
Original Article
 https://doi.org/10.56094/jss.v57i3.206

© The Authors. Journal of System Safety is published by the International System Safety Society

45

International
System Safety

Society

www.jsystemsafety.com

Journal of System Safety
Established 1965 Vol. 57 No. 3 (2022)

Assessing the Software Control Autonomy of
System Functions in Safety-Critical Systems

Vu N. Tranab , Viet N. Tranc , Long V. Trancd

a Corresponding author email: vu.n.tran3.civ@us.navy.mil
b Naval Air Warfare Center - Weapons Division; China Lake, California, USA
c University of Southern California, Los Angeles, California, USA
d United States Air Force, Ohio, USA

Keywords
software safety, software
control category, hazard
analysis, safety process

Peer-Reviewed
Gold Open Access
Zero APC Fees
CC-BY-ND 4.0 License

Received: 29-Jun-2022
Accepted: 06-Aug-2022
Online: 04-Oct-2022

Cite As:
Tran V.N., Tran V.N.,
Tran L.V., Assessing the
Software Control
Autonomy of System
Functions in Safety-
Critical Systems. Journal
of System Safety.
2022;57(3):45-55.
https://doi.org/10.56094/js
s.v57i3.206

ABSTRACT
Software Control Category (SCC) denotes the degree of control autonomy, command
and control authority, and redundant fault tolerance software has over hazardous system
functions of safety-critical systems. The use of SCC for determining the software
contribution to system risks is a unique feature of the MIL-STD-882E System Safety
Standard. A lower SCC designation means that the software system has a greater control
autonomy over hazardous system functions, whereas SCC 1 means complete
autonomous control. Software with greater control autonomy over hazardous system
functions require greater effort to assure reliability and safety. Correct assessment of
the SCC level of hazardous system functions is crucial for optimizing the safety property
of a system developed under budget, schedule, and resource constraints. Beyond the
categorical definitions provided by the MIL-STD-882E Standard, there is little
information on conducting an SCC assessment. To close this knowledge gap, we present
an SCC assessment method. Our paper will describe in detail the process and rules for
assessing SCC. For illustration, we apply our method to assess the SCC of several
safety-significant functions of an automobile’s brake-assist system.

INTRODUCTION
The two crashes of Boeing airliners model 737 MAX
that took 346 lives are a stark reminder of the risk of
embedded software in safety-critical systems
(Wikipedia, 2022a). As software controllers continue
to replace specialized hardware devices in safety-

critical systems, the risk of software-induced system
failure continues to grow. This trend repeats across
multiple industries, including transportation systems,
traffic control systems, medical surgery equipment,
nuclear power centers, power grid infrastructures,
industrial robots, and military weapon systems.
Eliminating and controlling the contribution of
software to system hazards, i.e., the software risk, is

Tran, V.N. et al Assessing the Software Control Autonomy
 of System Functions in Safety-Critical Systems

 Journal of System Safety – Vol 57(3) Fall 2022 46

an objective of system safety engineering. Software
system safety, or software safety, is a subdiscipline
within system safety that focuses on applying system
safety principles and practices to software systems
development (Wikipedia, 2022b). Software safety
controls the risk of defective embedded software
systems triggering consequential system mishaps.
Software safety's vital role in system safety
engineering continues to grow (Danhauser, 2014).

To determine the software risk in safety-critical
systems, the MIL-STD-882E Standard focuses on
three risk factors: 1) the system mishap severity, 2)
the software control autonomy, and 3) the level of
rigor (LOR) of the safety quality assurance process.
The mishap severity factor measures the magnitude of
the consequence of a system mishap. This factor is
well-known in system safety and reliability with
established methods for estimating. LOR represents
the required level of safety analysis and assurance of
hazardous or safety-significant system functions
(SSFs). The MIL-STD-882E Implementation Guide
(JS-SSA-IG, 2018) provides detailed information on
the different LOR levels and tasks. Software Control
Autonomy (SCC) expresses the degree of control
autonomy, command and control authority, and
redundant fault tolerance software has over the SSFs
(Safety, 2012). How to assess this risk factor is not
discussed in the Standard and its related handbooks
and guides. It remains a knowledge gap to be
addressed. The need for a systematic and rigorous
assessment approach is apparent when dealing with
systems with many software controllers supporting
many SSFs (JS-SSA-IG, 2018). For instance, a high-
end automobile system today can have hundreds of
independent processors with software controlling
hundreds of SSFs. The code size of such a system can
easily exceed one hundred million lines of code
(Charette, 2021). A SCC assessment method ensures
that the resulting SCC of the SSFs are correct,
consistent, and explainable.

