circuit-board, or making a game
character walk. In the most simple case of solving for x we can do a simple
model. The most complicated part of this, and most evolutionary algorithms,
is the fitness function. In the example, i is the index of the current candidate
solution being looked at. So with a population of 100 there are one hundred
possible values of x. The fitness function normalises each fitness over the sum
of the whole population.

• Problem: p(x) = x2 ´ x´ 2

• Goal: Find an xi where p(xi) = 0

• Fitness: f(x) = |x2 ´ x´ 2|

• Encoding: Binary 4bit

• Mutation: randomly flip some 0s to 1s and vice versa

Here we actually have two possible perfect solutions (global optima) which
are x = 2 and x = ´1 but because of our encoding only x = 2 will be avail-
able to us as there is no signed bit flag in our encoding method. Mutation
is our way of manipulating the best of the population when we create the
next population. Using an example population size of four with individuals
t0000, 0101, 1100, 1001u. The decoded versions (interpreting them as binary)
are t00002 = 0, 01012 = 5, 11002 = 12, 10012 = 9u. We can now use the fitness
function which calculates the individual fitnesses giving us tf(0) = 2, f(5) =
18, f(12) = 130, f(9) = 70u. So for each xi we have a corresponding fitness
yi, to get a normalised result we do y1

i = 1 ´
yi

yworst
where yworst = 130 the

worst fitness in the population. This gives us the normalised fitness for each
individual in the population t 64

65 ,
56
65 , 0,

6
13u. The best solution from that gen-

eration was 0000, if we mutate this to create another population we might get
t0100, 0010, 1101, 0110u and now on generation two we have our perfect solution
0010 (which has a fitness f(2) = 0 which normalised is 1). For larger problems
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more complicated encoding methods and fitness functions are needed. This the-
sis looks at the encoding and mutation stages of a genetic algorithm and their
relationship to positional numeral systems such as binary and decimal etc. The
term deep encoding refers to the combined model of encoding and mutation
as a numeral system. Encoding both representation of the search space and
traversal of it.

The author presented empirical findings for the increased accuracy of a GA
result when using deep encoding with a specific numeral system related to the
problem being solved[1]. The two significant results were a comparison of dif-
ferent encoding types for a GA run 1000 times. One of the problems being
optimised was the Rosenbrock function, discussed [Eq. (27), p55], which showed
noticeably higher fitness values when using encoding and mutation based on a
special golden ratio numeral system. The other was a GA evolving an image of
coloured squares following the line of a Fibonacci spiral, this problem benefited
from a binary encoding and mutation. While the results were interesting there
was no logical analysis of numeral systems or the algorithms used. The code
was also constricted to exactly what was being tested.

This thesis builds on [1] but focuses moreso on underpinning concepts, in
particular it adds formal proofs of properties of numeral systems, and presents
a powerful Common Lisp library built specifically for easy numeral system ma-
nipulation.

1.1 No Free Lunch Theorem
When looking at optimisation functions it is pertinent to note that there is
no optimal method for all optimisation problems. This is the No Free Lunch
Theorem (NFL), which states that in the context of evolutionary algorithms
”any two algorithms are equivalent when their performance is averaged across all
possible problems” [2]. The algorithms discussed in [2] are from a limited group
of black-box optimisation algorithms such as genetic algorithms, and some other
comparable algorithms. The performance of the algorithms is not measured by
run-time to remove any bias of computational complexity [2]. Roughly speaking
the benefit a search algorithm might gain when applied to a certain problem
will be a loss when applied to some other problem. So there is no absolute best
algorithm for universal use.

A version of NFL underpins the work in this thesis. When a problem is
numeric by nature then there should exist numeral systems that best fit it,
though there is no one numeral system that best represents all numeric search
spaces. At the end of section 2 we give an example of how one might find an
optimal numeral representation.

In their paper [2] Wolpert and Macready state ”This highlights the need
for exploiting problem-specific knowledge to achieve better than random per-
formance.” which is the aim of our work. To better fit the search space to the
problem.
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1.2 The Doorless Hotel Hypothesis

Figure 1: Imagine two hotels with no doors, only windows. One hotel has
uniform window placements of equal size, the other hotel has a non-uniform
unaligned differently sized distribution of windows. Now imagine to get into
any arbitrary room through a window we need to build scaffolding around the
hotel.

Genetic algorithms, are layered with abstraction and so can be hard to aug-
ment in ways that will certainly benefit the problem being optimised. Our
research will be looking solely at function optimisation as we believe it is where
the combination of numeral systems and genetic algorithms will show the most
obvious and explainable benefit. It may be better described in an analogy we
shall refer to as The Doorless Hotel which focuses on two parts. Imagine there
is a tall hotel with no doors but many non-uniformly placed different sized win-
dows, to get into specific rooms we would need to build scaffolding around the
building. Normally scaffolding will have set heights and flat uniform levels, so
only certain windows will be accessible.

Depending on which windows we want to get to we may have to change the
height or include slopes. The hotel can be seen as the problem space and the
scaffolding as the search space given to us by our numeral system encoding.
When building the scaffolding we need to think about two specific things:

1. Alignment characteristics - The height of each level of the scaffolding can
be seen as a representation of the numeral systems radix. For example
each floor of the hotel is the next power up {1,10,100,1000,...}.

2. Traversal characteristics - The different arithmetic of each numeral system
can be seen as different methods of moving through the scaffolding (e.g.,
ladders, slides, wormholes, reinterpretations, etc).

Claim 1. The Doorless Hotel Hypothesis, Part 1
There is an optimal alignment and traversal method for navigating the search
space of optimisation problems. As shown with the machine numbers there is
a mathematically defined benefit to optimising encoding (alignment), and in
previous work empirical results attest to the inclusion of matching traversal
methods [1].
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1.2.1 Colour Spaces

An example of different scaffolding being used to access a doorless hotel can be
seen in the use of different colour-spaces. There already exists classifications
for representation systems in the form of colour-spaces [3] where RGB, HSL,
CIE LMS, CIE Lab and other spaces all hold attributes from human visual
perception, another classing can be application-based models such asYUV, YIQ,
CMYK which are used for specific purposes like TV signals or printing. Another
class could be the CIE standard colour-spaces that all derive from CIE XYZ and
have the properties of being measurably device-independent and perceptually
linear, these are CIE XYZ, Lab, Luv, LMS, LCH ab , LCH uv and the CIE
∆E colour measurement.

Figure 2: Three different colour-space models (RGB cube, HSL cylinder, and a
spherical space such as LCH), representing the same information for different
uses. Image credit [4].
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1.3 Philosophy and Semantics of Number
Bertrand Russel states a subtle distinction between ’number’ and ’numbers’:
Number is what is characteristic of numbers, as man is what is characteristic of
men. A plurality is not an instance of number, but of some particular number.
A trio of men, for example, is an instance of the number 3, and the number 3
is an instance of number; but the trio is not an instance of number.

In a similar vein we would like to separate the concept of number and repre-
sentation. Number stands apart from representation in that instances of number
hold the same value regardless of the instance of representation. Representation
is a symbolic system that, until evaluated, stands apart from number in that
arithmetic rules can exist as symbolic substitutions (seen as a state machine)
without the need of a number.

By this somewhat Platonistic statement we’re saying arithmetic exists in
both numeric and symbolic forms. That is to say for some arithmetic procedure
α that can be performed on some number φ to obtain ψ, there is a corresponding
string substitution state machine model that can transition from s to t via some
rule set ℵf . Where s and t are strings of digits and f is some numeral system
encoding.

..
..φ ..

..s ..t

.

α

.
ℵf

.
f

. f (1)

With this in mind we can imagine a set of representations that relate to each
other as a class F = tf, f 1, f2, ...u, and possible other classes in a universal set
of all possible representations U = tF,G,H, ...u. We may choose to see F as
all numeral systems with an integer radix, giving the class F = tf1, f2, f3, ...u
where f1 would be unary and f8 would be octal and so on. Then we might
want to talk about a class as all systems using a radix of 3 but with differing
digit sets G = tgmaximal, gbalanced, gminimal, ...u, here ’maximal’ uses digit values
{0,1,2}, ’balanced’ uses {-1,0,1}, and ’minimal’ uses {1,2,3}. There are many
different ways we can choose to classify the representations and it is our goal to
create meaningful classifications when used as search space encoding for genetic
algorithms.

1.4 Summary of Findings
In this these we are able to complete the following goals

• Review of historic and modern numeral systems.

• Define a class of numeral systems that are compatible for use in search
space encoding.

• Define a general method for generating arithmetic rules for said systems.
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• Introduce a family of numeral systems called the metallic numeral systems
for our focus

• Prove that arithmetic operations devised for metallic numeral systems will
terminate on any valid digit string.

• Write a Common Lisp library, System Interpreted Numbers, for designing
and using different numeral systems in a dynamic manner.

• Define a new method for generating fractals using the dynamic nature of
System Interpreted Numbers.

• Write an evolutionary algorithm that uses System Interpreted Numbers in
its genotype decoding and in a custom mutation function - Arithmutation.

• Research methods of evolutionary algorithm analysis.

• Put forward a search problem and analysis method that could be used to
measure benefits of numeral system encoding.

1.5 Overview
Because this project covers three main topics it will be split into three main
sections.

The first is a broad look at positional numeral systems, henceforth referred
to as numeral systems, and their various properties. The goal of this section
is to classify the characteristics of the numeral systems we’ll be using and has
various proofs.

The second section is on the development of a Common Lisp library for
defining numeral systems and manipulating them in various ways. This section
has a proofs relating to the code implementation.

The third section will summarise evolutionary/genetic algorithms, describe a
Common Lisp genetic algorithm, then finally combine together numeral systems
and genetic algorithms for exploring novel search spaces.

1.6 Preliminaries

N is the set of natural numbers (not including zero) t1, 2, 3, 4, 5, ...u

Ną1 is the set of natural numbers greater than one t2, 3, 4, 5, ...u

Z+ is the set of non-negative integers t0, 1, 2, 3, ...u

Z[i] for i2 = ´1 is the set of Gaussian integers ta+ bi|a, b P Zu

[d0; d1, d2, ...] is shorthand for the continued fraction d0 +
1

d1+
1

d2+ 1
...
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2 Numeral Systems
2.1 Historical Overview
There are two major categories of counting and arithmetic systems used through-
out civilisation: place value and non-place value. A further distinction can be
made with the category of mixed-value systems which have both value systems
and a place-value system [5]. Here we will have a brief look at these three
categories and some examples therein.

Non-place-value Systems

Tally Hieroglyph Etruscan Hebrew Gothic

;;::: 432| 𐌟𐌣𐌢𐌢𐌢𐌡 ת׳השפ״ב 𐍊𐍀𐌸
(13) (1111) (185) (5782) (989)

Starting with the most simple, non-place-value, these systems use symbols
worth a certain value and a number is made by concatenating as many symbols
as needed. The tally system is the most basic of these where each tally mark
constitutes a value of 1. The grouping of tally marks in sets of five with the
fifth mark being diagonally across is merely syntactic sugar, the system works
just the same with thirteen vertical tally marks.

The Egyptian hieroglyphic numerals introduce a new more compact method
of having each numeral hold the value of a power of ten, | = 1,2 = 10,3 = 100
and so on. We will call this core use of a number to be a system’s base as a
loose descriptor of the system. With only numerals to represent powers of ten
this base 10 system has to do a lot of repetition, for example 2||||||||| = 19.

Etruscan numerals predate Roman Numerals but use a similar system of nu-
merals representing values t1, 5, 10, 50, 100, 500, 1000u. We can say the Etruscan
numerals have a base of 10 and a sub-base of 5.

