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Abstract  

 

Psychotic experiences and negative symptoms (PENS) reported in non-clinical 

populations can be viewed as mild manifestations of clinical psychotic symptoms. PENS are 

reported across the lifespan. They are predictive of poor outcomes, particularly when they 

persist. Much of the literature has focussed on aggregated measures of psychotic experiences 

(PEs), and little is known about negative symptoms (NS). Given the known 

multidimensionality of PENS, this thesis investigates paranoia, hallucinations, and NS, as 

separate dimensions reported in the community. The focus is on the period from late 

adolescence to emerging adulthood, a stage of life when many mental health problems occur.  

Chapter 2 presents analyses that test for longitudinal measurement invariance of the 

PENS dimensions across the study period. Chapter 3 assesses the optimal form of growth for 

the PENS dimensions and estimates the sample-wide latent trajectories. Chapter 4 

investigates latent heterogeneity in the development of the PENS dimensions. In Chapter 5, 

the emergent trajectory classes are investigated in terms of the extent to which they associate 

with background factors reported in childhood/adulthood and with a range of polygenic 

scores. In Chapter 6, the latent structure of NS is investigated. Associations between 

polygenic scores and the subdomains of NS are reported.  

 This Thesis provides evidence that PENS dimensions show distinct characteristics, 

both in terms of development from adolescence to emerging adulthood, and in terms of the 

correlates that are associated with their development. Evidence is provided to suggest a 

multidimensional latent structure of NS, mirroring findings from clinical samples. The 

current findings highlight the value of taking a dimension-specific approach and using latent 

variable modelling to study PENS over time. Limitations and future research directions are 
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discussed. The findings of this Thesis have implications for future research that aims to test 

theories relating to the development and maintenance of specific PENS dimensions.  
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Chapter 1 – Introduction 

 

This Chapter will provide an overview of psychotic experiences (PEs) and negative 

symptoms (NS). The manifestation of psychotic experiences and negative symptoms (PENS) 

in the community will be described in the context of clinical psychotic symptoms and clinical 

negative symptoms. PEs will be discussed in terms of a spectrum of severity across a 

continuum (van Os et al., 2000). Evidence suggesting etiological continuity, and evidence 

suggesting that PEs may be a marker for later clinical outcomes will be outlined. It will be 

discussed that there are fewer findings regarding NS in the community, but evidence to 

suggest that NS represent a marker for later clinical outcomes will be set out, and evidence in 

support of a continuum model of NS will also be outlined (Kaiser et al., 2011). The 

multidimensionality of PENS will then be introduced as a theme, and the importance of 

taking a multidimensional approach to studying PENS will be discussed. An overview of 

PENS reported across the lifespan will be provided both in terms of cross-sectional 

measurement and longitudinal development. It will be discussed that persistence of PENS 

appears to be particularly indicative of later poor clinical and functional outcomes, which will 

be discussed in the context of a proneness-persistence-impairment model of psychosis (van 

Os et al., 2009). Evidence for genetic influences on the development of PENS over time will 

be described, and methodological considerations of delineating the longitudinal development 

of PENS will be discussed. The findings and limitations of prior research on PENS will be 

summarised, providing the platform for the aims of this Thesis.  
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1.1 – Psychotic symptoms and psychotic experiences  

This Section will provide an outline of clinical psychotic symptoms and will describe 

the presentation of psychotic phenomena in non-clinical populations. The term ‘psychotic 

experiences’ will be introduced to refer to non-clinical psychotic phenomena. A continuum 

model of psychosis will be outlined and evidence suggesting etiological continuity will be 

discussed. Drawing on previous findings, PEs will be discussed both in terms of a precursor 

of psychiatric outcomes and as part of normal behavioural variation. 

 

1.1.1 – Clinical psychotic symptoms  

Thought and perceptual disturbances that manifest as delusions, hallucinations, and 

disorganised thinking (speech), constitute the key features pertaining to a diagnosis of 

schizophrenia (American Psychiatric Association, 2013). According to the American 

Psychiatric Association’s most recent diagnostic manual (DSM-5), a diagnosis of 

schizophrenia is made where at least one of these ‘key features’ is accompanied by the 

presence of at least one other (including grossly disorganised or abnormal motor behaviour, 

and NS) – and where these symptoms persist and cause substantial impairment. Variations in 

the type or duration of these symptoms may give rise to the diagnosis of other types of 

psychotic disorder. The symptoms of delusions and hallucinations have been classically 

referred to as ‘positive’ psychotic symptoms – so called because they are thought to reflect an 

increase in or an excess of functions (Arndt et al., 1991).  

 

1.1.2 – Psychotic experiences in the community  

The symptoms of psychosis in the absence of clinical help-seeking or psychiatric 

diagnosis are reported in community samples (Healy et al., 2019; McGrath et al., 2015). 

Herein, the term ‘psychotic experiences’ (PEs) will be used to refer to psychotic symptoms 
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reported in non-clinical population studies, and ‘psychotic symptoms’ will be used to refer to 

symptoms reported in clinical samples. Discussed in terms of a continuum of psychosis in the 

following Section (1.1.3) – briefly here, there are two broad conceptualisations regarding the 

expression of psychotic phenomena (Johns & van Os, 2001). One is that PEs and psychotic 

symptoms differ in degree rather than in kind across a spectrum of severity. The other is that 

psychotic phenomena outside of psychosis reflect attenuated, trait-like expressions of 

psychotic symptoms (called schizotypal personality traits, or ‘schizotypy’). This Thesis is 

generally positioned within the former (‘degree rather than kind’) framework, and it will be 

explicitly stated where previous findings are derived from measures of schizotypy.  

The study of PEs has most often focussed on two out of the three key features of 

schizophrenia (as defined in Section 1.1.1) – delusions and hallucinations. Delusions refer to 

abnormal thought disturbances. These thought disturbances are measured, for example, using 

items such as, “Do you ever feel as if people seem to drop hints about you or say things with 

a double meaning?” (Peters et al., 1999). Paranoid or persecutory delusions represent a 

specific type of delusion, measured, for example, using items such as, “Do you ever feel as if 

you are being persecuted in some way?” (Peters et al., 1999). Findings derived from 

measures of delusions, broadly, and of paranoia/persecution, specifically, will be discussed 

interchangeably in this Thesis.  

 Hallucinations refer to abnormal perceptual disturbances. These perceptual 

disturbances can present via any of the sensory modalities (sight, hearing, smell, taste, touch, 

and sensed presence; Mitchell et al., 2017). Items such as, “Do you ever hear sounds or 

music that people near you don't hear?”, and, “Do you ever experience smells or odours that 

people next to you seem unaware of?”, can be used to measure auditory hallucinations, and 

olfactory hallucinations, respectively (Bell et al., 2006; Ronald et al., 2014).  
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Studies of PEs have assessed these experiences by interview (by either lay-person or 

clinician), or by self-report questionnaire. Assessment by interview has been found to yield 

lower prevalence rates than assessment by questionnaire (Healy et al., 2019; Linscott & van 

Os, 2013). The importance of studying PEs, whether self- or interviewer-reported, is 

supported by two lines of evidence. First, findings show that self-report measures of PEs 

predict interviewer-assessed PEs, albeit moderately and with greater agreement for certain 

items than others (Gundersen et al., 2019; Kelleher et al., 2011; Laurens et al., 2007). Second, 

like interviewer-assessed PEs (Carey et al., 2021; Poulton et al., 2000), self-reported PEs 

have been found to predict both concurrent (Hielscher et al., 2018) as well as later psychiatric 

outcomes (Healy et al., 2019).  

 

1.1.3 – A continuum of psychosis 

Whether differing in degree rather than in kind to clinical psychotic symptoms (PEs), 

or differing in degree and in kind (schizotypy) (as mentioned briefly in Section 1.1.2), the 

presence of psychotic phenomena outside of clinical populations may be considered as broad 

support for a hypothesised continuum of psychosis (Johns & van Os, 2001; van Os et al., 

2000). As identified by Johns and van Os (2001), many lines of evidence converge to provide 

evidence in support of the continuum hypothesis, several of which are outlined in this Section 

because they are integral to the rationale underlying this Thesis.  

The first relates to the estimated prevalence rates of PEs and of psychosis. One study 

that analysed data from the World Health Organization World Mental Health Surveys from 

more than 30,000 adults across 18 countries estimated the lifetime prevalence rate of non-

clinical psychotic symptoms at 5.8% (McGrath et al., 2015). This estimate was broadly in 

line with median estimates of 5.3%-7.2% obtained through meta-analysis (Linscott & van Os, 

2013; van Os et al., 2009). These findings suggest that PEs are more prevalent than 
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schizophrenia (< 1%) and psychotic disorders broadly (~ 3%-3.5%) (Perälä et al., 2007; Saha 

et al., 2005). Under a continuum model of psychosis, this can be considered as evidence to 

suggest that psychotic phenomena in and of themselves constitute only one element 

pertaining to the diagnosis of a psychotic disorder. That is, the manifest ‘disorder’ is due to a 

multitude of additional factors, both at the symptom-level (for example, frequency, intensity, 

other comorbid symptoms), and at a personal level, including impairment, coping, and social 

support (Johns & van Os, 2001; van Os et al., 2000).  

This idea can be expanded further such that if extreme scores on a measure of 

psychotic phenomena do not necessarily indicate the need for clinical support – then 

quantitative variation from low to high scores solely within the distribution of PEs should be 

detectable. Such quantitative variation was found in a large-scale community sample, for 

example, in which the range of total paranoia scores was 0-72 (out of a maximum of 75), and 

the range of hallucinations scores was 0-45 (out of a maximum of 45) (Ronald et al., 2014). 

Further in support of a continuum model and relevant to the current Thesis, are that i) 

the psychometric structure of psychotic phenomena appears to be similar in clinical and non-

clinical populations (discussed in Section 1.3.1), ii) the environmental and genetic factors that 

are associated with clinical psychosis appear to be associated with PEs (discussed in Section 

1.1.4), and iii) elevated levels of PEs appear to be associated with psychiatric outcomes 

(discussed in Section 1.1.5). 

In sum, under the continuum hypothesis – PEs may be understood as representing an 

expression of liability to psychosis: the development of which may be contingent on the 

presence of genetic and environmental risk factors (van Os et al., 2009). This idea will be 

discussed further in Section 1.5.3 in the context of a ‘proneness-persistence-impairment’ 

model of psychosis.  
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1.1.4 – Environmental and genetic continuity 

There are a range of findings that suggest that risk factors that are associated with 

psychotic disorders are also associated with PEs. Amongst the most documented factors 

found to confer risk for clinical psychotic outcomes include cannabis use (Hasan et al., 2020), 

childhood trauma (Bendall et al., 2008; Read et al., 2005), urban living environment 

(Abrahamyan Empson et al., 2020; Krabbendam & van Os, 2005), and migrant status 

(Dealberto, 2010). In the community, associations have been found for PEs with these factors 

(e.g., cannabis use (Jones et al., 2018; Shakoor, Zavos, et al., 2015), childhood trauma 

(Arseneault et al., 2011; Croft et al., 2019; Morgan et al., 2014), urban living (Polanczyk et 

al., 2010; van Os et al., 2001), and migrant status (Scott et al., 2006)). Notably, it has been 

shown that many of these ‘environmental’ risk factors, as well as their associations with 

PEs/psychotic disorders, are at least in part influenced by genetic factors (Maxwell et al., 

2021; Shakoor, McGuire, et al., 2015a). This issue is considered further in Chapter 7. 

 It can also be tested whether genetic factors that influence the symptoms of psychosis, 

as well as the presence of psychotic disorder, are associated with non-clinical psychotic 

phenomena: Some important findings that suggest genetic continuity are for schizotypy (e.g., 

Debbané et al., 2015; A. Fanous et al., 2001; Mata et al., 2003). For example, one family 

study found that positive psychotic symptoms in probands with a diagnosis of schizophrenia 

predicted positive schizotypy, as well as social dysfunction and borderline personality 

disorder symptoms, in non-psychotic relatives (A. Fanous et al., 2001). Whilst these results 

are suggestive of genetic continuity across a spectrum of severity, family studies do not 

disentangle genetic and shared environment. Adoption studies have provided further evidence 

to suggest that familial associations are due to genetic and not (just) shared environmental 

influences (Kety et al., 1971, 1994). For example, in one adoption study – non-clinical/non-

overt ‘latent’ schizophrenia was significantly more common in the biological relatives of 
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adopted-away individuals with a diagnosis of schizophrenia than it was in the biological 

relatives of adopted-away controls; and it was further absent in all adopted (non-biological) 

relatives (Kety et al., 1994). 

Other studies that have leveraged individual-level genetic data have provided further, 

specific evidence for genetic continuity between PEs and psychotic disorders. The largest of 

these studies (N = 127,966) reported genetic overlap between schizophrenia (as well as other 

disorders) and PEs reported in adulthood (Legge et al., 2019). Genetic overlap, or continuity, 

can be inferred both by genetic correlation statistics, and by the regression coefficients of the 

associations between PEs and polygenic liability to schizophrenia (expressed as a genome-

wide polygenic score (GPS); described in Supplementary Information 5.2). Findings have 

been mixed from studies in adolescence (Jones et al., 2016; Pain et al., 2018), but the largest 

of these studies also reported genetic overlap between schizophrenia GPS and PEs 

dimensions (Pain et al., 2018). Effect size estimates in these studies have been small (e.g., < 

1% of the variance in PEs was explained by schizophrenia GPS in Pain et al., 2018). Small 

effect sizes such as this are expected in the context of findings that show that schizophrenia 

GPS predicts only up to ~ 18% of the variance in liability to schizophrenia in case-control 

samples of schizophrenia (Ripke et al., 2014), and ~ 9% of the variance in liability to a first 

episode of psychosis (Vassos et al., 2017). 

Further to the previously discussed evidence for etiological continuity between 

clinical and non-clinical psychotic phenomena, findings from a large-scale twin study (N = 

5,059 twin pairs) further suggest continuity of genetic and environmental influences across 

the distribution of PEs reported in the community (Zavos et al., 2014).  
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1.1.5 – Psychotic experiences as a marker for later poor outcomes 

Importantly, a multitude of findings have shown that PEs are predictive of psychotic 

outcomes – as expected under a continuum model of psychosis. For example, one 

longitudinal study within the Dunedin Multidisciplinary Health and Development Study 

found that individuals with ‘strong’ PEs at age 11 (assessed by a psychiatrist) predicted a 

research-diagnosis of schizophreniform disorder at age 26 (OR 16.4, 95% CI 3.9-67.8) 

compared to individuals without PEs at age 11 (Poulton et al., 2000). Linear associations 

were non-significant between PEs and later diagnoses of mania and depression, and 

significant though smaller for anxiety – leading the authors to suggest specificity between 

PEs and psychotic outcomes. These and other results (e.g., Healy et al., 2019) that point to 

‘homotypic continuity’ between PEs and psychosis offer clear support for a continuum model 

of psychosis.  

PEs have also been found to predict non-psychotic clinical outcomes. For example, 

data collected at age 38 in the same sample as Poulton et al. (2000) showed that PEs at age 11 

were associated with post-traumatic stress disorder and suicide attempts, in addition to 

schizophrenia (Fisher et al., 2013). Recent review findings support the notion that PEs appear 

to be an indicator of vulnerability to psychiatric outcomes broadly (Healy et al., 2019) – 

perhaps most accurately representing, “epiphenomenic flags of a broader vulnerability to a 

spectrum of mental disorders” (Raballo & Poletti, 2020, p.612). This is also supported by a 

meta-analytic estimate of the association between PEs and a family history of mental illness 

broadly (OR 3.06, 95% CI 1.58, 5.94; Linscott & van Os, 2013), as well as findings from the 

World Health Organization World Mental Health Surveys (McGrath et al., 2016) in which 

PEs were found to predict the onset of a range of non-psychotic psychiatric disorders (OR 

1.3, 95% CI 1.2-1.5, to OR 2.0, 95% CI 1.5-2.6). An augmentation of the continuum model 
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of psychosis posits that PEs not only represent an ‘extended’ (psychosis-specific) phenotype, 

but also a ‘transdiagnostic’ phenotype (van Os & Reininghaus, 2016). 

Importantly, PEs are often not associated with any psychiatric outcome, or even with 

any concurrent psychopathology or distress (e.g., Ronald et al., 2014; Yung et al., 2009): 

thus, some PEs may be considered part of typical behavioural variation (Kelleher & Cannon, 

2011; Linscott & van Os, 2013; van Os et al., 2000, 2009). For example, a notable finding 

from the Poulton et al. (2000) study was that PEs at age 11 were not associated with later 

psychiatric diagnoses for approximately three quarters of individuals. Ascertaining the 

conditions that influence and indicate that PEs may be a marker for poor outcomes is an 

important goal: as will be discussed in Section 1.5.2 – persistence of PEs may be one such 

indication.  

 

1.2 – Negative symptoms  

This Section will provide an overview of NS. It will describe the presentation of NS 

in psychotic disorders and in non-clinical populations. A continuum model of NS will be 

discussed and evidence suggesting etiological continuity will be outlined. It will be discussed 

that whilst evidence is limited, NS in young people, like PEs, appear to represent a marker for 

later poor outcomes.   

 

1.2.1 – Negative symptoms in psychosis 

Up to this point in the Thesis, the focus has been on positive psychotic symptoms and 

experiences. However, as was seen in Section 1.1.1, negative symptoms are also a core 

component of a diagnosis of schizophrenia. The term ‘negative symptoms’ is used to describe 

a set of symptoms, so called because they are understood, figuratively, as reflecting a 
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diminution or lack of what are considered typical behaviours and emotions (Correll & 

Schooler, 2020). 

NS reflect deficits in two overarching domains: expression, and motivation and 

pleasure (Kirkpatrick et al., 2006). Expressive deficits include flat or blunted affect, and 

alogia (poverty of speech). Motivational and pleasure deficits include avolition (lack of 

motivation), anhedonia (reduced derivation of pleasure), and asociality. In addition to being 

part of the diagnostic criteria for schizophrenia, NS are also symptomatic features of other 

specific psychotic disorders (e.g., schizophreniform disorder), other psychiatric disorders 

(such as major depressive disorder and bipolar disorder), and neurological disorders (such as 

Parkinson’s disease and Huntington’s disease), though they are not typically referred to as 

‘negative symptoms’ outside of the schizophrenia spectrum of disorders (Strauss & Cohen, 

2017). 

Despite the transdiagnostic phenomenology of NS, they have classically and long 

been understood in terms of representing a core feature of schizophrenia (Bleuler, 1950; 

Kraeplin, in Kendler, 2020). As per the DSM-5 however, they are neither necessary nor 

sufficient for a diagnosis of schizophrenia. Nonetheless, a review estimated that between 

50%-90% of individuals meeting criteria for a first episode of psychosis present in clinics 

with NS, and that 20%-40% of individuals diagnosed with schizophrenia have persisting NS 

(Mäkinen et al., 2008). Furthermore, NS are associated with poor prognostic features, and 

clinical and functional impairment (Ho et al., 1998; Patel et al., 2015; Rabinowitz et al., 

2012, 2013). For example, one large-scale clinical study (N = 7,678) found that NS in 

schizophrenia predicted hospital admission, longer duration of hospitalisation, and 

readmission following discharge (Patel et al., 2015).  

Whilst a review reported that the findings from several studies were suggestive of 

efficacy for the treatment of NS, the authors discussed these findings in the context of a range 
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of methodological issues that limit the certitude of the findings (Aleman et al., 2017). The 

review concluded that there is currently no consensus on how to effectively treat idiopathic 

NS, and it is widely acknowledged that research into clinical NS remains a priority (Correll 

& Schooler, 2020).  

 

1.2.2 – Negative symptoms in the community 

Much less has been documented and theorised about NS in the community than about 

PEs. Nonetheless, studies that have assessed NS in non-clinical populations have found that, 

like PEs, NS are also reported in non-clinical populations (e.g., Dominguez et al., 2010; 

Ronald et al., 2014; Stefanis et al., 2002). There are no reviews or meta-analyses assessing 

the prevalence of NS in the community to date, and prevalence rates vary substantially across 

studies. For example, a prevalence rate of 11% was estimated in a sample of 14-24-year-olds, 

based on the presence of at least one out of two interviewer-reported NS/disorganized items 

(Dominguez et al., 2010). In another study of 18-64-year-olds, a prevalence rate of 1% was 

estimated, based on the presence of at least one out of three interviewer-reported NS items. 

The measurement of non-clinical NS is based on clinical measures of NS. These 

measures typically include items tapping the two domains of expression, and motivation and 

pleasure, and include items reflecting the five ‘subdomains’ of flat affect, alogia, avolition, 

anhedonia, and asociality (Section 1.2.1) – though a total score of NS has generally been used 

outside of clinical research. NS are understood to be observable through behaviour and have 

therefore typically been assessed through observer-report. There is also evidence to suggest 

that individuals are able to accurately report on their own symptoms in non-clinical 

populations (Engel & Lincoln, 2017), with mixed evidence for this in clinical populations 

(Liraud et al., 2004; Selten et al., 2000). 
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The current debate regarding the ‘structure’ of clinical NS will be outlined in Section 

1.3.3 – though the five generally accepted, specific facets within the NS construct 

(Kirkpatrick et al., 2006) are described here: Within the expressive deficit domain (Section 

1.2.1), flat affect refers to a blunting of emotion, either expressed verbally or by body 

language, including facial expressions and gestures. Flat affect is measured using items such 

as, “(My child) often fails to smile or laugh at things others would find funny” (Ronald et al., 

2014). Alogia refers to limited speech production, often called ‘poverty’ of speech. Alogia is 

measured using items such as, “Do you ever feel that you are not much of a talker when you 

are conversing with other people?” (Stefanis et al., 2002).  

Within the motivation-pleasure deficit domain (Section 1.2.1), avolition refers to a 

lack of motivation to engage with goal-oriented activities, measured, for example, using 

items such as, “Do you ever feel that you are lacking in motivation to do things?” (Stefanis 

et al., 2002). Anhedonia refers to a lack of pleasure derivation. There is interest in whether 

anhedonia in the context of NS (rather than in depression, for example, Section 1.2.1) 

specifically relates to the anticipation of future events (anticipatory anhedonia), instead of 

current events (consummatory anhedonia), though a recent meta-analysis found no evidence 

to support this view (Visser et al., 2020). Some scales specifically measure both anticipatory 

and consummatory anhedonia (e.g., Gard et al., 2006), and other scales measure anhedonia 

more broadly, for example, “(My child) has very few interests or hobbies” (Ronald et al., 

2014). Asociality refers to a lack of motivation to engage in social activity. Asociality is 

measured using items such as, “Do you ever feel that you have no interest to be with other 

people?” (Stefanis et al., 2002).  

1.2.3 – A continuum of negative symptoms 

A dimensional approach to investigating NS has been advanced, in which NS exist 

across both a spectrum of psychotic and mood disorders and across a spectrum of severity 
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from non-clinical to clinical (Kaiser et al., 2011). Of note, the dimensional model of NS does 

not explicitly articulate that a spectrum of severity should exist within non-clinical 

populations. However, it is implicit within the hypothesis that a wide range of scores should 

be detectable in non-clinical populations (S. Kaiser, personal communication, 2022). The 

dimensional model of NS has, arguably, received much less attention than the continuum 

model of psychosis that delineates the continuity of positive psychotic phenomena (Section 

1.1.3). Notwithstanding, the dimensional model aligns with the tenets of the psychosis 

continuum model in purporting that the study of NS in non-clinical populations is separable 

into two approaches: the first approach views NS as differing in quantity rather than kind to 

clinical NS, and the second views these symptoms as the attenuated, trait-like expression of 

clinical NS (Kaiser et al., 2011; Stefanis et al., 2002). This Thesis is positioned primarily 

within the former (quantity rather than kind) framework, though findings from studies of 

(negative) schizotypy will also be referred to. The term ‘negative symptoms’ will be used to 

refer to all NS, and it will be articulated whether the context is clinical or non-clinical. 

Findings of negative schizotypy will be explicitly stated as such.  

 

1.2.4 – Etiological continuity between non-clinical and clinical negative symptoms  

Whether expressed as differences in quantity rather than in kind, or as personality 

traits (Section 1.2.3), there is at least some evidence to suggest that NS reported in the 

community represent an extension of NS observed in schizophrenia. For example, in one 

study, NS were found to predict negative schizotypy, social dysfunction, and ‘odd speech’, as 

well as suspicious behaviour, in the non-psychotic relatives of individuals diagnosed with 

schizophrenia spectrum disorders (A. Fanous et al., 2001). In another study, elevated NS 

were observed in the non-psychotic relatives of individuals diagnosed with schizophrenia 

compared to individuals diagnosed with major depressive disorder (Tsuang, 1993). However, 



 35 

other studies have reported evidence against etiological continuity between clinical and non-

clinical NS (Craver & Pogue-Geile, 1999; Lataster et al., 2014), for example, by finding that 

NS were not elevated in the siblings of individuals diagnosed with schizophrenia compared to 

controls (Craver & Pogue-Geile, 1999).  

Whilst the findings reported by Fanous et al. (2001), discussed above, are suggestive 

of familial continuity between clinical and non-clinical NS, the familial nature of the 

associations may reflect both environmental and genetic influences. Other studies that have 

leveraged individual-level genetic data have provided more specific evidence for genetic 

continuity. For example, at least two studies have reported associations between polygenic 

liability to schizophrenia and NS in the community (Jones et al., 2016; Pain et al., 2018).  

There is also evidence to suggest that some of the same proxy environmental risk 

factors, or correlates, that are associated with clinical NS are found for NS reported in the 

community. For example, a large-scale study found that male sex, low level of education, and 

single marital status predicted an increased odds of NS in young people (Dominguez et al., 

2010) – reflecting similar associations found for clinical NS (Leung & Chue, 2003; Mäkinen 

et al., 2010; Schultz et al., 1997). Of note, the finding of higher levels of NS in males than in 

females has been found in several community samples (e.g., Barragan et al., 2011; Maric et 

al., 2003; Ronald et al., 2014), and in a meta-analysis of clinical NS (Leung & Chue, 2003).  

 

1.2.5 – Negative symptoms as a marker for later poor outcomes  

As was discussed in Section 1.2.1, a wealth of evidence suggests that NS in clinical 

samples are predictive of poor clinical and functional outcomes. Similar associations have 

been found in individuals at clinical high risk for psychosis (Carrión et al., 2016; Corcoran et 

al., 2011). Whilst studies that have investigated the longitudinal outcomes of NS in the 

community are limited, the findings of these studies suggest that non-clinical NS appear to 
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represent a marker for later psychiatric outcomes. For example, in a population-cohort 

sample, NS reported at age 15-16 predicted later hospitalisation for a first episode of 

psychosis, with 94% of these hospitalised individuals having reported NS at baseline (Maki 

et al., 2008). In another longitudinal study, the presence of NS at age 25-34 was predictive of 

both schizophrenia and non-psychotic disorders 25 years later, though prediction of 

schizophrenia was contingent on the presence of frequent PEs (Werbeloff et al., 2015). A 

similar pattern of findings was reported in a study of NS measured at multiple time points, 

with persistent NS predicting PEs; and these symptoms jointly predicting later (researcher-

defined) psychotic impairment (Dominguez et al., 2010). The findings from the Dominguez 

et al. (2010) study are discussed in more detail in the context of persistence in Section 1.5.2.   

 

1.3 – Multidimensionality of psychotic experiences and negative symptoms 

This Section will outline findings suggesting that PENS show a multidimensional 

structure when assessed together. It will be discussed that PEs, and NS may show further 

multidimensionality when assessed separately to each other, and that the findings are in line 

with those in clinical samples. The value of testing for multidimensionality and the 

importance of taking a multidimensional approach to both measuring and analysing PENS 

will be discussed. 

 

1.3.1 – Dimensions of psychotic experiences and negative symptoms  

Despite the close diagnostic relationship between positive psychotic symptoms and 

NS in schizophrenia (Section 1.1.1), psychometric associations between these symptoms 

appear to be modest (Andreasen et al., 1995). This is found similarly for PEs and NS reported 

in the community. For example, in the development study of the Specific Psychotic 

Experiences Questionnaire (SPEQ; Ronald et al., 2014), correlations of r = .13-.24 between 



 37 

self-rated scales of paranoia, hallucinations, and cognitive disorganisation, with parent-

reported NS were reported. Whilst the low levels of association may have been partly be 

explained by the different raters across the measures, similarly low correlations were reported 

for self-reported anhedonia with (self-reported) PEs, and the only significant yet modest 

association that was observed was between anhedonia and paranoia (r = .06).  

Similarly, when the variance and covariance amongst PENS has been analysed, PEs 

and NS have been found to load onto separate factors/components (for factor 

analysis/principal components analysis (PCA), respectively). In factor analysis, within a 

latent variable modelling framework, this separation can be understood simplistically such 

that the observed scores of items of PEs share more variance amongst themselves than they 

do with the observed scores of NS items – because of an underlying (latent) factor reflecting 

positive psychotic experiences. Similarly, the observed scores of NS items share more 

variance amongst themselves than they do with the observed scores of items of PEs because 

of an underlying latent factor reflecting negative symptoms.  

Separability between PEs and NS, as well as depressive symptoms, was demonstrated 

in the development of the Community Assessment of Psychic Experiences scale (CAPE; 

Stefanis et al., 2002). In this study, data were collected on PEs, NS, and depressive symptoms 

in a community sample of young men. Confirmatory factor analysis (CFA) was used to 

analyse the variance-covariance structure of these experiences and symptoms, and it was 

found that a 3-factor model (of PEs, NS, and depressive symptoms) was the best fitting 

model, compared to a 1-factor model and a 2-factor model. This was an important finding, 

because empirical support for the 2-factor model would have suggested that NS and 

depressive symptoms could be condensed to one factor, and similarly, support for the 1-factor 

model would have suggested no separability between PENS or depressive symptoms.  
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Similar granularity was reported for PENS analysed simultaneously using PCA. In a 

community sample of adolescents, a 6-component solution reflecting (self-reported) paranoia, 

hallucinations, cognitive disorganisation, grandiosity, and anhedonia, and parent-reported NS 

was found using the SPEQ (Ronald et al., 2014): These findings suggest psychometric 

separability not only between PEs and NS, but also between specific PEs – which is the topic 

of discussion for the following Section (1.3.2).  

Importantly, the findings discussed in the current Section that suggest psychometric 

separability between PEs and NS in the community broadly reflect the findings from clinical 

samples – adding support to continuum models of psychotic phenomena (Sections 1.1.3 and 

1.2.3). Many clinical studies have also reported separability with depressive symptoms and 

disorganised symptoms (Peralta et al., 1992; Peralta & Cuesta, 2001; Thompson & Meltzer, 

1993; Tonna et al., 2019), often depending on the measures and methods used (Peralta & 

Cuesta, 2001).  

 

1.3.2 – Dimensions of psychotic experiences 

Studies that have investigated the latent structure of PEs in isolation have reported 

structural granularity beyond the distinction between PEs and NS (i.e., as above, Section 

1.3.1). Whilst the exact configural structure of PEs differs between studies, most have 

reported a distinction between non-perceptual (paranoid/delusional) and perceptual 

(hallucinatory) experiences. For example, Stefanis et al. (2004) reported a 4-factor solution of 

the CAPE positive subscale, reflecting subdimensions of paranoia, first-rank (delusional) 

symptoms, hallucinations, and grandiosity, in a sample of 19-year-olds. In a sample of 

adolescents, four factors were also identified using the CAPE positive subscale (Yung et al., 

2009): similar, though not identical, item-to-factor configurations were found to the Stefanis 

et al. (2004) findings – with the factors defined as reflecting magical thinking, persecutory 
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ideas, bizarre experiences, and perceptual abnormalities. These findings of 

multidimensionality within positive PEs in the community echo clinical findings of positive 

psychotic symptoms, at different stages of psychosis (e.g., Azis et al., 2021; Peralta & 

Cuesta, 1998). 

Throughout, this Thesis focusses on the separable dimensions of paranoia and 

hallucinations, and NS. Multidimensionality within NS will further be considered in Chapter 

6 because of the potential importance of this approach for the study of NS across a spectrum 

of severity (discussed in the following Section, 1.3.3). Of note, paranoia and hallucinations 

have also been found to show further multidimensionality when they are analysed 

individually (e.g., Bebbington et al., 2013; Freeman et al., 2005; Mitchell et al., 2017; Preti et 

al., 2014), though this will not be a focus of the current Thesis.   

 

1.3.3 – Dimensions of negative symptoms 

This Section will outline a brief historical overview regarding the structure of NS in 

schizophrenia spectrum disorders. It will outline findings that suggest a multidimensional 

structure of NS (Haguiara et al., 2021), and it will link these findings to investigations into 

the multidimensionality of NS in the community. There has been recent, renewed interest in 

establishing the best psychometric representation of clinical NS (Strauss, Ahmed, et al., 

2019). This may be understood in the context that no effective treatments have been 

established for idiopathic NS (as discussed in Section 1.2.1), and in the context that 

therapeutic approaches have been designed according to the psychometric structure believed 

to represent these symptoms (Marder & Kirkpatrick, 2014). Targeted interventions for NS 

have historically, primarily, been based on unidimensional or 2-factor conceptualisations. 

As has been discussed elsewhere, this focus is likely to have stemmed from the results 

of early exploratory factor analysis (EFA) of clinical NS (Strauss, Ahmed, et al., 2019). 
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Briefly, EFA is a data-driven method, used to extract an underlying, latent factor structure 

(though it can also be used solely as a data reduction technique). In contrast, CFA is a theory-

driven method, used to specify a latent structure a priori to assess both standalone model fit, 

and to compare this fit with other specified models. Studies that employed EFA to analyse 

positive psychotic symptoms and NS jointly, yielded solutions showing separate positive and  

negative (as well as ‘disorganised’) factors (Andreasen et al., 1995; Arndt et al., 1991; Grube 

et al., 1998). As commented by Strauss et al., this joint analysis of positive and negative 

symptoms, “causes negative symptom items to artificially aggregate together, making the 

construct arbitrarily seem unidimensional” (Strauss et al., 2019, p.725). Competing models 

were not tested using a confirmatory framework, and so a unidimensional conceptualisation 

of NS was upheld until studies of NS in isolation were conducted. 

Studies that looked at NS in isolation tended to yield 2-factor solutions, broadly 

reflecting deficits in expressivity, and in motivation and pleasure (e.g., Kelley et al., 1999; 

Kimhy et al., 2006; Kring et al., 2013; Nakaya & Ohmori, 2008): These collective findings 

made an impact in steering therapeutic research away from a unidimensional 

conceptualisation of NS, and towards searching for therapeutic targets concerned with the 

two deficit dimensions of expressivity and motivation-pleasure. Further, these dimensions 

were embedded in the descriptive criteria for schizophrenia in the DSM-5, which refers to NS 

as, “i.e., diminished emotional expression or avolition” (p.99, American Psychiatric 

Association, 2013).  

The two dimensions of expressivity and motivation-pleasure appear to show some 

correspondence to current understandings of the neurobiology of NS (Galderisi et al., 2018). 

Nonetheless, the conceptualisation of a two dimensional structure and the description of NS 

in the DSM-5 have been empirically challenged, through the use of CFA (and network 

analysis, in Strauss, Esfahlani, et al., 2019), and by using measurement scales reflecting the 
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current conceptualisation of NS – encompassing the five subdomains of flat affect, alogia, 

avolition, anhedonia, and asociality (Kirkpatrick et al., 2006). 

Recent studies have compared the model fit of 1-factor, 2-factor, 5-factor, and 5-

factor hierarchical models (reflecting the five subdomains, and the two domains of 

expressivity and motivation-pleasure as higher order factors). These studies have consistently 

found a lack of empirical support for the unidimensional and 2-factor models and have found 

consistent support for the 5-factor and 5-factor hierarchical models: this has been found 

across different languages and cultures (China, USA, Italy, Spain, Switzerland; Ahmed et al., 

2019), across rating scales (Brief Negative Symptom Scale, Scale for the Assessment of 

Negative symptoms, Clinical Assessment Interview for Negative Symptoms; Strauss et al., 

2018), and at different stages of psychotic illness (clinical-high-risk, early psychosis, chronic 

schizophrenia; Chang et al., 2020; Strauss et al., 2018). Critically, these findings call into 

question not only the description of NS in the DSM-5, but arguably most importantly, the 

way in which targeted intervention research is conducted (Strauss, Ahmed, et al., 2019).  

In the community, a handful of studies have used exploratory methods to analyse NS 

in isolation. These studies reported a multifactorial (3-factor) structure of NS measured in 

adolescents (Barragan et al., 2011) and in individuals aged 12-35 (Ziermans, 2013) using the 

negative subscale of the CAPE. Prior to the study that is presented in Chapter 6 of this thesis 

(published as Havers et al., 2022), only one study that used CFA to analyse NS in isolation 

(and none on negative schizotypy in isolation) had been published: This study (Rodríguez-

Testal et al., 2019) did not specify a model reflecting the two NS dimensions of expressivity 

and motivation-pleasure as described in the DSM-5, so it was unable to directly test the 

appropriateness of the DSM-5 conceptualisation of NS in the community. Nonetheless, lack 

of empirical support was found for the unidimensional model, and for a 2-factor model (with 

one factor reflecting alogia, avolition, anhedonia, and asociality, and the other factor 
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reflecting flat affect). A hierarchical model that reflected the five subdomains of flat affect, 

alogia, avolition, anhedonia, and asociality, and total NS as a higher order factor, was found 

to best fit the data (Rodríguez-Testal et al., 2019). Importantly, like with the previously 

described clinical studies, these findings suggest granularity of NS beyond either one or two 

dimensions. 

 

1.3.4 – Importance of a multidimensional approach  

There are three pertinent points to consider from the prior Sections, 1.3.1-1.3.3. 

Respectively, first – PEs and NS are psychometrically related, though distinct, constructs. 

Second, PEs show a multifactorial structure, with evidence suggesting that paranoia and 

hallucinations are psychometrically separable constructs. Third, NS show a multifactorial 

structure, with evidence suggesting that up to five subdomains underlie the NS construct. The 

relative of importance of investigating PENS through a multidimensional lens may be judged 

by considering the extent to which a multidimensional approach adds to our understanding 

beyond using aggregated measures, which in turn may advance more effective interventions 

(discussed later in this Section). A starting point in such a dialogue is whether there are 

findings that validate the psychometric separability of PENS.  

Findings that appear to validate the psychometric separability of PEs are discussed in 

the following paragraphs: Much less has been documented regarding the validity of the NS 

subdomains, which is in part the rationale for the study conducted in Chapter 6 of this Thesis. 

In a twin study of 16-year-olds in the community (Zavos et al., 2014), genetic overlap 

between paranoia and hallucinations was high (rA = .61). This suggests substantial overlap in 

genetic influences between the two dimensions. However, the genetic correlation statistic 

also reflects that some of the genetic influences contributing to the variance in paranoia are 

distinct from the genetic influences contributing to the variance in hallucinations. Similarly, 
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the non-shared environmental correlation that was estimated (rE = .33) reflects that most of 

the non-shared environmental influences contributing to (the variance in) paranoia are 

distinct from those contributing to hallucinations (though it is noted that non-shared 

environmental influences also include measurement error).  

Several other studies have found distinct associations between specific PENS and 

specific proxy environmental exposures (e.g., Bentall et al., 2012; Cosgrave et al., 2021; 

Shakoor, McGuire, et al., 2015a), other measures of psychopathology (e.g., Armando et al., 

2010; Ronald et al., 2014; Wigman, Vollebergh, et al., 2011; Yung et al., 2009), and sleep 

disturbances (Sheaves et al., 2016). One area of the literature that demonstrates the potential 

importance of a multidimensional approach to PENS is the study of childhood trauma and 

later psychotic outcomes (Varese et al., 2012). An interesting picture has emerged by 

considering not only specific PEs, but also by considering specific types of childhood trauma. 

For example, cumulative findings suggest specificity between chronic victimisation in 

childhood and later paranoia, and between sexual abuse in childhood and later hallucinations 

– both in general population samples (Bentall et al., 2012; Janssen et al., 2003; Shevlin et al., 

2007), and in clinical samples (Read et al., 2003; Sheffield et al., 2013; Valmaggia et al., 

2015). Importantly, an understanding of the pathways from specific traumatic experiences to 

specific psychotic experiences may be used to enhance cognitive models of psychotic 

phenomena (Bentall et al., 2014). 

An exemplary, dimension-specific, theoretical model developed by Freeman and 

colleagues conceptualises persecutory delusions as ‘threat beliefs’, formed and maintained 

via a series of specific interacting and cascading cognitive processes (Freeman et al., 2002; 

Freeman, 2007; discussed in Section 1.3.2). By translating the model into tractable cognitive 

interventions, a reduction in symptoms (delusions) has been found in clinical samples 

(Freeman et al., 2016, 2021). 
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The results discussed in this Section highlight the value of measuring and analysing 

PENS through a multidimensional lens. Further, having an understanding of the most 

probable outcomes associated with specific PENS may make it easier to identify when 

individuals are more likely to be ‘at risk’ for poor outcomes, or whether they are more likely 

to be expressing more typical behavioural variation (e.g., Yung et al., 2007, 2009). Most 

importantly, perhaps, by better understanding specific pathways to and from specific PEs, the 

frequency and intensity of psychotic symptoms and experiences may be amenable to 

reduction by focussing on the cognitive mechanisms that are theorised to give rise to them 

(Brown et al., 2019), thus reducing distress, improving wellbeing, and facilitating better 

outcomes (e.g., Freeman et al., 2016, 2021). 

 

 

1.4 – Psychotic experiences and negative symptoms across the lifespan 

This Section will summarise findings from studies of PENS that have estimated 

prevalence rates in childhood, adolescence, and adulthood. It will highlight that adolescence 

and emerging adulthood may be a particularly important time window for studying PENS. 

The limitations of cross-sectional research will be discussed in the context of comparing 

prevalence rates across the lifespan.  

 

1.4.1 – Prevalence rates in childhood, adolescent, and adult samples 

As outlined in Sections 1.1.2 and 1.2.2, an extensive body of research converges to 

suggest that PENS are common in the general population. Section 1.4.1 considers prevalence 

rates of PENS that have been reported across studies or derived through meta-analysis. 

PEs have been reported in childhood as young as 9 years (e.g., Laurens et al., 2012), 

in adolescence (e.g., Ronald et al., 2014; Wigman, Vollebergh, et al., 2011), and in adulthood 

(e.g., McGrath et al., 2015). Taken collectively, the results from two meta-analyses appear to 
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suggest that PEs become less prevalent as age increases. For instance, in childhood and 

adolescence, the median prevalence rate was estimated at 17% for 9-12 year olds and 7% for 

13-18-year olds (Kelleher, Connor, et al., 2012) and in studies mainly comprised of adult 

samples, the median prevalence rate was estimated as 5.3% (van Os et al., 2009). A more 

conservative and updated review of the one conducted in 2009 (van Os et al., 2009) estimated 

the median prevalence rate as 7.2% (Linscott & van Os, 2013) – perhaps rendering the notion 

of ‘decreasing prevalence with increasing age’ less clear-cut beyond childhood and 

adolescence. 

In a more recent meta-analysis of hallucinations in isolation, however, whilst the 

estimated prevalence rates did not differ between childhood (12.7%) and adolescence 

(12.4%), lower prevalences were found in adulthood (5.8%) and in late-adulthood (4.5%) 

compared to in childhood/adolescence (Maijer et al., 2018). Building on the limitations of 

comparing prevalence rates across studies, and also looking at hallucinations as a separate 

dimension – one recent study combined the results obtained from multiple cross-sectional 

assessments and found an age-related decrease in the prevalence of hallucinations assessed 

using the same measure for all assessments (Yates et al., 2021). The minimum age of the 

study was 16, so the findings cannot speak to the different results previously reported 

between childhood and adolescence (i.e., Kelleher, Connor, et al., 2012; Maijer et al., 2018) – 

but significant age-related decline in prevalence was estimated across the entire range of ages 

(categorised as 16-19, and up to 70 and above) (Yates et al., 2021).  

To date, there have been no meta-analyses or reviews of NS in the population, though 

it could be inferred from data available from across different studies that NS become less 

prevalent with increasing age. For example, in one study of 13-17-year-olds (M = 13.4 years, 

SD = 0.59), 98% of the sample endorsed at least one self-reported NS item (Barragan et al., 

2011). In another study of older adolescents (M = 16.32 years, SD = 0.68) individual 
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anhedonia items were reported by up to 37.6% of the sample, and NS items were parent-

reported for up to 33.1% (Ronald et al., 2014). In young adulthood, reported prevalence rates 

range between 9.9% and 38.8% (Alemany et al., 2013; Dominguez et al., 2010; Werbeloff et 

al., 2015; Wigman et al., 2012), and in a study of older adults (M = 41.1 years, SD = 12.0), 

prevalence was estimated at 1.1% (Maric, Krabbendam, Vollebergh, de Graaf, & van Os, 

2003).  

 

1.4.2 – Adolescence and emerging adulthood as a critical period 

Adolescence (the period spanning approximately 12-18-years of age) and emerging 

adulthood (spanning approximately 18-25-years of age) may be considered particularly 

important windows for studying PENS, for several reasons. First, findings suggest that PEs 

are more predictive of clinical outcomes in adolescence compared to in childhood (Kelleher, 

Keeley, et al., 2012). Second, it has been estimated that approximately three quarters of adult 

psychiatric diagnoses are present by the age of 18 (Kim-Cohen et al., 2003), and in another 

study, by the age of 25 (Kessler et al., 2007). Third, the typical age of onset for psychotic 

disorders is estimated to be in the early twenties (Kessler et al., 2007). Collectively, these 

findings highlight that better understanding PENS as they present and develop during 

adolescence and emerging adulthood may facilitate efforts to prevent the manifestation of 

poor outcomes associated with PENS, which may be achieved through theory development 

and translation into early intervention strategies (Trotman et al., 2013; Verdoux et al., 1998).  

 

1.4.3 – Inferring change across the lifespan 

For NS, the limited findings (Section 1.4.1) make age-related change difficult to infer. 

Further, whilst a general trend for decline with increasing age is suggested for PEs (Section 

1.4.1), there is considerable variability in prevalence rates across studies. Variation in 
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measurement tools (e.g., dimensional versus categorical endorsement, range of dimensions 

and number of items assessed), methods of assessment (e.g., self-report, interview), and 

reporting prevalence (e.g., any item endorsed, individual items endorsed) further make it hard 

to determine whether the reporting of PENS varies as a function of age, or as a function of 

methodological factors. For example, more thorough measures tend to yield higher rates of 

prevalence compared to brief measures, and interview-assessment tends to yield lower 

estimates than self- report (Healy et al., 2019; Johns & van Os, 2001; van Os et al., 2009). 

These limitations are the point of departure for discussing the importance and advantages of 

using longitudinally collected data on PENS to infer change across the lifespan.  

 

1.5 – Longitudinal development of psychotic experiences and negative 

symptoms 

This Section will highlight the value of delineating the longitudinal development of 

PENS using repeated measures. It will outline findings suggesting that persistence over time 

is a particular risk factor, or marker, for later poor outcomes, which will be discussed in the 

context of a proneness-persistence-impairment model of psychosis. Methodological 

considerations for analysing change over time will be outlined, and a summary of factors that 

have been found to be associated with the development of PENS will be provided.  

 

1.5.1 – Repeated measures of psychotic experiences and negative symptoms  

Further to the cross-sectional measurement of PENS (Section 1.4.1), other studies 

have reported on PENS measured repeatedly over time in the same sample. These studies 

strengthen our ability to infer change over time, building on the previously discussed 

limitations of drawing inference by considering prevalence rates from across different 

studies. One study that measured PEs repeatedly across a period of eight years in a sample of 
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14-17-year-olds at baseline reported mean-level decline in PEs with increasing age 

(Dominguez et al., 2011).  

The study discussed above (Dominguez et al., 2011) analysed PEs at an aggregate 

level, potentially masking dimension-specific variation (as discussed in Section 1.3.1). 

However, studies that have analysed repeated measures of delusions/paranoia and 

hallucinations separately have reported similar patterns of decline over time. For example, in 

a sample of 14-24-year-olds at baseline, the prevalence of delusions was estimated at 

approximately 21%, 2.5 years after baseline, and 11%, 8.5 years after baseline, and the 

prevalence of hallucinations was estimated at approximately 5% and 3% at these intervals, 

respectively (Smeets et al., 2012). Similar findings were reported in a study of 13/14-year-

olds at baseline, with a decrease in the prevalence of delusions and hallucinations reported 

approximately two years after baseline (De Loore et al., 2011). Another study reported item-

level prevalence rates for repeated assessments of ‘paranoid ideation’ and ‘psychoticism’, 

measured longitudinally across ages 20-40 (Rössler et al., 2007): most items showed a 

decline in prevalence with increasing age, with several exceptions for items that are not 

typically included in measures of PEs (e.g., “Others not giving you proper credit”, “Feeling 

that people take advantage of you”). 

In terms of NS, only three studies to my knowledge have reported on NS measured 

repeatedly over time in non-clinical samples (Dominguez et al., 2010; Janssens et al., 2016; 

Smeets et al., 2012). Findings from one of these studies (Dominguez et al., 2010) showed a 

general increase in the prevalence of NS with increasing age from 11% at baseline (age 14-

24) to 12%, 8.5 years after baseline. The Smeets et al. (2012) study was based on the same 

sample as Dominguez et al. (2010). Similarly, prevalences/means were not reported in the 

Janssens at el. (2016) study. 
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Despite the use of repeated measures to estimate the prevalence of NS reported at 

multiple ages in the Dominguez et al. (2010) cohort study, there are limitations to these 

findings: At the first time point (age 14-24) and the third time point (approximately 8.5 years 

after baseline), NS were measured using one item reflecting NS and one item reflecting 

disorganised symptoms (age 14-24). At time point two (approximately 2.5 years after 

baseline), an additional five items were used to measure NS. This inconsistency of 

measurement interferes with the inference of change over time. In addition to the different 

measures and differing number of items that were used, the 7-item Likert response scale of 

the measures was re-coded for the purpose of analysis to reflect a dichotomous presence 

versus absence, thus potentially masking important variation in terms of symptom severity.  

 

1.5.2 – Persistence of psychotic experiences and negative symptoms  

Findings from studies of PENS measured repeatedly across development indicate that 

persistence compared to remittance or transience may be particularly predictive of poor 

clinical and functional outcomes (e.g., De Loore et al., 2011; Dominguez et al., 2010; Mackie 

et al., 2011; Wigman, van Winkel, Raaijmakers, et al., 2011). For example, in a study of 14-

17-year-olds at baseline, persistence of (self-reported) PEs was associated with increased 

odds for (researcher-rated) psychotic impairment at the end of the study period. The odds of 

this association increased in a dose-response manner, with odds ratios of 1.5, 5, and 9.9 for 

presence of PEs at one, two, and three time points, respectively (Dominguez et al., 2011). 

Evidence for a dose-response relationship between the persistence of self-reported PEs and 

(researcher-rated) psychotic outcomes was also found through meta-analysis (Kaymaz et al., 

2012). These findings suggest that persistence appears to be an important modifying factor 

for poor outcomes when PEs are measured and or analysed at an aggregate level. There is 

also evidence to suggest that persistence of specific PEs dimensions may be associated with 
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specific poor outcomes. For example, persistence of self-reported auditory hallucinations, but 

not other types of PEs, was found to be associated with increased odds for suicide attempts 

and non-suicidal self-injury in a sample of 12-17-year-olds at baseline (Hielscher et al., 

2021). 

Of the studies that have analysed repeated measures of NS (Section 1.5.1), persistence 

has been found to be an indicator of poor outcomes. For example, the previously discussed 

cohort study of 14-24-year olds followed for 10 years found that persistence of NS predicted 

presence and persistence of PEs, in-turn conferring increased risk for psychotic impairment, 

compared to persistence of PEs alone (Dominguez et al., 2010). In another study that 

measured NS twice over a period of three years in adulthood, persistence was associated with 

distress and functional impairment, both for individuals with high genetic risk for 

schizophrenia and for controls (Janssens et al., 2016).  

The methodological and analytic limitations of some of these studies will provide a 

platform for the aims of this Thesis (Sections 1.6 and 1.7). The findings discussed in the 

current Section highlight not only the importance of measuring PENS across multiple time 

points, but further suggest that investigating the development of PEs as separate dimensions 

may contribute even more to unravelling the pathways and mechanisms associated with poor 

outcomes (De Loore et al., 2011).  

 

1.5.3 – Proneness-persistence-impairment model  

This Section will outline the proneness-persistence-impairment model of psychosis 

(Linscott & van Os, 2013; van Os et al., 2009), which augments the continuum model of 

psychosis (Section 1.1.3). As was discussed in Sections 1.1.3 and 1.1.5, despite being 

associated with concurrent distress and other psychopathology for some individuals (e.g., 

Ronald et al., 2014), PEs are typically transient (Linscott & van Os, 2013) and are not 



 51 

associated with later poor outcomes for most individuals (e.g., Poulton et al., 2000; Section 

1.1.5). Nonetheless, PEs do represent a marker for later impairment, and risk increases with 

persistence (and severity) of these experiences (Section 1.5.2): One prevailing theoretical 

model delineates the pathway from proneness to persistence of PEs and thus to associated 

impairment, via genetic and environmental load. Different components of the proneness-

persistence-impairment model (Linscott & van Os, 2013; van Os et al., 2009) are supported 

by the findings of several different studies, as discussed below.  

For example, one study that investigated the stage from proneness to persistence using 

two separate cohorts (14-24-year-olds and 18-64-year-olds), found not only that PEs at 

baseline were associated with PEs approximately 3 years later, but also that the probability of 

persistence was progressively stronger in individuals who (at baseline) reported cannabis use 

and trauma and who resided in an urban location, compared to individuals reporting an 

absence of these environmental exposures (Cougnard et al., 2007). The Dominguez et al. 

(2011) study that was outlined Section 1.5.2, provides support for the persistence to 

impairment stage of the proneness-persistence-impairment model, by showing a dose-

response association between persistence of PEs and increased odds for psychotic 

impairment. 

These two studies, above, conceptualised the reporting of PEs as reflecting 

‘proneness’. Other studies have used proxies of genetic risk for schizophrenia to infer 

proneness. One study that used sibling history of psychosis as a proxy for genetic risk found 

that higher genetic risk was associated with persistence of PEs, as well as persistence of NS, 

measured twice over three years in adulthood (Janssens et al., 2016). This persistence was in 

turn associated with impairment. Interestingly, it was found that the association between 

genetic risk and persistence remained significant for NS when controlling for PEs, but not the 
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other way around. As suggested by the authors, this could suggest that genetic risk for 

psychosis is particularly relevant in the context of the developmental course of NS.  

The Dominguez et al. (2010) study (discussed in Sections 1.5.1 and 1.5.2) that 

measured NS as well as PEs at multiple time points found that persistence of NS predicted 

presence and persistence of PEs, in-turn conferring increased risk for psychotic impairment, 

compared to persistence of PEs alone: The findings of this study are included in the current 

Section because the theoretical model that was suggested by the authors is in accord with the 

proneness-persistence-impairment model. That is, Dominguez et al. (2010) postulated that 

NS reflect a broad genetic vulnerability to developmental impairment, which, when 

combined with environmental risk factors (i.e., cannabis use, trauma, urbanicity), predicts 

PEs and risk of clinical impairment.  

 

1.5.4 – Genetic influences on the development of psychotic experiences and negative 

symptoms 

Whilst there are a considerable number of studies that have investigated the influence 

of genetic factors on PENS reported at single time points (e.g., Jones et al., 2016; Pain et al., 

2018; Selzam et al., 2019; Sieradzka et al., 2015), little has been documented regarding 

genetic influences on the persistence of PENS. However, findings from a handful of 

community twin studies suggest that genetic factors play a role in the development of PEs 

measured broadly in in adulthood (Wigman, van Winkel, Jacobs, et al., 2011), and of 

separate PEs and NS measured in adolescence (Havers et al., 2019). For example, in the 

Twins Early Development Study (TEDS) sample, a substantial proportion of the covariance 

in PEs (38-46%) and NS (54-62%) measured at two time points in mid-late adolescence was 

attributable to genetic factors (Havers et al., 2019). Another study reported that ~ 80% of the 

covariance in a latent schizotypy factor identified early (11-13-years) and later (14-16-years) 
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in adolescence was accounted for by genetic factors (Ericson et al., 2011). The importance of 

genetic factors in the persistence of PENS was also suggested by the results of a family study 

that used sibling history of psychosis as a proxy for genetic risk (Janssens et al., 2016): This 

study found that persistence of both PEs and NS was more likely in individuals at genetic risk 

of psychosis, compared to control subjects.  

Only one study to my knowledge has leveraged individual-level genetic data to 

investigate the association between polygenic liability to schizophrenia and the development 

of PEs, in which a null association between schizophrenia GPS and the persistence of 

aggregated PEs was found (Rammos et al., 2021). Of note, these findings do not indicate that 

genetic factors do not play a role in the persistence of PEs, but rather they can be understood 

such that the aggregated effects of the measured common genetic variants that are associated 

with schizophrenia were not associated with the persistence of PEs in the study. Because 

PENS may reflect broad vulnerability for poor functional and clinical outcomes (Healy et al., 

2019; van Os & Reininghaus, 2016; Yung et al., 2009), as discussed in Section 1.1.5, the 

extent to which the development of PENS dimensions is associated with polygenic liability 

across a range of phenotypes, including psychiatric disorders, clinical help-seeking, 

intelligence and educational attainment, is of further interest. 

 

1.5.5 – Analysing change over time – methodological considerations 

 As was discussed in Section 1.5.1, repeated measures studies build on the limitations 

of cross-sectional studies of PENS to infer change over time. Studies that have repeatedly 

measured PENS over time have either used manual classification of observed data to specify 

trajectories of development, or they have used latent trajectory analysis to classify individuals 

according to similarities in their trajectories. 
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Studies that have used a manual classification approach have typically used presence 

versus absence (Cougnard et al., 2007; De Loore et al., 2011; Dhossche, Ferdinand, Ende, et 

al., 2002; Hielscher et al., 2021; Steenkamp et al., 2021; van Rossum et al., 2011) or a cut-off 

score (Dominguez et al., 2011; Havers et al., 2019; Janssens et al., 2016) to classify PENS as 

persistent or transient. The results from these studies that have used manual classification 

have made an important contribution to our understanding of PENS. For example, the 

continuum model and the proneness-persistence-impairment model are largely supported by 

the results of studies that have used observer-classified (i.e., non-latent) trajectories. Whilst 

these findings are unquestionably valuable, considering the points outlined in the following 

paragraph, findings from studies that have used latent trajectory modelling should be used, at 

the very least to triangulate these findings, and further hold potential for offering additional 

insights into the development of PENS. 