We propose a functional approach to assessing the
SCC of hazardous system functions. Our approach is
aligned with the overall functional approach to hazard
analysis in the MIL-STD-882E FHA method. We will
provide a detailed description of our SCC assessment
method, including the process and rules for
systematically and consistently deriving the SCC
level of individual SSFs. For illustration, we will use
our method for assessing several system functions of
an automobile's brake-assist system.

REVIEW OF LITERATURE
 To support our review, we started by asking,
“How does one approach assessing the control
autonomy of the embedded software supporting
safety-critical system functions?” In addition to
looking through the MIL-STD-882 Standard and
supporting documents, we performed a literature
search on the IEEE Computer Science Digital and
ACM databases, using keywords such as "software
control category" and "SCC" "MIL-STD-882",
"software control level." The list of relevant papers
on the software control category within the last ten
years is negligible. Below are notes from our
literature review.

The MIL-STD-882 Standard plays a central role
in military weaponry, aerospace, and nuclear center
system safety. The latest revision E of this Standard
emphasizes software system safety by adopting the
Functional Hazard Analysis (FHA) method. Within
the FHA, the SCC is introduced as a risk measuring
factor. The SCC designation describes the software
contribution risk associated with an SSF; thus, it is a
system function-level designation.

The MIL-STD-882 Standard remains widely
adopted within the defense, nuclear, and aerospace
sectors. A new revision of the MIL-STD-882,
revision F, is under development. We expect that SCC
will remain critical in considering the software risk in
safety-critical systems.

Several related documents mention the adoption
of the SCC but provide little additional information
on how to conduct an SCC assessment. The Joint
Software System Safety Engineering Handbook
(JSSSEH, 2010) provides this concise guidance: “the
analyst identifies the software safety-significant
functions early in the analytical phase and assigns a
mishap severity and software control category to
each.” The Joint-Services Software Safety
Authorities Software System Safety Implementation
Process and Tasks Supporting MIL-STD-882 (JS-
SSSA-IG, 2018) emphasizes that “accurate
assessment of the SCC based upon the complexity of
the system, autonomy of the system’s functionality,
and/or its command-and-control authority is
imperative.” Both the NATO Guidance on Software
Safety Design and Assessment of Munition-Related
Computing Systems (AOP-52) (NATO, 2016) and
The Nuclear Regulatory Commission’s Software
Safety Hazard Analysis document (Lawrence, 1996)

Tran, V.N. et al Assessing the Software Control Autonomy
 of System Functions in Safety-Critical Systems

 Journal of System Safety – Vol 57(3) Fall 2022 47

adopted the MIL-STD-882 Standard. However,
neither discusses how to conduct an SCC assessment.

Literature research in safety requirements
engineering reports limited publications on modern
software-based system safety methods (Martins and
Gorschek, 2017; Martins, L. and Gorschek, 2020).
Most system safety methods in practice today are
derived from hardware-based methods such as Fault
Tree Analysis (FTA), Failure Mode Effect Analysis
(FMEA), Failure Mode Effects Analysis and
Criticality Analysis (FMECA), and Preliminary
Hazard Analysis (PHA). Several reasons for the lack
of adoption of software-based hazard analysis
methods, including Functional Hazard Analysis, are
1) the lack of software safety teaching in computer
science and software engineering curricula, 2) the
lack of familiarity with software-based methods
among system safety professionals, 3) the lack of
published information on the effectiveness of
software-based methods, and 4) the slowness in the
adoption of software-based methods in safety
standards.

One interesting publication is from Robert Smith,
where the author uses Fault-Tree Analysis to verify
that the different proposed MIL-STD-882E SCC
designations are distinct (Smith, 2018). However, the
paper does not address the issue we seek to address,
which is how to systematically assess the SCC of
SSFs.

