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ABSTRACT 
Software Control Category (SCC) denotes the degree of control autonomy, command 
and control authority, and redundant fault tolerance software has over hazardous system 
functions of safety-critical systems. The use of SCC for determining the software 
contribution to system risks is a unique feature of the MIL-STD-882E System Safety 
Standard. A lower SCC designation means that the software system has a greater control 
autonomy over hazardous system functions, whereas SCC 1 means complete 
autonomous control. Software with greater control autonomy over hazardous system 
functions require greater effort to assure reliability and safety. Correct assessment of 
the SCC level of hazardous system functions is crucial for optimizing the safety property 
of a system developed under budget, schedule, and resource constraints. Beyond the 
categorical definitions provided by the MIL-STD-882E Standard, there is little 
information on conducting an SCC assessment. To close this knowledge gap, we present 
an SCC assessment method. Our paper will describe in detail the process and rules for 
assessing SCC. For illustration, we apply our method to assess the SCC of several 
safety-significant functions of an automobile’s brake-assist system. 

 

INTRODUCTION 
The two crashes of Boeing airliners model 737 MAX 
that took 346 lives are a stark reminder of the risk of 
embedded software in safety-critical systems 
(Wikipedia, 2022a). As software controllers continue 
to replace specialized hardware devices in safety-

critical systems, the risk of software-induced system 
failure continues to grow. This trend repeats across 
multiple industries, including transportation systems, 
traffic control systems, medical surgery equipment, 
nuclear power centers, power grid infrastructures, 
industrial robots, and military weapon systems. 
Eliminating and controlling the contribution of 
software to system hazards, i.e., the software risk, is 
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an objective of system safety engineering. Software 
system safety, or software safety, is a subdiscipline 
within system safety that focuses on applying system 
safety principles and practices to software systems 
development (Wikipedia, 2022b). Software safety 
controls the risk of defective embedded software 
systems triggering consequential system mishaps. 
Software safety's vital role in system safety 
engineering continues to grow (Danhauser, 2014).     

To determine the software risk in safety-critical 
systems, the MIL-STD-882E Standard focuses on 
three risk factors: 1) the system mishap severity, 2) 
the software control autonomy, and 3) the level of 
rigor (LOR) of the safety quality assurance process. 
The mishap severity factor measures the magnitude of 
the consequence of a system mishap. This factor is 
well-known in system safety and reliability with 
established methods for estimating. LOR represents 
the required level of safety analysis and assurance of 
hazardous or safety-significant system functions 
(SSFs). The MIL-STD-882E Implementation Guide 
(JS-SSA-IG, 2018) provides detailed information on 
the different LOR levels and tasks. Software Control 
Autonomy (SCC) expresses the degree of control 
autonomy, command and control authority, and 
redundant fault tolerance software has over the SSFs 
(Safety, 2012). How to assess this risk factor is not 
discussed in the Standard and its related handbooks 
and guides. It remains a knowledge gap to be 
addressed. The need for a systematic and rigorous 
assessment approach is apparent when dealing with 
systems with many software controllers supporting 
many SSFs (JS-SSA-IG, 2018). For instance, a high-
end automobile system today can have hundreds of 
independent processors with software controlling 
hundreds of SSFs. The code size of such a system can 
easily exceed one hundred million lines of code 
(Charette, 2021). A SCC assessment method ensures 
that the resulting SCC of the SSFs are correct, 
consistent, and explainable.  

We propose a functional approach to assessing the 
SCC of hazardous system functions. Our approach is 
aligned with the overall functional approach to hazard 
analysis in the MIL-STD-882E FHA method. We will 
provide a detailed description of our SCC assessment 
method, including the process and rules for 
systematically and consistently deriving the SCC 
level of individual SSFs. For illustration, we will use 
our method for assessing several system functions of 
an automobile's brake-assist system.  

REVIEW OF LITERATURE 
 To support our review, we started by asking, 
“How does one approach assessing the control 
autonomy of the embedded software supporting 
safety-critical system functions?”  In addition to 
looking through the MIL-STD-882 Standard and 
supporting documents, we performed a literature 
search on the IEEE Computer Science Digital and 
ACM databases, using keywords such as "software 
control category" and "SCC" "MIL-STD-882", 
"software control level."   The list of relevant papers 
on the software control category within the last ten 
years is negligible. Below are notes from our 
literature review.   