A fundamental assumption of the latent growth modelling framework, broadly, is that 

an underlying, unobservable (latent) growth process gives rise to the repeated measures that 

are observed: because this latent growth process is statistically separable to random 

measurement error associated with static observations, the latent growth framework builds on 

the manual classification approach described above, which only uses the observed static 

observations to infer trajectories of change over time (Willett & Sayer, 1994). Latent growth 

can be estimated at a sample-wide level, as well as for a specified number of latent classes or 

subgroups that are characterised by distinct growth profiles (Herle et al., 2020). There are 

several advantages to using latent variable modelling to investigate trajectories of change 

compared to using manual classification – three of which are highlighted here. First, latent 

trajectory modelling facilitates a data-driven estimation of latent trajectory profiles. This 

contrasts the often arbitrary, researcher-led decisions regarding classification, and thus 

removes the reliance on researcher-imposed expectations and constraints regarding 
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development (though importantly, Chapter 4 will discuss how similar issues are a potential 

threat to the application of growth mixture models). Second, latent trajectory modelling can 

be used to formally test competing models that specify a different number of latent trajectory 

classes. Third, manual classification approaches are reliant on complete data (though 

Rammos et al., 2021 recently used imputation with missing data). In contrast, latent trajectory 

modelling can be conducted using full information maximum likelihood (FIML) estimation, 

which accommodates missing data and allows for data from all observations to contribute to 

the estimation of the model. 

 Of the studies that have used latent trajectory modelling, multiple latent trajectory 

classes including a persistent or increasing class have been identified for aggregated PEs 

measured across adolescence (Bourque et al., 2017; Lin et al., 2011; Mackie et al., 2011, 

2013; Thapar et al., 2012; Wigman, van Winkel, Raaijmakers, et al., 2011), and adulthood 

(Wigman, van Winkel, Jacobs, et al., 2011). There are currently no published latent trajectory 

findings for paranoia/hallucinations separately, or for NS reported in the community.  

Notwithstanding the inherent methodological advantages that latent variable 

modelling confers (as discussed in paragraph 3, above), it cannot be inferred from previous  

studies, above (nor from any of the other studies cited in this Chapter) whether the change in 

PEs over time that has been inferred reflects change at the construct level, or whether this 

change merely reflects recalibration at the measurement level. For instance, it is plausible that 

an item such as, “Have you ever believed that you were being sent special messages through 

the television?” (Laurens et al., 2007) could be measuring something markedly different in 

childhood compared to in adulthood. The ability to infer construct-level change over time is 

testable via an analysis of measurement invariance, which is the focus of Chapter 2. 
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1.6 – Summary, and future directions for research on psychotic experiences 

and negative symptoms 

This Chapter outlined previous research that has shown that the symptoms that 

characterise psychotic disorders are also commonly reported in non-clinical populations in 

the community, and that these PENS show a multidimensional psychometric structure. The 

Chapter highlighted the importance of understanding PENS as separate dimensions, and the 

importance of understanding the development of PENS over time. Adolescence and emerging 

adulthood was described as a ‘critical period’ in the study of PENS. 

Whilst a wealth of studies have found that PENS are associated with poor clinical 

outcomes, particularly when they persist, many of these studies have reported on aggregated 

PEs, rather than PEs analysed as separate dimensions. The development of separate 

dimensions has been investigated in a limited number of studies, however, the measures used 

have tended to be comprised of only a few items (with a few exceptions), potentially masking 

information that may be ascertained from probing a broader range of experiences. 

Furthermore, many longitudinal studies have manually classified individuals into trajectory 

groups, often, though not always, based simply on the presence or absence of PEs at each 

time point. Studies that have used latent variable modelling to explore the developmental 

trajectories of PEs have identified a ‘persistent’ class of individuals, though this has been for 

aggregated PEs, and no studies have investigated the latent developmental trajectories of NS 

in the community. Genetic continuity between psychotic disorders and the development of 

PENS has been suggested by the results of one family study (Janssens et al., 2016). However, 

another study that incorporated individual-level genetic data did not find evidence of genetic 

continuity between polygenic liability to schizophrenia and the persistence of PEs (Rammos 

et al., 2021).  
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Building on this foundation of previous research findings, future research should seek 

to delineate the development of separate PENS dimensions that capture a broad range of 

experiences, as well as variation in terms of frequency and or strength of these experiences. 

Latent variable modelling should be used to facilitate the use of data from individuals with 

incomplete as well as complete data, and to estimate sample-wide averages/variances for 

PENS dimensions, as well as investigate whether distinct trajectory subgroups can be 

identified: Ascertainment of the extent to which age-related change in PENS dimensions 

reflects ‘true’ change will be important for further interpreting these findings.  

Moreover, this Chapter highlighted that there is a paucity of research into NS in the 

community in general. The extent to which the psychometric structure of non-clinical NS 

mirrors that of clinical NS is uncertain, which, in the context of the current clinical focus on 

NS – may be considered a research priority. As a starting point in moving this area of 

research forward, the latent structure of NS in the community should be investigated: 

measurement models that have been hypothesised to underlie the construct of NS should be 

tested, using scales that measure a broad range of behaviours and that further reflect the 

current conceptualisation of NS in schizophrenia. An augmentation of these findings would 

be to explore the extent to which genetic liability scores are associated with the identified 

subdomains.  

 

 

1.7 – Aims of thesis 

The points that were outlined in Section 1.6 (above) highlight what is needed to move 

research on PENS forward. Motivated by these points, this Thesis aimed broadly, first, to 

investigate the measurement invariance/noninvariance of paranoia, hallucinations, and NS, as 

separate dimensions across adolescence/emerging adulthood (Chapter 2). Second and third, it 

aimed to investigate the latent development of paranoia, hallucinations, and NS, separately, 
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across adolescence/emerging adulthood (Chapter 3), and to explore whether distinct latent 

trajectory groups underlie this development (Chapter 4). Fourth, explore whether 

membership in the latent trajectory groups shows associations with behaviours/characteristics 

previously found to be associated with persistence of aggregated PEs, and with polygenic 

liability for a range of outcomes (Chapter 5). Fifth, it aimed to investigate the structure of NS 

in the community and associations between the identified subdomains and polygenic liability 

scores (Chapter 6). Each of these aims will be expanded and addressed in the empirical 

Chapters that follow.  
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Chapter 2 – Longitudinal measurement invariance 

analysis of paranoia, hallucinations, and negative 

symptoms 

 

2.1 – Introduction  

The notion of measurement invariance was introduced briefly in Section 1.4.3. The 

current Section will describe the conceptual foundations of measurement invariance and will 

outline the existing findings on the measurement invariance of PENS.  

Briefly, the concept of testing for measurement invariance can be understood such 

that, in comparing scores on a construct between different groups of individuals or across 

different time points, it is important to establish the extent to which measurement of the 

construct can ostensibly be considered invariant. In other words, to what extent do observed 

differences or changes in scores reflect ‘true’ differences or changes at the construct level, 

rather than at the level of the measurement instrument?  

 Before turning to findings of measurement invariance in PENS, it is first useful to 

consider some descriptive findings in the literature. For example, it has been shown in several 

studies that higher prevalence rates and average levels of PEs are found for females than 

males, and that higher prevalence rates and average levels of NS are found for males than 

females (e.g., Dominguez et al., 2010; Maric et al., 2003; Ronald et al., 2014). The extent to 

which these observed differences reflect ‘true’, or construct level differences is less 

researched. One study that, incidentally, reported no significant differences in PEs between 

females and males in a community sample, did however find measurement invariance of the 

instrument across sexes (using the Youth Psychosis At‐Risk Questionnaire, brief version; 

Fonseca‐Pedrero et al., 2016) – suggesting that the measurement of PEs was the same 
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between the groups. Other studies have reported varying degrees of invariance in the 

measurement of PEs between other ‘groups’ – for example, different cultures (e.g., Pignon et 

al., 2019; Vermeiden et al., 2019), self-identified gender categories, and ethnic 

minority/majority status (Lång et al., 2021). 

As discussed in Section 1.5.1, results of previous longitudinal studies on PENS tend 

to suggest a decline in the prevalence rates/mean scores of PEs reported with increasing age, 

and there are mixed findings regarding NS (e.g., De Loore et al., 2011; Dhossche, Ferdinand, 

van der Ende, et al., 2002; Dominguez et al., 2010; Smeets et al., 2012). Several studies have 

further used latent trajectory modelling to identify multiple underlying subgroups of 

individuals, classified according to similarities in their latent trajectories of PEs reported over 

time, as is the topic of Chapter 4 (e.g., Thapar et al., 2012; Wigman, van Winkel, Jacobs, et 

al., 2011; Wigman, van Winkel, Raaijmakers, et al., 2011). All these studies that have 

harnessed data obtained at repeated measurement occasions provide valuable information 

about the developmental course of PENS, above and beyond what can be inferred from cross-

sectional measurement (Section 1.4.3): nonetheless, the extent to which change occurred at 

the construct level cannot be inferred from these results.  

The current Chapter aimed to investigate the extent to which the measurement of 

paranoia, hallucinations, and NS was invariant across ages 16, 17, and 22 in the TEDS 

sample. These analyses were conducted as a precursor for conducting subsequent latent 

growth modelling of the measures (Chapters 3 and 4). No specific hypotheses were made for 

paranoia and hallucinations. It was expected that a 5-factor measurement model of NS would 

be invariant across ages, based on recent findings for NS reported in clinical samples (Section 

1.3.3).  
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2.2 – Methods 

2.2.1 – Participants  

All empirical Chapters in this Thesis conducted secondary analysis of data that was 

collected as part of the Twins Early Development Study (TEDS), described in Section 

2.2.1.1, below. Ethical approval for secondary data analysis of the TEDS data was granted by 

the Birkbeck Psychology Department Ethics Committee (please note that the ethics request 

for secondary data analysis was classed as ‘routine’ and therefore was not assigned a 

reference number).  

TEDS is a twin dataset, though none of the studies in this Thesis involved twin 

modelling analyses. It is explicitly stated whether the studies used data from only one 

(randomly selected) twin per pair, or where data from both twins per pair was used. In the 

latter case, the family unit was treated as a cluster variable and standard errors were adjusted 

for the nonindependence of observations.  

An exclusion variable was precalculated by TEDS administrators and was used in all 

Chapters of this Thesis to exclude individuals if, i) their sex or zygosity was unknown, ii) 

they had a ‘severe medical condition’ that would impact on their ability to participate (this 

included severe cases of autism spectrum disorder), iii) they did not have any 1st contact 

study data, and or iv) they had experienced severe perinatal complications. Further details are 

listed on the TEDS data dictionary webpage 

https://www.teds.ac.uk/datadictionary/exclusions.htm 

2.2.1.1 – Twins Early Development Study sample 

TEDS is a longitudinal community sample, comprised of families that were recruited 

between 1995 and 1998. Ethical approval for the original TEDS protocol was granted by The 

Institute of Psychiatry, Psychology and Neuroscience ethics committee at Kings College, 

London (ref: 05/Q0706/228). Families with twins born between 1994 and 1996 in England 

https://www.teds.ac.uk/datadictionary/exclusions.htm
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and Wales were identified and contacted by the Office for National Statistics (ONS) on 

behalf of TEDS and invited to participate. Sixteen thousand, eight hundred and ten (16,810) 

families responded to the ONS invitation and 16,302 were subsequently invited by TEDS to 

participate in the ‘1st contact’ study. Reasons that families were not invited to participate in 

the 1st contact study (and subsequent studies) are detailed in Supplementary Table 2.1. 

Thirteen thousand, four hundred and eighty-eight (13,488) families returned data for the 1st 

contact study. Following the 1st contact study, families were invited to participate in 

subsequent studies as detailed on the TEDS data dictionary webpage 

https://www.teds.ac.uk/datadictionary/home.htm. See Rimfeld et al. (2019) for a recent 

overview of the TEDS sample.  

The data that was used in this Thesis came primarily from data collections at ages 16 

and 17 (as part of the Longitudinal Experiences and Perceptions (LEAP) study), and at age 

22 (called the ‘21-year study’ in TEDS). Contact of families and data returns for these studies 

are shown in Supplementary Table 2.1. Data for each of the studies was collected via 

questionnaire, either written or online (detailed below).  

For the 16-year study, 10,874 families were contacted, and 5,123 (47.11%) families 

returned data. Families were invited to participate unless they, i) had previously withdrawn 

from TEDS, ii) could not be traced, iii) had not previously returned any data, and or iv) were 

identified as having severe medical conditions. Questionnaires were sent to each participating 

individual in a household, along with a letter, information sheet and consent form, via post, 

and were returned using a prepaid envelope. A reward in the form of a gift voucher and entry 

into a prize draw was offered for return of data (for individuals, not parents). Informed 

written consent was required for each family member returning data and was also required 

from parents of consenting individuals.  

https://www.teds.ac.uk/datadictionary/home.htm
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For the 17-year study, 1,773 families were contacted, and 1,475 families (83.19%) 

returned data. A subset of families who responded to the 16-year study were invited to take 

part in the 17-year study, which was conducted approximately 9 months after the 16-year 

study. Mailing, reward, and informed consent procedures were the same as for the 16-year 

study.  

For the 22-year study, 10,451 parents were contacted, and 5,352 parents (51.21%) 

returned data. Eight thousand, six hundred and eleven (8,611) individuals were contacted,  

and 5,184 individuals (60.20%) returned data. Non-invitation was due to the same reasons as 

for the 16-year study, with the addition that if one or both individuals had withdrawn from 

TEDS, parents were not contacted. Invitation to participate in the 22-year study was made 

either by email or by post. Reward procedures were the same as for the 16-year study. 

Informed written consent was required for each family member returning data, though 

consent was not required from parents of consenting individuals.  

2.2.1.2 – TEDS sample for current Chapter 

For the study conducted in this Chapter, data from one (randomly selected) twin per 

pair was used for the main analyses. The cotwin data was used as a pseudo (non-independent) 

replication sample for the purpose of EFA (described in Section 2.2.3.2). 

Individuals completed questions relating to paranoia and hallucinations at mean ages 

16.32 years (SD 0.68; range 14.91-21.34), 17.06 years (SD 0.88; range 15.55-19.0), and 

22.85 years (SD 0.88; range 21.16-25.19). Parents completed questions relating to their 

twins’ NS at mean ages 16.32 years (SD 0.68; range 14.91-19.45), 17.06 years (SD 0.88; 

range 15.55-19.0), and 22.30 years (SD 0.93; range 20.56-25.59).  

N for paranoia in the main subsample at ages 16, 17, and 22 were 4,943, 1,468, and 

4,166, respectively. N for hallucinations at ages 16, 17, and 22 were 4,949, 1,471, and 4,164, 
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respectively. N for NS at ages 16, 17, and 22 were 4,971, 1,468, and 5,177, respectively 

(Table 2.1). 

Note that the N reported above reflect the number of individuals with total score data. 

Deviations from these N in the current Chapter (and in subsequent Chapters) reflect the use of 

item-level data and the use of FIML estimation (Section 2.2.3.8).  

 

2.2.2 – Measures  

The SPEQ (Ronald et al., 2014) is a questionnaire that was designed to assess 

quantitative variation in a range of PEs and NS. Items were adapted from existing measures 

(detailed below) for use in an adolescent sample by clinical experts (Daniel Freeman, Alastair 

Cardno). In the development of the SPEQ in the TEDS sample, the subscales used in the 

current Thesis showed good test-retest reliability across ~ 9-months (r = .65-.68) and good 

item-scale reliability (α = .85-.93) (Ronald et al., 2014). Paranoia and hallucinations 

measured at age 16 were also assessed for their associations with positive psychotic 

experiences measured using the psychosis-like symptoms questionnaire (PLIKS-Q; Zammit 

et al., 2011) and showed moderate convergence (r = .48-.60) (Ronald et al., 2014). 

Paranoia was measured by 15 items adapted from the Paranoia Checklist (Freeman et 

al., 2005). Individuals were asked how often they have thought, for example, “I can detect 

coded messages about me in the press/TV/internet”, and “People might be conspiring 

against me”. Ratings were on a 6-point scale (‘not at all’, ‘rarely’, ‘once a month’, ‘once a 

week’, ‘several times a week’, ‘daily’). Paranoia items are listed in Supplementary 

Information 2.1.  

Hallucinations were measured by nine items adapted from the Cardiff Anomalous 

Perceptions Scale (Bell et al., 2006). Individuals were asked to rate the frequency that they, 

for example, “Hear sounds or music that people near you don’t hear?”, and “See shapes, 
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lights, or colours even though there is nothing really there?”. Ratings were on a 6-point scale 

(‘not at all’, ‘rarely’, ‘once a month’, ‘once a week’, ‘several times a week’, ‘daily’). 

Hallucinations items are listed in Supplementary Information 2.2.  

Negative symptoms were measured in the current Chapter by eight items adapted from 

the Scale for the Assessment of Negative Symptoms (Andreasen, 1982). Parents were asked 

to rate how strongly they agree or disagree with statements such as, “My child often fails to 

smile or laugh at things others would find funny”, and “My child seems emotionally ‘flat’, for 

example, rarely changes the emotions he/she shows”. Ratings were on a 4-point scale (‘not at 

all’, ‘somewhat true’, ‘mainly true’, ‘definitely true’). The following items were not included 

in the current analyses, in line with current conceptualisations of the NS construct (see 

Havers et al., 2022): “My child does not pay attention when being spoken to”, and “My child 

is often inattentive and appears distracted”. NS items are listed in Supplementary 

Information 2.3.  

 

2.2.3 – Statistical analyses 

2.2.3.1 – Overview of analyses 

Prior to testing for longitudinal measurement invariance (described in Section 2.2.3.6), 

confirmatory factor analysis (CFA) was used to ascertain the ‘base’ model that would be used 

for this testing. Several CFA models were tested, including a model derived using EFA.  

2.2.3.2 – CFA and EFA 

 Factor analysis explains variance and covariance in a set of items using a minimal 

number of factors (Flora & Flake, 2017): These methods are embedded within the framework 

of latent variable modelling, in which variance in each (observed) variable is partitioned into 

variance that is shared with other observed variables (and is thus attributable to an 

underlying, unobserved, ‘latent’ factor), and into that which is unique and is not shared with 
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other variables (this unique variance also includes measurement error). Despite the common 

principals that underly CFA and EFA, they differ in an important way – explained briefly 

below in the context of the current analyses. 

 EFA: EFA was used to suggest the factor structure underlying the set of observed 

items, with all items allowed to load onto all factors and factor rotation used to derive a 

structure with maximally distinct loadings. The EFA structure was then respecified as a more 

restricted (CFA) model in a subsample. This process of replication (testing across 

samples/subsamples) is necessary because EFA models are overfitted to sample data (Flora & 

Flake, 2017; Osborne & Fitzpatrick, 2019). 

 A variety of methods can be used to decide on the number of factors to extract using 

an EFA. In this Thesis, the method of parallel analysis was used. Briefly, parallel analysis 

generates a random set of data with the same number of variables and observations as the 

empirical dataset and then calculates eigenvalues of the randomly generated correlation 

matrix. Eigenvalues of the correlation matrix in the empirical dataset that exceed those from 

the randomly generated data determine the number of factors to retain.  

 CFA: CFA was used to test competing theory-based/hypothesised models, with each 

item loading onto one factor only. Because of the restrictions (zeros) that are placed on the 

parameters, the CFA framework allows for model comparison through the associated 

differences in degrees of freedom.  

2.2.3.3 – CFA for base model 

 CFA was used to establish the base models to test for longitudinal measurement 

invariance. For paranoia and hallucinations, longitudinal measurement invariance analysis 

was conducted as a precursor for conducting latent growth curve modelling and therefore 

only a limited number of models were tested using CFA. For NS, the analysis of longitudinal 

measurement invariance was conducted as a precursor for latent growth curve modelling, and 
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as well, as part of a separate study that investigated the latent structure of NS (see Chapter 6) 

and therefore a greater number of models were tested using CFA.  

2.2.3.3.1 – Paranoia 

For paranoia, the models that were tested were as follows: Model 1) a 1-factor model, 

in which all items were assumed to share variance via a single latent factor. All parameters 

were freely estimated. 

Model 2) a 3-factor model – based on the construct facets that were included in 

development of the paranoia subscale, reflecting mistrust, ideas of reference, and ideas of 

persecution (Freeman et al., 2005; Ronald et al., 2014). All parameters were freely estimated, 

and latent factors were allowed to correlate. 

Model 3) a model suggested by principal axis EFA with oblique (Oblimin) rotation, 

using parallel analysis for factor retention. Parallel analysis suggested that seven, six, and 

five factors should be retained for the data at ages 16, 17, and 22, respectively. In the CFA, 

factors were specified according to which items had the highest factor loadings in the EFA. 

No cross-loadings were specified in the CFA. Factors were free to correlate, and all 

parameters were freely estimated. The only exceptions were for single-item indicators, where 

two constraints are required for model identification: here, factor loadings were fixed to one 

and residual variances fixed to zero.  

2.2.3.3.2 – Hallucinations 

For hallucinations, the models that were tested were as follows: Model 1) a 1-factor 

model, in which all items were assumed to share variance via a single latent factor. All 

parameters were freely estimated. 

Model 2) a 4-factor model – based on the construct facets that were included in 

development of the hallucinations subscale, reflecting the modalities of audio, visual, smell, 
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and touch (Bell et al., 2006; Ronald et al., 2014). All parameters were freely estimated, and 

latent factors were allowed to correlate. 

Model 3) a model suggested by principal axis EFA with oblique (Oblimin) rotation, 

using parallel analysis for factor retention. Parallel analysis suggested that three factors 

should be retained at each age. In the CFA, factors were specified according to which items 

had the highest factor loadings in the EFA. No cross-loadings were specified in the CFA. 

Factors were free to correlate, and all parameters were freely estimated. The only exceptions 

were for single-item indicators, where two constraints are required for model identification: 

here, factor loadings were fixed to one and residual variances fixed to zero.  

2.2.3.3.3 – Negative symptoms  

The models tested for NS are described in detail in Section 6.2.3.2. They are 

described here briefly, as follows: Model 1) a 1-factor model, in which all items were 

assumed to share variance via a single latent factor. All parameters were freely estimated. 

Model 2) a 2-factor model, reflecting an expressive deficit, and motivational-pleasure 

deficit. The two latent factors were free to correlate, and all parameters were freely estimated.  

Model 3) a model suggested by principal axis EFA with oblique (Oblimin) rotation, 

using parallel analysis for factor retention. Parallel analysis suggested retaining four factors at 

each age. In the CFA, factors were specified according to which items had the highest factor 

loadings in the EFA. No cross-loadings were specified in the CFA. Factors were free to 

correlate. All parameters were freely estimated, except for the single-item indicators, where 

factor loadings were fixed to one and residual variances were fixed to zero. 

Model 4) a 5-factor model, reflecting flat affect, alogia, avolition, anhedonia, and 

asociality. Anhedonia and asociality were specified as single-item indictors. Factors were free 

to correlate. All parameters were freely estimated, except for the single-item indicators (as 

above). 
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Model 5) a 5-factor hierarchical model, reflecting the five factors specified in Model 

4 as first order factors (flat affect, alogia, avolition, anhedonia, asociality), and the two 

factors specified in Model 2 as second order factors (expressive deficit, motivation-pleasure 

deficit). The second order factors were free to correlate, and the first order factors were 

specified as uncorrelated. All parameters were freely estimated, except for the single-item 

indicators (as above).   

2.2.3.4 – Pseudo replication of EFA as a CFA model 

To pseudo-replicate the EFA findings, the EFA model suggested in the main 

subsample was tested in the cotwin subsample as a CFA, and the absolute fit of the model 

was examined.  

2.2.3.5 – Model fit for CFA models 

A series of goodness of fit indices were used to assess standalone model fit of the 

base models: the comparative fit index (CFI), the root mean square error of approximation 

(RMSEA), and the standardized root mean square residual (SRMR). Whilst the use of cut off 

values is debated (Marsh et al., 2004), CFI values > 0.95 (or > 0.90, less conservatively), 

RMSEA values < 0.06, and SRMR values < 0.08 were used to indicate generally acceptable 

fit (Hu & Bentler, 1999; Marsh et al., 2004; van de Schoot et al., 2012). 

Bayesian Information Criterion (BIC) was primarily used to assess the relative fit 

between models, with lower values indicative of better fit. A difference between the values in 

excess of two was considered to reflect ‘positive’ evidence, and a difference between the 

values in excess of 10 was considered ‘very strong’ evidence (Neath & Cavanaugh, 2012). 

Akaike’s Information Criterion (AIC) was referred to where the difference in BIC values was 

less than two, with lower values indicative of better fit. A difference between AIC values in 

excess of two was considered ‘strong’ evidence (Burnham & Anderson, 2004).  
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2.2.3.6 – Longitudinal measurement invariance  

An analysis of measurement invariance was conducted to assess the extent to which the 

best fitting CFA model (‘the base model’) was invariant across ages 16, 17, and 22 for each 

measure. 

A series of specific models were specified to test for incremental levels of 

measurement invariance. Each model tested the extent to which specific parameters could be 

considered equivalent across the time points. The models reflected different ‘levels’ of 

measurement invariance, which were, configural (testing the equivalence of the configuration 

of items to factors); metric (testing the equivalence of the factor loadings); scalar (testing the 

equivalence of the observed item scores when the latent factor is zero). A further level of 

‘strict’ invariance tested for equivalence between residual variances, though it is not 

necessary to obtain invariance at this level to infer measurement invariance (Mackinnon et 

al., 2022; Putnick & Bornstein, 2016; Widaman & Reise, 1997).  

In the current Chapter, the following measurement invariance models were tested: 1) 

no equality constraints (configural model), 2) equality constraints placed on factor loadings 

(metric model), 3) equality constraints placed on factor loadings in addition to item intercepts 

(scalar model), 4) equality constraints placed on factor loadings and item intercepts in 

addition to residual variances (strict model). To test for incremental levels of measurement 

invariance, acceptable standalone fit (Section 2.2.3.5) as well as negligible change in the fit 

indices between models was required: specifically, CFI < 0.010, RMSEA < 0.015, and 

SRMR < 0.030 (Chen, 2007). 

Any non-negligible change in the fit indices would prompt inspection of the 

modification indices and a partial invariance model would be tested if appropriate. Testing 

for partial invariance is generally considered tenable (Putnick & Bornstein, 2016), though 

there is notable debate around this issue (Steinmetz, 2013; Widaman & Reise, 1997). 
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2.2.3.7 – Pseudo replication of longitudinal measurement model 

For paranoia and hallucinations, a post hoc analysis of longitudinal measurement 

invariance was also conducted in the cotwin subsample because the measurement model that 

was assessed for longitudinal invariance in the main sample was derived using EFA. For NS, 

the best fitting model was not derived from EFA, but pseudo replication of the theoretical 

model was carried out as part of the planned analyses in Chapter 6. The results are reported in 

the current Chapter for consistency along with the paranoia and hallucinations analyses.  

2.2.3.8 – Data modelling 

Any data that was missing was assumed to be missing at random, and was 

accommodated using FIML estimation. A robust version of the FIML estimator was used 

(MLR) to correct for multivariate nonnormality of the residuals. MLR adjusts both the SE 

and the overall test statistic. EFA models were estimated using the psych package in R 

(version 2.5.2). Cross-sectional CFA models were run using the lavaan package (Rosseel, 

2012) in R, and longitudinal measurement invariance models were run in Mplus (version 

8.6). 

 

2.3 – Results 

 Descriptive statistics for paranoia, hallucinations, and NS at each age are shown in 

Tables 2.1, 2.2, and 2.3, respectively. Cross-age correlation coefficients are shown in 

Supplementary Table 2.2.  

 

2.3.1 – Paranoia 

2.3.1.1 – EFA 

The results of the parallel analysis suggested to retain seven factors at age 16, six at 

age 17, and five at age 22. Supplementary Table 2.3 shows the factor loadings derived from 
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the EFA fit to the data at each age. The EFA model results showed that the basic 

configuration of items to factors was largely consistent at ages 16 and 17, with only the item-

to-factor configuration for item 4 differing across ages. The basic configuration of items to 

factors at age 22 differed to that of ages 16 and 17. 

2.3.1.2 – CFA 

Supplementary Table 2.4 shows the results of the CFA at each age. At each age, the 

model suggested by the EFA at the corresponding age provided the best fit to the data, both 

in terms of standalone fit and comparative fit.  

Because the structure of the EFA models differed across ages, in the interest of 

parsimony, the 5-factor (age 22) model was also specified as a CFA at ages 16 and 17. At 

ages 16 and 17, the 5-factor model provided acceptable fit to the data and showed better fit 

than both the 1-factor and 3-factor models. The 5-factor model was taken forward as the base 

model. 

2.3.1.3 – Pseudo replication of EFA as a CFA model 

The 5-factor model showed acceptable standalone fit when run as a CFA in the 

cotwin subsample at age 16 (Supplementary Table 2.5). At age 17, the latent covariance 

matrix for the 5-factor model was associated with a nonpositive definite outcome (i.e., 

indicating either a correlation greater than or equal to one, a negative variance, or a linear 

dependency between factors). At age 22, the 5-factor model showed acceptable standalone fit 

in the cotwin subsample.  

2.3.1.4 – Longitudinal measurement invariance analyses 

Table 2.4 shows the results of the longitudinal measurement invariance analysis for 

paranoia. The initial models that tested for configural and metric invariance showed 

acceptable fit and negligible change. However, the initial scalar model had a non-plausible 

model-implied covariance matrix, so the models (configural, metric) were re-run with 
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correlated residual variances between items 2 and 8 at each age: This decision was based on 

inspection of the modification indices, and the similar item wording was considered 

theoretical grounds by which to make the modification (i.e., “There might be negative 

comments being spread about me”, and “Bad things are being said about me behind my 

back”). Specifying the residual correlation led to plausibility of the model-implied covariance 

matrix. 

Further constraining the item-level intercepts in the scalar model resulted in a model 

with non-negligible change in CFI value (> 0.010). A partial scalar invariance model was run 

following inspection of the modification indices, in which the parameters for item 12 

(“People might be conspiring against me”) were free to vary across time points. The partial 

scalar invariance model (with parameters for item 12 free to vary) provided acceptable 

standalone fit and negligible change in fit indices. The subsequently run partial strict 

invariance model provided acceptable standalone fit but the CFI change was unacceptable (> 

0.010), so partial scalar invariance was concluded.  

2.3.1.5 – Post hoc pseudo replication of longitudinal measurement model  

When the 5-factor EFA model suggested in the main sample was specified as a 

configural model in the cotwin subsample, an improper solution was obtained. Specifically, 

the latent factor specified at age 17 indicated by items 2 and 13 was associated with a 

nonpositive definite outcome i.e., indicating either a correlation greater than or equal to one, 

a negative variance, or a linear dependency between factors. 

 2.3.1.6 – Post hoc longitudinal measurement invariance tests  

Considering the configural consistency between the EFA models at ages 16 and 17 

(Table 2.3, discussed in Section 2.3.1.1), as a post hoc sensitivity check – the 6-factor and 7-

factor models were also specified as base models. However, the configural model for both 

structures resulted in an improper solution, with at least one element of the latent variable 



 74 

covariance matrix being non-positive definite (i.e., indicating either a correlation greater than 

or equal to one, a negative variance, or a linear dependency between factors). For both 

models, the issue concerned the latent factor specified at age 22 as indicated by items 3 and 5.  

 

2.3.2 – Hallucinations 

2.3.2.1 – EFA 

The results of the parallel analysis suggested to retain three factors at each age. 

Supplementary Table 2.6 shows the factor loadings derived from the EFA fit to the data at 

each age. The EFA model results showed that the configuration of items to factors was 

consistent at ages 16 and 17. The configuration of items to factors at age 22 differed to that of 

ages 16 and 17, though with some notable consistency (e.g., the clustering of items 1-3, and 

items 4 and 9).  

2.3.2.2 – CFA 

Supplementary Table 2.7 shows the results of the CFA at each age. At ages 16 and 17, 

the 3-factor model suggested by the EFA provided the best fit to the data, both in terms of 

standalone fit and comparative fit. At age 22, the 4-factor theoretical model provided the best 

fit.  

Because the best fitting models differed across ages, in the interest of parsimony (i.e., 

selecting the 3-factor EFA model over the 4-factor theoretical model), the 3-factor model that 

was suggested at ages 16 and 17 was also specified as a CFA at age 22. At age 22, this model 

showed good standalone fit and showed better fit than both the 1-factor model and the 3-

factor model suggested by the EFA at 22. The (age 16/age 17) 3-factor model was taken 

forward as the base model. 
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2.3.2.3 – Pseudo replication of EFA as a CFA model 

The EFA models that were suggested by the data also showed good standalone fit 

when run as CFA models in the cotwin subsample (Supplementary Table 2.8). 

2.3.2.4 – Longitudinal measurement invariance analyses 

Table 2.5 shows the results of the longitudinal measurement invariance analysis. The 

configural and metric invariance models showed acceptable fit and negligible change. Further 

constraining the item-level intercepts in the scalar model resulted in a model with non-

negligible change in CFI value (> 0.010). A partial scalar invariance model was run 

following inspection of the modification indices, in which the parameters for item 1 (“Hear 

sounds or music that people near you don’t hear?”) were free to vary across time points. The 

partial scalar invariance model (with parameters for item 1 free to vary) provided acceptable 

standalone fit and negligible change in fit indices. The subsequently run partial strict 

invariance model resulted in at least one element of the latent variable covariance matrix 

being non-positive definite (i.e., indicating either a correlation greater than or equal to one, or 

a negative variance), and partial scalar invariance was concluded.  

2.3.2.5 – Post hoc pseudo replication of longitudinal measurement model  

When the 3-factor EFA model suggested in the main sample was assessed for 

longitudinal invariance in the cotwin subsample (Supplementary Table 2.9), the results were 

unchanged. That is, the configural and metric models were acceptable, but the scalar model 

resulted in a CFI change > 0.010. Item 1 parameters were freed, and the resulting fit was 

acceptable. The partial strict model resulted in an improper solution and partial scalar 

invariance was concluded.  
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2.3.3 – Negative symptoms 

2.3.3.1 – EFA 

The results of the parallel analysis suggested to retain four factors at each age. 

Supplementary Table 2.10 shows the factor loadings derived from the EFA fit to the data at 

each age. The EFA model results showed that the configuration of items to factors was 

consistent at ages 16 and 17. The configuration of items to factors at age 22 differed to that of 

ages 16 and 17, though with some notable consistency (e.g., the clustering of items 1 and 2, 

and items 3 and 4). 

2.3.3.2 – CFA 

Supplementary Table 2.11 shows the results of the CFA at each age. The 5-factor 

model showed the best fit to the data at each age, both in terms of standalone fit and 

comparative fit. The 5-factor model was taken forward as the base model. 

2.3.3.3 – Pseudo replication of EFA as a CFA model 

The EFA models that were suggested by the data also showed good standalone fit 

when run as CFA models in the cotwin subsample (Supplementary Table 2.12).  

2.3.3.4 – Longitudinal measurement invariance analyses 

Table 2.6 shows the results of the longitudinal measurement invariance analysis. The 

configural, metric and scalar invariance models showed acceptable fit and negligible change 

in fit indices. Further constraining the residual variances in the strict model resulted in a 

model with non-negligible change in CFI value (> 0.010). A partial strict invariance model 

was run following inspection of the modification indices, in which the parameters for item 2 

(“My child seems emotionally ‘flat’”) were free to vary across time points. The partial strict 

invariance model (with parameters for item 2 free to vary) provided acceptable standalone fit 

and negligible change in fit indices, and partial strict invariance was concluded.  
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2.3.3.5 – Planned pseudo replication of longitudinal measurement model  

The same pattern of results was observed for the cotwin subsample as for the main 

subsample (Supplementary Table 2.13). That is, the configural, metric and scalar invariance 

models showed acceptable fit and negligible change in fit indices. Further constraining the 

residual variances in the strict model resulted in a model with non-negligible change in CFI 

value (> 0.010). A partial strict invariance model was run in which the parameters for item 2 

were free to vary across time points. The partial strict invariance model provided acceptable 

standalone fit and negligible change in fit indices, and partial strict invariance was concluded.  
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Table 2.1 

Descriptive Statistics for Paranoia  

 Age 16 

 

Age 17 Age 22 

 

N 

Range  

Mean 

95% CI 

Variance 

SD 

Median 

Mode 

N > 3 SD 

Skewness 

Coefficient α 

 

4,943 

0-75 

12.20 

11.90, 12.50 

113.86 

10.67 

10 

0 

61 (1.23%) 

1.57 

0.93 

 

1,468 

0-70 

14.64 

13.95, 15.33 

183.69 

13.55 

11 

0 

20 (1.36%) 

1.43 

0.95 

 

4,166 

0-74 

10.13 

9.78, 10.47 

130.35 

11.42 

6 

0 

69 (1.66%) 

1.85 

0.94 

 

Note. Scale range 0-75.  
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Table 2.2 

Descriptive Statistics for Hallucinations  

 16 years 

 

17 years 22 years 

 

N 

Range  

Mean 

95% CI 

Variance 

SD 

Median 

Mode 

N > 3 SD 

Skewness 

Coefficient α 

 

4,949 

0-45 

4.81 

4.64, 4.98 

38.20 

6.18 

2 

0 

70 (1.41%) 

2.08 

0.88 

 

1,471 

0-42 

6.76 

6.38, 7.15 

56.94 

7.55 

4 

0 

20 (1.36%) 

1.56 

0.90 

 

4,164 

0-41 

1.75 

1.62, 1.87 

17.83 

4.22 

0 

0 

81 (1.95%) 

4.50 

0.88 

 

Note. Scale range 0-45. 
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Table 2.3 

Descriptive Statistics for Negative Symptoms  

 Age 16 

 

Age 17 Age 22 

 

N 

Range  

Mean (SD) 

95% CI 

Variance 

Median 

Mode 

Skewness 

N > 3 SD 

Coefficient α 

 

4,971 

0-24 

2.21 (3.21) 

2.13, 2.30 

10.30 

1.00 

0.00 

2.40 

88 (1.77%) 

0.83 

 

 

1,468 

0-24 

3.01 (4.07) 

2.80, 3.21 

16.55 

2.00 

0.00 

2.11 

26 (1.77%) 

0.88 

 

 

5,177 

0-24 

2.66 (3.64) 

2.56, 2.76 

13.24 

1.00 

0.00 

2.27 

109 (2.11%) 

0.84 

 

 

Note. Scale range 0-24.  
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Table 2.4 

Longitudinal Measurement Invariance Analysis of Paranoia in Main Subsample: Model Fit Results 

 Parameters Fit indices Comparison of fit indices between 

nested models 

CFI RMSEA [90% CI] SRMR Δ CFI Δ RMSEA  Δ SRMR 

Configural invariance model (no 

constraints) a 

276 0.940 0.028 [0.027, 0.029] 0.035 - - - 

Metric invariance model (factor 

loadings constrained) a 

256 0.936 0.028 [0.028, 0.029] 0.041 0.004 0.000 -0.006 

Scalar invariance model (factor 

loadings and intercepts 

constrained) a 

237 0.922 0.031 [0.030, 0.032] 0.044 0.014 -0.003 -0.003 

Partial scalar invariance model 

(factor loadings and intercepts 

constrained) a, b 

241 0.926 0.030 [0.029, 0.031] 0.042 0.010c -0.002 c -0.001 c 

Partial strict invariance model 

(factor loadings, intercepts and 

residual variances constrained) a, b 

218 0.913 0.032 [0.032, 0.033] 0.053 0.013 -0.002 -0.009 

 

Note. N = 6,032. CFI = comparative fit index. RMSEA = root mean square error of approximation. SRMR = standardized root mean square residual. Δ denotes change value. a Correlated 

residual variance between item 2 and item 8. b Item 12 parameters free to vary. c Change values compared to metric invariance model. The measurement model was a 5-factor model.   
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Table 2.5 

Longitudinal Measurement Invariance Analysis of Hallucinations in Main Subsample: Model Fit Results 

 Parameters Fit indices Comparison of fit indices between 

nested models 

CFI RMSEA [90% CI] SRMR Δ CFI Δ RMSEA  Δ SRMR 

Configural invariance model (no 

constraints) 

144 0.978 0.016 [0.015, 0.018] 0.025 - - - 

Metric invariance model (factor 

loadings constrained) 

132 0.978 0.016 [0.014, 0.017] 0.028 0.000 0.000 -0.003 

Scalar invariance model (factor 

loadings and intercepts 

constrained) 

120 0.965 0.020 [0.018, 0.021] 0.033 0.013 -0.004 -0.005 

Partial scalar invariance model 

(factor loadings and intercepts 

constrained) a 

122 0.974 0.017 [0.015, 0.018] 0.029 0.004 b -0.001 b -0.001 b 

 

Note. N = 6,032. CFI = comparative fit index. RMSEA = root mean square error of approximation. SRMR = standardized root mean square residual. Δ denotes change value. a Item 1 intercepts 

free to vary. b Change values compared to metric invariance model. The partial strict model resulted in non-positive definite latent variable matrix so the results are not reported. The 

measurement model was a 3-factor model.   
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Table 2.6 

Longitudinal Measurement Invariance Analysis of Negative Symptoms in Main Subsample: Model Fit Results 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Note. N = 6,330. CFI = comparative fit index. RMSEA = root mean square error of approximation. SRMR = standardized root mean square residual. Δ denotes change value. a The change in 
CFI value from the scalar model to the strict model exceeded the acceptable limit (of 0.010). Consultation of the modification indices and subsequent free estimation of the item 2 parameters 

provided acceptable deterioration in model fit. b Change values compared to scalar invariance model. The measurement model was a 5-factor model.  

  

 

 

Parameters 

Fit indices Comparison of fit indices between 

nested models 

CFI RMSEA [90% CI] SRMR Δ CFI Δ RMSEA  Δ SRMR 

Configural invariance model (no 

constraints) 

189 0.992 0.014 [0.012, 0.016] 0.016 - - - 

Metric invariance model (factor 

loadings constrained) 

183 0.991 0.014 [0.012, 0.016] 0.018 0.001 0.000 0.002 

Scalar invariance model (factor 

loadings and intercepts 

constrained) 

177 0.988 0.016 [0.014, 0.018] 0.020 0.003 -0.002 -0.002 

Strict invariance model (factor 

loadings, intercepts and residual 

variances constrained) 

165 0.968 0.025 [0.023, 0.027] 0.030 0.020 -0.009 -0.010 

Partial strict invariance model 

(factor loadings, intercepts and 

residual variances constrained, 

excluding item 2) a 

171 0.980 0.020 [0.019, 0.022] 0.026 0.008 b -0.004 b -0.006 b 
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2.4 – Discussion  

This Chapter investigated the extent to which the measurement of paranoia, 

hallucinations, and NS in the community across ages 16, 17, and 22 could be considered 

invariant. Partial scalar invariance was found for paranoia and hallucinations, and partial 

strict invariance was found for NS.  

The aim of this Chapter was to investigate longitudinal measurement invariance for 

the purposes of subsequent latent growth modelling (Chapters 3 and 4). For paranoia and 

hallucinations, to the extent that partial scalar level invariance was found, the results suggest 

that the longitudinal measurement of these constructs is partially invariant. Thus, any changes 

that may subsequently be observed across age can be considered at least in part to reflect 

‘true’ change, and not merely a recalibration of the measures (Grimm et al., 2017). These 

findings are useful for proceeding to latent growth modelling of these PEs dimensions. They 

are also the first to my knowledge to demonstrate longitudinal measurement invariance for 

PEs dimensions in the community. 

Notwithstanding, the results of the EFA suggested a different configuration of items 

to factors for both paranoia and hallucinations at age 22, compared to at ages 16 and 17 (with 

minor deviations observed between 16 and 17 for paranoia). Whilst seemingly contradictory 

to the findings of longitudinal measurement invariance, these results both reflect and 

highlight an important difference between EFA and CFA. That is, they suggest that when all 

items were allowed to load onto all factors in the EFA, the unrestricted factor structure shows 

some variation across ages, particularly at age 22 compared to at ages 16 and 17. However, 

when a more restricted structure was imposed on the data by specifying an EFA model with 

no cross-loadings (i.e., as a CFA), the factor structure was both adequately described at each 

age, as suggested by the cross-sectional CFA results, and was equivalent across ages, as 

suggested by the longitudinal invariance results. Of note however, when the factor structures 
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suggested by the EFA for paranoia at ages 16 (7-factor) and 17 (6-factor) were subjected to 

post hoc tests of longitudinal configural invariance, a proper solution could not be obtained. 

This may suggest that the configuration of items to factors at age 22 is less flexible than at 

ages 16 and 17. The improper solution that was obtained for the 5-factor longitudinal 

paranoia model in the cotwin subsample may further indicate that the (sub)sample 

variance/covariance involved with items 2 and 13 at age 17 may be less generalisable than 

the variance and covariance for the other items and at the other ages (Osborne & Fitzpatrick, 

2019).  

As hypothesised, longitudinal measurement invariance of NS was found for a 5-factor 

structure, similar to what best describes NS in clinical samples (Ahmed et al., 2019; Chang et 

al., 2020; Strauss et al., 2018). As discussed in more detail in Section 6.4, the results 

presented here add to clinical findings suggesting that a 5-factor model appears to be an 

empirically robust representation of the data. As was discussed for paranoia and 

hallucinations, above, the results suggest that the measurement of NS shows longitudinal 

invariance and thus any changes across age can be considered (at least in part) to reflect 

change at the construct level. Like for paranoia and hallucinations, the results of the EFA 

suggested that the configuration of items to factors at age 22 was slightly different compared 

to at ages 16 and 17.  

Notably, one item for each of paranoia, hallucinations, and NS was noninvariant. The 

noninvariance at the scalar level that was observed for the items, “People might be 

conspiring against me” (paranoia), and “Hear sounds or music that people near you don’t 

hear” (hallucinations), should be considered as measuring something potentially different at 

the different ages, particularly in emerging adulthood (age 22) compared to in adolescence 

(ages 16 and 17). Specifically, at the scalar-level, this suggests that the specific noninvariant 

items differ across ages for reasons other than the underlying factor. For NS, noninvariance 
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was identified at the level of residual variance for the item, “My child seems emotionally 

‘flat’”. This noninvariance could reflect differences in the observed score variances, in the 

unique variances, and or in measurement error (Putnick & Bornstein, 2016). 

It is noted that some methodologists regard that partial scalar invariance may be less 

acceptable for subsequent analysis of observed scores (as for the current thesis; Chapters 4 

and 5) than of latent factors (Steinmetz, 2013): Whilst this should be considered when 

interpreting the latent growth modelling findings for paranoia and hallucinations that are 

subsequently reported in Chapters 3 and 4 – the simulations that informed this perspective 

(Steinmetz, 2013) were for noninvariance of either 50% or one third of a small number of 

items (either 4 or 6). It is a relative strength of the current study that noninvariance was only 

found for ~ 7% of 15 items (paranoia) and ~ 11% of nine items (hallucinations).  

A potential limitation is that an extensive comparison of theory-based models was not 

conducted for paranoia and hallucinations as it was for NS (i.e., owing to the potential 

clinical relevance of this testing for NS, discussed in Sections 1.2.1 and 1.6, and in Chapter 

6). It is therefore possible that different, better fitting representations of the data would give 

rise to different properties of invariance across age. Nonetheless, in the current context of 

conducting longitudinal measurement invariance analysis prior to conducting growth 

modelling of observed total scores – invariance of any measurement model is informative, 

reflecting that measurement of the items that underlie the observed total scores can be 

considered equivalent across time.  

In summary, this Chapter found that a 5-factor structure of paranoia, a 3-factor 

structure of hallucinations, and a 5-factor structure of NS were invariant across ages 16, 17, 

and 22 in the community. The partial nature of this invariance and the observed configural 

differences suggested by the EFA notwithstanding, these results suggested that any stability 

or change that is subsequently observed across age can be understood at least in part as 
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reflecting stability or change at the construct level, rather than at the level of the 

measurement instrument. 
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2.5 – Appendix 

 

Supplementary Information 2.1 

 

Paranoia Subscale of the Specific Psychotic Experiences Questionnaire 

 

1. I need to be on my guard against others  

2. There might be negative comments being spread about me  

3. People are deliberately trying to irritate me  

4. I might be being observed or followed  

5. People are trying to upset me  

6. People are looking at me in an unfriendly way 

7. People are being hostile towards me 

8. Bad things are being said about me behind my back 

9. Someone has bad intentions towards me  

10. Someone has it in for me  

11. People would harm me if given an opportunity 

12. People might be conspiring against me 

13. People are laughing at me 

14. I am under threat from others 

15. I can detect coded messages about me in the press/TV/internet 
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Supplementary Information 2.2 

 

Hallucinations Subscale of the Specific Psychotic Experiences Questionnaire 

 

1. Hear sounds or music that people near you don’t hear? 

2. See things that other people cannot? 

3. Feel that someone is touching you, but when you look nobody is there? 

4. Hear noises or sounds when there is nothing about to explain them? 

5. Detect smells which don’t seem to come from your surroundings? 

6. See shapes, lights, or colours even though there is nothing really there? 

7. Notice smells or odours that people next to you seem unaware of? 

8. Experience unusual burning sensations or other strange feelings in or on your body that 

can’t be explained? 

9. Hear voices commenting on what you’re thinking or doing? 
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Supplementary Information 2.3 

Negative Symptoms Subscale of the Specific Psychotic Experiences Questionnaire 

 

1. My child often fails to smile or laugh at things others would find funny 

2. My child seems emotionally ‘flat’, for example, rarely changes the emotions he/she shows 

3. My child usually gives brief, one word replies to questions, even if encouraged to say more 

4. My child often does not have much to say for himself/herself 

5. My child often sits around for a long time doing nothing 

6. My child has a lack of energy and motivation  

7. My child has very few interests or hobbies 

8. My child has few or no friends 

 

The following items were not included in the current analyses: 

9. My child does not pay attention when being spoken to 

10. My child is often inattentive and appears distracted
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Supplementary Table 2.1 

 

The Twins Early Development Study (TEDS) Sample 

 

 

 

 

N families contacted 

 

N families returned data 

 

% return rate 

 

N (approximate) not 

contacted from ONS sample 

owing to exclusions 1 

 

N families that responded to 

initial ONS invitation,  

N = 16,810 (‘ONS sample’) 

 

    

1st contact study 16,302 13,488 82.74% 500  

16-year study  10,874 5,123 47.11% 5,900 

17-year study  1,773 1,475 83.19% See 2 below 

22-year study a,b 10,451 5,352 51.21% 6,250 

22-year study a,c 8,611 5,184 60.20% 8,210 

 

Note. a ‘22-year study’ is the called the 21-year study on the TEDS website. b Parent-rated data. c Twin self-rated data. 1 Exclusions were due to families withdrawing from the study, address 

problems, severe medical conditions, families being inactive, families with no recent data, and for ‘other reasons’, which are detailed in full on the TEDS data dictionary 

(https://www.teds.ac.uk/datadictionary/studies/returns/samples.htm). 2 The sample at 17 was a selected subset of 1,773 of the families who had returned data at 16.  

https://www.teds.ac.uk/datadictionary/studies/returns/samples.htm
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Supplementary Table 2.2 

Correlations between Paranoia, Hallucinations, and Negative Symptoms 

  

Para age 16 

 

 

Para age 17 

 

 

Para age 22 

 

Halls age 16 

 

 

Halls age 17 

 

Halls age 22 

 

NS age 16 

 

NS age 17 

 

Para age 17 

 

 

0.68 [0.65, 0.71]  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Para age 22 

 

 

0.42 [0.39, 0.45] 

 

0.55 [0.50, 0.59] 

 

 

 

 

 

 

 

 

 

 

 

 

Halls age 16 

 

 

0.47 [0.45, 0.49] 

 

0.49 [0.45, 0.53] 

 

0.26 [0.23, 0.29] 

 

 

 

 

 

 

 

 

 

 

Halls age 17  

 

 

0.40 [0.35 0.44] 

 

0.55 [0.52, 0.59] 

 

0.29 [0.23, 0.34] 

 

0.66 [0.63, 0.68] 

 

 

   

 

Halls age 22  

 

 

0.20 [0.16, 0.23] 

 

0.33 [0.28, 0.39] 

 

0.36 [0.33, 0.38] 

 

0.33 [0.26, 0.36] 

 

0.42 [0.37, 0.47]  

 

 

  

 

NS age 16  

 

 

0.13 [0.10, 0.15] 

 

0.16 [0.10, 0.20] 

 

0.11 [0.07, 0.14] 

 

0.11 [0.08, 0.14] 

 

0.13 [0.08, 0.18] 

 

0.11 [0.08, 0.15] 

 

 

 

 

NS age 17 

 

 

0.19 [0.14, 0.24] 

 

0.19 [0.13, 0.23] 

 

0.16 [0.10, 0.22] 

 

0.15 [0.10, 0.20] 

 

0.15 [0.10, 0.20] 

 

0.08 [0.02, 0.14] 

 

0.69 [0.66, 0.72] 

 

 

 

NS age 22 

 

 

0.07 [0.04, 0.10] 

 

0.11 [0.05, 0.16] 

 

0.12 [0.09, 0.16] 

 

0.08 [0.05, 0.11] 

 

0.11 [0.06, 0.17] 

 

0.12 [0.09, 0.15] 

 

0.51 [0.48, 0.53] 

 

0.57 [0.53, 0.61] 

Note. N = 989-5,177. Data from one randomly selected twin per pair was used, with phenotypic pairwise deletion. Para = paranoia. Halls = hallucinations. NS = negative symptoms. 

Spearman’s rank correlation coefficient [95% confidence intervals]. Bold typeset indicates within-trait correlations.  
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Supplementary Table 2.3 

 

Exploratory Factor Analysis of Paranoia Items in Main Subsample 

 

 Age 16 (63%) Age 17 (70%) Age 22 (65%) 

F1 

(14%) 

F2 

(14%) 

F3 

(11%) 

 

F4 

(9%) 

F5 

(6%) 

F6 

(5%) 

F7 

(4%) 

F1 

(19%) 

F2 

(16%) 

F3 

(14%) 

F4 

(9%) 

F5 

(8%) 

F6 

(4%) 

F1 

(20%) 

F2 

(19%) 

F3  

(12%) 

F4 

(10%) 

F5 

(5%) 

1. I need to be 

on my guard 

against others  

0.09 0.06 0.05 0.04 0.06 0.02 0.61 0.16 0.16 0.08 -0.03 0.06 0.54 0.74 0.16 0.00 -0.03 0.01 

2. There might 

be negative 

comments 

being spread 

about me 

-0.04 0.69 0.01 0.08 0.10 -0.05 0.16 -0.03 0.76 0.11 0.06 -0.08 0.16 0.66 -0.01 0.00 0.33 -0.02 

3. People are 

deliberately 

trying to 

irritate me 

-0.01 0.00 0.01 0.85 -0.01 -0.02 0.02 -0.03 0.00 0.83 0.01 -0.03 0.07 0.74 0.02 0.09 0.01 0.08 

4. I might be 

being 

observed or 

followed  

0.02 -0.03 0.03 0.01 0.68 -0.01 0.04 0.44 0.19 0.20 -0.10 0.04 0.06 0.42 -0.03 0.41 -0.04 0.26 

5. People are 

trying to upset 

me  

0.12 0.11 0.07 0.39 0.18 0.20 -0.09 0.06 0.05 0.66 0.09 0.16 -0.06 0.24 0.24 0.18 0.05 0.40 

6. People are 

looking at me 

in an 

unfriendly 

way 

-0.04 0.24 0.12 0.05 0.17 0.41 0.06 0.07 0.27 0.13 0.01 0.51 0.05 0.36 0.11 0.23 0.25 0.01 

7. People are 

being hostile 

towards me 

0.13 0.02 0.21 0.12 0.01 0.44 0.11 0.10 -0.01 0.24 0.16 0.46 0.13 0.24 0.06 0.07 0.57 0.14 

8. Bad things 

are being said 

about me 

behind my 

back 

0.04 0.81 0.10 0.00 -0.03 0.06 -0.02 0.04 0.78 -0.02 0.09 0.15 -0.04 -0.04 0.43 0.05 0.27 0.36 

9. Someone 

has bad 

-0.01 0.10 0.66 0.06 0.04 0.09 0.05 0.09 0.18 0.12 0.55 0.14 0.06 0.10 0.79 -0.07 -0.3 0.07 
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intentions 

towards me  

10. Someone 

has it in for 

me  

0.11 0.00 0.72 0.02 0.03 -0.01 0.02 0.26 0.11 0.12 0.58 -0.01 -0.03 0.07 0.13 0.33 0.46 -0.07 

11. People 

would harm 

me if given an 

opportunity 

0.68 0.00 0.07 0.10 -0.03 -0.01 0.07 0.60 -0.02 0.06 0.22 0.06 0.04 -0.01 0.77 0.08 -0.02 0.02 

12. People 

might be 

conspiring 

against me 

0.61 0.10 0.01 0.01 -0.06 0.15 -0.05 0.73 0.10 -0.04 0.12 0.03 -0.01 0.00 0.05 0.72 0.05 0.03 

13. People are 

laughing at me 

0.27 0.47 -0.14 0.09 0.08 0.14 -0.01 0.24 0.45 0.11 -0.06 0.15 0.05 0.15 0.40 0.31 0.10 -0.12 

14. I am under 

threat from 

others 

0.72 -0.01 -0.01 -0.03 0.06 0.08 0.08 0.82 -0.06 0.02 0.02 0.04 0.09 0.01 0.61 0.07 0.09 -0.13 

15. I can 

detect coded 

messages 

about me in 

the press / TV 

/ internet 

0.20 0.10 0.16 0.01 0.16 -0.10 -0.11 0.43 0.15 0.18 -0.15 -0.10 -0.19 -0.08 0.47 -0.03 0.00 0.03 

 

 

Supplementary Table 2.3.a  

 

Factor Correlations 

 

 Age 16 

 

Age 17a Age 22a 

F1 F2 F3 F4 F5 F6 F1 F2 F3 F4 F5 F1 F2 F3 F4 

F2 0.53 1.00 - - - - 0.57 1.00 - - - 0.58 1.00 - - 

F3 0.73 0.65 1.00 - - - 0.59 0.73 1.00 - - 0.70 0.56 1.00 - 

F4 0.52 0.65 0.59 1.00 - - 0.68 0.50 0.50 1.00 - 0.63 0.47 0.52 1.00 

F5 0.60 0.60 0.58 0.57 1.00 - 0.52 0.58 0.60 0.48 1.00 0.48 0.45 0.38 0.23 

F6 0.42 0.57 0.48 0.47 0.42 1.00 0.36 0.45 0.52 0.20 0.28 - - - - 

F7 0.42 0.44 0.42 0.51 0.56 0.25 - - - - - - - - - 

 

Note. N age 16 = 4,953. N age 17 = 1,472. N age 22 = 4,225. F = factor. Principal axis factoring with oblique (Oblimin) rotation. Bold typeset indicates strongest factor loading for each item at 

each age. Mean item complexity at 16 = 1.7. Mean item complexity at 17 = 1.5. Mean item complexity at 22 = 1.8.  
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Supplementary Table 2.4 

 

Confirmatory Factor Analysis of Paranoia in Main Subsample: Model Fit Results 

 

 Parameters 

 

Log-likelihood AIC BIC 2 value (df) CFI RMSEA [90% CI] SRMR 

 

Age 16 

        

1-factor model 45 -82,654.065 165,398.130 165,690.952 2,280.037 (90), p < .001 0.895 0.099 [0.096, 0.103] 0.044 

3-factor model 47 -82,175.205 164,444.410 164,750.246 1,808.868 (88), p < .001 0.918 0.089 [0.085, 0.092] 0.043 

7-factor (EFA) model 64 -80,992.031 162,112.062 162,528.520 636.086 (71), p < .001 0.974 0.056 [0.025, 0.060] 0.023 

5-factor (EFA at 22) model 53 -81817.452 163740.904 164085.783 1,460.301 (82), p < .001 0.935 0.082 [0.078, 0.085] 0.038 

 

Age 17 

        

1-factor model 45 -26,845.349 53,780.699 54,018.884 1,193.192 (90), p < .001 0.863 0.132 [0.125, 0.139] 0.052 

3-factor model 47 -26,584.367 53,262.733 53,511.505 954.540 (88), p < .001 0.894 0.118 [0.111, 0.124] 0.052 

6-factor (EFA) model 59 -26,038.266 52,194.532 52,506.820 445.131 (76), p < .001 0.957 0.081 [0.074, 0.088] 0.046 

5-factor (EFA at 22) model 53 -26420.653 52947.306 53227.836 806.819 (82), p < .001 0.913 0.111 [0.104, 0.118] 0.05 

 

Age 22 

        

1-factor model 45 -66,527.338 133,144.675 133,429.737 2,225.326 (90), p < .001 0.877 0.119 [0.115, 0.123] 0.056 

3-factor model 47 -66,227.482 132,548.964 132,846.696 1,986.397 (88), p < .001 0.891 0.113 [0.109, 0.118] 0.056 

5-factor (EFA) model 53 -65,234.209 130,574.417 130,910.157 1,248.103 (82), p < .001 0.936 0.090 [0.085, 0.094] 0.042 

 

Note. N age 16 = 4,950. N age 17 =1,470. N age 22 = 4,166. EFA = exploratory factor analysis. AIC = Akaike’s Information Criterion. BIC = Bayesian Information Criterion. 2 = chi-square 

value. CFI = comparative fit index. RMSEA = root mean square error of approximation. SRMR = standardized root mean square residual. Bold typeset represents best fitting model at each 

age. 
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Supplementary Table 2.5 

 

Confirmatory Factor Analysis of Paranoia in Cotwin Subsample (of Model Suggested by EFA in Main Subsample) 

 

 Parameters 

 

Log-likelihood AIC BIC 2 value (df) CFI RMSEA [90% CI] SRMR 

 

Age 16 

        

5-factor (EFA at 22) 

model 

53 -81,814.842 163,735.684 164,080.659 1,367.760 (82), p < .001 0.936 0.081 [0.078, 0.085] 0.040 

 

Age 22 

        

5-factor (EFA) model 53 -65,713.679 131,533.358 131,869.212 1,262.912 (82), p < .001 0.935 0.091 [0.087, 0.096] 0.039 

 

Note. N age 16 = 4,959. N age 22 = 4,175. EFA = exploratory factor analysis. AIC = Akaike’s Information Criterion. BIC = Bayesian Information Criterion. 2 = chi-square value. CFI = 

comparative fit index. RMSEA = root mean square error of approximation. SRMR = standardized root mean square residual. At age 17, the 5-factor EFA model (suggested in the main 

subsample at age 22) resulted in a nonpositive definite outcome so the results are not reported.   
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Supplementary Table 2.6 

 

Exploratory Factor Analysis of Hallucinations Items in Main Subsample 

 

Item Standardised loadings (and variance explained by factor) 

Age 16 (54%) Age 17 (58%) Age 22 (58%) 

F1 

(21%) 

F2 

(17%) 

F3 

(16%) 

F1 

(23%) 

F2 

(18%) 

F3 

(17%) 

F1 

(31%) 

 

F2 

(15%) 

F3 

(12%) 

1. Hear sounds or music that people near you don’t hear? -0.05 0.80 0.00 0.83 -0.07 0.03 0.88 -0.05 -0.02 

2. See things that other people cannot? 0.31 0.49 -0.01 0.60 0.09 0.11 0.70 0.05 0.02 

3. Feel that someone is touching you, but when you look nobody 

is there? 