The Guidelines for Development of Civil Aircraft
and Systems (ARP4754A, 2010) outlines a method
for assessing the Functional Development Assurance
Level (FDAL) of system functions. This method first
decomposes individual system functions into
subfunctions and allocates these subfunctions to the
subsystems that make up the system architecture. The
system functions are then assigned an FDAL level
based on the structures of their subfunctions. For
instance, if a function classified as an FDAL A is
decomposable into multiple redundant and
independent functions, that function may be
reclassified as an FDAL B, i.e., a lower risk function.
This FDAL assessment method, supporting the
software safety activities in civil aviation, has steps
similar to our proposed SCC assessment method.

Our previous papers on software safety (Tran et
al., 2016; Tran et al., 2016b; Tran et al., 2016c)
describe different aspects of the MIL-STD-882E
Functional Hazard Analysis method. However, we
did not cover how to conduct an SCC assessment.

SCC AS A RISK FACTOR
The system risk associated with an SSF failure is

typically expressed as the product of two risk factors:
the mishap severity and the probability or rate of
occurrence. For quantitative estimation, historical
data, system analysis, and simulation studies are used
to quantify the probability of occurrence. For
qualitative estimation, likelihood categories are used
in place of the numeric probability of occurrence. A
risk matrix is then used to combine the two risk
factors into a single risk level (Safety, 2012).

SYSTEM RISK = SEVERITY x PROBABILITY (or
LIKELIHOOD)

With the use of software to control SSFs, attempts
have been made to maintain compatibility between
software and hardware reliability calculations for
joint system reliability assessment (IEEE-1663,
2016). Software reliability methods such as Software
Fault-Tree Analysis and Software Failure-Mode
Effects Analysis provide software failure
probabilities for use in system risk assessment. The
MIL-STD-882E Standard, however, moves away
from using probabilistic estimation of software risk.
The Standard uses alternative factors to approximate
the software contribution to system risk: the degree of
software control of an SSF and the level of safety
quality assurance rigor. The failure risk of an SSF is
deemed higher if the function is controlled by a single
software controller (an autonomous control structure)
instead of a redundant set of independently built and
operated controllers (a redundant fault-tolerant
control structure). Similarly, the failure risk of an SSF
is deemed higher if the safety quality assurance
process employed was less rigorous than required.

SOFTWARE RISK = SEVERITY x SOFTWARE
CONTROL CATEGORY x LEVEL OF RIGOR

Figure 1 provides an overview of how the SCC is

used in software contribution risk assessment. SCC
assessment, i.e., determining the degree of software
control autonomy of an SSF, is performed after
identifying the SSF as a software-controlled SSF. The
output of the SCC assessment is used in conjunction
with mishap severity to determine the software safety
criticality of the SSF, i.e., the Software Safety
Criticality Index (SWCI). The SWCI of an SSF then
drives the determination of the initial software risk,
the development of risk mitigations, the level of rigor

Tran, V.N. et al Assessing the Software Control Autonomy
 of System Functions in Safety-Critical Systems

 Journal of System Safety – Vol 57(3) Fall 2022 48

(LOR) of the safety assurance effort, and ultimately
the target and residual risks. Wrong SSC assessment
could lead to the erroneous determination of LOR, the
third factor of software risk, ultimately resulting in the
incorrect software risk assessment. This paper focuses
on assessing the SCC of SSFs.

THE SCC CATEGORIES
The MIL-STD-882E Standard defines five Software
Control Categories (SCC); some categories have two
subcategories (Safety, 2012). The SCC designation is
not applied to SSFs controlled strictly by non-
software, e.g., hardware or human actions. This
section provides our interpretation of each SCC as
described by the Standard, emphasizing the
distinguishing features of the software control
category while adhering to the Standard's definitions.
The Standard assumes that the SCC risk factor is only
relevant when the software fails to perform its
intended control functions.

SCC Level 1: Autonomous (AT)
The AT (SCC 1) designation applies to SSFs
controlled by autonomous software functions.
Controlling complex system functions could be
performed by networked software functions running
on independent processors. Failure of any part of the
software control puts the system into a hazardous

condition leading directly to a system mishap.
Autonomy means that there are no external means to
detect and intercept the system to prevent a mishap
once the software controlling an SSF fails.