An interesting variant on the base 10 systems is alphabetic numerals, in
these the first 9 letters of the alphabet represent 1 to 9, then the next nine are
10 to 90, and then nine of 100 to 900, and usually 1000 as well or some grammar
for multiplying by 1000. The Hebrew numerals contain a ״ to indicate that it
is a number and not a word. The system also has a multiplier modifier, the
׳ symbol, which can be added to multiply a symbol value by 1000. This was
also used by the Greek Ionian alphabetic numeral system. Gothic numerals
work the same as Hebrew numerals except there is no syntactic requirements or
multiplier for the 1000s. In the above example 𐍊 = 900, 𐍀 = 80, and 𐌸 = 9.

Place-value Systems

Arabic Eastern Arabic Devanagari Chinese
2021 ١٤٤٣ २०७८ 四千七百一十八
(2021) (1443) (2078) (4718)
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Here we find the very well known and widely used Hindu-Arabic numerals.
In fact our first three examples (Arabic, Eastern Arabic, and Devanagari) all
use the same numeration model and only differ by the character glyphs used as
the digit symbols. The Latin script gives the familiar 0123456789, Arabic script
champions ٠١٢٣٤٥٦٧٨٩, and Devanagari, the script used for writing Hindi,
uses ०१२३४५६७८९. These use positional notation and along with the many
other linguistic script variations are the most universally used numeral systems.

Positional notation is where the symbol and position of the digits determine
the value (its place effects its value). For example the system we know well is
decimal or base 10, the ’base’ refers to what is called a radix which lies at the
heart of a number. If we break down 2021 the relationship becomes clear:

202110 = (2 ˚ 103) + (0 ˚ 102) + (2 ˚ 101) + (1 ˚ 100)

The general case where dn is the nth numeral (digit) and β is the radix we
have

(dndn´1...d0)β = dn ˚ βn + dn´1 ˚ βn´1 + ...+ d0 ˚ β0 (2)

which encompasses decimal, octal, hexadecimal, etc, along with other sym-
bol systems such as the mixed value Mayan and Babylonian numeral systems.
Uniquely the tally system of Unary is both place-value and non-place-value,
as each new number is represented by adding a 1 while never violating the
positional notation (because 1n = 1 for all n).

Figure 3: Sketch:
Incan quipu [6].

The Incan quipu is a physical numeral system, see [Fig.
3, p9]. Each hanging string acts as a unit column much
like the index of dn in equation 1, and the combination
of knots in said string acts as the numeral value of dn
(representing 1, 2, 3, ...) [7].

There is a Chinese positional system that doesn’t use
positional notation like the above examples, it uses an al-
most conversational method for describing numbers. The
numeral values 0 to 9 are present alongside values for
10, 100, 1000, 10000. The system works by pairing a unit
value with a power of ten except in the case of 101 as the
unit value on its own will suffice. This system has a standard glyph set for
the numeral symbol and a financial glyph set designed to stop forgers changing
between values easily. For example一千〇三is 1003 for everyday use, but for
financial or governmental use一仟〇叁is 1003.

Mixed-value Systems

Babylonian Mayan Chinese Rod Attic Roman
𒌍 𒁹 𒐐𒈫 𒐎

ˇ

ˇ

ˇ

5

0255

ˇ

ˇ

ˇ
𝍱𝍨𝍫𝍦𝍩 𐅇𐅄ΔΠΙΙ MCMLVIII

(6486729) (2012) (99361) (50067) (1958)

9



Note that here Babylonian numerals have their own repeating symbol con-
struction rules for the values from 1-59 and then those symbols are used in the
place-value system. The values 1-59 have unique glyphs constructed by the two
internal symbols 𒁹 and 𒌋 . Roman Numerals are another mixed-value system
because of the special case where putting a lesser numeral before a larger one
indicated a subtraction, XI = 11 but IX = 9. This is the inverse, a place-value
system within a non-place-value system.

While there are many visually differing symbols used for numbering methods,
the one we will be focused on is the Western Arabic Numerals

0, 1, 2, 3, 4, 5, 6, 7, 8, 9

and otherwise defined extensions of these such as adding letters for hexadecimal
and so on.

The idea of using non-decimal numeral systems for their advantages is not
new, we use binary for logical computation, octal and hexadecimal for compact
storage of binary values, even a mixed-radix positional system for date-time in
the form [60s, 60m, 24h, 30d, 12m, 365y] with various rules. In the example of
date-time each unit is internally represented in decimal with standard numerals,
but it is essentially one combinatorial numeral system describing one value.

2.2 Overview of Modern Numeral Systems
The system of the Hindu-Arabic symbols is called a positional numeral system
and is defined by a radix (often refered to as the base) and a set of valid digits.
What is usually called a decimal point is more generally a radix point for β = 10.

Definition 1. Positional Numeral System
Let β P C, |β| ą 1 be the radix of the system. Where C denotes the set of

complex numbers and |β| denotes the absolute value of β.
Let the digit set D = t0, 1, ..., r|β|s ´ 1u and digits di P D.
The positional numeral encoding of value x as digits dndn´1dn´2... is

x = dn ˚ βn + dn´1 ˚ βn´1 + dn´2 ˚ βn´2 + ...

The digit string representing x can be of finite or infinite length. We describe
the system as xβ,Dy. In some cases a unique substript is use i.e. xbt (balanced
ternary).

2.2.1 Notation

We shall now give an example of the syntax and corresponding semantics of [Eq.
(1), p6] by means of describing the relationship between notation and value.

Definition 2. Positional Notation for General Radixes

Let + be the arithmetic addition operator + : C2 Ñ C.
Let β P C be a radix.
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Let S be the set of digit strings valid in language Lβ

Let fβ be the function for evaluating a digit string fβ : Lβ Ñ C.
Let +β be the function that performs the digit string operation of addition

for radix β. Correctness of the function +β means that the following diagram
commutes:

..
..C2 ..C

..S
Ś

S ..S

.

+

.
+β

.fβ
Ś

fβ . fβ

We will often write sβ instead of fβ(s) and omit the radix if it equals 10
(the decimal system). The value 1 omits β as β0 = 1 in every positional system.
The exception to this is if it is required contextually such as 13 + 1+ 1 to state
that a radix of 3 is being discussed.

If the operator contains the radix it is expected that the operands are digit
strings as opposed to numerical values. There is a semantic equivalence, as an
example 10+2 10 „ 102 +102 because the result of both is a number 1002. One
is a typed operation +2 on implicit digit strings (untyped), and the other are
two typed digit strings 102 and 102 which are being acted on by the operator
+ of which the implicit type is +2. This distinction is used later on when type
casting digit strings is introduced. For the rest of the thesis sβ + sβ is the
preferred syntax. It is a corollary that [Def. 2, p11] can be extended to the other
arithmetic operations if and when needed.

2.2.2 Negative Systems

We can use any other positive integer for the radix of a system such as binary
β = 2, ternary β = 3, quarternary β = 4, and so on. One characteristic of all
systems using an integer β ą 1 is that to represent negative values it requires
a prefixed sign, for example ´58 or ´1013. It is possible to represent negative
values without a prefixed sign when using a negative integer radix β ă ´1.

A nomenclature for these systems is the name of their positive sister system
with the prefix ’nega’, for example negabinary defined as x´2, t0, 1uy. Because
the index of the digit position is either odd or even this means the resulting
value will be either positive or negative. The even digit positions evaluate to
the same as the sister system, for example 22 = (´2)2. A direct conversion from
binary to negabinary can be done by looking at the odd positions in binary vs
negabinary. Here k is an odd integer:

2k = (´2)k+1 + (´2)k (3)
We can take any positive integer in binary, such as 10102 = 23 + 21 = 10,

and using [Eq. (3), p11] we can arrive at the negabinary representation for it
11110´2 = (´2)4 + (´2)3 + (´2)2 + (´2)1 = 10. This can be extended to all
integer radixes with a general definition
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Definition 3. Conversion from positive to negative system
Let p P Ną1 be the positive radix and q = ´p be the negative radix.

Let k P O, the set of odd integers.

pk = qk+1 + (q ´ 1)qk

Alongside negative radixes another method for representing negative num-
bers without signage is to use negative valued digits. The balanced ternary
system is a great example of this, it is defined as x3, tT, 0, 1uy where T = ´1.
Once again a direct conversion can be made from the sister system of ternary.
Here we look at the first digit that is not in the balanced ternary digit set, which
is 23. Note that 23 = 1Tbt, and compare.

2 ˚ 3n = 3n+1 + ´1 ˚ 3n (4)

Balanced systems require an odd radix and are defined to be

Definition 4. Balanced Digit Sets

x2n+ 1, t´n, ...,´2,´1, 0, 1, 2, ..., nuy

So for example, quinary can have a balanced digit set but binary would
not meet the requirements as it wouldn’t be balanced around the digit 0. For
systems with an β ą 3 the usual notation for negative digits is n = ´n. Balanced
systems have a mirror-reflective property [8] in that a number can be converted
to its negative or positive counterpart by changing all the positive digits their
negative equivalent and all the negative digits with their positive counterparts.
As an example and using the generalised notation 101bt = 8 and 101bt = ´8.

Representation for Numbers 1 to 5
(radix notation omitted for readability)

Decimal 1 2 3 4 5
Ternary 1 2 10 11 12
Negaternary 1 2 120 121 122
Balanced Ternary 1 11 10 11 111

Representation for Numbers -1 to -5
(radix notation omitted for readability)

Decimal ´1 ´2 ´3 ´4 ´5
Ternary ´1 ´2 ´10 ´11 ´12
Negaternary 12 11 10 22 21
Balanced Ternary 1 11 10 11 111

12



2.2.3 Irrational Systems

Positional systems can have non-integer radixes too. The main system looked
at in this thesis is called Phinary and is defined xφ, t0, 1uy where φ = 1+

?
5

2 also
known as the Golden Ratio. The Golden Ratio is a well known number that is
linked to Fibonacci sequences. The Fibonacci sequence is defined as

Definition 5. Fibonacci Numbers
Let F be the inductively defined set of Fibonacci Numbers

F0 = 1, F1 = 1

Fn = Fn´1 + Fn´2

which gives us t1, 1, 2, 3, 5, 8, 13, 21, ...u. The ratio of consecutive Fibonacci
numbers tends to the golden ration limnÑ8

Fn+1

Fn
= φ and that describes the

growth rate of the sequence.
Even though φ is irrational as a numeral system radix it is still able to rep-

resent rational values, for example 101.01φ = 3. It also possesses an interesting
attribute that there are multiple representations of numbers in phinary, this
stems from the fact that φn = φn´1 + φn´2. This characteristic is discussed in
more detail later in the thesis (in section 3.3).

2.2.4 Complex Systems

We can again extend our reach further for the radix of a positional system and
go into the complex plane β P C. In a similar way to negative radixes that
oscillate between negative and positive, an imaginary radix such as i will rotate
90°around the complex plan because i0 = 1, i1 = i, i2 = ´1, i3 = ´i.

An imaginary system that is quite well known is Donald Knuth’s Quater-
Imaginary which is defined x2i, t0, 1, 2, 3uy [9]. Which can represent all the
complex integers z = a+ bi where a, b P Z. For it’s representation of z it needs
no signage of negation, components (a and b separated), or an indicator of the
imaginary unit.

In 1964 Solomon Khmelnik proposed a collection of complex numeral systems
[10]. Among these were x´1 + i, t0, 1uy and an interesting system we shall call
Khmelnik’s binary : x ´1+

?
7i

2 , t0, 1uy. Khmelnik’s binary is both complex and
irrational and yet can still represent all the integers in a finite way. It also has an
interesting property of not always increasing in representation length, for exam-
ple 11100110011kb = 11, 11001100kb = 12, 11001101kb = 13, 11100010110kb =
14.