The MIL-STD-882 Standard plays a central role 
in military weaponry, aerospace, and nuclear center 
system safety. The latest revision E of this Standard 
emphasizes software system safety by adopting the 
Functional Hazard Analysis (FHA) method. Within 
the FHA, the SCC is introduced as a risk measuring 
factor. The SCC designation describes the software 
contribution risk associated with an SSF; thus, it is a 
system function-level designation.  

The MIL-STD-882 Standard remains widely 
adopted within the defense, nuclear, and aerospace 
sectors. A new revision of the MIL-STD-882, 
revision F, is under development. We expect that SCC 
will remain critical in considering the software risk in 
safety-critical systems.  

Several related documents mention the adoption 
of the SCC but provide little additional information 
on how to conduct an SCC assessment. The Joint 
Software System Safety Engineering Handbook 
(JSSSEH, 2010) provides this concise guidance: “the 
analyst identifies the software safety-significant 
functions early in the analytical phase and assigns a 
mishap severity and software control category to 
each.”   The Joint-Services Software Safety 
Authorities Software System Safety Implementation 
Process and Tasks Supporting MIL-STD-882 (JS-
SSSA-IG, 2018) emphasizes that “accurate 
assessment of the SCC based upon the complexity of 
the system, autonomy of the system’s functionality, 
and/or its command-and-control authority is 
imperative.” Both the NATO Guidance on Software 
Safety Design and Assessment of Munition-Related 
Computing Systems (AOP-52) (NATO, 2016) and 
The Nuclear Regulatory Commission’s Software 
Safety Hazard Analysis document (Lawrence, 1996) 
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adopted the MIL-STD-882 Standard. However, 
neither discusses how to conduct an SCC assessment.  

Literature research in safety requirements 
engineering reports limited publications on modern 
software-based system safety methods (Martins and 
Gorschek, 2017; Martins, L. and Gorschek, 2020). 
Most system safety methods in practice today are 
derived from hardware-based methods such as Fault 
Tree Analysis (FTA), Failure Mode Effect Analysis 
(FMEA), Failure Mode Effects Analysis and 
Criticality Analysis (FMECA), and Preliminary 
Hazard Analysis (PHA). Several reasons for the lack 
of adoption of software-based hazard analysis 
methods, including Functional Hazard Analysis, are 
1) the lack of software safety teaching in computer 
science and software engineering curricula, 2) the 
lack of familiarity with software-based methods 
among system safety professionals, 3) the lack of 
published information on the effectiveness of 
software-based methods, and 4) the slowness in the 
adoption of software-based methods in safety 
standards.  

One interesting publication is from Robert Smith, 
where the author uses Fault-Tree Analysis to verify 
that the different proposed MIL-STD-882E SCC 
designations are distinct (Smith, 2018). However, the 
paper does not address the issue we seek to address, 
which is how to systematically assess the SCC of 
SSFs.   

The Guidelines for Development of Civil Aircraft 
and Systems (ARP4754A, 2010) outlines a method 
for assessing the Functional Development Assurance 
Level (FDAL) of system functions. This method first 
decomposes individual system functions into 
subfunctions and allocates these subfunctions to the 
subsystems that make up the system architecture. The 
system functions are then assigned an FDAL level 
based on the structures of their subfunctions. For 
instance, if a function classified as an FDAL A is 
decomposable into multiple redundant and 
independent functions, that function may be 
reclassified as an FDAL B, i.e., a lower risk function. 
This FDAL assessment method, supporting the 
software safety activities in civil aviation, has steps 
similar to our proposed SCC assessment method. 

Our previous papers on software safety (Tran et 
al., 2016; Tran et al., 2016b; Tran et al., 2016c) 
describe different aspects of the MIL-STD-882E 
Functional Hazard Analysis method. However, we 
did not cover how to conduct an SCC assessment. 