0.11 0.59 0.14 0.74 0.11 0.00 0.55 0.05 0.18 

4. Hear noises or sounds when there is nothing about to explain 

them? 

-0.05 0.06 0.80 0.20 0.69 -0.04 0.38 0.50 -0.03 

5. Detect smells which don’t seem to come from your 

surroundings? 

0.46 0.14 0.20 0.19 0.16 0.44 0.01 0.01 0.97 

6. See shapes, lights, or colours even though there is nothing 

really there? 

0.60 0.05 0.00 0.20 0.07 0.45 0.43 0.22 -0.06 

7. Notice smells or odours that people next to you seem unaware 

of? 

0.78 -0.02 0.00 -0.01 -0.01 0.83 0.57 0.09 0.11 

8. Experience unusual burning sensations or other strange feelings 

in or on your body that can’t be explained? 

0.53 0.06 0.05 0.16 0.21 0.26 0.53 -0.06 0.06 

9. Hear voices commenting on what you’re thinking or doing? 0.09 -0.06 0.72 -0.07 0.87 0.05 -0.03 0.92 0.03 

 

 

Supplementary Table 2.6.a  

 

Factor Correlations 

 

 Age 16 Age 17 

 

Age 22 

F1 F2 F1 F2 F1 F2 F3 

F2 0.77 1.00 0.67 1.00 0.63 1.00 - 

F3 0.69 0.69 0.81 0.65 0.62 0.43 1.00 

 

Note. N at age 16 = 4,953. N at age 17 = 1,472. N at age 22 = 4,225. F = factor. Principal axis factoring with oblique (Oblimin) rotation. Bold typeset indicates strongest factor loading for each 

item at each age. Mean item complexity at 16 = 1.2. Mean item complexity at 17 = 1.3. Mean item complexity at 22 = 1.2.  
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Supplementary Table 2.7 

 

Confirmatory Factor Analysis of Hallucinations in Main Subsample: Model Fit Results 

 

 Parameters 

 

Log-likelihood AIC BIC 2 value (df) CFI RMSEA [90% CI] SRMR 

 

Age 16 

        

1-factor model 27 -52,432.388 104,918.776 105,094.469 475.373 (27), p <.001 0.936 0.093 [0.085, 0.100] 0.038 

3-factor (EFA) model 30 -51,998.172 104,056.344 104,251.558 137.679 (24), p <.001 0.984 0.049 [0.041, 0.057] 0.019 

4-factor model 33 -51,328.683 104,230.432 104,445.168 210.054 (21), p <.001 0.974 0.067 [0.059, 0.075] 0.025 

 

Age 17 

        

1-factor model 27 -17,429.475 34,912.949 35,055.898 229.569 (27), p < .001 0.931 0.104 [0.092, 0.117] 0.040 

3-factor (EFA) model 30 -17,255.042 34,570.083 34,728.915 65.990 (24), p < .001 0.986 0.050 [0.036, 0.064] 0.021 

4-factor model 33 -17,270.220 34,606.440 34,781.154 81.833 (21), p < .001 0.980 0.064 [0.049, 0.078] 0.025 

 

Age 22 

        

1-factor model 27 -30,058.149 60,170.298 60,341.336 248.415 (27), p < .001 0.929 0.099 [0.088, 0.110] 0.039 

3-factor (EFA) model 29 -29,704.001 59,466.003 59,649.709 109.543 (25), p < .001 0.974 0.063 [0.051, 0.075] 0.027 

3-factor (EFA at 16/17) model 30 -29,692.837 59,445.673 59,635.714 108.519 (24), p < .001 0.975 0.063 [0.051, 0.075] 0.027 

4-factor model 33 -29,658.717 59,383.433 59,592.479 100.861 (21), p < .001 0.978 0.063 [0.051, 0.076] 0.023 

 

Note. N age 16 = 4,950; N age 17 =1,472; N age 22 = 4,166. EFA = exploratory factor analysis. AIC = Akaike’s Information Criterion. BIC = Bayesian Information Criterion. 2 = chi-square 

value. CFI = comparative fit index. RMSEA = root mean square error of approximation. SRMR = standardized root mean square residual. Bold typeset represents best fitting model at each 

age. 

 

  



 99 

Supplementary Table 2.8 

 

Confirmatory Factor Analysis of Hallucinations in Cotwin Subsample (of Model Suggested by EFA in Main Subsample) 

 

 Parameters 

 

Log-likelihood AIC BIC 2 value (df) CFI RMSEA [90% CI] SRMR 

 

Age 16 

        

3-factor (EFA) model 30 -51,265.179 102,590.339 102,785.621 100.738 (24), p <.001 0.988 0.041 [0.033, 0.050] 0.017 

 

Age 17 

        

3-factor (EFA) model 30 -17,274.146 34,608.291 34,767.102 47.098 (24), p = .003 0.992 0.038 [0.021, 0.054] 0.017 

 

Age 22 

        

3-factor (EFA at 16/17) 

model 

30 -28,530.760 57,121.520 57,311.618 85.437 (24), p <.001 0.980 0.055 [0.043, 0.068] 0.024 

 

Note. N age 16 = 4,958. N age 17 =1,471. N age 22 = 4,174. EFA = exploratory factor analysis. AIC = Akaike’s Information Criterion. BIC = Bayesian Information Criterion. 2 = chi-square 

value. CFI = comparative fit index. RMSEA = root mean square error of approximation. SRMR = standardized root mean square residual.   
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Supplementary Table 2.9 

 

Longitudinal Measurement Invariance Analysis of Hallucinations in Cotwin Subsample: Model Fit Results 

 

 Parameters Fit indices Comparison of fit indices between 

nested models 

CFI RMSEA [90% CI] SRMR Δ CFI Δ RMSEA  Δ SRMR 

Configural invariance model (no 

constraints) 

144 0.983 0.014 [0.012, 0.015] 0.022 - - - 

Metric invariance model (factor 

loadings constrained) 

132 0.983 0.014 [0.012, 0.015] 0.025 0.000 0.000 -0.003 

Scalar invariance model (factor 

loadings and intercepts 

constrained) 

120 0.972 0.017 [0.016, 0.019] 0.030 0.011 -0.003 -0.005 

Partial scalar invariance model 

(factor loadings and intercepts 

constrained) a 

122 0.981 0.014 [0.013, 0.016] 0.025 0.002 b 0.000 b  -0.003 b 

 

Note. N = 6,032. CFI = comparative fit index. RMSEA = root mean square error of approximation. SRMR = standardized root mean square residual. Δ denotes change value. a Item 1 intercepts 

free to vary. b Change values compared to metric invariance model. The partial strict model resulted in non-positive definite latent variable matrix so the results are not reported. The 

measurement model was a 3-factor model.   
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Supplementary Table 2.10 

 

Exploratory Factor Analysis of Negative Symptoms Items in Main Subsample 

 

Item Standardised loadings (and variance explained by factor) 

Age 16 Age 17 Age 22 

F1 

(19%) 

F2 

(18%) 

F3 

(14%) 

F4 

(9%) 

F1 

(20%) 

F2 

(18%) 

F3 

(15%) 

F4 

(11%) 

F1 

(19%) 

 

F2 

(18%) 

F3 

(8%) 

F4 

(11%) 

1. Often fails to smile or laugh 

at things others would find 

funny 

-0.05 0.01 0.72 0.00 -0.05 -0.03 0.75 -0.01 -0.01 0.03 0.14 0.59 

2. Seems emotionally “flat”, for 

example, rarely changes the 

emotions he/she shows  

0.12 0.04 0.65 0.04 0.07 0.04 0.72 0.02 0.27 0.13 -0.04 0.46  

3. Usually gives brief, one word 

replies to questions, even if 

encouraged to say more 

0.82 0.03 0.04 -0.07 0.88 0.02 -0.02 -0.01 0.72 0.03 -0.10 0.12 

4. Often does not have much to 

say for himself/herself 

0.85 -0.02 -0.03 

 

0.05 0.85 -0.02 0.03 0.02 0.85 -0.01 0.07 -0.06 

5. Often sits around for a long 

time doing nothing 

-0.01 0.77 0.05 -0.06 0.04 0.81 0.04 -0.08 -0.03 0.82 -0.06 0.03 

6. Has a lack of energy and 

motivation 

0.05 0.76 0.01 0.08 0.01 0.74 0.01 0.16 0.09 0.63 0.10 -0.03 

7. Has very few interests or 

hobbies  

0.06 0.35 -0.01 0.51 0.05 0.28 0.05 0.52 0.06 0.41 0.37 0.03 

8. Has few or no friends 0.04 -0.08 0.21 0.52 0.10 -0.04 0.09 0.58 0.09 0.05 0.51 0.24 

 
 

Supplementary Table 2.10.a 

 

Factor Correlations 

 

 Age 16 

 

Age 17 Age 22 

F1 F2 F3 F1 F2 F3 F1 F2 F3 

F2 0.51 1.00 - 0.61 1.00 - 0.55 1.00 - 

F3 0.67 0.48 1.00 0.77 0.63 1.00 0.34 0.44 1.00 

F4 0.37 0.54 0.42 0.56 0.71 0.56 0.64 0.56 0.39 
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Note. N age 16 = 4,976. N age 17 = 1,471. N age 22 = 5,244. F = factor. Principal axis factoring with oblique (Oblimin) rotation. Bold typeset indicates strongest factor loading for each item at 

each age. Mean item complexity at 16 = 1.2. Mean item complexity at 17 = 1.1. Mean item complexity at 22 = 1.2.   
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Supplementary Table 2.11 

 

Confirmatory Factor Analysis of Negative Symptoms in Main Subsample: Model Fit Results 

 

 Parameters Log-likelihood AIC BIC 2 value (df) CFI RMSEA [90% CI] SRMR 

Age 16 

1-factor model 

 

24 

 

-28,955.589 

 

57,959.178 

 

58,115.465 

 

1,378.970 (20), p < .001 

 

0.775 

 

0.179 [0.171, 0.187] 

 

0.075 

2-factor model 25 -27,993.865 56,037.731 56,200.530 547.372 (19), p < 001 0.912 0.115 [0.107, 0.123] 0.056 

4-factor (EFA) model 30 -27,479.635 55,019.269 55,214.629 115.805 (14), p < .001 0.983 0.058 [0.048, 0.068] 0.028 

5-factor model 32 -27,382.813 54,829.625 55,038.009 31.484 (12), p = .002 0.997 0.027 [0.016, 0.039] 0.009 

5H-factor model 28 -27,509.060 55,074.119 55,256.455 139.674 (16), p < .001 0.980 0.060 [0.051, 0.069] 0.029 

Age 17 

1-factor model 

 

24 

 

-9,753.859 

 

19,555.717 

 

19,682.733 

 

444.502 (20), p < .001 

 

0.849 

 

0.168 [0.155, 0.182] 

 

0.060 

2-factor model 25 -9,463.351 18,976.702 19,109.010 148.524 (19), p < .001 0.954 0.095 [0.081, 0.110] 0.040 

4-factor (EFA) model 30 -9,333.553 18,727.105 18,885.876 16.746 (14), p = .270 0.999 0.016 [0.000, 0.040] 0.015 

5-factor model 32 -9,325.675 18,715.350 18,884.718 8.400 (12), p = .753 1.000 0.000 [0.000, 0.026] 0.009 

5H-factor model 28 -9,336.363 18,728.726 18,876.911 19.594 (16), p = .239 0.999 0.017 [0.000, 0.039] 0.016 

Age 22 

1-factor model 

 

24 

 

-34,446.792 

 

68,941.583 

 

69,098.840 

 

940.153 (20), p < .001 

 

0.860 

 

0.138 [0.130, 0.145] 

 

0.058 

2-factor model 25 -33,945.172 67,940.343 68,104.153 480.377 (19), p < .001 0.931 0.099 [0.091, 0.107] 0.046 

4-factor (EFA) model 29 -33,658.919 67,375.838 67,565.856 217.032 (15), p < .001 0.971 0.072 [0.064, 0.081] 0.026 

5-factor model 32 -33,554.719 67,173.437 67,383.113 110.133 (12), p < .001 0.986 0.057 [0.047, 0.066] 0.019 

5H-factor model 28 -33,633.770 67,323.539 67,507.006 185.894 (16), p < .001 0.975 0.065 [0.057, 0.073] 0.027 

 

Note. N age 16 = 4,974; N age 17 = 1,469; N age 22 = 5,179. EFA = exploratory factor analysis. AIC = Akaike’s Information Criterion. BIC = Bayesian Information Criterion. 2 = chi-square 

value. CFI = comparative fit index. RMSEA = root mean square error of approximation. SRMR = standardized root mean square residual. Bold typeset represents best fitting model at each 

age. 
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Supplementary Table 2.12 

 

Confirmatory Factor Analysis of Negative Symptoms in Cotwin Subsample (of Model Suggested by EFA in Main Subsample) 

 

 Parameters 

 

Log-likelihood AIC BIC 2 value (df) CFI RMSEA [90% CI] SRMR 

 

Age 16 

        

4-factor (EFA) model 30 27,736.599 55,533.198 55,728.575 76.584 (14), p < .001 0.989 0.047 [0.037, 0.057] 0.024 

 

Age 17 

        

4-factor (EFA) model 30 -9,000.982 18,061.964 18,220.816 30.802 (14), p = .006 0.994 0.039 [0.020, 0.058] 0.019 

 

Age 22 

        

4-factor (EFA) model 29 -33,398.283 66,854.567 67,044.596 285.644 (15), p < .001 0.960 0.084 [0.076, 0.093] 0.030 

 

Note. N age 16 = 4,958; N age 17 =1,471; N age 22 = 5,181. EFA = exploratory factor analysis. AIC = Akaike’s Information Criterion. BIC = Bayesian Information Criterion. 2 = chi-square 

value. CFI = comparative fit index. RMSEA = root mean square error of approximation. SRMR = standardized root mean square residual. 
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Supplementary Table 2.13 

 

Longitudinal Measurement Invariance Analysis of Negative Symptoms in Cotwin Subsample: Model Fit Results 

 

  

 

 

Parameters 

Fit indices Comparison of fit indices between 

nested models 

CFI RMSEA [90% CI] SRMR Δ CFI Δ RMSEA  Δ SRMR 

Configural invariance model (no 

constraints) 

189 0.986 0.017 [0.015, 0.019] 0.018 - - - 

Metric invariance model (factor 

loadings constrained) 

183 0.984 0.018 [0.016, 0.020] 0.021 0.002 -0.001 -0.003 

Scalar invariance model (factor 

loadings and intercepts 

constrained) 

177 0.981 0.019 [0.017, 0.021] 0.022 0.003 -0.001 -0.001 

Strict invariance model (factor 

loadings, intercepts and residual 

variances constrained) 

165 0.967 0.025 [0.023, 0.027] 0.030 0.014 -0.006 -0.008 

Partial strict invariance model 

(factor loadings, intercepts and 

residual variances constrained, 

excluding item 2) a 

171 0.976 0.022 [0.020, 0.023] 0.025 0.005 b -0.003 b -0.003 b 

 

Note. N = 6,336. CFI = comparative fit index. RMSEA = root mean square error of approximation. SRMR = standardized root mean square residual. Δ denotes change value. a The change in 

CFI value from the scalar model to the strict model exceeded the acceptable limit (of 0.010). Consultation of the modification indices and subsequent free estimation of the item 2 parameters 

provided acceptable deterioration in model fit. b Change values compared to scalar invariance model. The measurement model was a 5-factor model.   
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Chapter 3 – Latent growth curve modelling of paranoia, 

hallucinations, and negative symptoms 

 

3.1 – Introduction  

The importance of studying PENS repeatedly over time was outlined in Section 1.5.1. 

The current Section will outline the conceptual underpinnings of using latent growth curve 

modelling (LGCM) to summarise change over time; briefly relating this to existing findings 

on the latent development of PENS (described in Section 1.5.5). 

The concept of latent growth modelling was introduced in Section 1.5.5. As 

discussed, one way to conceptualise change over time is to assume that each individual has 

an underlying, or ‘latent’ trajectory that whilst cannot be directly measured, can be 

statistically and conceptually inferred because it is assumed to give rise to the repeated 

measures that have been observed (Curran & Willoughby, 2003). Within a structural equation 

modelling framework, a latent growth curve model (LGCM) parameterises within-person 

change over time both in terms of averages, and in terms of between-person differences, or 

variability in this change (Ram & Grimm, 2007). Importantly in the context of the current 

Chapter, implicit in the LGCM framework is that whilst individuals are allowed to differ in 

terms of the averages, they are ultimately homogeneous as a sample. This differs to the 

growth mixture model, which extends the LGCM by allowing for heterogeneity in the sample 

to emerge through the specification of multiple latent subgroups or classes – which is the 

focus of Chapter 4. Prior to any mixture modelling, however, it is important to first 

summarise the developmental course of an outcome for the sample, before any grouping 

variables, either observed or latent, are introduced. It is further important to identify the 
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optimal functional form of growth for the data, for example, linear, quadratic – detailed in 

Section 3.2.3.2 (Berlin et al., 2014; Curran & Hussong, 2003; Ram & Grimm, 2009). 

In the context of the current Thesis, only three of the previous studies that have used 

latent variable modelling to analyse PEs have reported the sample-wide characteristics of 

growth and the model fit of the sample-wide LGCM. Two of these studies reported that the 

latent development of aggregated PEs decreased on average across adolescence from an 

average initial mid-level/low-level starting point (Lin et al., 2011; Wigman, van Winkel, 

Raaijmakers, et al., 2011, respectively). The other study reported an average initial low-level 

in adulthood that did not systematically increase or decrease over two years (Wigman, van 

Winkel, Jacobs, et al., 2011). These studies did not report on the variability around the 

averages, and further did not report whether any competing growth forms had been tested. 

NS in the community have not been previously investigated using latent variable modelling. 

The current Chapter aimed to test a series of alternative forms of growth, and to 

characterise growth at the sample-wide level for the PENS dimensions. A supplement to 

these aims was to test the adequacy of using the cluster method to account for the relatedness 

between individuals in the sample. It was hypothesised that, i) linear growth would 

adequately describe growth in the PENS dimensions. Based on the descriptive statistics of the 

sample (Tables 2.1-2.3), it was further hypothesised that, ii) average trajectories would 

decline over time for paranoia and hallucinations, and contrastingly, iii) average trajectories 

would increase for NS – and that, iv) variability would be significant for both baseline scores 

and for change over time for each of the measures.  
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3.2 – Methods 

3.2.1 – Participants  

The TEDS sample is described in Section 2.2.1.1. For the main analyses conducted in 

Chapter 3, data from both twins was used, with standard errors adjusted for familial 

clustering. Individuals completed questions relating to paranoia and hallucinations at mean 

ages 16.32 years (SD 0.68; range 14.91-21.34), 17.06 years (SD 0.88; range 15.55-19.0), and 

22.85 years (SD 0.88; range 21.16-25.19). Parents completed questions relating to their 

twins’ NS at mean ages 16.32 years (SD 0.68; range 14.91-19.45), 17.06 years (SD 0.88; 

range 15.55-19.0), and 22.30 years (SD 0.93; range 20.56-25.59).  

N for paranoia at ages 16, 17, and 22 were 9,898, 2,937, and 8,340, respectively. N for 

hallucinations at ages 16, 17, and 22 were 9,907, 2,940, and 8,338, respectively. N for NS at 

ages 16, 17, and 22 were 9,944, 2,939, and 10,355 respectively (Table 4.1).  

Cross-age N were 12,051, 12,056, and 12,662, for paranoia, hallucinations, and NS, 

respectively. These N reflect the inclusion of all participants with complete and incomplete 

longitudinal data (Supplementary Table 4.1). 

 

3.2.2 – Measures  

Paranoia, hallucinations, and NS were assessed using the subscales of the SPEQ 

(Ronald et al., 2014), described in Section 2.2.2. Paranoia, hallucinations, and NS items are 

listed in Supplementary Information 2.1-2.2.  

 

3.2.3 – Statistical analyses 

3.2.3.1 – Overview of analyses 

Prior to the main analyses (described in Section 3.2.3.2, below), a series of methods 

were tested in an exploratory manner to determine the optimal way to model the 
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nonindependence of the data arising from the genetic relatedness between the twins. The 

alternative modelling strategies and the results of these models are presented in the Appendix 

for this Chapter (Section 3.5). For the main analyses, a series of alternative growth forms 

were tested, as follows.   

3.2.3.2 – LGCM 

Four different LGCM were run to test the optimal functional form of growth for the 

data for each PENS dimension. The following models were tested. Model 1) intercept-only 

model, which specifies no systematic change over time. One latent factor was specified (the 

intercept), in which all factor loadings were fixed to one. The mean and variance of the latent 

intercept factor, as well as the time point-specific residual variances were estimated.  

Model 2) linear growth model, which specifies that the latent growth process is 

captured by an initial baseline (intercept) and a linear slope. The means and variances of the 

two latent factors (as well as the covariance between them), and the time point-specific 

residual variances were estimated. Like in the intercept-only model, the factor loadings of the 

intercept were fixed to one. The slope factor loadings were set to reflect the passage of time 

between measurement occasions: age 16 set to zero, age 17 set to one (i.e., 17 - 16 = 1), and 

age 22 set to six (i.e., 22 – 16 = 6).  

Model 3) quadratic growth model, which specifies that the latent growth process is 

captured by an intercept, a linear slope, and a quadratic slope. The means and variances of the 

three latent factors intercept (as well as the covariances between them), and the time point-

specific residual variances were estimated. Factor loadings for the intercept and linear slope 

were the same as for the linear model. The quadratic slope factor loadings were the square 

values of the linear slope loadings: age 16 set to zero (i.e., 02 = 0), age 17 set to one (i.e., 12 = 

1), and age 22 set to 36 (i.e., 62 = 36). Because a quadratic model is not identified with only 

three measurement occasions, the quadratic slope variance parameters were not estimated, to 
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achieve a just-identified model. In addition, it was planned that residual variances would be 

constrained to equality to achieve over-identification (i.e., to estimate model fit statistics). 

Though see Section 3.3 for modifications made to the residual variances.  

Model 4) latent basis model, which specifies that the latent growth process is captured 

by an intercept, and a freely estimated slope. This model allowed the factor loading between 

the first and last measurement occasions to be freely estimated. The means and variances of 

the two latent factors (as well as the covariance between them), and the time point-specific 

residual variances were estimated. The slope factor mean in this model represents the total 

unit change from the first to the last measurement occasion, and the estimated factor loading 

represents the proportion of total change up until the associated time point. Factor loadings 

for the slope factor were fixed to zero at age 16, freely estimated at age 17, and fixed to one 

at age 22. Because a latent basis model is just identified with only three measurement 

occasions, it was planned that residual variances would be constrained to equality to achieve 

over-identification (though see modifications in Section 3.3). 

3.2.3.3 – Model fit  

A series of goodness of fit indices were used to assess the standalone model fit of the 

LGCM: these indices were CFI, RMSEA, and SRMR. Whilst the use of cut off values is 

debated (Marsh et al., 2004), CFI values > 0.95/0.90, RMSEA values < 0.06, and SRMR 

values < 0.08 were considered to reflect generally acceptable fit (Hu & Bentler, 1999; Marsh 

et al., 2004; van de Schoot et al., 2012).  

For assessing the relative fit between the LGCM, BIC was primarily used, with lower 

values indicative of better fit. A difference between the values in excess of a value of two 

was considered to reflect ‘positive’ evidence, and a difference between the values in excess 

of 10 was considered ‘very strong’ evidence (Neath & Cavanaugh, 2012). AIC was referred 

to where the difference in BIC values was less than two, with lower values indicative of 
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better fit. A difference between AIC values in excess of two was considered ‘strong’ 

evidence (Burnham & Anderson, 2004).  

3.2.3.4 – Data modelling 

Any data that was missing was assumed to be missing at random, accommodated 

using FIML estimation. Observed total score data at each age was modelled and a robust 

version of the FIML estimator was used (MLR) to correct for multivariate non-normality of 

the residuals of the observed scores. MLR adjusts both the SE and the overall test statistic. 

All models were estimated using the lavaan package (Rosseel, 2012) in R (version 2.5.2). 

 

3.3 – Results  

3.3.1 – LGCM 

3.3.1.1 – Paranoia 

Table 3.1 shows the model fit results for the LGCM for paranoia. As expected, the 

intercept-only model provided a poor fit to the data across fit indices. The linear growth 

model provided acceptable standalone fit to the data (CFI = 0.996, RMSEA = 0.033 [0.020, 

0.047], SRMR = 0.018). The over-identified quadratic model provided an acceptable fit to the 

data. The over-identified latent basis model resulted in an improper solution, with at least one 

element of the latent variable covariance matrix being non-positive definite (i.e., indicating 

either a correlation greater than or equal to one, a negative variance, or a linear dependency 

between factors). Removing the residual variance at age 22 but allowing free estimation of 

the age 16 and 17 residual variances resulted in a proper solution, and this model provided an 

acceptable fit the data that was indistinguishable to the linear model in terms of CFI, 

RMSEA, and SRMR. BIC and AIC values suggested marginally better fit of the modified 

latent basis model. The adjustment to the age 22 residual variance was made because this 

estimate was nonsignificant in the linear model.  
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 The linear model was selected in the interest of parsimony. Parameter estimates for 

the linear growth model are shown in Table 3.2. The average baseline score (intercept) was 

12.238 (SE = 0.121, z = 101.141, p < .001) and the average yearly change in reporting 

paranoia was -0.369 (SE = 0.024, z = -15.138, p < .001). Variability around these averages 

was 83.987 (SE = 3.221, z = 26.027, p < .001) for the intercept, or 9.164 in standard deviation 

units. For the slope factor, variability was much less (3.012, SE = 0.571, z = 5.271, p <.001, 

or 1.736 in standard deviation units). Covariance between the latent factors was negative (-

5.683, SE = 0.536, z = -10.596, p < .001) and was moderate in strength (r = -0.363). Figure 

3.1 shows a plot of the mean estimated trajectory against a random draw of observed scores.  

3.3.1.2 – Hallucinations 

Table 3.3 shows the model fit results for the LGCM for hallucinations. As expected, 

the intercept-only model provided a poor fit to the data across fit indices. The linear model 

provided an acceptable fit to the data in terms of CFI (0.933) and SRMR (0.070), though less 

so in terms of RMSEA (0.117). The over-identified quadratic model resulted in an improper 

solution, with at least one element of the latent variable covariance matrix being non-positive 

definite (indicating either a correlation greater than or equal to one, a negative variance, or a 

linear dependency between factors). Removing the residual variance at age 22 but allowing 

free estimation of the age 16 and 17 residual variances resulted in a proper solution, and this 

model provided the best fit to the data, both in terms of standalone fit (CFI = 0.999, RMSEA 

= 0.015 [0.000, 0.043], SRMR = 0.012) and relative fit. A solution could not be obtained for 

the over-identified latent basis model. Removing the residual variance at age 22 but allowing 

free estimation of the age 16 and 17 residual variances resulted in a proper solution, and this 

model provided acceptable fit to the data across fit indices. The adjustment to the age 22 

residual variance (in the quadratic and latent basis models) was made because this estimate 

was nonsignificant in the linear model.  
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The constrained quadratic model and latent basis models best represented the 

functional form of growth for hallucinations. However, it was decided that the complexity of 

the quadratic model in tandem with the necessary constraints for both models were not worth 

the gain in fit compared to the linear model (e.g., Grimm et al., 2011). The linear model was 

selected in the interest of parsimony; considered to adequately represent the functional form 

of growth owing to its acceptable standalone fit (as reported above). 

Parameter estimates for the linear model are shown in Table 3.4. The average baseline 

score (intercept) was 4.876 (SE = 0.073, z = 67.164 p < .001) and the average yearly change 

in reporting hallucinations was -0.526 (SE = 0.013, z = -41.960, p < .001). Variability around 

these averages was 27.798 (SE = 1.227, z = 22.798, p < .001) for the intercept, or 5.272 in 

standard deviation units. For the slope factor, variability was much less (0.600, SE = 0.137, z 

= 4.361, p < .001, or 0.775 in standard deviation units). Covariance between the latent factors 

was negative (-3.125, SE = 0.205, z = -15.257, p < .001) and was high in magnitude (r = -

0.763). Figure 3.2 shows a plot of the mean estimated trajectory against a random draw of 

observed scores.  

3.3.1.3 – Negative symptoms 

Table 3.5 shows the model fit results for the LGCM for NS. The intercept-only model 

provided an acceptable fit to the data across fit indices. A linear growth model provided 

acceptable fit to the data (CFI = 0.965, RMSEA = 0.024 [0.011, 0.041], SRMR = 0.014) and 

provided the best standalone fit across models. The over-identified quadratic model provided 

an acceptable fit to the data. A solution could not be obtained for the over-identified latent 

basis model. There was no justification for removing residual variances (as was the case for 

paranoia and hallucinations), and removal of the slope variance – motivated by the non-

significance of this estimate in the linear model, resulted in an improper solution. No further 

adjustments were made.  
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The linear model was selected. Parameter estimates for the modified linear model are 

shown in Table 3.6. The average baseline score (intercept) was 2.256 (SE = 0.038, z = 

59.453, p < .001) and the average total change in reporting negative symptoms across the 

developmental period was 0.071 (SE = 0.007, z = 10.355, p < .001). Variability around these 

averages was 6.917 (SE = 0.361, z = 19.184, p < .001) for the intercept, or 2.630 in standard 

deviation units. For the slope factor, variability was nonsignificant (0.056, SE = 0.056, z = 

0.996, p = .319, or 0.237 in standard deviation units), as was the factor covariance (-0.084, 

SE = 0.053, z = -1.583, p = .113). Figure 3.3 shows a plot of the mean estimated trajectory 

against a random draw of observed scores.  
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Table 3.1 

Latent Growth Curve Modelling of Paranoia for Different Functional Forms of Growth: Model Fit Results  

 Parameters 

 

Log-

likelihood 

AIC BIC 2 value (df) CFI RMSEA [90% CI] SRMR 

 

Intercept-only model 

Linear growth model 

Quadratic growth 

model a 

Latent basis growth 

model b 

 

 

5 

8 

7 

 

7 

 

-80,247.673 

-79,983.474 

-80,092.438 

 

-79,982.140 

 

160,505.345 

159,982.947 

160,198.877 

 

159,980.279 

 

160,542.330 

160,042.123 

160,250.655 

 

160,039.454 

 

352.740 (4), p < .001 

17.657 (1), p < .001 

134.876 (2), p < .001 

 

10.527 (1), p = .001 

 

0.823 

0.996 

0.925 

 

0.997 

 

0.105 [0.096, 0.115] 

0.033 [0.020, 0.047] 

0.097 [0.084, 0.112] 

 

0.031 [0.018, 0.045] 

 

0.088 

0.018 

0.085 

 

0.025 

 
Note. N = 12,051. Related and unrelated individuals included, using cluster-robust SE. AIC = Akaike’s Information Criterion. BIC = Bayesian Information Criterion. 2 = chi-square value. 

CFI = comparative fit index. RMSEA = root mean square error of approximation. SRMR = standardized root mean square residual. a Quadratic slope variance-covariance parameters not 

estimated. Residual variances constrained to equality. b Residual variances constrained to equality. Residual variance at age 22 not estimated. 
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Table 3.2 

Parameter Estimates for Paranoia from Linear Growth Model 

 Mean    Variance   

 Estimate 

 

Standard error z p  Estimate Standard error z p 

 

Intercept 

Slope 

16 years 

17 years 

22 years 

 

12.238 

-0.369 

- 

- 

- 

 

0.121 

0.024 

- 

- 

- 

 

101.141 

-15.138 

- 

- 

- 

 

 

< .001 

< .001 

- 

- 

- 

 

  

83.987 

3.012 

29.503  

79.662 

8.064 

 

3.221 

0.571 

2.742 

4.731 

18.633 

 

26.072 

5.271 

10.760 

16.838 

0.433 

 

< .001 

< .001 

< .001 

< .001 

0.672 

 

  

Estimate 

 

Standard error 

 

z 

 

p 

 

Standardised 

estimate 

 

 

 

 

 

Factor 

covariance 

 

-5.683 

 

0.536 

 

-10.596 

 

 

< .001 

 

 

-0.363 

 

 

 

 

 
Note. N = 12,051. Related and unrelated individuals included, using cluster-robust SE. Unstandardised estimates (unless otherwise indicated).   
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Table 3.3 

Latent Growth Curve Modelling of Hallucinations for Different Functional Forms of Growth: Model Fit Results  

 Parameters 

 

Log-

likelihood 

AIC BIC 2 value (df) CFI RMSEA [90% CI] SRMR 

 

Intercept only model 

Linear growth model 

Quadratic growth 

model a 

Latent basis growth 

model b 

 

 

5 

8 

8 

 

7 

 

-66,359.938 

-64,621.298 

-64,541.081 

 

-64,571.621 

 

132,729.876

129,258.596 

129,098.162 

 

129,159.243 

 

132,766.862

129,317.775 

129,157.340 

 

129,218.421 

 

1,581.152 (4), p < .001 

189.755 (1), p < .001 

2.193 (1), p < .001 

 

20.891 (1), p <.001 

 

0.000 

0.933 

0.999 

 

0.972 

 

0.274 [0.263, 0.286] 

0.117 [0.101, 0.133] 

0.015 [0.000, 0.043] 

 

0.073 [0.051, 0.105] 

 

0.247 

0.070 

0.012 

 

0.042 

 
Note. N = 12,056. Related and unrelated individuals included, using cluster-robust SE. AIC = Akaike’s Information Criterion. BIC = Bayesian Information Criterion. 2 = chi-square value. 

CFI = comparative fit index. RMSEA = root mean square error of approximation. SRMR = standardized root mean square residual. a Quadratic slope variance-covariance parameters not 

estimated. Residual variance at age 22 not estimated. b Residual variance at age 22 not estimated. 
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Table 3.4 

Parameter Estimates for Hallucinations from Linear Growth Model 

 Mean    Variance   

 Estimate 

 

Standard error z p  Estimate Standard 

error 

z p 

 

Intercept 

Slope  

16 years 

17 years 

22 years 

 

4.876 

-0.526 

- 

- 

- 

 

0.073 

0.013 

- 

- 

- 

 

67.164 

-41.960 

- 

- 

- 

 

 

< .001 

< .001 

- 

- 

- 

 

  

27.980 

0.600 

9.852 

28.224 

5.034 

 

1.227 

0.137 

1.136 

1.624 

4.242 

 

22.978 

4.361 

8.672 

17.379 

1.187 

 

< .001 

< .001 

< .001 

< .001 

.246 

 

  

Estimate 

 

Standard error 

 

z 

 

p 

 

Standardised 

estimate 

 

 

 

Factor 

covariance 

 

 

-3.125 

 

 

0.205 

 

-15.257 

 

< .001 

 

 

-0.763 

 

 

 

 
Note. N = 12,056. Related and unrelated individuals included, using cluster-robust SE. Unstandardised estimates (unless otherwise indicated).   
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Table 3.5 

Latent Growth Curve Modelling of Negative Symptoms for Different Functional Forms of Growth: Model Fit Results  

 Parameters 

 

Log-

likelihood 

AIC BIC 2 value (df) CFI RMSEA [90% CI] SRMR 

 

Intercept only model 

Linear growth model 

Quadratic growth 

model a  

 

 

5 

8 

7 

 

-59,574.888 

-59,493.463 

-59,538.377 

 

119,159.775 

119,002.926 

119,090.754 

 

119,197.007 

119,062.497 

119,142.879 

 

 

83.728 (4), p <.001 

8.211 (1), p <.001 

28.503 (2), p <.001 

 

0.965

0.998 

0.980 

 

0.057 [0.047, 0.068] 

0.024 [0.011, 0.041] 

0.060 [0.042, 0.081] 

 

0.033 

0.014 

0.045 

 

Note. N = 12,662. Related and unrelated individuals included, using cluster-robust SE. AIC = Akaike’s Information Criterion. BIC = Bayesian Information Criterion. 2 = chi-square value. CFI 

= comparative fit index. RMSEA = root mean square error of approximation. SRMR = standardized root mean square residual. a Quadratic slope variance-covariance parameters not estimated. 

Residual variances constrained to equality. A proper solution could not be obtained for a latent basis model so no results are reported. 
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Table 3.6 

Parameter Estimates for Negative Symptoms from Linear Growth Model 

 Mean    Variance   

 Estimate Standard error z p  Estimate Standard error z p 

 

Intercept 

Slope 

16 years 

17 years 

22 years 

 

 

2.256 

0.071 

- 

- 

- 

 

0.038 

0.007 

- 

- 

- 

 

59.453 

10.355 

- 

- 

- 

 

 

< .001 

< .001 

- 

- 

- 

 

  

6.917 

0.056 

3.446 

5.704 

5.183 

 

0.361 

0.056 

0.325 

0.557 

1.802 

 

19.18 

0.996 

10.603 

10.241 

2.876 

 

< .001 

.319 

< .001 

< .001 

.004 

 

  

Estimate 

 

Standard error 

 

z 

 

p 

 

Standardised 

estimate 

 

Factor 

covariance 

 

-0.084 

 

0.053 

 

-1.583 

 

.113 

 

-0.143 

 

Note. N = 12,662. Related and unrelated individuals included, using cluster-robust SE. Unstandardised estimates (unless otherwise indicated).  
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Figure 3.1 

 

Spaghetti Plot of Individual Trajectories for Observed Paranoia Scores 

 

 

 

 
 

 

Note. Individual trajectories are shown for a random draw of 100 individuals with complete data (seed 20). Mean trajectory estimated using a linear growth model across the whole sample (N = 

12,051), plotted in red. Parameter estimates for the mean trajectory reported in Table 3.2.  
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Figure 3.2 

 

Spaghetti Plot of Individual Trajectories for Observed Hallucinations Scores 

 

 

 
Note. Individual trajectories are shown for a random draw of 100 individuals with complete data (seed 20). Mean trajectory estimated using a linear growth model across the whole sample (N = 

12,056), plotted in red. Parameter estimates for the mean trajectory reported in Table 3.4.  
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Figure 3.3 

 

Spaghetti Plot of Individual Trajectories for Observed Negative Symptoms Scores 

 

 

 

 
 

Note. Individual trajectories are shown for a random draw of 100 individuals with complete data (seed 20). Mean trajectory estimated using a linear growth model across the whole sample (N = 

12,662), plotted in red. Parameter estimates for the mean trajectory reported in Table 3.6.
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3.4 – Discussion 

This Chapter investigated the latent developmental course of paranoia, hallucinations, 

and NS, measured as separate dimensions across ages 16, 17, and 22 in the community.   

As was hypothesised, the linear growth model provided an acceptable approximation 

of the data for paranoia, hallucinations, and NS. Whilst for hallucinations the quadratic model 

and latent basis model in fact both provided a better fit than the linear model, these models 

were highly constrained, both for initial model (over-)identification and to obtain a plausible 

solution. Such data-driven constraints render the models at risk of having been overfit to  

sample-specific variability, thus limiting their generalisability and interpretability (Preacher, 

2006), and so the linear model was preferred given its acceptable fit. However, replication in 

an independent sample, with at least four time points of data, is necessary to understand the 

extent to which repeated measures of hallucinations may be influenced by nonlinear aspects 

of (latent) growth.  

The results of the linear growth models suggested that the within-person development 

of both paranoia and hallucinations from adolescence to emerging adulthood is characterised 

by relatively low baseline scores that show moderate but significant decline over time. These 

findings are broadly in line with previous findings of aggregated PEs measured across 

adolescence (Lin et al., 2011; Wigman, van Winkel, Raaijmakers, et al., 2011), though they 

differ from a study in adulthood, in which these experiences did not systematically change 

over time (Wigman, van Winkel, Jacobs, et al., 2011). The current results further suggested 

that there is significant between-person variability for both paranoia and hallucinations in 

terms of both baseline scores and in terms of systematic change in these scores over time. 

The latent factor covariances reflect that individuals with a higher-than-average latent 

baseline score are more likely to have a lower-than-average latent rate of change over time 
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(and vice versa). This between-person variability and co-variability of the latent growth 

parameters is the point of departure for subsequent growth mixture modelling (Chapter 4).  

For NS, the opposite pattern of systematic change over time was found. The results 

suggested that the sample-wide, within-person development of these symptoms from 

adolescence to emerging adulthood is characterised by relatively low baseline scores that 

show a modest but significant increase over time. Whilst there are no published findings on 

the latent development of NS in the community to my knowledge, the results are broadly in 

line with findings from a study that found an increase in the prevalence of NS across 

adolescence into emerging adulthood (Dominguez et al., 2010). The current results also 

suggested that there is significant between-person variability in terms of scores of NS at age 

16, though the nonsignificant slope factor variance indicated that individuals do not 

significantly differ in their rates of change over time. Subsequent growth mixture modelling 

for NS is thus motivated by the between-person variability in latent intercepts.  

A subsidiary aim of this Chapter was to test the adequacy of using the cluster method 

to account for the relatedness between individuals in the sample. As shown from the results 

presented in the Appendix (Supplementary Information 3.1), using data from both twins with 

adjusted standard errors was deemed acceptable for accounting for the nonindependence of 

the data. This was based on the model fit results and the similar parameter estimates between 

the methods, as well as the relative parsimony of the cluster method compared to the 

interchangeable dyads method. The better fit of the model using the interchangeable dyads 

method (compared to the cluster method) for hallucinations suggested that there may be some 

differences in the extent to which latent growth factors (and residuals) covary within 

monozygotic and dyzygotic twin dyads. Notwithstanding, the good fit of the models using the 

interchangeable dyads method for each of the measures indicated that the latent growth 

process for each of paranoia, hallucinations, and NS can be considered sufficiently equivalent 
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for both members of a twin-pair, for both monozygotic and dyzygotic twins. This provided 

confidence in the subsequent growth modelling using the cluster method, whereby zygosity 

was effectively ignored.  

The results in this Chapter add to only a handful of other studies that have reported on 

sample-wide characteristics of latent growth in PEs analysed broadly (Lin et al., 2011; 

Wigman, van Winkel, Jacobs, et al., 2011; Wigman, van Winkel, Raaijmakers, et al., 2011). 

They are the first to report on the latent development of paranoia and hallucinations, 

separately, and they are the first to report on latent development of NS in the community. 

The current Chapter further presents a detailed evaluation of alternative forms of growth. 

Notwithstanding, future studies of PENS dimensions with data from more than three 

measurement occasions would allow for a yet more comprehensive evaluation of nonlinear 

forms of growth.  

This Chapter reported the sample-wide characteristics of latent growth for paranoia, 

hallucinations, and NS reported across ages 16, 17, and 22 in the community. The results will 

further aid subsequent growth mixture modelling (Chapter 4), having established the 

adequacy of, i) using a linear growth form to represent latent growth in the PENS 

dimensions, and ii) using the cluster method to account for the nonindependence of twin data 

in the current dataset.   
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3.5 – Appendix 

 

Supplementary Information 3.1 

Modelling the Nonindependence of Data  

 

Methods: A series of models were conducted to determine the adequacy of using the 

cluster method (b, below) to model the nonindependence of the data. A linear LGCM was 

used to test the different modelling techniques, a) using data from one (randomly selected) 

individual per twin pair, b) using data from both individuals in each twin pair, with family ID 

specified as a cluster unit and standard errors adjusted for this clustering, and, c) using data 

from both individuals in each twin pair, specifying an interchangeable dyads model to 

account for monozygotic twin pair-/dyzygotic twin pair-specific nonindependence. The 

interchangeable dyads model tested the extent to which the latent growth process was 

equivalent for both twins within twin-pairs, irrespective of zygosity, whilst allowing for 

within-pair covariance differences (Olsen & Kenny, 2006).  

Results: Supplementary Tables 3.1-3.3 show the model fit results of the linear LGCM 

for each modelling technique, for paranoia, hallucinations, and NS, respectively. For paranoia 

and NS, all methods resulted in acceptable standalone model fit across fit indices, with CFI 

values comparable between all methods (1.00). 

For hallucinations, CFI values were acceptable (i.e., > 0.90) for all methods, though 

were highest for the interchangeable dyads method (0.974). SRMR values were acceptable 

for all methods (< 0.08), though RMSEA values were notably less acceptable (> 0.06) for all 

but the interchangeable dyads method.  

Supplementary Tables 3.4-3.6 show the parameter estimates derived using the 

alternative techniques, for paranoia, hallucinations, and NS, respectively. Parameter estimates 

derived from the different methods for each of the measures were similar, varying by less 
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than 0.5 units. In the interest of parsimony and consistency, and given the broadly acceptable 

model fit, the cluster method was selected to take forward across measures.
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Supplementary Table 3.1 

 

Latent Growth Curve Modelling of Paranoia Using Alternative Modelling Techniques: Model Fit Results  

 

 Parameters 

 

Log-

likelihood 

AIC BIC 2 value (df) CFI RMSEA [90% CI] SRMR 

Cluster (family) a         

Linear growth model 

 

One twin per pair b 

Linear growth model 

 

Interchangeable 

dyads c  

Linear growth model 

 

8 

 

 

8 

 

 

 

18 

-79,983.471 

 

 

-39,894.293 

 

 

 

-78,701.226 

159,982.952 

 

 

79,804.584 

 

 

 

157,438.434 

160,042.121 

 

 

79,858.212 

 

 

 

157,559.696 

17.662 (1), p < .001 

 

 

12.124 (1), p < .001 

 

 

 

39.544 (36), p = .323 

0.996 

 

 

0.997 

 

 

 

0.995 

 

0.033 [0.020, 0.046] 

 

 

0.045 [0.000, 0.000] 

 

 

 

0.012 [0.001, 0.023] 

 

0.025 

 

 

0.022 

 

 

 

0.034 

 

Note. a N = 12,051. b N = 6,029. c N = 12,051. AIC = Akaike’s Information Criterion. BIC = Bayesian Information Criterion. 2 = chi-square value. CFI = comparative fit index. RMSEA = root 

mean square error of approximation. SRMR = standardized root mean square residual.   
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Supplementary Table 3.2 

 

Latent Growth Curve Modelling of Hallucinations Using Alternative Modelling Techniques: Model Fit Results  

 

 Parameters 

 

Log-

likelihood 

AIC BIC 2 value (df) CFI RMSEA [90% CI] SRMR 

Cluster (family) a         

Linear growth model 

 

One twin per pair b 

Linear growth model 

 

Interchangeable 

dyads c  

Linear growth model 

 

8 

 

 

8 

 

 

 

20 

-64,621.298 

 

 

-32,404.073 

 

 

 

-63,583.160 

129,258.596 

 

 

64,824.146 

 

 

 

127,206.320 

129,317.775 

 

 

64,877.782 

 

 

 

127,341.053 

189.755 (1), p < .001 

 

 

85.346 (1), p < .001 

 

 

 

62.911 (34), p = .002 

0.935 

 

 

0.954 

 

 

 

0.974 

 

0.117 [0.000, 0.000] 

 

 

0.107 [0.000, 0.000] 

 

 

 

0.028 [0.017, 0.039] 

0.070 

 

 

0.063 

 

 

 

0.067 

 

Note.  a N = 12,056. b N = 6,030. c N = 12,056. AIC = Akaike’s Information Criterion. BIC = Bayesian Information Criterion. 2 = chi-square value. CFI = comparative fit index. RMSEA = root 

mean square error of approximation. SRMR = standardized root mean square residual.   
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Supplementary Table 3.3 

 

Latent Growth Curve Modelling of Negative Symptoms Using Alternative Modelling Techniques: Model Fit Results  

 

 Parameters 

 

Log-

likelihood 

AIC BIC 2 value (df) CFI RMSEA [90% CI] SRMR 

Cluster (family) a         

Linear growth model 

 

One twin per pair b 

Linear growth model 

 

Interchangeable 

dyads c  

Linear growth model 

 

8 

 

 

8 

 

 

 

20 

-59,493.463 

 

 

-29,806.044 

 

 

 

-57,809.718 

119,002.926 

 

 

59,628.089 

 

 

 

115,659.435 

119,062.497 

 

 

59,682.110 

 

 

 

115,794.500 

8.211 (1), p < .001 

 

 

5.701 (1), p < .001 

 

 

 

52.764 (34), p = .021 

1.00 

 

 

1.00 

 

 

 

1.00 

 

0.024 [0.011, 0.041] 

 

 

0.022 [0.000, 0.000] 

 

 

 

0.019 [0.008, 0.029] 

 

0.014 

 

 

0.013 

 

 

 

0.055 

 

Note.  a N = 12,662. b N = 6,327. c N = 12,662. AIC = Akaike’s Information Criterion. BIC = Bayesian Information Criterion. 2 = chi-square value. CFI = comparative fit index. RMSEA = root 

mean square error of approximation. SRMR = standardized root mean square residual.  
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Supplementary Table 3.4 

 

Parameter Estimates for Paranoia derived from the Alternative Modelling Techniques  

 

 Mean   Variance   Factor covariance 

 Estimate 

 

Standard 

error 

z p Estimate Standard 

error 

z p Estimate Standard 

error 

z  p 

Cluster (family) a             

Linear growth model 

Intercept 

Slope 

 

One twin per pair b 

Linear growth model 

Intercept 

Slope 

 

Interchangeable dyads c 

Linear growth model  

Intercept 

Slope 

 

 

12.238 

-0.369 

 

 

 

12.305 

-0.370 

 

 

 

12.251 

-0.376 

 

 

0.121 

0.024 

 

 

 

0.150 

0.032 

 

 

 

0.121 

0.024 

 

101.141 

-15.138 

 

 

 

82.315 

-11.471 

 

 

 

101.431  

-15.394  

 

< .001 

< .001 

 

 

 

< .001 

< .001 

 

 

 

< .001 

< .001 

 

 

83.987 

3.012 

 

 

 

84.341 

2.746 

 

 

 

84.171 

2.921 

 

3.221  

0.571 

 

 

 

4.365 

0.748 

 

 

 

3.177 

0.499 

 

26.072 

5.271  

 

 

 

19.320 

3.673 

 

 

 

26.495 

5.850 

 

< .001 

< .001 

 

 

 

< .001 

< .001 

 

 

 

< .001 

< .001 

 

 

 

-5.683 

 

 

 

 

-5.185 

 

 

 

 

-5.709 

 

 

0.536 

 

 

 

 

0.712 

 

 

 

 

0.523 

 

 

-10.596 

 

 

 

 

-7.283 

 

 

 

 

-10.916 

 

 

< .001 

 

 

 

 

< .001 

 

 

 

 

< .001 

 

 

Note. a N = 12,051. b N = 6,029. c N = 12,051. Unstandardised estimates. 
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Supplementary Table 3.5 

 

Parameter Estimates for Hallucinations derived from the Alternative Modelling Techniques  

 

 Mean   Variance   Factor covariance 

 Estimate 

 

Standard 

error 

z p Estimate Standard 

error 

z p Estimate Standard 

error 

z  p 

Cluster (family) a             

Linear growth model 

Intercept 

Slope 

 

One twin per pair b 

Linear growth model 

Intercept 

Slope 

 

Interchangeable dyads c 

Linear growth model  

Intercept 

Slope 

 

 

4.876 

-0.526 

 

 

 

4.980 

-0.539 

 

 

 

4.856 

-0.526 

 

0.073 

0.013 

 

 

 

0.091 

0.016 

 

 

 

0.073 

0.013  

 

67.164  

-41.960 

 

 

 

54.597 

-32.757 

 

 

 

66.310 

-41.800     

 

< .001 

< .001 

 

 

 

< .001 

< .001 

 

 

 

< .001 

< .001 

 

 

27.980 

0.600  

 

 

 

28.323 

0.573 

 

 

 

28.119 

0.601 

 

1.227 

0.137 

 

 

 

1.686 

0.163 

 

 

 

1.240 

0.138 

 

22.798 

4.361 

 

 

 

16.799 

3.510 

 

 

 

22.672 

4.370 

 

< .001 

< .001 

 

 

 

< .001 

< .001 

 

 

 

< .001 

< .001 

 

 

 

-3.125 

 

 

 

 

-3.075 

 

 

 

 

-3.157  

 

 

0.205 

 

 

 

 

0.285 

 

 

 

 

0.207 

 

 

-15.257 

 

 

 

 

-10.791 

 

 

 

 

-15.218 

 

 

< .001 

 

 

 

 

< .001 

 

 

 

 

< .001 

 

 

Note. a N = 12,056. b N = 6,030. c N = 12,056. Unstandardised estimates.  
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Supplementary Table 3.6 

 

Parameter Estimates for Negative Symptoms derived from the Alternative Modelling Techniques  

 

 Mean   Variance   Factor covariance 

 Estimate 

 

Standard 

error 

z p Estimat

e 

Standard 

error 

z p Estimate Standard 

error 

z  p 

Cluster (family) a             

Linear growth model 

Intercept 

Slope 

 

One twin per pair b 

Linear growth model 

Intercept 

Slope 

 

Interchangeable dyads c 

Linear growth model  

Intercept 

Slope 

 

 

2.256 

0.071 

 

 

 

2.273 

0.073 

 

 

 

2.279 

0.071 

 

 

0.038  

0.007 

 

 

 

0.045 

0.008 

 

 

 

0.038 

0.007 

 

59.453 

10.355 

 

 

 

51.029 

8.164 

 

 

 

59.511 

10.241 

 

< .001 

< .001 

 

 

 

< .001 

< .001 

 

 

 

< .001 

< .001 

 

 

6.917 

0.056 

 

 

 

7.027 

0.044  

 

 

 

7.068 

0.052 

 

0.361 

0.056 

 

 

 

0.456  

0.073 

 

 

 

0.365 

0.057 

 

19.184

0.996 

 

 

 

15.416 

0.608 

 

 

 

19.353 

0.901 

 

< .001 

.319 

 

 

 

< .001 

.543 

 

 

 

< .001 

.368 

 

 

 

-0.084 

 

 

 

 

-0.066 

 

 

 

 

-0.087 

 

 

0.053 

 

 

 

 

0.068 

 

 

 

 

0.055 

 

 

-1.583 

 

 

 

 

-0.974 

 

 

 

 

-1.594 

 

 

.113 

 

 

 

 

.330 

 

 

 

 

.111 

 

 

Note. a N = 12,662. b N = 6,327. c N = 12,662. Unstandardised estimates.
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Chapter 4 – Growth mixture modelling of paranoia, 

hallucinations, and negative symptoms 

 

4.1 – Introduction  

The current Chapter builds on the findings presented in Chapter 3, by focussing on  

different developmental trajectories within the sample. As discussed in Section 1.5.2, 

previous studies have found that persistence compared to transience of PENS appears to be 

predictive of poor clinical and functional outcomes (e.g., De Loore et al., 2011; Dominguez 

et al., 2010; Janssens et al., 2016). Therefore, identifying subgroups of individuals who 

follow distinct trajectories can be considered the first step in seeking to understand the 

antecedents, correlates and outcomes associated with the differential developmental course of 

PENS. 

Building on studies that have manually classified individuals according to similarities 

in their trajectories (as reviewed in Section 1.5.5) – the latent growth curve framework can be 

extended to identify unobserved, latent subgroups of individuals who follow similar 

trajectories, using growth mixture modelling (GMM). Previous studies that have used GMM 

to estimate latent trajectory classes have identified either a persistently high or increasing 

class for aggregated PEs measured across adolescence (Bourque et al., 2017; Lin et al., 2011; 

Mackie et al., 2011; Thapar et al., 2012; Wigman, van Winkel, Raaijmakers, et al., 2011), and 

adulthood (Wigman, van Winkel, Jacobs, et al., 2011). The findings of these studies are 

important, because they have found that membership in the most elevated of the estimated 

latent trajectory classes (e.g., persistently high, or increasing, compared to decreasing, or 

persistently low) is associated with a range of suboptimal correlates including low 
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socioeconomic status (SES), emotional and behavioural problems, and a range of poor 

outcomes including mental health care use. Thus, these findings broadly concur with findings 

derived from studies that have manually classified individuals into trajectory groups (see 

Section 5.1). The current Chapter builds on the prior literature by modelling latent 

heterogeneity in the development of paranoia and hallucinations measured as separate 

dimensions, and by modelling latent heterogeneity in the development of NS in the 

community – which, to my knowledge has not previously been done. 

