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Abstract

This article studies the problem of fundamental frequency positive-sequence component separation in unbalanced three-
hase systems for grid-integration applications. We propose a-simple-to-implement approach involving a modified delayed
ignal cancellation method and moving average filtering. A delay-based linear-regression framework is considered to make the
equence component separation frequency-adaptive, providing fast and accurate frequency estimation. Comparative experimental
esults demonstrate the suitability of the proposed method over conventional approaches.

2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
http://creativecommons.org/licenses/by-nc-nd/4.0/).

eer-review under responsibility of the scientific committee of the 5th International Conference on Renewable Energy and Environment Engineering,
EEE, 2022.

eywords: Sequence estimation; Unbalanced voltage; Delayed signal cancellation

1. Introduction

Fast and accurate separation of sequence components is essential for controlling converters operating in
n unbalanced grid [1–9]. It motivated the development of numerous grid-synchronizing sequence component
eparation methods. Most approaches are built around the traditional synchronous reference frame phase-locked
oop (SRF-PLL) [10].

Delayed signal cancellation (DSC) [11] is a popular choice among the various sequence separation methods
vailable in the literature. This method can be applied either as an in-loop or pre-loop filter in conjunction with
RF-PLL. A DSC with a quarter-cycle delay is suggested in [12] to reject the fundamental frequency negative-
equence component (FFNS). Several modifications are proposed in the literature to speed up the convergence
f DSC-based PLL. A modified DSC is proposed in [13], where the required delay is significantly lower than
quarter-cycle. However, this approach requires a pre-loop filter to reduce the effect of noise and harmonics.
nother solution is reported in [14], where an additional phase compensator is used in the PLL to speed up the
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convergence. However, this deteriorates the transient performance in the presence of large voltage sag and/or phase
jump. Moreover, numerous parameters also need to be tuned.

In [15], a combination of modified DSC and moving average filter (MAF) is used in conjunction with quasi
ype-1 PLL (QT1- PLL) [16,17]. Thanks to the proportional loop-filter of QT1-PLL, this method can significantly
ecrease the convergence time, however, at the cost of sensitivity to harmonics and noise. A similar hybrid DSC
nd MAF approach and an open-loop frequency estimator are considered in [18]. However, it is very complicated
o implement.

This article proposes applying a modified DSC method for fundamental frequency positive sequence (FFPS)
eparation. The FFPS component is converted into SRF through demodulation, where MAF enhances harmonic
obustness. Finally, the proposed method is made frequency adaptive by considering unknown frequency estimation
nder a delay-based linear-regression framework [19,20]. The contributions of this work are twofold. Firstly, the
FPS separation method uses lower delay, resulting in a fast estimation of the sequence components. Secondly, the
requency evaluation is decoupled from the sequence separation, resulting in a fast frequency estimation, unlike
onventional methods, which depend on the sequence separation.

The rest of this article is organized as follows: The development of the proposed estimator is given in Section 2,
xperimental results are provided in Section 3, and finally, concluding remarks are given in Section 4.

. Proposed estimator design

Unbalanced three-phase grid voltages with measurement offset in the stationary reference frame are given by:

yα (t) = Yα0 + Y + cos
(
ωt + ϕ+

)
+ Y − cos

(
ωt + ϕ−

)
, (1a)

yβ (t) = Yβ0 + Y + sin
(
ωt + ϕ+

)
− Y − sin

(
ωt + ϕ−

)
, (1b)

here the superscript + and − denotes the positive and negative sequence, φ±
= ωt + ϕ± is the total phase, Y ±,

, ϕ±, Yα0, and Yβ0 represent the amplitude, angular frequency, phase angle, and DC offsets in phases α and β,
espectively. The extraction of the FFPS component, i.e., y+

α = Y + cos
(
ωt + ϕ+

)
and y+

β = Y + sin
(
ωt + ϕ+

)
, and

he estimation of φ+ are considered in this work. In the remainder of this article, the time-dependence of a signal is
ften not explicitly stated for convenience. Moreover, continuous- and discrete-time signals and notation of filtered
ignals are often mixed for brevity.