13



Representation for Rotations of Ten
(radix notation omitted for readability)

Decimal 10 ´10 10i 10 + 10i
Dragonbinary 10 ´10 10i 10 + 10i
Quater-Imaginary 10202 302 103010 113212
Khmelnik’s Binary 11100110010 101011110

3 Research in the Field of Numeral Systems
The purpose of this seciton is to put the tool of β-expansion into a wider context
and introduce a useful set of numbers for potential numeral systems. While we
give definitions in this sections the full descriptions can be found in their relative
paper citations.

3.1 f-expansions and β-expansions
Radix expansions are the use of negative powers of the radix to represent a
value. An infinite example being 0.333... to represent 1

3 in the decimal system.
The study of radix expansions in numeral systems with a non-integer radix

begins in 1957 with Renyi introducing the concept of f -expansions and β-
expansions [11], and then with Parry’s further work on β-expansions [12] in
1960.

For the definitions below we use
[
x
]
to denote the integer part of x, and we

use
!

x
)

to denote the fractional part of x.

Definition 6. f -expansion
Given a real function f such that f : R+ Ñ R+ a real number x P R+ can

be encoded into an f -expansion using the following form
Let di P Z+,

x = d0 + f(d1 + f(d2 + ...)...).

More precisely this means that the sequence

d0, d0 + f(d1), d0 + f(d1 + f(d2)), ...

converges to x, either in finitely many steps or infinitely converging. In the
case that a value x has an f -expansion then you can calculate the digits di as
such

d0 =
[
x
]

and r0 =
!

x
)

then
dn+1 =

[
f´1(rn)

]
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rn+1 =
!

f´1(rn)
)

It follows from the above that f must be bijective for f´1 to be used. Renyi
explores the constraints of f in detail in [11].

A note worthy definition of f(x) is the case where f(x) = 1
x , here f -expansion

becomes a simple continued fraction. Take, for example, the value 355
113 :

d0 =
[355
113

]
= 3, r0 =

16

113

d1 =
[
f´1(

16

113
)
]
= 7, r1 =

1

16

d2 =
[
f´1(

1

16
)
]
= 16, r2 = 0

which can be written in simple continued fraction notation using only the d
as [3; 7, 16] and can be fully expanded to

3 +
1

7 + 1
16

Renyi was looking at the ergodic properties of the interval (0, 1), analysing
various different definitions of f looking at the finite and periodic representa-
tions. The f -expansion of use to us is f(x) = x

β which defines β-expansion.
Substituting in our new definition for f we get

x = d0 +
d1
β

+
d2
β2

+
d3
β3

+ ...

In this area of research positional systems with a non-integer radix are some-
times refered to as β-representation, with β-expansion being a specific use of
that form. Of particular interest is the expansion sequence omitting d0 which is
everything past the radix point (d1d2d3...). While Renyi’s original definition of
β-expansion had only d0 for the integer part, later works [13] define β-expansion
in its entirety as below.

Definition 7. β-expansion
Let β P R and β ą 1.

Let k, i P Z and k ě i ě ´8.
A real number x ě 0 is said to be a β-expansion when in the form

x = dkβ
k + dk´1β

k´1 + ...+ d1β + d0 + d´1β
´1 + d´2β

´2 + ...

given by dk =
[

x
βk

]
and rk =

!

x
βk

)

and

di =
[
βri+1

]
ri =

!

βri+1

)
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It should be noted that while β-expansion is a β-representation of some
value x, it is explicitly the representation formed by the method given in the
definition. This method is also called the Greedy Algorithm.

There are two useful sets of numbers defined for β-epansions which are the
periodic and the finite expansions.

Definition 8. Per(β), the periodic expansions for β
Let k P Z+.
Let β P R ą 1.
A real number x ě 0 that is represented using a digit string dndn´1dn´2...dn´kdn´k´1...

such that

x = dkβ
k + dk´1β

k´1 + dk´2β
k´2 + ...+ dk´nβ

k´n + dk´n´1β
k´n´1 + ...

where after k digits the representation ends or becomes periodic. Per(β) is
the set of all such x.

subsequently

Definition 9. Fin(β), the finite expansions for β
Let k P Z+.
Let β P R ą 1.
A real number x ě 0 can be represented using a digit string dndn´1dn´2...dn´k

such that

x = dkβ
k + dk´1β

k´1 + dk´2β
k´2 + ...+ dk´nβ

k´n

where after k digits the representation ends. Fin(β) is the set of all such x.

It is the case that for different numeral systems there are different finite
representations available, for example 1

3 has only an infinite representation in
decimal but in ternary it has the finite representation 0.13. So we can say
1
3 P Fin(3) but 1

3 R Fin(10).
It has been shown that when β is an integer that Per(β) = Q(β) X R+ and

Fin(β) = Z[β´1] X R+ [13].

3.2 Pisot Numbers
This area of research focuses greatly on a class of numbers called Pisot-Vijayaraghavan
Numbers, or Pisot Numbers for short. They are defined as real algebraic inte-
gers greater than 1 where the absolute value of their conjugate is less than 1.
We will now define algebraic integers and describe conjugates.

Definition 10. Algebraic Integer [14]
Let x P C.
Let di P Z.
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xn + dn´1x
n´1 + ...+ d1x+ d0 = 0

If x solves the polynomial and the polynomial is minimal then x is called
an algebraic integer of degree n. An algebraic number has a more general form
of the polynomial with a leading coefficient of dn, so algebraic integers are a
special case of algebraic numbers where dn = 1.

Conjugates are the alternative solutions to a polynomial, for example x2´2 =
0 has two solutions:

?
2 and ´

?
2. These are each other’s conjugates.

If we take the polynomial x2 ´ x ´ 1 = 0 the solutions are the golden ratio
φ = 1+

?
5

2 and its conjugate ´φ´1. A more useful form for comparison with its
conjugate is φ = 1

2 +
?
5
2 , and the conjugate value ´φ´1 = 1

2 ´
?
5
2 . This means

that because φ ą 1 and | ´ φ´1| ă 1 then φ is an algebraic integer of degree 2
and a Pisot number.

It has been shown that when β is a Pisot number there will always be an
either finite or periodic expansion of 1 such that

1 =
8
ÿ

i=1

diβ
´i di P t0, 1, ..., tβuu (5)

We refer to [Eq. (5), p17] as a numeral system’s expansions of 1. It is also
known that if β is a Pisot number then Per(β) = Q(β)XR+ and Z+ Ă Fin(β)
[15].
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3.3 Standard Form for Numbers
Value representations in positional systems are not unique, for example in deci-
mal 1 = 0.999.... With the usual integer radix values integers have unique finite
representations.

Looking at phinary we find it holds the inherent property that 1φ = 0.11φ,
which is a consequence of φn = φn´1 + φn´2. This equality comes from the
polynomial x2 ´ x´ 1 = 0 of which the solution is x = φ. Because 0.11φ is the
shortest possible finite expansion of the unit value 1, it is trivial to see that it
has infinitely many further expansions by simply taking the rightmost digit and
performing this representation change again.

1φ = 0.11φ = 0.1011φ = 0.101011φ = ...

Because there are many finite representations for numbers in this system
we require a standard form, we can get to this rule by reversing the above and
looking at the actions of 011φ Ñ 100φ

1. find part of the digit string, d1d2d3 with any digit followed by digits of at
least 1s (d1 ě 0, d2 ą 0, d3 ą 0).

2. add one to d1, subtract one from d2, and subtract one from d3.

That is to say we apply a standardisation operation, denoted ÑS , on 011φ
to produce 100φ. Giving us the rule ([0, 1, 1], (1,´1,´1)) where the first part
[0, 1, 1] is a minimum requirements for the digit string values and if those are
satisfied then the second part (1,´1,´1) is added to the relative digits.

Phinary Standardisation of 1001101
(radix notation omitted for readability)

State Action Result Notes
1001101 search 1001[101] d2 = 0, no match.
1001101 search 100[110]1 d3 = 0, no match.
1001101 search 10[011]01 Match found.

standardise 10[1]1101 d1 + 1
standardise 101[0]101 d2 ´ 1
standardise 1010[0]01 d3 ´ 1

1010001 search 1[010]001 d3 = 0, no match.
1010001 search [101]0001 d2 = 0, no match.
1010001 search [010]10001 d3 = 0, no match.

The greedy construction we generated in section 3.4.1 for 10.01φ is also
known as the minimal form as it uses the least amount of 1s as possible. The
standardised form is thus the minimal form.

In the case of phinary the greedy construction will never allow for two (or
more) 1s next to each other. This is because in phinary the expansion of 1 means
if there are two 1s next to each other then there could have been a 1 before them
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instead (011φ Ñ 100φ). The greedy construction will use the largest value it
can working from left to right, meaning two (or more) 1s next to each other is
not possible.

3.4 Algorithmic Construction of Addition
We will now define the arithmetic operations of addition for the positional sys-
tem phinary, in which β = φ = 1+

?
5

2 (the golden ratio) and D := t0, 1u.
As the positional systems use digit alphabets consisting of integer digits, we

can form the rule of addition by looking at integer progression in these systems.
Specifically looking at the initial unit values, which is a successive progression
through the digit alphabet, plus one more increment. Inductively by looking at
the progression of the unit values past the digit alphabet max we then know all
possible transitions a digit can make during addition.

For example in decimal we would then know that 0 Ñ+1 1 Ñ+1 2... and so
on and also that 9 Ñ+1 10.

To construct the rules we need the first |D| numbers in the system where |D|

is the cardinality of the digit alphabet. Positional numeral system is a power
series as seen in [Def. 1, p10], translating numbers to a certain positional system
simply requires performing a greedy construction. We are looking at positive
unit values larger than 1, the below algorithm will work for values of numě 1:

Algorithm 1: The greedy algorithm
let numString = ””
let index = Integer(log(num) / log(r))
while num != 0 do

power = βindex

units = floor(num / power)
num = num - (units * power)
index = index - 1
numString.append(units)

This allows us to construct numbers in a positional system without needing
to know succession rules (as that is what we are trying to derive).

Computationally, there is always the problem of precision but in phinary for
the numbers less than ten we can get away with truncating after four digits past
the radix point.

3.4.1 Overflow

Arithmetic carry of numeral systems using a whole number radix is a trivial
property of powers. For β P N and n P Z the equality is

βn + ...+ βn
loooooomoooooon

β times

= βn+1

Examples:

19



• 13 + 13 + 13 = 103

• 3004 + 1004 = 10004

• 10 ¨ 0.001 = 0.01

The third example is true in all positional systems as it is an algebraic fact that
xnx = xn+1.

For a systems such as [Def. 1, p10] overflow occurs when a unit value exceeds
the digits of its alphabet. That is to say when an operation such as addition
increases the value of a unit past the representable digits e.g. 22 exceeds the
alphabet of binary which is t0, 1u. The digit alphabet of phinary is t0, 1u, with
a cardinality of 2. Below are results of calling the greedy construction algorithm
for 0, 1, and 2 to generate their representation in phinary:

Greedy(0, φ) returns 0
Greedy(1, φ) returns 1
Greedy(2, φ) returns 10.01

Note here that 10.01φ means φ1 + φ´2 = 2. Binary has an overflow that
expands to the left only 12 + 1 = 102 whereas phinary has an overflow that
expands bidirectionally 1φ + 1 = 10.01φ. If we look at the pointwise difference
between the result of 1φ+1 which is 2φ and the valid version of 2φ as a phinary
number 10.01φ we can see the actions of the overflow rule:

Each of these four actions are starting from the position of the digit that is
too high (requires overflow)

1. move left and +1 2 Ñ 12
2. do not move and ´2 12 Ñ 10
3. move right and +0 (no effect*)
4. move right twice and +1 10 Ñ 10.01

*we keep this in so we have fully described the neighbourhood. Later in other
related numeral systems this neighbour is changed along with the rest.