SCC AS A RISK FACTOR 
The system risk associated with an SSF failure is 

typically expressed as the product of two risk factors: 
the mishap severity and the probability or rate of 
occurrence. For quantitative estimation, historical 
data, system analysis, and simulation studies are used 
to quantify the probability of occurrence. For 
qualitative estimation, likelihood categories are used 
in place of the numeric probability of occurrence. A 
risk matrix is then used to combine the two risk 
factors into a single risk level (Safety, 2012). 

 
SYSTEM RISK = SEVERITY x PROBABILITY (or 
LIKELIHOOD) 
 

With the use of software to control SSFs, attempts 
have been made to maintain compatibility between 
software and hardware reliability calculations for 
joint system reliability assessment (IEEE-1663, 
2016). Software reliability methods such as Software 
Fault-Tree Analysis and Software Failure-Mode 
Effects Analysis provide software failure 
probabilities for use in system risk assessment. The 
MIL-STD-882E Standard, however, moves away 
from using probabilistic estimation of software risk. 
The Standard uses alternative factors to approximate 
the software contribution to system risk: the degree of 
software control of an SSF and the level of safety 
quality assurance rigor. The failure risk of an SSF is 
deemed higher if the function is controlled by a single 
software controller (an autonomous control structure) 
instead of a redundant set of independently built and 
operated controllers (a redundant fault-tolerant 
control structure). Similarly, the failure risk of an SSF 
is deemed higher if the safety quality assurance 
process employed was less rigorous than required. 

 
SOFTWARE RISK = SEVERITY x SOFTWARE 
CONTROL CATEGORY x LEVEL OF RIGOR 

 
Figure 1 provides an overview of how the SCC is 

used in software contribution risk assessment. SCC 
assessment, i.e., determining the degree of software 
control autonomy of an SSF, is performed after 
identifying the SSF as a software-controlled SSF. The 
output of the SCC assessment is used in conjunction 
with mishap severity to determine the software safety 
criticality of the SSF, i.e., the Software Safety 
Criticality Index (SWCI). The SWCI of an SSF then 
drives the determination of the initial software risk, 
the development of risk mitigations, the level of rigor 
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(LOR) of the safety assurance effort, and ultimately 
the target and residual risks. Wrong SSC assessment 
could lead to the erroneous determination of LOR, the 
third factor of software risk, ultimately resulting in the 
incorrect software risk assessment. This paper focuses 
on assessing the SCC of SSFs. 

THE SCC CATEGORIES 
The MIL-STD-882E Standard defines five Software 
Control Categories (SCC); some categories have two 
subcategories (Safety, 2012). The SCC designation is 
not applied to SSFs controlled strictly by non-
software, e.g., hardware or human actions. This 
section provides our interpretation of each SCC as 
described by the Standard, emphasizing the 
distinguishing features of the software control 
category while adhering to the Standard's definitions. 
The Standard assumes that the SCC risk factor is only 
relevant when the software fails to perform its 
intended control functions. 
 
SCC Level 1: Autonomous (AT) 
The AT (SCC 1) designation applies to SSFs 
controlled by autonomous software functions. 
Controlling complex system functions could be 
performed by networked software functions running 
on independent processors. Failure of any part of the 
software control puts the system into a hazardous 

condition leading directly to a system mishap. 
Autonomy means that there are no external means to 
detect and intercept the system to prevent a mishap 
once the software controlling an SSF fails. 
 
SCC Level 2: Semi-Autonomous (SAT)  

The SAT (SCC 2a) designation applies to SSFs 
controlled by software functions that run 
autonomously, similar to the AT designation. Failure 
of any part of the software control can put the system 
into a hazardous condition leading to a mishap. The 
system, however, is designed to provide a window of 
opportunity for an independent external actor, e.g., 
hardware, software, or a human, to detect and 
intercept the hazardous condition, in a timely manner, 
thus preventing the system mishap. The external actor 
does not rely on the faulty software controller to carry 
out the time-sensitive control action to bring the 
system back into a safe state.    