The analyses in this Chapter investigated whether and to what extent individuals can 

be classified into distinct, latent trajectory classes for paranoia, hallucinations, and NS. This 

is of standalone interest, and further will provide the basis for the subsequent testing of 

associations between membership in the latent trajectory classes with previously reported 

childhood and adulthood characteristics, and with previously unreported polygenic 

propensity scores for a range of psychiatric and educational outcomes – which is the focus of 

Chapter 5. 

As preregistered, it was hypothesised that multiple latent trajectory classes including a 

persistent trajectory class would be identified across PENS (https://osf.io/pax6k; 

Supplementary Information 4.1).  

 

4.2 – Methods 

4.2.1 – Participants  

The TEDS sample is described in Section 2.2.1.1. For the study conducted in Chapter 

4, data from both twins was used, with standard errors adjusted for familial clustering. 

Individuals completed questions relating to paranoia and hallucinations at mean ages 16.32 

years (SD 0.68; range 14.91-21.34), 17.06 years (SD 0.88; range 15.55-19.0), and 22.85 years 

(SD 0.88; range 21.16-25.19). Parents completed questions relating to their twins’ NS at 

https://osf.io/pax6k
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mean ages 16.32 years (SD 0.68; range 14.91-19.45), 17.06 years (SD 0.88; range 15.55-

19.0), and 22.30 years (SD 0.93; range 20.56-25.59).  

N for paranoia at ages 16, 17, and 22 were 9,898, 2,937, and 8,340, respectively. N for 

hallucinations at ages 16, 17, and 22 were 9,907, 2,940, and 8,338, respectively. N for NS at 

ages 16, 17, and 22 were 9,944, 2,939, and 10,355 respectively (Table 4.1).  

Cross-age N for paranoia = 12,049, hallucinations = 12,054, and negative symptoms = 

12,652, reflecting the inclusion of all participants with complete and incomplete longitudinal 

data. At least one value of age in parallel with the PENS data was required for the models 

(Section 4.2.3.3), so the minor discrepancies between the N in this Chapter and those in 

Chapter 3 reflect the exclusion of individuals without this age data. 

 Individuals with PENS data at age 22 as well as either age 16 or ages 16 and 17, had 

higher SES scores and were more likely to be female than individuals without PENS data at 

age 22 (Supplementary Tables 4.1-4.3).  

 

4.2.2 – Measures  

Paranoia, hallucinations, and NS were assessed using the subscales of the SPEQ 

(Ronald et al., 2014), described in Section 2.2.2. Paranoia, hallucinations, and NS items are 

listed in Supplementary Information 2.1-2.3.  

 

4.2.3 – Statistical analyses 

4.2.3.1 – Overview of analyses 

GMM was used to investigate latent heterogeneity in the development of each of 

paranoia, hallucinations, and NS.  



 138 

4.2.3.2 – GMM 

The repeated measures were represented as a function both of the latent growth 

parameters and of the probability associated with the categorical latent class variable (i.e., the 

probability of latent class membership) (Ram & Grimm, 2009). Figuratively, this can be 

understood such that individuals were classified according to similarities in their latent 

trajectories. Figure 4.1 shows a path diagram of a linear GMM.  

4.2.3.3 – Modelling of time 

Individual time scores were incorporated in the GMM by allowing individual 

(random) slope factor loadings through the application of definition variables (Mehta & 

West, 2000). This approach was used because of the known within-wave variability of time 

(age) in the sample (Table 4.1). The definition variable approach is reflected in the path 

diagram of the GMM shown in Figure 4.1. 

4.2.3.4 – Parameters 

The parameters estimated in the GMM were as follows: a) the means of the latent 

intercept and slope growth factors, b) the variances of the growth factors, c) the residual 

variances (interpreted as wave-specific residual variances in individual time score models), 

and d) the covariance between the latent growth factors. For the 1-class GMM (which is 

functionally equivalent to an LGCM), one set of parameters (a-d, above) was estimated. For 

models with more than one class (k > 1), these parameters were estimated for each class.  

4.2.3.5 – Model fitting approach 

4.2.3.5.1 – k-class models 

Based on the findings of Chapter 3, all GMM models were specified to reflect a linear 

form of growth. A 1-class model was first estimated. Following the 1-class model, a 

sequentially increasing number of classes was specified, up to the point where there were 

consistent convergence issues (Jung & Wickrama, 2008). 



 139 

Within each k-class (where k refers to the number of classes), two models were 

initially run: A latent class growth analysis (LCGA) model, which constrained the growth 

factor variances and covariances to zero, and an unconstrained GMM (Model 0), in which all 

parameters (a-d, Section 4.2.3.4) were allowed to differ between the classes.  

4.2.3.5.2 – Constrained variance parameter models 

Where there were convergence issues with Model LCGA and Model 0 (above), a 

series of constrained variance parameter models were run. These procedures follow the 

Guidelines for Reporting on Latent Trajectory Studies (GRoLTS; van de Schoot et al., 2017).  

Models with constraints on one variance parameter (Models 1A-1C) and two variance 

parameters (Models 2A-2C) were tested. Specification was as per Model 0, with specific 

equality constraints as follows: Model 1A: Within-class residual variances. Model 1B: 

Between-class residual variances. Model 1C: Between-class growth factor variances. Model 

2A: Within-class and between-class residual variances. Model 2B: Within-class residual 

variances and between-class growth factor variances. Model 2C: Between-class residual 

variances and between-class growth factor variances.  

4.2.3.6 – Model selection 

For each k-class, the model with the lowest BIC value was selected. These models 

were rerun using the two seed values corresponding to the highest replicated loglikelihood 

value (Jung & Wickrama, 2008; Shireman et al., 2016). Replication using the seed numbers 

corresponding to specific start values indicates that the best loglikelihood is likely to be a 

global and not just a local solution, which would reflect that there are multiple solutions 

(Shireman et al., 2016). 

Where BIC values were indistinguishable (difference < 10), the AIC values were 

referred to and the model with the lowest AIC value (difference > 2) was selected. The best 

fitting overall model was determined by jointly considering, i) BIC values (and AIC where 
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necessary), ii) entropy values (which reflect the model’s ability to classify individuals into 

separate classes, with an entropy value of one reflecting perfect classification accuracy), iii) 

empirical plausibility of the within-class parameter estimates, and iv) theoretical plausibility 

of the latent classes. 

4.2.3.7 – Post hoc sensitivity tests 

Two sets of post hoc sensitivity tests were conducted. One, to test a more 

parsimonious parameterisation of the data – where the k-1-class model of the overall best 

fitting k-class model was unconstrained (i.e., Model 0), models 1A-2C for k-1 were also run. 

A homoscedastic model (Model 2C) was also run if the best fitting k-class model was 

unconstrained and further constrained models had not already been run. 

Two, to test for the significance of the difference between the slopes – where the 

slopes of the latent classes in the best fitting model appeared visually parallel, two tests were 

run: i) an equivalent model with constrained slope factor means, and ii) Wald tests of the 

differences between the slopes. Better fit of the original model (compared to the model with 

the constrained slope factor means), and a significant Wald test statistic (W, which is chi-

square distributed) would imply that the difference between the slope factor means is 

significant – suggesting that the latent classes differ in terms of the magnitude of their slopes.  

4.2.3.8 – Complete data analyses 

The same model-fitting procedures that were applied to data from the whole sample 

were applied using data only from individuals with complete data.  

4.2.3.9 – Estimation 

Details of the initial stage starts, final stage optimizations and initial stage iterations, 

as well adjustments to all models are provided in the decision-making flowchart shown in 

Supplementary Figure 4.1.  
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4.2.3.10 – Trajectory descriptors 

For consistency, growth factor parameters were labelled in the following way: 

Positive slope factor mean with significant z statistic = ‘increasing’. Negative slope factor 

mean with significant z statistic = ‘decreasing’. Positive or negative slope factor mean with 

nonsignificant z statistic and low-level intercept factor mean = ‘stable’. Positive or negative 

slope factor mean with nonsignificant z statistic and high-level intercept factor mean = 

‘persistent’. 

4.2.3.11 – Data modelling 

Mplus (version 8.6) was used for all data modelling. Any data that was missing was 

assumed to be missing at random, accommodated using FIML estimation. Observed total 

score data at each age was modelled, and a robust version of the FIML estimator was used 

(MLR) to correct for multivariate non-normality of the residuals of the observed scores. MLR 

adjusts both the standard errors and the overall test statistic. Wald tests were corrected using 

the MLR estimated covariance matrix. Variation in time scores (age) was modelled by 

allowing random slope factor loadings using the TSCORES application in Mplus.  

 

4.3 – Results  

Descriptive statistics for PENS data and age data and are reported in Table 4.1. 

Model-fitting results for converged models are shown in Table 4.2. Estimated 

parameters are shown in Table 4.3, and trajectory plots from the best fitting models are 

shown in Figures 4.2-4.4, for paranoia, hallucinations, and NS, respectively.  
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4.3.1 – Paranoia 

 4.3.1.1 – Model fitting results  

For the 1-class and 2-class models, the unconstrained GMM (Model 0) with freely 

estimated variances both within and between classes provided a superior fit compared to the 

LCGA models. This suggests within-class variability, or individual differences in the growth 

factors. For the 3-class models, the unconstrained GMM also fit better than the LCGA, 

though convergence was only possible with fixed parameters (as detailed below). Entropy 

values were higher for the 3-class models than for the 2-class models, though were notably 

less than one across all k-class models. Supplementary Table 4.4 shows that none of the 4-

class models converged.  

The 3-class Model 0 had the lowest BIC of all best fitting k-class models 

(Supplementary Table 4.4). Of note, estimation of this model (3-class Model 0) resulted in 

the fixing of the slope factor variance for one of the classes (subsequently referred to as the 

‘low-decreasing’ class, as below). This constraint was applied (by Mplus) to avoid singularity 

of the information matrix, suggesting an estimated variance of zero for this parameter. The 

model was rerun using the start values from the constrained model, with the slope factor 

(co)variance parameters fixed to zero (as recommended by Mplus product support; L. 

Muthén, personal communication, 2021). Parameter estimates and classification probabilities 

for all best fitting k-class models are shown in Supplementary Tables 4.5 and 4.6, 

respectively. 

4.3.1.2 – Model selection 

In line with the model selection criteria (Section 4.2.3.6), the 3-class Model 0 was 

selected as the best fitting model owing to its relative fit (lowest BIC value), relative high 

entropy value, empirical plausibility of the within-class parameter estimates, and the 
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theoretical plausibility of the latent classes (i.e., the 3-class model was in line with the 

hypothesis that a persistent class would be identified).  

The 3-class Model 0 estimated that, for most individuals, latent trajectories were 

characterised by mid-level (56.40%, ‘mid-decreasing’) or low-level (20.66%, ‘low-

decreasing’) paranoia that decreased over time (Table 4.2, Figure 4.2, Supplementary Table 

4.6). Latent trajectories for a smaller percentage of individuals (22.92%, ‘high-persistent’) 

were characterised by higher initial levels of paranoia that persisted over time. Variability 

around the growth factors was significant for the mid-decreasing and high-persistent latent 

classes. For the low-decreasing class, intercept variability was nonsignificant, and slope 

factor variance was fixed to zero (as noted previously). 

Supplementary Table 4.6 shows that for the 3-class Model 0, individuals whose most 

likely class membership was the high-persisting class (of which there was a 75% probability) 

– probability of classification error was 25%: there was a 23% probability that they could be 

in the mid-decreasing class, and a 2% probability that they could be in the low-decreasing 

class. For individuals whose most likely class membership was either the mid-decreasing 

class or low-decreasing class (of which there was an 88% probability for each), probability of 

classification error was 12%.  

4.3.1.3 – Post hoc sensitivity tests 

Constrained 2-class models (Models 1A-2C) were run because the best fitting 2-class 

model (i.e., the k-1 model) was unconstrained. A 3-class homoscedastic model (Model 2C) 

was also run because the best fitting 3-class model was unconstrained. Better fit of the 3-class 

Model 0 was found compared both to the 2-class Models 1A-2C (Supplementary Table 4.7), 

and to a 3-class homoscedastic model (Model 2C) (df = 16, log-likelihood = -77,086.757, 

BIC = 154,324.861, entropy = 0.686).  
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The slopes of the best fitting model (3-class Model 0) appeared visually parallel 

across the classes. Constraining the slope factor means across classes resulted in worse fit 

(log-likelihood = -74,342.311, BIC = 148,891.350, entropy = 0.651) than the model with 

freely estimated slopes. Wald tests of the difference between the slopes were significant 

(mid-decreasing, high-persistent: W (1) = 32.188, p < .001; mid-decreasing, low-decreasing: 

W (1) = 13.139, p < .001; low-decreasing, high-persistent: W (1) = 12.704, p < .001). The 

results of both sets of analysis suggest significant differences in the average rates of change 

in paranoia between the classes.  

4.3.1.4 – Complete data analyses 

Model fitting results of the GMM conducted for individuals with complete data only 

are shown in Supplementary Table 4.8. Like the results for the whole sample, a 3-class 

unconstrained GMM provided the best fit to the data. Parameter estimates were broadly 

similar, with the most notable exception that the latent class characterised by high baseline 

paranoia scores in the complete-data subsample followed a decreasing trajectory, compared 

to a persistently high trajectory in the whole sample (Supplementary Table 4.9). 

 

4.3.2 – Hallucinations  

4.3.2.1 – Model fitting results  

For the 1-class model, the unconstrained GMM (Model 0) with freely estimated 

variances both within and between classes provided a superior fit compared to the LCGA 

model. This suggests within-class variability, or individual differences in the growth factors. 

For the 2-class models, neither the LCGA nor the unconstrained GMM converged normally. 

Specifically, both models resulted in non-positive definite estimations. Convergence was 

obtained for models 1A, 2A and 2B that were run subsequently. Entropy values were less 
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than one to a similar extent for the 2-class models and the 3-class model. Supplementary 

Table 4.10 shows that of the 3-class models, only Model 2A converged.  

The 2-class Model 1A had the lowest BIC of all best fitting k-class models 

(Supplementary Table 4.10). Parameter estimates and classification probabilities for all best 

fitting k-class models are shown in Supplementary Tables 4.11 and 4.12 respectively. 

4.3.2.2 – Model selection 

The 2-class Model 1A was selected as the best fitting model owing to its relative fit 

(lowest BIC value), relative high entropy value, and empirical plausibility of the within-class 

parameter estimates. In terms of the theoretical plausibility of the latent classes, it was 

hypothesised that a persistent trajectory class would be identified. The 2-class model did not 

identify a persistent trajectory class, however, the notably worse relative fit of the 3-class 

model (which did identify a persistent class) together with the additional constraints that were 

required for convergence (i.e., between-class residual variances in addition to within-class 

residual variances) did not support selection of the 3-class model (Model 2A). The 2-class 

model (Model 1A) was selected as providing the best relative representation of the data.  

The 2-class Model 1A estimated that all individuals’ latent trajectories followed a 

decreasing developmental course, with one latent subgroup characterised by mid-level 

hallucinations scores at baseline (54.84%, ‘mid-decreasing’), and another characterised by 

low-level scores at baseline (45.16%, ‘low-decreasing’) (Table 4.2, Figure 4.2, 

Supplementary Table 4.12). There was significant variability around the growth factors for 

both classes.  

Supplementary Table 4.12 shows that for the 2-class Model 1A, individuals whose 

most likely class membership was the mid-decreasing class (of which there was a 97% 

probability), probability of classification error was 3%. For individuals whose most likely 
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class membership was the low-decreasing class (of which there is a 91% probability), 

probability of classification error was 9%.  

4.3.2.3 – Post hoc sensitivity tests 

The parsimony sensitivity tests were not conducted, because Models 1A-2C are not 

applicable to 1-class models, and 2-class constrained models had already been run. 

The slopes of the best fitting model (2-class Model 1A) appeared visually parallel 

across the classes. Constraining the slope factor means across classes resulted in worse fit 

(log-likelihood = -54,431.913, BIC = 108,975.593, entropy = 0.763) than the model with 

freely estimated slopes. A Wald test of the difference between the slopes was significant, 

suggesting that for individuals classified in the mid-decreasing compared to low-decreasing 

class, hallucinations decreased at a significantly greater rate (W (1) = 904.142, p < .001). The 

results of both sets of analysis suggest significant differences in the average rates of change 

in hallucinations between the classes.  

4.3.2.4 – Complete data analyses 

Model fitting results of the GMM conducted for individuals with complete data only 

are shown in Supplementary Table 4.13. A model with constrained within-class residual 

variances provided the best fit to the data, however a 3-class model provided the best fit, 

compared to a 2-class model for the whole sample. Nonetheless, parameter estimates were 

broadly similar, with average decline over time for all classes, albeit with latent classes 

characterised by both lower and higher baseline hallucinations scores (Supplementary Table 

4.14). 
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4.3.3 – Negative symptoms  

 4.3.3.1 – Model fitting results  

For both the 1-class and 2-class models, the unconstrained GMM (Model 0) with 

freely estimated variances both within and between classes provided a superior fit compared 

to the LCGA models (where growth factor variances were fixed at zero). 

For the 3-class models, neither the unconstrained GMM nor the LCGA converged 

normally. This led to a series of constrained models being tested. Models with one variance 

parameter constrained (Models 1A-1C) resulted in convergence issues. Supplementary Table 

4.15 shows that for the models with two variance parameters constrained, only Models 2A 

and 2C converged normally. Entropy values were higher for the 2-class models than for the 

3-class models.  

The 2-class Model 0 had the lowest BIC of all best fitting k-class models 

(Supplementary Table 4.15). Parameter estimates and classification probabilities for all best 

fitting k-class models are shown in Supplementary Tables 4.16 and 4.17, respectively. 

 4.3.3.2 – Model selection  

The 2-class Model 0 was selected as the best fitting model owing to its relative fit 

(lowest BIC value), relative high entropy value, and empirical plausibility of the within-class 

parameter estimates. In terms of the theoretical plausibility of the latent classes, it was 

hypothesised that a persistent trajectory class would be identified. The 2-class model 

estimated latent trajectories that increased over time for both classes. Whilst the 3-class 

model identified a persistent class, the constraints that were required for convergence (i.e., 

between-class residual variances and within-class residual variances) together with the poorer 

relative fit, did not support selection of the 3-class model (Model 2A). The 2-class model 

(Model 1A) was selected as providing the best relative representation of the data.  
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The 2-class Model 0 estimated that all individuals’ latent trajectories followed an 

increasing developmental course, with one latent subgroup characterised by mid-level 

negative symptoms scores at baseline (55.07%%, ‘mid-increasing’), and another 

characterised by low-level scores at baseline (44.93%, ‘low-increasing’) (Table 4.2, Figure 

4.2, Supplementary Table 4.17). There was significant variability around all growth factors 

except the slope factor in the low-increasing class.  

Supplementary Table 4.17 shows that for the 2-class Model 0, individuals whose most 

likely class membership was the mid-increasing class (of which there was a 92% probability), 

probability of classification error was 8%. For individuals whose most likely class 

membership was the low-increasing class (of which there was a 97% probability), probability 

of classification error was 3%.  

 4.3.3.4 – Post hoc sensitivity tests  

The parsimony sensitivity tests for Models 1A-2C were not conducted because they 

are not applicable to 1-class models. 

For the planned sensitivity analyses, a homoscedastic 2-class model did not fit the 

data as well (df = 12, log-likelihood = -55,901.090, BIC = 111,914.528, entropy = 0.557) as 

the unconstrained model. 

The slopes of the best fitting model (2-class Model 0) appeared visually parallel 

across the classes. Constraining slope factor means across classes resulted in worse fit (log-

likelihood = -50,744.690, BIC = 101,642.510, AIC = 101,522.381, entropy = 0.784) than the 

model with freely estimated slopes. A Wald test of the difference between the slopes was 

significant, indicating that NS increased at a greater rate in the mid-increasing class 

compared to the low-increasing class (W (1) = 18.243, p < .001).  

4.3.3.5 – Complete data analysis  
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Model fitting results of the GMM conducted for individuals with complete data only 

are shown in Supplementary Table 4.18. Like for the models estimated in the whole sample, 

a 2-class unconstrained GMM provided the best fit to the data. Parameter estimates were 

broadly similar, though of note, the latent class characterised by mid-level baseline NS scores 

in the complete-data subsample followed a stable trajectory (Supplementary Table 4.19), 

compared to an increasing trajectory in the whole sample. 
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Table 4.1 

Descriptive Statistics for Paranoia, Hallucinations, Negative Symptoms, and Age 

 Paranoia  Hallucinations  Negative symptoms  

Age 16  Age 17 Age 22 Age 16  Age 17 Age 22 Age 16  Age 17 Age 22 

 

N for PENS data 

 

9,898 

 

2,937 

 

 

8,340 

 

 

9,907 

 

 

2,940 

 

 

8,338 

 

9,944 

 

 

2,939 

 

 

10,355 

 

 

Mean PENS (SD) 

 

 

12.12 (10.63) 

 

14.44 (13.64) 

 

10.09 (11.51) 

 

4.72 (6.11) 

 

6.74 (7.57) 

 

1.72 (4.13) 

 

2.19 (3.19) 

 

2.91 (3.94) 

 

2.64 (3.60) 

 

PENS range 

 

 

0-72 

 

0-75 

 

0-74 

 

0-45 

 

0-45 

 

0-44 

 

0-24 

 

0-24 

 

0-24 

 

Skewness 

 

 

1.60 

 

1.46 

 

 

1.87 

 

2.12 

 

1.53 

 

 

4.46 

 

2.41 

 

2.09 

 

 

2.25 

 

N >3 SD 

 

 

121 (1.22%) 

 

34 (1.16%) 

 

143 (1.71%) 

 

157 (1.58%) 

 

30 (1.02%) 

 

153 (1.83%) 

 

191 (1.92%) 

 

61 (2.08%) 

 

206 (1.99%) 

 

Coefficient α 

 

 

0.93 

 

0.95 

 

0.94 

 

0.88 

 

0.90 

 

0.87 

 

0.83 

 

0.87 

 

0.84 

    

 

N for age data 

 

9,922 

 

 

2,963 

 

 

8,508 

 

 

9,928 

 

 

2,963 

 

 

8,507 

 

9,979 

 

 

2,966 

 

 

10,418 

 

 

Mean age (SD) 

 

 

16.32 (0.69) 

 

17.06 (0.88) 

 

22.85 (0.88) 

 

16.32 (0.68) 

 

17.06 (0.88) 

 

22.86 (0.88) 

 

16.32 (0.68) 

 

17.06 (0.88) 

 

22.30 (0.93) 

 

Age range (years) 

 

 

14.91-21.34 

 

15.55-19.00 

 

21.16-25.19 

 

14.91-21.34 

 

15.55-19.00 

 

21.16-25.19 

 

14.91-19.45 

 

15.55-19.00 

 

20.56-25.59 

 

Skewness 

 

 

-0.27 

 

0.01 

 

 

0.02 

 

-0.27 

 

0.01 

 

 

0.02 

 

-0.30 

 

-0.01 

 

 

0.13 

Note. PENS = psychotic experiences and negative symptoms.  
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Table 4.2 

Growth Mixture Model Fit Results for Converged Models of Paranoia, Hallucinations, and Negative Symptoms 

 k 

 

Model Par. Constraints LL BIC AIC Entropy 1 

 

Paranoia 

 

1 

1 

 

2 

2 

 

3 

3 a 

 

 

Model LCGA 

Model 0 

 

Model LCGA 

Model 0 

 

Model LCGA 

Model 0 

 

5 

8 

 

11 

17 

 

17 

24 

 

No growth factor variances  

None 

 

No growth factor variances  

None 

 

No growth factor variances  

None 

 

-81519.705 

-79987.442 

 

-76234.770 

-75775.359 

 

-74487.990 

-74316.664 

 

163086.393 

160050.058 

 

152572.904 

151710.463 

 

149135.725 

148858.850 

 

163049.410 

159990.885 

 

152491.540 

151584.718 

 

149009.981 

148681.328 

 

- 

- 

 

0.634 

0.596 

 

0.669 

0.656 

 

 

Hallucinations 

 

1 

1 

 

2 

2 

2 

 

 

3 

 

Model LCGA 

Model 0 

 

Model 1A 

Model 2A 

Model 2B 

 

 

Model 2A 

 

 

5 

8 

 

13 

12 

11 

 

 

18 

 

 

No growth factor variances  

None 

 

Within-class residual variances  

Within-class and between-class residual variances  

Within-class residual variances and between-class 

growth factor variances 

 

Within-class and between-class residual variances  

 

 

-65917.295 

-64673.683 

 

-53996.157 

-60064.952 

-54440.670 

 

 

-59209.341 

 

131881.575 

129422.544 

 

108114.477 

120242.670 

108984.709 

 

 

118587.830 

 

 

131844.589 

129363.367 

 

108018.314 

120153.904 

108903.340 

 

 

118454.682 

 

- 

- 

 

0.776 

0.744 

0.779 

 

 

0.768 

 

 

Negative 

symptoms 

 

1 

1 

 

2 

2 

 

3 

3 

 

 

Model LCGA 

Model 0 

 

Model LCGA 

Model 0 

 

Model 2A 

Model 2C 

 

5 

8 

 

11 

17 

 

18 

16 

 

 

No growth factor variances  

None 

 

No growth factor variances  

None 

 

Within-class and between-class residual variances  

Between-class residual variances and between-class 

growth factor variances  

 

 

-61820.215 

-59459.934 

 

-51529.472 

-50727.482 

 

-53174.429 

-54517.112 

 

123687.658 

118995.433 

 

103162.846 

101615.540 

 

106518.879 

109185.352 

 

123650.430 

118935.868 

 

103080.945 

101488.965 

 

106384.859 

109066.223 

 

- 

- 

 

0.790 

0.788 

 

0.708 

0.684 

 

Note. This table shows the results of the growth mixture models that converged. Full model fitting results are shown in Supplementary Tables 5.4 for paranoia, 5.10 for hallucinations, and 5.15 

for negative symptoms. k = number of classes. Par. = number of estimated parameters for final model. LL = log-likelihood value. 1 = No calculation for 1-class model. Bold typeset indicates 

lowest BIC value for each of paranoia, hallucinations, and negative symptoms. Log-likelihood values were replicated for each best fitting k-class model using the two random seed values with 

the highest log-likelihoods. a = slope factor variance (and covariance) fixed to zero for class #3. 
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Table 4.3 

Parameter Estimates for Each Best Fitting Growth Mixture Model for Paranoia, Hallucinations, and Negative Symptoms 

  

k 
 

 

Model 

 

Parameter  

 

Class 1 
 

Mean (SE) 

 

 
 

p 

 

 
 

Variance (SE) 

 

 
 

p 

 

Class 2 
 

Mean (SE) 

 

 
 

p 

 

 
 

Variance (SE) 

 

 
 

p 

 

Class 3 
 

Mean (SE) 

 

 
 

p 

 

 
 

Variance (SE) 

 

 
 

p 

 

Paranoia 

 

3 

 

Model 0 

 

Intercept 

Linear slope  
W1 

W2 

W3 

Covariance  

  

10.075 (0.284) 

-0.474 (0.025) 
- 

- 

- 

- 

 

< .001 

< .001 
- 

- 

- 

- 

 

15.564 (1.530) 

0.331 (0.061) 
19.526 (1.539) 

25.816 (2.168) 

23.833 (2.729) 

-2.261 (0.259) 

 

< .001 

< .001 
< .001 

< .001 

< .001 

< .001 

  

22.639 (0.423)  

-0.073 (0.064) 
- 

- 

- 

- 

 

< .001 

.257 
- 

- 

- 

- 

 

87.410 (7.500) 

1.877 (0.214) 
91.913 (7.573) 

163.038 (10.676) 

190.028 (7.797) 

-12.193 (1.181)  

 

< .001 

< .001 
< .001 

< .001 

< .001 

< .001 

  

2.786 (0.295) 

-0.335 (0.027) 
- 

- 

- 

- 

 

< .001 

< .001 
- 

- 

- 

- 

 

0.119 (0.079) 

0a 
5.797 (0.723) 

4.320 (0.616) 

0.406 (0.141) 

0a 

 

.130 

- 
< .001 

< .001 

.004 

- 

 

Hallucinations 

 

2 

 

Model 1A 

 

Intercept 
Linear slope  

W1 

W2 

W3 

Covariance  

  

8.828 (0.139) 
-0.754 (0.20) 

- 

- 

- 

- 

 

< .001 
< .001 

- 

- 

- 

- 

 

25.651 (1.603)  
0.237 (0.072) 

27.066 (1.332) 

27.066 (1.332) 

27.066 (1.332) 

-2.385 (0.261) 

 

< .001 
< .001 

< .001 

< .001 

< .001 

< .001 

  

1.209 (0.055) 
-0.158 (0.007) 

- 

- 

- 

- 

 

< .001 
< .001 

- 

- 

- 

- 

 

1.736 (0.135) 
0.034 (0.002) 

0.189 (0.015) 

0.189 (0.015) 

0.189 (0.015) 

-0.244 (0.017) 

 

< .001 
< .001 

< .001 

< .001 

< .001 

< .001 

  

- 
- 

- 

- 

- 

- 

 

- 
- 

- 

- 

- 

- 

 

-                            - 
-                            - 

-                            - 

-                            - 

-                            - 

-                            - 

 

Negative 

symptoms 

 

2 

 

Model 0 

 

Intercept 

Linear slope  

W1 
W2 

W3 

Covariance  

  

3.682 (0.085) 

0.095 (0.011) 

- 
- 

- 

- 

 

< .001 

< .001 

- 
- 

- 

- 

 

7.089 (0.465) 

0.093 (0.041) 

5.595 (0.418) 
8.220 (0.785) 

8.692 (1.387) 

-0.269 (0.069) 

 

< .001 

.022 

< .001 
< .001 

< .001 

< .001 

  

0.189 (0.014) 

0.034 (0.008) 

- 
- 

- 

- 

 

< .001 

< .001 

- 
- 

- 

- 

 

0.031 (0.011) 

0.001 (0.001) 

0.130 (0.010) 
0.142 (0.013) 

0.356 (0.058) 

0.000 (0.002) 

 

.004 

.577 

< .001 
< .001 

< .001 

.819 

  

- 

- 

- 
- 

- 

- 

 

- 

- 

- 
- 

- 

- 

 

-                            - 

-                            - 

-                            - 
-                            - 

-                            - 

-                            - 

 

Note. k = number of classes. W1-W3 = data collection waves 1-3. Variance of W1-W3 represents residual variance at waves 1-3. Covariance represents covariance between the intercept and 

slope factors. Model 0: Unconstrained model. Model 1A: Model with within-class residual variances constrained. a = parameter fixed to zero. 
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Figure 4.1 

Linear Growth Mixture Model with Individual Time Scores 

  

c 

b0 b1 

yi1 yi2 yi3 

1 1 
1 

ti2 
ti3 

ti1 

ei1 ei2 ei3 

1 

Note. Figure 4.1 is a simplified, figurative representation of a linear growth mixture model with individually varying time scores. Boxes represent 

observed variables; circles represent latent variables; curved arrows represent (co)variance; straight arrows represent regression paths; the triangle 

represents a constant; diamonds represent definition variables (reflecting individual times of measurement). The ‘c’ latent variable represents the 

categorical latent class variable, which moderates the model parameters within the box. b0 is a continuous latent intercept factor, and b1 is a 

continuous slope factor. y represents the observed score at times 1, 2, and 3, for individual i. Residual terms (e) are individual-specific and residual 

variances are wave-specific.  

1 1 1 
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Figure 4.2 

Plot of Estimated Trajectories from Best Fitting Growth Mixture Model of Paranoia 

 

 

 

Note. Lines represent mean trajectories; bands represent 95% confidence intervals. Parameter estimates for the trajectories are reported in Table 4.3 
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Figure 4.3 

Plot of Estimated Trajectories from Best Fitting Growth Mixture Model of Hallucinations 

 

 

 

Note. Lines represent mean trajectories; bands represent 95% confidence intervals. Parameter estimates for the trajectories are reported in Table 4.3 

  



 156 

Figure 4.4 

Plot of Estimated Trajectories from Best Fitting Growth Mixture Model of Negative Symptoms 

 

 

 

Note. Lines represent mean trajectories; bands represent 95% confidence intervals. Parameter estimates for the trajectories are reported in Table 4.3 
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4.4 – Discussion 

This Chapter investigated to the extent to which latent heterogeneity described the 

developmental course of paranoia, hallucinations, and NS reported from mid-adolescence to 

emerging adulthood. Three trajectory classes emerged for paranoia, two for hallucinations, 

and two for NS. Across the dimensions, trajectory classes were largely distinguished by 

different scores at age 16, but also by different rates of change over time. This is the first 

study to investigate the latent trajectories of NS, and of PEs analysed as separate dimensions. 

Of the models selected as providing the best representation of the data, a high and 

persisting latent trajectory class was identified only for paranoia. The empirical identification 

of a high-persistent trajectory class is in line with previous latent trajectory findings that have 

identified a persistent/increasing class for aggregated PEs (i.e., Bourque et al., 2017; Lin et 

al., 2011; Mackie et al., 2011, 2013; Thapar et al., 2012; Wigman, van Winkel, Jacobs, et al., 

2011; Wigman, van Winkel, Raaijmakers, et al., 2011). The percentage of individuals most 

likely to be assigned to this class for paranoia (~ 23%) mirrors the ~ 20% persistence rate 

estimated through meta-analysis of aggregated PEs reported across the lifespan, from studies 

that manually classified individuals (Linscott & van Os, 2013). Notably, however, the rate of 

persistence found in the current Chapter was higher than in previous studies that have 

estimated trajectories of aggregated PEs using latent variable modelling, both in adolescence 

(1-16% for persistent/increasing scores) (Bourque et al., 2017; Lin et al., 2011; Mackie et al., 

2011, 2013; Thapar et al., 2012; Wigman, van Winkel, Raaijmakers, et al., 2011), and 

adulthood (12%) (Wigman, van Winkel, Jacobs, et al., 2011). I speculate that the previous 

latent variable modelling estimates of persistence may be attenuated in comparison to the 

paranoia estimate in the current Chapter, because they include information on hallucinations 

as well as paranoia/delusions, as discussed below.  
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Whilst it was hypothesised that a persistent class would be identified for 

hallucinations as well as paranoia, the 2-class hallucinations model that did not include a 

high-persistent class was selected based on the better fit of the 2-class model compared to the 

3-class model (which required constraints to aid convergence). The estimates of the 2-class 

model suggested that a decreasing developmental course across each trajectory class, and 

thus across all individuals, best represents the data. The current study is the first to my 

knowledge to have estimated trajectories of PEs in the community and not to have found 

empirical evidence to suggest either an increasing or persistent latent trajectory class (i.e., 

Bourque et al., 2017; Lin et al., 2011; Mackie et al., 2011, 2013; Thapar et al., 2012; 

Wigman, van Winkel, Jacobs, et al., 2011; Wigman, van Winkel, Raaijmakers, et al., 2011). 

The novel hallucinations findings reported in this Chapter may suggest that prior findings of 

an increasing/persistent trajectory (for aggregated PEs) were contingent on the inclusion of 

paranoia/delusions scores. Notwithstanding, considering the empirically-driven constraints 

that were embedded in the final GMM in this Chapter – future research should test whether a 

high-persistent class for paranoia but not hallucinations is replicated in other community 

samples of young people using other measures.  

It was also hypothesised that a persistent trajectory would be identified for NS. The 

selection of a model that included a high-persistent class (i.e., the 3-class model) was not 

supported empirically, and the 2-class model was selected. Whilst the 2-class model did not 

include a high-persistent class, the parameter estimates suggested an overall increase over 

time across all individuals. These results dovetail broadly with results that have shown an 

increase in the prevalence of NS in young people with increasing age (Dominguez et al., 

2010). The current results may further be considered in line with findings from a sample of 

individuals meeting criteria for first episode of psychosis, in which most individuals were 
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classified into subgroups characterised by either increasing or stable symptoms (Austin et al., 

2015).  

It is important to acknowledge that the empirical identification of multiple latent 

classes, as reported in the current Chapter, could reflect one of several realities (Bauer & 

Curran, 2003, 2004). One possible reality is that the identified latent classes, whilst 

acknowledging that they remain statistical approximations, can be understood as being 

representative of the latent growth characteristics of a heterogenous sample of individuals, in-

line with theory. Another is that the identified latent classes (which represent multiple 

mixtures of normal distributions) are merely an empirical approximation of an overall 

nonnormal distribution. Whilst there is always a need to replicate GMM findings in other 

samples and with other measures (Bauer & Curran, 2003, 2004), replication will be important 

particularly in the context of the current paranoia and hallucinations findings given the 

empirically-driven constraints that were embedded in the final models.  

In summary, the results in this Chapter suggest that the development of paranoia, 

hallucinations, and NS reported in the community across adolescence into emerging 

adulthood, appears to be represented by multiple, latent classes. Investigating the dimensions 

separately allowed for distinct patterns of growth and heterogeneity to emerge. A remaining 

question is the extent to which the empirically-identified latent trajectory classes show 

associations with some of the correlates and precursors that have previously been found to 

associate with persistent PENS, as well as polygenic scores that have not previously been 

tested – which is the focus of Chapter 5. 
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4.5 – Appendix 

 

Supplementary Information 4.1 

Preregistration of Hypotheses 

 

Hypotheses were preregistered at https://osf.io/pax6k on 02/11/20 (where full details 

of the preregistration can be viewed). 

Deviations from the original hypotheses are italicised and are detailed further below. 

1) For paranoia, hallucinations, and NS, it is predicted that there will be significant 

phenotypic stability across all ages 16, 17 and 21 years (directional). 2) It is predicted that 

multiple, distinct latent trajectory classes will be identified through trajectory modelling. It is 

predicted that this will include a ‘persistent’ class for each of paranoia, hallucinations, and 

NS (directional). 3) It is predicted that, compared to a baseline/low scoring trajectory class, 

persistence will be differentially associated with factors within the following three categories: 

a) early life factors (more psychological difficulties, higher phenotypic p factor scores, more 

life events and lower educational attainment), b) genetic and other familial factors (lower 

family socio-economic status, more family psychiatric history and higher polygenic scores 

for adult psychiatric outcomes including a polygenic p factor) and, c) early adulthood factors 

(more psychological difficulties, recent life events and lower educational attainment). It is 

predicted that male gender will also associate with persistent negative symptoms compared to 

the other trajectory classes (directional).  

The results pertaining to the first hypothesis are reported in Chapter 2 (Supplementary 

Table 2.2). After preregistration, it was decided that the results of the first hypothesis would 

be included but that the analyses/results would not be a main focus. This is because rank 

order stability (correlation) reflects a different aspect of temporal stability to the rest of the 

https://osf.io/pax6k%20on%2002/11/20
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analyses in this Thesis (i.e., within-person stability, as described in Section 3.1), and only 

phenotypic pairwise complete data was included in the rank order stability analyses.  

It was originally planned that ‘p’ factor scores would be calculated, but these analyses 

were not conducted owing to time constraints.   
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Supplementary Table 4.1 

 

Paranoia Data Time-Point Characteristics 

 

 One time point Two time points Three time points 

 

Total  

Age 16 only Age 17 only 

 

Age 22 only Age 16 and 17 only 

 

Age 16 and 22 only Age 16, 17 and 22 

 

N 

 

2,745 (22.78%) 

 

 

0 (0%) 

 

 

2,150 (17.85%) 

 

 

966 (8.02%) 

 

4,219 (35.02%) 

 

1,968 (16.33%) 

 

 

12,051 

 

SES 

 

 

-0.10 (0.98) 

 

NA 

 

0.09 (1.01) 

 

0.07 (0.99) 

 

0.33 (0.98) 

 

0.25 (0.98) 

 

NA 

 

Female 

 

 

41.09% 

 

0% 

 

62.98% 

 

44.82% 

 

63.43% 

 

64.02% 

 

NA 

 

Genotyped 

 

 

1,464 (20.65%) 

 

0 (0%) 

 

 

1,107 (15.62%) 

 

541 (7.64%) 

 

2,702 (38.12%) 

 

1,275 (17.99%) 

 

7,089 (58.82%) 

Note. N = number of individuals with paranoia total score data across data collection waves. SES = socioeconomic status mean (SD). NA = not applicable.  
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Supplementary Table 4.2 

Hallucinations Data Time-Point Characteristics 

 

 One time point Two time points Three time points 

 

Total  

Age 16 only Age 17 only 

 

Age 22 only Age 16 and 17 only 

 

Age 16 and 22 only Age 16, 17 and 22 

 

N 

 

2,750 (22.81%) 

 

 

1 (0.1%) 

 

 

2,148 (17.82%) 

 

 

967 (8.02%) 

 

4,218 (34.99%) 

 

1,972 (16.36%) 

 

 

12,056 

 

SES 

 

 

-0.10 (0.98) 

 

-1.23 (NA) 

 

0.09 (1.01) 

 

0.07 (0.99) 

 

0.33 (0.98) 

 

0.25 (0.98) 

 

NA 

 

Female 

 

 

41.05% 

 

0% 

 

63.04% 

 

44.88% 

 

63.39% 

 

64.05% 

 

NA 

 

Genotyped  

 

 

1,467 (20.68%) 

 

0 (0%) 

 

 

1,106 (15.59%) 

 

543 (7.66%) 

 

2,701 (38.08%) 

 

1,276 (17.99%) 

 

7,093 (58.83%) 

Note. N = number of individuals with hallucinations total score data across data collection waves. SES = socioeconomic status mean (SD). NA = not applicable.  
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Supplementary Table 4.3 

Negative Symptoms Data Time-Point Characteristics 

 

 One time point Two time points Three time points 

 

Total  

Age 16 only Age 17 only 

 

Age 22 only Age 16 and 17 only 

 

Age 16 and 22 only Age 16, 17 and 22 

 

N 

 

1,762 (13.92%) 

 

 

1 (0.1%) 

 

 

2,717 (21.46%) 

 

 

544 (4.30%) 

 

5,244 (41.42%) 

 

2,394 (18.91%) 

 

 

12,662 

 

SES 

 

 

-0.18 (0.95) 

 

-0.06 (NA) 

 

0.18 (1.02) 

 

-0.22 (0.98) 

 

0.38 (0.96) 

 

0.29 (0.96) 

 

NA 

 

Female 

 

 

47.62% 

 

0% 

 

50.42% 

 

54.60% 

 

56.50% 

 

58.60% 

 

NA 

 

Genotyped  

 

 

880 (11.82%) 

 

1 (0.1%) 

 

 

1,437 (19.49%) 

 

286 (3.62%) 

 

3,310 (44.73%) 

 

1,529 (20.74%) 

 

7,443 (58.78%) 

Note. N = number of individuals with negative symptoms total score data across data collection waves. SES = socioeconomic status mean (SD). NA = not applicable.  
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Supplementary Table 4.4 

Full Growth Mixture Model Fit Results for Paranoia 

k 

 

Model Par. Constraints LL BIC AIC Entropy 1 

1 

1 

 

2 

2 

 

3 

3 

 

4 

4 

4 

4 

4 

4 

4 

 

4 

Model LCGA 

Model 0 

 

Model LCGA 

Model 0 

 

Model LCGA 

Model 0 

 

Model LCGA 

Model 0 

Model 1A 

Model 1B 

Model 1C 

Model 2A 

Model 2B 

 

Model 2C 

 

5 

8 

 

11 

17 

 

17 

24 

 

23 

35 

27 

27 

29 

24 

21 

 

20 

No growth factor variances  

None 

 

No growth factor variances  

None 

 

No growth factor variances  

None 

 

No growth factor variances 

None 

Within-class residual variances  

Between-class residual variances  

Between-class growth factor variances  

Within-class and between-class residual variances  

Within-class residual variances and between-class 

growth factor variances  

Between-class residual variances and between-class 

growth factor variances  

-81,519.705 

-79,987.442 

 

-76,234.770 

-75,775.359 

 

-74,487.990 

-74,316.664 

 

- 

- 

- 

- 

- 

- 

 

- 

 

- 

163,086.393 

160,050.058 

 

152,572.904 

151,710.463 

 

149,135.725 

148,858.850 

 

- 

- 

- 

- 

- 

- 

 

- 

 

- 

163,049.410 

159,990.885 

 

152,491.540 

151,584.718 

 

149,009.981 

148,681.328 

 

- 

- 

- 

- 

- 

- 

 

- 

 

- 

- 

- 

 

0.634 

0.596 

 

0.669 

0.656 

 

- 

- 

- 

- 

- 

- 

 

- 

 

- 

        

 

Note. k = number of classes. Par. = number of estimated parameters (for final model if converged, for unadjusted model if not converged). LL = log-likelihood value. AIC = Akaike’s 

Information Criterion. BIC = Bayesian Information Criterion. 1 = No calculation for 1-class model. Bold typeset indicates lowest BIC value for each k-class model. Log-likelihood values 

replicated for best fitting k-class models using the two random seed values with the highest log-likelihoods. 
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Supplementary Table 4.5 

Parameter Estimates for Each Best Fitting k-Class Model for Paranoia 

k 

 

Model Parameter  Class 1 

 
Mean (SE) 

 

 
p 

 

 
Variance (SE) 

 

 
p 

Class 2 

 
Mean (SE) 

 

 
p 

 

 
Variance (SE) 

 

 
p 

Class 3 

 
Mean (SE) 

 

 
p 

 

 
Variance (SE) 

 

 
p 

 

1 

 

Model 0 

 

Intercept 

Linear slope  

W1 
W2 

W3 

Covariance  

  

12.362 (0.125) 

-0.335 (0.022) 

- 
- 

- 

- 

 

< .001 

< .001 

- 
- 

- 

- 

 

80.615 (3.077) 

0.373 (0.275) 

36.480 (2.648) 
75.924 (4.924) 

89.665 (11.341) 

-3.998 (0.463) 

 

< .001 

.175 

< .001 
< .001 

< .001 

< .001 

 

  

- 

- 

- 
- 

- 

- 

 

- 

- 

- 
- 

- 

- 

 

- 

- 

- 
- 

- 

- 

 

- 

- 

- 
- 

- 

- 

  

- 

- 

- 
- 

- 

- 

 

- 

- 

- 
- 

- 

- 

 

- 

- 

- 
- 

- 

- 

 

- 

- 

- 
- 

- 

- 

 

2 

 

Model 0 

 

Intercept 

Linear slope  

W1 

W2 
W3 

Covariance  

 

  

20.458 (0.400) 

-0.142 (0.052) 

- 

- 
- 

- 

 

< .001 

.006 

- 

- 
- 

- 

 

87.372 (6.170) 

1.472 (0.173) 

78.336 (6.203) 

146.201 (9.415) 
169.488 (7.580) 

-10.362 (0.975) 

 

< .001 

< .001 

< .001 

< .001 
< .001 

< .001 

  

7.654 (0.161) 

-0.458 (0.023) 

- 

- 
- 

- 

 

<.001 

<.001 

- 

- 
- 

- 

 

17.929 (1.167) 

0.215 (0.046) 

12.397 (0.991) 

14.340 (1.153) 
13.739 (1.706) 

-1.708 (0.162) 

 

< .001 

< .001 

< .001 

< .001 
< .001 

< .001 

  

- 

- 

- 

- 
- 

- 

 

- 

- 

- 

- 
- 

- 

 

- 

- 

- 

- 
- 

- 

 

- 

- 

- 

- 
- 

- 

 

3 

 

Model 0 

 

Intercept 
Linear slope  

W1 

W2 

W3 

Covariance  
 

  

10.075 (0.284) 
-0.474 (0.025) 

- 

- 

- 

- 
 

 

< .001 
< .001 

- 

- 

- 

- 

 

15.564 (1.530) 
0.331 (0.061) 

19.526 (1.539) 

25.816 (2.168) 

23.833 (2.729) 

-2.261 (0.259) 

 

<.001 
<.001 

<.001 

<.001 

<.001 

<.001 

  

22.639 (0.423)  
-0.073 (0.064) 

- 

- 

- 

- 

 

<.001 
.257 

- 

- 

- 

- 
 

 

87.410 (7.500) 
1.877 (0.214) 

91.913 (7.573) 

163.038 (10.676) 

190.028 (7.797) 

-12.193 (1.181)  

 

< .001 
< .001 

< .001 

< .001 

< .001 

< .001 
 

  

2.786 (0.295) 
-0.335 (0.027) 

- 

- 

- 

- 

 

< .001 
< .001 

- 

- 

- 

- 

 

0.119 (0.079) 
0 a 

5.797 (0.723) 

4.320 (0.616) 

0.406 (0.141) 

0 a 

 

.130 
- 

< .001 

< .001 

.004 

- 

 

Note. k = number of classes. W1-W3 = data collection waves 1-3. Variance of W1-W3 represents residual variance at data collection waves 1-3. Covariance represents covariance between 

intercept and slope. Model 0: Unconstrained model. a = parameter manually fixed to zero. 
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Supplementary Table 4.6 

Most Likely Class Classification Values for Each Best Fitting k-Class Model for Paranoia 

k 

 

Model   Classification probabilities Final class counts and 

proportions 

 

 

 

 

Class 1 

 

 

Class 2 

 

 

Class 3 

 

 

 

 

 

 

 

1 

 

Model 0 

 

Class 1 

  

1.000 

 

  

- 

  

- 

 

 

 

12,049 (100%) 

 

2 

 

Model 0 

 

Class 1 

Class 2 

  

0.774 

0.046  

 

  

0.226 

0.954 

  

- 

- 

 

 

 

 

3,766 (31.26%) 

8,283 (68.74%) 

 

3a 

 

Model 0 

 

Class 1 

Class 2 

Class 3 

  

0.881 

0.231 

0.117 

  

0.039 

0.749 

0.000 

  

0.081 

0.020 

0.883 

 

 

 

6,798 (56.40%) 

2,762 (22.92%) 

2,489 (20.66%) 

 

Note. k = number of classes. Model 0: Unconstrained model. a = constrained slope factor variance in class #3. Values based on most likely latent class membership. 
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Supplementary Table 4.7 

Growth Mixture Model Fit Results for 2-Class Models of Paranoia (Sensitivity Analysis) 

k 

 

Model Par. Constraints LL BIC AIC Entropy 

2 

2 

2 

2 

 

2 

 

2 

 

1A 

1B 

1C 

2A 

 

2B 

 

2C 

 

13 

14 

15 

12 

 

11 

 

12 

Within-class residual variances  

Between-class residual variances  

Between-class growth factor variances  

Within-class and between-class residual 

variances  

Within-class residual variances and 

between-class growth factor variances  

Between-class residual variances and 

between-class growth factor variances  

 

-75,820.928 

-76,433.696 

-75,859.851 

-76,969.025 

 

-75,886.302 

 

-77,924.647 

151,764.013 

152,998.946 

151,860.654 

154,050.811 

 

151,875.967 

 

155,962.054 

151,667.855 

152,895.392 

151,749.703 

153,962.050 

 

151,794.603 

 

155,873.293 

0.600 

0.580 

0.617 

0.632 

 

0.617 

 

0.496 

 

Note. k = number of classes. Par. = number of estimated parameters. LL = log-likelihood value.  
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Supplementary Table 4.8 

Growth Mixture Model Fit Results for Paranoia for Individuals with Complete Data  

k 
 

Model Par. Constraints LL  BIC AIC Entropy 1 

 

1 

1 

 

2 

2 

 

3 

3 

 

 

Model LCGA 

Model 0 

 

Model LCGA 

Model 0 

 

Model LCGA 

Model 0 

 

 

5 

8 

 

11 

17 

 

17 

26 

 

No growth factor variances  

None 

 

No growth factor variances  

None 

 

No growth factor variances  

None 

 

 

-23,646.701 

-22,660.808 

 

-21,740.007 

-21,435.265 

 

-21,238.092 

-21,072.670 

 

47,331.335 

45,382.290 

 

43,563.441 

42,999.462 

 

42,605.117 

42,342.530 

 

 

47,303.413 

45,337.616 

 

43,502.014 

42,904.530 

 

42,510.184 

42,197.339 

 

- 

- 

 

0.840 

0.768 

 

0.846 

0.804 

 

Note. N = 1,967 with complete data. k = number of classes. Par. = number of estimated parameters. LL = log-likelihood value. 1 = No calculation for 1-class model. Bold typeset indicates 

lowest BIC value for each k-class model. Log-likelihood values replicated for best fitting k-class models using the two random seed values with the highest log-likelihoods. 
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Supplementary Table 4.9 

Parameter Estimates for Each Best Fitting k-Class Model for Paranoia for Individuals with Complete Data  

k 

 

Model Parameter  Class 1 

 
Mean (SE) 

 

 
P 

 

 
Variance (SE) 

 

 
P 

Class 2 

 
Mean (SE) 

 

 
P 

 

 
Variance (SE) 

 

 
P 

Class 3 

 
Mean (SE) 

 

 
P 

 

 
Variance (SE) 

 

 
P 

 

1 

 

Model 0 

 

Intercept 

Linear slope  

W1 
W2 

W3 

Covariance 

  

  

15.185 (0.333) 

-0.568 (0.047) 

- 
- 

- 

- 

 

< .001 

< .001 

- 
- 

- 

- 

 

136.345 (6.768) 

0.963 (0.539) 

54.810 (4.462) 
54.528 (4.585) 

88.379 (19.973) 

-7.581 (0.931) 

 

< .001 

.074 

< .001 
< .001 

< .001 

< .001 

 

  

- 

- 

- 
- 

- 

- 

 

- 

- 

- 
- 

- 

- 

 

- 

- 

- 
- 

- 

- 

 

- 

- 

- 
- 

- 

- 

  

- 

- 

- 
- 

- 

- 

 

- 

- 

- 
- 

- 

- 

 

- 

- 

- 
- 

- 

- 

 

- 

- 

- 
- 

- 

- 

 
2 

 
Model 0 

 
Intercept 

Linear slope  

W1 

W2 

W3 
Covariance  

 

  
7.339 (0.289) 

-0.409 (0.045) 

- 

- 

- 
- 

 
< .001 

< .001 

- 

- 

- 
- 

 
17.948 (1.589) 

0.361 (0.097) 

11.690 (1.429) 

13.652 (1.381) 

9.626 (3.864) 
-1.721 (0.234) 

 
< .001 

< .001 

< .001 

< .001 

.013 
< .001 

  
24.559 (0.679) 

-0.753 (0.099) 

- 

- 

- 
- 

 
< .001 

< .001 

- 

- 

- 
- 

 
116.570 (9.709) 

2.087 (0.686) 

99.928 (8.261) 

110.071 (9.190) 

163.261 (26.624) 
-11.654 (1.624) 

 
< .001 

.002 

< .001 

< .001 

< .001 
< .001 

  
- 

- 

- 

- 

- 
- 

 
- 

- 

- 

- 

- 
- 

 
- 

- 

- 

- 

- 
- 

 
- 

- 

- 

- 

- 
- 

 

3 

 

Model 0 

 

Intercept 

Linear slope  
W1 

W2 

W3 

Covariance  

 

  

3.156 (0.362) 

-0.392 (0.045) 
- 

- 

- 

- 

 

 

< .001 

< .001 
- 

- 

- 

- 

 

 

3.188 (0.828) 

0.057 (0.024) 
6.741 (1.967) 

3.261 (0.778) 

0.453 (0.344) 

-0.423 (0.115)  

 

< .001 

.019 

.001 

< .001 

.187 

< .001 

  

9.401 (0.360) 

-0.404 (0.052) 
- 

- 

- 

- 

 

< .001 

< .001 
- 

- 

- 

- 

 

 

16.764 (1.987) 

0.469 (0.118) 
17.651 (2.038) 

22.480 (2.423) 

20.136 (4.729) 

-2.489 (0.338) 

 

< .001 

< .001 
< .001 

< .001 

< .001 

< .001 

 

  

26.321 (0.636) 

-0.796 (0.108) 
- 

- 

- 

- 

 

< .001 

< .001 
- 

- 

- 

- 

 

109.061 (10.276) 

2.153 (0.653) 
106.351 (1.987) 

120.581 (9.928) 

185.067 (25.704)  

-12.233 (1.791) 

 

< .001 

< .001 
< .001 

< .001 

< .001 

< .001 

 

 

Note. k = number of classes. W1-W3 = data collection waves 1-3. Variance of W1-W3 represents residual variance at data collection waves 1-3. Covariance represents covariance between 

intercept and slope. Model 0: Unconstrained model. 
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Supplementary Table 4.10 

Full Growth Mixture Model Fit Results for Hallucinations 

k 

 

Model Par. Constraints LL  BIC AIC Entropy 1 

1 

1 

 

2 

2 

2 

2 

2 

2 

 

2 

 

2 

 

 

3 

3 

3 

3 

3 

3 

 

3 

 

3 

Model LCGA 

Model 0 

 

Model LCGA 

Model 0 

Model 1A 

Model 1B 

Model 1C 

Model 2A 

 

Model 2B 

 

Model 2C 

 

 

Model LCGA 

Model 0  

Model 1A 

Model 1B 

Model 1C 

Model 2A 

 

Model 2B 

 

Model 2C 

5 

8 

 

11 

17 

13 

13 

15 

12 

 

11 

 

12 

 

 

17 

26 

20 

20 

22 

18 

 

15 

 

16 

No growth factor variances  

None 

 

No growth factor variances  

None 

Within-class residual variances  

Between-class residual variances  

Between-class growth factor variances  

Within-class and between-class residual 

variances  

Within-class residual variances and between-

class growth factor variances 

Between-class residual variances and 

between-class growth factor variances  

 

No growth factor variances  

None 

Within-class residual variances  

Between-class residual variances  

Between-class growth factor variances  

Within-class and between-class residual 

variances  

Within-class residual variances and between-

class growth factor variances 

Between-class residual variances and 

between-class growth factor variances  

-65,917.295 

-64,673.683 

 

- 

- 

-53,996.157 

- 

- 

-60,064.952 

 

-54,440.670 

 

- 

 

 

- 

- 

- 

- 

- 

-59,209.341 

 

- 

 

- 

131,881.575 

129,422.544 

 

- 

- 

108,114.477 

- 

- 

120,242.670 

 

108,984.709 

 

- 

 

 

- 

- 

- 

- 

- 

118,587.830 

 

- 

 

- 

131,844.589 

129,363.367 

 

- 

- 

108,018.314 

- 

- 

120,153.904 

 

108,903.340 

 

- 

 

 

- 

- 

- 

- 

- 

118,454.682 

 

- 

 

- 

- 

- 

 

- 

- 

0.776 

- 

- 

0.744 

 

0.779 

 

- 

 

 

- 

- 

- 

- 

- 

0.768 

 

- 

 

- 

        

 

Note. k = number of classes. Par. = number of estimated parameters (for final model if converged, for unadjusted model if not converged). LL = log-likelihood value. 1 = No calculation for 1-

class model. Bold typeset indicates lowest BIC value for each k-class model. Log-likelihood values replicated for best fitting k-class models using the two random seed values with the highest 

log-likelihoods. 
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Supplementary Table 4.11 