Each of these steps is performed from the position of the overflow. We can
package these rules into a set of pairs t(1, 1), (0,´2), (´1, 0), (´2, 1)u. The pairs
are actions of the rule and are in the form (shift, add). We shall refer to this
overflow operation as ÑO.

It should be pointed out that the result of overflow 2φ ÑO 10.01φ can be
achieved by a combination of standardisation and inverse standardisation. If
we recall standardisation to be 011 ÑS 100 and denote inverse standardisa-
tion as Ñ

1
S : 100 Ñ

1
S 011 then by allowing free choice of where we apply the

standardisation

2φ Ñ
1
S 1.11φ ÑS 10.01φ

equates
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2φ ÑO 10.01φ

We will do an example of 2φ padded with zeros to help show the procedure.

Phinary Overflow of 2φ Ñ 10.01φ

State Action Result
02.00φ (+1,+1) [1]2.00φ
12.00φ (+0,´2) 1[0].00φ
10.00φ (´1,+0) 10.[0]0φ
10.00φ (´2,+1) 10.0[1]φ

The rule for overflow of a unit can be applied to a digit string on each digit
however many times is required. Because of this addition between two positive
numbers is also defined.
Lemma 1. Phinary Addition a+φ b

Let a, b P Lφ be a digit string valid in the language of Lφ.
We define digit string c to be the pointwise addition of a and b such that

ci = ai + bi

Then we apply an overflow check on each digit of c to check if ci ě 2, if it
is then the overflow rule is applied and the four actions are carried out. This
procedure repeats until c P Lφ. Once no digit ě 2 is left, the computation of
addition is complete. ˝

It is later shown in [Theorem 1, p23] that addition for phinary does terminate.

3.4.2 Normalisation

Now we have the above two rules we can normalise any string of digits into a valid
(using only digits from the system’s alphabet) and standardised representation.
We will apply [Lemma 1, p21] and do pointwise addition of 10.01φ = 2 and
101.01φ = 4, the result when evaluated should be an invalid form that is equal
to 6:

10.01φ + 101.01φ = 111.02φ

then through a combination of overflow, ÑO, and standardisation, ÑS , we
will arrive at the valid standard form

111.02 ÑO 111.1001 ÑS 120.0001 ÑO 200.1001 ÑO 1001.1001 ÑS 1010.0001

.
Leaving us with 1010.0001φ = 6. As one can see, the normalisation proce-

dure moves around in the number going back and forth, we want to make sure
that these rules will always terminate when being applied. The following proof
does this.
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3.5 Mathematical Construction of Addition
The golden ratio is the first instance of a larger family of numbers called the
metallic means (golden ratio, silver ratio, bronze ratio, etc). These numbers
satisfy the homogeneous continued fraction [b; b, b, b, ...] where b P N, and they
are solutions to the polynomial

β2 ´ bβ ´ 1 = 0. (6)

The bth metallic mean can be defined as

βb =
b+

?
b2 + 4

2
(7)

So we can see that β1 = 1+
?
5

2 , x2 = 1 +
?
2, and so on. Remarkably when

used as the radix of numeral systems the metallic means can represent all the
integers finitely.

In the following we fix b and study the bth metallic numeral systems. The
numeral systems for the bth metallic mean use the digits [0, ..., b]. Substitution
rules for standardisation and addition in metallic numeral systems can be defined
as below.

These rules are applied to a digit string with some value (encoded by metallic
system b) and produce another digit string changing the form but not the value.

There are required conditions and anywhere in the digit string that those
conditions are met the rule is applied to that/those digits and the surrounding
neighbours.

Let a = b´ 1 and c = b+ 1,

(r1) klm Ñ (k + 1)(l ´ b)(m´ 1) if l ě b and m ě 1
(r2) klmn Ñ (k + 1)(l ´ c)(m+ a)(n+ 1) if l ě c

The correctness of these rules follows from the fact that the metallic mean
βb satisfies [Eq. (6), p22] which can be rearranged into the rules. By correctness
we mean an application of the rule will not change the value of the number
just the form. The validity of (r1) and (r2) follows directly from the following
equations (e1) and (e2).

(e1) β2 = bβ + 1
(e2) cβ2 = β3 + aβ + 1

It is trivial to derive (e1) from [Eq. (6), p22]. We can then use the (e1) to
prove (e2) by rearranging the left side of the equation into the right side. We
expand a = b´ 1 and c = b+ 1 for simplicity.

First we expand (e2) and put it in a general form by multiplying both sides
by β´2

(b+ 1)βk = βk+1 + (b´ 1)βk´1 + βk´2
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The actions performed below are using (e1) by expanding one βk term into
bβk´1+βk´2, then taking bβk and one βk´1 using (e1) to reduce them to βk+1.

(b+ 1)βk = bβk + bβk´1 + βk´2

= βk+1 + (b´ 1)βk´1 + βk´2

Therefore by the correctness of (e1) and (e2) we know that applying (r1) or
(r2) will not change the value of a digit string, just the form.

3.5.1 Proof of Termination

Theorem 1. Any normalisation sequence using rules (r1) and (r2) terminates.
Proof.

By a word we mean in the following sequence

w = ...w2w1w0.w´1w´2... P NZ

such that wi = 0 for almost all i P Z.
We let

S(w) =
ÿ

iPZ
wi

be the sum of all (non-zero) digits in w. As remarked above, rule (r1) reduces
the sum of digits while rule (r2) preserves it:

if w Ñ(r1) w1 , then S(w1) = S(w) ´ b (8)

if w Ñ(r2) w1 , then S(w1) = S(w) (9)

Therefore, every normalisation sequence can contain only finitely many ap-
plications of rule (r1).

We now look to prove that every normalisation sequence using only rule (r2)
terminates.

Considering only words w with at least one non-zero digit, i.e. S(w) ą 0,
we define the left and right end of a word w as

L(w) = maxti P Z|wi ą 0u

R(w) = minti P Z|wi ą 0u

and its diameter as
D(w) = L(w) ´R(w)
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Recall (r2):

(r2) klmn Ñ (k + 1)(l ´ c)(m+ a)(n+ 1) if l ě c

Because (r2) is applied based on digit l and it increments the neighbouring
digits k and n by 1 it follows,

if w Ñ(2) w1, then L(w1) ě L(w) ě R(w) ě R(w1) (10)

if w Ñ(2) w1, then D(w1) ě D(w) (11)

We define the centre of gravity of a word w as

G(w) =
g(w)

S(w)

where
g(w) =

ÿ

iPZ
i ˚ wi

It follows that

L(w) ě G(w) ě R(w) (12)

Because (r2) is conditional on digit l it has the local neighbourhood indexing
of

ki+1limi´1ni´2

The sum of the indices of digits k and n are 1 less than the index of digit
l and the index of digit m is 1 less than the index of digit l. Because k and n
are incremented by a fixed value of 1 and m is incremented by a fixed value of
(b´ 1) we know that,

if w Ñ(2) w1, then G(w1) = G(w) ´ b
1

S(w)
(13)

We can solve G(w) ´ G(w1) = b 1
S(w) by substituting the klmn indicies into

g and showing that g(w) ´ g(w1) = b (all other indicies cancel out in the sub-
traction, only klmn can change)

g(w) ´ g(w1) = (i+ 1)k + il + (i´ 1)m+ (i´ 2)n
´(i+ 1)(k + 1) + i(l ´ b) + (i´ 1)(m+ (b´ 1)) + (i´ 2)(n+ 1)

To break it up we will reduce the k, l,m and n terms for g(w)´g(w1), starting
with the k term

(i+ 1)k ´ (i+ 1)(k + 1) = ki´ ki´ i+ k ´ k ´ 1
= ´i´ 1
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and the l term

il ´ i(l ´ (b+ 1)) = il ´ il + ib+ i
= ib+ i

the m term

(i´ 1)m´ (i´ 1)(m+ (b´ 1)) = m´m+ im´ im´ bi+ i+ b´ 1
= i´ ib+ b´ 1

and the n term

n(i´ 2) ´ (n+ 1)(i´ 2) = ni´ ni´ n2 ´ n2 ´ i+ 2
= ´i+ 2

after which we can substitute it back into the full equation

g(w) ´ g(w1) = (´i´ 1) + (ib+ i) + (i´ bi+ b´ 1) + (´i+ 2)
= b

We are now able to arrive at a lower bound for the diameter of a word after
k applications of (r2), which we denote as w Ñ(2),k w1.

After k applicatios of (r2), given [Eq. (13), p24]

G(w) = G(w1) + bk
1

S(w)
(14)

knowing that [Eq. (10), p24] holds, we can say

G(w1) + bk
1

S(w)
ě R(w1) + bk

1

S(w)
(15)

L(w1) ´R(w1) ě bk
1

S(w)
(16)

therefore

if w Ñ(2),k w1 then D(w1) ě bk
1

S(w)
(17)

By [Eq. (13), p24] we know that gravity is reduced by a fixed amount, and
that [Eq. (12), p24] holds, therefore we can prove (r2) terminates by proving
R(w1) has an upper bound. Which we will do by finding an upper bound for
D(w1).

We say a word w has only small gaps if any ’inner’ sequence of consecutive
zeros has length ď 2. That is to say there is no i between L(w) and R(w) such
that @i(wi = 0 ^ wi+1 = 0 ^ wi+2 = 0).

For applications of (r2) we can see that any zero introduced by l ´ c, and
any zero preserved by m+ a (in the case of a = 0), there is a surrounding small
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gap created by the additive actions of k + 1 and n + 1. As k and n create an
inner sequence of 2 digits, which is a small gap, we can say

if w has only small gaps and w Ñ(2) w1, then w1 only has small gaps (18)

Furthermore, as the maximum length of a word with only small gaps is
achieved by the patternX00X00X00...X and the largest possible S(w) is achieved
when all non-zero digits are b, we have

if w has only small gaps then D(w) ă
3S(w)

b
(19)

A limit for the amount of applications of (r2) can be found by solving bk
S(w) ă

3S(w)
b for k, therefore a normalisation sequence starting with a word w with only

small gaps that uses only (r2) must have a length less than

3S(w)2

b2
(20)

We order pointwise, i.e..

w ď v ðñ @i P Z(w(i) ď v(i))

The following are trivial observations:

if w ď v then D(w) ď D(v) (21)
If w Ñ(2) w1 and w ď v, then

there exists v1 such that v Ñ(2) v1 and w1 ď v1 (22)
Given a word w, there is pointwise larger word v with small gaps such that

S(v) ď S(w) +
D(w)

3
(23)

since it is enough to replace at most D(w)
3 zeros with 1. For example if we

had w = 2000000 then we fill the large gap and have v = 2001001.
For every reduction sequence starting with w, there is an equally long re-

duction sequence for v.
It is the case that v is bounded by [Eq. (20), p26], from here we can use [Eq.

(23), p26] to speak about w.
A normalisation sequence starting with word w that uses only (r2) must

have a length less than

3(S(w) + D(w)
3 )2

b2
(24)

Therefore, the theorem is proven, even with an explicit bound on lengths of
normalisation sequences. ˝
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3.6 A Requirement for Radix Expansion
A possible question to arise is does representation of the natural numbers always
require expansion past the radix point? Below we prove that for all the metallic
systems a radix expansion is required to represent any rational number.