SCC Level 2: Semi-Autonomous (SAT)

The SAT (SCC 2a) designation applies to SSFs
controlled by software functions that run
autonomously, similar to the AT designation. Failure
of any part of the software control can put the system
into a hazardous condition leading to a mishap. The
system, however, is designed to provide a window of
opportunity for an independent external actor, e.g.,
hardware, software, or a human, to detect and
intercept the hazardous condition, in a timely manner,
thus preventing the system mishap. The external actor
does not rely on the faulty software controller to carry
out the time-sensitive control action to bring the
system back into a safe state.

The SAT (SCC 2b) designation applies to SSFs
monitored by software monitoring functions that
provide timely safety-significant information to an
external actor, allowing the external actor to control a
hazardous condition. The monitoring software may or
may not control the system function. System mishaps
can occur when the monitoring software fails to
provide safety-significant information correctly or in
a timely way. The independent external actor can also

Figure 1: How the SCC is Used to Determine the Software Risk

Tran, V.N. et al Assessing the Software Control Autonomy
 of System Functions in Safety-Critical Systems

 Journal of System Safety – Vol 57(3) Fall 2022 49

initiate control actions to prevent a system mishap
despite the failed monitoring software.

SCC 3: Redundant Fault-Tolerant (RFT)

The RFT (SCC 3a) designation applies to SSFs
controlled by redundant and independent controllers,
including hardware, software systems, human
actions, and combinations. Independent controllers
mean controllers that: 1) receive data from different
sources, 2) make independent decisions, 3) take
independent actions, 4) are built independently, 5)
operate independently, and 6) fail independently.
Independence enables redundancy and fault-
tolerance. The RFT is assigned when redundancy and
fault-tolerance are sufficient to ensure all identified
hazardous conditions caused by software failures are
controlled. System failure occurred when all
redundant controllers failed.

The RFT (SCC 3b) designation applies to SSFs
controlled by software functions that depend on an
external independent actor’s concurrence to initiate
control actions. System failure occurs when the
software controller accidentally initiates control
actions without an agreement. The RFT is assigned
when redundancy and fault-tolerance are sufficient to
ensure that no control action can be started without
external concurrence. Failure of either controller
prevents further control actions.

SCC Level 4: Influential (INF)

The INF (SCC 4) designation applies to SSFs
relying on software system functions for capturing
non-time-sensitive safety-related information. While
software functions are responsible for collecting,
logging, or displaying safety-related information,
they do not control the SSFs, e.g., these SSFs are
controlled by hardware. Failure of an INF software
function will result in the loss of valuable safety-
related information but does not induce a system
mishap. The external actor that receives the safety-
related information is not expected to initiate any
immediate safety action.

SCC Level 5: No-Safety-Impact (NSI)

The NSI (SCC 5) applies to system functions that
are not safety significant, i.e., system functions that
are not supported by safety-significant software.
Failure of the software controlling the system
functions will not induce a system mishap.

SCC ASSESSMENT: A FUNCTIONAL
APPROACH
SAFETY-SIGNIFICANT SOFTWARE FUNCTIONS
(SSSFS)

Each system is functionally composed of a set of
system functions. System functions that are of interest
to system safety are the safety-significant system
functions (SSFs). Software Control Category (SCC)
is a system-level property of an SSF. This property is
derived from assessing the degree of control software
has over the SSF. A software controller could
comprise multiple networked software functions
running in different subsystems. Each software
function could be further decomposed into sub-
functions and allocated to different components
within a subsystem. Thus, each SSF can be
functionally decomposed into a tree where the lowest-
level allocated software functions, or safety-
significant software system functions (SSSFs), reside
at the bottom of the tree. Also, at the bottom are the
non-software functions allocated to hardware and
human to support the SSF. The assessment of the SCC
of an SSF requires understanding the roles and
structure of these allocated SSSFs and their
relationship with the non-software functions through
the lenses of system safety. Figure 2 shows a sample
functional decomposition of a system to its SSFs and
SSSFs for SCC assessment. Each top-level SSF is
decomposed into a set of safety-significant software
and non-software functions. A software controller
comprises all SSSFs supporting an SSF.

THE SCC ASSESSMENT PROCESS

The SCC assessment process consists of three
steps: First, decompose an SSF into a set of software
functions and allocate them to the components of the
system. Second, assess the SCC level of individual
SSSFs supporting the SSFs. Third, adjust the SCC of
the SSFs.