The SAT (SCC 2b) designation applies to SSFs 
monitored by software monitoring functions that 
provide timely safety-significant information to an 
external actor, allowing the external actor to control a 
hazardous condition. The monitoring software may or 
may not control the system function. System mishaps 
can occur when the monitoring software fails to 
provide safety-significant information correctly or in 
a timely way. The independent external actor can also 

Figure 1: How the SCC is Used to Determine the Software Risk 
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initiate control actions to prevent a system mishap 
despite the failed monitoring software.  
 
SCC 3: Redundant Fault-Tolerant (RFT) 

The RFT (SCC 3a) designation applies to SSFs 
controlled by redundant and independent controllers, 
including hardware, software systems, human 
actions, and combinations. Independent controllers 
mean controllers that: 1) receive data from different 
sources, 2) make independent decisions, 3) take 
independent actions, 4) are built independently, 5) 
operate independently, and 6) fail independently. 
Independence enables redundancy and fault-
tolerance. The RFT is assigned when redundancy and 
fault-tolerance are sufficient to ensure all identified 
hazardous conditions caused by software failures are 
controlled. System failure occurred when all 
redundant controllers failed.    

The RFT (SCC 3b) designation applies to SSFs 
controlled by software functions that depend on an 
external independent actor’s concurrence to initiate 
control actions. System failure occurs when the 
software controller accidentally initiates control 
actions without an agreement. The RFT is assigned 
when redundancy and fault-tolerance are sufficient to 
ensure that no control action can be started without 
external concurrence. Failure of either controller 
prevents further control actions.  
 
SCC Level 4:  Influential (INF)    

The INF (SCC 4) designation applies to SSFs 
relying on software system functions for capturing 
non-time-sensitive safety-related information. While 
software functions are responsible for collecting, 
logging, or displaying safety-related information, 
they do not control the SSFs, e.g., these SSFs are 
controlled by hardware. Failure of an INF software 
function will result in the loss of valuable safety-
related information but does not induce a system 
mishap. The external actor that receives the safety-
related information is not expected to initiate any 
immediate safety action.   
 
SCC Level 5: No-Safety-Impact (NSI)  

The NSI (SCC 5) applies to system functions that 
are not safety significant, i.e., system functions that 
are not supported by safety-significant software. 
Failure of the software controlling the system 
functions will not induce a system mishap.  

SCC ASSESSMENT: A FUNCTIONAL 
APPROACH 
SAFETY-SIGNIFICANT SOFTWARE FUNCTIONS 
(SSSFS) 

Each system is functionally composed of a set of 
system functions. System functions that are of interest 
to system safety are the safety-significant system 
functions (SSFs). Software Control Category (SCC) 
is a system-level property of an SSF. This property is 
derived from assessing the degree of control software 
has over the SSF. A software controller could 
comprise multiple networked software functions 
running in different subsystems. Each software 
function could be further decomposed into sub-
functions and allocated to different components 
within a subsystem. Thus, each SSF can be 
functionally decomposed into a tree where the lowest-
level allocated software functions, or safety-
significant software system functions (SSSFs), reside 
at the bottom of the tree. Also, at the bottom are the 
non-software functions allocated to hardware and 
human to support the SSF. The assessment of the SCC 
of an SSF requires understanding the roles and 
structure of these allocated SSSFs and their 
relationship with the non-software functions through 
the lenses of system safety. Figure 2 shows a sample 
functional decomposition of a system to its SSFs and 
SSSFs for SCC assessment. Each top-level SSF is 
decomposed into a set of safety-significant software 
and non-software functions. A software controller 
comprises all SSSFs supporting an SSF. 
  

THE SCC ASSESSMENT PROCESS 

The SCC assessment process consists of three 
steps: First, decompose an SSF into a set of software 
functions and allocate them to the components of the 
system. Second, assess the SCC level of individual 
SSSFs supporting the SSFs. Third, adjust the SCC of 
the SSFs. 