Theorem 2. Let p, q P Z+. When the solution to β2 ´ pβ ´ q = 0 is irrational
then the numeral system using radix β cannot express any rational number
without the use of radix expansion.

Proof.

The representation of a value without radix expansion is x = dnβ
n +

dn´1β
n´1 + ... + d1β

1 + d0β
0 where d P t0, 1, ..., tβuu. We can derive the stan-

dardisation rule by rearranging the root polynomial to βn = pβn´1 + qβn´2.
We can then use this rule, in reverse, to reduce the representation of a value to
x = e0β + e1 where ei P Z+. Thus as β P RzQ it is the case that x can only be
irrational. ˝

An example of the standardisation reduction is shown below using the sec-
ond metallic system, which has the silver ratio, defined as δs =

?
2 + 1, as

its radix. In the system (discussed in section 2) the standardisation rule is
δns = 2δn´1

s + δn´2
s . We will apply this to an arbitrary value in numeral repre-

sentation:

1111δs Ñreduce 321δs Ñreduce 242δs Ñreduce 163δs Ñreduce 84δs (25)

leaving us with e0 = 8 and e1 = 4. Note that 1111δs = 84δs = 12 + 8
?
2.

3.7 Numbers and Machines
Computations in programming languages use type systems which are limited
in what they can represent. For example in the programming language C the
’float’ type uses an IEEE-754 encoding to better maximise representation and
allowing a far more useful range than fixed-point representation [Def. 11, p28].
We can look at the ranges of the type, τ , being used by the machine.

The most simple numerical encoding would be fixed-point encoding, where
there are a fixed amount of digits in the number and it is treated like a positional
number system.

Definition 11. Fixed-point Encoding
Let β P C, |β| ą 1 be the radix of the system.
Let the digits di P t0, 1, ..., r|β|s ´ 1u.
Let n,m P Z+ be the fixed-point constraints.
The fixed-point encoding of value x as digits dn...d2d1d0.d´1d´2...d´m is
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x = dn˚βn+...+d2˚β2+d1˚β1+d0˚β0+d´1˚β´1+d´2˚β´2+...+d´m˚β´m

The range is a set that consists of all the numbers that can be represented
by some arbitrary string s P Lτ (where Lτ is the language of valid strings in
type τ).

As an example we can construct a fixed-point representation where n =
2,m = 2, β = 2. In such a system the representations 01.00, 10.11, 10.01 are
valid but 20.00 wouldn’t be valid as β = 2 doesn’t allow for the digit 2 to
appear. Another invalid represention would be 010.01 which has 3 digits left of
the radix point and n = 2.

Definition 12. Machine Numbers
Let τ be a fixed-point representation.
Let s be a digit string ranging across Lτ the set of valid string in the language

of τ .
The machine numbers for type τ are defined

Mτ := tm P C : Ds(τ(s) ÞÑ m)u

For all types using an integer radix β P Ną1 it is the case that irrational
numbers such as π are not in Mτ . For situations where close approximations
are acceptable we can use a threshold ϵ to collect values that are close to values
such as π.

Definition 13. Approximation Set
Let τ be an arbitrary fixed-point representation.
Let ϵ P R be the approximation error bound.
Let x P C be the value being approximated.

Mτ Ą Γτ
x := tγ P Mτ : |γ ´ x| ď ϵu

The cardinality of Γτ
x will differ depending on the fixed-point encoding τ ,

the value being approximated x, and the error bound ϵ. We can refer to |Γτ
x| as

its representation density. [Def. 13, p28] contains representable values close to x
and possibly also x.

We now look at when τ is [Def. 11, p28] with a limited digit set. It will have
a fixed length and a fixed position for the radix point. The constraints are n,m,
and the digit set which we will fix to be t0, 1u. This means the only variable is
β.
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Definition 14. Optimal Radix for Fixed-point Representation
Let τ(β) denote a fixed-point representation with a fixed n,m P Z+, fixed

digit set t0, 1u, and radix 1 ą β ě 2.
Let values xi and radix ρ range over C.
For every choice of finitely many values x1, . . . , xk there is an optimal en-

coding τ such that it presents the largest joint representation density, that is,

@ρ(|
k

ď

i=1

Γτ(β)
xi

| ě |

k
ď

i=1

Γτ(ρ)
xi

|)

A simple example of this would be to set the error bound to ϵ = 0 (only
accepting exact approximations), then we can see that if we want to represent
the number 2 with 4bit fixed-point type (n = 2,m = 2) then the τ using β = 2
can do so with the representation 10.00. We also see that phinary β = φ has
a valid representation 10.01 as an exact approximation of the value 2. We can
go further and increase the amount of x we want to represent and start to see
differing optimality. Below we look at approximation sets for representing the
values 2 and φ.

|Γ
τ(φ)
2 Y Γτ(φ)

φ | ě |Γ
τ(2)
2 Y Γτ(2)

φ |

Because
|t10.01, 10.00u| ě |t10.00u|

Thus if the aim is to represent both 2 and φ then for the above constraints
of τ it is the case that β = φ is more optimal than β = 2.

In this section we have put forward an example of value representation in
computing (fixed-point representation). We defined a set of numbers called
machine numbers which are all possibly representable numbers for a fixed-point
encoding τ . We then define approximation sets as the subset of machine numbers
for some fixed-point encoding τ where the members are close to some chosen
value of x (the approximation value). This allows us to measure encodings for
their ability to represent specific values or values close to them. The example
shows us how we can compare two encodings, τ = φ and τ = 2 to see that τ = φ
can represent the two values we wanted, making it the better choice.
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4 Programming with Numeral Systems
In this section we will develop a library that extends Common Lisp’s type system
to house user defined numeral systems for dynamic type casting of strings as
numbers. Because Common Lisp is not the most well known language we will
preface this work with an introduction to and overview of Common Lisp.

4.1 A Common Lisp Primer
This section is for readers unfamiliar with the Lisp family of languages (specif-
ically Common Lisp). Readers that have a familiarity with lisps might want to
skip this chapter then come back to it as a reference guide if needed. Types/-
variables in Common Lisp are rather different than they are in more mainstream
programming languages, here we will go over the important differences.

4.1.1 Types

Some of the basic types in Lisp are Numbers, Characters, Symbols, Lists, and
Functions. Symbol is a type not often seen in other languages and acts as a
name for things. Symbols are made up of five different slots called cells, which
are used for assigning data. The cells are:

1. Value Cell

2. Function Cell

3. Property List

4. Print Name

5. Package

The different cells are activated contextually, a good example of this would
be Lisp’s s-expression. When the Lisp reader sees a list such as (A B C) then
it interprets this as what is called an s-expression. Evaluating it means calling
the function cell of the first symbol in the list, A, and passing the value cells of
the remaining symbols, B and C, as arguments. The last three cells are usually
not actively used by the user but the first two are set with macros like defvar,
defun, etc.

Checking types in Lisp is akin to checking if a value would be valid as that
type. If we check the type of a symbol what we are actually doing is evaluating
the value cell and checking the type of the value. New types can be created
using deftype, this macro registers a symbol as a type-specifier (no cell binding
is performed). The type-specifier is associated with some code that contains
predicate rules for the type:

(deftype even ()
'(and integer (satisfies evenp)))
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(typep 4 'even) ; returns true -> t
(typep 5 'even) ; returns false -> nil

We mentioned that deftype is a macro. Macros and functions differ in that
the parameters passed to a macro are not evaluated. This is because their job
is to expand into actual code before executing. In the above code even is a
currently unbound symbol and would throw an exception if it was evaluated.
deftype receives the symbol name itself as a parameter without using the value
cell. Later the function typep requires a special syntax to get even. The code
is quoted (with one ’ on its left) this is used to say ”don’t evaluate this form”.
Inside the unevaluated code we see another type-specifier, integer, and the macro
satisfies which is passed the symbol evenp. The function evenp checks if a
number is even. The function typep takes a value and a quoted type-specifier,
it must be quoted because typep is a function not a macro and the value of
even is unbound (there is nothing bound to the value cell even though it is a
type-specifier).

4.1.2 Variables

Variables don’t have types, values have types. As we mentioned before, variables
are just containers for values, they don’t hold any meta-information about what
is or can be held. In the below example we use the macro defvar to define a
variable and assign it to a symbol:

(defvar foo 5)

A variable is created containing 5 then it is bound to the value cell of the
symbol foo. Because there are multiple cells that a symbol can bind we can
perform the following variable and function definitions:

(defvar foo 5)
(defun foo (foo)

(* foo foo))

(foo foo) ; returns 25
(foo 4) ; returns 16

The macro defun will bind the function body along with a local scoping of
parameters to the function cell of foo. At this point we have the value cell and
function cell of foo bound, and when the function of foo is called a new local
binding of foo occurs (as function foo takes one argument ’foo’).
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4.2 System Interpreted Numbers
System Interpreted Numbers (Sin) is a language concept where numeric types
(such as int, float, double, etc) don’t exist, instead strings are given numeric
meaning by being associated to a user-defined numeral system type. To do this
there is a core mechanism for defining numeral systems which generates new
types. The new type is accompanied by a family of functions, among these is
the evaluation function that converts a string to a decimal value. With such a
framework we can define numeral systems and then bestow value onto strings
statically (or dynamically with the ’active system’ mechanism discussed later).

The full language design for Sin is an ongoing project by the author. At
the time this thesis began it was entirely conceptual with an incomplete plan
to be a compiled language written in C++. The work in this thesis required
implementing a subset of the planned Sin functionality in the form of a common
lisp library. All implementations of concepts were done during the course of this
project. This is what we discuss moving forward and what was used in later
testing. Code developed for this project can be found at [16].

4.2.1 defnumsys

Figure 4: When defnumsys is called it generates a symbol, five functions, and
a type. The symbol has information added to its property-list. The naming is
based on the name given as an argument to defnumsys, here the name ’foo’ is
used so function names like ’foo-alphabet’ and ’foop’ are generated.

To facilitate treating string encoding like numeral systems we have written
a macro that generates an evaluation function and a type-specifier based on
three main code inputs. These are structure, digits, and term. The macro
allows for user defined variables to be given too (such that they can be used
in the main code inputs) and also allows for a supertype to be given where all
inputs can be derived. The code bodies given to defnumsys have contextually
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predefined variables +s+ (the string encoding), +d+ (the current digit), and +n+
(the length of +s+).

The syntax for the defnumsys macro is shown below. Note that the argu-
ments inside [ and ] are key pairs so ’body’ is the code expected to be paired with
key ’:structure’ and so on. They are also all optional, only name and supertype
are required.
Documentation 1 (defnumsys)

defnumsys name supertypes [(structure body) (digits body) (term
body) ...]
name The name of the numeral system.
supertypes An empty list or list of numeral systems.
structure Code required to evaluate terms.
digits Code that returns an associated list of char/value.
term Code that each digit is expanded to before evaluation.
... Any user keywords can be defined for the above code bodies.

The pseudocode below shows the step by step actions of defnumsys:
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Algorithm 2: An overview of the defnumsys macro
defmacro defnumsys (name supertype [[keyword value]...]):

if supertype then
if structure empty then set to supertype structure;
if digits empty then set to supertype digits;
if term empty then set to supertype term;

if keywords undefined {structure, digits, term} then
return error

Edit term to access digits in place of the symbol +d+;
Edit structure by replacing the symbol term with the term code;
Add structure code to name’s property cell;
Add digits code to name’s property cell;
Add term code to name’s property cell;
Add symbol name as type in property cell;
evaluate defvar (name name):

Bind value cell to the symbol name;
evaluate defun (name value):

Bind function cell to call the code in structure on value;
evaluate defun (namep value):

foreach letter in value do
Check it is in digitmap;
Check each digit appears a valid amount of times;

return validity of value
return deftype (name):

Type satisfies string and namep

In the next example we are going to define a generalised system that rep-
resents the positional numeral system. Then we will define the binary numeral
system using our general supertype.