In Step 1, Identify the Safety-Significant
Software Functions (SSSwFs), each SSSF is
decomposed into low-level subsystem functions.
System functions that are deemed not hazardous are
not analyzed in this step. Decomposing SSSF reviews
all the functional elements that support this system
function. Multiple SSSFs can share the same low-
level subsystem functions. More complex functions

Tran, V.N. et al Assessing the Software Control Autonomy
 of System Functions in Safety-Critical Systems

 Journal of System Safety – Vol 57(3) Fall 2022 50

are further decomposed into smaller functions that
could be allocated to the different physical
components in the system architecture. Physical
components could be hardware, software, or an
operator. At the lowest level, the functions allocated
to a software component are the SSSwFs that,
together with other non-software components, control
the SSSF. Step 1 is completed when all SSSFs are
functionally decomposed to software and non-
software functions allocated to the system
architecture components.

In Step 2, Assign SCC to the SSSFs, SCC
assessment is performed top-down, starting with the
top-level SSF assigned SSC 1, autonomous control.
As the analysis progresses down the decomposition
tree, each child function inherits the SCC level of its
parent function by default. A child function can have
a SCC different than its parent function if it is realized
by a structure that fits a lower SCC designation. Step
2 is completed when all SSSFs are assigned SCCs.

In Step 3, Reassess the SSF's SCC, the top-level
SSF's SCC is reassessed once all the SSSFs
supporting it have been assigned SCCs. This
reassessment is performed bottom-up until the top-
level SSF is reached. At each level, the SCC of a
function is reexamined now that the SCCs of its
subfunctions are known.

THE SCC ASSESSMENT RULES

There are several rules that guide the SCC
assessment of individual functions. These rules can be
used in Steps 2 and 3 of the SCC Assessment process.
1. The Top-Level Rule: A top-level SSF is given an

SCC 1, i.e., autonomous control, when no other
information is available.

2. The SCC Matching Rule: A function whose
control structure meets the description of a lower
SCC designation is assigned that designation.

3. The Inheritance Rule: A subfunction inherits the
SCC level of its parent function by default when
no other information is known.

4. The Partition Rule: The SSSFs residing in
different physical components can have different
SCC levels.

5. The Reuse Rule: An SSSF can have multiple
SCCs if it is used by multiple parent functions
leading to multiple SSFs. The highest SCC level,
i.e., highest control autonomy, will be assigned to
the shared SSSF.

6. The Reduced Autonomy Rule: The SCC of a
parent function may be lowered if all child
functions have a lower SCC than the SCC of the
parent function.

Figure 2: A Functional Decomposition of a System

Tran, V.N. et al Assessing the Software Control Autonomy
 of System Functions in Safety-Critical Systems

 Journal of System Safety – Vol 57(3) Fall 2022 51

In the next section, we will use our method to
analyze the rear-ended vehicle collision prevention
system for demonstration.

SCC OF REAR-ENDED VEHICLE
COLLISION PREVENTION SYSTEMS – A
SMALL CASE STUDY

Rear-ended vehicle accidents are among the most
common accidents with a risk of vehicle and people
injuries (Ryan, 2020). Over the years, many safety
braking solutions have been developed to address this
problem. This case study will look at a brake-assist
system with three safety functions often available in
automobiles equipped with the redundant electro-
hydraulic brake system. The redundant brake system
supports P < 10E-8 probability of braking function
loss with a newly introduced electric controlled brake
system backed up by a traditional hydraulic brake
system. A brake-assist system is designed to augment
the vehicle driver, so it remains primarily the driver's
responsibility to ensure safe driving. In the rest of this
section, we will focus on assessing the SCC level for
the SSFs of this simplified brake-assist system.

The three top-level SSFs of our brake-assist
system are:
1. The Adaptive Cruise Control (ACC) function

controls the vehicle’s speed relative to the speed of
the front vehicle in a long highway drive without

driver interference. While the ACC is more than a
brake-assist solution, its Auto-Deceleration
function serves to avoid a potential rear-ended
collision. Only the Auto-Deceleration function of
the ACC will be analyzed.

2. The Autonomous Emergency Braking (AEB)
function monitors a potential front collision with
obstacles, including another vehicle. When a
collision is imminent and there is no driver-
initiated braking, the AEB function will initiate
braking at full force. It will automatically release
the brakes once the vehicle has completely
stopped.