.1. Separation of FF1PS component

The first step in developing the proposed estimator is to separate the FFPS component from (1). For this purpose,
he DSC method is a very suitable choice. In the case of unbiased voltage measurement, a traditional αβ-DSC
perator can separate the FPPS with a delay of T/4, where T is the signal period. However, this makes the
onvergence slower. A modified DSC method is proposed in [13] to overcome this issue. However, as shown in
13, Table 1], the separation of sequences requires many arithmetic operations involving trigonometric quantities.
ere, we propose a simplified version that significantly reduces the computational complexity. For this purpose, let
s denote that yφd

α = yα (φ − φd) and yφd
β = yβ (φ − φd) with φ = ωt , φd = 2π f Nd Ts , where f = ω/2π is the

requency, Nd is the number of delayed samples, and Ts is the sampling time. Then, the FFPS can be extracted by
modified first-order DSC operation inspired from [15]:

ŷ+

α =
1
2

(
yα + cot (φd) yβ − csc (φd) yφd

β

)
, (2a)

ŷ+

β =
1
2

(
yβ − cot (φd) yβ + csc (φd) yφd

α

)
, (2b)

here ŷ+
α and ŷ+

β are the estimated FFPS components. In theory, (2) can extract the FFPS component for any
alue of Nd . However, a higher value provides better robustness against harmonic disturbances at the cost of
slow dynamic response. So, Nd = 10 for f = 50 Hz ( fs = 1/Ts = 10 kHz) can be considered as a good

ompromise value. To provide additional robustness to grid frequency variation, a two first-order frequency-adaptive
SC operation (2) can be cascaded and this issue is considered in this work.
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2.2. Phase angle estimation

The FFPS component separation process described in Section 2.1 is not very robust to noise and grid harmonics.
ccording to IEEE 519-2014 standard, the total harmonic distortion of the terminal voltage of grid-connected

onverters should be below 5%, and individual harmonic components should be less than 3%. To respect these
imits, moving average filters are considered in this work. To apply these filters, a separated FFPS component is
onverted to a synchronous reference frame through demodulation and is given by [21]:[

Ŷ +

d

Ŷ +

q

]
=

[
cos

(
ω̂t

)
sin

(
ω̂t

)
− sin

(
ω̂t

)
cos

(
ω̂t

)] [
ŷ+

α

ŷ+

β

]
, (3)[

Ŷ +

d

Ŷ +

q

]
=

[
Ŷ + cos

(
ϕ̂+

)
Ŷ + sin

(
ϕ̂+

)] . (4)

where ω̂ is the estimated frequency, Ŷ +

d and Ŷ +
q are the estimated FFPS voltages, and Ŷ + is the estimated FFPS

voltage amplitude. In the αβ to dq− frame conversion through (3), the estimated value of the grid frequency ω̂

is used. Details of the used estimation approach are given in Section 2.3. From (4), the phase angle of the FFPS
component can be estimated as:

ϕ̂+
= atan2

(
Ŷ +

q , Ŷ +

d

)
, (5)

where atan2 is the double quadrant arctangent function. To obtain (4), we assume that the grid voltage does not
contain any harmonics. However, in practice, the grid voltage contains harmonics. The IEEE 519-2014 standard
puts particular emphasis on odd-order harmonics. The presence of odd-order harmonics in the grid voltage will
generate even-order AC ripple in the estimated DC quantities Ŷ +

d and Ŷ +
q . A MAF can eliminate these even-order

harmonics in the dq− frame with a half-cycle window length. The transfer function of the discrete-time MAF is
given by:

G M AF (z) =
1

Nm

1 − z−Nm

1 − z−1 , (6)

where Nm = fs/2 fn is the half-cycle window length with fn the nominal frequency. The non-adaptive window
ength MAF (6) introduces a small-amplitude estimation ripple in the off-nominal grid frequency case. In this
ork, we consider a frequency-adaptive MAF where fractional delays are implemented through linear interpolation

s suggested in [14].

.3. Unknown frequency estimation

In implementing the demodulation (3), an estimate of the unknown grid frequency is required. SRF-based PLLs
ass the estimated phase angle through a loop-filter to estimate the grid frequency variation. However, this makes
he frequency estimation dependent on the FFPS component separation dynamics. A direct frequency estimation
s considered here to break this loop within a delay-based linear-regression framework. For this purpose, let us
onsider that for n = 1, 2, 3 [19]:

ynτ
α (t) = yα (t − nτ) and ynτ

β (t) = yβ (t − nτ) , τ > 0. (7)

Using the measured grid voltages (1) and delayed versions (7), the following relationships can be obtained [19]:

yα − yτ
α + y2τ

α − y3τ
α − 2 cos (ωτ)

(
yτ
α − y2τ

α

)
= 0. (8a)

yβ − yτ
β + y2τ

β − y3τ
β − 2 cos (ωτ)

(
yτ
β − y2τ

β

)
= 0. (8b)

The above equation can be rewritten as the following linear regression model:
vα = xαθα and vβ = xβθβ, (9)
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where vα = yα − yτ
α + y2τ