1 (defnumsys positional ()
2 :structure (sum-series +s+ term)
3 :digits (radix-alphabet r)
4 :term (* (expt r n) +d+)
5 :r 0)
6

7 (defnumsys binary (positional) :r 2)
In line 1 we give this new system a name, ’positional’, and give an empty

list for the supertype. Next on line 2 we use a function called sum-series as
our structure value. sum-series takes a string, +s+, and mimics a positional
numeral system using term as the definition of what each term in the sum se-
ries means. Line 3 defines the digits which is the alphabet of valid characters.
radix-alphabet is another premade Sin library function that will return a digit
list based on r which is the radix for the system. The format of digit lists is a
list of character and value pairings i.e., (list (#\A 10) (#\2 4)) which would
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be an alphabet where only A and 2 are valid characters and would equal 10 and
4 respectively. Line 4 defines the term and uses the inbuilt variable +d+. As the
sum-series code moves across the string +s+ it takes the current character and
uses the digits list to get the numeric value of it and evaluates the term with
+d+ being the digit value. The value n in the term code is a variable used in
sum-series relating to the position of the character in the string. Finally line
5 is where we have a user defined value, :r 0. This is the radix of our system,
an important value we use in the term and structure code and one that defines
our digit alphabet. An exact definition of sum-series and radix-alphabet is
as follows:

1 (defmacro sum-series (str body)
2 `(let* ((test (position #\. ,str))
3 (terms (if test (remove #\. ,str) ,str))
4 (offset (if test (- (length terms) test) 0))

)
5 (loop for +n+ from (1- (length terms)) downto 0

sum
6 (let ((d (char terms (- (length terms) +n+ 1)))
7 (n (- +n+ offset)))
8 ,body))))
9

10 (defun absolute (value)
11 (if (complexp value)
12 (abs value)
13 (abs (float-r value))))
14

15 ; this is our function for defining the alphabet
16 ; used by some radix in a positional system
17 ; if complex return self else return float-r self
18 (defun radix-alphabet (radix)
19 (let ((active (gen-range 0 (1- (ceiling (absolute

radix))) #'anu))
20 (passive #2<(#\. nil))) ; radix point can only

appear < 2 times
21 (cons passive active)))

A positional numeral system with a radix of zero is not very useful (and has
an empty digit alphabet so no strings are valid). Line 7 is where we make a useful
type, binary. To do this all we need do is add ’positional’ to our supertypes list
and redefine the radix keyvalue. The type validity function that is generated,
binaryp, will check strings it is given and make sure they only have digits 0
and 1 in them.
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4.2.2 Alphabets

The list of character-value pairs that makes up an alphabet list may also con-
tain constraints on the character. For example (radix-alphabet 2) actually
produces (list (#\. nil #\< 2) (#\0 0) (#\1 1)). The extra values mean
there must be less than 2 instances in the string for it to be a valid word in the
language.

Sin has a macro shorthand for defining pairs with extra info: #N*(character
value) here * P tă,ą,=u and N is the constraint value. The radix point example
from above would be #2<(#\. nil).

4.2.3 Active Systems

We can define a static ’sin-value’ as a variable initialised with a string and an
associated numeral system type, and a dynamic ’sin-value’ to be a string value
used during an active numeral system. The latter, active systems, are numeral
system types that have been put onto a global priority stack. When an operation
is done on a string, if it has no type assigned, then the global stack of active
systems is checked and it treats it as if it were the first matched system.

In the below example two systems are activated - binary and decimal. As
binary is the primary active system and results from operations will be returned
in binary but each string will be matched to the first successful active system.
The lisp inputs are shown on lines starting with ’>’ and the result on the next
line:

1 >(activate bin dec)
2 >(sin-truevalue "11") ; activates bin
3 3
4 >(sin-truevalue "12") ; activates dec
5 12
6 >(dec "11") ; directly using dec
7 11

We can see here this introduced an ambiguity with 11 being valid in both
binary and decimal, so it’s not recommended to activate multiple overlapping
systems, instead this works better with unique systems such as (activate dec
rmn) where ’rmn’ here would be the Roman Numeral system. The strength in
active systems is in allowing the user to write generic string-ambiguous functions
then run them with different systems activated. For this we have the loop-active
macro which will run code once through for each of the systems it is given:

1 >(loop-active (bin oct dec)
2 (sin-truevalue "100"))
3 4
4 64
5 100
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4.2.4 Standard Library

Note that sin-truevalue returns the ’true’ decimal value, so this code is simply
printing what 100 means in the three active systems. This is one of many
standard library functions Sin has for making numeral system manipulation
easier. A full list can be found in the appendix, but the key functions are the
generic operators discussed next and the following system related functions:

• sin-type - returns the system of a string if a valid system is found.

• sin-rawstring - returns the string without a system.

• sin-truevalue - evaluates a string if a valid system is found.

• sin-cast - evaluates string using a given system.

• sin-alphabet - returns digit alphabet if a valid system is found.

Here are some examples of the standard library helper functions:
1 >(activate dec bin rmn)
2 >(sin-type "10")
3 DEC
4 >(sin-type "VII")
5 RMN
6 >(sin-cast "10" bin)
7 2
8 >(sin-alphabet "LXX")
9 ((I 1) (V 5) (X 10) (L 50) (C 100) (D 500) (M 1000))

10 >(sin-alphabet bin)
11 ((. NIL < 2) (0 0) (1 1))

The sin-type function can take either a string, a system, or a statically
defined system value and it will return the system. In the case of being passed
a string it will search the global stack for active systems and if the string is
not valid in any active system it returns nil. This unambiguous approach is
used in all the helper functions as seen in line 8 and 10 where the alphabets are
extracted using a string and a system.

4.2.5 Ambiguous Operators

Operators are prefixed with ’sin’ and are generated or defined when the numeral
system is defined.

1 (sin+ [sin-values...])
2 (sin- [sin-values...])
3 (sin* [sin-values...])

The inductive operator function takes a radix value and generates substi-
tution rules as a list of pairs in the for ((shiftvalue addvalue) ...) that
describe arithmetic overflow for that radix.
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For example given the radix value 2 the function outputs ((0 -2) (1 1)),
which we read as saying ”don’t move and subtract 2” then ”move 1 to the
left and add 1”. This decribes 12 + 12 = 102 (or more specifically it describes
22 = 102).

The function obviously presumes a positional numeral system and so arith-
metic rules for systems like Roman Numerals are not covered by this. To have
the most minimal input (only the radix value) we have to presume a positional
system then construct the first few numbers in the system via the Greedy Algo-
rithm. The amount of base cases for a numeral system is the floor of the radix,
the case after that is the inductive step and how the string of digits changes
between the final base case and the inductive case gives us all the string substi-
tution rules.

For binary numeral systems (with a radix 1 ą r ď 2) the algorithm works
as follows:

Data: r
rules := emptylist;
one := GreedyBuild(1, r);
two := GreedyBuild(2, r);
for i Ðmsd(two) to lsd(two) do

addv := two[i] - one[i];
rules += pair(i, addv);

return rules
In the above the msd/lsd get the most and least significant digit index re-

spectively (this is the power of the base in the first and last terms). For example
msd(10.01) returns 1 and lsd(10.01) returns -2.

The above is how the generate-rules function shown earlier works, but it
is also possible to manually set rules such as we do below for the definition of
negabinary:

1 (defnumsys negabinary (binary)
2 :r -2
3 :rules (list
4 '(+ ((0 -2) (-1 1) (-2 1)))))

4.2.6 Arithmetic Rules & (sin+)

There are two types of rules for our systems:

• Standardisation rule: ([mask, mask, ...], (add, add, ...))

• Normalisation rule: {(offset, add), (offset, add), ...}

They are both state-machine instructions used for manipulating a digit
string. For normalisation (arithmetic overflow) whenever a value is higher than
the highest alphabet value in said system then a shift & add method is used.
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For example in a binary system the digit string is checked for any digits of value
2 or higher. When one is found the normalisation rule set is iterated through
taking the (offset, add) pairs and moving along the digit string by the offset
amount and adding the add amount. During standardisation the mask method
is used. The mask method can be seen as a 1D kernel that is checked against the
number at every digit, if the mask matches the number then the corresponding
add kernel is applied.

As an example here are the rules for phinary

• Phinary standardisation ruleset: ([0,1,1], (1,-1,-1))

• Standardisation of 10011: 10[011] Ñ(1,´1,´1) 10100

• Phinary normalisation ruleset: {(-1, 1), (2,1), (0,-2)}

• Normalisation of 2: [2] Ñ(´1,1) 1[2] Ñ(2,1) 1[2].01 Ñ(0,´2) 10.01.

The (sin+) function checks that the operands are all valid in the active
system type, (defnumsys <system name>) generates a function called (<system
name>p) for checking validity. So if the active system is phinary (sin+) first
runs (phinaryp) on all the operands. If successful it then generates the rules by
calling (phinary-rules). After this it takes the raw string value of all the numbers
and converts them, using phinary’s alphabet, to a list of digit values - then it
does unitwise addition with all the operands. Then we enter the recursive cycle
of normalisation (overflow rules) and standardisation. Essentially this part is:

function normalise (value)
oldvalue := value;
for each digit in value do

if digit ą alphabet max then
Apply shift & add rules;

if oldvalue != value then
normalise(value);

if oldvalue == value then
standardise(value);

return value
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function standardise (value)
oldvalue := value;
for each digit in value do

if current digit and neighbouring digits == mask digits then
Apply add rules to each digit locally;

if oldvalue != value then
standardise(value);

if oldvalue == value then
normalise(value);

return value

In the next section we will be showing the Sin library at its best by generating
fractal shapes. This will be an example the ease of writing string ambiguous
code that can then have meaning bestowed on it with numeral systems.
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5 Successor Patterns

Figure 5: Phinary succession as seen in negarootbinary (left). Phinary succes-
sion as seen in Khmelnik’s binary (right).

The relationship between numeral systems and fractals has been studied
extensively [17] [18] [19] as has the relationship of string substitutions [20] [21].

The definition of a fractal is not as concrete as one would hope, but there are
a few properties that are usually expected of them. One of these is self-similarity
in which a portion of the set can be be described as a scaled down version of
the whole set. There is also a variant of self-similarity called self-affinity where
the scaling of x and y differs [22]. Another form is statistical self-similarity such
as the fractal describing of the coastline of Britain [23].

Other properties such as simple or recursive definitions are sometimes ex-
pected. Moving forward we will be using the term ’fractal’ to mean self-similar
tiling.

We introduce a novel model for generating fractals using numeral systems.
These are called Successor patterns and they use two numeral systems to map
an image onto the complex plane. They create a path using an arithmetic
operation, originally it was integer succession succ(x) : x + 1 hence the name
but it is generalised further in [Def. 15, p42].

5.1 Generating Fractals
We talk in terms of the positional numeral system [Def. 1, p10] for the following
definition.
Definition 15. Successor Pattern

Let c P C be a radix and p P C be a radix.
Let t be a digit string valid in the language Lc.
Let s range over Lc.
A successor pattern is defined by Fc,p,t := (Sc,Mp, t), a 3-tuple containing

inductive set Sc Ă Lc, a mapping function Mp : Lc Ñ C, and an increment
value t. We refer to c as the constructive radix and p as the projective radix.