3. The Emergency Brake Assist (EBA) function
supports the driver in urgent braking. The function
monitors the brake pedal to detect a rapid brake
attempt by the driver and applies full force to the
brake.
Figure 3 provides a simplified illustration of this

brake-assist system. The SSFs are identified in the
diagram, separated into non-software functions and
software control functions, and mapped into a high-
level functional architecture. This high-level
architectural diagram provides the context for
assessing the SCC level of these three SSFs. The
assessment will be presented in detail below.

Figure 3: Building Blocks of a Rear-Ended Vehicle Collision Avoidance System

Tran, V.N. et al Assessing the Software Control Autonomy
 of System Functions in Safety-Critical Systems

 Journal of System Safety – Vol 57(3) Fall 2022 52

 ACC AUTO-DECELERATION (AAD)

Figure 4 decomposes system function AAD.
Function AAD was initially tagged as an AT (SCC 1)
function (Rule 1). This function is decomposed into
two distinct primary-backup deceleration functions:
Sense-and-Decelerate and See-and-Decelerate.
Sense-and-Decelerate represents the new
computerized function, and See-and-Decelerate
represents the manual function performed by humans.
The independence of these two functions reflects the
requirement that the vehicle driver is responsible for
always maintaining visual contact with the front
vehicle. The vehicle driver can override the ACC
system to slow down the vehicle if needed. Failure of
the Sense-and-Decelerate function does not prevent
the See-and-Decelerate function from performing the
same deceleration. The Sense-and-Decelerate
software function thus meets the design criteria of an
SAT 2a (Rule 2). The Sense-and-Decelerate function
is further decomposed into a set of interacting
subfunctions with many to be implemented in
software. These software functions inherit their
parent's SCC level (Rule 3). The Monitor-Front-
Vehicle-Speed-and-Distance function will be realized
by a reliable, redundant, fault-tolerant software-
controlled radar system, thus qualified for an RFT 3a

(Rule 2). Rolling up to the SCC level, the Monitor-
Front-Vehicle-Speed-and-Distance function becomes
an RFT 3a, according to Rule 6.

Function Monitor-Vehicle-Speed (SAT 2a)
comprises three functional components. Function
Analyze-Vehicle-Speed determines the vehicle's
speed based on the wheel and vehicle sensors.
Function wheel speed sensor system is an RFT
function with four sensors (Rule 2). The vehicle speed
sensor system is redundant to the wheel speed sensor
system, thus qualified for an RFT 3a (Rule 2).
Function Analyze-Vehicle-Speed, however, is not an
RFT function. This function inherits the SAT 2a
designation from its parent function Monitor-
Vehicle-Speed (Rule 3). Function Monitor-Vehicle-
Speed remains an SAT 2a after rolling up the SCC
levels.

Functions Control Brake and Control Engine
inherit the SAT 2a from its parent according to Rule
3. It may be tempting to classify these functions as AT
(1) as they are responsible for controlling the brake
and engine systems, respectively. This assignment
would be incorrect. Neither function should be given
a higher SCC level than its parent function Sense-and-
Decelerate (SAT 2a). While the failure of functions
Control Brake or Control Engine will fail the function
Sense-and-Decelerate, the function See-and-

Figure 4: Decomposing Safety-Significant System Function ACC Auto-Deceleration

Tran, V.N. et al Assessing the Software Control Autonomy
 of System Functions in Safety-Critical Systems

 Journal of System Safety – Vol 57(3) Fall 2022 53

Decelerate is capable of controlling the hazardous
condition. Functions Control Brake and Control
Engine are thus SAT 2a functions.

Function Sense-and-Decelerate remains an SAT
2a, making the top-level SSF ACC Auto-Decelerate
(AAD) an SAT 2a, according to Rule 6. Function See-
and-Decelerate is realized by the vehicle driver and
the hydraulic brake system, i.e., non-software.

AUTONOMOUS EMERGENCY BRAKING (AEB)

Figure 5 decomposes function AEB. Unlike
function AAD, which is activated manually, function
AEB is automatically activated when the vehicle is
started. Function AEB function does not assume that
the vehicle driver will be responsible for detecting
obstacles on the road in front of the vehicle. Instead,
the AEB operates autonomously. When function
AEB detects an obstacle blocking the vehicle's path,
it initiates braking control in full force. Function AEB
will not release the brake until the vehicle is
completely stopped. Failure of the AEB to detect and
brake can lead to a system mishap. The AEB is an AT
1 (Rule 2).