In Step 1, Identify the Safety-Significant 
Software Functions (SSSwFs), each SSSF is 
decomposed into low-level subsystem functions. 
System functions that are deemed not hazardous are 
not analyzed in this step. Decomposing SSSF reviews 
all the functional elements that support this system 
function. Multiple SSSFs can share the same low-
level subsystem functions. More complex functions  



Tran, V.N. et al   Assessing the Software Control Autonomy 
   of System Functions in Safety-Critical Systems 

  Journal of System Safety – Vol 57(3) Fall 2022 50 

are further decomposed into smaller functions that 
could be allocated to the different physical 
components in the system architecture. Physical 
components could be hardware, software, or an 
operator. At the lowest level, the functions allocated 
to a software component are the SSSwFs that, 
together with other non-software components, control 
the SSSF. Step 1 is completed when all SSSFs are 
functionally decomposed to software and non-
software functions allocated to the system 
architecture components.  

In Step 2, Assign SCC to the SSSFs, SCC 
assessment is performed top-down, starting with the 
top-level SSF assigned SSC 1, autonomous control. 
As the analysis progresses down the decomposition 
tree, each child function inherits the SCC level of its 
parent function by default. A child function can have 
a SCC different than its parent function if it is realized 
by a structure that fits a lower SCC designation. Step 
2 is completed when all SSSFs are assigned SCCs.   

In Step 3, Reassess the SSF's SCC, the top-level 
SSF's SCC is reassessed once all the SSSFs 
supporting it have been assigned SCCs. This 
reassessment is performed bottom-up until the top-
level SSF is reached. At each level, the SCC of a 
function is reexamined now that the SCCs of its 
subfunctions are known. 

THE SCC ASSESSMENT RULES 

There are several rules that guide the SCC 
assessment of individual functions. These rules can be 
used in Steps 2 and 3 of the SCC Assessment process.  
1. The Top-Level Rule: A top-level SSF is given an 

SCC 1, i.e., autonomous control, when no other 
information is available.  

2. The SCC Matching Rule: A function whose 
control structure meets the description of a lower 
SCC designation is assigned that designation.  

3. The Inheritance Rule: A subfunction inherits the 
SCC level of its parent function by default when 
no other information is known.  

4. The Partition Rule: The SSSFs residing in 
different physical components can have different 
SCC levels. 

5. The Reuse Rule: An SSSF can have multiple 
SCCs if it is used by multiple parent functions 
leading to multiple SSFs. The highest SCC level, 
i.e., highest control autonomy, will be assigned to 
the shared SSSF. 

6. The Reduced Autonomy Rule: The SCC of a 
parent function may be lowered if all child 
functions have a lower SCC than the SCC of the 
parent function.  

Figure 2: A Functional Decomposition of a System 
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In the next section, we will use our method to 
analyze the rear-ended vehicle collision prevention 
system for demonstration. 

SCC OF REAR-ENDED VEHICLE 
COLLISION PREVENTION SYSTEMS – A 
SMALL CASE STUDY 

Rear-ended vehicle accidents are among the most 
common accidents with a risk of vehicle and people 
injuries (Ryan, 2020). Over the years, many safety 
braking solutions have been developed to address this 
problem. This case study will look at a brake-assist 
system with three safety functions often available in 
automobiles equipped with the redundant electro-
hydraulic brake system. The redundant brake system 
supports P < 10E-8 probability of braking function 
loss with a newly introduced electric controlled brake 
system backed up by a traditional hydraulic brake 
system. A brake-assist system is designed to augment 
the vehicle driver, so it remains primarily the driver's 
responsibility to ensure safe driving. In the rest of this 
section, we will focus on assessing the SCC level for 
the SSFs of this simplified brake-assist system. 

The three top-level SSFs of our brake-assist 
system are: 
1. The Adaptive Cruise Control (ACC) function 

controls the vehicle’s speed relative to the speed of 
the front vehicle in a long highway drive without 

driver interference. While the ACC is more than a 
brake-assist solution, its Auto-Deceleration 
function serves to avoid a potential rear-ended 
collision. Only the Auto-Deceleration function of 
the ACC will be analyzed.  

2. The Autonomous Emergency Braking (AEB) 
function monitors a potential front collision with 
obstacles, including another vehicle. When a 
collision is imminent and there is no driver-
initiated braking, the AEB function will initiate 
braking at full force. It will automatically release 
the brakes once the vehicle has completely 
stopped.  