Parameter Estimates for Each Best Fitting k-Class Model for Hallucinations 

k 

 

Model Parameter  Class 1 

 
Mean (SE) 

 

 
p 

 

 
Variance (SE) 

 

 
p 

Class 2 

 
Mean (SE) 

 

 
p 

 

 
Variance (SE) 

 

 
p 

Class 3 

 
Mean (SE) 

 

 
p 

 

 
Variance (SE) 

 

 
p 

 

1 

 

Model 0 

 

Intercept 

Linear slope  

W1 
W2 

W3 

Covariance  

  

5.031 (0.074) 

-0.475 (0.011) 

- 
- 

- 

- 

 

< .001 

< .001 

- 
- 

- 

- 

 

26.878 (1.241) 

0.253 (0.090) 

12.799 (1.092)  
26.480 (1.558) 

12.101 (3.472) 

-2.437 (0.184) 

 

< .001 

.005 

< .001 
< .001 

< .001 

< .001 

 

  

- 

- 

- 
- 

- 

- 

 

- 

- 

- 
- 

- 

- 

 

- 

- 

- 
- 

- 

- 

 

- 

- 

- 
- 

- 

- 

  

- 

- 

- 
- 

- 

- 

 

- 

- 

- 
- 

- 

- 

 

- 

- 

- 
- 

- 

- 

 

- 

- 

- 
- 

- 

- 

 

2 

 

Model 1A 

 

Intercept 

Linear slope  

W1 

W2 
W3 

Covariance  

  

8.828 (0.139) 

-0.754 (0.20) 

- 

- 
- 

- 

 

< .001 

< .001 

- 

- 
- 

- 

 

25.651 (1.603)  

0.237 (0.072) 

27.066 (1.332) 

27.066 (1.332) 
27.066 (1.332) 

-2.385 (0.261) 

 

< .001 

< .001 

< .001 

< .001 
< .001 

< .001 

  

1.209 (0.055) 

-0.158 (0.007) 

- 

- 
- 

- 

 

< .001 

< .001 

- 

- 
- 

- 

 

1.736 (0.135) 

0.034 (0.002) 

0.189 (0.015) 

0.189 (0.015) 
0.189 (0.015) 

-0.244 (0.017) 

 

< .001 

< .001 

< .001 

< .001 
< .001 

< .001 

  

- 

- 

- 

- 
- 

- 

 

- 

- 

- 

- 
- 

- 

 

- 

- 

- 

- 
- 

- 

 

- 

- 

- 

- 
- 

- 

 

3 

 

Model 2A 

 

Intercept 

Linear slope  

W1 

W2 
W3 

Covariance  

  

2.050 (0.125) 

-0.206 (0.016) 

- 

- 
- 

- 

 

 

< .001 

< .001 

- 

- 
- 

- 

 

0.025 (0.519) 

0.001 (0.022) 

5.846 (0.214) 

5.486 (0.214) 
5.486 (0.214) 

-0.003 (0.100) 

 

.962 

.980 

< .001 

< .001 
< .001 

.973 

  

10.917 (0.425) 

-1.117 (0.033) 

- 

- 
- 

- 

 

 

< .001 

< .001 

- 

- 
- 

- 

 

24.983 (2.494)  

0.885 (0.145) 

5.846 (0.214) 

5.486 (0.214) 
5.486 (0.214) 

-4.011 (0.477) 

 

 

< .001 

< .001 

< .001 

< .001 
< .001 

< .001 

  

18.514 (1.073) 

0.325 (0.614) 

- 

- 
- 

- 

 

 

< .001 

.596 

- 

- 
- 

- 

 

218.790 (69.883) 

109.451 (54.558) 

5.846 (0.214) 

5.486 (0.214) 
5.486 (0.214) 

-103.138 (46.195) 

 

< .001 

.045 

< .001 

< .001 
< .001 

.026 

 

Note. k = number of classes. W1-W3 = data collection waves 1-3. Variance of W1-W3 represents residual variance at waves 1-3. Model 0: Unconstrained model. Model 1A: Model with 

within-class residual variances constrained. Model 2A: Model with within-class and between-class residual variances constrained. 
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Supplementary Table 4.12 

Most Likely Class Classification Values for Each Best Fitting k-Class Model for Hallucinations 

k 

 

Model   Classification probabilities 

 

Final class counts and 

proportions 

 

 

 

 

Class 1 

 

 

Class 2 

 

 

Class 3 

 

 

1 

 

Model 0 

 

Class 1 

  

1.000 

 

  

- 

 

- 

 

12,054 (100%) 

 

2 

 

Model 1A 

 

Class 1 

Class 2 

  

0.972 

0.090 

 

  

0.028 

0.910 

 

- 

- 

 

6,610 (54.84%) 

5,444 (45.16%) 

 

3 

 

Model 2A 

 

Class 1 

Class 2 

Class 3 

 

  

0.978 

0.241 

0.046 

 

  

0.022 

0.748 

0.242 

 

 

0.000 

0.011 

0.712 

 

9,142 (75.84%) 

2,563 (21.26%) 

349 (2.90%) 

Note. k = number of classes. Model 0: Unconstrained model. Model 1A: Model with within-class residual variances constrained. Model 2A: Model with within-class and between-class residual 

variances constrained. Values based on most likely latent class membership.  
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Supplementary Table 4.13 

Growth Mixture Model Fit Results for Hallucinations for Individuals with Complete Data  

k 

 

Model Par. Constraints LL  BIC AIC Entropy 1 

 

1 

1 

 

2 

2 

2 

2 

2 

2 

 

2 

 

2 

 

 

3 

3 

3 

3 

3 

3 

 

3 
 

3 
 

 

Model LCGA 

Model 0 

 

Model LCGA 

Model 0 

Model 1A 

Model 1B 

Model 1C 

Model 2A 

 

Model 2B 

 

Model 2C 

 

 

Model LCGA 

Model 0 

Model 1A 

Model 1B 

Model 1C 

Model 2A 

 

Model 2B 

 

Model 2C 

 

 

 

5 

8 

 

11 

17 

13 

13 

15 

12 

 

11 

 

12 

 

 

17 

26 

20 

20 

22 

18 

 

15 

 

16 

 

No growth factor variances  

None 

 

No growth factor variances  

None 

Within-class residual variances  

Between-class residual variances  

Between-class growth factor variances  

Within-class and between-class residual 

variances  

Within-class residual variances and 

between-class growth factor variances  

Between-class residual variances and 

between-class growth factor variances  

 

No growth factor variances  

None 

Within-class residual variances  

Between-class residual variances  

Between-class growth factor variances  

Within-class and between-class residual 

variances  

Within-class residual variances and 

between-class growth factor variances  

Between-class residual variances and 

between-class growth factor variances  

 

 

-19,599.230 

-18,822.735 

 

- 

- 

-16,408.676 

- 

- 

-17,974.140 

 

-16,582.515 

 

- 

 

 

- 

- 

-15,667.163 

- 

- 

-17,690.300 

 

-15,800.621 

 

- 

 

39,236.391 

37,706.161 

 

- 

- 

32,915.974 

- 

- 

36,039.316 

 

33,248.483 

 

- 

 

 

- 

- 

31,486.051 

- 

- 

35,517.152 

 

31,722.623 

 

- 

 

39,208.460 

37,661.470 

 

- 

- 

32,843.35 

- 

- 

35,972.280 

 

33,187.034 

 

- 

 

 

- 

- 

31,374.325 

- 

- 

35,416.599 

 

31,633.242 

 

- 

 

- 

- 

 

- 

- 

0.890 

- 

- 

0.791 

 

0.901 

 

- 

 

 

- 

- 

0.878 

- 

- 

0.740 

 

0.908 

 

- 

 

 
Note. N = 1,971 with complete data. k = number of classes. Par. = number of estimated parameters (for final model if converged, for unadjusted model if not converged). LL = log-likelihood 

value. 1 = No calculation for 1-class model. Bold typeset indicates lowest BIC value for each k-class model. Log-likelihood values replicated for best fitting k-class models using the two 

random seed values with the highest log-likelihoods. 
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Supplementary Table 4.14 

Parameter Estimates for Each Best Fitting k-Class Model for Hallucinations for Individuals with Complete Data  

k 

 

Model Parameter  Class 1 

 
Mean (SE) 

 

 
p 

 

 
Variance (SE) 

 

 
p 

Class 2 

 
Mean (SE) 

 

 
p 

 

 
Variance (SE) 

 

 
p 

Class 3 

 
Mean (SE) 

 

 
p 

 

 
Variance (SE) 

 

 
p 

 

1 

 

Model 0 

 

Intercept 

Linear slope  

W1 
W2 

W3 

Covariance  

  

7.148 (0.197) 

-0.742 (0.027) 

- 
- 

- 

- 

 

< .001 

< .001 

- 
- 

- 

- 

 

46.678 (2.781) 

0.467 (0.213) 

20.858 (2.038)  
19.003 (1.657) 

16.978 (7.640) 

-4.496 (0.380) 

 

< .001 

.028 

< .001 
< .001 

.026 

< .001 

 

  

- 

- 

- 
- 

- 

- 

 

- 

- 

- 
- 

- 

- 

 

- 

- 

- 
- 

- 

- 

 

- 

- 

- 
- 

- 

- 

  

- 

- 

- 
- 

- 

- 

 

- 

- 

- 
- 

- 

- 

 

- 

- 

- 
- 

- 

- 

 

- 

- 

- 
- 

- 

- 

 
2 

 
Model 1A 

 
Intercept 

Linear slope  

W1 

W2 

W3 
Covariance  

 

  
1.518 (0.103) 

-0.184 (0.014) 

- 

- 

- 
- 

 
< .001 

< .001 

- 

- 

- 
- 

 
1.692 (0.234)  

0.032 (0.007) 

0.907 (0.072) 

0.907 (0.072) 

0.907 (0.072) 
-0.232 (0.039) 

 
< .001 

< .001 

< .001 

< .001 

< .001 
< .001 

  
11.779 (0.289) 

-1.191 (0.039) 

- 

- 

- 
- 

 
< .001 

< .001 

- 

- 

- 
- 

 
37.283 (3.456) 

0.341 (0.141) 

34.093 (2.126) 

34.093 (2.126) 

34.093 (2.126) 
-3.484 (0.478) 

 
< .001 

.016 

< .001 

< .001 

< .001 
< .001 

  
- 

- 

- 

- 

- 
- 

 
- 

- 

- 

- 

- 
- 

 
- 

- 

- 

- 

- 
- 

 
- 

- 

- 

- 

- 
- 

 

3 

 

Model 1A 

 

Intercept 
Linear slope  

W1 

W2 

W3 

Covariance  
 

  

0.294 (0.026) 
-0.038 (0.004) 

- 

- 

- 

- 
 

 

< .001 
< .001 

- 

- 

- 

- 

 

0.092 (0.015) 
0.002 (0.001) 

0.093 (0.006) 

0.093 (0.006) 

0.093 (0.006) 

-0.013 (0.003) 

 

< .001 
.048 

< .001 

< .001 

< .001 

< .001 

  

3.070 (0.270) 
-0.344 (0.036) 

- 

- 

- 

- 
 

 

< .001 
< .001 

- 

- 

- 

- 

 

2.097 (0.755)  
0.047 (0.015) 

3.027 (0.341) 

3.027 (0.341) 

3.027 (0.341) 

-0.315 (0.106) 
 

 

.006 

.002 

< .001 

< .001 

< .001 

.003 

  

13.809 (0.467) 
-1.391 (0.052) 

- 

- 

- 

- 
 

 

< .001 
< .001 

- 

- 

- 

- 

 

29.004 (3.839) 
0.244 (0.187) 

41.796 (3.063) 

41.796 (3.063) 

41.796 (3.063) 

-2.529 (0.571) 

 

< .001 
.193 

< .001 

< .001 

< .001 

< .001 
 

 

Note. k = number of classes. W1-W3 = data collection waves 1-3. Variance of W1-W3 represents residual variance at data collection waves 1-3. Covariance represents covariance between 

intercept and slope. Model 0: Unconstrained model. Model 1A: Model with within-class residual variances constrained.  
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Supplementary Table 4.15 

Full Growth Mixture Model Fit Results for Negative Symptoms  

k 

 

Model Par. Constraints LL  BIC AIC Entropy 1 

1 

1 

 

2 

2 

 

3 

3 

3 

3 

3 

3 

 

3 

 

3 

 

Model LCGA 

Model 0 

 

Model LCGA 

Model 0 

 

Model LCGA 

Model 0 

Model 1A 

Model 1B 

Model 1C 

Model 2A 

 

Model 2B 

 

Model 2C 

 

5 

8 

 

11 

17 

 

17 

26 

20 

20 

22 

18 

 

15 

 

16 

No growth factor variances  

None 

 

No growth factor variances  

None 

 

No growth factor variances  

None 

Within-class residual variances  

Between-class residual variances  

Between-class growth factor variances  

Within-class and between-class residual 

variances  

Within-class residual variances and 

between-class growth factor variances 

Between-class residual variances and 

between-class growth factor variances  

 

-61,820.215 

-59,459.934 

 

-51,529.472 

-50,727.482 

 

- 

- 

- 

- 

- 

-53,174.429 

 

- 

 

-54,517.112 

 

 

123,687.658 

118,995.433 

 

103,162.846 

101,615.540 

 

- 

- 

- 

- 

- 

106,518.879 

 

- 

 

109,185.352 

 

123,650.430 

118,935.868 

 

103,080.945 

101,488.965 

 

- 

- 

- 

- 

- 

106,384.859 

 

- 

 

109,066.223 

- 

- 

 

0.790 

0.788 

 

- 

- 

- 

- 

- 

0.708 

 

- 

 

0.684 

 

 

 

Note. k = number of classes. Par. = number of estimated parameters (for final model if converged, for unadjusted model if not converged). LL = log-likelihood value. 1 = No calculation for 1-

class model. Bold typeset indicates lowest BIC value for each k-class model (indicative of best fit). Log-likelihood values replicated for best fitting k-class models using the two random seed 

values with the highest log-likelihoods. 
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Supplementary Table 4.16 

Parameter Estimates for Each Best Fitting k-Class Model for Negative Symptoms  

k 

 

Model Parameter  Class 1 

 
Mean (SE) 

 

 
p 

 

 
Variance (SE) 

 

 
p 

Class 2 

 
Mean (SE) 

 

 
p 

 

 
Variance (SE) 

 

 
p 

Class 3 

 
Mean (SE) 

 

 
p 

 

 
Variance (SE) 

 

 
p 

 

1 

 

Model 0 

 

Intercept 

Linear slope  

W1 
W2 

W3 

Covariance  

  

2.256 (0.039) 

0.064 (0.007) 

- 
- 

- 

- 

 

 

< .001 

< .001 

- 
- 

- 

- 

 

6.903 (0.338) 

0.010 (0.027) 

3.551 (0.265) 
5.622 (0.551) 

6.682 (0.943) 

-0.069 (0.045) 

 

< .001 

.705 

< .001 
< .001 

< .001 

.126 

  

- 

- 

- 
- 

- 

- 

 

- 

- 

- 
- 

- 

- 

 

- 

- 

- 
- 

- 

- 

 

- 

- 

- 
- 

- 

- 

  

- 

- 

- 
- 

- 

- 

 

- 

- 

- 
- 

- 

- 

 

- 

- 

- 
- 

- 

- 

 

- 

- 

- 
- 

- 

- 

 
2 

 
Model 0 

 
Intercept 

Linear slope  

W1 

W2 

W3 
Covariance  

 

  
3.682 (0.085) 

0.095 (0.011) 

- 

- 

- 
- 

 
< .001 

< .001 

- 

- 

- 
- 

 
7.089 (0.465) 

0.093 (0.041) 

5.595 (0.418) 

8.220 (0.785) 

8.692 (1.387) 
-0.269 (0.069) 

 

 
< .001 

.022 

< .001 

< .001 

< .001 
< .001 

  
0.189 (0.014) 

0.034 (0.008) 

- 

- 

- 
- 

 
< .001 

< .001 

- 

- 

- 
- 

 

 
0.031 (0.011) 

0.001 (0.001) 

0.130 (0.010) 

0.142 (0.013) 

0.356 (0.058) 
0.000 (0.002) 

 
.004 

.577 

< .001 

< .001 

< .001 
.819 

  
- 

- 

- 

- 

- 
- 

 
- 

- 

- 

- 

- 
- 

 
- 

- 

- 

- 

- 
- 

 
- 

- 

- 

- 

- 
- 

 

3 

 

Model 2A 

 

Intercept 

Linear slope  
W1 

W2 

W3 

Covariance  

  

3.557 (0.150) 

0.094 (0.031) 
- 

- 

- 

- 

 

< .001 

.003 
- 

- 

- 

- 

 

3.525 (0.523) 

0.284 (0.044) 
1.987 (0.107) 

1.987 (0.107) 

1.987 (0.107) 

-0.868 (0.110) 

 

< .001 

< .001 
< .001 

< .001 

< .001 

< .001 

  

0.779 (0.048) 

0.021(0.026) 
- 

- 

- 

- 

 

< .001 

.422 
- 

- 

- 

- 

 

0.003 (0.240) 

0.000 (0.032) 
1.987 (0.107) 

1.987 (0.107) 

1.987 (0.107) 

0.000 (0.055) 

 

.991 

.997 
< .001 

< .001 

< .001 

.996 

  

7.974 (0.219) 

0.288 (0.056) 
- 

- 

- 

- 

 

< .001 

< .001 
- 

- 

- 

- 

 

20.865 (1.532) 

1.436 (0.100) 
1.987 (0.107) 

1.987 (0.107) 

1.987 (0.107) 

-3.766 (0.293) 

 

< .001 

< .001 
< .001 

< .001 

< .001 

< .001 

 

Note. k = number of classes. W1-W3 = data collection waves 1-3. Variance of W1-W3 represents residual variance at waves 1-3. Model 0: Unconstrained model. Model 2A: Model with 

within-class and between-class residual variances constrained. 
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Supplementary Table 4.17 

Most Likely Class Classification Values for Each Best Fitting k-Class Model for Negative Symptoms 

k 

 

Model   Classification probabilities Final class counts and 

proportions 

  

 

 

Class 1 

 

 

Class 2 

 

 

Class 3 

 

 

1 

 

Model 0 

 

Class 1 

  

1.000 

 

  

- 

  

- 

 

12652 (100%) 

 

2 

 

Model 0 

 

Class 1 

Class 2 

  

0.922 

0.028 

 

  

0.078 

0.972 

 

  

- 

- 

 

6967 (55.07%) 

5685 (44.93%) 

 

3 

 

Model 2A 

 

Class 1 

Class 2 

Class 3 

  

0.727 

0.033 

0.244 

  

0.239 

0.967 

0.053 

  

0.033 

0.000 

0.704 

 

2836 (22.42%) 

8745 (69.12%) 

1071 (8.47%) 

Note. k = number of classes. Model 0: Unconstrained model. Model 2A: Model with within-class and between-class residual variances constrained. Values based on most likely latent class 

membership. 
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Supplementary Table 4.18 

Growth Mixture Model Fit Results for Negative Symptoms for Individuals with Complete Data  

k 

 

Model Par. Constraints LL  BIC AIC Entropy 1 

 

1 

1 

 

2 

2 

 

3 

3 

3 

3 

3 

3 

 

3 

 

3 

 

 

Model LCGA 

Model 0 

 

Model LCGA 

Model 0 

 

Model LCGA 

Model 0 

Model 1A 

Model 1B 

Model 1C 

Model 2A 

 

Model 2B 

 

Model 2C 

 

 

5 

8 

 

11 

17 

 

17 

26 

20 

20 

22 

18 

 

15 

 

16 

 

No growth factor variances  

None 

 

No growth factor variances  

None 

 

No growth factor variances  

None 

Within-class residual variances  

Between-class residual variances  

Between-class growth factor variances  

Within-class and between-class residual 

variances  

Within-class residual variances and 

between-class growth factor variances  

Between-class residual variances and 

between-class growth factor variances  

 

 

-20,132.185 

-18,694.883 

 

-16,425.614 

-15,996.565 

 

- 

- 

- 

- 

- 

-17,183.824 

 

- 

 

-17,500.544 

 

40,303.266 

37,451.999 

 

32,936.798 

32,125.375 

 

- 

- 

- 

- 

- 

34,507.672 

 

- 

 

35,125.554 

 

40274.371 

37,405.767 

 

32873.228 

32027.131 

 

- 

- 

- 

- 

- 

34,403.649 

 

- 

 

35,033.089 

 

- 

- 

 

0.891 

0.858 

 

- 

- 

- 

- 

- 

0.779 

 

- 

 

0.785 

 

Note. N = 2,390 with complete data. k = number of classes. Par. = number of estimated parameters (for final model if converged, for unadjusted model if not converged). LL = log-likelihood 

value. 1 = No calculation for 1-class model. Bold typeset indicates lowest BIC value for each k-class model. Loglikelihood values replicated for best fitting k-class models using the two 

random seed values with the highest loglikelihoods. 
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Supplementary Table 4.19 

Parameter Estimates for Each Best Fitting k-Class Model for Negative Symptoms for Individuals with Complete Data  

k 

 

Model Parameter  Class 1 

 
Mean (SE) 

 

 
p 

 

 
Variance (SE) 

 

 
p 

Class 2 

 
Mean (SE) 

 

 
p 

 

 
Variance (SE) 

 

 
p 

Class 3 

 
Mean (SE) 

 

 
p 

 

 
Variance (SE) 

 

 
p 

 

1 

 

Model 0 

 

Intercept 

Linear slope  

W1 
W2 

W3 

Covariance  

  

2.747 (0.095) 

0.046 (0.014) 

- 
- 

- 

- 

 

 

< .001 

.001 

- 
- 

- 

- 

 

11.163 (0.800) 

0.033 (0.052) 

4.914 (0.487) 
4.410 (0.605) 

7.723 (1.702) 

-0.238 (0.084) 

 

< .001 

.521 

< .001 
< .001 

< .001 

.005 

  

- 

- 

- 
- 

- 

- 

 

- 

- 

- 
- 

- 

- 

 

- 

- 

- 
- 

- 

- 

 

- 

- 

- 
- 

- 

- 

  

- 

- 

- 
- 

- 

- 

 

- 

- 

- 
- 

- 

- 

 

- 

- 

- 
- 

- 

- 

 

- 

- 

- 
- 

- 

- 

 
2 

 
Model 0 

 
Intercept 

Linear slope  

W1 

W2 

W3 
Covariance  

 

  
0.402 (0.128) 

0.056 (0.013) 

- 

- 

- 
- 

 
.002 

< .001 

- 

- 

- 
- 

 
0.181 (0.114) 

0.002 (0.007) 

0.252 (0.066) 

0.406 (0.144) 

0.923 (0.167) 
-0.003 (0.008) 

 

 
.110 

.781 

< .001 

.005 

< .001 
.700 

  
4.923 (0.364) 

0.040 (0.026) 

- 

- 

- 
- 

 
< .001 

.125 

- 

- 

- 
- 

 

 
11.387 (1.097) 

0.152 (0.095) 

9.220 (1.183) 

8.258 (1.376) 

11.153 (2.974) 
-0.445 (0.150) 

 
< .001 

.110 

< .001 

< .001 

< .001 
.003 

  
- 

- 

- 

- 

- 
- 

 
- 

- 

- 

- 

- 
- 

 
- 

- 

- 

- 

- 
- 

 
- 

- 

- 

- 

- 
- 

 

3 

 

Model 2A 

 

Intercept 
Linear slope  

W1 

W2 

W3 

Covariance  
 

  

0.909 (0.143) 
0.021 (0.045) 

- 

- 

- 

- 

 

< .001 
.636 

- 

- 

- 

- 

 

0.006 (0.765) 
0.000 (0.069) 

3.213 (0.225) 

3.213 (0.225) 

3.213 (0.225) 

-0.001 (0.379) 

 

.994 

.997 

< .001 

< .001 

< .001 

.999 

  

4.054 (1.714) 
0.050 (0.218) 

- 

- 

- 

- 

 

.018 

.820 

- 

- 

- 

- 

 

4.104 (5.068) 
0.358 (0.287) 

3.213 (0.225) 

3.213 (0.225) 

3.213 (0.225) 

-1.114 (0.994) 

 

.418 

.212 

< .001 

< .001 

< .001 

.262 

  

8.880 (0.972) 
0.142 (0.206) 

- 

- 

 

 

<.001 
.490 

- 

- 

- 

- 

 

20.758 (4.933) 
1.145 (0.191) 

3.213 (0.225) 

3.213 (0.225) 

3.213 (0.225) 

-3.002 
 

 

< .001 
< .001 

< .001 

< .001 

< .001 

.002 

 

Note. k = number of classes. W1-W3 = data collection waves 1-3. Variance of W1-W3 represents residual variance at data collection waves 1-3. Covariance represents covariance between 

intercept and slope. Model 0: Unconstrained model. Model 2A: Model with within-class and between-class residual variances constrained. 
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Supplementary Figure 4.1 

Decision-Making Flowchart for Growth Mixture Models 
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Chapter 5 –  Associations between the developmental 

trajectories of paranoia, hallucinations, and negative 

symptoms with polygenic scores, and with characteristics 

reported in childhood and adulthood  

 

5.1 – Introduction 

Chapter 4 presented the results of the growth mixture modelling (GMM) that was 

used to investigate the latent trajectories of paranoia, hallucinations, and NS reported across 

adolescence into emerging adulthood. Following on from GMM, it is of interest to establish 

the extent to which the empirically identified trajectory classes show associations with 

external variables. This Section will outline further why this is an important endeavour and 

will discuss previous findings that the current Chapter will build on.   

As was highlighted in Section 4.4, the latent trajectory classes that were identified in 

Chapter 4 can be understood in terms of being statistical approximations that are believed to 

be representative of the underlying growth characteristics of a heterogeneous sample of 

individuals. However, they could also (merely) be a statistical artefact of a multivariate 

nonnormal distribution: Ascertaining the extent to which the latent classes show 

theoretically-aligned associations with external variables can be considered as contributing 

towards construct validation of the latent trajectory classes (Bauer & Curran, 2003, 2004).  

Previous GMM studies have reported associations between the most elevated latent 

trajectory class with childhood trauma and other adverse life events, and 

emotional/behavioural problems (Bourque et al., 2017; Lin et al., 2011; Mackie et al., 2011; 

Thapar et al., 2012; Wigman, van Winkel, Raaijmakers, et al., 2011). Further, studies that 

have manually classified individuals into trajectory groups have also found associations 
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similar to those reported the GMM studies, above, and have additionally reported 

associations between persistence and familial psychiatric history, lower SES, and lower 

educational attainment in childhood (Cougnard et al., 2007; Janssens et al., 2016; Kalman et 

al., 2019; Rammos et al., 2021; Steenkamp et al., 2021). The associations between 

persistence and environmental risk factors (e.g., adverse life events, SES) are in line with the 

expectations of the proneness-persistence-impairment model of psychosis, discussed in 

Section 1.5.3 (van Os et al., 2009). The findings further highlight that factors reflecting broad 

developmental vulnerability are associated with persistent PEs (e.g., emotional/behavioural 

problems, familial psychiatric history, low educational attainment). No studies have reported 

on the latent development of PENS dimensions, so it is important to establish the extent to 

which the latent trajectory classes (identified in Chapter 4) are associated with the previously 

reported, theoretically meaningful, correlates for aggregated PEs, as above.  

In terms of genetic factors, little is known about their influence on the development of 

PENS (discussed in Section 1.5.4). The one previous study that utilised polygenic scores as 

an index of genetic liability reported a null association between schizophrenia GPS and 

persistence of aggregated PEs across ages 12-24 (Rammos et al., 2021). Probing associations 

between schizophrenia GPS and the development of PENS is intuitively important under the 

assumptions of the continuum model of psychosis (Section 1.1.3). However, because 

previous findings and theory suggest that PENS may reflect vulnerability not only to 

psychotic disorders but to poor functional and clinical outcomes broadly (Healy et al., 2019; 

Kaiser et al., 2011; van Os & Reininghaus, 2016; Yung et al., 2009), the extent to which the 

development of PENS dimensions is associated with polygenic liability for a range of 

phenotypes including psychiatric disorders, clinical help-seeking, intelligence and 

educational attainment, is of further interest.  
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The current study builds on prior research by investigating dimension-specific 

associations for the emergent latent trajectory classes identified in Chapter 4 with, i) 

behaviours and family background characteristics previously found to be associated with 

aggregated measures of PEs, and ii) polygenic scores for a range of outcomes. It was 

hypothesised that persistence across PENS would be associated with the following: i) family 

psychiatric history and lower SES, ii) more emotional and behavioural difficulties, more life 

events, and lower educational attainment (both in childhood and adulthood), and iii) higher 

GPS of psychiatric and clinical help-seeking outcomes, and lower GPS of intelligence and 

educational attainment. It was also predicted that male sex would be associated with 

persistent NS, in light of findings and theory suggesting that male sex is associated with a 

vulnerability to NS (e.g., Dominguez et al., 2010; Roy et al., 2001). These hypotheses were 

preregistered (https://osf.io/pax6k; Supplementary Information 4.1). Minor deviations from 

the original preregistration are detailed in Supplementary Information 4.1. 

 

5.2 – Methods 

5.2.1 – Participants  

The TEDS sample is described in Section 2.2.1.1. For the study conducted in Chapter 

5 (like in Chapter 4), data from both twins was used, with standard errors adjusted for 

familial clustering. Individuals completed questions relating to paranoia and hallucinations at 

mean ages 16.32 years (SD 0.68; range 14.91-21.34), 17.06 years (SD 0.88; range 15.55-

19.0), and 22.85 years (SD 0.88; range 21.16-25.19). Parents completed questions relating to 

their twins’ NS at mean ages 16.32 years (SD 0.68; range 14.91-19.45), 17.06 years (SD 0.88; 

range 15.55-19.0), and 22.30 years (SD 0.93; range 20.56-25.59).  

https://osf.io/pax6k
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For the analyses in the current Chapter, sample sizes varied according to the auxiliary 

variables being tested (detailed in the results tables). Maximum cross-age N for paranoia = 

12,049, hallucinations = 12,054, and negative symptoms = 12,652.  

 

5.2.2 – Measures 

5.2.2.1 – PENS 

Paranoia, hallucinations, and NS were assessed using the subscales of the SPEQ 

(Ronald et al., 2014), described in Section 2.2.2. Paranoia, hallucinations, and NS items are 

listed in Supplementary Information 2.1-2.2.  

5.2.2.2 – Additional measures 

Items used in the additional measures are listed in the TEDS study questionnaire 

booklets, which can be downloaded from https://www.teds.ac.uk/datadictionary/home.htm, 

where calculation of the scores is also described in detail. The additional measures are 

detailed briefly below. 

5.2.2.2.1 – Family background characteristics 

SES was a standardised composite of five variables derived from information reported 

by parents of the TEDS participants at first contact, including mother’s age at birth of first 

child, mother’s and father’s qualifications and employment. Family history of 

schizophrenia/bipolar disorder was reported by parents at age 16, indicative of whether a 

parent or sibling of the participant has a diagnosis of schizophrenia or bipolar disorder.  

5.2.2.2.2 – Age 7 characteristics 

Educational attainment was a standardised composite of teacher-reported National 

Curriculum (UK) levels for English and Maths. Life events was a total score of 11 specific 

life events (present or absent) reported by parents over the last three years. Emotional and 

behavioural problems over the past school year were measured using the parent-report 20-

https://www.teds.ac.uk/datadictionary/home.htm
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item total behaviour problems scale from the Strengths and Difficulties Questionnaire (SDQ; 

Goodman, 1997).  

5.2.2.2.3 – Age 22 characteristics  

Educational attainment was a standardised composite derived from information 

reported by individuals regarding their current studies and qualifications, reflecting probable 

highest level of qualification after current study and degree classification for those who had 

already graduated. Depressive symptoms over the past two weeks were measured using eight 

items of the self-report Short Mood and Feeling Questionnaire (MFQ; Angold et al., 1995). 

Emotional and behavioural problems over the past six months were measured using the self-

report SDQ (Goodman, 1997). Life events was a total score of 11 self-reported life events 

(present or absent) since the age of 16 (Coddington, 1972). 

5.2.2.3 – GPS 

Genotyping of participants is described in Supplementary Information 5.1. The GPSs 

were calculated by other TEDS collaborators (Selzam et al., 2018, 2019) using LDpred 

software (Vilhjálmsson et al., 2015), which uses a Bayesian method of estimation. The GPS 

calculation methods and the GWASs that the individual GPSs were based on are described in 

Supplementary Information 5.2.  

The following GPSs were analysed in the current Chapter: years of education 

(GPSEDU), intelligence (GPSIQ), ever visited a psychiatrist for nerves, anxiety, tension, or 

depression (GPSPSYCH), ever visited a general practitioner for nerves, anxiety, tension, or 

depression (GPSGP), schizophrenia (GPSSCZ), obsessive compulsive disorder (GPSOCD), 

major depressive disorder (GPSMDD), bipolar disorder (GPSBIP), autism spectrum disorder 

(GPSASD), anorexia (GPSANOREX), and attention deficit hyperactivity disorder (GPSADHD). 
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In the current Chapter, standardized residuals of the GPS regressed on the first 10 

principal components of ancestry, batch, and chip were used. GPS that are available to TEDS 

researchers correspond to three fractions (f) of causal markers (1, 0.3, and 0.01).  

 

5.2.3 – Statistical analyses 

5.2.3.1 – Overview of analyses 

Regression analyses were conducted to assess the relationship between the latent class 

variable derived from the best fitting GMMs estimated in Chapter 4 and the variables 

described in Sections 5.2.2.2 and 5.2.2.3. 

The variables described in Sections 5.2.2.2 and 5.2.2.3 were specified as auxiliary 

variables, using the automatic implementation of the ‘3-step’ approach in Mplus with 

adjustment for classification error (described in detail in Asparouhov & Muthén, 2014; 

Vermunt, 2017). Using this approach, the GMM were first estimated (reproduced exactly as 

reported in Chapter 4). In the second step, the most likely latent class for each individual was 

calculated, with classification error estimated in this step. In the third step, the latent class 

variable (incorporating classification error) was then, i) regressed on each auxiliary variable 

(Section 5.2.3.2), and ii) used to estimate the class-specific means of each auxiliary variable 

(Section 5.2.3.3). The latter used the ‘BCH’ procedure, which also uses a 3-step process of 

estimation (described in detail in Asparouhov & Muthén, 2014; Bakk & Vermunt, 2016; 

Bolck et al., 2004). 

5.2.3.2 – Multinomial logistic regression analyses of family background, childhood 

characteristics, and GPSs 

The variables relating to family background, age 7 characteristics, and GPSs were 

specified as predictors of the latent class variable. Single-predictor regressions were first run 
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to test the associations between the latent class variable for each of paranoia, hallucinations, 

and NS, and each predictor, separately. 

For the GPS variables, these regressions were first run for each GPS f (Supplementary 

Tables 5.1-5.3), and the most predictive GPS f (the GPS f with the highest z value) was then 

selected for the main analyses.  

The FDR method (Benjamini & Hochberg, 1995) was used to correct for multiple 

testing within each group of measures (i.e., family background, age 7, GPS): First, for the 

single-predictor regressions, the results of the multiple tests were ranked according to their 

significance levels. The FDR-adjusted p value was defined as the highest-ranking test for 

which the p value was less than or equal to the rank number divided by the total number of 

tests, multiplied by α (.05). The resulting value was the corrected q < .05. Significant 

predictors (at q < .05) were next entered into multiple-predictor regressions, and the FDR-

adjusted significance threshold was then calculated for the multiple-predictor results. 

5.2.3.3 – Mean differences analyses 

The class-specific means of the variables relating to the age 22 characteristics – in 

addition to the variables relating to family background, age 7 characteristics, and GPSs, were 

estimated. For each variable, a Wald test of the significance between the class-specific means 

(df 1) was conducted. For binary outcomes, the mean reflects the proportion of individuals 

with the response value of interest (detailed in Table 5.10).  

For all analyses, the total number of comparisons that were made was used as the 

number of tests for calculating the FDR-adjusted significance values within each group of 

measures (i.e., family background, age 7, GPS, age 22). For paranoia, there were three 

comparisons of interest per variable (low-decreasing versus mid-decreasing, low-decreasing 

versus high-persistent, and mid-decreasing versus high-persistent), and one per variable for 

hallucinations and NS (because there were two latent classes and thus one comparison).  
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5.2.4 – Data modelling 

Mplus (version 8.6) was used for all data modelling. The same procedures that were 

described in Chapter 4 for estimation of GMM were used in the current Chapter: Any data 

that was missing for the GMM was assumed to be missing at random and was accommodated 

using FIML estimation, using a robust version of the FIML estimator (MLR). For the third 

step of the 3-step procedure (the regressions), listwise deletion was applied to data missing on 

the auxiliary variables.  

 

5.3 – Results  

The regression results are discussed in terms of the ‘most elevated’ trajectory class 

(i.e., high-persistent for paranoia, mid-decreasing for hallucinations, and mid-increasing for 

NS) for ease of communication.  

For paranoia, because comparisons between the high-persistent class and the low-

decreasing class were the main focus of the hypotheses, the multiple-predictor regression 

results are discussed in terms of the high-persistent versus low-decreasing comparison. The 

reference class was the low-decreasing class for paranoia, unless otherwise stated.  

The 95% confidence intervals around the odds ratios (OR) are reported as two 

numbers separated by a comma, in square brackets.  

 



 190 

5.3.1 – Multinomial logistic regression analyses of family background, childhood 

characteristics, and GPSs 

5.3.1.1 – Family background characteristics 

Tables 5.1-5.3 show the results of the multinomial logistic regressions for the latent 

trajectory class variable regressed on the family background variables, for each of paranoia, 

hallucinations, and NS, respectively. 

Male sex: As predicted, male sex was associated with increased odds of membership 

in the most elevated trajectory class compared to the least elevated trajectory class (the 

reference class) for NS (OR 1.295 [1.183, 1.418]). For paranoia (OR 0.684 [0.592, 0.790]) 

and hallucinations (OR 0.846 [0.776, 0.922]), male sex was associated with decreased odds 

of being in the most elevated trajectory class compared to the low-decreasing class. For 

paranoia, male sex was also associated with decreased odds of being in the high-persistent 

class compared to the mid-decreasing class (OR 0.806 [0.714, 0.909]), and the mid-

decreasing class compared to the low-decreasing class (OR 0.849 [0.740, 0.975]).  

SES: As predicted for hallucinations (OR 0.911 [0.870, 0.950]) and NS (OR 0.793 

[0.754, 0.834]), higher SES was associated with decreased odds of membership in the most 

elevated trajectory class. For paranoia, opposite to the hypothesis, higher SES was associated 

with increased odds of being in the high-persistent trajectory class compared to the low-

decreasing class (OR 1.248 [1.156, 1.347]). Higher SES was also associated with 

membership in the mid-decreasing compared to the low-decreasing class (OR 1.376 [1.282, 

1.477]), though higher SES was associated with decreased odds for membership in the high-

persistent compared to the mid-decreasing class (OR 0.907 [0.851, 0.966]).  

Family psychiatric history: As predicted for paranoia, family history of schizophrenia 

(OR 2.668 [1.357, 4.632]) and bipolar disorder (OR 1.613 [1.095, 2.375]) were both 

associated with increased odds of being in the high-persistent class compared to the low-
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decreasing class. Family history of schizophrenia was also associated with increased odds of 

membership in the mid-decreasing class compared to the low-decreasing class (OR 1.805 

[1.038, 3.138]) and of membership in the high-persistent compared to the mid-decreasing 

class (OR 1.478 [1.041, 2.100]). For hallucinations, family history of schizophrenia (OR 

1.307 [1.014, 1.684]) and bipolar disorder (OR 1.311 [1.060, 1.622]) were associated with 

increased odds of membership in the mid-decreasing class compared to the low-decreasing 

class.  

Multiple-predictor models: In the multiple-predictor regressions, all associations 

remained significant for hallucinations and NS, and all except family history of bipolar 

disorder remained significant for paranoia.  

5.3.1.2 – Age 7 characteristics 

Tables 5.4-5.6 show the results of the multinomial logistic regressions for the latent 

trajectory class variable regressed on the age 7 variables, for each of paranoia, hallucinations, 

and NS, respectively. 

Educational attainment: Higher educational attainment for hallucinations (OR 0.890 

[0.840, 0.943]) and NS (OR 0.799 [0.752, 0.849]) was associated with decreased odds of 

membership in the most elevated trajectory class, as predicted. However, for paranoia, higher 

educational attainment was associated with increased odds of being in the most elevated 

trajectory class (OR 1.331 [1.210, 1.464]). Higher educational attainment was also associated 

with increased odds of being in the mid-decreasing compared to the low-decreasing class for 

paranoia (OR 1.371 [1.251, 1.502]).  

 Life events: As predicted, for all PENS, more life events were associated with 

increased odds of being in the most elevated trajectory class (OR 1.059-1.086 [1.014-1.107]). 

For paranoia, more life events were also associated with increased odds of being in the most 

elevated trajectory class compared to the mid-decreasing class (OR 1.101 [1.043, 1.163]).  
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 Emotional and behavioural problems: As predicted, for all PENS, higher SDQ scores 

were associated with increased odds of being in the most elevated trajectory class (OR 1.043-

1.126 [1.031-1.141]). For paranoia, higher SDQ scores were also associated with increased 

odds of being in the most elevated trajectory class compared to the mid-decreasing class (OR 

1.053 [1.039, 1.067]).  

Multiple-predictor models: In the multiple-predictor models, only SDQ remained 

significantly associated with PENS class membership for hallucinations and NS. For 

paranoia, SDQ, in addition to educational attainment, remained significant. 

5.3.1.3 – GPS 

Tables 5.7-5.9 show the results of the multinomial logistic regressions for the latent 

trajectory class variable regressed on the GPS, for each of paranoia, hallucinations, and NS, 

respectively. 

In the single-predictor models, the GPSs for clinical help seeking (GPSPSYCH, GPSGP), 

major depressive disorder (GPSMDD), and attention deficit hyperactivity disorder (GPSADHD) 

were associated with increased odds of membership in the most elevated trajectory class 

compared to the reference class across PENS, as predicted (OR 1.065-1.228 [1.009-1.343]). 

Similarly, an increase in GPS for years of education (GPSEDU) (and intelligence, GPSIQ, for 

NS; OR 0.908 [0.860, 0.960]) was associated with decreased odds of being in the most 

elevated trajectory class for hallucinations (OR 0.929 [0.880, 0.981]) and NS (OR 0.772 

[0.739, 0.817]). Against predictions, for paranoia, an increase in GPSEDU (OR 1.250 [1.142, 

1.369]) and GPSIQ (OR 1.295 [1.181, 1.419]) were associated with increased odds of being in 

the most elevated trajectory class. The GPS for autism spectrum disorder (GPSASD) was 

associated with increased odds of membership in the most elevated trajectory class for 

paranoia (OR 1.288 [1.176, 1.410]) and hallucinations (OR 1.104 [1.045, 1.166).  
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The GPSs for schizophrenia (GPSSCZ), obsessive compulsive disorder (GPSOCD), 

bipolar disorder (GPSBIP), and anorexia (GPSANOREX) were not associated with latent 

trajectory class membership for any PENS.  

In the multiple-predictor models, for paranoia, GPSEDU, GPSIQ, GPSMDD, GPSASD, and 

GPSADHD remained significant, predicting increased odds of membership in the high-

persistent class compared to the low-decreasing class. For hallucinations, only GPSASD 

remained significant. For NS, only GPSEDU remained significant. 

 

5.3.2 – Mean differences analyses 

Table 5.10 shows the class-specific means of the auxiliary variables. The results of 

the mean differences analyses are aligned with the results of the multinomial logistic 

regression analyses (Section 5.3.1), except the results for GPSASD. Hypotheses are referred to 

again in this Section to aid communication of the findings.  

5.3.2.1 – Family background characteristics 

Male sex: For paranoia and hallucinations, the proportion of males was lower in the 

most elevated class compared to the low-decreasing class. For NS, as predicted, the 

proportion of males was higher in the mid-increasing class compared to the low-increasing 

class.  

 SES: For hallucinations and NS, the means for SES were lower in the most elevated 

trajectory class compared to the reference class, as predicted. For paranoia, against the 

prediction, the mean for SES was higher in the high-persistent class compared to low-

decreasing class.  

 Family psychiatric history: For paranoia and hallucinations, the proportion of 

individuals with a family history of schizophrenia and bipolar disorder was higher in the most 
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elevated class compared to the low-decreasing class. For NS, the proportions were not 

significantly different between the classes.   

5.3.2.2 – Age 7 characteristics 

Educational attainment: For hallucinations and NS, the means for educational 

attainment were lower in the most elevated trajectory class compared to the reference class, 

as predicted. For paranoia, against the prediction, the mean for educational attainment was 

higher in the high-persistent class compared to low-decreasing class.  

Life events: Across PENS, the number of life events was higher in the most elevated 

trajectory class compared to the reference class, as predicted. 

Emotional and behavioural problems: Across PENS, mean SDQ scores were higher 

in the most elevated trajectory class compared to the reference class, as predicted.  

5.3.2.3 – GPSs 

The means for the GPSs of clinical help seeking (GPSPSYCH, GPSGP), major depressive 

disorder (GPSMDD), and attention deficit hyperactivity disorder (GPSADHD) were higher in the 

most elevated trajectory class compared to the reference class across PENS, as predicted. 

Similarly, the means for years of education (GPSEDU) (and intelligence, GPSIQ, for negative 

symptoms) were lower in the most elevated trajectory class for hallucinations and negative 

symptoms. Against predictions, for paranoia, the means for GPSEDU and GPSIQ were higher 

in the most elevated trajectory class. The means for the GPS of autism spectrum disorder 

(GPSASD) were higher in the most elevated trajectory class compared to the reference class 

across PENS.  

Across PENS, the means for the GPSs of schizophrenia (GPSSCZ), obsessive 

compulsive disorder (GPSOCD), bipolar disorder (GPSBIP), and anorexia (GPSANOREX) did not 

significantly differ across latent classes. 
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5.3.2.4 – Age 22 characteristics 

Educational attainment: For hallucinations and NS, the means for educational 

attainment were lower in the most elevated trajectory class compared to the reference class, 

as predicted. For paranoia, the mean for educational attainment was higher in the high-

persistent class compared to the low-decreasing class.  

Life events: Across PENS, the number of life events was higher in the most elevated 

trajectory class compared to the reference class, as predicted. 

Depressive symptoms: Across PENS, MFQ scores were higher in the most elevated 

trajectory class compared to the reference class, as predicted. 

Emotional and behavioural problems: Across PENS, SDQ scores were higher in the 

most elevated trajectory class compared to the reference class, as predicted.
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Table 5.1 

Multinomial Logistic Regression Results for Paranoia Latent Trajectory Class Regressed on Family Background Variables  

 Single-predictor regressions  Multiple-predictor regression, N = 8,942 

 

Auxiliary variable  N for 

single-

predictor 

regressions 

Beta 

 

Odds Ratio Beta 

 

Odds Ratio 

  b (SE) z  

(p value) 

OR (SE) 95% CI 

lower 

95% CI 

upper 

 

b (SE) z  

(p value) 

OR (SE) 95% CI 

lower 

95% CI 

upper 

 

Male sex 

 

 

12,049 

  

Low-dec vs mid-

dec 

 -0.163 (0.070) -2.327 (.020)* 0.849 (0.060)  0.740 0.975 -0.0271 (0.083) -3.250 (.001)* 0.763 (0.064) 0.648 0.898 

Low-dec vs high-

pers 

 -0.380 (0.074) -5.161 (< .001)* 0.684 (0.050) 0.592  0.790 -0.429 (0.087) -4.927 (< .001)* 0.651 (0.057) 0.549 0.772 

Mid-dec vs high-

pers 

 -0.216 (0.061) -3.517 (< .001)* 0.806 (0.050) 0.714 0.909 -0.159 (0.071) -2.228 (.026)* 0.853 (0.061)  0.742 0.981 

SES 

 

 

11,368 

  

Low-dec vs mid-

dec 

 0.319 (0.036) 8.862 (< .001)* 1.376 (0.050) 1.282 1.477 0.344 (0.042) 8.232 (< .001)* 1.410 (0.059) 1.299 1.531 

Low-dec vs high-

pers 

 0.221 (0.039) 5.682 (< .001)* 1.248 (0.049) 1.156 1.347 0.267 (0.045) 5.868 (< .001)* 1.306 (0.059) 1.194 1.427 

Mid-dec vs high-

pers 

 -0.098 (0.033) -3.007 (.003)* 0.907 (0.030) 0.851 0.966 -0.077 (0.038) -2.055 (.040) 0.926 (0.035) 0.860 0.996 

Family history of 

schizophrenia 

 

9,673 

  

Low-dec vs mid-

dec 

 0.591 (0.282) 2.093 (.036)* 1.805 (0.265) 1.038  3.138 0.770 (0.346) 2.226 (.026)* 2.159 (0.746) 1.096 4.251 

Low-dec vs high-

pers 

 0.981 (0.281) 3.488 (< .001)* 2.668 (0.751) 1.537 4.632 1.102 (0.341) 3.327 (.001)* 3.011 (1.026) 1.545 5.870 

Mid-dec vs high-

pers 

 0.391 (0.179) 2.183 (.029)* 1.478 (0.265) 1.041 2.100 0.333 (0.201) 1.653 (.098) 1.395 (0.281) 0.940 2.070 

Family history of 

bipolar disorder 

 

9,459 

          

Low-dec vs mid-

dec 

 0.196 (0.202) 0.972 (.331) 1.217 (0.245) 0.819 1.806 0.012 (0.210) 0.059 (.953) 1.012 (0.213) 0.671 1.529 

Low-dec vs high-

pers 

 0.478 (0.197) 2.422 (.015)* 1.613 (0.318) 1.095 2.375 0.214 (0.208) 1.026 (.305) 1.238 (0.258) 0.823 1.862 
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Mid-dec vs high-

pers 

 0.282 (0.150) 1.881 (.060) 1.326 (0.199) 0.988 1.779 0.201 (0.161) 1.249 (.212) 1.223 (0.197) 0.892 1.677 

 

Note. Related and unrelated individuals included, using cluster-robust SE. The ‘low-increasing’ class was used as the reference category. The ‘mid-decreasing’ class was used as the reference 

category for the mid-dec vs high-pers comparison. Low-dec = low-decreasing class. Mid-dec = mid-decreasing class. High-pers = high-persistent class. b = unstandardized regression 

coefficient. SES = socioeconomic status. * = significant at q < .05 (FDR-adjusted p < .042 and p < .029 for single- and multiple-predictor regressions, respectively). 