In Figure 6, function AEB is decomposed into
subfunctions that scan for obstacles on the road,
monitor the vehicle's current speed, analyze the radar
signals to detect the obstacles, apply brake and engine
control, and display the brake light. Functions
Monitor-Of-Vehicle-Obstacles-In-Front-Of-Vehicle,

Monitor-Vehicle-Speed, Apply-Braking, and Apply-
Engine-Control are decomposed and assigned SCC
levels described in system function AAD's
assessment. Function Display-Brake-Light is an INF
4 (Rule 2) since there is no expectation that it is used
to trigger a safety action due to the short response time
required to execute an emergency braking. Function
Detect-Obstacles is an AT 1 designed to
autonomously initiate emergency braking upon
detecting an obstacle on the road (Rule 2). The parent
function AEB remains an AT 1.

EMERGENCY BRAKE ASSIST (EBA)

Function EBA relies on the braking action initiated by
the vehicle driver to activate emergency braking
assistance. The function is thus an RFT 3b (Rule 2) as
it cannot start the additional braking action without
expressed concurrence for the action by the driver, the
independent actor. In addition, failure of the EBA
function does not prevent completion of the
emergency braking by the vehicle driver who initiated
the action as the EBA function is only an assisting
function. It is not designed to replace the manual
braking action. Further decomposing function EBA
into subfunctions shows that function Display-Brake-
Light qualifies for an INF 4, Rule 2. The remaining
subfunctions retain the RFT 3b SCC level from the
parent function (Rule 3).

Figure 5: Decomposing Safety-Significant System Function Autonomous Emergency Brake

Tran, V.N. et al Assessing the Software Control Autonomy
of System Functions in Safety-Critical Systems

 Journal of System Safety – Vol 57(3) Fall 2022 54

While function Apply-Braking is assigned SAT 2b
in Figure 5, it should be noted that it is assigned an
RFT 3b here, Figure 6. Applying Rule 5, the SCC
level of function Apply-Braking is adjusted as an
SAT 2b. We reassess the SCC level of the parent
function Automated-Emergency-Brake-Assist once
the SCC levels of all its subfunctions have been
determined as an RFT 3 due to all the redundant user
actions available (Rule 2).

Table 1 presents a mapping of the three SSFs to
SCC levels. The map captures 1) the relationship
between individual SSFs and the software
subfunctions allocated to the components of the
system, 2) the degree of control autonomy of the
software subfunctions supporting the individual SSFs
based on the system architecture, 3) the degree of
software control autonomy of the SSFs. There is one
column for each SSSF. Below the SSF names are the
assigned SCCs. Beneath the assigned SSF SCCs are
the allocated software component functions and
assigned SCCs. Software component functions
supporting multiple SSSFs have multiple assigned
SCCs. The rollup of the assigned SCCs to the highest
degree of control category for the software
component functions is to the right of the table. This
SSF-SCC Map provides complete traceability from
the SCC levels assigned to the software functions to

the SCCs assigned to the SSFs. This traceability
simplifies the adjustment of the SCC assignments
when an SSF is removed or added.

CONCLUSION
The importance of software system safety as a

subdiscipline of system safety continues to grow as
software control replaces traditional hardware control
in safety-critical systems. The recent high-profile
failure of the Boeing 737 MAX systems is a reminder
of the software risk in safety-critical systems. The
MIL-STD-882E Standard provides a method for
determining the software criticality and risk of SSFs.
This method relies on the estimation of the degree of
control autonomy software has over hazardous
system functions. Correct assessment of the SCC
level of hazardous system functions is essential for
optimizing the safety property of a system developed
under budget, schedule, and resource constraints.
Presently, little information is available on
systematically performing an SCC assessment. Our
paper fills this knowledge gap. We presented a
functional method for assessing the SCC of the SSFs.
For illustration, we provided a detailed description of
how to determine the SCC of the brake-assist system
functions of an automobile.