3. The Emergency Brake Assist (EBA) function 
supports the driver in urgent braking. The  function 
monitors the brake pedal to detect a rapid brake 
attempt by the driver and applies full force to the 
brake.  
Figure 3 provides a simplified illustration of this 

brake-assist system. The SSFs are identified in the 
diagram, separated into non-software functions and 
software control functions, and mapped into a high-
level functional architecture. This high-level 
architectural diagram provides the context for 
assessing the SCC level of these three SSFs. The 
assessment will be presented in detail below. 

Figure 3: Building Blocks of a Rear-Ended Vehicle Collision Avoidance System 
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 ACC AUTO-DECELERATION (AAD) 

Figure 4 decomposes system function AAD. 
Function AAD was initially tagged as an AT (SCC 1) 
function (Rule 1). This function is decomposed into 
two distinct primary-backup deceleration functions: 
Sense-and-Decelerate and See-and-Decelerate. 
Sense-and-Decelerate represents the new 
computerized function, and See-and-Decelerate 
represents the manual function performed by humans. 
The independence of these two functions reflects the 
requirement that the vehicle driver is responsible for 
always maintaining visual contact with the front 
vehicle. The vehicle driver can override the ACC 
system to slow down the vehicle if needed. Failure of 
the Sense-and-Decelerate function does not prevent 
the See-and-Decelerate function from performing the 
same deceleration. The Sense-and-Decelerate 
software function thus meets the design criteria of an 
SAT 2a (Rule 2). The Sense-and-Decelerate function 
is further decomposed into a set of interacting 
subfunctions with many to be implemented in 
software. These software functions inherit their 
parent's SCC level (Rule 3). The Monitor-Front-
Vehicle-Speed-and-Distance function will be realized 
by a reliable, redundant, fault-tolerant software-
controlled radar system, thus qualified for an RFT 3a 

(Rule 2). Rolling up to the SCC level, the Monitor-
Front-Vehicle-Speed-and-Distance function becomes 
an RFT 3a, according to Rule 6.  

Function Monitor-Vehicle-Speed (SAT 2a) 
comprises three functional components. Function 
Analyze-Vehicle-Speed determines the vehicle's 
speed based on the wheel and vehicle sensors. 
Function wheel speed sensor system is an RFT 
function with four sensors (Rule 2). The vehicle speed 
sensor system is redundant to the wheel speed sensor 
system, thus qualified for an RFT 3a (Rule 2). 
Function Analyze-Vehicle-Speed, however, is not an 
RFT function. This function inherits the SAT 2a 
designation from its parent function Monitor-
Vehicle-Speed (Rule 3). Function Monitor-Vehicle-
Speed remains an SAT 2a after rolling up the SCC 
levels. 

Functions Control Brake and Control Engine 
inherit the SAT 2a from its parent according to Rule 
3. It may be tempting to classify these functions as AT 
(1) as they are responsible for controlling the brake 
and engine systems, respectively. This assignment 
would be incorrect. Neither function should be given 
a higher SCC level than its parent function Sense-and-
Decelerate (SAT 2a). While the failure of functions 
Control Brake or Control Engine will fail the function 
Sense-and-Decelerate, the function See-and-

Figure 4: Decomposing Safety-Significant System Function ACC Auto-Deceleration 
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Decelerate is capable of controlling the hazardous 
condition. Functions Control Brake and Control 
Engine are thus SAT 2a functions. 

Function Sense-and-Decelerate remains an SAT 
2a, making the top-level SSF ACC Auto-Decelerate 
(AAD) an SAT 2a, according to Rule 6. Function See-
and-Decelerate is realized by the vehicle driver and 
the hydraulic brake system, i.e., non-software.  

AUTONOMOUS EMERGENCY BRAKING (AEB) 

Figure 5 decomposes function AEB. Unlike 
function AAD, which is activated manually, function 
AEB is automatically activated when the vehicle is 
started. Function AEB function does not assume that 
the vehicle driver will be responsible for detecting 
obstacles on the road in front of the vehicle. Instead, 
the AEB operates autonomously. When function 
AEB detects an obstacle blocking the vehicle's path, 
it initiates braking control in full force. Function AEB 
will not release the brake until the vehicle is 
completely stopped. Failure of the AEB to detect and 
brake can lead to a system mishap. The AEB is an AT 
1 (Rule 2). 