 

 

  



 198 

Table 5.2 

Multinomial Logistic Regression Results for Hallucinations Latent Trajectory Class Regressed on Family Background Variables  

 Single-predictor regressions  Multiple-predictor regression, N = 8,946 

 

Auxiliary variable  N for 

single-

predictor 

regressions 

Beta 

 

Odds Ratio Beta 

 

Odds Ratio 

  b (SE) z 

(p value) 

OR (SE) 95% CI 

lower 

95% CI 

upper 

 

b (SE) z 

(p value) 

OR (SE) 95% CI 

lower 

95% CI 

upper 

 

Male sex 

 

   

Low-dec vs mid-dec 12,054 -0.168 (0.044)  -3.807 (< .001)* 0.846 (0.037)  0.776    0.922  -0.241 (0.051) -4.715 (< .001)* 0.786 (0.040)  0.711       0.868 

SES 

 

   

Low-dec vs mid-dec 11,373 -0.093 (0.024) -3.912 (< .001)* 0.911 (0.022) 0.870       0.955 -0.082 (0.027) -3.006 (.003)* 0.92 (0.025) 0.873       0.972 

Family history of 

schizophrenia 

   

Low-dec vs mid-dec 9,678 0.268 (0.130) 2.066 (.039)*  1.307 (0.169) 1.014       1.684  0.332 (0.147) 2.263 (.024)* 1.394 (0.205) 1.046       1.860 

Family history of 

bipolar disorder 

   

Low-dec vs mid-dec 9,463 0.27 (0.109) 2.497 (.013)*  1.311 (0.142) 1.060       1.622 0.25 (0.118) 2.135 (.033)* 1.286 (0.151)   1.021       1.619 

 

Note. Related and unrelated individuals included, using cluster-robust SE. The ‘low-decreasing’ class was used as the reference category. b = unstandardized regression coefficient. SES = 

socioeconomic status. * = significant at q < .05 (FDR-adjusted p < .05 and p < .05 for single- and multiple-predictor regressions, respectively).  
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Table 5.3 

Multinomial Logistic Regression Results for Negative Symptoms Latent Trajectory Class Regressed on Family Background Variables  

 Single-predictor regressions  Multiple-predictor regression, N = 11,961 

 

Auxiliary variable  N for 

single-

predictor 

regressions 

Beta 

 

Odds Ratio Beta 

 

Odds Ratio 

  b (SE) z 

(p value) 

OR (SE) 95% CI 

lower 

95% CI 

upper 

 

b (SE) z 

(p value) 

OR (SE) 95% CI 

lower 

95% CI 

upper 

 

Male sex 

 

   

Low-inc vs mid-inc 12,652 0.259 (0.046) 5.603 (< .001)* 1.295 (0.060) 1.183  1.418 0.285 (0.048) 5.940 (< .001)* 1.330 (0.064) 1.211 1.461 

SES 

 

   

Low-inc vs mid-inc 11,961 -0.232 (0.026) -9.021 (< .001)* 0.793 (0.020) 0.754 0.834 -0.239 (0.026) -9.184 (< .001)* 0.788 (0.020) 0.749 0.829 

Family history of 

schizophrenia 

   

Low-inc vs mid-inc 9,737 0.231 (0.151) 1.533 (.125) 1.260 (0.190) 0.938 1.693 - - - - - 

Family history of 

bipolar disorder 

   

Low-inc vs mid-inc 9,523 0.186 (0.126) 1.477 (.140) 1.205 (0.152) 0.941 1.543 - - - - - 

 

Note. Related and unrelated individuals included, using cluster-robust SE. The ‘low-increasing’ class was used as the reference category. b = unstandardized regression coefficient. Low-inc = 

low-increasing class. Mid-inc = mid-increasing class. SES = socioeconomic status. * = significant at q < .05 (FDR-adjusted p < .025 and p < .05 for single- and multiple-predictor regressions, 

respectively). 
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Table 5.4 

Multinomial Logistic Regression Results for Paranoia Latent Trajectory Class Regressed on Age 7 Variables  

 Single-predictor regressions  Multiple-predictor regression, N = 7,421 

 

Auxiliary variable  N for 

single-

predictor 

regressions 

Beta 

 

Odds Ratio Beta 

 

Odds Ratio 

  b (SE) z 

(p value) 

OR (SE) 95% CI 

lower 

95% CI 

upper 

 

b (SE) z 

 (p value) 

OR (SE) 95% CI 

lower 

95% CI 

upper 

 

Educational 

attainment 

 

7,662 

  

Low-dec vs mid-

dec 

 0.315 (0.047) 6.768 (< .001)* 1.371 (0.064) 1.251 1.502 0.392 (0.051) 7.650 (< .001)* 1.480 (0.076) 1.339 1.637 

Low-dec vs high-

pers 

 0.286 (0.049) 5.867 (< .001)* 1.331 (0.065) 1.210 1.464 0.438 (0.053) 8.203 (< .001)* 1.550 (0.083) 1.396 1.721 

Mid-dec vs high-

pers 

 -0.030 (0.041) -0.714 (.475) 0.971 (0.040) 0.895 1.053 0.046 (0.044) 1.048 (.295) 1.047 (0.046) 0.961 1.140 

Life events  

 

 

9,605 

  

Low-dec vs mid-

dec 

 -0.014 (0.037) -0.375 (.707) 0.986 (0.036) 0.918 1.060 0.001 (0.045) 0.014 (.989) 1.001 (0.045) 0.917 1.092 

Low-dec vs high-

pers 

 0.083 (0.037) 2.247 (.025)* 1.086 (0.040) 1.011 1.167 0.057 (0.045) 1.276 (.202) 1.059 (0.047) 0.970 1.155 

Mid-dec vs high-

pers 

 0.096 (0.028) 3.456 (.001)* 1.101 (0.031) 1.043 1.163 0.056 (0.032) 1.774 (.076) 1.058 (0.034) 0.994 1.126 

SDQ 

 

 

9,601 

  

Low-dec vs mid-

dec 

 0.014 (.009) 1.529 (.126) 1.014 0(.009) 0.996 1.032 0.046 (0.011) 4.041 (< .001)* 1.047 (0.012) 1.024 1.071 

Low-dec vs high-

pers 

 0.065 (.009) 7.230 (< .001)* 1.067 (0.010) 1.049 1.086 0.097 (0.011) 8.479 (< .001)* 1.102 (0.013) 1.077 1.127 

Mid-dec vs high-

pers 

 0.051 (0.007) 7.545 (< .001)* 1.053 (0.007) 1.039 1.067 0.051 (0.008) 6.357 (< .001)* 1.052 (0.008) 1.036 1.069 

 

Note. Related and unrelated individuals included, using cluster-robust SE. The ‘low-increasing’ class was used as the reference category. The ‘mid-decreasing’ class was used as the reference 

category for the mid-dec vs high-pers comparison. Low-dec = low-decreasing class. Mid-dec = mid-decreasing class. High-pers = high-persistent class. b = unstandardized regression 

coefficient. SDQ = Strengths and Difficulties Questionnaire. * = significant at q < .05 (FDR-adjusted p < .033 and p < .028 for single-and multiple-predictor regressions, respectively).  
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Table 5.5 

Multinomial Logistic Regression Results for Hallucinations Latent Trajectory Class Regressed on Age 7 Variables  

 Single-predictor regressions  Multiple-predictor regression, N = 7,424 

 

Auxiliary variable  N for 

single-

predictor 

regressions 

Beta 

 

Odds Ratio Beta 

 

Odds Ratio 

  b (SE) z  

(p value) 

OR (SE) 95% CI 

lower 

95% CI 

upper 

 

b (SE) z  

(p value) 

OR (SE) 95% 

CI 

lower 

95% CI 

upper 

 

Educational 

attainment 

   

Low-dec vs mid-dec 7,665 -0.116 (0.029) -3.954 (< .001)*  0.890 (0.026)  0.840       0.943 -0.063 (0.031)  -2.051 (.040) 0.939 (0.029)  0.883       0.997 

Life events  

 

   

Low-dec vs mid-dec 9,611 0.060 (0.021)  2.878 (.004)*  1.062 (0.022)   1.019       1.107 0.029 (0.024) 1.233 (.218) 1.030 (0.025)  0.983       1.079 

SDQ 

 

   

Low-dec vs mid-dec 9,607 0.042 (0.005)  8.023 (< .001)* 1.043 (0.005)   1.032       1.054 0.040 (0.006) 6.443 (< .001)* 1.040 (0.006)  1.028       1.053 

 

Note. Related and unrelated individuals included, using cluster-robust SE. The ‘low-decreasing’ class was used as the reference category. b = unstandardized regression coefficient. SDQ = 

Strengths and Difficulties Questionnaire. * = significant at q < .05 (FDR-adjusted p < .05 and p < .017 for single- and multiple-predictor regressions, respectively).  
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Table 5.6 

Multinomial Logistic Regression Results for Negative Symptoms Latent Trajectory Class Regressed on Age 7 Variables  

 Single-predictor regressions  Multiple-predictor regression, N = 7,919 

 

Auxiliary variable  N for 

single-

predictor 

regressions 

Beta 

 

Odds Ratio Beta 

 

Odds Ratio 

  b (SE) z 

(p value) 

OR (SE) 95% CI 

lower 

95% CI 

upper 

 

b (SE) z 

(p value) 

OR (SE) 95% CI 

lower 

95% CI 

upper 

 

Educational 

attainment 

   

Low-inc vs mid-inc 8,172 -0.224 (0.031) -7.303 (< .001)* 0.799 (0.025) 0.752 0.849 -0.071 (0.033) -2.125 (.034) 0.932 (0.031) 0.873 0.995 

Life events  

 

   

Low-inc vs mid-inc 10,235 0.058 (0.022) 2.571 (.010)* 1.059 (0.024) 1.014 1.107 0.018 (0.026) 0.678 (.498) 1.018 (0.026) 0.967 1.071 

SDQ 

 

   

Low-inc vs mid-inc 10,231 0.119 (0.006) 18.654 (< .001)* 1.126 (0.007) 1.112 1.141 0.117 (0.007) 15.749 (< .001)* 1.124 (0.008) 1.108 1.141 

 
Note. Related and unrelated individuals included, using cluster-robust SE. The ‘low-increasing’ class was used as the reference category. b = unstandardized regression coefficient. Low-inc = 

low-increasing class. Mid-inc = mid-increasing class. SDQ = Strengths and Difficulties Questionnaire). * = significant at q < .05 (FDR-adjusted p < .05 and p < .017 for single-and multiple-

predictor regressions, respectively). 
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Table 5.7 

Multinomial Logistic Regression Results for Paranoia Latent Trajectory Class Regressed on GPS Variables for Most Predictive f 

 Single-predictor regression 

 

Multiple-predictor regression  

Beta 

 

Odds Ratio Beta Odds Ratio 

GPS f b (SE) z 

(p value) 

OR (SE) 95% CI 

lower 

 

95% CI 

upper 

b (SE) z 

(p value) 

OR (SE) 95% CI 

lower 

95% CI 

upper 

Years of education 1   

Low-dec vs mid-dec  0.244 (0.045) 5.389 (< .001)* 1.277 (0.058) 1.168 1.396 0.181 (0.065) 2.760 (.006)* 1.198 (0.078) 1.054 1.362 

Low-dec vs high-pers  0.223 (0.046) 4.816 (< .001)* 1.250 (0.058) 1.142 1.369 0.124 (0.066) 1.884 (.060) 1.132 (0.075) 0.995 1.289 

Mid-dec vs high-pers  -0.021 (0.038) -0.550 (.583) 0.979 (0.037) 0.909 1.055 -0.056 (0.057) -0.989 (.322) 0.945 (0.054) 0.846 1.057 

IQ 1   

Low-dec vs mid-dec  0.200 (0.044) 4.525 (< .001)* 1.221(0.054) 1.120 1.331 0.152 (0.64) 2.393 (.017) 1.164 (0.074) 1.028 1.319 

Low-dec vs high-pers  0.258 (0.047) 5.515 (< .001)* 1.295 (0.061) 1.181 1.419 0.207 (0.067) 3.099 (.002)* 1.230 (0.082) 1.079 1.401 

Mid-dec vs high-pers  0.059 (0.039) 1.491 (.136) 1.060 (0.042) 0.982 1.146 0.055 (0.057) 0.961 (.337) 1.056 (0.060) 0.945 1.180 

Psychiatrist 0.3   

Low-dec vs mid-dec  0.011 (0.046) 0.234 (.815) 1.011 (0.045) 1.079 1.254 0.081 (0.075) 1.072 (.284) 1.084 (0.082) 0.935 1.257 

Low-dec vs high-pers  0.162 (0.047) 3.426 (.001)* 1.175 (0.055) 1.072 1.289 0.141 (0.079) 1.798 (.072) 1.152 (0.091) 0.987 1.344 

Mid-dec vs high-pers  0.151 (0.038) 3.936 (< .001)* 1.163 (0.045) 1.079 1.254 0.061 (0.063) 0.964 (.335) 1.062 (0.067) 0.939 1.202 

GP 0.3   

Low-dec vs mid-dec  -0.009 (0.049) -0.189 (.850) 0.991 (0.049) 0.900 1.091 0.036 (0.082) 0.438 (.661) 1.037 (0.085) 0.883 1.217 

Low-dec vs high-pers  0.186 (0.049) 3.800 (< .001)* 1.205 (0.059) 1.094 1.326 0.151 (0.082) 1.841 (.066) 1.163 (0.095) 0.990 1.366 

Mid-dec vs high-pers  0.196 (0.038) 5.203 (< .001)* 1.216 (0.046) 1.130 1.309 0.115 (0.064) 1.813 (.070) 1.122 (0.071) 0.991 1.271 

Schizophrenia  0.01   

Low-dec vs mid-dec  -0.069 (0.046) -1.491 (.136) 0.933 (0.043) 0.852 1.022 - - - - - 

Low-dec vs high-pers  -0.034 (0.047) -0.719 (.472) 0.967 (0.045) 0.882 1.060 - - - - - 

Mid-dec vs high-pers  0.035 (0.038) 0.934 (.350) 1.036 (0.039) 0.962 1.116 - - - - - 

OCD 0.01   

Low-dec vs mid-dec  0.062 (0.045) 1.372 (.170) 1.064 (0.048) 0.974 1.162 - - - - - 

Low-dec vs high-pers  0.010 (0.046) 0.209 (.835) 1.010 (0.046) 0.923 1.105 - - - - - 

Mid-dec vs high-pers  0.052 (0.038) 1.372 (.170) 0.949 (0.036) 0.881 1.023 - - - - - 

MDD 0.3   

Low-dec vs mid-dec  0.026 (0.044) 0.595 (.552) 1.027 (0.045) 0.942 1.119 -0.048 (0.064) -0.761 (.447) 0.953 (0.061) 0.841 1.079 

Low-dec vs high-pers  0.205 (0.046) 4.475 (<.001)* 1.228 (0.056) 1.122 1.343 0.046 (0.067) 0.683 (.495) 1.047 (0.070) 0.918 1.193 

Mid-dec vs high-pers  0.179 (0.039) 4.599 (<.001)* 1.196 (0.047) 1.108 1.291 0.094 (0.057) 1.643 (.100) 1.099 (0.063) 0.982 1.229 

Bipolar disorder 1   

Low-dec vs mid-dec  -0.005 (0.046) -0.103 (.918) 0.995 (0.046) 0.909 1.090 - - - - - 

Low-dec vs high-pers  -0.022 (0.047) -0.476 (.634) 0.978 (0.046) 0.892 1.072 - - - - - 
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Mid-dec vs high-pers  -0.017 (0.038) -0.460 (.645) 0.983 (0.037) 0.912 1.059 - - - - - 

ASD 0.3   

Low-dec vs mid-dec  0.160 (0.044) 3.599 (< .001)* 1.173 (0.052) 1.076 1.280 0.177 (0.063) 2.805 (.005)* 1.193 (0.075) 1.055 1.350 

Low-dec vs high-pers  0.253 (0.046) 5.464 (< .001)* 1.288 (0.060) 1.176 1.410 0.192 (0.065) 2.957 (.003)* 1.121 (0.079) 1.067 1.376 

Mid-dec vs high-pers  0.093 (0.038) 2.417 (.016)* 1.097 (0.042) 1.018 1.183 0.015 (0.054) 0.283 (.777) 1.015 (0.055) 0.914 1.128 

Anorexia 0.01   

Low-dec vs mid-dec  0.017 (0.046) 0.366 (.714) 1.017 (0.047) 0.929 1.114 - - - - - 

Low-dec vs high-pers  0.083 (0.047) 1.778 (.075) 1.087 (0.051) 0.992 1.191 - - - - - 

Mid-dec vs high-pers  0.066 (0.038) 1.736 (.082) 1.068 (0.041) 0.992 1.151 - - - - - 

ADHD 0.01   

Low-dec vs mid-dec  0.082 (0.044) 1.842 (.065) 1.085 (0.048) 0.995 1.184 0.079 (0.060) 1.327 (.185) 1.083 (0.065) 0.963 1.217 

Low-dec vs high-pers  0.166 (0.046) 3.602 (< .001)* 1.181 (0.055) 1.079 1.293 0.184 (0.064) 2.878 (.004)* 1.202 (0.077) 1.060 1.362 

Mid-dec vs high-pers  0.085 (0.039) 2.181 (.029) 1.088 (0.042) 1.009 1.174 0.104 (0.054) 1.919 (.055) 1.110 (0.060) 0.998 1.235 

 
Note. N =7,090. Related and unrelated individuals included, using cluster-robust SE. The ‘low-increasing’ class was used as the reference category. The ‘mid-decreasing’ class was used as the 

reference category for the mid-dec vs high-pers comparison. Results shown for the most predictive GPS f pertaining to the low-decreasing versus high-persistent comparison. GPS = genome-

wide polygenic score (standardised). f = fraction of causal markers. b = unstandardized regression coefficient. Low-dec = low-decreasing class. Mid-dec = mid-decreasing class. High-pers = 

high-persistent class. IQ = intelligence. Psychiatrist = ever visited a psychiatrist for nerves, anxiety, tension, or depression. GP = ever visited a general practitioner for nerves, anxiety, tension, 

or depression. OCD = obsessive compulsive disorder. MDD = major depressive disorder. ASD = autism spectrum disorder. ADHD = attention deficit hyperactivity disorder. * = significant at q 

< .05 (FDR-adjusted p < .021 and p < .022 for single- and multiple-predictor regressions, respectively). 
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Table 5.8 

Multinomial Logistic Regression Results for Hallucinations Latent Trajectory Class Regressed on GPS Variables for Most Predictive f 

 Single-predictor regressions Multiple-predictor regression 

 

Beta 

 

Odds Ratio Beta 

 

Odds Ratio 

GPS f b (SE) z  

(p value) 

OR (SE) 95% CI 

lower 

95% CI 

upper 

 

b (SE) z  

(p value) 

OR (SE) 95% CI 

lower 

95% CI 

upper 

 

Years of education 1   

Low-dec vs mid-dec  -0.074 (0.028) -2.648 (.008)* 0.929 (0.026) 0.880 0.981 -0.063 (0.029) -2.153 (.031) 0.939 (0.027) 0.887 0.994 

IQ 0.01   

Low-dec vs mid-dec  0.025 (0.028) 0.892 (.373) 1.025 (0.028) 0.971 1.082 - - - - - 

Visited a psychiatrist 0.3   

Low-dec vs mid-dec  0.091 (0.028) 3.288 (.001)* 1.095 (0.030) 1.037 1.156 0.032 (0.035) 0.922 (.357) 1.033 (0.036) 0.965 1.105 

Visited a GP 1   

Low-dec vs mid-dec  0.117 (0.028) 4.220 (< .001)* 1.124 (0.031) 1.065 1.187 0.083 (0.036) 2.314 (.021) 1.087 (0.039) 1.013 1.166 

Schizophrenia  1   

Low-dec vs mid-dec  -0.019 (0.028) -0.698 (.485) 0.981 (0.027) 0.929 1.036 - - - - - 

OCD 0.01   

Low-dec vs mid-dec  0.028 (0.027) 1.028 (.304) 1.029 (0.028) 0.975 1.085 - - - - - 

MDD 1   

Low-dec vs mid-dec  0.063 (0.027) 2.284 (.022)* 1.065 (0.029) 1.009 1.124 -0.010 (0.031) -0.324 (.746) 0.990 (0.030) 0.932 1.052 

Bipolar disorder 0.01   

Low-dec vs mid-dec  -0.039 (0.028) -1.409 (.159) 0.961 (0.027) 0.910 1.015 - - - - - 

ASD 0.3   

Low-dec vs mid-dec  0.099 (0.028) 3.557 (< .001)* 1.104 (0.031) 1.045 1.166 0.084 (0.030) 2.820 (.005)* 1.088 (0.033) 1.026 1.154 

Anorexia 0.01   

Low-dec vs mid-dec  -0.010 (0.028) -0.368 (.713) 0.990 (0.027) 0.938 1.045 - - - - - 

ADHD 0.3   

Low-dec vs mid-dec  0.085 (0.028) 3.080 (.002)* 1.088 (0.030) 1.031 1.149 0.040 (0.030) 1.317 (.188) 1.041(0.031) 0.981 1.104 

 
Note. N =7,093. Related and unrelated individuals included, using cluster-robust SE. The ‘low-decreasing’ class was used as the reference category. GPS = genome-wide polygenic score 

(standardised). f = fraction of causal markers. b = unstandardized regression coefficient. Low-dec = low-decreasing class. Mid-dec = mid-decreasing class. IQ = intelligence. Visited a 

psychiatrist = ever visited a psychiatrist for nerves, anxiety, tension, or depression. Visited a GP = ever visited a general practitioner for nerves, anxiety, tension, or depression. OCD = 

obsessive compulsive disorder. MDD = major depressive disorder. ASD = autism spectrum disorder. ADHD = attention deficit hyperactivity disorder. * = significant at q < .05 (FDR-adjusted 

p < .027 and p < .008 for single- and multiple-predictor regressions, respectively). Bold typeset indicates highest z statistic for each GPS.  
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Table 5.9 

Multinomial Logistic Regression Results for Negative Symptoms Latent Trajectory Class Regressed on GPS Variables for Most Predictive f 

 Single-predictor regressions  

 

Multiple-predictor regression  

Auxiliary variable 

(GPS) 

 

f Beta 

 

Odds Ratio Beta 

 

Odds Ratio 

  b (SE) z 

(p value) 

OR (SE) 95% CI 

lower 

95% CI 

upper 

 

b (SE) z 

(p value) 

OR (SE) 95% CI 

lower 

95% CI 

upper 

 

Years of education 1   

Low-inc vs mid-inc  -0.258 (0.029) -9.025 (< .001)* 0.772 (0.022) 0.739 0.817 -0.256 (0.032) -7.943 (< .001)* 0.774 (0.025) 0.727 0.825 

IQ 1   

Low-inc vs mid-inc  -0.096 (0.028) -3.437 (.001)* 0.908 (0.025) 0.860 0.960 0.019 (0.031) 0.600 (.548) 1.019 (0.032) 0.959 1.083 

Visited a psychiatrist 0.3   

Low-inc vs mid-inc  0.068 (0.028) 2.455 (.014)* 1.071 (0.030) 1.014 1.131 0.023 (0.035) 0.646 (.518) 1.023 (0.036) 0.955 1.095 

Visited a GP 1   

Low-inc vs mid-inc  0.094 (0.028) 3.330 (.001)* 1.099 (0.031) 1.039 1.161 0.035 (0.036) 0.950 (.342) 1.035 (0.038) 0.964 1.112 

Schizophrenia  1   

Low-inc vs mid-inc  0.021 (0.028) 0.758 (.448) 1.021 (0.029) 0.967 1.079 - - - - - 

OCD 0.01   

Low-inc vs mid-inc  0.034 (0.028) 1.195 (.232) 1.034 (0.029) 0.979 1.093 - - - - - 

MDD 1   

Low-inc vs mid-inc  0.098 (0.028) 3.461 (.001)* 1.103 (0.031) 1.044 1.167 0.055 (0.031) 1.767 (.077) 1.057 (0.033) 0.994 1.124 

Bipolar disorder 1   

Low-inc vs mid-inc  -0.058 (0.028) -2.073 (.038) 0.944 (0.026) 0.894 0.997 - - - - - 

ASD 0.01   

Low-inc vs mid-inc  0.047 (0.028) 1.679 (.093) 1.048 (0.029) 0.992 1.107 - - - - - 

Anorexia 0.3   

Low-inc vs mid-inc  -0.020 (0.027) -0.714 (.475) 0.981 (0.027) 0.929 1.035 - - - - - 

ADHD 0.3   

Low-inc vs mid-inc  0.067 (0.028) 2.371 (.018)* 1.070 (0.030) 1.012 1.131 0.001 (0.030) 0.028 (.978) 1.001 (0.030) 0.944 1.061 

 

Note. N =7,439. Related and unrelated individuals included, using cluster-robust SE. The ‘low-increasing’ class was used as the reference category. GPS = genome-wide polygenic score 

(standardised). f = fraction of causal markers. b = unstandardized regression coefficient. Low-inc = low-increasing class. Mid-inc = mid-increasing class. IQ = intelligence. Visited a 

psychiatrist = ever visited a psychiatrist for nerves, anxiety, tension, or depression. Visited a GP = ever visited a general practitioner for nerves, anxiety, tension, or depression. OCD = 

obsessive compulsive disorder. MDD = major depressive disorder. ASD = autism spectrum disorder. ADHD = attention deficit hyperactivity disorder. * = significant at q < .05 (FDR-adjusted 

p < .027 and p < .008 for single- and multiple-predictor regressions, respectively).  
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Table 5.10 

 

Characteristics of Latent Trajectory Classes for Paranoia, Hallucinations, and Negative Symptoms 

  

Paranoia 

 

 

Hallucinations 

 

Negative symptoms 

 

Auxiliary 

variable 

 
 

 

 

 

Scaling 

 

 

N 

 

Mean (SE) 

 

 

Diff. 

 

 

N 

 

Mean (SE) 

 

Diff. 

 

 

N 

 

Mean (SE) 

 

 

Diff. 

 
Low-dec  

class (a) 

 

 
Mid-dec  

class (b) 

 

 
High-pers class 

(c) 

 
Low-dec  

class (a) 

 

 
Mid-dec  

class (b) 

 

 
Low-inc  
class (a) 

 

 
Mid-inc  
class (b) 

 

 

GPS: 

GPSEDU 

GPSIQ 

GPSPSYCH 
GPSGP 

GPSSCZ 

GPSOCD 

GPSMDD 

GPSBIP 
GPSASD 

GPSANOREX 

GPSADHD 

 

Std 

Std 

Std 
Std 

Std 

Std 

Std 

Std 
Std 

Std 

Std 

 

7,090 

7,090 

7,090 
7,090 

7,090 

7,090 

7,090 

7,090 
7,090 

7,090 

7,090 

 

-0.186 (0.037) 

-0.175 (0.037) 

-0.052 (0.038) 
-0.050 (0.039) 

0.045 (0.038) 

-0.041 (0.037) 

-0.079 (0.037) 

0.008 (0.037) 
-0.154 (0.036) 

 -0.034 (0.038) 

-0.098 (0.037) 

 

0.058 (0.021) 

0.030 (0.021) 

-0.041 (0.020) 
-0.060 (0.021) 

-0.024 (0.021) 

0.021 (0.021) 

0.008 (0.021) 

0.004 (0.021) 
0.006 (0.020) 

-0.018 (0.020) 

-0.015 (0.021) 

 

0.037 (0.028) 

0.087 (0.030) 

0.109 (0.029) 
0.134 (0.027) 

0.011 (0.029) 

-0.031 (0.029) 

0.034 (0.029) 

-0.014 (0.028) 
0.098 (0.029) 

0.049 (0.029) 

0.069 (0.029) 

 

a<b, a<c, b=c 

a<b, a<c, b=c 

a=b, a<c, b<c 
a=b, a<c, b<c 

a=b, a=c, b=c 

a=b, a=c, b=c 

a=b, a<c, b=c 

a=b, a=c, b=c 
a<b, a<c, b<c 

a=b, a=c, b=c 

a=b, a<c, b=c 

 

7,093 

7,093 

7,093 
7,093 

7,093 

7,093 

7,093 

7,093 
7,093 

7,093 

7,093 

 

0.046 (0.019) 

-0.012 (0.019) 

-0.044 (0.019) 
-0.059 (0.019) 

0.004 (0.019) 

-0.018 (0.019) 

-0.032 (0.019) 

0.021 (0.019) 
-0.043 (0.019) 

0.004 (0.019) 

-0.047 (0.019) 

 

-0.027 (0.020) 

0.013 (0.020) 

0.046 (0.020) 
0.057 (0.019) 

-0.015 (0.020) 

0.011 (0.020) 

0.031 (0.020) 

-0.019 (0.020) 
0.055 (0.020) 

-0.006 (0.020) 

0.038 (0.020) 

 

a>b 

a=b 

a<b 
a<b 

a=b 

a=b 

a<b 

a=b 
a<b 

a=b 

a<b 

 
7,439 

7,439 

7,439 

7,439 
7,439 

7,439 

7,439 

7,439 

7,439 
7,439 

7,439 

 
0.157 (0.021) 

0.059 (0.021) 

-0.046 (0.021) 

-0.064 (0.021) 
-0.008 (0.021) 

-0.021 (0.021) 

-0.056 (0.021) 

0.034 (0.021) 

-0.026 (0.021) 
0.012 (0.021) 

-0.040 (0.021) 

 
-0.098 (0.018) 

-0.038 (0.018) 

0.022 (0.018) 

0.030 (0.018) 
0.013 (0.018) 

0.012 (0.018) 

0.042 (0.018) 

-0.024 (0.018) 

0.021 (0.018) 
-0.007 (0.018) 

0.027 (0.018) 

 
a>b 

a>b 

a<b 

a<b 
a=b 

a=b 

a<b 

a=b 

a=b 
a=b 

a<b 

Background: 

Sex (male) 1 

SES 
Family SCZ 1 

Family BIP 1 

 

1 = male 

Std 
1 = yes 

1 = yes 

 

12,049 

11,368 
9,673 

9,459 

 

0.479 (0.014) 

-0.030 (0.030) 
0.021 (0.005) 

0.045 (0.007) 

 

0.439 (0.008) 

0.289 (0.018) 
0.038 (0.004) 

0.055 (0.005) 

 

0.386 (0.011) 

0.191 (0.025) 
0.055 (0.007) 

0.071 (0.007) 

 

a>b, a>c, b>c 

a<b, a<c, b>c 
a<b, a<c, b<c 

a=b, a<c, b=c 

 

12,054 

11,373 
9,678 

9,463 

 

0.451 (0.007) 

0.249 (0.017) 
0.035 (0.004) 

0.050 (0.004) 

 

0.410 (0.008) 

0.157 (0.018) 
0.045 (0.004) 

0.065 (0.005) 

 

a>b 

a>b 
a<b 

a<b 

 

12,652 

11,961 
9,737 

9,523 

 

0.420 (0.008) 

0.351 (0.019) 
0.035 (0.004) 

0.052 (0.005) 

 

0.484 (0.007) 

0.124 (0.016) 
0.044 (0.004) 

0.062 (0.005) 

 

a<b 

a>b 
a=b 

a=b 

Age 7: 

Ed attainment  
Life events 

SDQ 

 

Std 
0-11 

0-40 

 

7,662 
9,605 

9,601 

 

-0.108 (0.039) 
0.967 (0.043) 

7.445 (0.154) 

 

0.193 (0.020) 
0.946 (0.023) 

7.720 (0.088) 

 

0.167 (0.028) 
1.095 (0.035) 

8.998 (0.132) 

 

a<b, a<c, b=c 
a=b, a<c, b<c 

a=b, a<c, b<c 

 

7,665 
9,611 

9,607 

 

0.185 (0.019) 
0.948 (0.022) 

7.553 (0.081) 

 

0.080 (0.019) 
1.037 (0.024) 

8.538 (0.089) 

 

a>b 
a<b 

a<b 

 

8,172 
10,235 

10,231 

 

0.243 (0.020) 
0.944 (0.025) 

6.611 (0.082) 

 

0.038 (0.018) 
1.029 (0.022) 

9.115 (0.083) 

 

a>b 
a<b  

a<b  

Age 22: 

Ed attainment  

Life events 
MFQ 

SDQ 

 

Std 

0-44 
0-16 

0-40 

 

8,342 

8,373 
8,562 

8,565 

 

-0.138 (0.040) 

2.170 (0.104) 
2.215 (0.112) 

7.075 (0.178) 

 

0.097 (0.018) 

2.694 (0.062) 
3.599 (0.070) 

9.361 (0.099) 

 

-0.008 (0.026) 

5.117 (0.128) 
7.193 (0.114) 

14.756 (0.154) 

 

a<b, a<c, b>c 

a<b, a<c, b<c 
a<b, a<c, b<c 

a<b, a<c, b<c 

 

8,342 

8,372 
8,562 

8,565 

 

0.096 (0.017) 

2.606 (0.053) 
3.382 (0.062) 

8.915 (0.091) 

 

-0.041 (0.019) 

4.14 (0.079) 
5.557 (0.075) 

12.405 (0.105) 

 

a>b 

a<b 
a<b 

a<b 

 

8,024 

7,579 
8,239 

8,243 

 

0.239 (0.017) 

2.705 (0.064)  
3.495 (0.073) 

8.903 (0.106) 

 

-0.094 (0.018) 

3.562 (0.070) 
4.963 (0.069) 

11.634 (0.098) 

 

a>b  

a<b  
a<b  

a<b  

 

Note. N indicates the number of individuals with data contributing to the GMM and not missing on the auxiliary variable. Related and unrelated individuals included, using cluster-robust SE. 

Class-specific means of the auxiliary variable. For binary variables (1), the mean represents the proportion. Diff. reflects the chi-square value (df 1) of the difference between the means (or 

proportions), significant at FDR-adjusted q < .05 unless indicated by ‘=’. GPS = genome-wide polygenic score. GPSEDU = years of education.  GPSIQ = intelligence. GPSPSYCH = ever visited a 

psychiatrist for nerves, anxiety, tension, or depression. GPSGP = ever visited a general practitioner for nerves, anxiety, tension, or depression. GPSOCD = obsessive compulsive disorder. GPSMDD = 

major depressive disorder. GPSASD = autism spectrum disorder. GPSADHD = attention deficit hyperactivity disorder. SES = socioeconomic status. Family SCZ = family history of schizophrenia. 

Family BIP = family history of bipolar disorder. Ed attainment = educational attainment. SDQ = Strengths and Difficulties Questionnaire total. MFQ = Short Mood and Feeling Questionnaire. Std 

= standardised. 
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5.4 – Discussion 

This Chapter investigated the extent to which the latent trajectory classes of paranoia, 

hallucinations, and NS measured were associated with characteristics previously found to be 

associated with aggregated PEs, and with polygenic scores for a range of outcomes. Support 

was found for the hypotheses that the most elevated PENS trajectory class would be 

associated with less favourable scores on both phenotypic and polygenic measures, with 

some exceptions. Life events and emotional/behavioural problems (at ages 7 and 22), 

depressive symptoms (at age 22), and polygenic liability for clinical help-seeking, major 

depressive disorder, and attention deficit hyperactivity disorder were all associated with 

membership in the most elevated trajectory class across PENS. Trajectory class associations 

were not significant for schizophrenia, obsessive compulsive disorder, bipolar disorder, or 

anorexia GPS.  

The phenotypic findings that more life events and emotional/behavioural problems 

were associated with the most elevated class concur broadly with findings derived from 

studies that have manually classified individuals into trajectory groups for aggregated PEs 

(e.g., Rammos et al., 2021), as well as studies that have used GMM to investigate aggregated 

PEs (e.g., Bourque et al., 2017; Mackie et al., 2011, 2013; Thapar et al., 2012; Wigman, van 

Winkel, Jacobs, et al., 2011; Wigman, van Winkel, Raaijmakers, et al., 2011). The current 

results suggested that life events and emotional/behavioural problems reported prospectively 

in childhood represent markers for suboptimal latent trajectories of paranoia, hallucinations, 

and NS, separately, measured 10-15 years later.  

Of the dimension-wide polygenic score effects that were observed in the current 

Chapter, the findings of higher GPS for clinical help seeking, major depressive disorder, and 

attention deficit hyperactivity disorder being associated with the most elevated trajectory 

classes, showed that latent trajectory class membership for the PENS dimensions is at least in 
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part associated with measured genetic variants associated with specific clinical outcomes. 

The association between polygenic liability for clinical help-seeking (for nerves, anxiety, 

tension, or depression) and for major depressive disorder, can be considered in line with both 

theory and empirical findings suggesting that affective symptoms exacerbate psychotic 

symptoms in general, and specifically, contribute to the persistence of paranoia (Bird et al., 

2017; Fowler et al., 2012; Freeman et al., 2002, 2012; Freeman & Garety, 2003).  

The dimension-wide associations that were observed for the attention deficit 

hyperactivity disorder GPS add to findings that have shown an association between this GPS 

and cross-sectional (aggregated) PEs in adolescence (Legge et al., 2019). They are also 

interesting given that whilst attention deficit hyperactivity disorder GPS was previously 

found not to predict schizophrenia status in a systematic review (Ronald et al., 2021), the 

review further highlighted the GPS’ association with trajectories of cognitive development 

within a schizophrenia sample (Dickinson et al., 2020). The current results add to these 

findings, suggesting that the attention deficit hyperactivity disorder GPS may be important 

for predicting how PENS and other psychosis-related phenotypes develop over time. 

Dimension-specific results were also observed in the current Chapter. Male sex was 

associated with membership in the most elevated trajectory class for NS, as predicted. This 

finding adds to previously reported cross-sectional associations between male sex and NS in 

the community (Dominguez et al., 2010; Maric et al., 2003; Ronald et al., 2014), which has 

also been found in the ultra-high-risk stage of psychosis (Barajas et al., 2015) as well as in 

schizophrenia (e.g., Roy et al., 2001) – further adding support to a continuum model of NS 

(Kaiser et al., 2011). 

An unexpected result was that the GPS for autism spectrum disorder was associated 

with the most elevated trajectory for paranoia and hallucinations but not for NS. These results 

add to previous findings that have shown an association between this GPS and cross-sectional 
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aggregated PEs in adolescence (Legge et al., 2019). Future research should test whether 

polygenic propensity for autism spectrum disorder influences only the development of PEs 

dimensions and not NS in other community samples, and at other ages.  

One collective pattern of results to emerge that was not predicted, was that whilst 

higher educational attainment (at ages 7 and 22), SES, and polygenic liability to years of 

education (and intelligence, for NS) were associated with decreased odds of being in the most 

elevated trajectory class for hallucinations and NS, as predicted, the opposite was true for 

paranoia. These findings for paranoia are hard to interpret in a theoretical context. 

Replication attempts can test the extent to which the enforced model constraints on the GMM 

aspect of the model, and the observed classification error (reflected in the entropy), may have 

influenced the unexpected results.  

The finding of a null association for schizophrenia GPS across PENS was unexpected, 

though it concurs with the finding of a recent study that reported a null association between 

schizophrenia GPS and persistence of aggregated PEs across adolescence and emerging 

adulthood (Rammos et al., 2021). To the extent that schizophrenia GPS is associated with 

PENS measured at single time points (Jones et al., 2016; Pain et al., 2018), the current results 

suggest that polygenic propensity for schizophrenia may influence the static expression but 

not the development of PENS. 

The current findings of an association between family history of psychosis and 

bipolar disorder and the most elevated course of paranoia and hallucinations provides support 

for the proneness-persistence-impairment model of psychosis (van Os et al., 2009). However, 

the GPS findings further suggest that the association is not due to an increased burden of 

measured polygenic variants for schizophrenia/bipolar disorder, echoing the findings of 

Rammos et al. (2021). The current findings are in line with previous studies that have found 

associations between manually-classified persistence of PEs and sibling history of psychosis 
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(Janssens et al., 2016). However, the same study also found an association between sibling 

history of psychosis and persistence of NS, which was not found in the current study. The 

different age of the sample (adults) is noted, and as such, it could be speculated that family 

history of psychosis manifests as persistent NS in adulthood but not across 

adolescence/emerging adulthood – though there is no obvious theoretical explanation to 

support this to my knowledge.  

In summary, by studying specific PENS dimensions, dimension-wide as well as 

dimension-specific behavioural and polygenic associations with the latent trajectory classes 

were observed. The results provide some evidence towards construct validation of the latent 

trajectory classes (see Section 5.1). The results further both corroborate previous phenotypic 

findings and provide novel findings to suggest associations between specific polygenic scores 

and the developmental course of specific PENS dimensions. Whilst the need for replication is 

present particularly for the unexpected paranoia results, the findings contribute to a growing 

body of literature that suggests that a dimension-specific and trajectory-based approach is 

valuable for delineating the etiological and developmental pathways that underlie PENS 

dimensions. 
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5.5 – Appendix 

 

Supplementary Information 5.1 

Genotyping of TEDS Participants  

 

This information is reproduced from Havers et al., 2022 (Supplementary Information 

2), under a creative commons licence, with minor amendments.  

Genotyping of TEDS participants was carried out by other TEDS researchers (Selzam 

et al., 2018). Full details of the genotyping procedures can be found on the TEDS data 

dictionary website (https://www.teds.ac.uk/datadictionary/studies/dna.htm). 

There have been five phases of genotyping in the TEDS sample since 1998. Data 

from all phases has contributed towards the ‘genotypic sample’ in TEDS, for which GPS 

were calculated. DNA was collected from cheek swabs between 1998 and 2009 for phases 1-

4, and from saliva samples between 2014-2015 for phase 5. Twin pairs (or individual twins) 

who had recently returned data were prioritised for DNA collection. Families were contacted 

by mail in phase 1. In phase 2, families were contacted by phone before by mail, following 

initial verbal consent. In the later phases, families were contacted by mail followed by phone 

for families who had not responded. Cheek swab samples were collected from individuals by 

their parents and saliva samples were collected by individuals themselves. Collection was 

carried out at home and samples were returned by post. The Affymetrix platform was used 

for the cheek swab samples from phases 1-4 (AffymetrixGeneChip 6.0 SNP arrays). The 

Illumina Human OEE platform was used for the saliva samples from phase 5 (using 

OmniExpressExome-8v1.2 arrays). The OEE platform was also used for some cheek swab 

samples from earlier phases (see https://www.teds.ac.uk/datadictionary/studies/dna.htm#oee). 

https://www.teds.ac.uk/datadictionary/studies/dna.htm
https://www.teds.ac.uk/datadictionary/studies/dna.htm#oee
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Detailed information regarding exclusions can be found on the TEDS data dictionary 

website (https://www.teds.ac.uk/datadictionary/studies/dna.htm); broad exclusions were 

made on the basis that parents self-reported their ethnic origin as ‘other’ than ‘white’, and 

where serious medical conditions and or perinatal complications had been self-reported.  

The genotypic sample in TEDS includes data from both the Affymetrix and OEE 

platforms, which were combined and subjected to quality control procedures (described in 

detail in S1 Methods, Supplementary Methods, Selzam et al., 2018). From an initial 

combined sample size of 11869, 1523 samples were removed owing to possible non-

European ancestry, heterozygosity anomalies, genotype call rate < 0.98, and genetic 

relatedness other than dyzygosity. The final genotypic sample is comprised of 10,346 

individual twins (3,057 genotyped on Affymetrix, 7,289 genotyped on OEE). Of the 10,346 

individuals, there is genotype data from 3,320 twin pairs (all dyzygotic). There are 3,706 twin 

pairs of any zygosity with only one twin genotyped (2,666 monozygotic, 1,017 dyzygotic and 

23 unknown zygosity). There are 7,026 twin pairs with either one or both twin genotyped. 

Seven million (7),363,646 genotyped and imputed single nucleotide polymorphisms (SNPs) 

were retained for subsequent analyses.   

 

  

https://www.teds.ac.uk/datadictionary/studies/dna.htm
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Supplementary Information 5.2 

Calculation of Genome-Wide Polygenic Scores   

 

This information is reproduced from Havers et al., 2022 (Supplementary Information 

3), under a creative commons licence, with minor amendments.  

GPS were calculated by other TEDS researchers (Selzam et al., 2019).  

GPS were calculated for each of the 10,346 individuals in the genotypic sample 

(Supplementary Information 6.1). GPS for years of education (GPSEDU) were derived using 

data from the 2018 GWAS with 23andMe samples removed, comprising N = 76,6345 (J. J. 

Lee et al., 2018). GPS for intelligence (GPSIQ) were derived using data from the 2018 GWAS 

meta-analysis, comprising N = 26,6453 (Savage et al., 2018). GPS for visited a psychiatrist 

for nerves, anxiety, tension, or depression (GPSPSYCH), were derived using data from the 2017 

GWAS, comprising 64,579 cases and 510,625 controls (Neale Lab, 2017). GPS for visited a 

general practitioner for nerves, anxiety, tension, or depression (GPSGP), were derived using 

data from the 2017 GWAS, comprising 192,838 cases and 380,905 controls (Neale Lab, 

2017). GPS for schizophrenia (GPSSCZ) were derived using data from the 2018 GWAS, 

comprising 40,675 cases and 64,643 controls (Pardiñas et al., 2018). GPS for obsessive 

compulsive disorder (GPSOCD) were derived using data from the 2017 GWAS meta-analysis, 

comprising 2,688 cases and 7,037 controls (IOCDF-GC and OCGAS, 2018). GPS for major 

depressive disorder (GPSMDD) were derived using data from the 2018 GWAS meta-analysis 

(with 23andMe samples removed), comprising 75,607 cases and 231,747 controls (Wray et 

al., 2018). GPS for bipolar disorder (GPSBIP) were derived using data from the 2011 GWAS, 

comprising 7,481 cases and 9,250 controls (Psychiatric GWAS Consortium Bipolar Disorder 

Working Group, 2011). GPS for autism spectrum disorder (GPSASD) were derived using data 

from the 2017 GWAS, comprising 18,381 cases and 27,969 controls (Grove et al., 2019). 
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GPS for anorexia nervosa (GPSANOREX) were derived using data from the 2017 GWAS, 

comprising 3,495 cases and 10,982 controls (Duncan et al., 2017). GPS for attention deficit 

hyperactivity disorder (GPSADHD) were derived using data from the 2017 GWAS, comprising 

20,183 cases and 35,191 controls (Demontis et al., 2019).  

The description of the methods used for the GPS calculation as follows is adapted 

directly from Selzam et al. (2019, Supplementary Methods), where the methods are fully 

described. GPS are the sum of single nucleotide polymorphisms (SNPs), individual genetic 

variants, that are associated with an outcome that are carried by an individual, weighted by 

the effect sizes of the SNPs. SNP-effect sizes are estimated in a genome-wide association 

study (GWAS) of an outcome of interest in an independent sample, in which the outcome is 

regressed on each of the SNPs. LDpred software (Vilhjálmsson et al., 2015) was used to 

calculate the GPS. LDpred implements Bayesian methods, adjusting for linkage 

disequilibrium (LD) amongst SNPs rather than removing SNPs that are in high LD (as is the 

case with the clumping and thresholding approach, see, e.g., Choi et al., 2020). LDpred 

estimates a posterior effect size for each SNP that is present in the GWAS summary statistics 

as well as in the target genotyped sample.  

The posterior effect size is estimated as the original summary statistic effect size 

estimate, adjusted by the relative influence of a SNP (taking into account its level of LD with 

surrounding SNPs in the target sample) and adjusting for a prior on the effect size of each 

SNP. A radius corresponding to a two megabase window on average around each SNP of 

interest was set to account for LD. The effect size prior is dependent on the SNP-heritability 

of the GWAS outcome of interest, and the proportion of SNPs (the fraction of causal 

markers) believed to influence the outcome. Using the effect size prior, the beta effect sizes 

are reweighted. Thus, the effects are spread among the SNPs across the genome in proportion 

to the amount of LD amongst them. The genotype dataset was reduced to SNPs that had 
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imputation quality information scores of 1 to reduce computational demands, resulting in 

515,100 SNPs that could be analysed. Alleles associated with the outcome were counted for 

each individual (zero, one, or two for each SNP). GPS for each individual were calculated as 

the sum of the alleles, each weighted by the posterior SNP effect size.  

The first 10 principal components (PCs) were calculated using data from the final 

genotyped sample, and GPS were regressed on these PCs prior to analysis. These PCs reflect 

and capture population structure within the sample. Regressing the GPSs on the PCs adjusts 

for any confounding that would otherwise be present due to population structure. GPSs were 

also regressed on batch and chip type to further remove any potential confounding by these 

variables.   
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Supplementary Table 5.1 

Multinomial Logistic Regression Results for Paranoia Latent Trajectory Class Regressed on GPSs for all GPS f 

 Beta Odds Ratio 

b (SE) z (p value) OR (SE) 95% CI lower 95% CI upper 

EA3_1      

Low-dec vs mid-dec 0.244 (0.045) 5.389 (< .001) 1.277 (0.058) 1.168 1.396 

Low-dec vs high-persistent 0.223 (0.046) 4.816 (< .001) 1.250 (0.058) 1.142 1.369 

Mid-dec vs high-persistent -0.021 (0.038) -0.550 (.583) 0.979 (0.037) 0.909 1.055 

      

EA3_0.3      

Low-dec vs mid-dec 0.234 (0.046) 5.094 (< .001) 1.264 (0.058) 1.155 1.383 

Low-dec vs high-persistent 0.203 (0.046) 4.376 (< .001) 1.225 (0.057) 1.118 1.341 

Mid-dec vs high-persistent -0.031 (0.038) -0.831 (.406) 0.969 (0.037) 0.900 1.043 

      

EA3_0.01      

Low-dec vs mid-dec 0.060 (0.047) 1.280 (.201) 1.062 (0.050) 0.969  1.164 

Low-dec vs high-persistent 0.009 (0.048) 0.181(.856) 1.009 (0.048) 0.919 1.108 

Mid-dec vs high-persistent -0.051 (0.037) -1.370 (.171) 0.950 (0.036) 0.883 1.022 

      

IQ_1      

Low-dec vs mid-dec 0.200 (0.044) 4.525 (< .001) 1.221(0.054) 1.120 1.331 

Low-dec vs high-persistent 0.258 (0.047) 5.515 (< .001) 1.295 (0.061) 1.181 1.419 

Mid-dec vs high-persistent 0.059 (0.039) 1.491 (.136) 1.060 (0.042) 0.982 1.146 

      

IQ_0.3      

Low-dec vs mid-dec 0.152 (0.044) 3.433 (.001) 1.165 (0.052) 1.068  1.271 

Low-dec vs high-persistent 0.218 (0.047) 4.658 (< .001) 1.244 (0.058) 1.135 1.363 

Mid-dec vs high-persistent 0.066 (0.039) 1.669 (.095) 1.068 (0.042) 0.989 1.153 

      

IQ_0.01      

Low-dec vs mid-dec 0.060 (0.044) 1.367 (.172) 1.062 (0.047) 0.974 1.158 

Low-dec vs high-persistent 0.093 (0.046) 2.014 (.044) 1.098 (0.051) 1.002 1.202 

Mid-dec vs high-persistent 0.033 (0.038) 0.861 (.389) 1.034 (0.040) 0.959 1.114 

      

PSYCH_1      

Low-dec vs mid-dec 0.009 (0.046) 0.205 (.837) 1.009 (0.046) 0.923 1.104 

Low-dec vs high-persistent 0.160 (0.047) 3.392 (.001) 1.173 (0.055) 1.070 1.287 

Mid-dec vs high-persistent 0.150 (0.038) 3.934 (< .001) 1.162 (0.045) 1.078 1.253 

      

PSYCH_0.3      
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Low-dec vs mid-dec 0.011 (0.046) 0.234 (.815) 1.011 (0.045) 1.079 1.254 

Low-dec vs high-persistent 0.162 (0.047) 3.426 (.001) 1.175 (0.055) 1.072 1.289 

Mid-dec vs high-persistent 0.151 (0.038) 3.936 (< .001) 1.163 (0.045) 1.079 1.254 

      

PSYCH_0.01      

Low-dec vs mid-dec 0.015 (0.044) 0.343 (.731) 1.015 (0.045) 0.932 1.106 

Low-dec vs high-persistent 0.119 (0.045) 2.642 (.008) 1.126 (0.051) 1.031 1.229 

Mid-dec vs high-persistent 0.104 (0.038) 2.734 (.006) 1.109 (0.042) 1.030 1.195 

      

GP_1      

Low-dec vs mid-dec -0.014 (0.049) -0.284 (.777) 0.986 (0.048) 0.896 1.086 

Low-dec vs high-persistent 0.182 (0.049) 3.727 (< .001) 1.200 (0.059) 1.090 1.321 

Mid-dec vs high-persistent 0.196 (0.038) 5.232 (< .001) 1.217 (0.046) 1.131 1.310 

      

GP_0.3      

Low-dec vs mid-dec -0.009 (0.049) -0.189 (.850) 0.991 (0.049) 0.900 1.091 

Low-dec vs high-persistent 0.186 (0.049) 3.800 (< .001) 1.205 (0.059) 1.094 1.326 

Mid-dec vs high-persistent 0.196 (0.038) 5.203 (< .001) 1.216 (0.046) 1.130 1.309 

      

GP_0.01      

Low-dec vs mid-dec -0.016 (0.044) -0.357 (.721) 0.984 (0.043) 0.903 1.073 

Low-dec vs high-persistent 0.094 (0.046) 2.060 (.039) 1.099 (0.050) 1.005 1.202 

Mid-dec vs high-persistent 0.110 (0.039) 2.831 (.005) 1.116 (0.043) 1.034 1.205 

      

SCZ_1      

Low-dec vs mid-dec -0.052 (0.047) -0.119 (.263) 0.949 (0.044) 0.866 1.040 

Low-dec vs high-persistent -0.028 (0.047) -0.592 (.554) 0.972 (0.046) 0.886 1.067 

Mid-dec vs high-persistent 0.024 (0.038) 0.641 (.522) 1.025 (0.039) 0.951 1.104 

      

SCZ_0.3      

Low-dec vs mid-dec -0.032 (0.045) -0.696 (.486) 0.969 (0.044) 0.886 1.059 

Low-dec vs high-persistent -0.004 (0.047) -0.082 (.935) 0.996 (0.047) 0.908 1.093 

Mid-dec vs high-persistent 0.028 (0.039) 0.719 (.472) 1.028 (0.040) 0.953 1.109 

      

SCZ_0.01      

Low-dec vs mid-dec -0.069 (0.046) -1.491 (.136) 0.933 (0.043) 0.852 1.022 

Low-dec vs high-persistent -0.034 (0.047) -0.719 (.472) 0.967 (0.045) 0.882 1.060 

Mid-dec vs high-persistent 0.035 (0.038) 0.934 (.350) 1.036 (0.039) 0.962 1.116 

      

OCD_1      

Low-dec vs mid-dec 0.027 (0.045) 0.600 (.548) 1.027 (0.046) 0.941 1.121 

Low-dec vs high-persistent -0.008 (0.046) -0.162 (.871) 0.993 (0.046) 0.906 1.087 
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Mid-dec vs high-persistent -0.034 (0.038) -0.897 (.370) 0.966 (0.037) 0.896 1.042 

      

OCD_0.3      

Low-dec vs mid-dec 0.028 (0.045) 0.618 (.537) 1.028 (0.046) 0.942 1.122 

Low-dec vs high-persistent -0.007 (0.046) -0.157 (.875) 0.993 (0.046) 0.907 1.087 

Mid-dec vs high-persistent -0.035 (0.038) -0.911 (.362) 0.966 (0.037) 0.896 1.041 

      

OCD_0.01      

Low-dec vs mid-dec 0.062 (0.045) 1.372 (.170) 1.064 (0.048) 0.974 1.162 

Low-dec vs high-persistent 0.010 (0.046) 0.209 (.835) 1.010 (0.046) 0.923 1.105 

Mid-dec vs high-persistent 0.052 (0.038) 1.372 (.170) 0.949 (0.036) 0.881 1.023 

      

MDD_1      

Low-dec vs mid-dec 0.023 (0.044) 0.518 (.604) 1.023 (0.045) 0.938 1.115 

Low-dec vs high-persistent 0.202 (0.046) 4.419 (< .001) 1.224 (0.056) 1.119 1.339 

Mid-dec vs high-persistent 0.180 (0.039) 4.613 (< .001) 1.197 (0.047) 1.109 1.292 

      

MDD_0.3      

Low-dec vs mid-dec 0.026 (0.044) 0.595 (.552) 1.027 (0.045) 0.942 1.119 

Low-dec vs high-persistent 0.205 (0.046) 4.475 (< .001) 1.224 (0.056) 1.122 1.343 

Mid-dec vs high-persistent 0.179 (0.039) 4.599 (< .001) 1.196 (0.047) 1.108 1.291 

      

MDD_0.01      

Low-dec vs mid-dec 0.077 (0.046) 1.691 (.091) 1.080 (0.049) 0.988 1.181 

Low-dec vs high-persistent 0.130 (0.046) 2.811 (.005) 1.139 (0.053) 1.040 1.247 

Mid-dec vs high-persistent 0.053 (0.038) 1.406 (.160) 1.055 (0.040) 0.979 1.136 

      

BIP_1      

Low-dec vs mid-dec -0.005 (0.046) -0.103 (.918) 0.995 (0.046) 0.909 1.090 

Low-dec vs high-persistent -0.022 (0.047) -0.476 (.634) 0.978 (0.046) 0.892 1.072 

Mid-dec vs high-persistent -0.017 (0.038) -0.460 (.645) 0.983 (0.037) 0.912 1.059 

      

BIP_0.3      

Low-dec vs mid-dec -0.005 (0.046) -0.103 (.918) 0.995 (0.046) 0.909 1.090 

Low-dec vs high-persistent -0.022 (0.047) -0.464 (.643) 0.979 (0.046) 0.893 1.073 

Mid-dec vs high-persistent -0.017 (0.038) -0.446 (.656) 0.983 (0.037) 0.913 1.059 

      

BIP_0.01      

Low-dec vs mid-dec 0.000 (0.046) -0.004 (.997) 1.000 (0.046) 0.913 1.095 

Low-dec vs high-persistent -0.018 (0.047) -0.388 (.698) 0.982 (0.046) 0.896 1.076 

Mid-dec vs high-persistent -0.018 (0.038) -0.473 (.636) 0.982 (0.037) 0.912 1.058 
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ASD_1      

Low-dec vs mid-dec 0.162 (0.044) 3.644 (< .001) 1.176 (0.052) 1.078 1.283 

Low-dec vs high-persistent 0.253 (0.046) 5.461 (< .001) 1.287 (0.060) 1.176 1.410 

Mid-dec vs high-persistent 0.091 (0.038) 2.361 (.018) 1.095 (0.042) 1.016 1.181 

      

ASD_0.3      

Low-dec vs mid-dec 0.160 (0.044) 3.599 (< .001) 1.173 (0.052) 1.076 1.280 

Low-dec vs high-persistent 0.253 (0.046) 5.464 (< .001) 1.288 (0.060) 1.176 1.410 

Mid-dec vs high-persistent 0.093 (0.038) 2.417 (.016) 1.097 (0.042) 1.018 1.183 

      

ASD_0.01      

Low-dec vs mid-dec 0.097 (0.045) 2.160 (.031) 1.101 (0.049) 1.009 1.202 

Low-dec vs high-persistent 0.207 (0.047) 4.441 (< .001) 1.230 (0.057) 1.123 1.348 

Mid-dec vs high-persistent 0.111 (0.038) 2.879 (.004) 1.117 (0.043) 1.036 1.204 

      

ANOREX_1      

Low-dec vs mid-dec 0.022 (0.046) 0.478 (.633) 1.022 (0.047) 0.935 1.118 

Low-dec vs high-persistent 0.079 (0.047) 1.675 (.094) 1.082 (0.051) 0.987 1.186 

Mid-dec vs high-persistent 0.057 (0.038) 1.487 (.137) 1.058 (0.040) 0.982 1.140 

      

ANOREX_0.3      

Low-dec vs mid-dec 0.022 (0.046) 0.484 (.628) 1.022 (0.047) 0.935 1.118 

Low-dec vs high-persistent 0.079 (0.047) 1.683 (.092) 1.082 (0.051) 0.987 1.186 

Mid-dec vs high-persistent 0.057 (0.038) 1.490 (.136) 1.058 (0.040) 0.982 1.141 

      

ANOREX_0.01      

Low-dec vs mid-dec 0.017 (0.046) 0.366 (.714) 1.017 (0.047) 0.929 1.114 

Low-dec vs high-persistent 0.083 (0.047) 1.778 (.075) 1.087 (0.051) 0.992 1.191 

Mid-dec vs high-persistent 0.066 (0.038) 1.736 (.082) 1.068 (0.041) 0.992 1.151 

      

ADHD_1      

Low-dec vs mid-dec 0.041 (0.044) 0.935 (.350) 1.042 (0.046) 0.956 1.136 

Low-dec vs high-persistent 0.148 (0.046) 3.211 (.001) 1.159 (0.053) 1.059 1.269 

Mid-dec vs high-persistent 0.107 (0.039) 2.766 (.006) 1.113 (0.043) 1.032 1.200 

      

ADHD_0.3      

Low-dec vs mid-dec 0.044 (0.044) 0.989 (.323) 1.045 (0.046) 0.958 1.139 

Low-dec vs high-persistent 0.150 (0.046) 3.259 (.001) 1.162 (0.054) 1.062 1.272 

Mid-dec vs high-persistent 0.107 (0.039) 2.763 (.006) 1.112 (0.043) 1.031 1.200 

      

ADHD_0.01      

Low-dec vs mid-dec 0.082 (0.044) 1.842 (.065) 1.085 (0.048) 0.995 1.184 
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Low-dec vs high-persistent 0.166 (0.046) 3.602 (< .001) 1.181 (0.055) 1.079 1.293 

Mid-dec vs high-persistent 0.085 (0.039) 2.181 (.029) 1.088 (0.042) 1.009 1.174 

 
Note. N =7,090. Related and unrelated individuals included, using cluster-robust SE. The ‘low-decreasing’ class was used as the reference category. The ‘mid-decreasing’ class was used as the 

reference category for mid-dec vs high-persistent comparisons. GPS = genome-wide polygenic score (standardised). f = fraction of causal markers (at 1, 0.3, 0.01). b = unstandardized 

regression coefficient. Low-dec = low-decreasing class. Mid-dec = mid-decreasing class. High-persistent = high-persistent class. EA3 = years of education. IQ = intelligence. PSYCH = ever 

visited a psychiatrist for nerves, anxiety, tension, or depression. GP = ever visited a general practitioner for nerves, anxiety, tension, or depression. SCZ = schizophrenia. OCD = obsessive 

compulsive disorder. MDD = major depressive disorder. BIP = bipolar disorder. ASD = autism spectrum disorder. ANOREX = anorexia. ADHD = attention deficit hyperactivity disorder. Bold 

typeset indicates highest z statistic for the low-decreasing versus high-persistent comparison for each GPS.  
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Supplementary Table 5.2 

Multinomial Logistic Regression Results for Hallucinations Latent Trajectory Class Regressed on GPSs for all GPS f 

 Beta Odds Ratio 

b (SE) z (p value) OR (SE) 95% CI lower  95% CI upper 

EA3_1      

Low-decreasing vs mid-decreasing -0.074 (0.028) -2.648 (.008) 0.929 (0.026) 0.880 0.981 

      

EA3_0.3      

Low-decreasing vs mid-decreasing -0.055 (0.028) -1.999 (.046) 0.946 (0.026) 0.896 0.999 

      

EA3_0.01      

Low-decreasing vs mid-decreasing -0.018 (0.028) -0.645 (.519) 0.982 (0.028) 0.982 1.038 

      

IQ_1      

Low-decreasing vs mid-decreasing -0.013 (0.028) -0.455 (.649) 0.987 (0.027) 0.935 1.043 

      

IQ_0.3      

Low-decreasing vs mid-decreasing -0.005 (0.028) -0.194 (.846) 0.995 (0.028) 0.942 1.050 

      

IQ_0.01      

Low-decreasing vs mid-decreasing 0.025 (0.028) 0.892 (.373) 1.025 (0.028) 0.971 1.082 

      

PSYCH_1      

Low-decreasing vs mid-decreasing 0.090 (0.028) 3.245 (.001) 1.094 (0.030) 1.036 1.155 

      

PSYCH_0.3      

Low-decreasing vs mid-decreasing 0.091 (0.028) 3.288 (.001) 1.095 (0.030) 1.037 1.156 

      

PSYCH_0.01      

Low-decreasing vs mid-decreasing 0.053 (0.028) 1.915 (.056) 1.054 (0.029) 0.999 1.113 

      

GP_1      

Low-decreasing vs mid-decreasing 0.117 (0.028) 4.220 (< .001) 1.124 (0.031) 1.065 1.187 

      

GP_0.3      

Low-decreasing vs mid-decreasing 0.117 (0.028) 4.216 (< .001) 1.124 (0.031) 1.065 1.187 

      

GP_0.01      

Low-decreasing vs mid-decreasing 0.044 (0.028) 1.613 (.107) 1.045 (0.029) 0.990 1.103 

      

SCZ_1      
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Low-decreasing vs mid-decreasing -0.019 (0.028) -0.698 (.485) 0.981 (0.027) 0.929 1.036 

      

SCZ_0.3      

Low-decreasing vs mid-decreasing -0.013 (0.028) -0.453 (.650) 0.988 (0.027) 0.935 1.043 

      

SCZ_0.01      

Low-decreasing vs mid-decreasing -0.004 (0.028) -0.145 (.884) 0.996 (0.027) 0.944 1.051 

      

OCD_1      

Low-decreasing vs mid-decreasing 0.025 (0.027) 0.927 (.354) 1.026 (0.028) 0.972 1.082 

      

OCD_0.3      

Low-decreasing vs mid-decreasing 0.025 (0.027) 0.929 (.353) 1.026 (0.028) 0.972 1.082 

      

OCD_0.01      

Low-decreasing vs mid-decreasing 0.028 (0.027) 1.028 (.304) 1.029 (0.028) 0.975 1.085 

      

MDD_1      

Low-decreasing vs mid-decreasing 0.063 (0.027) 2.284 (.022) 1.065 (0.029) 1.009 1.124 

      

MDD_0.3      

Low-decreasing vs mid-decreasing 0.062 (0.027) 2.273 (.023) 1.064 (0.029) 1.009 1.123 

      

MDD_0.01      

Low-decreasing vs mid-decreasing -0.003 (0.027) -0.097 (.922) 0.997 (0.027) 0.945 1.052 

      

BIP_1      

Low-decreasing vs mid-decreasing -0.033 (0.028) -1.183 (.237) 0.968 (0.027) 0.916 1.022 

      

BIP_0.3      

Low-decreasing vs mid-decreasing -0.034 (0.028) -1.204 (.228) 0.967 (0.027) 0.915 1.021 

      

BIP_0.01      

Low-decreasing vs mid-decreasing -0.039 (0.028) -1.409 (.159) 0.961 (0.027) 0.910 1.015 

      

ASD_1      

Low-decreasing vs mid-decreasing 0.099 (0.028) 3.552 (< .001) 1.104 (0.031) 1.045 1.166 

      

ASD_0.3      

Low-decreasing vs mid-decreasing 0.099 (0.028) 3.557 (< .001) 1.104 (0.031) 1.045 1.166 

      

ASD_0.01      
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Low-decreasing vs mid-decreasing 0.089 (0.028) 3.222 (.001) 1.093 (0.030) 1.035 1.154 

      

ANOREX_1      

Low-decreasing vs mid-decreasing -0.005 (0.027) -0.181 (.856) 0.995 (0.027) 0.943 1.050 

      

ANOREX_0.3      

Low-decreasing vs mid-decreasing -0.006 (0.027) -0.204 (.839) 0.994 (0.027) 0.942 1.049 

      

ANOREX_0.01      

Low-decreasing vs mid-decreasing -0.010 (0.028) -0.368 (.713) 0.990 (0.027) 0.938 1.045 

      

ADHD_1      

Low-decreasing vs mid-decreasing 0.084 (0.028) 3.055 (.002) 1.088 (0.030) 1.031 1.148 

      

ADHD_0.3      

Low-decreasing vs mid-decreasing 0.085 (0.028) 3.080 (.002) 1.088 (0.030) 1.031 1.149 

      

ADHD_0.01      

Low-decreasing vs mid-decreasing 0.063 (0.027) 2.303 (.021) 1.065 (0.029) 1.009 1.124 

 

Note. N =7,093. Related and unrelated individuals included, using cluster-robust SE. The ‘low-decreasing’ class was used as the reference category. GPS = genome-wide polygenic score 

(standardised). f = fraction of causal markers (at 1, 0.3, 0.01). b = unstandardized regression coefficient. Low-decreasing = low-decreasing class. Mid-decreasing = mid-decreasing class. EA3 = 

years of education. IQ = intelligence. PSYCH = ever visited a psychiatrist for nerves, anxiety, tension, or depression. GP = ever visited a general practitioner for nerves, anxiety, tension, or 

depression. SCZ = schizophrenia. OCD = obsessive compulsive disorder. MDD = major depressive disorder. BIP = bipolar disorder. ASD = autism spectrum disorder. ANOREX = anorexia. 