Figure 6: Decomposing Safety-Significant System Function Emergency-Brake Assist

Tran, V.N. et al Assessing the Software Control Autonomy
 of System Functions in Safety-Critical Systems

 Journal of System Safety – Vol 57(3) Fall 2022 55

AUTHORSHIP CONTRIBUTIONS
Vu Tran conceived the presented idea and wrote

the paper. Vu Tran and Long Tran co-developed the
method. Viet Tran reviewed the literature. Long Tran
and Viet Tran co-developed the automobile example.
All authors reviewed the paper and contributed to the
final manuscript.

COMPETING INTERESTS
All authors declare they have no potential

competing interests.

ORCID IDS
Vu N. Tran https://orcid.org/0000-0001-9064-8262

Viet N. Tran https://orcid.org/0000-0002-8078-6925

Long V. Tran https://orcid.org/0000-0003-0343-2768

REFERENCES
[1] Wikipedia (2022a). Boeing 737 MAX groundings. Retrieved

Jun 20, 2020, from
https://en.wikipedia.org/wiki/Boeing_737_MAX_groundin
gs

[2] Wikipedia (2022b). Software System Safety. Retrieved Jun
20, 2020, from
https://en.wikipedia.org/wiki/Software_system_safety

[3] Safety (2012). Department of Defense Standard Practice:
System Safety (MIL-STD-882E). Retrieved July 3, 2022,
from: http://everyspec.com/MIL-STD/MIL-STD-0800-
0899/MIL-STD-882E_41682/.

[4] Charette, R. N. (2021). How Software Is Eating the Car. IEEE
Spectrum. Retrieved May 8, 2022, from
https://spectrum.ieee.org/software-eating-car.

[5] JSSSEH (2010). Joint Software Systems Safety Engineering
Handbook.

[6] JS-SSA-IG (2018). Joint Services - Software Safety
Authorities - Software Systems Safety: Implementation
Process and Tasks Supporting MIL-STD-882E, JS-SSA-IG
Rev. B.

[7] NATO (2016). Guidance on Software Safety Design and
Assessment of Munition-related Computing Systems.
Edition B (Version 1). North Atlantic Treaty Organization.
Allied Ordinance Publication.

[8] Lawrence, J. D. (1996). Software Safety Hazard Analysis,
NUREG/CR-5430 UCRL-ID-12254.
https://doi.org/10.2172/201805

[9] Martins, L. and Gorschek, T. (2017) "Requirements
engineering for safety-critical systems: overview and
challenges," IEEE Software.
https://doi.org/10.1109/MS.2017.265100352

[10] Martins, L. and Gorschek, T. (2020), "Requirements
engineering for safety-critical systems: An interview study
with industry practitioners," IEEE Transactions on Software
Engineering.
https://doi.org/10.1109/TSE.2018.2854716

[11] Smith, R. (2018) Verifying Software Control Categories
(SCCs) Using Quantitative Fault Tree Analyses (FTAs).
Retrieved May 5, 2022, from
https://ndiastorage.blob.core.usgovcloudapi.net/ndia/201
8/systems/Thurs_21310_Smith.pdf.

[12] ARP4754 (2010). Guidelines for Development of Civil
Aircraft and Systems. Aerospace Recommended Practice
4754.

[13] Ryan, T. (2020). "Rear-End Car Accident Statistics," Car
Accident Case Law. Retrieved Apr 3, 2022, from .

[14] Danhauser, C. (2022). The Concept of Software Principal
for Safety. International System Safety Conference 2022
(Paper in review).

[15] IEEE-1633 (2016). IEEE Recommended Practice on
Software Reliability. IEEE Std 1633-2016.

[16] Tran, V., et al. (2021a). Functional Hazard Analysis for
Engineering Safe Software Requirements (Extended
Version). Presented at the 5th International Conference on
Information and Computer Technology – Virtual (CICIT
2021). https://doi.org/10.1109/ICICT52872.2021.00031

[17] Tran, V., et al. (2021b). Assessing the Software Risk
Contribution to System Hazards using MIL-STD-
882E: Challenges and Recommendations (Extended
Version). Presented at the 37th International System
Safety Conference – Virtual (ISSC 2021). Retrieved July 10,
2022, from www.linkedin.com/in/vuntran.

[18] Tran, V., et al. (2022c). Functional Hazard Analysis of an
Adaptive Cruise Control System - A Software Safety
Requirements Engineering Case Study (Extended Version).
Presented at the 68th Annual Reliability and
Maintainability Symposium. Retrieved July 10, 2022, from
www.linkedin.com/in/vuntran.