α − y3τ
α , vβ = yβ − yτ

β + y2τ
β − y3τ

β , xα = 2
(
yτ
α − y2τ

α

)
, xβ = 2

(
yτ
β − y2τ

β

)
, and

θα = θβ = cos (ωτ). From the unknown parameters θα and θβ in (9), the unknown grid frequency ω can easily be
estimated. The estimates θ̂α and θ̂β can be derived by using the gradient method and is given by:

˙̂
θα = ηxα

(
vα − xα θ̂α

)
, (10a)

˙̂
θβ = ηxβ

(
vβ − xβ θ̂β

)
, (10b)

where η > 0 is the rate control gain. From the estimated unknown parameters, the unknown frequency is evaluated
as [19]:

ω̂ =
1

2τ

(
arccos

(
θ̂α

)
+ arccos

(
θ̂β

))
. (11)

According to [22], the exponential convergence of the estimator (10), and consequently, the unknown frequency
can be established if the delay τ in (7) is selected to be less than π/ω. In this work, we consider τ = Tn/4

with Tn being the nominal period which satisfies τ < π/ω. This value can enhance the convergence speed and
educe the effect of noise and unmodeled disturbances (e.g., harmonics) on the estimated frequency. For real-time
mplementation, delayed signals in (7) are implemented through delay-shift operator with τ = Tn/4Ts . By passing
he unknown frequency (11) through an integrator, the unknown total phase of the FFPS component can be evaluated
s:

ω̂ = ω̂t + ϕ̂+. (12)

The block diagram of the proposed method is given in Fig. 1.

Fig. 1. Block diagram of the proposed method.

3. Results and discussions

The experimental setup, shown in Fig. 2, is used to validate the proposed method. Here, a PWM-controlled three-
phase inverter is used to emulate the adverse grid voltage signal. Details of the experimental setup can be found
in [16]. As comparative techniques, modified DSC-based QT1-PLL [15] and frequency-adaptive MAF-PLL [23]
are selected. The proposed and comparative methods all use MAF with half-cycle window length. Parameters of
QT1- and MAF-PLLs are selected the same as in [15,23]. All the techniques are implemented in Matlab/Simulink
with Ts = 100 µs. for code generation and real-time implementation in dSPACE 1104 platform. The parameters
of the proposed method are: Nd = 10, Nm = fs/2 f (nominal), and η = 35. Zero initial conditions are used for
implementing all the delay blocks. Results from dSPACE ControlDesk are exported to Matlab for further processing.

Two experimental tests are considered. In the first test, a step change of −2 Hz in frequency is considered and
he results are given in Fig. 3. Results in Fig. 3(b) and (c) show that the proposed method has significantly lower
eak to peak overshoot together with fast convergence speed. In the second test, diode-rectifier-based nonlinear
oad is connected to generate harmonically distorted and unbalanced grid voltage signals. Results in Fig. 4(b) show
hat the proposed method has the lowest peak overshoot and the steady-state ripple compared to QT1- and MAF-
LLs. In terms of total harmonic distortion (THD), it can be concluded that the technique developed in this work
an significantly lower the THD value, which makes it a suitable tool for control of grid-connected converters. A

omparative time domain performance summary is given in Table 1.
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Fig. 2. Test setup [16].

Fig. 3. Comparative experimental results for −2 Hz frequency step change.

4. Conclusion and future works

In this article, an enhanced grid-synchronizing sequence component separation method was proposed, where
a modified, delayed signal cancellation method was applied for the sequence separation. Moving average filters
working in the synchronous reference frame were implemented to enhance harmonic robustness. Finally, our method
was made frequency-adaptive by estimating the unknown grid frequency using gradient estimator under delay-based
361
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Table 1. Comparative steady-state performance summary.

Performance indicators MAF QT1 Proposed

Test-I: −2 Hz Frequency step change
Frequency ripple (peak-to-peak) (Hz) 1.03 0.48 0.15
Voltage ripple (peak-to-peak) (p.u.) 0.06 0.03 0.02
Test-II: Unbalanced and distorted grid
Frequency ripple (peak-to-peak) (Hz) 1.17 0.58 0.17
Voltage ripple (peak-to-peak) (p.u.) 0.065 0.032 0.023
THD (%) (Grid-15.79%) 0.82 1.22 0.75

Fig. 4. Comparative experimental results for unbalanced and distorted grid.

linear-regression framework. Comparative experimental results show that the FFPS voltage amplitude estimation
ripple by the proposed method is at least 50% better than the next best comparative technique.

In this work, we have studied the grid-synchronization problem for grid-connected converters. Extraction of
frequency, phase and FFPS components are important for monitoring the transmission power grid. Several issues in
the transmission grid, such as decaying offset, transformer saturation, low- and sub-synchronous oscillations, and
dynamic change in grid inertia, make the parameter extraction very challenging. These issues will be considered in
future work.
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