ADHD = attention deficit hyperactivity disorder. Bold typeset indicates highest z statistic for each GPS.  
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Supplementary Table 5.3 

Multinomial Logistic Regression Results for Negative Symptoms Latent Trajectory Class Regressed on GPSs for all GPS f 

 Beta Odds Ratio 

b (SE) z (p value) OR (SE) 95% CI lower  95% CI upper  

EA3_1      

Low-increasing vs mid-increasing -0.258 (0.029) -9.025 (< .001) 0.772 (0.022) 0.739 0.817 

      

EA3_0.3      

Low-increasing vs mid-increasing -0.205 (0.028) -7.226 (< .001) 0.815 (0.023) 0.771 0.861 

      

EA3_0.01      

Low-increasing vs mid-increasing -0.101 (0.028) -3.648 (< .001) 0.904 (0.025) 0.856 0.954 

      

IQ_1      

Low-increasing vs mid-increasing -0.096 (0.028) -3.437 (.001) 0.908 (0.025) 0.860 0.960 

      

IQ_0.3      

Low-increasing vs mid-increasing -0.086 (0.028) -3.083 (.002) 0.917 (0.026) 0.868 0.969 

      

IQ_0.01      

Low-increasing vs mid-increasing -0.017 (0.028) -0.6177 (.537) 0.983 (0.028) 0.930 1.038 

      

PSYCH_1      

Low-increasing vs mid-increasing 0.067 (0.028) 2.425 (.015) 1.070 (0.030) 1.013 1.130 

      

PSYCH_0.3      

Low-increasing vs mid-increasing 0.068 (0.028) 2.455 (.014) 1.071 (0.030) 1.014 1.131 

      

PSYCH_0.01      

Low-increasing vs mid-increasing 0.040 (0.028) 1.432 (.152) 1.040 (0.029) 0.985 1.098 

      

GP_1      

Low-increasing vs mid-increasing 0.094 (0.028) 3.330 (.001) 1.099 (0.031) 1.039 1.161 

      

GP_0.3      

Low-increasing vs mid-increasing 0.093 (0.028) 3.313 (.001) 1.098 (0.031) 1.039 1.160 

      

GP_0.01      

Low-increasing vs mid-increasing 0.061 (0.028) 2.170 (.030) 1.062 (0.030) 1.006 1.122 
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SCZ_1      

Low-increasing vs mid-increasing 0.021 (0.028) 0.758 (.448) 1.021 (0.029) 0.967 1.079 

      

SCZ_0.3      

Low-increasing vs mid-increasing 0.020 (0.028) 0.707 (.480) 1.020 (0.029) 0.965 1.078 

      

SCZ_0.01      

Low-increasing vs mid-increasing -0.011 (0.028) -0.407 (.684) 0.989 (0.027) 0.937 1.044 

      

OCD_1      

Low-increasing vs mid-increasing 0.032 (0.028) 1.144 (.253) 1.033 (0.029) 0.977 1.091 

      

OCD_0.3      

Low-increasing vs mid-increasing 0.032 (0.028) 1.151 (.250) 1.033 (0.029) 0.978 1.091 

      

OCD_0.01      

Low-increasing vs mid-increasing 0.034 (0.028) 1.195 (.232) 1.034 (0.029) 0.979 1.093 

      

MDD_1      

Low-increasing vs mid-increasing 0.098 (0.028) 3.461 (.001) 1.103 (0.031) 1.044 1.167 

      

MDD_0.3      

Low-increasing vs mid-increasing 0.097 (0.028) 3.418 (.001) 1.102 (0.031) 1.042 1.165 

      

MDD_0.01      

Low-increasing vs mid-increasing 0.038 (0.028) 1.362 (.173) 1.039 (0.029) 0.983 1.098 

      

BIP_1      

Low-increasing vs mid-increasing -0.058 (0.028) -2.073 (.038) 0.944 (0.026) 0.894 0.997 

      

BIP_0.3      

Low-increasing vs mid-increasing -0.057 (0.028) -2.048 (.041) 0.944 (0.046) 0.894 0.998 

      

BIP_0.01      

Low-increasing vs mid-increasing -0.021 (0.028) -0.767 (.443) 0.979 (0.027) 0.927 1.034 

      

ASD_1      

Low-increasing vs mid-increasing 0.036 (0.028) 1.270 (.204) 1.036 (0.029) 0.981 1.095 

      

ASD_0.3      

Low-increasing vs mid-increasing 0.036 (0.028) 1.290 (.197) 1.037 (0.029) 0.981 1.096 
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ASD_0.01      

Low-increasing vs mid-increasing 0.047 (0.028) 1.679 (.093) 1.048 (0.029) 0.992 1.107 

      

ANOREX_1      

Low-increasing vs mid-increasing -0.020 (0.027) -0.712 (.476) 0.981 (0.027) 0.929 1.035 

      

ANOREX_0.3      

Low-increasing vs mid-increasing -0.020 (0.027) -0.714 (.475) 0.981 (0.027) 0.929 1.035 

      

ANOREX_0.01      

Low-increasing vs mid-increasing -0.006 (0.028) -0.220 (.826) 0.994 (0.027) 0.941 1.049 

      

ADHD_1      

Low-increasing vs mid-increasing 0.067 (0.028) 2.356 (.018) 1.069 (0.030) 1.011 1.130 

      

ADHD_0.3      

Low-increasing vs mid-increasing 0.067 (0.028) 2.371 (.018) 1.070 (0.030) 1.012 1.131 

      

ADHD_0.01      

Low-increasing vs mid-increasing 0.050 (0.028) 1.803 (.071) 1.052 (0.029) 0.996 1.111 

 
Note. N =7,439. Related and unrelated individuals included, using cluster-robust SE. The ‘low-increasing’ class was used as the reference category. GPS = genome-wide polygenic score 

(standardised). f = fraction of causal markers (at 1, 0.3, 0.01). b = unstandardized regression coefficient. Low-increasing = low-increasing class. Mid-increasing = mid-increasing class. EA3 = 

years of education. IQ = intelligence. PSYCH = ever visited a psychiatrist for nerves, anxiety, tension, or depression. GP = ever visited a general practitioner for nerves, anxiety, tension, or 

depression. SCZ = schizophrenia. OCD = obsessive compulsive disorder. MDD = major depressive disorder. BIP = bipolar disorder. ASD = autism spectrum disorder. ANOREX = anorexia. 

ADHD = attention deficit hyperactivity disorder. Bold typeset represents the highest z score for each GPS. 
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Chapter 6 – The latent structure of negative symptoms in 

adolescence and emerging adulthood 

 

Published as Havers et al. (2022). 

 

6.1 – Introduction  

This Chapter investigates the latent structure of NS in the community in adolescence 

and emerging adulthood and investigates the extent to which the identified subdomains show 

associations with GPSs for schizophrenia and major depressive disorder. This Section will 

outline recent clinical findings, which will provide the rationale for investigating the latent 

structure of NS in the community in the context of a continuum model of NS. 

Section 1.3.3 summarised recent findings suggesting that a 5-factor conceptualisation 

of NS in schizophrenia may better describe the construct than the 2-factor conceptualisation 

that is reflected in the DSM-5 (Strauss, Ahmed, et al., 2019). It further discussed the potential 

gains in terms of treatment development by establishing a more accurate psychometric 

representation of NS, and the need for further validating the latent subdomains through 

knowledge of external correlates (for example, genetic, cognitive, neural; Strauss et al., 

2018).  

As discussed in Section 1.2.4, previous findings suggest that there may be etiological 

continuity between NS observed in psychotic disorders and non-clinical NS – in support of a 

continuum model of NS (Kaiser et al., 2011). Continuity between non-clinical and clinical 

NS can be probed further by testing whether the latent factor measurement models that are 

hypothesised to underlie NS in schizophrenia also underlie NS in the community. 

Importantly, through the lens of a continuum model of NS – valuable insights may be 
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acquired by better understanding the non-clinical presentation of NS in samples that are not 

subject to the potentially confounding effects of treatment and ascertainment bias that are 

inherent in clinical samples. 

Section 1.4.2 highlighted the relevance of studying psychotic phenomena in 

adolescence and emerging adulthood, and Section 1.3.3 outlined the findings from the one 

study (to my knowledge) that has used CFA to investigate the latent structure of NS in the 

community (Rodríguez-Testal et al., 2019). This study reported the best fit of a 5-factor 

hierarchical model in an adolescent sample. These results provided evidence to suggest that, 

like in clinical NS, the latent structure of NS in the community is more fine-grained than 

either a 1- or 2-factor conceptualisation. However, the 2-factor conceptualisation reflected in 

the DSM-5 was not tested, precluding a direct test of the extent to which one of the key 

conceptualisations of NS in schizophrenia is detectable, or not, in the community. 

In terms of genetics, there is preliminary evidence in clinical samples to suggest 

associations between polygenic liability to schizophrenia and a total score of NS (Bigdeli et 

al., 2017; A. H. Fanous et al., 2012; Xavier et al., 2018), and mixed findings for an 

association between polygenic liability to schizophrenia and an expressive deficit (Legge et 

al., 2021). In the community, findings suggest an association between total NS and polygenic 

liability to schizophrenia, as well as major depressive disorder in the community (Jones et al., 

2016; Pain et al., 2018). The extent to which these associations are driven by specific NS 

subdomains is unknown – though theory and empirical findings suggesting that avolition may 

be a core feature of NS in schizophrenia may indicate that avolition would show elevated 

associations (e.g., Foussias & Remington, 2010; Strauss et al., 2020, 2021).  

 In the current study, the latent structure of NS in the community at ages 16, 17, and 

22 was investigated; explicitly testing the 2-factor conceptualisation of NS reflected in the 

DSM-5 and the 5-factor conceptualisation that has been found to underlie NS in clinical 
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samples (Strauss et al., 2018). Further models that were tested were a 5-factor hierarchical 

model (encompassing both the 2-factor and 5-factor conceptualisations), a unidimensional 

model, and a model suggested by EFA in the current sample. Given previous findings that 

have found associations between schizophrenia and major depressive disorder GPSs and a 

total score of NS in the community, associations were tested between these GPSs with the 

subdomains identified in the best fitting factor model. It was hypothesised that, i) a 5-factor 

model would provide the best fit to the data at ages 16, 17, and 22, ii) the latent structure 

would be invariant across age, and iii) avolition would be most consistently associated with 

the two GPSs.  

 Of note, the analyses in this Chapter partially overlap with those presented in Chapter 

2. The NS results are presented in Chapter 2 in the context of longitudinal measurement 

invariance, which was an essential foundational analytic step before Chapters 3 and 4. 

Whereas, the analyses presented in the current Chapter are investigating the latent structure 

of NS in the community and the relevance of the models being tested. The reader is referred 

to the relevant sections in Chapter 2 where appropriate to avoid repetition, and the 

methods/results that are novel to the current Chapter are clearly stated as such. 

 

6.2 – Methods 

6.2.1 – Participants  

The TEDS sample is described in Section 2.2.1.1. For the study conducted in Chapter 

6, data from one (randomly selected) twin per pair was used for the main analyses. The 

cotwin data was used as a pseudo (non-independent) replication sample. Parents completed 

questions relating to their twins’ NS at mean ages 16.32 years (SD 0.68; range 14.91-19.45), 

17.06 years (SD 0.88; range 15.55-19.0), and 22.30 years (SD 0.93; range 20.56-25.59).  
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N for NS in the main subsample at ages 16, 17, and 22 were 4,974, 1,469, and 5,179, 

respectively.  

 

6.2.2 – Measures  

6.2.2.1 – Negative symptoms 

NS were assessed using the NS subscale of the SPEQ (Ronald et al., 2014), described 

in Section 2.2.2. NS items are listed in Supplementary Information 2.3. 

6.2.2.2 – GPS 

Genotyping of participants is described in Supplementary Information 5.1. As 

outlined in Section 5.2.2.3, GPSs were calculated by other TEDS collaborators (Selzam et al., 

2018, 2019) using LDpred software (Vilhjálmsson et al., 2015). The GPS calculation 

methods and the GWASs that the individual GPSs were based on are described in 

Supplementary Information 5.2. GPSs for schizophrenia (GPSSCZ) and major depressive 

disorder (GPSMDD) were used in the current Chapter. Standardized residuals of the GPS 

regressed on the first 10 PCs of ancestry, batch, and chip were used. GPS that are available to 

TEDS researchers correspond to three fractions (f) of causal markers (1, 0.3, and 0.01).  

 

6.2.3 – Statistical analyses 

 6.2.3.1 – Overview of analyses  

CFA was used to test five measurement models of NS at each age, in both the main 

subsample (as in Chapter 2) and in the cotwin subsample (novel to the current Chapter). The 

focus of the analyses was the main subsample: the CFA were fitted in the cotwin subsample 

to strengthen any inferences drawn regarding the latent structure findings.  

One of the five measurement models that were tested was a model suggested by EFA. 

The EFA model suggested in the main subsample was respecified as a CFA in the cotwin 
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subsample (Chapter 2). It was important to pseudo replicate the EFA findings because EFA 

are overfit to sample variability (discussed in Section 2.2.3.2).  

Measurement invariance of the best fitting CFA between the subsamples was tested 

(novel to the current Chapter). Longitudinal measurement invariance of the best fitting CFA 

was carried out in the main subsample and in the cotwin subsample (Chapter 2). 

The methods of CFA and EFA are described in detail in Section 2.2.3.2. 

6.2.3.2 – CFA models  

The specifications of the CFA models are described in detail in Section 2.2.3.3.3. The 

theoretical rationale behind each of the models is provided briefly here, as follows: 

Model 1) 1-factor, reflecting the initial conceptualisation of NS that arose from the 

analysis of NS in combination with other psychotic dimensions.  

Model 2) 2-factor model, reflecting an expressive deficit and motivational-pleasure 

deficit. This model reflects the conceptualisation of NS in schizophrenia in the DSM-5. 

Model 3) 4-factor model, reflecting the structure suggested in EFA (Supplementary 

Table 2.10). Testing this model as a CFA allowed for a test of the extent to which a model 

that captured the sample-specific variance/covariance provided an adequate, and valid  

(assessed through pseudo-replication) representation of the NS construct.  

Model 4) 5-factor model, reflecting flat affect, alogia, avolition, anhedonia, and 

asociality. This model reflects the five NS dimensions that were highlighted by expert 

consensus (Kirkpatrick et al., 2006); also reflecting the model recently found to best represent 

the NS construct in clinical samples through use of CFA.  

Model 5) 5-factor hierarchical model, reflecting the five factors specified in Model 4 

as first order factors, and the two factors specified in Model 2 as higher order factors 

(expressive deficit, motivation-pleasure deficit). This model has been found to provide a 

good representation of the NS construct in clinical samples.  
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6.2.3.3 – Model fit 

A series of goodness of fit indices were used to assess standalone fit of the CFA 

models: CFI, RMSEA, and SRMR. Whilst the use of cut off values is debated (Marsh et al., 

2004), CFI values > 0.95/0.90, RMSEA values < 0.06, and SRMR values < 0.08 were 

assumed to indicate generally acceptable fit (Hu & Bentler, 1999; Marsh et al., 2004; van de 

Schoot et al., 2012).  

BIC was primarily used to assess the relative fit between models, with lower values 

indicative of better fit. A difference between the values in excess of two was considered to 

reflect ‘positive’ evidence, and a difference between the values in excess of 10 was 

considered ‘very strong’ evidence (Neath & Cavanaugh, 2012). AIC was referred to where 

the difference in BIC values was less than two, with lower values indicative of better fit. A 

difference between AIC values in excess of two was considered ‘strong’ evidence (Burnham 

& Anderson, 2004).  

6.2.3.4 – Measurement invariance 

The concept of measurement invariance and the different ‘levels’ of measurement 

invariance were described in Section 2.2.3.6. In the current Chapter, an analysis of 

measurement invariance was conducted to assess, i) the extent to which the measurement 

model (of the best fitting CFA model) was invariant across the main and cotwin subsamples, 

and ii) the extent to which the best fitting CFA model was invariant across ages 16, 17, and 

22 in each of the subsamples (as in Chapter 2). 

For i), it was not necessary to specify family-level clustering (i.e., to adjust the 

standard errors to account for the relatedness between individuals), because there was only a 

single family member in each group (Y. Rosseel, personal communication, 2022).  
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To test for incremental levels of measurement invariance, acceptable standalone fit as 

well as negligible change in the fit indices between models was required: specifically, CFI < 

0.010, RMSEA < 0.015, and SRMR < 0.030 (Chen, 2007). 

6.2.3.5 – Data modelling 

Any data that was missing was assumed to be missing at random, accommodated 

using FIML estimation. A robust version of the FIML estimator was used (MLR). 

Data was modelled as continuous. As a sensitivity test in response to reviewer 

comments (Havers et al., 2022), the main CFA models were also rerun with the data 

modelled as categorical, using diagonally weighted least squares estimation with robust SE 

(WLSMV). This sensitivity test was requested because analysing item-level data measured 

using less than five scale points using continuous estimation methods may lead to biased 

estimates and SE (Rhemtulla et al., 2012). Of note, this is important in the current context 

because item-level data is modelled. This differs to the total score data that is used for the 

growth modelling in this Thesis, which allows for a more accurate application of continuous 

estimation methods (i.e., MLR) (Rhemtulla et al., 2012).  

Cross-sectional models were run using lavaan (Rosseel, 2012) in R (version 2.5.2). 

Mplus (version 8.6) was used to run the longitudinal measurement invariance models and the 

categorical models. 

6.2.3.6 – Association analyses 

Associations between the GPSs (schizophrenia and major depressive disorder) and the 

subdomains suggested by the best fitting CFA model were tested using linear regression. In 

these analyses, data from both twins per pair was utilised, with family ID specified as the unit 

of clustering. Mean scores for the subdomains were used as the outcome variables, and the 

GPSs were used as the predictor variables. For factors with two items, the mean was 

calculated provided there was data from at least one item. 
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Single-predictor regressions were first run for each subdomain regressed on each GPS 

f (Supplementary Tables 5.1-5.3). The most predictive GPS f (the GPS f with the highest z 

value) for each subdomain at each age was selected, and the results were subjected to 

multiple testing correction.  

The FDR method (Benjamini & Hochberg, 1995) was used to correct for multiple 

testing amongst the 30 tests (i.e., five subdomains, three ages, two GPSs): First, for the 

single-predictor regressions, the results of the multiple tests were ranked according to their 

significance levels. The FDR-adjusted p value was defined as the highest-ranking test for 

which the p value was less than or equal to the rank number divided by the total number of 

tests, multiplied by α (.05). The resulting value was the corrected q <.05. Equality of the 

standardised regression coefficients across subdomains at each age was tested (using the 

lavTestWald function; Klopp, 2019). 

For each subdomain at each age, the GPS with the most predictive f (i.e., as reported 

for the single-predictor regressions) were entered into multiple-predictor regressions with 

schizophrenia GPSSCZ and GPSMDD as the predictors. The FDR method was used to correct 

for multiple testing amongst the 30 tests (five subdomains, three ages, two GPSs). 

 

6.3 – Results 

6.3.1 – Descriptive statistics 

Descriptive statistics are shown in Supplementary Table 6.1 for the main and cotwin 

subsamples. Items showed good internal consistency at each age (coefficient α = 0.83-0.88).  
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6.3.2 – CFA 

 6.3.2.1 – Main subsample analyses  

The CFA results for the main subsample are shown in Supplementary Table 2.11. The 

results are discussed briefly in Section 2.3.3.2; described in more detail as follows. The 5-

factor model showed the best fit to the data at each age. Standalone fit of the 5-factor model 

was acceptable at each age (CFI >= 0.99, RMSEA <= 0.06, SRMR <= 0.02). BIC values 

were lower to a magnitude greater than 100 compared to the next best fitting models (the 4-

factor EFA and 5-factor hierarchical models) at ages 16 and 22. At 17 years, the 4- and 5-

factor models were indistinguishable in terms of their BIC values (difference ~ 1): the AIC 

value of the 5-factor model was lower to a magnitude greater than two compared to the 4-

factor model, indicating better fit of the 5-factor model.  

At each age, the 1-factor and 2-factor models provided a relatively poor fit to the data 

in terms of RMSEA (0.095-0.179), though model fit was acceptable in terms of SRMR (<= 

0.06) and CFI (0.912-0.954) for the 2-factor models. The 4-factor EFA models and the 5-

factor hierarchical models provided an acceptable fit to the data at each age across fit indices. 

Pseudo replication of the EFA model as a CFA in the cotwin subsample is discussed 

in Section 2.3.3.3 and the results are shown in Supplementary Table 2.12. Briefly, the models 

showed good standalone fit in the cotwin subsample at each age.  

6.3.2.2 – Sensitivity analyses  

A broadly similar pattern of results was observed using WLSMV estimation 

(Supplementary Table 6.2): the 5-factor model provided the best fit to the data at each age. 

BIC/AIC are not available for WLSMV estimation, but the 5-factor model showed the best 

standalone fit across indices. Notably, CFI values were >= 0.99 for the 5-factor as well as the 

next best fitting models (the 4-factor EFA and 5-factor hierarchical models). Like for the 

continuous models (Section 6.3.2.1), the 1-factor and 2-factor models provided a relatively 
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poor fit to the data in terms of RMSEA (0.078-0.145); however, model fit was acceptable in 

terms of SRMR (<= 0.08) and CFI (0.919-0.986) for the 2-factor models as well as the 1-

factor models.  

6.3.2.3 – Cotwin subsample analyses  

Broadly the same pattern of results was found in the cotwin subsample 

(Supplementary Table 6.3): the 5-factor model fit the data best at all ages. Standalone fit of 

the 5-factor model was acceptable at each age in terms of CFI (>= 0.98) and SRMR (<= 

0.02); RMSEA was acceptable at ages 16 and 17 (<= 0.04), though was less acceptable at age 

22 (0.070). BIC values were lower to a magnitude greater than 10 compared to the next best 

fitting models (the 4-factor EFA and 5-factor hierarchical models) at each age. 

At each age, the 1-factor and 2-factor models provided a relatively poor fit to the data 

in terms of RMSEA (0.088-0.170), though model fit was acceptable in terms of SRMR (<= 

0.05) and CFI (0.921-0.958) for the 2-factor models. The 4-factor EFA models and the 5-

factor hierarchical models provided acceptable fit to the data at each age across fit indices, 

though less so for RMSEA at age 22 (0.075).  

 

6.3.3 – Parameter estimates 

Supplementary Tables 6.4-6.6 show the parameter estimates from the 5-factor model 

at each age in the main subsample. Latent factors were defined as reflecting flat affect, 

alogia, avolition, anhedonia, and asociality. Inter-factor correlations were moderate to high 

(.33-.82). The highest inter-factor correlations were between flat affect and alogia at each 

age. Standardised factor loadings were .61-.89 (i.e., for factors with more than one indicator), 

reflecting that the factors explained between 37.21% and 79.21% of the variance in the items. 

Across items, the factors explained 62.50% of the total variance at age 16, 67.16% at age 17, 
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and 56% at age 22 (Supplementary Table 6.7). Figure 6.1 shows the 5-factor model at each 

age. 

 

6.3.4 – Measurement invariance  

6.3.4.1 – Measurement invariance between the subsamples  

Full strict measurement invariance of the 5-factor model was found at each age 

between the main and cotwin subsamples (Tables 6.1-6.3). 

6.3.4.2 – Longitudinal measurement invariance 

The results for the main subsample are shown in Table 2.3 and are discussed in 

Section 2.3.3.2: The same pattern of results was observed for the cotwin subsample 

(Supplementary Table 6.12), discussed as follows: the configural, metric and scalar 

invariance models showed acceptable fit and negligible change in fit indices. Further 

constraining the residual variances in the strict model resulted in a model with non-negligible 

change in CFI value (> 0.010). Consultation of the modification indices led to a revision of 

the model, and a partial-strict model was specified with the item 2 parameters (“My child 

seems emotionally ‘flat’”) freely estimated. This modification resulted in an acceptable CFI 

change (from the scalar to partial-strict model), and acceptable overall fit of the partial-strict 

model (CFI = 0.976, RMSEA = 0.022, 90% CI 0.020, 0.023, SRMR = 0.025). Partial strict 

invariance was concluded.  

 

6.3.5 – Associations between GPSs and subdomains 

Table 6.4 shows the results for the most predictive GPS f for each subdomain at each 

age, for GPSSCZ and GPSMDD separately. Results for all GPS f are shown in Supplementary 

Tables 6.13 and 6.14 for GPSSCZ and GPSMDD, respectively. The subdomain with the greatest 
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number of significant associations was avolition, which showed four associations at q < 0.05 

(with GPSSCZ at age 17, and GPSMDD at each age). 

GPSSCZ showed significant associations with flat affect at age 16 (ß = 0.037), and 

with avolition at age 17 (ß = 0.058). When standardised regression coefficients were 

compared (Supplementary Table 6.15), the association for flat affect at age 16 was 

significantly stronger than the association with asociality at ages 16 and 17 (p = .035-.042), 

and the association for avolition at age 17 was stronger than the association with asociality at 

17 (p = .018). For the multiple-predictor models, the GPSSCZ associations that were 

significant in the single-predictor models did not remain significant (Supplementary Table 

6.16).  

GPSMDD showed significant associations with flat affect at ages 16 and 22 (ß = 0.041-

0.050), with avolition (ß = 0.045-0.084) and anhedonia (ß = 0.043-0.065) at each age, and 

with asociality at ages 16 and 22 (ß = 0.049-0.056). Alogia was not associated with GPSMDD 

at any age. When standardised regression coefficients were compared (Supplementary Table 

6.15), all associations were significantly stronger for avolition than for alogia at each age (p 

= .008-.031) and were significantly stronger for anhedonia and asociality than alogia at ages 

16 and 22 (p = .021-.029). The association for avolition was also significantly stronger than 

for flat affect at age 17 (p = .013). All GPSMDD associations that were significant in the 

single-predictor models remained significant in the multiple-predictor models, except for 

anhedonia at age 17 (Supplementary Table 6.16). 
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Table 6.1 

Measurement Invariance Analysis of 5-Factor Structure of Negative Symptoms at Age 16 Between Main and Cotwin Subsamples 

  

 

 

Parameters 

Fit indices Comparison of fit indices between nested 

models 

CFI RMSEA [90% CI] SRMR Δ CFI Δ RMSEA  Δ SRMR 

Configural invariance model (no 

constraints) 

64 0.996 0.031 [0.024, 0.040] 0.011 - - - 

Metric invariance model (factor 

loadings constrained) 

58 0.996 0.026 [0.018, 0.035] 0.014 0.000 0.005 -0.003 

Scalar invariance model (factor 

loadings and intercepts 

constrained) 

55 0.996 0.025 [0.017, 0.033] 0.014 0.000 0.001 0.000 

Strict invariance model (factor 

loadings, intercepts and residual 

variances constrained) 

49 0.997 0.022 [0.013, 0.029] 0.015 -0.001 0.003 -0.001 

 

Note. N = 9,951 (main subsample N = 4,974, cotwin subsample N = 4,977). CFI = comparative fit index. RMSEA = root mean square error of approximation. SRMR = standardized root mean 

square residual. Δ denotes change value.  
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Table 6.2 

Measurement Invariance Analysis of 5-Factor Structure of Negative Symptoms at Age 17 Between Main and Cotwin Subsamples 

  

 

 

Parameters 

Fit indices Comparison of fit indices between 

nested models 

CFI RMSEA [90% CI] SRMR Δ CFI Δ RMSEA  Δ SRMR 

Configural invariance model (no 

constraints) 

64 1.000 0.010 [0.000, 0.031] 0.010 - - - 

Metric invariance model (factor 

loadings constrained) 

58 1.000 0.000 [0.000, 0.025] 0.030 0.000 0.010 0.020 

Scalar invariance model (factor 

loadings and intercepts 

constrained) 

55 1.000 0.000 [0.000, 0.023] 0.030 0.000 0.000 0.000 

Strict invariance model (factor 

loadings, intercepts and residual 

variances constrained) 

49 1.000 0.000 [0.000, 0.020] 0.033 0.000 0.000 -0.003 

 

Note. N = 2,942 (main subsample N = 1,469, cotwin subsample N = 1,473). CFI = comparative fit index. RMSEA = root mean square error of approximation. SRMR = standardized root mean 

square residual. Δ denotes change value.  
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Table 6.3 

Measurement Invariance Analysis of 5-Factor Structure of Negative Symptoms at Age 22 Between Main and Cotwin Subsamples 

  

 

 

Parameters 

Fit indices Comparison of fit indices between 

nested models 

CFI RMSEA [90% CI] SRMR Δ CFI Δ RMSEA  Δ SRMR 

Configural invariance model (no 

constraints) 

64 0.982 0.064 [0.057, 0.071] 0.021 - - - 

Metric invariance model (factor 

loadings constrained) 

58 0.982 0.056 [0.050, 0.063] 0.021 0.000 0.008 0.000 

Scalar invariance model (factor 

loadings and intercepts 

constrained) 

55 0.982 0.053 [0.048, 0.060] 0.021 0.000 0.003 0.000 

Strict invariance model (factor 

loadings, intercepts and residual 

variances constrained) 

49 0.983 0.048 [0.043, 0.054] 0.022 -0.001 0.005 -0.001 

 

Note. N = 10,149 (main subsample N = 5,179, cotwin subsample N = 5,181). CFI = comparative fit index. RMSEA = root mean square error of approximation. SRMR = standardized root 

mean square residual. Δ denotes change value.  
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Table 6.4 

Single-Predictor Linear Regressions of Subdomain Mean Scores on Schizophrenia GPS and Major Depressive Disorder GPS for Most Predictive GPS f 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Note. Subdomain mean scores at each age regressed on MDD and schizophrenia GPS separately. Related and unrelated individuals included, using cluster-robust SE. Results shown for the 

most predictive GPS f. GPS = genome-wide polygenic score. MDD = major depressive disorder. f = fraction of causal markers. b = unstandardized regression coefficient. ß = standardized 

regression coefficient. Bold typeset represents significance under corrected q <.05 threshold. 

  

 MDD GPS Schizophrenia GPS 

 

N 

 

f 

 

b (SE) 

 

 

z (P) 

 

ß 

 

f 
 

b (SE) 

 

 

z (P) 
 

ß 

 

Age 16  

Flat affect  

Alogia  

Avolition  

Anhedonia  

Asociality  

 

Age 17  

Flat affect  

Alogia  

Avolition  

Anhedonia  

Asociality 

 

Age 22 

Flat affect  

Alogia  

Avolition  

Anhedonia  

Asociality  

 

 

6,005 

6,006 

5,995 

5,971 

5,971 

 

 

1,818 

1,815 

1,816 

1,807 

1,794 

 

 

6,274 

6,278 
6,276 

6,251 

6,259 

 

 

0.3 

1 

0.3 

1 

1 

 

 

0.3 

1 

1 

1 

1 

 

 

0.3 

1 
1 

1 

0.3 

 

 

0.019 (0.005) 

0.010 (0.008) 

0.030 (0.007) 

0.029 (0.009) 

0.028 (0.006) 

 

 

0.016 (0.012) 

0.019 (0.015) 

0.054 (0.016) 

0.046 (0.019) 

0.025 (0.016)  

 

 

0.018 (0.006) 

0.009 (0.008) 
0.028 (0.008) 

0.030 (0.009) 

0.029 (0.008)  

 

 

3.504 (< .001) 

1.289 (.197) 

3.986 (< .001) 

3.359 (.001) 

4.321 (< .001) 

 

 

1.410 (.159) 

1.253 (.210) 

3.367 (.001) 

2.433 (.015) 

1.539 (.124) 

 

 

3.195 (.001) 

1.072 (.284) 
3.487 (< .001) 

3.233 (.001) 

3.702 (< .001) 

 

 

0.050 

0.017 

0.054 

0.046 

0.056 

 

 

0.035 

0.030 

0.084 

0.065 

0.040 

 

 

0.041 

0.014 
0.045 

0.043 

0.049 

 

 

1 

0.3 

0.01 

0.3 

0.01 

 

 

1 

1 

1 

0.3 

0.01 

 

 

0.01 

0.01 
0.01 

0.3 

1 

 

 

0.014 (0.005) 

0.007 (0.008) 

-0.004 (0.008) 

0.008 (0.009) 

-0.007 (0.008) 

 

 

0.027 (0.012) 

0.006 (0.016) 

0.038 (0.016) 

0.017 (0.017) 

-0.019 (0.016) 

 

 

-0.004 (0.006) 

0.002 (0.008) 
-0.006 (0.008) 

-0.007 (0.009) 

0.007 (0.008) 

 

 

2.659 (.008) 

0.893 (.372) 

-0.496 (.620) 

0.922 (.356) 

-0.858 (.391) 

 

 

2.162 (.031) 

0.387 (.699) 

2.404 (.016) 

0.967 (.334) 

-1.153 (.249) 

 

 

-0.737 (.461) 

0.225 (.822) 
-0.738 (.460) 

-0.729 (.466)  

0.893 (.372) 

 

 

0.037 

0.012 

-0.007 

0.012 

-0.013 

 

 

0.057 

0.010 

0.058 

0.023 

-0.030 

 

 

-0.009 

0.003 
-0.010 

-0.010 

0.011 
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Figure 6.1 

Five-Factor Model of Negative Symptoms at Ages 16, 17, and 22 in Main Subsample 

 

A                          B                                     C  
     

  
 

 

 

Note. A. Model at age 16. B. Model at age 17. C. Model at age 22. Standardized estimates from best fitting confirmatory factor analysis models. Rectangles represent measured variables. 

Circles represent latent variables. Double headed arrows represent correlations. Single headed arrows represent factor loadings. 
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6.4 – Discussion 

This Chapter investigated the latent structure of NS in the community in adolescence 

and emerging adulthood and tested the extent to which the identified subdomains showed 

associations with GPSs for schizophrenia and major depressive disorder. A 5-factor model 

was found to best describe NS at ages 16, 17, and 22, and the latent structure was invariant 

across these ages. Specific GPS-subdomain associations were found – most notably, these 

were most numerous for avolition and were null for alogia.  

The results reported in this Chapter suggested that the underlying structure of NS that 

appears to be consistent across different stages of psychotic illness (Ahmed et al., 2019; 

Chang et al., 2020; Strauss et al., 2018) also extends to the current non-clinical population. 

The current findings of less acceptable fit for the 2-factor model and good fit of the 5-factor 

hierarchical model are further in-line with the findings from these studies (Ahmed et al., 

2019; Chang et al., 2020; Strauss et al., 2018). 

Pseudo replication of the 5-factor structure and the measurement invariance that was 

found across the subsamples suggests that the 5-factor structure that was found is not solely 

attributable to sample variability. Further, as discussed in Section 2.4, longitudinal 

measurement invariance of the 5-factor structure suggests that the factor structure is not 

specific to a developmental age, nor solely the result of occasion-specific properties of the 

measurement instrument that was used (Grimm et al., 2017). Collectively, these results 

further corroborate findings from the clinical literature suggesting that a 5-factor 

conceptualisation of NS appears to be an empirically robust representation of the construct.  

Previous work that has found measurement invariance of the 5-factor structure 

between high-risk and first-episode psychosis samples (Chang et al., 2020) has demonstrated 

that a 5-factor conceptualisation is consistent across the early stages of psychotic illness. 

Future work will undoubtedly seek to merge data from samples at early and chronic stages of 
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illness (Strauss et al., 2018), and the current results could lend initial support to further 

include community samples in such analyses. This can be considered an important endeavour 

because identifying aspects of continuity or discontinuity between nonclinical, prodromal, 

and clinical NS may contribute to delineating the pathways involved in the development of 

NS. Large community samples are essential to understand the early manifestation of NS prior 

to illness onset and without ascertainment biases and treatment confounds inherent in clinical 

samples.  

The results are the first to show associations between polygenic liability to 

schizophrenia in adulthood, and avolition and flat affect in adolescence, and between 

polygenic liability to major depressive disorder in adulthood, and avolition, flat affect, 

anhedonia and asociality in adolescence and emerging adulthood. One recent clinical study 

reported suggestive evidence for an association between GPSSCZ and diminished expressivity 

(broadly), though no association was observed for motivation and pleasure (Legge et al., 

2021): Whilst these and the current results are not entirely aligned, the current findings 

showing subdomain-specific associations may, broadly, highlight the value in disaggregating 

the expressivity and motivation-pleasure domains to detect polygenic associations.  

The finding that avolition showed the greatest number of associations with the GPSs 

compared to the other subdomains may suggest that genetic predisposition for schizophrenia 

and major depressive disorder could manifest particularly as avolition during 

adolescence/emerging adulthood. This may contribute to discussion based on clinical 

findings and theory suggesting that avolition is a core feature of NS (e.g., Foussias & 

Remington, 2010; Strauss et al., 2020, 2021): Notwithstanding, associations were also 

observed with some consistency between anhedonia and GPSMDD in this Chapter. Replication 

in independent samples is therefore needed to probe the interpretation of the current avolition 

results further.  
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Of note, some of the subdomains of NS (avolition, anhedonia, asociality) are also core 

symptoms of major depressive disorder, and there is known genetic overlap between major 

depressive disorder and schizophrenia (S. H. Lee et al., 2013). The findings that, i) there were 

more numerous associations between the NS subdomains and GPSMDD than GPSSCZ, and, ii) 

the GPSMDD associations remained significant in the multiple-predictor models (but the 

GPSSCZ associations did not), may add to empirical findings and theoretical models 

suggesting that a transdiagnostic approach to analysing narrowly-defined (NS and 

depression) symptoms may be necessary in order to better understand both the broad and 

specific factors contributing to their manifestation and maintenance (Cowan & Mittal, 2021; 

Cuthbert, 2014; Krynicki et al., 2018; Strauss et al., 2021).  

The observed absence of association between GPSMDD and alogia may provide 

support to suggestions that alogia may be a distinguishing feature of NS that is separable 

from depressive symptoms (Krynicki et al., 2018; Strauss & Cohen, 2017). However, the lack 

of association between GPSSCZ and alogia warrants further investigation. 

Of note, the 5-factor model in the current Chapter included anhedonia and asociality 

as single-item indicators. The use of single-item indicators in structural equation models 

continues to be debated (e.g., Hayduk & Littvay, 2012; Petrescu, 2013), however, there is 

considerable support for their use (e.g., Benet-Martínez et al., 2002; Gosling et al., 2003; 

Postmes et al., 2013), and evidence for a 5-factor structure has been found in models of NS 

both with and without single-item indicators in clinical samples (Strauss, Ahmed, et al., 

2019).  

The 5-factor structure of NS that has been found in clinical samples also appears to be 

present in young people in the community. These findings suggest that research into NS at 

the subdomain-level in the community may have the potential to inform endeavours to 

delineate NS beyond community samples, both within and across diagnostic boundaries.  
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6.5 – Appendix 

 

Supplementary Table 6.1 

Descriptive Statistics for Negative Symptoms Items, Subdomains, and Totals at Ages 16, 17, and 22 in Main and Cotwin Subsamples 

 Main sample Co-twin sample 

 

16 years 

 

17 years 

 

22 years 16 years 17 years 22 years 

Mean (SD) Skewness Mean (SD) 

 

Skewness Mean (SD) 

 

Skewness Mean (SD) 

 

Skewness Mean (SD) 

 

Skewness Mean (SD) 

 

Skewness 

 

Item 1 

Item 2 

Item 3 

Item 4 

Item 5 

Item 6  

Item 7 

Item 8 

Flat affect 

Alogia 

Avolition 

Anhedonia 

Asociality 

Total NS 

 

 

0.14 (0.44) 

0.16 (0.46) 

0.34 (0.65) 

0.35 (0.65) 

0.34 (0.65) 

0.35 (0.64) 

0.34 (0.65) 

0.19 (0.53) 

0.15 (0.39) 

0.34 (0.60) 

0.34 (0.58) 

0.34 (0.65) 

0.19 (0.53) 

2.21 (3.21) 

 

3.85 

3.33 

2.18 

2.07 

2.18 

2.04 

2.06 

3.31 

3.65 

2.15 

2.20 

2.06 

3.31 

2.40 

 

0.26 (0.59) 

0.25 (0.57) 

0.44 (0.72) 

0.42 (0.71) 

0.44 (0.74) 

0.43 (0.71) 

0.47 (0.76) 

0.29 (0.68) 

0.26 (0.52) 

0.43 (0.67) 

0.44 (0.67) 

0.47 (0.76) 

0.29 (0.68) 

3.01 (4.07) 

 

2.66 

2.63 

1.79 

1.81 

1.84 

1.76 

1.67 

2.61 

2.67 

1.82 

1.87 

1.67 

2.61 

2.11 

 

0.15 (0.46) 

0.26 (0.60) 

0.36 (0.70) 

0.39 (0.70) 

0.41 (0.71) 

0.42 (0.69) 

0.43 (0.73) 

0.25 (0.63) 

0.20 (0.46) 

0.37 (0.63) 

0.41 (0.62)  

0.43 (0.73) 

0.25 (0.63) 

2.66 (3.64)  

 

3.81 

2.72 

2.19 

1.96 

1.99 

1.82 

1.82 

2.86 

3.10 

2.07 

1.90 

1.82 

2.86 

2.27 

 

0.14 (0.44) 

0.16 (0.47) 

0.34 (0.67) 

0.35 (0.67) 

0.33 (0.65) 

0.33 (0.62) 

0.34 (0.65) 

0.18 (0.52) 

0.15 (0.39) 

0.35 (0.62) 

0.33 (0.57) 

0.34 (0.65) 

0.18 (0.52) 

2.17 (3.18) 

 

3.86 

3.47 

2.22 

2.15 

2.26 

2.11 

2.12 

3.37 

3.57 

2.23 

2.21 

2.12 

3.37 

2.41 

 

0.24 (0.57) 

0.23 (0.54) 

0.41 (0.70) 

0.37 (0.68) 

0.42 (0.70) 

0.43 (0.69) 

0.44 (0.72) 

0.27 (0.63) 

0.24 (0.49) 

0.39 (0.64) 

0.43 (0.63) 

0.44 (0.72) 

0.27 (0.63) 

2.82 (3.81) 

 

2.75 

2.71 

1.88 

1.95 

1.79 

1.70 

1.73 

2.63 

2.66 

1.92 

1.77 

1.73 

2.63 

2.05 

 

0.14 (0.56) 

0.25 (0.58) 

0.36 (0.70) 

0.39 (0.70) 

0.40 (0.71) 

0.41 (0.68) 

0.42 (0.70) 

0.24 (0.62) 

0.20 (0.45) 

0.38 (0.63) 

0.41 (0.62) 

0.42 (0.70) 

0.24 (0.62) 

2.61 (3.57) 

 

3.85 

2.73 

2.16 

1.96 

1.98 

1.86 

1.83 

2.91 

3.04 

2.05 

1.87 

1.83 

2.91 

2.23 

Coefficient α 

 

0.83 0.88 0.83 0.83 0.87 0.83 

 

Note. N at age 16 in main sample = 4,942-4,971; N at age 17 in main sample = 1,451-1,469; N at age 22 in main sample = 5,147-5,177. N at age 16 in co-twin sample = 4,945-4,973; N at age 

17 in co-twin sample = 1,450-1,473; N at age 22 in co-twin sample = 5,154-5,178. NS = negative symptoms. Flat affect is a mean composite of items 1 and 2, alogia is a mean composite of 

items 3 and 4, avolition is a mean composite of items 5 and 6, anhedonia is item 7 and asociality is item 8. Coefficient alpha (α) for items 1-8. 
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Supplementary Table 6.2 

Confirmatory Factor Analysis of Negative Symptoms in Main Subsample using Diagonally Weighted Least Squares Estimation: 

Model Fit Results  

 

 

 

Note. N at age 16 = 4,974; N at age 17 = 1,469; N at age 22 = 5,179. Diagonally weighted least squares estimation with robust 

standard errors (WLSMV), using pair-wise present data. EFA = exploratory factor analysis. 5H-factor model = 5-factor 

hierarchical model. 2 = chi-square value. CFI = comparative fit index. RMSEA = root mean square error of approximation. 

SRMR = standardized root mean square residual. Bold typeset represents best fitting model at each age.  
 

 Parameters 

 

2 value (df) CFI RMSEA [90% CI] SRMR 

16 years 

1-factor model 

 

32 

 

1,962.143 (20), p < .001 

 

0.919 

 

0.140 [0.135, 0.145] 

 

0.080 

2-factor model 33 587.791 (19), p < .001 0.976 0.078 [0.072, 0.083] 0.048 

4-factor (EFA) model 38 177.280 (14), p < .001 0.993 0.048 [0.042, 0.055] 0.026 

5-factor model 40 39.476 (12), p < .001 0.999 0.021 [0.014, 0.029] 0.011 

5H-factor model 35 231.643 (17), p < .001 0.991 0.050 [0.045, 0.056] 0.033 

17 years 

1-factor model 

 

32 

 

640.255 (20), p < .001 

 

0.949 

 

0.145 [0.136, 0.155] 

 

0.067 

2-factor model 33 194.541 (19), p < .001 0.986 0.079 [0.069, 0.090] 0.035 

4-factor (EFA) model 38 40.857 (14), p < .001 0.998 0.036 [0.024, 0.049] 0.016 

5-factor model 40 17.656 (12),  p = .127 1.000 0.018 [0.00, 0.035] 0.009 

5H-factor model 35 67.184 (17), p < .001 0.996 0.045 [0.034, 0.056] 0.022 

22 years 

1-factor model 

 

32 

 

1,515.325 (20), p < .001 

 

0.932 

 

0.120 [0.115, 0.125] 

 

0.060 

2-factor model 33 643.384 (19), p < .001 0.972 0.080 [0.074, 0.085] 0.042 

4-factor (EFA) model 38 251.789 (14), p < .001 0.989 0.057 [0.051, 0.064] 0.025 

5-factor model 40 145.939 (12), p < .001 0.994 0.046 [0.040, 0.053] 0.018 

5H-factor model 35 220.843 (17), p < .001 0.991 0.048 [0.043, 0.054] 0.027 
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Supplementary Table 6.3 

Confirmatory Factor Analysis of Negative Symptoms in Cotwin Subsample: Model Fit Results 

 

 Parameters 

 

Log-likelihood AIC BIC 2 value (df) CFI RMSEA [90% CI] SRMR 

16 years 

1-factor model 

 

24 

 

-29,108.553 

 

58,265.106 

 

58,421.408 

 

1,219.008 (20), p < .001 

 

0.785 

 

0.170 [0.162, 0.178] 

 

0.073 

2-factor model 25 -28,159.432 56,368.864 56,531.679 404.879 (19), p < .001 0.927 0.102 [0.093, 0.111] 0.050 

4-factor (EFA) model 30 -27,736.599 55,533.198 55,728.575 76.584 (14), p < .001 0.987 0.047 [0.037, 0.057] 0.024 

5-factor model 32 -27,694.953 55,453.905 55,662.308 42.989 (12), p < .001 0.994 0.035 [0.024, 0.047] 0.013 

5H-factor model 28 -27,766.264 55,588.528 55,770.880 99.747 (16), p < .001 0.983 0.051 [0.042, 0.061] 0.024 

17 years 

1-factor model 

 

24 

 

-9,373.984 

 

18,795.969 

 

18,923.050 

 

393.060 (20), p < .001 

 

0.851 

 

0.161 [0.147, 0.175] 

 

0.061 

2-factor model 25 -9,099.306 18,248.612 18,380.989 126.873 (19), p < .001 0.958 0.088 [0.074, 0.103] 0.036 

4-factor (EFA) model 30 -9,000.982 18,061.964 18,220.816 30.802 (14), p = .006 0.994 0.039 [0.020, 0.058] 0.019 

5-factor model 32 -8,988.129 18,040.258 18,209.699 17.693 (12), p = .125 0.998 0.024 [0.000, 0.047] 0.011 

5H-factor model 28 -9,008.632 18,073.264 18,221.526 37.317 (16), p = .002 0.992 0.042 [0.025, 0.060] 0.020 

22 years 

1-factor model 

 

24 

 

-34,116.997 

 

68,281.955 

 

68,439.261 

 

927.699 (20), p < .001 

 

0.856 

 

0.138 [0.131, 0.146] 

 

0.057 

2-factor model 25 -33,667.269 67,384.539 67,548.358 519.302 (19), p < .001 0.921 0.105 [0.097, 0.113] 0.047 

4-factor (EFA) model 29 -33,398.283 66,854.567 67,044.596 285.644 (15), p < .001 0.960 0.084 [0.076, 0.093] 0.030 

5-factor model 32 -33,271.475 66,606.950 66,816.638 161.114 (12), p < .001 0.978 0.070 [0.061, 0.080] 0.022 

5H-factor model 28 -33,358.651 66,773.302 66,956.781 242.011 (16), p < .001 0.966 0.075 [0.067, 0.084] 0.029 
 

Note. N at age 16 = 4,977; N at age 17 = 1,473; N at age 22 = 5,181. EFA = exploratory factor analysis. 5H-factor model = 5-factor hierarchical model. AIC = Akaike’s Information Criterion. 

BIC = Bayesian Information Criterion. 2 = chi-square value. CFI = comparative fit index. RMSEA = root mean square error of approximation. SRMR = standardized root mean square 

residual. Bold typeset represents best fitting model at each age.  

 



 251 

Supplementary Table 6.4 

Parameter Estimates from 5-Factor Model of Negative Symptoms at Age 16 in Main Subsample 

 Estimate 

 

SE z  p Fully standardized path 

coefficient 

 

Factor loadings 

Flat affect 

Item 1 

Item 2 

Alogia 

Item 3 

Item 4 

Avolition 

Item 5 

Item 6 

Anhedonia 

Item 7 

Asociality 

Item 8 

 

 

 

0.28 

0.39 

 

0.55 

0.55 

 

0.47 

0.55 

 

1.00 a 

 

1.00 a 

 

 

 

0.02 

0.02 

 

0.02 

0.02 

 

0.02 

0.02 

 

- 

 

- 

 

 

 

17.19 

23.77 

 

35.18 

36.16 

 

29.87 

36.06 

 

- 

 

- 

 

 

 

<.001 

<.001 

 

<.001 

<.001 

 

<.001 

<.001 

 

- 

 

- 

 

 

 

0.63 

0.83 

 

0.83 

0.84 

 

0.72 

0.86 

 

1.00 

 

1.00 

 

Covariances 

Flat affect 

Alogia 

Avolition 

Anhedonia 

Asociality 

Alogia 

Avolition 

Anhedonia 

Asociality 

Avolition 

Anhedonia 

Asociality 

Anhedonia 

Asociality 

 

 

 

0.71 

0.56 

0.28 

0.23 

 

0.54 

0.27 

0.18 

 

0.43 

0.19 

 

0.15 

 

 

 

0.02 

0.03 

0.02 

0.02 

 

0.02 

0.02 

0.02 

 

0.02 

0.01 

 

0.01 

 

 

 

29.87 

21.57 

15.71 

12.34 

 

25.61 

17.33 

12.12 

 

27.20 

12.93 

 

13.69 

 

 

 

<.001 

<.001 

<.001 

<.001 

 

<.001 

<.001 

<.001 

 

<.001 

<.001 

 

<.001 

 

 

 

0.71 

0.56 

0.44 

0.42 

 

0.54 

0.41 

0.33 

 

0.66 

0.35 

 

0.42 

 

Intercepts 

Item 1 

Item 2 

Item 3 

Item 4 

Item 5 

Item 6 

Item 7 

Item 8 

 

 

0.14 

0.16 

0.34 

0.35 

0.34 

0.35 

0.35 

0.19 

 

 

0.01 

0.01 

0.01 

0.01 

0.01 

0.01 

0.01 

0.01 

 

 

22.18 

24.82 

36.58 

37.85 

36.43 

39.12 

37.45 

24.86 

 

 

<.001 

<.001 

<.001 

<.001 

<.001 

<.001 

<.001 

<.001 

 

 

0.31 

0.35 

0.52 

0.54 

0.52 

0.56 

0.53 

0.35 

 

Variances 

Item 1 

Item 2 

Item 3 

Item 4 

Item 5 

Item 6 

Item 7 

Item 8 

Flat affect 

Alogia 

Avolition 

Anhedonia 

Asociality 

 

 

0.12 

0.07 

0.13 

0.13 

0.20 

0.10 

0.00 a 

0.00 a 

1.00 b 

1.00 b 

1.00 b 

0.42 

0.29 

 

 

0.01 

0.01 

0.01 

0.01 

0.01 

0.01 

- 

- 

- 

- 

- 

0.02 

0.02 

 

 

16.72 

10.51 

13.34 

13.74 

21.82 

11.44 

- 

- 

- 

- 

- 

28.17 

19.03 

 

 

<.001 

<.001 

<.001 

<.001 

<.001 

<.001 

- 

- 

- 

- 

- 

<.001 

<.001 

 

 

0.60 

0.31 

0.30 

0.29 

0.48 

0.26 

0.00 

0.00 

1.00 

1.00 

1.00 

1.00 

1.00 
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Note. N = 4,974. Estimate = unstandardized factor loading. a = Factor loadings fixed to 1 and residual variances fixed to 0 for 

factors with single indicators. Anhedonia and asociality have freely estimated variances due to the fixed factor loadings. b = Factor 

variances fixed to 1 for factor scaling. 
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Supplementary Table 6.5 

 

Parameter Estimates from 5-Factor Model of Negative Symptoms at Age 17 in Main Subsample 

 Estimate 

 

SE z  p Fully standardized path 

coefficient 

 

Factor loadings 

Flat affect 

Item 1 

Item 2 

Alogia 

Item 3 

Item 4 

Avolition 

Item 5 

Item 6 

Anhedonia 

Item 7 

Asociality 

Item 8 

 

 

 

0.39 

0.49 

 

0.61 

0.63 

 

0.57 

0.63 

 

1.00 a 

 

1.00 a 

 

 

 

0.03 

0.03 

 

0.03 

0.03 

 

0.03 

0.03 

 

- 

 

- 

 

 

 

14.04 

17.07 

 

24.95 

25.09 

 

19.94 

25.49 

 

- 

 

- 

 

 

 

<.001 

<.001 

 

<.001 

<.001 

 

<.001 

<.001 

 

- 

 

- 

 

 

 

0.65 

0.85 

 

0.86 

0.88 

 

0.77 

0.89 

 

1.00 

 

1.00 

 

Covariances 

Flat affect 

Alogia 

Avolition 

Anhedonia 

Asociality 

Alogia 

Avolition 

Anhedonia 

Asociality 

Avolition 

Anhedonia 

Asociality 

Anhedonia 

Asociality 

 

 

 

0.78 

0.67 

0.42 

0.32 

 

0.64 

0.41 

0.32 

 

0.55 

0.36 

 

0.27 

 

 

 

0.03 

0.04 

0.03 

0.03 

 

0.03 

0.03 

0.03 

 

0.03 

0.03 

 

0.03 

 

 

 

23.29 

19.16 

13.82 

9.83 

 

21.25 

14.61 

10.21 

 

20.43 

11.47 

 

10.58 

 

 

 

<.001 

<.001 

<.001 

<.001 

 

<.001 

<.001 

<.001 

 

<.001 

<.001 

 

<.001 

 

 

 

0.78 

0.67 

0.56 

0.47 

 

0.64 

0.54 

0.47 

 

0.73 

0.53 

 

0.52 

 

Intercepts 

Item 1 

Item 2 

Item 3 

Item 4 

Item 5 

Item 6 

Item 7 

Item 8 

 

 

0.26 

0.25 

0.44 

0.42 

0.44 

0.43 

0.47 

0.29 

 

 

0.02 

0.02 

0.02 

0.02 

0.02 

0.02 

0.02 

0.02 

 

 

16.75 

16.82 

23.32 

22.42 

22.64 

23.35 

23.80 

16.49 

 

 

<.001 

<.001 

<.001 

<.001 

<.001 

<.001 

<.001 

<.001 

 

 

0.44 

0.44 

0.61 

0.59 

0.59 

0.61 

0.62 

0.43 

 

Variances 

Item 1 

Item 2 

Item 3 

Item 4 

Item 5 

Item 6 

Item 7 

Item 8 

Flat affect 

Alogia 

Avolition 

Anhedonia 

Asociality 

 

 

0.21 

0.09 

0.14 

0.12 

0.23 

0.11 

0.00 a 

0.00 a 

1.00 b 

1.00 b 

1.00 b 

0.58 

0.46 

 

 

0.02 

0.01 

0.02 

0.01 

0.02 

0.01 

- 

- 

- 

- 

- 

0.03 

0.04 

 

 

10.22 

6.94 

8.64 

8.44 

12.56 

7.50 

- 

- 

- 

- 

- 

18.49 

13.02 

 

 

<.001 

<.001 

<.001 

<.001 

<.001 

<.001 

- 

- 

- 

- 

- 

<.001 

<.001 

 

 

0.58 

0.27 

0.26 

0.23 

0.41 

0.22 

0.00 

0.00 

1.00 

1.00 

1.00 

1.00 

1.00 
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Note. N = 1,469. Estimate = unstandardized factor loading. a = Factor loadings fixed to 1 and residual variances fixed to 0 for 

factors with single indicators. Anhedonia and asociality have freely estimated variances due to the fixed factor loadings. b = Factor 

variances fixed to 1 for factor scaling.  
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Supplementary Table 6.6 

Parameter Estimates from 5-Factor Model of Negative Symptoms at Age 22 in Main Subsample 

 Estimate 

 

SE z  p Fully standardized path 

coefficient 

 

Factor loadings 

Flat affect 

Item 1 

Item 2 

Alogia 

Item 3 

Item 4 

Avolition 

Item 5 

Item 6 

Anhedonia 

Item 7 

Asociality 

Item 8 

 

 

 

0.28 

0.46 

 

0.56 

0.57 

 

0.53 

0.52 

 

1.00 a 

 

1.00 a 

 

 

 

0.02 

0.02 

 

0.02 

0.02 

 

0.02 

0.02 

 

- 

 

- 

 

 

 

17.96 

26.86 

 

36.05 

37.67 

 

33.31 

35.14 

 

- 

 

- 

 

 

 

<.001 

<.001 

 

<.001 

<.001 

 

<.001 

<.001 

 

- 

 

- 

 

 

 

0.61 

0.76 

 

0.80 

0.81 

 

0.74 

0.75 

 

1.00 

 

1.00 

 

Covariances 

Flat affect 

Alogia 

Avolition 

Anhedonia 

Asociality 

Alogia 

Avolition 

Anhedonia 

Asociality 

Avolition 

Anhedonia 

Asociality 

Anhedonia 

Asociality 

 

 

 

0.82 

0.71 

0.38 

0.36 

 

0.60 

0.32 

0.28 

 

0.46 

0.30 

 

0.21 

 

 

 

0.02 

0.02 

0.02 

0.02 

 

0.02 

0.02 

0.02 

 

0.02 

0.02 

 

0.01 

 

 

 

40.22 

29.26 

19.95 

17.52 

 

28.22 

19.49 

17.21 

 

28.51 

18.03 

 

16.46 

 

 

 

<.001 

<.001 

<.001 

<.001 

 

<.001 

<.001 

<.001 

 

<.001 

<.001 

 

<.001 

 

 

 

0.82 

0.71 

0.52 

0.57 

 

0.60 

0.43 

0.45 

 

0.63 

0.48 

 

0.47 

 

Intercepts 

Item 1 

Item 2 

Item 3 

Item 4 

Item 5 

Item 6 

Item 7 

Item 8 

 

 

0.15 

0.26 

0.36 

0.39 

0.41 

0.42 

0.43 

0.25 

 

 

0.01 

0.01 

0.01 

0.01 

0.01 

0.01 

0.01 

0.01 

 

 

22.65 

30.82 

36.92 

40.15 

40.98 

43.28 

42.88 

28.99 

 

 

<.001 

<.001 

<.001 

<.001 

<.001 

<.001 

<.001 

<.001 

 

 

0.32 

0.43 

0.51 

0.56 

0.57 

0.60 

0.60 

0.40 

 

Variances 

Item 1 

Item 2 

Item 3 

Item 4 

Item 5 

Item 6 

Item 7 

Item 8 

Flat affect 

Alogia 

Avolition 

Anhedonia 

Asociality 

 

 

0.14 

0.15 

0.18 

0.17 

0.23 

0.21 

0.00 a 

0.00 a 

1.00 b 

1.00 b 

1.00 b 

0.53 

0.39 

 

 

0.01 

0.01 

0.01 

0.01 

0.01 

0.01 

- 

- 

- 

- 

- 

0.02 

0.02 

 

 

17.18 

15.16 

15.45 

15.82 

20.08 

18.86 

- 

- 

- 

- 

- 

31.98 

22.45 

 

 

<.001 

<.001 

<.001 

<.001 

<.001 

<.001 

- 

- 

- 

- 

- 

<.001 

<.001 

 

 

0.63 

0.42 

0.36 

0.34 

0.45 

0.43 

0.00 

0.00 

1.00 

1.00 

1.00 

1.00 

1.00 
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Note. N = 5,179. Estimate = unstandardized factor loading. a = Factor loadings fixed to 1 and residual variances fixed to 0 for 

factors with single indicators. Anhedonia and asociality have freely estimated variances due to the fixed factor loadings. b = Factor 

variances fixed to 1 for factor scaling. 
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Supplementary Table 6.7 

 

Communality and Uniqueness Estimates from 5-Factor Model of Negative Symptoms at Ages 16, 17, and 22 in Main Subsample 

 

 

Factor Pattern coefficient Communality Uniqueness 

 

16 years 

Item 1 

Item 2 

Item 3 

Item 4  

Item 5  

Item 6  

Item 7  

Item 8 

 

 

Flat affect 

Flat affect 

Alogia 

Alogia 

Avolition 

Avolition 

Anhedonia 

Asociality 

 

 

0.63 

0.83 

0.83 

0.84 

0.72 

0.86 

1.00 

1.00 

 

 

0.40 

0.69 

0.69 

0.71 

0.52 

0.74 

1.00 

1.00 

 

 

0.60 

0.31 

0.31 

0.29 

0.48 

0.26 

0.00 

0.00 

 

17 years 

Item 1 

Item 2 

Item 3 

Item 4  

Item 5  

Item 6  

Item 7  

Item 8 

 

 

Flat affect 

Flat affect 

Alogia 

Alogia 

Avolition 

Avolition 

Anhedonia 

Asociality 

 

 

0.65 

0.85 

0.86 

0.88 

0.77 

0.89 

1.00 

1.00 

 

 

0.42 

0.72 

0.74 

0.77 

0.59 

0.79 

1.00 

1.00 

 

 

0.58 

0.27 

0.26 

0.23 

0.41 

0.22 

0.00 

0.00 

 

22 years 

Item 1 

Item 2 

Item 3 

Item 4  

Item 5  

Item 6  

Item 7  

Item 8 

 

 

Flat affect 

Flat affect 

Alogia 

Alogia 

Avolition 

Avolition 

Anhedonia 

Asociality 

 

 

0.61 

0.76 

0.80 

0.81 

0.74 

0.75 

1.00 

1.00 

 

 

0.37 

0.58 

0.64 

0.66 

0.55 

0.56 

1.00 

1.00 

 

 

0.63 

0.42 

0.36 

0.34 

0.45 

0.44 

0.00 

0.00 

 

 

Note. Pattern coefficient = correlation between factor and item (fully standardized path coefficient). Communality = squared 

pattern coefficient (i.e., a2), percentage of variance in item explained by the factor. Uniqueness = residual variance (i.e., 1 - a2), 

percentage of variance not explained by the factor. Item 7 and item 8 directional paths fixed to 1 and residual variances fixed to 0. 