In Figure 6, function AEB is decomposed into 
subfunctions that scan for obstacles on the road, 
monitor the vehicle's current speed, analyze the radar 
signals to detect the obstacles, apply brake and engine 
control, and display the brake light. Functions 
Monitor-Of-Vehicle-Obstacles-In-Front-Of-Vehicle, 

Monitor-Vehicle-Speed, Apply-Braking, and Apply-
Engine-Control are decomposed and assigned SCC 
levels described in system function AAD's 
assessment. Function Display-Brake-Light is an INF 
4 (Rule 2) since there is no expectation that it is used 
to trigger a safety action due to the short response time 
required to execute an emergency braking. Function 
Detect-Obstacles is an AT 1 designed to 
autonomously initiate emergency braking upon 
detecting an obstacle on the road (Rule 2). The parent 
function AEB remains an AT 1. 

EMERGENCY BRAKE ASSIST (EBA) 

Function EBA relies on the braking action initiated by 
the vehicle driver to activate emergency braking 
assistance. The function is thus an RFT 3b (Rule 2) as 
it cannot start the additional braking action without 
expressed concurrence for the action by the driver, the 
independent actor. In addition, failure of the EBA 
function does not prevent completion of the 
emergency braking by the vehicle driver who initiated 
the action as the EBA function is only an assisting 
function. It is not designed to replace the manual 
braking action. Further decomposing function EBA 
into subfunctions shows that function Display-Brake-
Light qualifies for an INF 4, Rule 2. The remaining 
subfunctions retain the RFT 3b SCC level from the 
parent function (Rule 3).  

Figure 5: Decomposing Safety-Significant System Function Autonomous Emergency Brake 
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While function Apply-Braking is assigned SAT 2b 
in Figure 5, it should be noted that it is assigned an 
RFT 3b here, Figure 6. Applying Rule 5, the SCC 
level of function Apply-Braking is adjusted as an 
SAT 2b. We reassess the SCC level of the parent 
function Automated-Emergency-Brake-Assist once 
the SCC levels of all its subfunctions have been 
determined as an RFT 3 due to all the redundant user 
actions available (Rule 2).   

Table 1 presents a mapping of the three SSFs to 
SCC levels. The map captures 1) the relationship 
between individual SSFs and the software 
subfunctions allocated to the components of the 
system, 2) the degree of control autonomy of the 
software subfunctions supporting the individual SSFs 
based on the system architecture, 3) the degree of 
software control autonomy of the SSFs.  There is one 
column for each SSSF. Below the SSF names are the 
assigned SCCs. Beneath the assigned SSF SCCs are 
the allocated software component functions and 
assigned SCCs. Software component functions 
supporting multiple SSSFs have multiple assigned 
SCCs. The rollup of the assigned SCCs to the highest 
degree of control category for the software 
component functions is to the right of the table. This 
SSF-SCC Map provides complete traceability from 
the SCC levels assigned to the software functions to 

the SCCs assigned to the SSFs. This traceability 
simplifies the adjustment of the SCC assignments 
when an SSF is removed or added.  

CONCLUSION 
The importance of software system safety as a 

subdiscipline of system safety continues to grow as 
software control replaces traditional hardware control 
in safety-critical systems. The recent high-profile 
failure of the Boeing 737 MAX systems is a reminder 
of the software risk in safety-critical systems. The 
MIL-STD-882E Standard provides a method for 
determining the software criticality and risk of SSFs. 
This method relies on the estimation of the degree of 
control autonomy software has over hazardous 
system functions. Correct assessment of the SCC 
level of hazardous system functions is essential for 
optimizing the safety property of a system developed 
under budget, schedule, and resource constraints. 
Presently, little information is available on 
systematically performing an SCC assessment. Our 
paper fills this knowledge gap. We presented a 
functional method for assessing the SCC of the SSFs. 
For illustration, we provided a detailed description of 
how to determine the SCC of the brake-assist system 
functions of an automobile.  

Figure 6: Decomposing Safety-Significant System Function Emergency-Brake Assist 
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