The inductive definition of Sc and mapping of Mp are as follows

0 P Sc
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@s(s P Sc ùñ s+c t P Sc)

Mp(s) :
´8
ÿ

i=index(s)

sip
i

For Mp(s) the function index(s) returns the position of the most significant
digit relative to the radix point. The mapping of Sc by Mp gives us an image
on the complex plane.

To give a working example of how one might use the System Interpreted
Numbers language extension we will look at the successor pattern function, a
function we designed. This is a program that generates a fractal image using
arithmetic laws of one numeral system and the value representation of another.
Whilst mainly for play, it gives us a visual example of the numeral system’s
traversal attributes and how greatly they can differ in a search space.

The successor pattern function works in two stages, interpret to generate
and reinterpret to evaluate. Step one is to, using a specified numeral system,
generate the digit representations of 0 to X. Step two is to reinterpret these
numbers as if they were in a complex numeral system. Leaving us with a+bi
which we can use as [x,y] coordinates for the image.

Generated using bi-
nary succession

0
1
10
11

100
101

and reinterpreted
as dragonbinary
during evaluation

0 + 0i
1 + 0i
-1 + 1i
0 + 1i
0 - 2i
1 - 2i

We can now use these complex values as [x,y] co-ordinates (where x=r and
y=i) and draw an image that visualises digit progression in that numeral system.
The algorithm is described below.

function gen-successor-pattern (X)
digits := ”0”;
output := emptylist;
for 0 Ñ X do

Interpret digits as dragonbinary;
Evaluate digits to decimal;
Add result to output;
Interpret digits as numsys;
Increment digits;

return output

5.2 Results
An extra step was taken in these results that limited the amount of points to
be generated. This limit was done during the loop where we would +1 to the
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current number, after the succession was done we would then check if the digit
string was more than or equal to a limit digit string. This allowed us to collect
all the digit strings that represent a tile of the fractal. A tile being for example
10000 to 11111, the tile dictated by the left most significant digit in the numeral
system representation. Some of the fractals use 10x10 pixel squares to represent
each point generated and some use 1 pixel per point.

Figure 6: Here we have a coloured background fractal made from binary succes-
sion as seen in dragonbinary. On top of that is a black fractal showing phinary
succession (both reinterpreted in dragonbinary). This uses 10x10 pixel squares
per co-ordinate and the succession is +1 each time. Because of phinary’s bidirec-
tional expansion it requires a fractional part meaning most of the black squares
are off-grid.

[Fig. 7, p44] is a comparison of six different fractals. We also have [Fig. 9, p46]
which shows two perpendicular fractal paths based on the odd/even property
of the unit increment (+1 being an even +β0, +10 being an odd +β1, and so
on. There are also examples of non-binary systems generating fractals in both
[Fig. 10, p47] and [Fig. 8, p45].
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Figure 7: All these fractals are reinterpreted in dragonbinary with a bitstring
limit of 1000000000. The black background fractals use standard binary succes-
sion giving full on-grid coverage of 0 to 111111111. The coloured fractals use
succession of different numeral systems and are coloured blue to red based on
their succession count. A : 2, B : ´1+i, C : 1+

?
5

2 , D : ´2, E :
?
2, F : ´1+

?
´7

2 .
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Figure 8: The code and subsequent fractal generation is not limited to only
binary systems, here we have two systems using digits {0,1,2,3} both being rein-
terpreted in Donald Knuth’s famous quater-imaginary system x2i, t0, 1, 2, 3uy.
Left is quarternary x4, t0, 1, 2, 3uy and right is the third metallic numeral system
the radix of which is sometimes called the bronze ratio x 3+

?
13

2 , t0, 1, 2, 3uy.
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Figure 9: This is two fractals incremented in the same system (rootbinary) and
evaluated in the same system (negarootbinary), but the increment for the blue
fractal is +1 and the yellow fractal is +10. This setup is interesting in that
whichever singular unit increment is used the resulting points are only ever on
the axis lines but with differing spacing between the points. The larger then
increment unit, say +1000000, the larger the gaps along the axis line. X-axis
and Y-axis fractals are determined by the odd or even value of the increment
unit position.
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Figure 10: This is a comparison of the integer systems tβ = 2, β = 3, β = 4, β =

5u on the left and the metallic systems tβ = 1+
?
5

2 , β =
?
2 + 1, β = 3+

?
13

2 , β =
4+

?
20

2 u. These families of systems tend closer together the higher up the radix
values go.
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Figure 11: The three images here are made from 10x10 pixel squares for each
co-ordinate. The black background image is the binary succession reinterpreted
in three systems, from left to right: Khmelnik’s binary, negarootbinary, and
dragonbinary. The coloured fractals are phinary succession as seen reinterpreted
in those same systems. The increment is +1 so it can be seen that dragonbinary
has a clean coverage of the Gaussian integers.
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5.3 The Fractal Generating Code
We shall discuss the Common Lisp code that generates the successor pattern
co-ordinates. Here is a basic setup to generate the image coordinates.

1 (load "sin_library.lisp")
2

3 (defnumsys positional ()
4 :structure (sum-series +s+ term)
5 :digits (radix-alphabet r)
6 :term (* (expt r n) +d+)
7 :r 0
8

9 :rules (generate -rules r))
10

11 (defnumsys binary (positional) :r 2)
12 (defnumsys dragon (positional) :r #c(-1 1))
13 (defnumsys rootbinary (positional) :r (sqrt 2))
14 (defnumsys phinary (positional) :r (/ (+ 1 (sqrt 5))

2))
15

16 (defun gen-successor -pattern (amount)
17 (let ((value "0") (output nil))
18 (loop for i from 0 to amount do
19 (progn
20 (setq value (sin+ value "1"))
21 (setq output (append (list (dragon

value))))))
22 output))

The first line loads in all the Sin code, this is where (defnumsys) is defined
and where various other helper functions such as (sum-series), (radix-alphabet),
and (generate-rules) are defined.

Next we define the numeral system called ’positional’. We’re using it as a
template so it has a radix of r = 0. The most important thing for this definition
is passing the ’rules’ key the function (generate-rules r), this is stored as is so r
is not evaluated to be 0 before storing this information. The call to (defnumsys
positional...) generates a few different functions, one of them being (positional-
rules) and when that is called it will evaluate (generate-rules r) using the stored
value of r.

After the definition of the positional system we can then use it to cleanly
define new positional systems by simply changing the value of r. Binary (r = 2),
dragon (r = ´1 + i), root (r =

?
2), and phinary (r = 1+

?
5

2 ) all have the
supertype positional. This now means that when (binary-rules) is called r will
be 2 and when (root-rules) is called r will be

?
2 and so on.

The power of the language can be seen in the last two lines of this loop.
Note that (loop ... do <something>) expects one thing, so (progn ...) is used
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to do more than one thing.

1 (loop for i from 0 to amount do
2 (progn
3 (setq value (sin+ value "1"))
4 (setq output (append (list (dragon

value))))))

The value which starts out as ”0” has a ”1” added to it using the (sin+)
generic operator. What this will do is check to see what the active system is
and call (<system name>-rules) to generate the rules for said system, then it
will perform the steps in subsection 1.3.

After this the list of results ’output’ will have added to it the value inter-
preted as if it were in the dragon system. Whenever a numsys is defined with
defnumsys it generates a function with the same name as the system which
will evaluate back to decimal, for example (binary ”11”) will return 3. Because
dragon has a complex radix this will return a complex value which will be our
co-ordinates.
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6 Genetic Algorithms
Charles Darwin first introduced the Theory of Evolution in 1858 which stated
that variations occur in reproduction and are preserved through generations.
In 1866 Gregor Mendel published the first probabilistic model of how the The-
ory of Evolution might work - this was the first concept of genetics. At the
time Darwin’s Natural Selection didn’t rule out the possibility of Jean-Baptiste
Lamarck’s belief that an organism could pass on characteristics developed dur-
ing its lifetime to its offspring (Lamarckism). By the end of the 19th cen-
tury August Weismann, on the basis of his Germ Plasm Theory, had discarded
Lamarckian views stating there was no way for the somatic cells (that make
up the body) to communicate with the germ cells (used in reproduction). This
is now known as the Wiesmann Barrier. Much later in 1953 James Watson
and Francis Crick published the paper introducing the double-helix structure
of DNA and its ATGC alphabet. The synthesis of these four ideas taken as a
philosophy is called ”Neo-Darwinism” and it is the philosophy behind genetic
algorithms [24].

In biology there are three types of chromosome-structure for a cell: Hap-
loid, Diploid and Multiploid. These are cells with one, two or multiple sets of
chromosomes respectively. Humans, for example, are diploid with 23 pairs of
chromosomes. Chromosomes consist of genes which hold the attributes of the
phenotype, the possible states of the genes are called the alleles, the position of
the gene in the chromosome is called the locus and the complete set of chromo-
somes is called a genotype. The most often used model for genetic algorithms
is a haploid model with one chromosome per genotype [25] [26].

Genetic algorithms are metaheuristics that attempt to find a sufficiently
good solution to either an optimisation or search space problem. The process
begins with encoding an input into two or more parent genes and then breeding
a new population of individuals by using the genetic operators ’crossover’ and
’mutate’. Then each individual is judged with a fitness function and the fittest
are used to populate the next generation. The encoded version of an individual
is called the genotype (often encoded as bitstrings, nut not always) and can be
seen as the plans for a thing, the decoded version is called the phenotype and
is the thing itself. The phenotype is what the fitness function tests, with the
fitness of an individual being specific to the task at hand. Fitness may be how
much a polynomial deviates from a set curve with the smallest deviation being
the fittest, but also the fitness function could take a phenotype of character
abilities then simulate that character in a situation to measure the fitness. [27].

6.1 Genetic Operators
The core features of a genetic algorithm are its population of possible solutions
and its three ’genetic operators’ which are crossover, mutation, and selection.
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6.1.1 Crossover

Sometimes called recombination, this is the dominant feature that separates
Evolutionary Algorithms (EAs) from Genetic Algorithms. The process involves
taking two or more genotypes and combining them to make two or more new
genotypes. Having a very high crossover rate may cause the genetic algorithm to
prematurely converge by making all the chromosomes the same, though usually
the crossover rate is higher than the mutation rate. Below are some types of
crossover:

Single-Point A random amount of a bit string is determined then
swapped: 100|11100 and 111|00001 becomes 111|11100
and 100|00001

Multi-Point Random sections of a bitstring are selected then
swapped and not swapped alternatively

Uniform Single bits are randomly swapped across the bitstrings

6.1.2 Mutation

Mutation can be seen as a conservator of diversity, although the quantity of its
use is debated, for example [28] claim that with certain encodings it is better
have a higher mutation rate. The usual approach is to have a low mutation rate
because otherwise it becomes (in essence) a random search mechanic and will
negatively affect the advantages of crossover. Below are some often used types
of mutation:

Bitflip Inverts a random bit in a string, so 1001110|0| becomes
1001110|1|

Inversion Inverts every bit in a string.

6.1.3 Selection

Selection is the method for picking individuals to mate and generate the new
population. Of selection types, tournament can be used to control the efficiency.
Here one has an increase in efficiency but a decrease in thoroughness. Below
are some types of selection method:

Roulette-wheel Random individuals are chosen and their probability of
being selected is proportional to their fitness relative to
the average

Tournament Select best individual from a subset, repeat with dif-
ferent subsets, then breed a new population from the
winners.

Boltzmann The thermodynamic approach in simulated annealing is
used. In short, the threshold for picking fitness starts
large and most individuals can be picked but the thresh-
old reduces after each picking (roughly analogous to
thermal activity on rapidly cooling metal).
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6.1.4 Arithmetic Evolutionary Algorithms

Evolutionary algorithms, as we saw in the previous section, are layered with
abstraction and so can be hard to augment in ways that will certainly benefit the
problem being optimised. The work in this thesis has laid down groundwork for
easier empirical testing for the combination of genetic algorithms and numeral
systems.