Total variance in the items explained by the factors is the sum of the estimated squared pattern coefficients divided by the number 

of items. Total variance explained at 16 = 3.75/6, 62.50%; at 17 = 4.03/6, 67.16.%; at 22 = 3.36/6, 56%. 
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Supplementary Table 6.8 

Longitudinal Measurement Invariance of 5-Factor Structure of Negative Symptoms Between Ages 16, 17, and 22 in Cotwin Subsample 

 

  

 

 

Parameters 

Fit indices Comparison of fit indices between 

nested models 

CFI RMSEA [90% CI] SRMR Δ CFI Δ RMSEA  Δ SRMR 

Configural invariance model (no 

constraints) 

189 0.986 0.017 [0.015, 0.019] 0.018 - - - 

Metric invariance model (factor 

loadings constrained) 

183 0.984 0.018 [0.016, 0.020] 0.021 0.002 -0.001 -0.003 

Scalar invariance model (factor 

loadings and intercepts 

constrained) 

177 0.981 0.019 [0.017, 0.021] 0.022 0.003 -0.001 -0.001 

Strict invariance model (factor 

loadings, intercepts and residual 

variances constrained) 

165 0.967 0.025 [0.023, 0.027] 0.030 0.014 -0.006 -0.008 

Partial strict invariance model 

(factor loadings, intercepts and 

residual variances constrained, 

excluding item 2) a 

171 0.976 0.022 [0.020, 0.023] 0.025 0.005 b -0.003 b -0.003 b 

 

Note. N = 6,336. CFI = comparative fit index. RMSEA = root mean square error of approximation. SRMR = standardized root mean square residual. CI = confidence intervals. Δ denotes 

change value. a The change in CFI value from the scalar model to the strict model exceeded the acceptable limit (of 0.010). Consultation of the modification indices and subsequent free 

estimation of the item 2 parameters provided acceptable deterioration in model fit. b Change values compared to scalar invariance model.  
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Supplementary Table 6.9 

Single-predictor Linear Regressions of Subdomain Mean Scores on Schizophrenia GPS for All GPS f 

 

 

Note. N age 16 = 5,971-6,006. N age 17 = 1,791-1,818. N age 22 = 6,259-6,278. Related and unrelated individuals included, using cluster-robust SE. Subdomain mean scores regressed on 

schizophrenia GPS. GPS = genome-wide polygenic score. f = fraction of causal markers. b = unstandardized regression coefficient. 

  

 Age 16 Age 17 Age 22 

 b (SE) z (p) b (SE) z (p) b (SE) z (p) 

 

Flat affect 

GPS f 

1 

0.3 

0.01 

 

Alogia 

GPS f  

1 

0.3 

0.01 

 

Avolition 

GPS f  

1 

0.3 

0.01 

 

Anhedonia 

GPS f  

1 

0.3 

0.01 

 

Asociality 

GPS f  

1 

0.3 

0.01 

 

 

 

0.014 (0.005) 

0.013 (0.005) 

-0.003 (0.006) 

 

 

 

0.002 (0.007)  

0.007 (0.008) 

-0.002 (0.008) 

 

 

 

0.001 (0.008) 

0.001 (0.008) 

-0.004 (0.008) 

 

 

 

0.005 (0.009) 

0.008 (0.009) 

-0.002 (0.009) 

 

 

 

0.004 (0.007) 

0.001 (0.007) 

-0.007 (0.008) 

 

 

 

 

2.659 (.008) 

2.467 (.014) 

-0.525 (.600) 

 

 

 

0.307 (.759) 

0.893 (.372) 

-0.304 (.761) 

 

 

 

0.108 (.914) 

0.135 (.892) 

-0.496 (.620) 

 

 

 

0.534 (.593) 

0.922 (.356) 

-0.268 (.789) 

 

 

 

0.511 (.609) 

0.133 (.894) 

-0.858 (.391) 

 

 

 

0.027 (0.012) 

0.023 (0.012) 

0.002 (0.0212) 

 

 

 

0.006 (0.016)  

0.003 (0.015) 

-0.001 (0.015) 

 

 

 

0.038 (0.016) 

0.031 (0.016) 

0.008 (0.016) 

 

 

 

0.014 (0.018) 

0.017 (0.017) 

-0.007 (0.018) 

 

 

 

0.005 (0.016) 

0.001 (0.015) 

-0.019 (0.016) 

 

 

 

2.162 (.031) 

1.848 (.065) 

0.192 (.848) 

 

 

 

0.387 (.699) 

0.182 (.855) 

-0.069 (.945) 

 

 

 

2.405 (.016) 

2.021 (.043) 

0.478 (.632) 

 

 

 

0.777 (.437) 

0.967 (.334) 

-0.366 (.714) 

 

 

 

0.312 (.755) 

0.043 (.966) 

-1.154 (.249) 

 

 

 

0.001 (0.006) 

0.003 (0.006) 

-0.004 (0.006) 

 

 

 

-0.001 (0.008) 

-0.000 (0.008) 

0.002 (0.008) 

 

 

 

0.003 (0.008) 

-0.001 (0.008) 

-0.006 (0.008) 

 

 

 

-0.006 (0.010) 

-0.007 (0.009) 

-0.003 (0.009) 

 

 

 

0.007 (0.008) 

0.005 (0.007) 

-0.004 (0.008) 

 

 

 

0.147 (.883) 

0.488 (.626) 

-0.737 (.461) 

 

 

 

-0.032 (.974) 

-0.004 (.997) 

0.225 (.822) 

 

 

 

0.345 (.730) 

-0.090 (.928) 

-0.738 (.460) 

 

 

 

-0.639 (.523) 

-0.729 (.466) 

-0.310 (.757) 

 

 

 

0.893 (.372) 

0.652 (.515) 

-0.532 (.595) 
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Supplementary Table 6.10 

Single-Predictor Linear Regressions of Subdomain Mean Scores on Major Depressive Disorder GPS for All GPS f 

 

 

Note. N age 16 = 5,971-6,006. N age 17 = 1,791-1,818. N age 22 = 6,259-6,278. Related and unrelated individuals included, using cluster-robust SE. Subdomain mean scores regressed on 

schizophrenia GPS. GPS = genome-wide polygenic score. f = fraction of causal markers. b = unstandardized regression coefficient. 

  

 Age 16 

 

Age 17 Age 22 

 b (SE) z (p) b (SE) z (p) b (SE) z (p) 

 

Flat affect 

GPS f   

1 

0.3 

0.01 

 

Alogia 

GPS f   

1 

0.3 

0.01 

 

Avolition 

GPS f   

1 

0.3 

0.01 

 
Anhedonia 

GPS f   

1 

0.3 

0.01 

 

Asociality 

GPS f   

1 

0.3 

0.01 

 

 

 

 

0.019 (0.005) 

0.019 (0.005) 

0.011 (0.005) 

 

 

 

0.010 (0.008)  

0.010 (0.008) 

-0.002 (0.008) 

 

 

 

0.030 (0.007) 

0.030 (0.007) 

0.021 (0.008) 

 
 

 

0.029 (0.009) 

0.029 (0.009) 

0.024 (0.009) 

 

 

 

0.028 (0.006) 

0.028 (0.006) 

0.010 (0.007) 

 

 

 

 

3.465 (.001) 

3.504 (< .001) 

1.981 (.048) 

 

 

 

1.289 (.197) 

1.252 (.211) 

-0.304 (.761) 

 

 

 

3.978 (< .001) 

3.986 (< .001) 

2.612 (.009) 

 
 

 

3.359 (.001) 

3.348 (.001) 

2.671 (.008) 

 

 

 

4.321 (< .001) 

4.270 (< .001) 

1.326 (.185) 

 

 

 

 

0.016 (0.012) 

0.016 (0.012) 

0.002 (0.012) 

 

 

 

0.019 (0.015)  

0.019 (0.015)  

0.010 (0.015) 

 

 

 

0.054 (0.016) 

0.053 (0.016) 

0.029 (0.017) 

 
 

 

0.046 (0.019) 

0.046 (0.019) 

0.010 (0.019) 

 

 

 

0.025 (0.016) 

0.024 (0.016) 

-0.008 (0.018) 

 

 

 

1.387 (.165) 

1.410 (.159) 

0.148 (.882) 

 

 

 

1.253 (.210) 

1.244 (.213) 

0.688 (.492) 

 

 

 

3.368 (.001) 

3.351 (.001) 

1.736 (.082) 

 
 

 

2.434 (.015) 

2.399 (.016) 

0.538 (.591) 

 

 

 

1.539 (.124) 

1.462 (.144) 

-0.440 (.660) 

 

 

 

0.018 (0.006) 

0.018 (0.006) 

0.006 (0.006) 

 

 

 

0.009 (0.008) 

0.009 (0.008) 

0.004 (0.008) 

 

 

 

0.028 (0.008) 

0.028 (0.008) 

0.007 (0.008) 

 
 

 

0.030 (0.009) 

0.030 (0.009) 

0.019 (0.009) 

 

 

 

0.029 (0.008) 

0.029 (0.008) 

0.014 (0.008) 

 

 

 

3.191 (.001) 

3.195 (.001) 

0.978 (.328) 

 

 

 

1.072 (.284) 

1.062 (.288) 

0.516 (.606) 

 

 

 

3.487 (< .001) 

3.461 (.001) 

0.893 (.372) 

 
 

 

3.233 (.001) 

3.200 (.001) 

1.986 (.047) 

 

 

 

3.693 (< .001) 

3.702 (< .001) 

1.702 (.089) 
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Supplementary Table 6.11 

Pairwise Wald Test Results for Subdomain Mean Scores Regressed on Schizophrenia GPS And Major Depressive Disorder GPS 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note. N at age 16 = 5,971-6,006. N at age 17 = 1,791-1,818. N at age 22 = 6,259-6,278. Related and unrelated individuals included, using cluster-robust SE. Subdomains regressed on MDD 

GPS and schizophrenia GPS separately. Wald tests conducted for the most predictive GPS f (Table 6.4). Wald tests (df = 1) conducted for the difference between the standardized regression 

coefficients. P values shown in parentheses, indicating significance of difference. GPS = genome-wide polygenic score. MDD = major depressive disorder. f = fraction of causal markers. Bold 

typeset represents significance at p <.05. 
 

  

 MDD GPS Schizophrenia GPS 

 

Flat affect 

 

Alogia 

 

Avolition 

 

 

Anhedonia 

 

Flat affect   

 

Alogia  

 

Avolition 

 

 

Anhedonia 

 

 

Age 16  

Alogia  

Avolition  

Anhedonia  

Asociality  

 

Age 17  

Alogia  

Avolition  

Anhedonia  

Asociality 

 

Age 22 

Alogia  

Avolition  

Anhedonia  

Asociality  

 

 

1.937 (.164) 

2.612 (.106) 

1.721 (.190) 

1.719 (.190) 

 

 

0.046 (.830) 

6.231 (.013) 

2.871 (.090) 

0.179 (.672) 

 

 

1.868 (.172) 

1.727 (.189) 

1.913 (.167) 

2.280 (.131) 

 

 

 

7.141 (.008) 

4.752 (.029) 

5.189 (.023) 

 

 

 

4.627 (.031) 

1.179 (.181) 

0.016 (.900) 

 

 

 

5.356 (.021) 

5.190 (.023) 

5.287 (.021) 

 

 

 

 

0.004 (.950) 

0.060 (.322) 

 

 

 

 

0.223 (.637) 

3.574 (.059) 

 

 

 

 

0.135 (.714) 

0.106 (.745) 

 

 

 

 

 

 

0.024 (.876) 

 

 

 

 

 

2.036 (.154) 

 

 

 

 

 

0.002 (.964) 

 

 

1.648 (.199) 

3.764 (.052) 

0.504 (.478) 

4.124 (.042) 

 

 

2.365 (.124) 

0.550 (.458) 

0.405 (.524) 

4.420 (.035) 

 

 

0.719 (.396) 

0.076 (.782) 

0.304 (.582) 

1.126 (.289) 

 

 

 

0.770 (.380) 

0.057 (.811) 

1.492 (.222) 

 

 

 

4.708 (.030) 

0.300 (.583) 

1.235 (.267) 

 

 

 

0.960 (.327) 

0.551 (.458) 

0.103 (.789) 

 

 

 

 

0.834 (.361) 

0.116 (.733) 

 

 

 

 

1.097 (.295) 

5.554 (.018) 

 

 

 

 

0.004 (.950) 

0.980 (.322) 

 

 

 

 

 

1.818 (.178) 

 

 

 

 

 

1.450 (.229) 

 

 

 

 

 

2.265 (.132) 
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Supplementary Table 6.12 

Multiple-Predictor Linear Regressions of Subdomain Mean Scores on Schizophrenia GPS and Major Depressive Disorder GPS  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Note. Subdomains regressed on MDD and schizophrenia GPS jointly for the most predictive GPS f (as shown in Table 6.4). Related and unrelated individuals included, using cluster-robust SE. 

GPS = genome-wide polygenic score. MDD = major depressive disorder. f = fraction of causal markers. b = unstandardized regression coefficient. ß = standardized regression coefficient. Bold 

typeset represents significance under corrected q <.05 threshold.

 MDD GPS  Schizophrenia GPS 

 

N 

 

f  

 

b (SE) 

 

 

z (p) 

 

   ß 

 

f  

 

b (SE) 

 

 

z (p) 

 

ß 

 

Age 16  

Flat affect  

Alogia  

Avolition  

Anhedonia  

Asociality  

 

Age 17  

Flat affect  

Alogia  

Avolition  

Anhedonia  

Asociality 

 

Age 22 

Flat affect  

Alogia  

Avolition  

Anhedonia  

Asociality  

 

 

6,005 

6,006 

5,995 

5,971 

5,971 

 

 

1,818 

1,815 

1,816 

1,807 

1,794 

 

 

6,274 

6,278 

6,276 

6,251 

6,259 

 

 

 

0.3 

1 

0.3 

1 

1 

 

 

0.3 

1 

1 

1 

1 

 

 

0.3 

1 

1 

1 

0.3 

 

 

0.017 (0.005) 

0.009 (0.008) 

0.031 (0.008) 

0.029 (0.009) 

0.029 (0.007) 

 

 

0.013 (0.012) 

0.019 (0.015) 

0.049 (0.016) 

0.045 (0.019) 

0.027 (0.016)  

 

 

0.019 (0.006) 

0.009 (0.008) 

0.029 (0.008) 

0.032 (0.009) 

0.029 (0.008)  

 

 

3.169 (.002) 

1.154 (.249) 

4.075 (< .001) 

3.254 (.001) 

4.436 (< .001) 

 

 

1.084 (.278) 

1.225 (.220) 

3.036 (.002) 

2.327 (.020) 

1.651 (.099) 

 

 

3.275 (.001) 

1.062 (.288) 

3.565 (< .001) 

3.424 (.001) 

3.628 (< .001) 

 

 

0.044 

0.015 

0.055 

0.045 

0.057 

 

 

0.027 

0.029 

0.077 

0.062 

0.043 

 

 

0.042 

0.014 

0.046 

0.046 

0.048 

 

 

1 

0.3 

0.01 

0.3 

0.01 

 

 

1 

1 

1 

0.3 

0.01 

 

 

0.01 

0.01 

0.01 

0.3 

1 

 

 

 

0.011 (0.005) 

0.005 (0.008) 

-0.007 (0.008) 

0.003 (0.009) 

-0.010 (0.008) 

 

 

0.025 (0.012) 

0.003 (0.016) 

0.030 (0.016) 

0.010 (0.017) 

-0.021 (0.016) 

 

 

-0.006 (0.006) 

0.001 (0.008) 

-0.009 (0.008) 

-0.012 (0.009) 

0.001 (0.008) 

 

 

 

2.089 (.037) 

0.678 (.498) 

-0.898 (.369) 

0.307 (.758) 

-1.229 (.219) 

 

 

2.009 (.045) 

0.202 (.840) 

1.885 (.059) 

0.578 (.563) 

-1.299 (.194) 

 

 

-1.043 (.297) 

0.133 (.894) 

-1.033 (.302) 

-1.314 (.189) 

0.179 (.858) 

 

 

 

0.029 

0.009 

-0.013 

0.004 

-0.019 

 

 

0.052 

0.005 

0.046 

0.014 

-0.033 

 

 

-0.013 

0.002 

-0.014 

-0.018 

0.002 
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Chapter 7 – Discussion  

 

 This Discussion will review the aims and findings of each of the empirical Chapters 

in the Thesis. Key findings from across the Chapters will then be discussed in terms of  

broader themes. Limitations relevant to the findings in this Thesis will be outlined and will 

provide a platform for discussion of future research recommendations in this field. The 

Chapter will conclude by summarising the implications emerging from the findings of this 

Thesis.  

 

7.1 – Aims and findings of each Chapter  

 This Section will outline the aims and the findings from each of the empirical 

Chapters in the Thesis.  

Chapter 2 aimed to assess the extent to which measurement of the PENS dimensions 

across adolescence and emerging adulthood could be considered invariant over time, which 

has not previously been assessed. The results showed that the best fitting measurement 

models for paranoia, hallucinations, and NS, established through CFA, were longitudinally 

invariant (with one noninvariant item for each of the measures). Invariance was at the scalar 

level for paranoia and hallucinations, and at the strict level for NS.  

The aims of Chapter 3 were to establish the optimal growth form for the PENS 

dimensions and to report the characteristics of latent growth in PENS across adolescence and 

emerging adulthood for the sample as a whole. A supplementary aim was to establish the 

adequacy of accounting for the relatedness between the TEDS participants using a clustering 

method. Chapter 3 built on existing findings because previous latent trajectory studies, which 

have investigated development in aggregated PEs (e.g., Thapar et al., 2012; Wigman, van 

Winkel, Jacobs, et al., 2011; Wigman, van Winkel, Raaijmakers, et al., 2011), have not tested 
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different forms of growth, nor reported on any variability around the sample-wide averages 

of growth. A linear growth form was judged to adequately represent growth in the three 

PENS dimensions. At the sample-wide level, paranoia and hallucinations showed a general 

pattern of decrease from ages 16 to 22, with variability in terms of both baseline scores and 

systematic change over time. For NS, a general pattern of increase was found, with variability 

evident for baseline scores but not for systematic change in these scores. In relation to the 

secondary aim, the cluster method was found to be comparable to the other methods that 

were tested in accounting for the nonindependence between individuals.  

Chapter 4 aimed to identify latent heterogeneity in terms of the growth trajectories 

underlying the separate PENS dimensions. This builds on previous latent trajectory studies 

that have reported multiple latent trajectory classes including a persistent/increasing class for 

aggregated PEs. Three classes emerged for paranoia (including a persistent class and two 

decreasing classes), two decreasing classes emerged for hallucinations, and two increasing 

classes emerged for NS. The latent classes were mainly differentiated by differences in 

baseline scores, but also by differences in systematic levels of change over time. 

Building on the findings from Chapter 4, the aim of Chapter 5 was to investigate the 

extent to which the emergent trajectory classes showed associations with precursors and 

correlates previously found to be associated with persistence of aggregated PEs, and with a 

range of polygenic scores that had not previously been investigated. Across PENS 

dimensions, the most elevated trajectory classes were associated with prospectively reported 

adversities and emotional/behavioural difficulties in childhood (and in emerging adulthood), 

and polygenic liability for major depressive disorder, clinical help-seeking, and attention 

deficit hyperactivity disorder. A dimension-specific pattern of correlates was observed for 

persistent paranoia; specifically for higher educational and socioeconomic factors.  
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Chapter 6 aimed to investigate the latent structure of NS in the community and to test 

associations between the subdomains suggested by the best fitting model and polygenic 

scores. This would reveal the extent to which the latent structure found in samples 

ascertained for psychosis in the past literature extends into the community. A 5-factor 

structure, previously found to best represent clinical NS, was found to best fit the data. 

Significant associations between mean scores of the five subdomains and polygenic scores 

for schizophrenia and major depressive disorder were most numerous for avolition and were 

null for alogia.  

 

7.2 – Key findings and emerging themes across Chapters 

This Section will highlight the key findings from across the Chapters and will discuss 

the broader themes to emerge from the results. These findings and themes will be 

contextualised amidst previous findings in this area, and the importance of the key findings 

will be highlighted.  

 

7.2.1 –  The measurement of paranoia, hallucinations, and negative symptoms shows (partial) 

invariance across adolescence and emerging adulthood  

 This Thesis presented novel evidence showing that the measurement of paranoia, 

hallucinations, and NS in this community sample is at least partially invariant across 

adolescence and emerging adulthood. The partial nature of the invariance reflects that the 

factors indicated by the non-invariant items, were associated with a different level of the 

items at different ages (for scalar partial invariance) – which may suggest a novel avenue for 

future research (Section 7.4.1). The current findings are important: Prior studies that have 

reported an age-related decrease/increase for the reporting of PEs/NS, respectively (e.g., De 

Loore et al., 2011; Dominguez et al., 2010; Rössler et al., 2007; Smeets et al., 2012) did not 
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provide evidence for age-related change at the construct level, because none of these prior 

studies tested for measurement invariance. The findings reported in Chapter 2 suggested that 

any inferences of change over time in the PENS dimensions in the current Thesis can be 

considered at least in part to reflect true, construct-level change, rather than change solely at 

the level of the measurement instrument.  

 

7.2.2 –  Similar patterns of average latent change over time for paranoia and hallucinations, 

and an overall difference to negative symptoms 

The importance of investigating PENS as separate dimensions and the advantages of 

estimating growth as a latent process were highlighted throughout this Thesis. Whilst at the 

sample-wide level (Chapter 3), paranoia and hallucinations showed broadly the same 

characteristics of latent growth – dimension-specific characteristics were at least free to 

emerge. The current results are important, because they suggest that previously reported 

findings of a decrease in aggregated PEs with increasing age is not contingent on combining 

scores from across dimensions. At the latent level, the positive dimensions of paranoia and 

hallucinations appeared broadly similar in terms of the average trajectories of growth: 

notably however, higher levels of variability were observed for paranoia than for 

hallucinations, for both baseline scores and change over time. Variability in latent growth for 

paranoia and hallucinations in the community has not previously been reported. The current 

findings show an average decrease in each of the dimensions at the latent level, above and 

beyond any time-specific effects and stochastic measurement error.  

The contrasting results for NS appear to highlight a distinction in the latent 

development of positive and negative psychotic phenomena: The results are the first to show 

that the latent growth process for NS is characterised by an average increase across 

adolescence and emerging adulthood. Further, this development over time does not 
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systematically vary between individuals. The current findings build on those of a previous 

study that were suggestive of an increase in NS across adolescence/emerging adulthood but 

were limited because of the inconsistency of measurement across ages (Dominguez et al., 

2010). They further show an average increase at the latent level, separate to time-specific 

effects and measurement error, as detailed above.  

 

7.2.3 – Different patterns of latent heterogeneity underlie the trajectories of paranoia, 

hallucinations, and negative symptoms 

This Thesis was the first study to investigate latent heterogeneity in the trajectories of 

separate PEs dimensions, and of NS in the community. Whilst the sample-wide averages for 

the latent development of paranoia and hallucinations were similar (Chapter 3; Section 7.2.2), 

a clear difference was seen when multiple latent classes were allowed to emerge (Chapter 4). 

A high-persistent latent trajectory class was observed for paranoia, but unexpectedly, not for 

hallucinations: for hallucinations, even when heterogeneity was modelled, the best 

representation of the data was one which included two latent classes characterised by a 

decrease over time. 

The current results are important because, whilst there is within-class variability and 

some classification error, they suggest that paranoia scores that are high in adolescence may 

be likely to persist into emerging adulthood, unlike hallucinations. The current results are 

further at least suggestive that previous latent trajectory studies that have consistently 

identified persistent/increasing trajectory classes for aggregated PEs may have been 

conditional on the inclusion of paranoia scores. Interestingly, in a recent study of individuals 

meeting criteria for first episode of psychosis, an age-related increase in the prevalence of 

delusions and an age-related decrease in the prevalence of hallucinations was found 

(Bridgwater et al., 2020). 
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For NS, when latent heterogeneity was modelled, the best representation of the data 

was one which included two latent classes both characterised by an increase over time. The 

current results suggest that regardless of the baseline level of NS reported in adolescence, 

these behaviours are likely to increase into emerging adulthood. This is an important finding: 

on the one hand, it could suggest that the reporting of NS at any level indicates that a 

suboptimal (increasing) trajectory is likely. On the other, because the rate of increase was 

higher in the latent class characterised by elevated baseline scores, it could highlight that 

elevated NS scores reported in adolescence are an indicator of suboptimal developmental 

course (addressed in the following Section, 7.2.4).  

 

7.2.4 – The most elevated trajectory classes show associations with suboptimal phenotypic 

and polygenic correlates 

 Contributing towards construct validation of the identified latent trajectory classes, 

the most elevated trajectory classes across PENS dimensions were associated with a number 

of the hypothesised phenotypic and polygenic correlates (Chapter 5). For all PENS, these 

included adversities and emotional/behavioural difficulties in childhood and emerging 

adulthood, and polygenic liability for major depressive disorder, clinical help-seeking, and 

attention deficit hyperactivity disorder. The current results corroborate previous findings that 

have reported similar phenotypic associations for aggregated PEs: suggesting that these 

correlates have dimension-wide relevance for PENS and are not contingent on the 

aggregation of PEs. 

Beyond a contribution towards construct validation of the latent trajectory classes, the 

current results add to only a handful of other prospective reports (Rammos et a., 2021; 

Thapar et al., 2012) to show that specific characteristics reported in early childhood appear to 

be an indicator of the manner in which PENS are likely to develop in adolescence/emerging 
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adulthood. They further add novel findings to suggest that specific polygenic scores 

(available at birth) may also be an indicator of this development. SES, phenotypic 

educational achievement, and educational attainment GPS appear also to be indicators of 

PENS trajectories, though with some degree of dimension-specificity (Section, 7.2.5).  

 However, importantly, some hypothesised correlates, which were all polygenic score 

variables, did not show associations with the most elevated trajectory classes for any PENS 

dimension: specifically, these were GPSs for schizophrenia, obsessive compulsive disorder, 

bipolar disorder, and anorexia. The hypothesis for an association between the most elevated 

(persistent) class across the range of polygenic scores was based on phenotypic findings and 

theory suggesting that PEs represent an indicator of vulnerability to psychiatric outcomes 

broadly (Healy et al., 2019; Kaiser et al., 2011; McGrath et al., 2016; van Os & Reininghaus, 

2016; Yung et al., 2009).  

To the extent that the most elevated trajectory classes showed associations with 

polygenic scores for affective phenotypes including major depressive disorder and clinical 

help seeking for nerves, anxiety, tension, or depression, but not with bipolar disorder, may 

highlight a distinction between the polygenic influences of bipolar disorder compared to the 

polygenic influences of other affective phenotypes.  

The current results further suggest that, whilst polygenic propensity for schizophrenia 

has previously been found to be associated with PENS at single time points (Jones et al., 

2016; Pain et al., 2018), and with specific NS subdomains at specific time points (Chapter 6), 

it appears not to influence the development of PENS in this study: This is discussed in terms 

of a future research direction in Section 7.4.5. 

7.2.5 – Dimension-specific correlates, and the distinct pattern of correlates for persistent 

paranoia 
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The rationale for investigating the latent development of separate PENS dimensions 

was discussed in the Introduction to this Thesis: the empirical value of doing so was 

illustrated by the dimension-specific characteristics of latent growth and heterogeneity that 

were identified in Chapters 3 and 4. These findings provided the platform for allowing 

dimension-specific correlates of the latent developmental trajectories to be tested (Chapter 5).  

The distinct pattern of results to emerge for paranoia was that higher educational 

attainment, SES, and polygenic liability to years of education and intelligence were 

associated with increased odds of being in the high-persistent trajectory class. Previous 

findings are limited in terms of reporting associations between education/intelligence and 

paranoia specifically, though findings from two studies reported no association between 

education/intelligence and persistence of PEs (Rammos et al., 2021: Thapar et al., 2012). Of 

potential contextual interest, one further cross-sectional study reported that whilst higher 

phenotypic intelligence was associated with lower levels of paranoia in adulthood (compared 

to lower intelligence), lower levels of education were associated with lower levels of 

paranoia (Freeman et al., 2011). The current results appear to suggest that high educational 

attainment – both at the phenotypic and polygenic level, may be associated with a suboptimal 

trajectory of paranoia in adolescence/emerging adulthood. This is discussed in terms of a 

future research direction in Section 7.4.2. 

 

7.2.6 – The latent structure of negative symptoms in this community sample mirrors the 

latent structure of negative symptoms in clinical samples – and the potential role of polygenic 

influences 

 The current findings suggest that the 5-factor structure that has been found in clinical 

NS (Ahmed et al., 2019; Chang et al., 2021; Strauss et al., 2012) also best represents NS in 

adolescence and in emerging adulthood in the current community sample (Chapter 6). The 
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extent to which this structure appears similar in non-clinical NS to clinical NS is important 

for three related reasons. First, cumulative findings from across high-risk, clinical, and now, 

non-clinical domains, converge to suggest that a bifurcated conceptualization of the NS 

construct, as reflected in the current DSM, does not adequately capture its granularity 

(Strauss, Ahmed, et al., 2019). Both the psychometric and genetic results reported in Chapter 

6 offered evidence to support this assertion (discussed further, below). Second, it provides 

evidence to suggest that the latent structure of NS is not solely an artefact of treatment 

effects, ascertainment bias, or any of the other potentially confounding effects inherent in 

clinical samples – further substantiating the empirical robustness of the hypothesised 5-factor 

structure. Third, it provides evidence in further support of a continuum model of NS (Kaiser 

et al., 2011), because of the similarities that are suggested in terms of the psychometric 

structure between clinical and non-clinical NS.  

The observed associations between polygenic scores for schizophrenia and major 

depressive order with the subdomains provided evidence to support the construct validation 

of the five subdomains; building on findings that have observed associations between total 

NS and these polygenic scores in the community (Jones et al., 2016; Pain et al., 2018) and in 

clinical samples (Bigdeli et al., 2017; A. H. Fanous et al., 2012; Xavier et al., 2018). 

Importantly however, the GPSs did not associate with all the subdomains, nor were the 

associations consistent across all ages for both GPSs. Most notably, alogia did not associate 

with the GPSs at any age. Whilst the GPS was not for alogia specifically, the findings could 

be understood in terms of evidence against construct validation of alogia in this sample. On 

the other hand, it could highlight a novel avenue for future research (addressed in Section 

7.4.5). 

Similarly, the age-specific associations that were observed (e.g., schizophrenia GPS 

was associated with flat affect at age 16 but not at the other ages) could be considered as 
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weak evidence for construct validation of some of the subdomains. Alternatively, they could 

suggest that the GPSs have age-specific resonance, even across a relatively short 

developmental period. The latter explanation is supported by previous findings from a twin 

study in the TEDS sample that showed that 18% of the variance in NS at age 17 was due to 

novel genetic influences not shared with age 16 (Havers et al., 2019).   

 Two further findings are discussed together here: First, major depressive disorder 

GPS showed more associations with the NS subdomains compared to the schizophrenia GPS 

(furthermore, GPSMDD remained significant above and beyond the effects GPSSCZ but not 

vice-versa). Second, avolition was most consistently associated with the GPSs, and 

associations were more numerous for the motivation and pleasure subdomains (avolition, 

anhedonia, asociality) than for the expressive subdomains (flat affect, alogia). It is important 

to consider that the motivation and pleasure subdomains are also symptoms of depression. 

Therefore, the current findings could be interpreted such that GPSMDD simply manifests as the 

symptoms that it would be expected to manifest as. Notwithstanding, the results should not be 

interpreted such that avolition, anhedonia, asociality are not valid components of the NS 

construct: previous work has shown a clear psychometric distinction between depression and 

NS, despite the shared variance between them (e.g., Cowan & Mittal, 2021; Ronald et al., 

2014; Stefanis et al., 2002). The current results may highlight that the polygenic effects of 

major depressive disorder more clearly manifest as identifiable behaviours in 

adolescence/emerging adulthood than those of schizophrenia.  

 

7.3 – Limitations  

This Section will address some of the broad limitations relevant to the studies from 

this Thesis.  
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7.3.1 – Sample/cohort effects  

Four specific limitations pertaining to the current sample are highlighted. First, the 

repeated measures may have led to practise/familiarisation effects, leading to biased reports 

of PENS at time points subsequent to the first. As such, it is an advantage of the current 

Thesis that the development of PENS was modelled as a latent process, which is inherently 

less biased by any potential practise/familiarisation effects than would be the case if relying 

on static, observed measurements to infer change over time (Willett & Sayer, 1994).  

 Second, there are two instances of attrition that should be considered: one, across the 

~ 20-year period from when TEDS was established up to the current study period, and two, 

across the study period itself. Recent analysis by TEDS researchers showed that 63%/61% of 

families who returned data at first contact returned data in adolescence/emerging adulthood, 

respectively (Rimfeld et al., 2019): In the study, this attrition was found to be associated with 

several indicators of SES (including lower parental education and employment status), 

though differences between the initial sample and the non-attritted families were no greater 

than half a standard deviation, on average. Attrition across the study period itself is addressed 

in the following paragraph. 

Due to a smaller amount of funding available for the age 17 data collection, the 

sample at age 17 was smaller than at ages 16 and 22. Because this was part of the design of 

the study, the ‘missing’ data at age 17 can be considered to a large degree to be ‘missing by 

design’ (Rhemtulla & Hancock, 2016) (Section 2.2.1.1). Even so, only approximately 50%-

60% of the cross-age sample had either complete or complete with missing by design data, 

and these individuals had higher SES and were more likely to be female than individuals 

without PENS data at age 22 (Supplementary Tables 4.1-4.3). In addition to the main 

analyses that included data from all individuals, therefore, it was important to conduct the 

GMM using complete data only. Though the differences were slight in terms of the latent 
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trajectories of individuals with complete data compared to individuals with any data (Chapter 

4), they were substantively meaningful. The results suggested that missing data across the 

study period (including missing by design) was associated with a more elevated course, 

particularly for paranoia and NS. These results highlight the importance of having utilised 

data from all individuals in this Thesis, using full information maximum likelihood 

estimation. Excluding individuals with missing data would otherwise have obscured these 

ostensibly important developmental trajectories.  

Third, it is possible that cohort effects influenced the current results. Nonetheless, the 

results that were found were broadly as predicted and were broadly in line with findings from 

other cohorts, which lessens the likelihood that the findings are cohort dependent.   

Fourth, it is an advantage that the current Thesis investigated the development of 

PENS dimensions across adolescence/emerging adulthood, because this is a common period 

of onset for a range of mental health problems, including psychosis (Kessler et al., 2007; 

Kim-Cohen et al., 2003; Maibing et al., 2015) (Section 1.4.2). Nonetheless, it is possible that 

had the PENS dimensions been assessed at other (earlier, or later) ages – different trajectory 

findings would have emerged. For example, recent findings have shown nonconstant age-

related change in the prevalence of hallucinations: this topic is discussed in Section 7.4.3 in 

terms of future research.  

 

7.3.2 – Measures 

There are many benefits to using self-report and parent-report questionnaires, 

including the inherent ability to gather data from large numbers of individuals without the 

high labour demands that would be associated with gathering data by in-person interview or 

observation. Evidence to support the validity of using self-report questionnaires to study 

PENS was discussed in Section 1.1.2. Whilst it was not feasible to collect an interview-based 
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assessment of the PENS measures in the TEDS sample, it is acknowledged that this method 

of assessment may have given rise to different results than the current results that were based 

on self-report/parent-report.  

From a continuum perspective, it is a strength of the current Thesis that paranoia and 

hallucinations were studied, because these experiences mirror two out of the three “key 

features” of schizophrenia (Section 1.1.1). It is a further strength that NS were investigated 

given the paucity of research into NS in the community (Section 1.2.2) and considering the 

poor outcomes associated with their presence (Sections 1.2.1 and 1.2.5). Nonetheless, 

alongside delusions and hallucinations, the other key feature of schizophrenia according to 

the DSM-5 is disorganised thinking (speech) (defined as the behavioural manifestation of 

‘thought disorder’; American Psychiatric Association, 2013). It would be therefore of interest 

to chart the longitudinal course of this phenotype in the community. However, whilst the 

SPEQ subscale of ‘cognitive disorganisation’ was assessed at ages 16 and 17, it was not 

assessed at age 22, thus precluding longitudinal analysis of cognitive disorganisation beyond 

two time points (e.g., Havers et al., 2019). Furthermore, whilst the cognitive disorganisation 

subscale measures several aspects of thought disorder (e.g., problems relating to 

concentration/attention/decision-making; Mason et al., 1997), it includes only one item 

pertaining to disorganised speech (“Do you ever feel that your speech is difficult to 

understand because the words are all mixed up and don’t make sense?”). Therefore, the 

cognitive disorganisation subscale may or may not be an adequate index of disorganised 

speech in the community. Other more specific measures of thought and language that have 

been shown to detect speech aberrations in the general population as well as in individuals 

diagnosed with schizophrenia, may be better placed to assess the development of 

disorganised speech in community settings (e.g., Liddle et al., 2002).  
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7.3.3 – Specifications of latent growth  

The decision to select a linear growth form for the GMM (Chapter 4) was informed 

by the results of models in which slope factor loadings were fixed across individuals (Chapter 

3). It is possible that accommodating variability in time scores by allowing for individual 

slope factor loadings (as was done in Chapter 4) would have given rise to different 

conclusions regarding the optimal functional form of growth. However, because the nonlinear 

LGC models were highly constrained to aid both identification and convergence, it is 

probable that the linear growth form would have been selected even in the event of better fit 

of the nonlinear models (i.e., as was the case for hallucinations, Section 3.3.1.2).  

 

7.3.4 – Generalisability of the findings  

There are four main points to consider in terms of generalisability of the current 

findings. First, as was highlighted in Chapters 4 and 5 – the empirical identification of  

multiple classes should be considered as suggestive evidence for the latent classes that were 

ostensibly identified (Bauer, 2007; Bauer & Curran, 2003, 2004; Lubke & Neale, 2008). 

Evidence towards construct validation of the latent classes was suggested through the 

observed associations with the hypothesised correlates (Chapter 5). Notwithstanding, 

considering the empirical constraints that were placed on the GMM and some of the 

unexpected results, the need for replication of the current findings is highlighted.  

Second, whilst pseudo replication of the 5-factor structure of NS was demonstrated 

(Chapter 6), and whilst the findings were in line with previous clinical findings – replication 

in independent community samples is suggested as a future goal owing to the relatedness of 

the subsamples. 

Third, the association results were framed in terms of ‘the most elevated trajectory 

class’, to aid communication of the findings: This description could be considered intuitive 
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for paranoia (i.e., a high-persistent class) and for NS (i.e., a mid-increasing class), though it 

was less intuitive for hallucinations – since the trajectory was characterised by a reduction of 

hallucinations reported over time (i.e., a mid-decreasing class). Supporting the current 

approach, however, whilst the mid-decreasing class showed a significantly greater rate of 

decrease over time compared to the low-decreasing class, average hallucinations scores were 

nonetheless still higher at the end of the study period in the mid-decreasing class compared to 

the low-decreasing class. Further, many of the hypothesised correlates were associated with 

increased odds of membership in the mid-decreasing class compared to the low-decreasing 

class.  

Fourth, it is noted that only individuals whose parents self-identified as ‘white’ were 

included in the genotypic sample (Supplementary Information 5.1). Whilst this makes 

intuitive sense from the standpoint that most current GWAS are, regrettably, not accurate for 

individuals of ‘non-white’ ethnic background (Wang et al., 2022) – the GPS findings 

(Chapters 5 and 6) should nonetheless be considered generalisable only to ‘white’ 

individuals. Beyond the genotypic sample (which comprised approximately 60% of the 

current cross-age sample; Supplementary Tables 4.1-4.3), it is noted that recent analysis has 

shown the TEDS sample to be representative of the population in England/Wales in terms of 

ethnic and socioeconomic characteristics (Rimfeld et al., 2019).  

 

7.3.5 – GPS selection 

One potential limitation pertaining to the GPS variables is highlighted. The GPS 

levels (reflecting different fractions of causal markers, estimated under a Bayesian 

framework; Vilhjálmsson et al., 2015) were selected based on their significance with each 

outcome, and multiple testing was corrected for amongst the selected tests. Whilst this 

approach is commonplace in the field, it is noted that more optimal methods are available, 
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such as p-value permutation and pseudo validation (Allegrini et al., 2022). The significant 

GPS results were broadly in line with theoretical predictions, which adds strength to the 

conclusions drawn using the current approach. Notwithstanding, replication of the results 

using other correction methods will be informative for strengthening the interpretations of the 

current association findings.    

 Further, it is possible that other GPS variables that were not included in this Thesis 

would show associations with the latent trajectory classes (Chapter 5) and the NS subdomain 

mean scores (Chapter 6). Selection of polygenic scores was constrained by the availability of 

specific GPSs in the TEDS dataset. From those available, the GPS variables were selected to 

reflect a range of outcomes, based on theory suggesting that PENS represent a marker for 

broad vulnerability to poor outcomes (Healy et al., 2019; Kaiser et al., 2011; McGrath et al., 

2016; van Os & Reininghaus, 2016; Yung et al., 2009). It is possible that testing other GPSs 

could be informative for identifying other polygenic influences on the expression of PENS 

phenotypes. Also, incorporating multiple GPSs could be used to strengthen prediction of the 

PENS phenotypes (Krapohl et al., 2018). 

It would be of further interest to investigate associations between polygenic scores for 

specific, transdiagnostic symptoms or behaviours (i.e., rather than outcomes at the ‘disorder’ 

level), with both the latent trajectory classes (Chapter 5) and the NS subdomain mean scores 

(Chapter 6).  

It is possible that the differential GPS associations that were observed in Chapters 5 

and 6 of this Thesis could reflect differences in the power of the GWASs that the GPSs were 

based on (Dudbridge, 2013; Wray et al., 2014). A priori power calculations for the predictive 

power of the GPSs were not performed, because i) the GPSs were calculated using Bayesian 

methods that preclude the assessment of the predictive power of the GPSs using GWAS 

summary statistics (So & Sham, 2017), and ii) SNP heritabilities of the phenotypes (i.e., the 
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latent trajectory classes, NS subdomains) were unknown, precluding accurate use of popular 

GPS power calculation tools (e.g., Dudbridge, 2013).  

 

7.4 – Future research directions 

This Section will discuss some of the future research directions that are prompted by 

the findings in this Thesis.  

 

7.4.1 – Embracing longitudinal noninvariance  

It has been stated that “noninvariance can be informative and may lead researchers to 

important conclusions about how different groups interpret the same construct” (p.19, 

Putnick & Bornstein, 2016). Considering the longitudinal partial noninvariance that was 

observed for the PENS dimensions in this Thesis (Chapter 2), one application of the previous 

statement could be to guide future qualitative or mixed method studies that explore themes 

surrounding the experience of the specific noninvariant items at different life stages. This 

may be particularly important during the transition from adolescence to emerging adulthood 

(Chapter 2). The importance of this endeavour can be considered such that novel insights into 

age-related experience of PENS could emerge that would be not accessible solely through 

quantitative data analysis, which may guide subsequent theory development and testing. Such 

an approach is exemplified by a recent study into the lived experience of paranoia, which 

identified themes of paranoia specific to female individuals through the application of 

interpretative phenomenological analysis (Bird et al., 2022; Smith & Shinebourne, 2012). 

 

7.4.2 – Paranoia-specific effects  

The unexpected, dimension-specific findings for paranoia (Chapter 5) are worthy of 

further exploration. On the surface, the current findings could suggest that higher educational 
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attainment – both at the phenotypic and polygenic level, as well as SES and intelligence GPS, 

are associated with a more severe developmental trajectory of paranoia in adolescence and 

emerging adulthood. In line with the findings from a recent qualitative study (Bird et al., 

2022, also discussed in Section 7.4.1), it could be speculated that higher levels of 

education/intelligence/SES could be associated with greater exposure to threat-provoking 

situations and or situations of perceived vulnerability, which in turn could lead to the 

maintenance of paranoid experiences. Whilst there is some (broad) concurrence of the current 

results with previous cross-sectional findings in an adult sample, which found that lower 

levels of education were associated with lower levels of paranoia (Freeman et al., 2011) – a 

first step in exploring the proposed suggestion further would be to see a replication of the 

current paranoia findings in other developmental samples. Longitudinal associations could 

then further be explored, for example, by investigating the extent to which and the manner in 

which affective factors may or may not be implicated in this association, in line with existing 

theoretical models (Freeman, 2007; Freeman et al., 2002, 2012).   

 

7.4.3 – Gathering more data to infer change more accurately across the lifespan 

 The repeated PENS measures across the finite period studied in this Thesis should be 

considered to provide a “snapshot” of a larger developmental PENS landscape. It stands to 

reason therefore that a greater number of repeated measures over a greater period of time 

would widen the developmental picture on view. In terms of latent trajectory modelling 

specifically – the current Thesis with its three time points of data was limited in its ability to 

infer the extent to which nonlinear forms of growth underlie the PENS repeated measures 

(Chapter 3). Collecting further repeated measures data on the PENS dimensions in the TEDS 

sample would allow for a fuller investigation of nonlinearity, which would allow for finer-

grained theories regarding the age-related development of PENS to be tested. This may be 
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important, for example, considering recent findings that suggest that the prevalence of 

hallucinations across the lifespan (assessed using consistent measurement) declines at a 

nonconstant rate (Yates et al., 2021). Whilst the inference of change across age through the 

study of prevalence rates differs to the current approach of studying trajectories of change, 

results such as these are important from a developmental perspective: they may suggest, at 

the group-level, that age-specific factors may in part underlie the reporting of PENS. Testing 

nonlinear latent growth models that specify a nonconstant rate of change between time points 

(e.g., quadratic, exponential, latent basis models) and expanding these models further to 

include predictors of nonlinearity (Curran & Hussong, 2003), may contribute to theory 

building regarding mechanisms that underlie the development of PENS dimensions 

(Bridgwater et al., 2020; Yates et al., 2021).  

  

7.4.4 – Co-developmental processes of latent growth 

 Future studies should build on the current findings by investigating the extent to 

which, and the ways in which, trajectories of PENS dimensions impact each other across 

development. Previous findings support the rationale for this approach: For example, one 

study found that persistent NS predicted persistent PEs, which together predicted psychotic 

impairment (Dominguez et al., 2010), further showing that PEs did not predict NS. Other 

findings suggest that it may also be informative to consider trajectories of affective symptoms 

alongside trajectories of multiple PENS dimensions. For example, two studies reported that 

affective symptoms predicted persistent paranoia (Freeman et al., 2012; van Rossum et al., 

2011), and another study reported that persistent hallucinations predicted delusions as well as 

affective symptoms (De Loore et al., 2011). Utilising latent trajectory modelling to 

investigate the co-development of these phenotypes may reveal novel aspects of change over 

time that would be inherently obscured outside of a latent variable framework. Such findings 
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would have the potential to contribute to existing dimensional theories (e.g., Freeman, 2007; 

Freeman et al., 2002, 2012; Garety et al., 2001) and potentially offer new insights regarding 

the processes involved in the development and maintenance of specific PENS dimensions. 

 

7.4.5 – Developmental associations for polygenic liability to schizophrenia 

Motivated by recent clinical findings that showed an association specifically between 

schizophrenia GPS and the development of avolition in first episode of psychosis (Jonas et 

al., 2019), future research should test the extent to which schizophrenia GPS is associated 

with the development of specific NS dimensions in the community. Such an investigation 

would augment the findings reported in Chapters 5 and 6 of this Thesis in two ways: first, 

because an association was not observed between schizophrenia GPS and the development of 

total NS scores (Chapter 5), it would allow for a test of the extent to which schizophrenia 

GPS manifests dimensionally in terms of development. Second, it would allow for further 

probing of the null findings between schizophrenia GPS and alogia at single time points 

(Chapter 6), by testing whether schizophrenia GPS associates with the development of alogia. 

Further in the context of alogia, which has been purported to be a distinguishing 

feature of NS in schizophrenia (Krynicki et al., 2018; Strauss & Cohen, 2017), future work 

should ascertain whether associations between schizophrenia GPS and alogia are found at 

other ages across the lifespan in the community, or, building on recent findings (Legge et al., 

2021), whether polygenic risk for schizophrenia manifests specifically as alogia only in 

clinical populations, if at all.  

 

7.4.6 – Genetic influences on environmental effects 

Identifying markers in childhood that appear to signal risk for an elevated 

developmental course of PENS in adolescence/emerging adulthood is important (Chapter 5). 
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It suggests that identifying children with high levels of these markers (i.e., life events, 

emotional/behavioural problems) may allow for theory-guided intervention at an early stage, 

which in turn has the potential to alter the developmental course of PENS. Importantly 

however, future work should investigate the extent to which genetic influences may explain 

these associations. For example, previous findings in the TEDS sample have shown, not only 

that variation in bullying-victimisation was itself influenced by genetic factors, but that most 

of the observed association between bullying-victimisation reported at age 12 and paranoia 

reported at age 16 was explained by genetic factors (Shakoor, McGuire, et al., 2015b). 

Findings from genetically informed studies such as these may have implications for the 

theoretical models that can ultimately inform any interventions. For example, rather than 

assuming that the outcome is amenable to change via the earlier phenotype, behaviours and 

characteristics that underlie the propensity to both the phenotype and the outcome may be 

more consequential targets for intervention.  

 

 

7.5 – Conclusions 

In conclusion, this Thesis aimed to investigate the development of psychotic 

experiences and negative symptoms in the community across adolescence and into emerging 

adulthood, using a dimensional approach. It further aimed to investigate the latent structure of 

NS in the community. 

The Thesis provided several novel findings: First, it provided evidence showing that 

the measurement of paranoia, hallucinations, and NS was adequately invariant over time to 

facilitate the inference of age-related change over time at the construct-level in this sample. 

Second, it showed that the sample-wide, average latent trajectories of paranoia and 

hallucinations systematically decreased across the study period, and that the average latent 

trajectory of NS systematically increased. The results were also the first to report on the 
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variability around the averages, which differed across the PENS dimensions. Third, latent 

heterogeneity in the trajectories of the separate PENS dimensions was identified, and 

dimension-specific latent classes emerged: a persistent latent class emerged for paranoia but 

not for hallucinations, and the emergent latent classes for NS both followed an increasing 

course. Fourth, it was shown that polygenic influences for a range of outcomes were 

associated with the most elevated course across PENS dimensions, with notable null findings 

for schizophrenia, and notable dimension-specific findings for paranoia with 

educational/socioeconomic factors. Fifth, the latent structure of NS that has been reported in 

clinical samples was also found in this community sample, and the 5-factor structure was 

superior compared to the DSM-5 conceptualisation of NS in schizophrenia. Significant 

associations at the polygenic level were most numerous for avolition and were null for alogia.  

  Results in this Thesis show that a more elevated course of paranoia, hallucinations, 

and NS in adolescence/emerging adulthood is more likely to occur in individuals who 

experience adverse life events in childhood (and, for paranoia and hallucinations, in 

individuals with a family history of schizophrenia/bipolar disorder) – and in those with an 

increased polygenic risk for a specific range of poor outcomes. The current findings are 

broadly aligned with expectations of the proneness-persistence-impairment model (Linscott 

& van Os, 2013; van Os et al., 2009), and further make a novel contribution of potential 

relevance to the model: They show that for hallucinations, increased polygenic risk and 

adverse life events in childhood are associated with an elevated trajectory class, but that this 

trajectory is represented by an average decline in these experiences: Future work can assess 

the extent to which the elevated hallucinations trajectory across adolescence/emerging 

adulthood forms part of a nonlinear trajectory of growth, with persistence becoming evident, 

or not, at a later age or life stage (Section 7.4.3).  
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At a broad level, further research and development of theory is needed to ascertain the 

mechanisms that connect adverse life events as well as emotional/behavioural difficulties in 

childhood to elevated trajectories of paranoia, hallucinations, and NS in 

adolescence/emerging adulthood (and SES and educational attainment, at a dimension-

specific level): Multiple GPSs could be used to strengthen prediction of the PENS 

phenotypes (Section 7.3.5), subsequently allowing for mechanisms to be investigated in 

individuals stratified by broad polygenic risk.  

 One potentially relevant implication for clinical practice relates to the dimension-

specific findings for paranoia (Section 7.2.5). That is, individuals who demonstrate higher 

educational attainment in childhood could be vulnerable to a later persistent course of 

paranoia. Similarly, higher educational attainment in emerging adulthood could indicate a 

concurrent trajectory of persistent paranoia. Notwithstanding the need for replication of the 

current findings, the extent to which the association between early educational attainment and 

later development of paranoia is moderated and or mediated by for example, affective factors 

(Sections 7.4.2 and 7.4.4), genetic factors (Section 7.4.6), and or other as yet unknown 

factors (Section 7.4.1), may guide theory towards a specific, practical framework for 

intervention. 

Studying the development of PENS at both a dimensional level and at a latent level in 

this Thesis revealed substantive differences between the separate dimensions. These 

differences would have otherwise been obscured by analysing PEs and PENS at an aggregate 

level, by using only complete data, and or by manually grouping individuals in terms of their 

PENS trajectories. As was set out in the Introduction (Section 1.5.5), the latent variable 

modelling findings to emerge from this Thesis appear at the very least to have offered a broad 

triangulation of evidence from existing, manual classification studies: They further appear to 

offer additional insights into the development of separate PENS dimensions. Whilst requiring 
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replication – the findings of this Thesis should be used as a platform for future research that 

aims to test theories relating to the development and maintenance of PENS dimensions, with 

the overarching goal of identifying and helping individuals at risk both for concurrent 

psychopathology and for later poor clinical and functional outcomes. 
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