In the author’s previous work a new mutation operator, arithmutation, was
designed that used numeric overflow as a method of changing the bits in a
bit string [1]. Instead of randomly flipping a bit from 0 Ñ 1 or 1 Ñ 0 the
bit string was treated as a number and a random unit value was added to
it. The example below uses ε as a random unit value of the radix such that
ε P t1, 102, 1002, 10002, ...u, it changes randomly for each action.

Arithmutation on an Arbitrary Bitstring

State Action Result
00100010 +2 ε [1]0100010
10100010 +2 ε 101000[2]0

overflow 10100[1]20
overflow 101001[0]0

10100100 +2 ε 1010010[1]
10100101 +2 ε 101001[1]1

The process of arithmutation can be done using any numeral system that
has a defined addition operator and that matches the possible digits in the
digit string being used for the encoding. This is the deep encoding’s alignment
(encoding) and traversal (arithmutation) that models numeral system charac-
teristics in an evolutionary algorithm. The mutation code itself is simply two
actions: 1) generate a random unit (e.g., 001, 010, 100, etc) with as many digits
as the genotype, then 2) add the unit to the genotype using the arithmetic rules
of the encoded numeral system. This is the code found in our implementation:

;; The Arithmutation is arithmetic carry
;; applied after adding a random unit to the number.
;; This uses cl-sin functions to generate a random

number
;; containing ony 1 unit then adding it to the

genotype.

(defun arithmutate (genotype)
(let* ((unit (gen-number "10" (length genotype

) :unit #\1)))
(sin-fixed+ genotype unit)))

Note here that the function (sin-fixed+) is a special version of (sin+) where
the length of the output string is determined by the length of the first input
parameter (here that is the genotype).
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We do not present any proofs on the validity of arithmutation, but we instead
make a more formal claim and then discuss the analysis methods one might use
in this endeavour.

Claim 2. The Doorless Hotel Hypothesis, Part 2
A genetic algorithm can embed the alignment characteristic in the encoding η,
and embed the traversal characteristic in the mutation µ. Encoding η limits
the possible phenotypes by the density of its radix representation. Mutation µ
allows the search space to be traversed from one population to the next using
characteristics of arithmetic. Represented in [Eq. (26), p54].

..
..genotypei ..phenotypei

..genotypei+1

.

η

.µ (26)

6.1.5 Working Implementation

A fully working Evolutionary Algorithm written in Common Lisp that uses
System Interpreted Numbers (Sin) to implement the arithmutation operator
and numeral system encoding in a dynamic way can be found at [29]. The Sin
code is not well optimised at this stage so rigorous empirical testing was out
of the scope of this project. If testing were to take place the rest of the thesis
looks at how we would approach that.

6.2 Analysis of Genetic Algorithms
Genetic Algorithms (GAs), which are an idealised generalisation of evolution
and natural selection, are hard to analyse due to the fact that their time com-
plexity is related to characteristics of the problem that is being optimised for.
The first breakthrough in trying to formalise why GAs seemed to perform well
was found with Holland’s Schema Theory [30]. It made a probabilistic state-
ment about the propagation of schemata, pattern-matched genotype templates,
from one generation’s population to the next. It states that in genetic algo-
rithm life cycles, short low-order schemata with above average fitness increase
exponentially in successive generations. The formulation of Schema Theory was
inline with the most fundamental statement in the field of Genetic Algorithms
which is the Building Block Hypothesis.

Claim 3. The Building Block Hypothesis
A genetic algorithm seeks optimal performance through the juxtaposition of short,
low-order, high-performance schemata, called building blocks.

There are problems with Schema Theory such as it presupposes an infinite
population and can not track propagation throughout many cycles [30] [31], and
while its statement on selection operator is exact, its statement on mutation
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and crossover is only probability based [31]. Various more rigorous extensions
to Schema Theory and alternative approaches to formalising GAs have been
employed since then such as

Markov Chain Analysis [32] [33]: A Markov chain is a stochastic process
modelled in discrete-time by some a transition matrix Q, where Qi,j is the
probability of moving from state i to state j. It holds the Markov Property
which is that future states only depend on the current state and not previous
states. For genetic algorithms this means modelling the possible states as the
possible populations.

Walsh Functions [34] [35]: Schema Theory fails to take into account the
possible stochastic deviation of a GA’s population fitness. The direction of
evolution may sway away from the global optimum. So a new formula for the
calculation of schema fitness variance is derived by modelling schemata fitness
with Walsh Polynomials.

Exact Schema Theory [31]: Taking into account the previous two ap-
proaches, this approach enhances Holland’s model by making exact statements
on mutation and crossover.

Theoretical Run-Time Analysis [36]: The above approaches are all in-
clined to make statements on infinite populations or of only one cycle of the
population. With run-time analysis a more pragmatic statement can be made
about real-world GAs/problems [37], albeit only on simple models. An impor-
tant paper in GA Theory gave a proof that for a real (implementation variation
allowed) GA there is an optimisation problem where crossover is essential to
have polynomial run-time [38]. The mutation-only method gives exponential
run-time. A phase-based analysis was used giving five phases that each had a
goal state for the health of the population (the last phase goal being an absolute
solution must be found). The run-time for each phase is summed up and trivial
parts are removed to give the final proof statement.

6.3 Problem Space: Rosenbrock
We are looking at function optimisation and so for us a problem space is the set
of any mathematically valid inputs to some function f . A search space is the
set of all computationally feasible inputs for f and is a subset of the problem
space.

The author’s previous empirical results were seen on variants of the Rosen-
brock function [1], which is defined as follows

f(x, y) = (a´ x)2 + b(y ´ x2)2. (27)

The Rosenbrock function has a deep valley of good solutions but only one
global optimum which is in the form f(a, a2). Usually a = 1 and b = 100, for
us however we change the value of a to augment the problem space.
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Figure 12: Plot of Rosenbrock function (R1) where the x and y axis range
from ´2.56 to 2.56. Colours are calculated from f(x, y) and are capped and
normalised between f(x, y) = 0 and f(x, y) = 100. Solution f(1, 1) = 0 circled.

f f(x, y) = 0 Reference name
(1 ´ x)2 + 100(y ´ x2)2 f(1, 1) R1
(
?
5 ´ x)2 + 100(y ´ x2)2 f(

?
5, 5) R5

(φ´ x)2 + 100(y ´ x2)2 f(φ,φ+ 1) Rp

The problem space can be characterised by its fitness landscape, in [Fig.
12, p56] we map each point on the image to a colour based on f(x, y). When
f(x, y) ě 100 it is red, moving through a jet pseudocolour map towards blue at
the most fit f(x, y) = 0. The global optimum is marked with a ring and is at
position (x = 1, y = 1).

The variants (R5) and (Rp) differ by a rather small visual amount, but keep
the overall shape. They still retain the deep valley of local optima.

We put forward that the Rosenbrock function and it’s power series related
solution of f(a, a2) = 0 is a well suited test subject for deep encoding of genetic
algorithms. Run-time analysis would be an interesting approach to take to this.
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7 Conclusion
During the work of this thesis we have been able to classify a set of useful nu-
meral systems that are known to hold specific properties and act in specific ways
useful to search space representation. These were a set of positional numeral
systems using an integer or Pisot radix. This section honed in on the structure
of the positional numeral system and how flexible it could be.

We wrote a proof that the arithmetic operations of addition and subtraction
for any metallic numeral system would complete for any two valid digit strings.
Including digit strings that are numerically valid but not inside the normalised
form for the system, for example phinary is a system with an alphabet of t0, 1u

but it was proven by us that the addition operation between arbitrary numerical
digit strings such as 74385.82327457φ + 1234.56789φ will eventually terminate.

A second proof was made which states that no integer value can be repre-
sented by an irrational radix without the use of radix expansion. The proof was
the result of a coding question: Can a radix point be omitted from any encoding
by using a unique radix? of which the answer is,if the integers are required, no.

We were able to generate arithmetic laws for a subset of these systems with
one universal algorithm. We then use this information to develop the main
output of the thesis, System Interpreted Numbers (Sin), A Common Lisp li-
brary capable of defining numeral systems then dynamically setting the active
system allowing the user to use basic strings that will then be interpreted as
numbers. Sin has inbuilt functions for the specific class of numeral systems that
allow it to do alphabet generation and arithmetic rule generation. The latter
is for standardisation and addition overflow. Allowing for normalisation rules
to be generated from the radix alone or added in manually. An evolutionary
algorithm was written that uses a string encoding, this was then given a special
decoding and mutation method which use the dynamic active system scope to
evaluate the string encoding as representation of a numeral system and the mu-
tation function uses the generates rules of arithmetic to randomly add a unit to
the encoded number. The evolutionary algorithm is tremendously flexible and
is written with binary bitstrings so by simply activating different binary systems
before running we can entirely change or decode/mutate methodology. Along
the way we also came up with a novel method for generating fractal shapes by
using Sin’s ability to interpret strings in any valid predefined numeral system.

The scope of this thesis didn’t include the empirical testing of evolutionary
algorithms, only the development of the algorithms and the numeral system
framework on which they lay. Future work would consist of doing extensive
empirical testing of arithmetic evolutionary algorithms and analysing the results
through the scope of run-time analysis.

Currently the Sin language is not well optimised and for large test groups
both Sin and the accompanying evolutionary algorithm will need further devel-
opment to be as efficient as possible.
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8 Appendix

Core Functions

decnumsys system Statically declares a variable to be of numeral sys-
tem system.

defnumsys name super-
type [(structure body) (digits
body) (term body)...]

Creates a new numeral system type name name.

activate systems Clears current active systems and sets it to systems.
seta name value [numsys] Sets the string value of a statically declared numeral

system variable.
loop-active-systems sys-
tems body

For each system in systems the system is activated
and code body is executed.

loop-active-systems-
multi systems body

For each list of systems in systems the list of systems
is activated and code body is executed.

sin+ operands... If all operands are of matching type and there exists
addition rules then addition takes place.

sin-fixed+ operands... If all operands are of matching type and there ex-
ists addition rules then addition takes place. If the
output lenght does not match the length of the first
operand, it is truncated or padded with zeros where
needed.
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Helper Functions

sin-type numsys Returns the numeral system type.
sin-rawstring numsys Returns the string value or nil.
sin-truevalue numsys Evaluates the string using the static or active nu-

meral system and returns the decimal value.
sin-cast value numsys Evaluates value as if it were of type numsys and

returns the decimal value.
sin-numeral numeral
numsys

Returns the numeral value from the alphabet of
numsys.

sin-alphabet numsys
[(digits-only value)]

returns the alphabet of numsys, value pairs can be
ignored.

sin-value-list value Converts a string into a decimal list based on an
alphabet.

sin-rules numsys (pick
value)

Returns the rule sets for numsys. Specific rules may
be chosen.

sin-description numsys Prints a description of numsys.
anu number Returns an (A)lpha (N)umeric (U)ppercase charac-

ter where (anu 0) ==> #\0 and (anu 10) ==>
#\A.

anl number Returns an (A)lpha (N)umeric (L)owercase charac-
ter where (anu 0) ==> #\0 and (anu 10) ==>
#\a.

gen-number numsys
length (unit value) (unit
value)

Generates a random number in system numsys.

gen-range start finish
digit-func

Generates a range.

sum-series str body Loops across string str and performs code body
summing the value of each loop.

radix-alphabet radix Returns an alphabet valid for radix.
generate-rules radix Return set of rules valid for radix.
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